1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// Custom DAG lowering for SI
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifdef _MSC_VER
16 // Provide M_PI.
17 #define _USE_MATH_DEFINES
18 #endif
19 
20 #include "SIISelLowering.h"
21 #include "AMDGPU.h"
22 #include "AMDGPUIntrinsicInfo.h"
23 #include "AMDGPUSubtarget.h"
24 #include "AMDGPUTargetMachine.h"
25 #include "SIDefines.h"
26 #include "SIInstrInfo.h"
27 #include "SIMachineFunctionInfo.h"
28 #include "SIRegisterInfo.h"
29 #include "Utils/AMDGPUBaseInfo.h"
30 #include "llvm/ADT/APFloat.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/ADT/Twine.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/CallingConvLower.h"
41 #include "llvm/CodeGen/DAGCombine.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/TargetCallingConv.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugLoc.h"
60 #include "llvm/IR/DerivedTypes.h"
61 #include "llvm/IR/DiagnosticInfo.h"
62 #include "llvm/IR/Function.h"
63 #include "llvm/IR/GlobalValue.h"
64 #include "llvm/IR/InstrTypes.h"
65 #include "llvm/IR/Instruction.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/IntrinsicInst.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CodeGen.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/MachineValueType.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Target/TargetOptions.h"
78 #include <cassert>
79 #include <cmath>
80 #include <cstdint>
81 #include <iterator>
82 #include <tuple>
83 #include <utility>
84 #include <vector>
85 
86 using namespace llvm;
87 
88 #define DEBUG_TYPE "si-lower"
89 
90 STATISTIC(NumTailCalls, "Number of tail calls");
91 
92 static cl::opt<bool> EnableVGPRIndexMode(
93   "amdgpu-vgpr-index-mode",
94   cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
95   cl::init(false));
96 
97 static cl::opt<unsigned> AssumeFrameIndexHighZeroBits(
98   "amdgpu-frame-index-zero-bits",
99   cl::desc("High bits of frame index assumed to be zero"),
100   cl::init(5),
101   cl::ReallyHidden);
102 
103 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
104   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
105   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
106     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
107       return AMDGPU::SGPR0 + Reg;
108     }
109   }
110   llvm_unreachable("Cannot allocate sgpr");
111 }
112 
113 SITargetLowering::SITargetLowering(const TargetMachine &TM,
114                                    const SISubtarget &STI)
115     : AMDGPUTargetLowering(TM, STI) {
116   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
117   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
118 
119   addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
120   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
121 
122   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
123   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
124   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
125 
126   addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
127   addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
128 
129   addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
130   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
131 
132   addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
133   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
134 
135   addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
136   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
137 
138   if (Subtarget->has16BitInsts()) {
139     addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
140     addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
141   }
142 
143   if (Subtarget->hasVOP3PInsts()) {
144     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass);
145     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass);
146   }
147 
148   computeRegisterProperties(STI.getRegisterInfo());
149 
150   // We need to custom lower vector stores from local memory
151   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
152   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
153   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
154   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
155   setOperationAction(ISD::LOAD, MVT::i1, Custom);
156 
157   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
158   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
159   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
160   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
161   setOperationAction(ISD::STORE, MVT::i1, Custom);
162 
163   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
164   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
165   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
166   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
167   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
168   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
169   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
170   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
171   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
172   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
173 
174   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
175   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
176   setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
177 
178   setOperationAction(ISD::SELECT, MVT::i1, Promote);
179   setOperationAction(ISD::SELECT, MVT::i64, Custom);
180   setOperationAction(ISD::SELECT, MVT::f64, Promote);
181   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
182 
183   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
184   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
185   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
186   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
187   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
188 
189   setOperationAction(ISD::SETCC, MVT::i1, Promote);
190   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
191   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
192   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
193 
194   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
195   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
196 
197   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
198   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
199   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
200   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
202   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
203   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
204 
205   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
206   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
207   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
208   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
209   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
210 
211   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
212   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
213   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
214 
215   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
216   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
217   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
218   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
219 
220   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
221   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
222   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
223   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
224   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
225   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
226 
227   setOperationAction(ISD::UADDO, MVT::i32, Legal);
228   setOperationAction(ISD::USUBO, MVT::i32, Legal);
229 
230   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
231   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
232 
233 #if 0
234   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
235   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
236 #endif
237 
238   //setOperationAction(ISD::ADDC, MVT::i64, Expand);
239   //setOperationAction(ISD::SUBC, MVT::i64, Expand);
240 
241   // We only support LOAD/STORE and vector manipulation ops for vectors
242   // with > 4 elements.
243   for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
244         MVT::v2i64, MVT::v2f64}) {
245     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
246       switch (Op) {
247       case ISD::LOAD:
248       case ISD::STORE:
249       case ISD::BUILD_VECTOR:
250       case ISD::BITCAST:
251       case ISD::EXTRACT_VECTOR_ELT:
252       case ISD::INSERT_VECTOR_ELT:
253       case ISD::INSERT_SUBVECTOR:
254       case ISD::EXTRACT_SUBVECTOR:
255       case ISD::SCALAR_TO_VECTOR:
256         break;
257       case ISD::CONCAT_VECTORS:
258         setOperationAction(Op, VT, Custom);
259         break;
260       default:
261         setOperationAction(Op, VT, Expand);
262         break;
263       }
264     }
265   }
266 
267   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
268   // is expanded to avoid having two separate loops in case the index is a VGPR.
269 
270   // Most operations are naturally 32-bit vector operations. We only support
271   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
272   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
273     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
274     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
275 
276     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
277     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
278 
279     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
280     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
281 
282     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
283     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
284   }
285 
286   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
287   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
288   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
289   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
290 
291   // Avoid stack access for these.
292   // TODO: Generalize to more vector types.
293   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
294   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
295   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
296   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
297 
298   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
299   // and output demarshalling
300   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
301   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
302 
303   // We can't return success/failure, only the old value,
304   // let LLVM add the comparison
305   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
306   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
307 
308   if (getSubtarget()->hasFlatAddressSpace()) {
309     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
310     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
311   }
312 
313   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
314   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
315 
316   // On SI this is s_memtime and s_memrealtime on VI.
317   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
318   setOperationAction(ISD::TRAP, MVT::Other, Custom);
319   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
320 
321   setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
322   setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
323 
324   if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) {
325     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
326     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
327     setOperationAction(ISD::FRINT, MVT::f64, Legal);
328   }
329 
330   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
331 
332   setOperationAction(ISD::FSIN, MVT::f32, Custom);
333   setOperationAction(ISD::FCOS, MVT::f32, Custom);
334   setOperationAction(ISD::FDIV, MVT::f32, Custom);
335   setOperationAction(ISD::FDIV, MVT::f64, Custom);
336 
337   if (Subtarget->has16BitInsts()) {
338     setOperationAction(ISD::Constant, MVT::i16, Legal);
339 
340     setOperationAction(ISD::SMIN, MVT::i16, Legal);
341     setOperationAction(ISD::SMAX, MVT::i16, Legal);
342 
343     setOperationAction(ISD::UMIN, MVT::i16, Legal);
344     setOperationAction(ISD::UMAX, MVT::i16, Legal);
345 
346     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
347     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
348 
349     setOperationAction(ISD::ROTR, MVT::i16, Promote);
350     setOperationAction(ISD::ROTL, MVT::i16, Promote);
351 
352     setOperationAction(ISD::SDIV, MVT::i16, Promote);
353     setOperationAction(ISD::UDIV, MVT::i16, Promote);
354     setOperationAction(ISD::SREM, MVT::i16, Promote);
355     setOperationAction(ISD::UREM, MVT::i16, Promote);
356 
357     setOperationAction(ISD::BSWAP, MVT::i16, Promote);
358     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
359 
360     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
361     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
362     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
363     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
364     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
365 
366     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
367 
368     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
369 
370     setOperationAction(ISD::LOAD, MVT::i16, Custom);
371 
372     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
373 
374     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
375     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
376     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
377     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
378 
379     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
380     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
381     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
382     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
383 
384     // F16 - Constant Actions.
385     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
386 
387     // F16 - Load/Store Actions.
388     setOperationAction(ISD::LOAD, MVT::f16, Promote);
389     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
390     setOperationAction(ISD::STORE, MVT::f16, Promote);
391     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
392 
393     // F16 - VOP1 Actions.
394     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
395     setOperationAction(ISD::FCOS, MVT::f16, Promote);
396     setOperationAction(ISD::FSIN, MVT::f16, Promote);
397     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
398     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
399     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
400     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
401     setOperationAction(ISD::FROUND, MVT::f16, Custom);
402 
403     // F16 - VOP2 Actions.
404     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
405     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
406     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
407     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
408     setOperationAction(ISD::FDIV, MVT::f16, Custom);
409 
410     // F16 - VOP3 Actions.
411     setOperationAction(ISD::FMA, MVT::f16, Legal);
412     if (!Subtarget->hasFP16Denormals())
413       setOperationAction(ISD::FMAD, MVT::f16, Legal);
414   }
415 
416   if (Subtarget->hasVOP3PInsts()) {
417     for (MVT VT : {MVT::v2i16, MVT::v2f16}) {
418       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
419         switch (Op) {
420         case ISD::LOAD:
421         case ISD::STORE:
422         case ISD::BUILD_VECTOR:
423         case ISD::BITCAST:
424         case ISD::EXTRACT_VECTOR_ELT:
425         case ISD::INSERT_VECTOR_ELT:
426         case ISD::INSERT_SUBVECTOR:
427         case ISD::EXTRACT_SUBVECTOR:
428         case ISD::SCALAR_TO_VECTOR:
429           break;
430         case ISD::CONCAT_VECTORS:
431           setOperationAction(Op, VT, Custom);
432           break;
433         default:
434           setOperationAction(Op, VT, Expand);
435           break;
436         }
437       }
438     }
439 
440     // XXX - Do these do anything? Vector constants turn into build_vector.
441     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
442     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
443 
444     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
445     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
446     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
447     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
448 
449     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
450     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
451     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
452     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
453 
454     setOperationAction(ISD::AND, MVT::v2i16, Promote);
455     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
456     setOperationAction(ISD::OR, MVT::v2i16, Promote);
457     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
458     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
459     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
460     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
461     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
462     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
463     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
464 
465     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
466     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
467     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
468     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
469     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
470     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
471     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
472     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
473     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
474     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
475 
476     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
477     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
478     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
479     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
480     setOperationAction(ISD::FMINNUM, MVT::v2f16, Legal);
481     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Legal);
482     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
483 
484     // This isn't really legal, but this avoids the legalizer unrolling it (and
485     // allows matching fneg (fabs x) patterns)
486     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
487 
488     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
489     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
490 
491     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
492     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
493     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
494     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
495   } else {
496     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
497     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
498   }
499 
500   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
501     setOperationAction(ISD::SELECT, VT, Custom);
502   }
503 
504   setTargetDAGCombine(ISD::ADD);
505   setTargetDAGCombine(ISD::ADDCARRY);
506   setTargetDAGCombine(ISD::SUB);
507   setTargetDAGCombine(ISD::SUBCARRY);
508   setTargetDAGCombine(ISD::FADD);
509   setTargetDAGCombine(ISD::FSUB);
510   setTargetDAGCombine(ISD::FMINNUM);
511   setTargetDAGCombine(ISD::FMAXNUM);
512   setTargetDAGCombine(ISD::SMIN);
513   setTargetDAGCombine(ISD::SMAX);
514   setTargetDAGCombine(ISD::UMIN);
515   setTargetDAGCombine(ISD::UMAX);
516   setTargetDAGCombine(ISD::SETCC);
517   setTargetDAGCombine(ISD::AND);
518   setTargetDAGCombine(ISD::OR);
519   setTargetDAGCombine(ISD::XOR);
520   setTargetDAGCombine(ISD::SINT_TO_FP);
521   setTargetDAGCombine(ISD::UINT_TO_FP);
522   setTargetDAGCombine(ISD::FCANONICALIZE);
523   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
524   setTargetDAGCombine(ISD::ZERO_EXTEND);
525   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
526   setTargetDAGCombine(ISD::BUILD_VECTOR);
527 
528   // All memory operations. Some folding on the pointer operand is done to help
529   // matching the constant offsets in the addressing modes.
530   setTargetDAGCombine(ISD::LOAD);
531   setTargetDAGCombine(ISD::STORE);
532   setTargetDAGCombine(ISD::ATOMIC_LOAD);
533   setTargetDAGCombine(ISD::ATOMIC_STORE);
534   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
535   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
536   setTargetDAGCombine(ISD::ATOMIC_SWAP);
537   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
538   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
539   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
540   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
541   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
542   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
543   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
544   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
545   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
546   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
547 
548   setSchedulingPreference(Sched::RegPressure);
549 }
550 
551 const SISubtarget *SITargetLowering::getSubtarget() const {
552   return static_cast<const SISubtarget *>(Subtarget);
553 }
554 
555 //===----------------------------------------------------------------------===//
556 // TargetLowering queries
557 //===----------------------------------------------------------------------===//
558 
559 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
560   // SI has some legal vector types, but no legal vector operations. Say no
561   // shuffles are legal in order to prefer scalarizing some vector operations.
562   return false;
563 }
564 
565 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
566                                           const CallInst &CI,
567                                           MachineFunction &MF,
568                                           unsigned IntrID) const {
569   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
570           AMDGPU::lookupRsrcIntrinsicByIntr(IntrID)) {
571     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
572                                                   (Intrinsic::ID)IntrID);
573     if (Attr.hasFnAttribute(Attribute::ReadNone))
574       return false;
575 
576     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
577 
578     if (RsrcIntr->IsImage) {
579       Info.ptrVal = MFI->getImagePSV(
580         *MF.getSubtarget<SISubtarget>().getInstrInfo(),
581         CI.getArgOperand(RsrcIntr->RsrcArg));
582       Info.align = 0;
583     } else {
584       Info.ptrVal = MFI->getBufferPSV(
585         *MF.getSubtarget<SISubtarget>().getInstrInfo(),
586         CI.getArgOperand(RsrcIntr->RsrcArg));
587     }
588 
589     Info.flags = MachineMemOperand::MODereferenceable;
590     if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
591       Info.opc = ISD::INTRINSIC_W_CHAIN;
592       Info.memVT = MVT::getVT(CI.getType());
593       Info.flags |= MachineMemOperand::MOLoad;
594     } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
595       Info.opc = ISD::INTRINSIC_VOID;
596       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
597       Info.flags |= MachineMemOperand::MOStore;
598     } else {
599       // Atomic
600       Info.opc = ISD::INTRINSIC_W_CHAIN;
601       Info.memVT = MVT::getVT(CI.getType());
602       Info.flags = MachineMemOperand::MOLoad |
603                    MachineMemOperand::MOStore |
604                    MachineMemOperand::MODereferenceable;
605 
606       // XXX - Should this be volatile without known ordering?
607       Info.flags |= MachineMemOperand::MOVolatile;
608     }
609     return true;
610   }
611 
612   switch (IntrID) {
613   case Intrinsic::amdgcn_atomic_inc:
614   case Intrinsic::amdgcn_atomic_dec:
615   case Intrinsic::amdgcn_ds_fadd:
616   case Intrinsic::amdgcn_ds_fmin:
617   case Intrinsic::amdgcn_ds_fmax: {
618     Info.opc = ISD::INTRINSIC_W_CHAIN;
619     Info.memVT = MVT::getVT(CI.getType());
620     Info.ptrVal = CI.getOperand(0);
621     Info.align = 0;
622     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
623 
624     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
625     if (!Vol || !Vol->isZero())
626       Info.flags |= MachineMemOperand::MOVolatile;
627 
628     return true;
629   }
630 
631   default:
632     return false;
633   }
634 }
635 
636 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
637                                             SmallVectorImpl<Value*> &Ops,
638                                             Type *&AccessTy) const {
639   switch (II->getIntrinsicID()) {
640   case Intrinsic::amdgcn_atomic_inc:
641   case Intrinsic::amdgcn_atomic_dec:
642   case Intrinsic::amdgcn_ds_fadd:
643   case Intrinsic::amdgcn_ds_fmin:
644   case Intrinsic::amdgcn_ds_fmax: {
645     Value *Ptr = II->getArgOperand(0);
646     AccessTy = II->getType();
647     Ops.push_back(Ptr);
648     return true;
649   }
650   default:
651     return false;
652   }
653 }
654 
655 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
656   if (!Subtarget->hasFlatInstOffsets()) {
657     // Flat instructions do not have offsets, and only have the register
658     // address.
659     return AM.BaseOffs == 0 && AM.Scale == 0;
660   }
661 
662   // GFX9 added a 13-bit signed offset. When using regular flat instructions,
663   // the sign bit is ignored and is treated as a 12-bit unsigned offset.
664 
665   // Just r + i
666   return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
667 }
668 
669 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
670   if (Subtarget->hasFlatGlobalInsts())
671     return isInt<13>(AM.BaseOffs) && AM.Scale == 0;
672 
673   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
674       // Assume the we will use FLAT for all global memory accesses
675       // on VI.
676       // FIXME: This assumption is currently wrong.  On VI we still use
677       // MUBUF instructions for the r + i addressing mode.  As currently
678       // implemented, the MUBUF instructions only work on buffer < 4GB.
679       // It may be possible to support > 4GB buffers with MUBUF instructions,
680       // by setting the stride value in the resource descriptor which would
681       // increase the size limit to (stride * 4GB).  However, this is risky,
682       // because it has never been validated.
683     return isLegalFlatAddressingMode(AM);
684   }
685 
686   return isLegalMUBUFAddressingMode(AM);
687 }
688 
689 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
690   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
691   // additionally can do r + r + i with addr64. 32-bit has more addressing
692   // mode options. Depending on the resource constant, it can also do
693   // (i64 r0) + (i32 r1) * (i14 i).
694   //
695   // Private arrays end up using a scratch buffer most of the time, so also
696   // assume those use MUBUF instructions. Scratch loads / stores are currently
697   // implemented as mubuf instructions with offen bit set, so slightly
698   // different than the normal addr64.
699   if (!isUInt<12>(AM.BaseOffs))
700     return false;
701 
702   // FIXME: Since we can split immediate into soffset and immediate offset,
703   // would it make sense to allow any immediate?
704 
705   switch (AM.Scale) {
706   case 0: // r + i or just i, depending on HasBaseReg.
707     return true;
708   case 1:
709     return true; // We have r + r or r + i.
710   case 2:
711     if (AM.HasBaseReg) {
712       // Reject 2 * r + r.
713       return false;
714     }
715 
716     // Allow 2 * r as r + r
717     // Or  2 * r + i is allowed as r + r + i.
718     return true;
719   default: // Don't allow n * r
720     return false;
721   }
722 }
723 
724 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
725                                              const AddrMode &AM, Type *Ty,
726                                              unsigned AS, Instruction *I) const {
727   // No global is ever allowed as a base.
728   if (AM.BaseGV)
729     return false;
730 
731   if (AS == AMDGPUASI.GLOBAL_ADDRESS)
732     return isLegalGlobalAddressingMode(AM);
733 
734   if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
735       AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT) {
736     // If the offset isn't a multiple of 4, it probably isn't going to be
737     // correctly aligned.
738     // FIXME: Can we get the real alignment here?
739     if (AM.BaseOffs % 4 != 0)
740       return isLegalMUBUFAddressingMode(AM);
741 
742     // There are no SMRD extloads, so if we have to do a small type access we
743     // will use a MUBUF load.
744     // FIXME?: We also need to do this if unaligned, but we don't know the
745     // alignment here.
746     if (DL.getTypeStoreSize(Ty) < 4)
747       return isLegalGlobalAddressingMode(AM);
748 
749     if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
750       // SMRD instructions have an 8-bit, dword offset on SI.
751       if (!isUInt<8>(AM.BaseOffs / 4))
752         return false;
753     } else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) {
754       // On CI+, this can also be a 32-bit literal constant offset. If it fits
755       // in 8-bits, it can use a smaller encoding.
756       if (!isUInt<32>(AM.BaseOffs / 4))
757         return false;
758     } else if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
759       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
760       if (!isUInt<20>(AM.BaseOffs))
761         return false;
762     } else
763       llvm_unreachable("unhandled generation");
764 
765     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
766       return true;
767 
768     if (AM.Scale == 1 && AM.HasBaseReg)
769       return true;
770 
771     return false;
772 
773   } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
774     return isLegalMUBUFAddressingMode(AM);
775   } else if (AS == AMDGPUASI.LOCAL_ADDRESS ||
776              AS == AMDGPUASI.REGION_ADDRESS) {
777     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
778     // field.
779     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
780     // an 8-bit dword offset but we don't know the alignment here.
781     if (!isUInt<16>(AM.BaseOffs))
782       return false;
783 
784     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
785       return true;
786 
787     if (AM.Scale == 1 && AM.HasBaseReg)
788       return true;
789 
790     return false;
791   } else if (AS == AMDGPUASI.FLAT_ADDRESS ||
792              AS == AMDGPUASI.UNKNOWN_ADDRESS_SPACE) {
793     // For an unknown address space, this usually means that this is for some
794     // reason being used for pure arithmetic, and not based on some addressing
795     // computation. We don't have instructions that compute pointers with any
796     // addressing modes, so treat them as having no offset like flat
797     // instructions.
798     return isLegalFlatAddressingMode(AM);
799   } else {
800     llvm_unreachable("unhandled address space");
801   }
802 }
803 
804 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
805                                         const SelectionDAG &DAG) const {
806   if (AS == AMDGPUASI.GLOBAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) {
807     return (MemVT.getSizeInBits() <= 4 * 32);
808   } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
809     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
810     return (MemVT.getSizeInBits() <= MaxPrivateBits);
811   } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
812     return (MemVT.getSizeInBits() <= 2 * 32);
813   }
814   return true;
815 }
816 
817 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
818                                                       unsigned AddrSpace,
819                                                       unsigned Align,
820                                                       bool *IsFast) const {
821   if (IsFast)
822     *IsFast = false;
823 
824   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
825   // which isn't a simple VT.
826   // Until MVT is extended to handle this, simply check for the size and
827   // rely on the condition below: allow accesses if the size is a multiple of 4.
828   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
829                            VT.getStoreSize() > 16)) {
830     return false;
831   }
832 
833   if (AddrSpace == AMDGPUASI.LOCAL_ADDRESS ||
834       AddrSpace == AMDGPUASI.REGION_ADDRESS) {
835     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
836     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
837     // with adjacent offsets.
838     bool AlignedBy4 = (Align % 4 == 0);
839     if (IsFast)
840       *IsFast = AlignedBy4;
841 
842     return AlignedBy4;
843   }
844 
845   // FIXME: We have to be conservative here and assume that flat operations
846   // will access scratch.  If we had access to the IR function, then we
847   // could determine if any private memory was used in the function.
848   if (!Subtarget->hasUnalignedScratchAccess() &&
849       (AddrSpace == AMDGPUASI.PRIVATE_ADDRESS ||
850        AddrSpace == AMDGPUASI.FLAT_ADDRESS)) {
851     return false;
852   }
853 
854   if (Subtarget->hasUnalignedBufferAccess()) {
855     // If we have an uniform constant load, it still requires using a slow
856     // buffer instruction if unaligned.
857     if (IsFast) {
858       *IsFast = (AddrSpace == AMDGPUASI.CONSTANT_ADDRESS ||
859                  AddrSpace == AMDGPUASI.CONSTANT_ADDRESS_32BIT) ?
860         (Align % 4 == 0) : true;
861     }
862 
863     return true;
864   }
865 
866   // Smaller than dword value must be aligned.
867   if (VT.bitsLT(MVT::i32))
868     return false;
869 
870   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
871   // byte-address are ignored, thus forcing Dword alignment.
872   // This applies to private, global, and constant memory.
873   if (IsFast)
874     *IsFast = true;
875 
876   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
877 }
878 
879 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
880                                           unsigned SrcAlign, bool IsMemset,
881                                           bool ZeroMemset,
882                                           bool MemcpyStrSrc,
883                                           MachineFunction &MF) const {
884   // FIXME: Should account for address space here.
885 
886   // The default fallback uses the private pointer size as a guess for a type to
887   // use. Make sure we switch these to 64-bit accesses.
888 
889   if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
890     return MVT::v4i32;
891 
892   if (Size >= 8 && DstAlign >= 4)
893     return MVT::v2i32;
894 
895   // Use the default.
896   return MVT::Other;
897 }
898 
899 static bool isFlatGlobalAddrSpace(unsigned AS, AMDGPUAS AMDGPUASI) {
900   return AS == AMDGPUASI.GLOBAL_ADDRESS ||
901          AS == AMDGPUASI.FLAT_ADDRESS ||
902          AS == AMDGPUASI.CONSTANT_ADDRESS ||
903          AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT;
904 }
905 
906 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
907                                            unsigned DestAS) const {
908   return isFlatGlobalAddrSpace(SrcAS, AMDGPUASI) &&
909          isFlatGlobalAddrSpace(DestAS, AMDGPUASI);
910 }
911 
912 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
913   const MemSDNode *MemNode = cast<MemSDNode>(N);
914   const Value *Ptr = MemNode->getMemOperand()->getValue();
915   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
916   return I && I->getMetadata("amdgpu.noclobber");
917 }
918 
919 bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS,
920                                             unsigned DestAS) const {
921   // Flat -> private/local is a simple truncate.
922   // Flat -> global is no-op
923   if (SrcAS == AMDGPUASI.FLAT_ADDRESS)
924     return true;
925 
926   return isNoopAddrSpaceCast(SrcAS, DestAS);
927 }
928 
929 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
930   const MemSDNode *MemNode = cast<MemSDNode>(N);
931 
932   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
933 }
934 
935 TargetLoweringBase::LegalizeTypeAction
936 SITargetLowering::getPreferredVectorAction(EVT VT) const {
937   if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
938     return TypeSplitVector;
939 
940   return TargetLoweringBase::getPreferredVectorAction(VT);
941 }
942 
943 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
944                                                          Type *Ty) const {
945   // FIXME: Could be smarter if called for vector constants.
946   return true;
947 }
948 
949 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
950   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
951     switch (Op) {
952     case ISD::LOAD:
953     case ISD::STORE:
954 
955     // These operations are done with 32-bit instructions anyway.
956     case ISD::AND:
957     case ISD::OR:
958     case ISD::XOR:
959     case ISD::SELECT:
960       // TODO: Extensions?
961       return true;
962     default:
963       return false;
964     }
965   }
966 
967   // SimplifySetCC uses this function to determine whether or not it should
968   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
969   if (VT == MVT::i1 && Op == ISD::SETCC)
970     return false;
971 
972   return TargetLowering::isTypeDesirableForOp(Op, VT);
973 }
974 
975 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
976                                                    const SDLoc &SL,
977                                                    SDValue Chain,
978                                                    uint64_t Offset) const {
979   const DataLayout &DL = DAG.getDataLayout();
980   MachineFunction &MF = DAG.getMachineFunction();
981   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
982 
983   const ArgDescriptor *InputPtrReg;
984   const TargetRegisterClass *RC;
985 
986   std::tie(InputPtrReg, RC)
987     = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
988 
989   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
990   MVT PtrVT = getPointerTy(DL, AMDGPUASI.CONSTANT_ADDRESS);
991   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
992     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
993 
994   return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
995                      DAG.getConstant(Offset, SL, PtrVT));
996 }
997 
998 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
999                                             const SDLoc &SL) const {
1000   auto MFI = DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
1001   uint64_t Offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT);
1002   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1003 }
1004 
1005 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1006                                          const SDLoc &SL, SDValue Val,
1007                                          bool Signed,
1008                                          const ISD::InputArg *Arg) const {
1009   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1010       VT.bitsLT(MemVT)) {
1011     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1012     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1013   }
1014 
1015   if (MemVT.isFloatingPoint())
1016     Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
1017   else if (Signed)
1018     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1019   else
1020     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1021 
1022   return Val;
1023 }
1024 
1025 SDValue SITargetLowering::lowerKernargMemParameter(
1026   SelectionDAG &DAG, EVT VT, EVT MemVT,
1027   const SDLoc &SL, SDValue Chain,
1028   uint64_t Offset, bool Signed,
1029   const ISD::InputArg *Arg) const {
1030   const DataLayout &DL = DAG.getDataLayout();
1031   Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
1032   PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS);
1033   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
1034 
1035   unsigned Align = DL.getABITypeAlignment(Ty);
1036 
1037   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1038   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
1039                              MachineMemOperand::MODereferenceable |
1040                              MachineMemOperand::MOInvariant);
1041 
1042   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1043   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1044 }
1045 
1046 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1047                                               const SDLoc &SL, SDValue Chain,
1048                                               const ISD::InputArg &Arg) const {
1049   MachineFunction &MF = DAG.getMachineFunction();
1050   MachineFrameInfo &MFI = MF.getFrameInfo();
1051 
1052   if (Arg.Flags.isByVal()) {
1053     unsigned Size = Arg.Flags.getByValSize();
1054     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1055     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1056   }
1057 
1058   unsigned ArgOffset = VA.getLocMemOffset();
1059   unsigned ArgSize = VA.getValVT().getStoreSize();
1060 
1061   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1062 
1063   // Create load nodes to retrieve arguments from the stack.
1064   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1065   SDValue ArgValue;
1066 
1067   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1068   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1069   MVT MemVT = VA.getValVT();
1070 
1071   switch (VA.getLocInfo()) {
1072   default:
1073     break;
1074   case CCValAssign::BCvt:
1075     MemVT = VA.getLocVT();
1076     break;
1077   case CCValAssign::SExt:
1078     ExtType = ISD::SEXTLOAD;
1079     break;
1080   case CCValAssign::ZExt:
1081     ExtType = ISD::ZEXTLOAD;
1082     break;
1083   case CCValAssign::AExt:
1084     ExtType = ISD::EXTLOAD;
1085     break;
1086   }
1087 
1088   ArgValue = DAG.getExtLoad(
1089     ExtType, SL, VA.getLocVT(), Chain, FIN,
1090     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1091     MemVT);
1092   return ArgValue;
1093 }
1094 
1095 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1096   const SIMachineFunctionInfo &MFI,
1097   EVT VT,
1098   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1099   const ArgDescriptor *Reg;
1100   const TargetRegisterClass *RC;
1101 
1102   std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
1103   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1104 }
1105 
1106 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1107                                    CallingConv::ID CallConv,
1108                                    ArrayRef<ISD::InputArg> Ins,
1109                                    BitVector &Skipped,
1110                                    FunctionType *FType,
1111                                    SIMachineFunctionInfo *Info) {
1112   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1113     const ISD::InputArg &Arg = Ins[I];
1114 
1115     // First check if it's a PS input addr.
1116     if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() &&
1117         !Arg.Flags.isByVal() && PSInputNum <= 15) {
1118 
1119       if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
1120         // We can safely skip PS inputs.
1121         Skipped.set(I);
1122         ++PSInputNum;
1123         continue;
1124       }
1125 
1126       Info->markPSInputAllocated(PSInputNum);
1127       if (Arg.Used)
1128         Info->markPSInputEnabled(PSInputNum);
1129 
1130       ++PSInputNum;
1131     }
1132 
1133     // Second split vertices into their elements.
1134     if (Arg.VT.isVector()) {
1135       ISD::InputArg NewArg = Arg;
1136       NewArg.Flags.setSplit();
1137       NewArg.VT = Arg.VT.getVectorElementType();
1138 
1139       // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
1140       // three or five element vertex only needs three or five registers,
1141       // NOT four or eight.
1142       Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
1143       unsigned NumElements = ParamType->getVectorNumElements();
1144 
1145       for (unsigned J = 0; J != NumElements; ++J) {
1146         Splits.push_back(NewArg);
1147         NewArg.PartOffset += NewArg.VT.getStoreSize();
1148       }
1149     } else {
1150       Splits.push_back(Arg);
1151     }
1152   }
1153 }
1154 
1155 // Allocate special inputs passed in VGPRs.
1156 static void allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1157                                            MachineFunction &MF,
1158                                            const SIRegisterInfo &TRI,
1159                                            SIMachineFunctionInfo &Info) {
1160   if (Info.hasWorkItemIDX()) {
1161     unsigned Reg = AMDGPU::VGPR0;
1162     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1163 
1164     CCInfo.AllocateReg(Reg);
1165     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1166   }
1167 
1168   if (Info.hasWorkItemIDY()) {
1169     unsigned Reg = AMDGPU::VGPR1;
1170     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1171 
1172     CCInfo.AllocateReg(Reg);
1173     Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1174   }
1175 
1176   if (Info.hasWorkItemIDZ()) {
1177     unsigned Reg = AMDGPU::VGPR2;
1178     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1179 
1180     CCInfo.AllocateReg(Reg);
1181     Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1182   }
1183 }
1184 
1185 // Try to allocate a VGPR at the end of the argument list, or if no argument
1186 // VGPRs are left allocating a stack slot.
1187 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo) {
1188   ArrayRef<MCPhysReg> ArgVGPRs
1189     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1190   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1191   if (RegIdx == ArgVGPRs.size()) {
1192     // Spill to stack required.
1193     int64_t Offset = CCInfo.AllocateStack(4, 4);
1194 
1195     return ArgDescriptor::createStack(Offset);
1196   }
1197 
1198   unsigned Reg = ArgVGPRs[RegIdx];
1199   Reg = CCInfo.AllocateReg(Reg);
1200   assert(Reg != AMDGPU::NoRegister);
1201 
1202   MachineFunction &MF = CCInfo.getMachineFunction();
1203   MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1204   return ArgDescriptor::createRegister(Reg);
1205 }
1206 
1207 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1208                                              const TargetRegisterClass *RC,
1209                                              unsigned NumArgRegs) {
1210   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1211   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1212   if (RegIdx == ArgSGPRs.size())
1213     report_fatal_error("ran out of SGPRs for arguments");
1214 
1215   unsigned Reg = ArgSGPRs[RegIdx];
1216   Reg = CCInfo.AllocateReg(Reg);
1217   assert(Reg != AMDGPU::NoRegister);
1218 
1219   MachineFunction &MF = CCInfo.getMachineFunction();
1220   MF.addLiveIn(Reg, RC);
1221   return ArgDescriptor::createRegister(Reg);
1222 }
1223 
1224 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1225   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1226 }
1227 
1228 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1229   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1230 }
1231 
1232 static void allocateSpecialInputVGPRs(CCState &CCInfo,
1233                                       MachineFunction &MF,
1234                                       const SIRegisterInfo &TRI,
1235                                       SIMachineFunctionInfo &Info) {
1236   if (Info.hasWorkItemIDX())
1237     Info.setWorkItemIDX(allocateVGPR32Input(CCInfo));
1238 
1239   if (Info.hasWorkItemIDY())
1240     Info.setWorkItemIDY(allocateVGPR32Input(CCInfo));
1241 
1242   if (Info.hasWorkItemIDZ())
1243     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo));
1244 }
1245 
1246 static void allocateSpecialInputSGPRs(CCState &CCInfo,
1247                                       MachineFunction &MF,
1248                                       const SIRegisterInfo &TRI,
1249                                       SIMachineFunctionInfo &Info) {
1250   auto &ArgInfo = Info.getArgInfo();
1251 
1252   // TODO: Unify handling with private memory pointers.
1253 
1254   if (Info.hasDispatchPtr())
1255     ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1256 
1257   if (Info.hasQueuePtr())
1258     ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1259 
1260   if (Info.hasKernargSegmentPtr())
1261     ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
1262 
1263   if (Info.hasDispatchID())
1264     ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1265 
1266   // flat_scratch_init is not applicable for non-kernel functions.
1267 
1268   if (Info.hasWorkGroupIDX())
1269     ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1270 
1271   if (Info.hasWorkGroupIDY())
1272     ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1273 
1274   if (Info.hasWorkGroupIDZ())
1275     ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1276 
1277   if (Info.hasImplicitArgPtr())
1278     ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1279 }
1280 
1281 // Allocate special inputs passed in user SGPRs.
1282 static void allocateHSAUserSGPRs(CCState &CCInfo,
1283                                  MachineFunction &MF,
1284                                  const SIRegisterInfo &TRI,
1285                                  SIMachineFunctionInfo &Info) {
1286   if (Info.hasImplicitBufferPtr()) {
1287     unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1288     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1289     CCInfo.AllocateReg(ImplicitBufferPtrReg);
1290   }
1291 
1292   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1293   if (Info.hasPrivateSegmentBuffer()) {
1294     unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1295     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1296     CCInfo.AllocateReg(PrivateSegmentBufferReg);
1297   }
1298 
1299   if (Info.hasDispatchPtr()) {
1300     unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
1301     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1302     CCInfo.AllocateReg(DispatchPtrReg);
1303   }
1304 
1305   if (Info.hasQueuePtr()) {
1306     unsigned QueuePtrReg = Info.addQueuePtr(TRI);
1307     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1308     CCInfo.AllocateReg(QueuePtrReg);
1309   }
1310 
1311   if (Info.hasKernargSegmentPtr()) {
1312     unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI);
1313     MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1314     CCInfo.AllocateReg(InputPtrReg);
1315   }
1316 
1317   if (Info.hasDispatchID()) {
1318     unsigned DispatchIDReg = Info.addDispatchID(TRI);
1319     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1320     CCInfo.AllocateReg(DispatchIDReg);
1321   }
1322 
1323   if (Info.hasFlatScratchInit()) {
1324     unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1325     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1326     CCInfo.AllocateReg(FlatScratchInitReg);
1327   }
1328 
1329   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1330   // these from the dispatch pointer.
1331 }
1332 
1333 // Allocate special input registers that are initialized per-wave.
1334 static void allocateSystemSGPRs(CCState &CCInfo,
1335                                 MachineFunction &MF,
1336                                 SIMachineFunctionInfo &Info,
1337                                 CallingConv::ID CallConv,
1338                                 bool IsShader) {
1339   if (Info.hasWorkGroupIDX()) {
1340     unsigned Reg = Info.addWorkGroupIDX();
1341     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1342     CCInfo.AllocateReg(Reg);
1343   }
1344 
1345   if (Info.hasWorkGroupIDY()) {
1346     unsigned Reg = Info.addWorkGroupIDY();
1347     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1348     CCInfo.AllocateReg(Reg);
1349   }
1350 
1351   if (Info.hasWorkGroupIDZ()) {
1352     unsigned Reg = Info.addWorkGroupIDZ();
1353     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1354     CCInfo.AllocateReg(Reg);
1355   }
1356 
1357   if (Info.hasWorkGroupInfo()) {
1358     unsigned Reg = Info.addWorkGroupInfo();
1359     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1360     CCInfo.AllocateReg(Reg);
1361   }
1362 
1363   if (Info.hasPrivateSegmentWaveByteOffset()) {
1364     // Scratch wave offset passed in system SGPR.
1365     unsigned PrivateSegmentWaveByteOffsetReg;
1366 
1367     if (IsShader) {
1368       PrivateSegmentWaveByteOffsetReg =
1369         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
1370 
1371       // This is true if the scratch wave byte offset doesn't have a fixed
1372       // location.
1373       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
1374         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1375         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1376       }
1377     } else
1378       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
1379 
1380     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1381     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1382   }
1383 }
1384 
1385 static void reservePrivateMemoryRegs(const TargetMachine &TM,
1386                                      MachineFunction &MF,
1387                                      const SIRegisterInfo &TRI,
1388                                      SIMachineFunctionInfo &Info) {
1389   // Now that we've figured out where the scratch register inputs are, see if
1390   // should reserve the arguments and use them directly.
1391   MachineFrameInfo &MFI = MF.getFrameInfo();
1392   bool HasStackObjects = MFI.hasStackObjects();
1393 
1394   // Record that we know we have non-spill stack objects so we don't need to
1395   // check all stack objects later.
1396   if (HasStackObjects)
1397     Info.setHasNonSpillStackObjects(true);
1398 
1399   // Everything live out of a block is spilled with fast regalloc, so it's
1400   // almost certain that spilling will be required.
1401   if (TM.getOptLevel() == CodeGenOpt::None)
1402     HasStackObjects = true;
1403 
1404   // For now assume stack access is needed in any callee functions, so we need
1405   // the scratch registers to pass in.
1406   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
1407 
1408   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
1409   if (ST.isAmdCodeObjectV2(MF)) {
1410     if (RequiresStackAccess) {
1411       // If we have stack objects, we unquestionably need the private buffer
1412       // resource. For the Code Object V2 ABI, this will be the first 4 user
1413       // SGPR inputs. We can reserve those and use them directly.
1414 
1415       unsigned PrivateSegmentBufferReg = Info.getPreloadedReg(
1416         AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
1417       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
1418 
1419       if (MFI.hasCalls()) {
1420         // If we have calls, we need to keep the frame register in a register
1421         // that won't be clobbered by a call, so ensure it is copied somewhere.
1422 
1423         // This is not a problem for the scratch wave offset, because the same
1424         // registers are reserved in all functions.
1425 
1426         // FIXME: Nothing is really ensuring this is a call preserved register,
1427         // it's just selected from the end so it happens to be.
1428         unsigned ReservedOffsetReg
1429           = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1430         Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1431       } else {
1432         unsigned PrivateSegmentWaveByteOffsetReg = Info.getPreloadedReg(
1433           AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1434         Info.setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
1435       }
1436     } else {
1437       unsigned ReservedBufferReg
1438         = TRI.reservedPrivateSegmentBufferReg(MF);
1439       unsigned ReservedOffsetReg
1440         = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1441 
1442       // We tentatively reserve the last registers (skipping the last two
1443       // which may contain VCC). After register allocation, we'll replace
1444       // these with the ones immediately after those which were really
1445       // allocated. In the prologue copies will be inserted from the argument
1446       // to these reserved registers.
1447       Info.setScratchRSrcReg(ReservedBufferReg);
1448       Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1449     }
1450   } else {
1451     unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
1452 
1453     // Without HSA, relocations are used for the scratch pointer and the
1454     // buffer resource setup is always inserted in the prologue. Scratch wave
1455     // offset is still in an input SGPR.
1456     Info.setScratchRSrcReg(ReservedBufferReg);
1457 
1458     if (HasStackObjects && !MFI.hasCalls()) {
1459       unsigned ScratchWaveOffsetReg = Info.getPreloadedReg(
1460         AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1461       Info.setScratchWaveOffsetReg(ScratchWaveOffsetReg);
1462     } else {
1463       unsigned ReservedOffsetReg
1464         = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1465       Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1466     }
1467   }
1468 }
1469 
1470 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
1471   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
1472   return !Info->isEntryFunction();
1473 }
1474 
1475 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
1476 
1477 }
1478 
1479 void SITargetLowering::insertCopiesSplitCSR(
1480   MachineBasicBlock *Entry,
1481   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
1482   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1483 
1484   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
1485   if (!IStart)
1486     return;
1487 
1488   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1489   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
1490   MachineBasicBlock::iterator MBBI = Entry->begin();
1491   for (const MCPhysReg *I = IStart; *I; ++I) {
1492     const TargetRegisterClass *RC = nullptr;
1493     if (AMDGPU::SReg_64RegClass.contains(*I))
1494       RC = &AMDGPU::SGPR_64RegClass;
1495     else if (AMDGPU::SReg_32RegClass.contains(*I))
1496       RC = &AMDGPU::SGPR_32RegClass;
1497     else
1498       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
1499 
1500     unsigned NewVR = MRI->createVirtualRegister(RC);
1501     // Create copy from CSR to a virtual register.
1502     Entry->addLiveIn(*I);
1503     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
1504       .addReg(*I);
1505 
1506     // Insert the copy-back instructions right before the terminator.
1507     for (auto *Exit : Exits)
1508       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
1509               TII->get(TargetOpcode::COPY), *I)
1510         .addReg(NewVR);
1511   }
1512 }
1513 
1514 SDValue SITargetLowering::LowerFormalArguments(
1515     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1516     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1517     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1518   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1519 
1520   MachineFunction &MF = DAG.getMachineFunction();
1521   FunctionType *FType = MF.getFunction().getFunctionType();
1522   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1523   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
1524 
1525   if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
1526     const Function &Fn = MF.getFunction();
1527     DiagnosticInfoUnsupported NoGraphicsHSA(
1528         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
1529     DAG.getContext()->diagnose(NoGraphicsHSA);
1530     return DAG.getEntryNode();
1531   }
1532 
1533   // Create stack objects that are used for emitting debugger prologue if
1534   // "amdgpu-debugger-emit-prologue" attribute was specified.
1535   if (ST.debuggerEmitPrologue())
1536     createDebuggerPrologueStackObjects(MF);
1537 
1538   SmallVector<ISD::InputArg, 16> Splits;
1539   SmallVector<CCValAssign, 16> ArgLocs;
1540   BitVector Skipped(Ins.size());
1541   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1542                  *DAG.getContext());
1543 
1544   bool IsShader = AMDGPU::isShader(CallConv);
1545   bool IsKernel = AMDGPU::isKernel(CallConv);
1546   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
1547 
1548   if (!IsEntryFunc) {
1549     // 4 bytes are reserved at offset 0 for the emergency stack slot. Skip over
1550     // this when allocating argument fixed offsets.
1551     CCInfo.AllocateStack(4, 4);
1552   }
1553 
1554   if (IsShader) {
1555     processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
1556 
1557     // At least one interpolation mode must be enabled or else the GPU will
1558     // hang.
1559     //
1560     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
1561     // set PSInputAddr, the user wants to enable some bits after the compilation
1562     // based on run-time states. Since we can't know what the final PSInputEna
1563     // will look like, so we shouldn't do anything here and the user should take
1564     // responsibility for the correct programming.
1565     //
1566     // Otherwise, the following restrictions apply:
1567     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
1568     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
1569     //   enabled too.
1570     if (CallConv == CallingConv::AMDGPU_PS) {
1571       if ((Info->getPSInputAddr() & 0x7F) == 0 ||
1572            ((Info->getPSInputAddr() & 0xF) == 0 &&
1573             Info->isPSInputAllocated(11))) {
1574         CCInfo.AllocateReg(AMDGPU::VGPR0);
1575         CCInfo.AllocateReg(AMDGPU::VGPR1);
1576         Info->markPSInputAllocated(0);
1577         Info->markPSInputEnabled(0);
1578       }
1579       if (Subtarget->isAmdPalOS()) {
1580         // For isAmdPalOS, the user does not enable some bits after compilation
1581         // based on run-time states; the register values being generated here are
1582         // the final ones set in hardware. Therefore we need to apply the
1583         // workaround to PSInputAddr and PSInputEnable together.  (The case where
1584         // a bit is set in PSInputAddr but not PSInputEnable is where the
1585         // frontend set up an input arg for a particular interpolation mode, but
1586         // nothing uses that input arg. Really we should have an earlier pass
1587         // that removes such an arg.)
1588         unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
1589         if ((PsInputBits & 0x7F) == 0 ||
1590             ((PsInputBits & 0xF) == 0 &&
1591              (PsInputBits >> 11 & 1)))
1592           Info->markPSInputEnabled(
1593               countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
1594       }
1595     }
1596 
1597     assert(!Info->hasDispatchPtr() &&
1598            !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
1599            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
1600            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
1601            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
1602            !Info->hasWorkItemIDZ());
1603   } else if (IsKernel) {
1604     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
1605   } else {
1606     Splits.append(Ins.begin(), Ins.end());
1607   }
1608 
1609   if (IsEntryFunc) {
1610     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
1611     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
1612   }
1613 
1614   if (IsKernel) {
1615     analyzeFormalArgumentsCompute(CCInfo, Ins);
1616   } else {
1617     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
1618     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
1619   }
1620 
1621   SmallVector<SDValue, 16> Chains;
1622 
1623   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
1624     const ISD::InputArg &Arg = Ins[i];
1625     if (Skipped[i]) {
1626       InVals.push_back(DAG.getUNDEF(Arg.VT));
1627       continue;
1628     }
1629 
1630     CCValAssign &VA = ArgLocs[ArgIdx++];
1631     MVT VT = VA.getLocVT();
1632 
1633     if (IsEntryFunc && VA.isMemLoc()) {
1634       VT = Ins[i].VT;
1635       EVT MemVT = VA.getLocVT();
1636 
1637       const uint64_t Offset = Subtarget->getExplicitKernelArgOffset(MF) +
1638         VA.getLocMemOffset();
1639       Info->setABIArgOffset(Offset + MemVT.getStoreSize());
1640 
1641       // The first 36 bytes of the input buffer contains information about
1642       // thread group and global sizes.
1643       SDValue Arg = lowerKernargMemParameter(
1644         DAG, VT, MemVT, DL, Chain, Offset, Ins[i].Flags.isSExt(), &Ins[i]);
1645       Chains.push_back(Arg.getValue(1));
1646 
1647       auto *ParamTy =
1648         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
1649       if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
1650           ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
1651         // On SI local pointers are just offsets into LDS, so they are always
1652         // less than 16-bits.  On CI and newer they could potentially be
1653         // real pointers, so we can't guarantee their size.
1654         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
1655                           DAG.getValueType(MVT::i16));
1656       }
1657 
1658       InVals.push_back(Arg);
1659       continue;
1660     } else if (!IsEntryFunc && VA.isMemLoc()) {
1661       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
1662       InVals.push_back(Val);
1663       if (!Arg.Flags.isByVal())
1664         Chains.push_back(Val.getValue(1));
1665       continue;
1666     }
1667 
1668     assert(VA.isRegLoc() && "Parameter must be in a register!");
1669 
1670     unsigned Reg = VA.getLocReg();
1671     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
1672     EVT ValVT = VA.getValVT();
1673 
1674     Reg = MF.addLiveIn(Reg, RC);
1675     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1676 
1677     if (Arg.Flags.isSRet() && !getSubtarget()->enableHugePrivateBuffer()) {
1678       // The return object should be reasonably addressable.
1679 
1680       // FIXME: This helps when the return is a real sret. If it is a
1681       // automatically inserted sret (i.e. CanLowerReturn returns false), an
1682       // extra copy is inserted in SelectionDAGBuilder which obscures this.
1683       unsigned NumBits = 32 - AssumeFrameIndexHighZeroBits;
1684       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
1685         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
1686     }
1687 
1688     // If this is an 8 or 16-bit value, it is really passed promoted
1689     // to 32 bits. Insert an assert[sz]ext to capture this, then
1690     // truncate to the right size.
1691     switch (VA.getLocInfo()) {
1692     case CCValAssign::Full:
1693       break;
1694     case CCValAssign::BCvt:
1695       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
1696       break;
1697     case CCValAssign::SExt:
1698       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
1699                         DAG.getValueType(ValVT));
1700       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
1701       break;
1702     case CCValAssign::ZExt:
1703       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
1704                         DAG.getValueType(ValVT));
1705       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
1706       break;
1707     case CCValAssign::AExt:
1708       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
1709       break;
1710     default:
1711       llvm_unreachable("Unknown loc info!");
1712     }
1713 
1714     if (IsShader && Arg.VT.isVector()) {
1715       // Build a vector from the registers
1716       Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
1717       unsigned NumElements = ParamType->getVectorNumElements();
1718 
1719       SmallVector<SDValue, 4> Regs;
1720       Regs.push_back(Val);
1721       for (unsigned j = 1; j != NumElements; ++j) {
1722         Reg = ArgLocs[ArgIdx++].getLocReg();
1723         Reg = MF.addLiveIn(Reg, RC);
1724 
1725         SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1726         Regs.push_back(Copy);
1727       }
1728 
1729       // Fill up the missing vector elements
1730       NumElements = Arg.VT.getVectorNumElements() - NumElements;
1731       Regs.append(NumElements, DAG.getUNDEF(VT));
1732 
1733       InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs));
1734       continue;
1735     }
1736 
1737     InVals.push_back(Val);
1738   }
1739 
1740   if (!IsEntryFunc) {
1741     // Special inputs come after user arguments.
1742     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
1743   }
1744 
1745   // Start adding system SGPRs.
1746   if (IsEntryFunc) {
1747     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
1748   } else {
1749     CCInfo.AllocateReg(Info->getScratchRSrcReg());
1750     CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
1751     CCInfo.AllocateReg(Info->getFrameOffsetReg());
1752     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
1753   }
1754 
1755   auto &ArgUsageInfo =
1756     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
1757   ArgUsageInfo.setFuncArgInfo(MF.getFunction(), Info->getArgInfo());
1758 
1759   unsigned StackArgSize = CCInfo.getNextStackOffset();
1760   Info->setBytesInStackArgArea(StackArgSize);
1761 
1762   return Chains.empty() ? Chain :
1763     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1764 }
1765 
1766 // TODO: If return values can't fit in registers, we should return as many as
1767 // possible in registers before passing on stack.
1768 bool SITargetLowering::CanLowerReturn(
1769   CallingConv::ID CallConv,
1770   MachineFunction &MF, bool IsVarArg,
1771   const SmallVectorImpl<ISD::OutputArg> &Outs,
1772   LLVMContext &Context) const {
1773   // Replacing returns with sret/stack usage doesn't make sense for shaders.
1774   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
1775   // for shaders. Vector types should be explicitly handled by CC.
1776   if (AMDGPU::isEntryFunctionCC(CallConv))
1777     return true;
1778 
1779   SmallVector<CCValAssign, 16> RVLocs;
1780   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
1781   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
1782 }
1783 
1784 SDValue
1785 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1786                               bool isVarArg,
1787                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1788                               const SmallVectorImpl<SDValue> &OutVals,
1789                               const SDLoc &DL, SelectionDAG &DAG) const {
1790   MachineFunction &MF = DAG.getMachineFunction();
1791   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1792 
1793   if (AMDGPU::isKernel(CallConv)) {
1794     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
1795                                              OutVals, DL, DAG);
1796   }
1797 
1798   bool IsShader = AMDGPU::isShader(CallConv);
1799 
1800   Info->setIfReturnsVoid(Outs.size() == 0);
1801   bool IsWaveEnd = Info->returnsVoid() && IsShader;
1802 
1803   SmallVector<ISD::OutputArg, 48> Splits;
1804   SmallVector<SDValue, 48> SplitVals;
1805 
1806   // Split vectors into their elements.
1807   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
1808     const ISD::OutputArg &Out = Outs[i];
1809 
1810     if (IsShader && Out.VT.isVector()) {
1811       MVT VT = Out.VT.getVectorElementType();
1812       ISD::OutputArg NewOut = Out;
1813       NewOut.Flags.setSplit();
1814       NewOut.VT = VT;
1815 
1816       // We want the original number of vector elements here, e.g.
1817       // three or five, not four or eight.
1818       unsigned NumElements = Out.ArgVT.getVectorNumElements();
1819 
1820       for (unsigned j = 0; j != NumElements; ++j) {
1821         SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
1822                                    DAG.getConstant(j, DL, MVT::i32));
1823         SplitVals.push_back(Elem);
1824         Splits.push_back(NewOut);
1825         NewOut.PartOffset += NewOut.VT.getStoreSize();
1826       }
1827     } else {
1828       SplitVals.push_back(OutVals[i]);
1829       Splits.push_back(Out);
1830     }
1831   }
1832 
1833   // CCValAssign - represent the assignment of the return value to a location.
1834   SmallVector<CCValAssign, 48> RVLocs;
1835 
1836   // CCState - Info about the registers and stack slots.
1837   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1838                  *DAG.getContext());
1839 
1840   // Analyze outgoing return values.
1841   CCInfo.AnalyzeReturn(Splits, CCAssignFnForReturn(CallConv, isVarArg));
1842 
1843   SDValue Flag;
1844   SmallVector<SDValue, 48> RetOps;
1845   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1846 
1847   // Add return address for callable functions.
1848   if (!Info->isEntryFunction()) {
1849     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1850     SDValue ReturnAddrReg = CreateLiveInRegister(
1851       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
1852 
1853     // FIXME: Should be able to use a vreg here, but need a way to prevent it
1854     // from being allcoated to a CSR.
1855 
1856     SDValue PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
1857                                                 MVT::i64);
1858 
1859     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, Flag);
1860     Flag = Chain.getValue(1);
1861 
1862     RetOps.push_back(PhysReturnAddrReg);
1863   }
1864 
1865   // Copy the result values into the output registers.
1866   for (unsigned i = 0, realRVLocIdx = 0;
1867        i != RVLocs.size();
1868        ++i, ++realRVLocIdx) {
1869     CCValAssign &VA = RVLocs[i];
1870     assert(VA.isRegLoc() && "Can only return in registers!");
1871     // TODO: Partially return in registers if return values don't fit.
1872 
1873     SDValue Arg = SplitVals[realRVLocIdx];
1874 
1875     // Copied from other backends.
1876     switch (VA.getLocInfo()) {
1877     case CCValAssign::Full:
1878       break;
1879     case CCValAssign::BCvt:
1880       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1881       break;
1882     case CCValAssign::SExt:
1883       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
1884       break;
1885     case CCValAssign::ZExt:
1886       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
1887       break;
1888     case CCValAssign::AExt:
1889       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
1890       break;
1891     default:
1892       llvm_unreachable("Unknown loc info!");
1893     }
1894 
1895     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
1896     Flag = Chain.getValue(1);
1897     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1898   }
1899 
1900   // FIXME: Does sret work properly?
1901   if (!Info->isEntryFunction()) {
1902     const SIRegisterInfo *TRI
1903       = static_cast<const SISubtarget *>(Subtarget)->getRegisterInfo();
1904     const MCPhysReg *I =
1905       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
1906     if (I) {
1907       for (; *I; ++I) {
1908         if (AMDGPU::SReg_64RegClass.contains(*I))
1909           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
1910         else if (AMDGPU::SReg_32RegClass.contains(*I))
1911           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
1912         else
1913           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
1914       }
1915     }
1916   }
1917 
1918   // Update chain and glue.
1919   RetOps[0] = Chain;
1920   if (Flag.getNode())
1921     RetOps.push_back(Flag);
1922 
1923   unsigned Opc = AMDGPUISD::ENDPGM;
1924   if (!IsWaveEnd)
1925     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
1926   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
1927 }
1928 
1929 SDValue SITargetLowering::LowerCallResult(
1930     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
1931     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1932     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
1933     SDValue ThisVal) const {
1934   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
1935 
1936   // Assign locations to each value returned by this call.
1937   SmallVector<CCValAssign, 16> RVLocs;
1938   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
1939                  *DAG.getContext());
1940   CCInfo.AnalyzeCallResult(Ins, RetCC);
1941 
1942   // Copy all of the result registers out of their specified physreg.
1943   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1944     CCValAssign VA = RVLocs[i];
1945     SDValue Val;
1946 
1947     if (VA.isRegLoc()) {
1948       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
1949       Chain = Val.getValue(1);
1950       InFlag = Val.getValue(2);
1951     } else if (VA.isMemLoc()) {
1952       report_fatal_error("TODO: return values in memory");
1953     } else
1954       llvm_unreachable("unknown argument location type");
1955 
1956     switch (VA.getLocInfo()) {
1957     case CCValAssign::Full:
1958       break;
1959     case CCValAssign::BCvt:
1960       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1961       break;
1962     case CCValAssign::ZExt:
1963       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
1964                         DAG.getValueType(VA.getValVT()));
1965       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
1966       break;
1967     case CCValAssign::SExt:
1968       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
1969                         DAG.getValueType(VA.getValVT()));
1970       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
1971       break;
1972     case CCValAssign::AExt:
1973       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
1974       break;
1975     default:
1976       llvm_unreachable("Unknown loc info!");
1977     }
1978 
1979     InVals.push_back(Val);
1980   }
1981 
1982   return Chain;
1983 }
1984 
1985 // Add code to pass special inputs required depending on used features separate
1986 // from the explicit user arguments present in the IR.
1987 void SITargetLowering::passSpecialInputs(
1988     CallLoweringInfo &CLI,
1989     const SIMachineFunctionInfo &Info,
1990     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
1991     SmallVectorImpl<SDValue> &MemOpChains,
1992     SDValue Chain,
1993     SDValue StackPtr) const {
1994   // If we don't have a call site, this was a call inserted by
1995   // legalization. These can never use special inputs.
1996   if (!CLI.CS)
1997     return;
1998 
1999   const Function *CalleeFunc = CLI.CS.getCalledFunction();
2000   assert(CalleeFunc);
2001 
2002   SelectionDAG &DAG = CLI.DAG;
2003   const SDLoc &DL = CLI.DL;
2004 
2005   const SISubtarget *ST = getSubtarget();
2006   const SIRegisterInfo *TRI = ST->getRegisterInfo();
2007 
2008   auto &ArgUsageInfo =
2009     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2010   const AMDGPUFunctionArgInfo &CalleeArgInfo
2011     = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2012 
2013   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2014 
2015   // TODO: Unify with private memory register handling. This is complicated by
2016   // the fact that at least in kernels, the input argument is not necessarily
2017   // in the same location as the input.
2018   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2019     AMDGPUFunctionArgInfo::DISPATCH_PTR,
2020     AMDGPUFunctionArgInfo::QUEUE_PTR,
2021     AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
2022     AMDGPUFunctionArgInfo::DISPATCH_ID,
2023     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2024     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2025     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
2026     AMDGPUFunctionArgInfo::WORKITEM_ID_X,
2027     AMDGPUFunctionArgInfo::WORKITEM_ID_Y,
2028     AMDGPUFunctionArgInfo::WORKITEM_ID_Z,
2029     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
2030   };
2031 
2032   for (auto InputID : InputRegs) {
2033     const ArgDescriptor *OutgoingArg;
2034     const TargetRegisterClass *ArgRC;
2035 
2036     std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
2037     if (!OutgoingArg)
2038       continue;
2039 
2040     const ArgDescriptor *IncomingArg;
2041     const TargetRegisterClass *IncomingArgRC;
2042     std::tie(IncomingArg, IncomingArgRC)
2043       = CallerArgInfo.getPreloadedValue(InputID);
2044     assert(IncomingArgRC == ArgRC);
2045 
2046     // All special arguments are ints for now.
2047     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2048     SDValue InputReg;
2049 
2050     if (IncomingArg) {
2051       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2052     } else {
2053       // The implicit arg ptr is special because it doesn't have a corresponding
2054       // input for kernels, and is computed from the kernarg segment pointer.
2055       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2056       InputReg = getImplicitArgPtr(DAG, DL);
2057     }
2058 
2059     if (OutgoingArg->isRegister()) {
2060       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2061     } else {
2062       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, StackPtr,
2063                                               InputReg,
2064                                               OutgoingArg->getStackOffset());
2065       MemOpChains.push_back(ArgStore);
2066     }
2067   }
2068 }
2069 
2070 static bool canGuaranteeTCO(CallingConv::ID CC) {
2071   return CC == CallingConv::Fast;
2072 }
2073 
2074 /// Return true if we might ever do TCO for calls with this calling convention.
2075 static bool mayTailCallThisCC(CallingConv::ID CC) {
2076   switch (CC) {
2077   case CallingConv::C:
2078     return true;
2079   default:
2080     return canGuaranteeTCO(CC);
2081   }
2082 }
2083 
2084 bool SITargetLowering::isEligibleForTailCallOptimization(
2085     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2086     const SmallVectorImpl<ISD::OutputArg> &Outs,
2087     const SmallVectorImpl<SDValue> &OutVals,
2088     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2089   if (!mayTailCallThisCC(CalleeCC))
2090     return false;
2091 
2092   MachineFunction &MF = DAG.getMachineFunction();
2093   const Function &CallerF = MF.getFunction();
2094   CallingConv::ID CallerCC = CallerF.getCallingConv();
2095   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2096   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2097 
2098   // Kernels aren't callable, and don't have a live in return address so it
2099   // doesn't make sense to do a tail call with entry functions.
2100   if (!CallerPreserved)
2101     return false;
2102 
2103   bool CCMatch = CallerCC == CalleeCC;
2104 
2105   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2106     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2107       return true;
2108     return false;
2109   }
2110 
2111   // TODO: Can we handle var args?
2112   if (IsVarArg)
2113     return false;
2114 
2115   for (const Argument &Arg : CallerF.args()) {
2116     if (Arg.hasByValAttr())
2117       return false;
2118   }
2119 
2120   LLVMContext &Ctx = *DAG.getContext();
2121 
2122   // Check that the call results are passed in the same way.
2123   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2124                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2125                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2126     return false;
2127 
2128   // The callee has to preserve all registers the caller needs to preserve.
2129   if (!CCMatch) {
2130     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2131     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2132       return false;
2133   }
2134 
2135   // Nothing more to check if the callee is taking no arguments.
2136   if (Outs.empty())
2137     return true;
2138 
2139   SmallVector<CCValAssign, 16> ArgLocs;
2140   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2141 
2142   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2143 
2144   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2145   // If the stack arguments for this call do not fit into our own save area then
2146   // the call cannot be made tail.
2147   // TODO: Is this really necessary?
2148   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2149     return false;
2150 
2151   const MachineRegisterInfo &MRI = MF.getRegInfo();
2152   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2153 }
2154 
2155 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2156   if (!CI->isTailCall())
2157     return false;
2158 
2159   const Function *ParentFn = CI->getParent()->getParent();
2160   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2161     return false;
2162 
2163   auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
2164   return (Attr.getValueAsString() != "true");
2165 }
2166 
2167 // The wave scratch offset register is used as the global base pointer.
2168 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2169                                     SmallVectorImpl<SDValue> &InVals) const {
2170   SelectionDAG &DAG = CLI.DAG;
2171   const SDLoc &DL = CLI.DL;
2172   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2173   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2174   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2175   SDValue Chain = CLI.Chain;
2176   SDValue Callee = CLI.Callee;
2177   bool &IsTailCall = CLI.IsTailCall;
2178   CallingConv::ID CallConv = CLI.CallConv;
2179   bool IsVarArg = CLI.IsVarArg;
2180   bool IsSibCall = false;
2181   bool IsThisReturn = false;
2182   MachineFunction &MF = DAG.getMachineFunction();
2183 
2184   if (IsVarArg) {
2185     return lowerUnhandledCall(CLI, InVals,
2186                               "unsupported call to variadic function ");
2187   }
2188 
2189   if (!CLI.CS.getCalledFunction()) {
2190     return lowerUnhandledCall(CLI, InVals,
2191                               "unsupported indirect call to function ");
2192   }
2193 
2194   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2195     return lowerUnhandledCall(CLI, InVals,
2196                               "unsupported required tail call to function ");
2197   }
2198 
2199   // The first 4 bytes are reserved for the callee's emergency stack slot.
2200   const unsigned CalleeUsableStackOffset = 4;
2201 
2202   if (IsTailCall) {
2203     IsTailCall = isEligibleForTailCallOptimization(
2204       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2205     if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
2206       report_fatal_error("failed to perform tail call elimination on a call "
2207                          "site marked musttail");
2208     }
2209 
2210     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2211 
2212     // A sibling call is one where we're under the usual C ABI and not planning
2213     // to change that but can still do a tail call:
2214     if (!TailCallOpt && IsTailCall)
2215       IsSibCall = true;
2216 
2217     if (IsTailCall)
2218       ++NumTailCalls;
2219   }
2220 
2221   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee)) {
2222     // FIXME: Remove this hack for function pointer types after removing
2223     // support of old address space mapping. In the new address space
2224     // mapping the pointer in default address space is 64 bit, therefore
2225     // does not need this hack.
2226     if (Callee.getValueType() == MVT::i32) {
2227       const GlobalValue *GV = GA->getGlobal();
2228       Callee = DAG.getGlobalAddress(GV, DL, MVT::i64, GA->getOffset(), false,
2229                                     GA->getTargetFlags());
2230     }
2231   }
2232   assert(Callee.getValueType() == MVT::i64);
2233 
2234   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2235 
2236   // Analyze operands of the call, assigning locations to each operand.
2237   SmallVector<CCValAssign, 16> ArgLocs;
2238   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2239   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2240   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2241 
2242   // Get a count of how many bytes are to be pushed on the stack.
2243   unsigned NumBytes = CCInfo.getNextStackOffset();
2244 
2245   if (IsSibCall) {
2246     // Since we're not changing the ABI to make this a tail call, the memory
2247     // operands are already available in the caller's incoming argument space.
2248     NumBytes = 0;
2249   }
2250 
2251   // FPDiff is the byte offset of the call's argument area from the callee's.
2252   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2253   // by this amount for a tail call. In a sibling call it must be 0 because the
2254   // caller will deallocate the entire stack and the callee still expects its
2255   // arguments to begin at SP+0. Completely unused for non-tail calls.
2256   int32_t FPDiff = 0;
2257   MachineFrameInfo &MFI = MF.getFrameInfo();
2258   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2259 
2260   SDValue CallerSavedFP;
2261 
2262   // Adjust the stack pointer for the new arguments...
2263   // These operations are automatically eliminated by the prolog/epilog pass
2264   if (!IsSibCall) {
2265     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2266 
2267     unsigned OffsetReg = Info->getScratchWaveOffsetReg();
2268 
2269     // In the HSA case, this should be an identity copy.
2270     SDValue ScratchRSrcReg
2271       = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2272     RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2273 
2274     // TODO: Don't hardcode these registers and get from the callee function.
2275     SDValue ScratchWaveOffsetReg
2276       = DAG.getCopyFromReg(Chain, DL, OffsetReg, MVT::i32);
2277     RegsToPass.emplace_back(AMDGPU::SGPR4, ScratchWaveOffsetReg);
2278 
2279     if (!Info->isEntryFunction()) {
2280       // Avoid clobbering this function's FP value. In the current convention
2281       // callee will overwrite this, so do save/restore around the call site.
2282       CallerSavedFP = DAG.getCopyFromReg(Chain, DL,
2283                                          Info->getFrameOffsetReg(), MVT::i32);
2284     }
2285   }
2286 
2287   // Stack pointer relative accesses are done by changing the offset SGPR. This
2288   // is just the VGPR offset component.
2289   SDValue StackPtr = DAG.getConstant(CalleeUsableStackOffset, DL, MVT::i32);
2290 
2291   SmallVector<SDValue, 8> MemOpChains;
2292   MVT PtrVT = MVT::i32;
2293 
2294   // Walk the register/memloc assignments, inserting copies/loads.
2295   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2296        ++i, ++realArgIdx) {
2297     CCValAssign &VA = ArgLocs[i];
2298     SDValue Arg = OutVals[realArgIdx];
2299 
2300     // Promote the value if needed.
2301     switch (VA.getLocInfo()) {
2302     case CCValAssign::Full:
2303       break;
2304     case CCValAssign::BCvt:
2305       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2306       break;
2307     case CCValAssign::ZExt:
2308       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2309       break;
2310     case CCValAssign::SExt:
2311       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2312       break;
2313     case CCValAssign::AExt:
2314       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2315       break;
2316     case CCValAssign::FPExt:
2317       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2318       break;
2319     default:
2320       llvm_unreachable("Unknown loc info!");
2321     }
2322 
2323     if (VA.isRegLoc()) {
2324       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2325     } else {
2326       assert(VA.isMemLoc());
2327 
2328       SDValue DstAddr;
2329       MachinePointerInfo DstInfo;
2330 
2331       unsigned LocMemOffset = VA.getLocMemOffset();
2332       int32_t Offset = LocMemOffset;
2333 
2334       SDValue PtrOff = DAG.getObjectPtrOffset(DL, StackPtr, Offset);
2335 
2336       if (IsTailCall) {
2337         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2338         unsigned OpSize = Flags.isByVal() ?
2339           Flags.getByValSize() : VA.getValVT().getStoreSize();
2340 
2341         Offset = Offset + FPDiff;
2342         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
2343 
2344         DstAddr = DAG.getObjectPtrOffset(DL, DAG.getFrameIndex(FI, PtrVT),
2345                                          StackPtr);
2346         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
2347 
2348         // Make sure any stack arguments overlapping with where we're storing
2349         // are loaded before this eventual operation. Otherwise they'll be
2350         // clobbered.
2351 
2352         // FIXME: Why is this really necessary? This seems to just result in a
2353         // lot of code to copy the stack and write them back to the same
2354         // locations, which are supposed to be immutable?
2355         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
2356       } else {
2357         DstAddr = PtrOff;
2358         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
2359       }
2360 
2361       if (Outs[i].Flags.isByVal()) {
2362         SDValue SizeNode =
2363             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
2364         SDValue Cpy = DAG.getMemcpy(
2365             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2366             /*isVol = */ false, /*AlwaysInline = */ true,
2367             /*isTailCall = */ false, DstInfo,
2368             MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
2369                 *DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS))));
2370 
2371         MemOpChains.push_back(Cpy);
2372       } else {
2373         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
2374         MemOpChains.push_back(Store);
2375       }
2376     }
2377   }
2378 
2379   // Copy special input registers after user input arguments.
2380   passSpecialInputs(CLI, *Info, RegsToPass, MemOpChains, Chain, StackPtr);
2381 
2382   if (!MemOpChains.empty())
2383     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2384 
2385   // Build a sequence of copy-to-reg nodes chained together with token chain
2386   // and flag operands which copy the outgoing args into the appropriate regs.
2387   SDValue InFlag;
2388   for (auto &RegToPass : RegsToPass) {
2389     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
2390                              RegToPass.second, InFlag);
2391     InFlag = Chain.getValue(1);
2392   }
2393 
2394 
2395   SDValue PhysReturnAddrReg;
2396   if (IsTailCall) {
2397     // Since the return is being combined with the call, we need to pass on the
2398     // return address.
2399 
2400     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2401     SDValue ReturnAddrReg = CreateLiveInRegister(
2402       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2403 
2404     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2405                                         MVT::i64);
2406     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
2407     InFlag = Chain.getValue(1);
2408   }
2409 
2410   // We don't usually want to end the call-sequence here because we would tidy
2411   // the frame up *after* the call, however in the ABI-changing tail-call case
2412   // we've carefully laid out the parameters so that when sp is reset they'll be
2413   // in the correct location.
2414   if (IsTailCall && !IsSibCall) {
2415     Chain = DAG.getCALLSEQ_END(Chain,
2416                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
2417                                DAG.getTargetConstant(0, DL, MVT::i32),
2418                                InFlag, DL);
2419     InFlag = Chain.getValue(1);
2420   }
2421 
2422   std::vector<SDValue> Ops;
2423   Ops.push_back(Chain);
2424   Ops.push_back(Callee);
2425 
2426   if (IsTailCall) {
2427     // Each tail call may have to adjust the stack by a different amount, so
2428     // this information must travel along with the operation for eventual
2429     // consumption by emitEpilogue.
2430     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
2431 
2432     Ops.push_back(PhysReturnAddrReg);
2433   }
2434 
2435   // Add argument registers to the end of the list so that they are known live
2436   // into the call.
2437   for (auto &RegToPass : RegsToPass) {
2438     Ops.push_back(DAG.getRegister(RegToPass.first,
2439                                   RegToPass.second.getValueType()));
2440   }
2441 
2442   // Add a register mask operand representing the call-preserved registers.
2443 
2444   const AMDGPURegisterInfo *TRI = Subtarget->getRegisterInfo();
2445   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2446   assert(Mask && "Missing call preserved mask for calling convention");
2447   Ops.push_back(DAG.getRegisterMask(Mask));
2448 
2449   if (InFlag.getNode())
2450     Ops.push_back(InFlag);
2451 
2452   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2453 
2454   // If we're doing a tall call, use a TC_RETURN here rather than an
2455   // actual call instruction.
2456   if (IsTailCall) {
2457     MFI.setHasTailCall();
2458     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
2459   }
2460 
2461   // Returns a chain and a flag for retval copy to use.
2462   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
2463   Chain = Call.getValue(0);
2464   InFlag = Call.getValue(1);
2465 
2466   if (CallerSavedFP) {
2467     SDValue FPReg = DAG.getRegister(Info->getFrameOffsetReg(), MVT::i32);
2468     Chain = DAG.getCopyToReg(Chain, DL, FPReg, CallerSavedFP, InFlag);
2469     InFlag = Chain.getValue(1);
2470   }
2471 
2472   uint64_t CalleePopBytes = NumBytes;
2473   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
2474                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
2475                              InFlag, DL);
2476   if (!Ins.empty())
2477     InFlag = Chain.getValue(1);
2478 
2479   // Handle result values, copying them out of physregs into vregs that we
2480   // return.
2481   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2482                          InVals, IsThisReturn,
2483                          IsThisReturn ? OutVals[0] : SDValue());
2484 }
2485 
2486 unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
2487                                              SelectionDAG &DAG) const {
2488   unsigned Reg = StringSwitch<unsigned>(RegName)
2489     .Case("m0", AMDGPU::M0)
2490     .Case("exec", AMDGPU::EXEC)
2491     .Case("exec_lo", AMDGPU::EXEC_LO)
2492     .Case("exec_hi", AMDGPU::EXEC_HI)
2493     .Case("flat_scratch", AMDGPU::FLAT_SCR)
2494     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
2495     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
2496     .Default(AMDGPU::NoRegister);
2497 
2498   if (Reg == AMDGPU::NoRegister) {
2499     report_fatal_error(Twine("invalid register name \""
2500                              + StringRef(RegName)  + "\"."));
2501 
2502   }
2503 
2504   if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
2505       Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
2506     report_fatal_error(Twine("invalid register \""
2507                              + StringRef(RegName)  + "\" for subtarget."));
2508   }
2509 
2510   switch (Reg) {
2511   case AMDGPU::M0:
2512   case AMDGPU::EXEC_LO:
2513   case AMDGPU::EXEC_HI:
2514   case AMDGPU::FLAT_SCR_LO:
2515   case AMDGPU::FLAT_SCR_HI:
2516     if (VT.getSizeInBits() == 32)
2517       return Reg;
2518     break;
2519   case AMDGPU::EXEC:
2520   case AMDGPU::FLAT_SCR:
2521     if (VT.getSizeInBits() == 64)
2522       return Reg;
2523     break;
2524   default:
2525     llvm_unreachable("missing register type checking");
2526   }
2527 
2528   report_fatal_error(Twine("invalid type for register \""
2529                            + StringRef(RegName) + "\"."));
2530 }
2531 
2532 // If kill is not the last instruction, split the block so kill is always a
2533 // proper terminator.
2534 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
2535                                                     MachineBasicBlock *BB) const {
2536   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
2537 
2538   MachineBasicBlock::iterator SplitPoint(&MI);
2539   ++SplitPoint;
2540 
2541   if (SplitPoint == BB->end()) {
2542     // Don't bother with a new block.
2543     MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
2544     return BB;
2545   }
2546 
2547   MachineFunction *MF = BB->getParent();
2548   MachineBasicBlock *SplitBB
2549     = MF->CreateMachineBasicBlock(BB->getBasicBlock());
2550 
2551   MF->insert(++MachineFunction::iterator(BB), SplitBB);
2552   SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
2553 
2554   SplitBB->transferSuccessorsAndUpdatePHIs(BB);
2555   BB->addSuccessor(SplitBB);
2556 
2557   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
2558   return SplitBB;
2559 }
2560 
2561 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
2562 // wavefront. If the value is uniform and just happens to be in a VGPR, this
2563 // will only do one iteration. In the worst case, this will loop 64 times.
2564 //
2565 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
2566 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
2567   const SIInstrInfo *TII,
2568   MachineRegisterInfo &MRI,
2569   MachineBasicBlock &OrigBB,
2570   MachineBasicBlock &LoopBB,
2571   const DebugLoc &DL,
2572   const MachineOperand &IdxReg,
2573   unsigned InitReg,
2574   unsigned ResultReg,
2575   unsigned PhiReg,
2576   unsigned InitSaveExecReg,
2577   int Offset,
2578   bool UseGPRIdxMode,
2579   bool IsIndirectSrc) {
2580   MachineBasicBlock::iterator I = LoopBB.begin();
2581 
2582   unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2583   unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2584   unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2585   unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2586 
2587   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
2588     .addReg(InitReg)
2589     .addMBB(&OrigBB)
2590     .addReg(ResultReg)
2591     .addMBB(&LoopBB);
2592 
2593   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
2594     .addReg(InitSaveExecReg)
2595     .addMBB(&OrigBB)
2596     .addReg(NewExec)
2597     .addMBB(&LoopBB);
2598 
2599   // Read the next variant <- also loop target.
2600   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
2601     .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
2602 
2603   // Compare the just read M0 value to all possible Idx values.
2604   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
2605     .addReg(CurrentIdxReg)
2606     .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
2607 
2608   // Update EXEC, save the original EXEC value to VCC.
2609   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec)
2610     .addReg(CondReg, RegState::Kill);
2611 
2612   MRI.setSimpleHint(NewExec, CondReg);
2613 
2614   if (UseGPRIdxMode) {
2615     unsigned IdxReg;
2616     if (Offset == 0) {
2617       IdxReg = CurrentIdxReg;
2618     } else {
2619       IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2620       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
2621         .addReg(CurrentIdxReg, RegState::Kill)
2622         .addImm(Offset);
2623     }
2624     unsigned IdxMode = IsIndirectSrc ?
2625       VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
2626     MachineInstr *SetOn =
2627       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
2628       .addReg(IdxReg, RegState::Kill)
2629       .addImm(IdxMode);
2630     SetOn->getOperand(3).setIsUndef();
2631   } else {
2632     // Move index from VCC into M0
2633     if (Offset == 0) {
2634       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
2635         .addReg(CurrentIdxReg, RegState::Kill);
2636     } else {
2637       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
2638         .addReg(CurrentIdxReg, RegState::Kill)
2639         .addImm(Offset);
2640     }
2641   }
2642 
2643   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
2644   MachineInstr *InsertPt =
2645     BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
2646     .addReg(AMDGPU::EXEC)
2647     .addReg(NewExec);
2648 
2649   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
2650   // s_cbranch_scc0?
2651 
2652   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
2653   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
2654     .addMBB(&LoopBB);
2655 
2656   return InsertPt->getIterator();
2657 }
2658 
2659 // This has slightly sub-optimal regalloc when the source vector is killed by
2660 // the read. The register allocator does not understand that the kill is
2661 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
2662 // subregister from it, using 1 more VGPR than necessary. This was saved when
2663 // this was expanded after register allocation.
2664 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
2665                                                   MachineBasicBlock &MBB,
2666                                                   MachineInstr &MI,
2667                                                   unsigned InitResultReg,
2668                                                   unsigned PhiReg,
2669                                                   int Offset,
2670                                                   bool UseGPRIdxMode,
2671                                                   bool IsIndirectSrc) {
2672   MachineFunction *MF = MBB.getParent();
2673   MachineRegisterInfo &MRI = MF->getRegInfo();
2674   const DebugLoc &DL = MI.getDebugLoc();
2675   MachineBasicBlock::iterator I(&MI);
2676 
2677   unsigned DstReg = MI.getOperand(0).getReg();
2678   unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
2679   unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
2680 
2681   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
2682 
2683   // Save the EXEC mask
2684   BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec)
2685     .addReg(AMDGPU::EXEC);
2686 
2687   // To insert the loop we need to split the block. Move everything after this
2688   // point to a new block, and insert a new empty block between the two.
2689   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
2690   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
2691   MachineFunction::iterator MBBI(MBB);
2692   ++MBBI;
2693 
2694   MF->insert(MBBI, LoopBB);
2695   MF->insert(MBBI, RemainderBB);
2696 
2697   LoopBB->addSuccessor(LoopBB);
2698   LoopBB->addSuccessor(RemainderBB);
2699 
2700   // Move the rest of the block into a new block.
2701   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
2702   RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
2703 
2704   MBB.addSuccessor(LoopBB);
2705 
2706   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
2707 
2708   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
2709                                       InitResultReg, DstReg, PhiReg, TmpExec,
2710                                       Offset, UseGPRIdxMode, IsIndirectSrc);
2711 
2712   MachineBasicBlock::iterator First = RemainderBB->begin();
2713   BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
2714     .addReg(SaveExec);
2715 
2716   return InsPt;
2717 }
2718 
2719 // Returns subreg index, offset
2720 static std::pair<unsigned, int>
2721 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
2722                             const TargetRegisterClass *SuperRC,
2723                             unsigned VecReg,
2724                             int Offset) {
2725   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
2726 
2727   // Skip out of bounds offsets, or else we would end up using an undefined
2728   // register.
2729   if (Offset >= NumElts || Offset < 0)
2730     return std::make_pair(AMDGPU::sub0, Offset);
2731 
2732   return std::make_pair(AMDGPU::sub0 + Offset, 0);
2733 }
2734 
2735 // Return true if the index is an SGPR and was set.
2736 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
2737                                  MachineRegisterInfo &MRI,
2738                                  MachineInstr &MI,
2739                                  int Offset,
2740                                  bool UseGPRIdxMode,
2741                                  bool IsIndirectSrc) {
2742   MachineBasicBlock *MBB = MI.getParent();
2743   const DebugLoc &DL = MI.getDebugLoc();
2744   MachineBasicBlock::iterator I(&MI);
2745 
2746   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
2747   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
2748 
2749   assert(Idx->getReg() != AMDGPU::NoRegister);
2750 
2751   if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
2752     return false;
2753 
2754   if (UseGPRIdxMode) {
2755     unsigned IdxMode = IsIndirectSrc ?
2756       VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
2757     if (Offset == 0) {
2758       MachineInstr *SetOn =
2759           BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
2760               .add(*Idx)
2761               .addImm(IdxMode);
2762 
2763       SetOn->getOperand(3).setIsUndef();
2764     } else {
2765       unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
2766       BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
2767           .add(*Idx)
2768           .addImm(Offset);
2769       MachineInstr *SetOn =
2770         BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
2771         .addReg(Tmp, RegState::Kill)
2772         .addImm(IdxMode);
2773 
2774       SetOn->getOperand(3).setIsUndef();
2775     }
2776 
2777     return true;
2778   }
2779 
2780   if (Offset == 0) {
2781     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
2782       .add(*Idx);
2783   } else {
2784     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
2785       .add(*Idx)
2786       .addImm(Offset);
2787   }
2788 
2789   return true;
2790 }
2791 
2792 // Control flow needs to be inserted if indexing with a VGPR.
2793 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
2794                                           MachineBasicBlock &MBB,
2795                                           const SISubtarget &ST) {
2796   const SIInstrInfo *TII = ST.getInstrInfo();
2797   const SIRegisterInfo &TRI = TII->getRegisterInfo();
2798   MachineFunction *MF = MBB.getParent();
2799   MachineRegisterInfo &MRI = MF->getRegInfo();
2800 
2801   unsigned Dst = MI.getOperand(0).getReg();
2802   unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
2803   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
2804 
2805   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
2806 
2807   unsigned SubReg;
2808   std::tie(SubReg, Offset)
2809     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
2810 
2811   bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
2812 
2813   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
2814     MachineBasicBlock::iterator I(&MI);
2815     const DebugLoc &DL = MI.getDebugLoc();
2816 
2817     if (UseGPRIdxMode) {
2818       // TODO: Look at the uses to avoid the copy. This may require rescheduling
2819       // to avoid interfering with other uses, so probably requires a new
2820       // optimization pass.
2821       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
2822         .addReg(SrcReg, RegState::Undef, SubReg)
2823         .addReg(SrcReg, RegState::Implicit)
2824         .addReg(AMDGPU::M0, RegState::Implicit);
2825       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
2826     } else {
2827       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
2828         .addReg(SrcReg, RegState::Undef, SubReg)
2829         .addReg(SrcReg, RegState::Implicit);
2830     }
2831 
2832     MI.eraseFromParent();
2833 
2834     return &MBB;
2835   }
2836 
2837   const DebugLoc &DL = MI.getDebugLoc();
2838   MachineBasicBlock::iterator I(&MI);
2839 
2840   unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2841   unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2842 
2843   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
2844 
2845   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
2846                               Offset, UseGPRIdxMode, true);
2847   MachineBasicBlock *LoopBB = InsPt->getParent();
2848 
2849   if (UseGPRIdxMode) {
2850     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
2851       .addReg(SrcReg, RegState::Undef, SubReg)
2852       .addReg(SrcReg, RegState::Implicit)
2853       .addReg(AMDGPU::M0, RegState::Implicit);
2854     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
2855   } else {
2856     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
2857       .addReg(SrcReg, RegState::Undef, SubReg)
2858       .addReg(SrcReg, RegState::Implicit);
2859   }
2860 
2861   MI.eraseFromParent();
2862 
2863   return LoopBB;
2864 }
2865 
2866 static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
2867                                  const TargetRegisterClass *VecRC) {
2868   switch (TRI.getRegSizeInBits(*VecRC)) {
2869   case 32: // 4 bytes
2870     return AMDGPU::V_MOVRELD_B32_V1;
2871   case 64: // 8 bytes
2872     return AMDGPU::V_MOVRELD_B32_V2;
2873   case 128: // 16 bytes
2874     return AMDGPU::V_MOVRELD_B32_V4;
2875   case 256: // 32 bytes
2876     return AMDGPU::V_MOVRELD_B32_V8;
2877   case 512: // 64 bytes
2878     return AMDGPU::V_MOVRELD_B32_V16;
2879   default:
2880     llvm_unreachable("unsupported size for MOVRELD pseudos");
2881   }
2882 }
2883 
2884 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
2885                                           MachineBasicBlock &MBB,
2886                                           const SISubtarget &ST) {
2887   const SIInstrInfo *TII = ST.getInstrInfo();
2888   const SIRegisterInfo &TRI = TII->getRegisterInfo();
2889   MachineFunction *MF = MBB.getParent();
2890   MachineRegisterInfo &MRI = MF->getRegInfo();
2891 
2892   unsigned Dst = MI.getOperand(0).getReg();
2893   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
2894   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
2895   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
2896   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
2897   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
2898 
2899   // This can be an immediate, but will be folded later.
2900   assert(Val->getReg());
2901 
2902   unsigned SubReg;
2903   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
2904                                                          SrcVec->getReg(),
2905                                                          Offset);
2906   bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
2907 
2908   if (Idx->getReg() == AMDGPU::NoRegister) {
2909     MachineBasicBlock::iterator I(&MI);
2910     const DebugLoc &DL = MI.getDebugLoc();
2911 
2912     assert(Offset == 0);
2913 
2914     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
2915         .add(*SrcVec)
2916         .add(*Val)
2917         .addImm(SubReg);
2918 
2919     MI.eraseFromParent();
2920     return &MBB;
2921   }
2922 
2923   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
2924     MachineBasicBlock::iterator I(&MI);
2925     const DebugLoc &DL = MI.getDebugLoc();
2926 
2927     if (UseGPRIdxMode) {
2928       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
2929           .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
2930           .add(*Val)
2931           .addReg(Dst, RegState::ImplicitDefine)
2932           .addReg(SrcVec->getReg(), RegState::Implicit)
2933           .addReg(AMDGPU::M0, RegState::Implicit);
2934 
2935       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
2936     } else {
2937       const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
2938 
2939       BuildMI(MBB, I, DL, MovRelDesc)
2940           .addReg(Dst, RegState::Define)
2941           .addReg(SrcVec->getReg())
2942           .add(*Val)
2943           .addImm(SubReg - AMDGPU::sub0);
2944     }
2945 
2946     MI.eraseFromParent();
2947     return &MBB;
2948   }
2949 
2950   if (Val->isReg())
2951     MRI.clearKillFlags(Val->getReg());
2952 
2953   const DebugLoc &DL = MI.getDebugLoc();
2954 
2955   unsigned PhiReg = MRI.createVirtualRegister(VecRC);
2956 
2957   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
2958                               Offset, UseGPRIdxMode, false);
2959   MachineBasicBlock *LoopBB = InsPt->getParent();
2960 
2961   if (UseGPRIdxMode) {
2962     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
2963         .addReg(PhiReg, RegState::Undef, SubReg) // vdst
2964         .add(*Val)                               // src0
2965         .addReg(Dst, RegState::ImplicitDefine)
2966         .addReg(PhiReg, RegState::Implicit)
2967         .addReg(AMDGPU::M0, RegState::Implicit);
2968     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
2969   } else {
2970     const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
2971 
2972     BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
2973         .addReg(Dst, RegState::Define)
2974         .addReg(PhiReg)
2975         .add(*Val)
2976         .addImm(SubReg - AMDGPU::sub0);
2977   }
2978 
2979   MI.eraseFromParent();
2980 
2981   return LoopBB;
2982 }
2983 
2984 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
2985   MachineInstr &MI, MachineBasicBlock *BB) const {
2986 
2987   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
2988   MachineFunction *MF = BB->getParent();
2989   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
2990 
2991   if (TII->isMIMG(MI)) {
2992     if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
2993       report_fatal_error("missing mem operand from MIMG instruction");
2994     }
2995     // Add a memoperand for mimg instructions so that they aren't assumed to
2996     // be ordered memory instuctions.
2997 
2998     return BB;
2999   }
3000 
3001   switch (MI.getOpcode()) {
3002   case AMDGPU::S_ADD_U64_PSEUDO:
3003   case AMDGPU::S_SUB_U64_PSEUDO: {
3004     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3005     const DebugLoc &DL = MI.getDebugLoc();
3006 
3007     MachineOperand &Dest = MI.getOperand(0);
3008     MachineOperand &Src0 = MI.getOperand(1);
3009     MachineOperand &Src1 = MI.getOperand(2);
3010 
3011     unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3012     unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3013 
3014     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3015      Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
3016      &AMDGPU::SReg_32_XM0RegClass);
3017     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3018       Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
3019       &AMDGPU::SReg_32_XM0RegClass);
3020 
3021     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3022       Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
3023       &AMDGPU::SReg_32_XM0RegClass);
3024     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3025       Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
3026       &AMDGPU::SReg_32_XM0RegClass);
3027 
3028     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3029 
3030     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3031     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3032     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3033       .add(Src0Sub0)
3034       .add(Src1Sub0);
3035     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3036       .add(Src0Sub1)
3037       .add(Src1Sub1);
3038     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3039       .addReg(DestSub0)
3040       .addImm(AMDGPU::sub0)
3041       .addReg(DestSub1)
3042       .addImm(AMDGPU::sub1);
3043     MI.eraseFromParent();
3044     return BB;
3045   }
3046   case AMDGPU::SI_INIT_M0: {
3047     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
3048             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3049         .add(MI.getOperand(0));
3050     MI.eraseFromParent();
3051     return BB;
3052   }
3053   case AMDGPU::SI_INIT_EXEC:
3054     // This should be before all vector instructions.
3055     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
3056             AMDGPU::EXEC)
3057         .addImm(MI.getOperand(0).getImm());
3058     MI.eraseFromParent();
3059     return BB;
3060 
3061   case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
3062     // Extract the thread count from an SGPR input and set EXEC accordingly.
3063     // Since BFM can't shift by 64, handle that case with CMP + CMOV.
3064     //
3065     // S_BFE_U32 count, input, {shift, 7}
3066     // S_BFM_B64 exec, count, 0
3067     // S_CMP_EQ_U32 count, 64
3068     // S_CMOV_B64 exec, -1
3069     MachineInstr *FirstMI = &*BB->begin();
3070     MachineRegisterInfo &MRI = MF->getRegInfo();
3071     unsigned InputReg = MI.getOperand(0).getReg();
3072     unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3073     bool Found = false;
3074 
3075     // Move the COPY of the input reg to the beginning, so that we can use it.
3076     for (auto I = BB->begin(); I != &MI; I++) {
3077       if (I->getOpcode() != TargetOpcode::COPY ||
3078           I->getOperand(0).getReg() != InputReg)
3079         continue;
3080 
3081       if (I == FirstMI) {
3082         FirstMI = &*++BB->begin();
3083       } else {
3084         I->removeFromParent();
3085         BB->insert(FirstMI, &*I);
3086       }
3087       Found = true;
3088       break;
3089     }
3090     assert(Found);
3091     (void)Found;
3092 
3093     // This should be before all vector instructions.
3094     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
3095         .addReg(InputReg)
3096         .addImm((MI.getOperand(1).getImm() & 0x7f) | 0x70000);
3097     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFM_B64),
3098             AMDGPU::EXEC)
3099         .addReg(CountReg)
3100         .addImm(0);
3101     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
3102         .addReg(CountReg, RegState::Kill)
3103         .addImm(64);
3104     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMOV_B64),
3105             AMDGPU::EXEC)
3106         .addImm(-1);
3107     MI.eraseFromParent();
3108     return BB;
3109   }
3110 
3111   case AMDGPU::GET_GROUPSTATICSIZE: {
3112     DebugLoc DL = MI.getDebugLoc();
3113     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
3114         .add(MI.getOperand(0))
3115         .addImm(MFI->getLDSSize());
3116     MI.eraseFromParent();
3117     return BB;
3118   }
3119   case AMDGPU::SI_INDIRECT_SRC_V1:
3120   case AMDGPU::SI_INDIRECT_SRC_V2:
3121   case AMDGPU::SI_INDIRECT_SRC_V4:
3122   case AMDGPU::SI_INDIRECT_SRC_V8:
3123   case AMDGPU::SI_INDIRECT_SRC_V16:
3124     return emitIndirectSrc(MI, *BB, *getSubtarget());
3125   case AMDGPU::SI_INDIRECT_DST_V1:
3126   case AMDGPU::SI_INDIRECT_DST_V2:
3127   case AMDGPU::SI_INDIRECT_DST_V4:
3128   case AMDGPU::SI_INDIRECT_DST_V8:
3129   case AMDGPU::SI_INDIRECT_DST_V16:
3130     return emitIndirectDst(MI, *BB, *getSubtarget());
3131   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
3132   case AMDGPU::SI_KILL_I1_PSEUDO:
3133     return splitKillBlock(MI, BB);
3134   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
3135     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3136 
3137     unsigned Dst = MI.getOperand(0).getReg();
3138     unsigned Src0 = MI.getOperand(1).getReg();
3139     unsigned Src1 = MI.getOperand(2).getReg();
3140     const DebugLoc &DL = MI.getDebugLoc();
3141     unsigned SrcCond = MI.getOperand(3).getReg();
3142 
3143     unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3144     unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3145     unsigned SrcCondCopy = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
3146 
3147     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
3148       .addReg(SrcCond);
3149     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
3150       .addReg(Src0, 0, AMDGPU::sub0)
3151       .addReg(Src1, 0, AMDGPU::sub0)
3152       .addReg(SrcCondCopy);
3153     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
3154       .addReg(Src0, 0, AMDGPU::sub1)
3155       .addReg(Src1, 0, AMDGPU::sub1)
3156       .addReg(SrcCondCopy);
3157 
3158     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
3159       .addReg(DstLo)
3160       .addImm(AMDGPU::sub0)
3161       .addReg(DstHi)
3162       .addImm(AMDGPU::sub1);
3163     MI.eraseFromParent();
3164     return BB;
3165   }
3166   case AMDGPU::SI_BR_UNDEF: {
3167     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3168     const DebugLoc &DL = MI.getDebugLoc();
3169     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3170                            .add(MI.getOperand(0));
3171     Br->getOperand(1).setIsUndef(true); // read undef SCC
3172     MI.eraseFromParent();
3173     return BB;
3174   }
3175   case AMDGPU::ADJCALLSTACKUP:
3176   case AMDGPU::ADJCALLSTACKDOWN: {
3177     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
3178     MachineInstrBuilder MIB(*MF, &MI);
3179 
3180     // Add an implicit use of the frame offset reg to prevent the restore copy
3181     // inserted after the call from being reorderd after stack operations in the
3182     // the caller's frame.
3183     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
3184         .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
3185         .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
3186     return BB;
3187   }
3188   case AMDGPU::SI_CALL_ISEL:
3189   case AMDGPU::SI_TCRETURN_ISEL: {
3190     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3191     const DebugLoc &DL = MI.getDebugLoc();
3192     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
3193 
3194     MachineRegisterInfo &MRI = MF->getRegInfo();
3195     unsigned GlobalAddrReg = MI.getOperand(0).getReg();
3196     MachineInstr *PCRel = MRI.getVRegDef(GlobalAddrReg);
3197     assert(PCRel->getOpcode() == AMDGPU::SI_PC_ADD_REL_OFFSET);
3198 
3199     const GlobalValue *G = PCRel->getOperand(1).getGlobal();
3200 
3201     MachineInstrBuilder MIB;
3202     if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) {
3203       MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg)
3204         .add(MI.getOperand(0))
3205         .addGlobalAddress(G);
3206     } else {
3207       MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_TCRETURN))
3208         .add(MI.getOperand(0))
3209         .addGlobalAddress(G);
3210 
3211       // There is an additional imm operand for tcreturn, but it should be in the
3212       // right place already.
3213     }
3214 
3215     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3216       MIB.add(MI.getOperand(I));
3217 
3218     MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
3219     MI.eraseFromParent();
3220     return BB;
3221   }
3222   default:
3223     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
3224   }
3225 }
3226 
3227 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
3228   return isTypeLegal(VT.getScalarType());
3229 }
3230 
3231 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
3232   // This currently forces unfolding various combinations of fsub into fma with
3233   // free fneg'd operands. As long as we have fast FMA (controlled by
3234   // isFMAFasterThanFMulAndFAdd), we should perform these.
3235 
3236   // When fma is quarter rate, for f64 where add / sub are at best half rate,
3237   // most of these combines appear to be cycle neutral but save on instruction
3238   // count / code size.
3239   return true;
3240 }
3241 
3242 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
3243                                          EVT VT) const {
3244   if (!VT.isVector()) {
3245     return MVT::i1;
3246   }
3247   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
3248 }
3249 
3250 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
3251   // TODO: Should i16 be used always if legal? For now it would force VALU
3252   // shifts.
3253   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
3254 }
3255 
3256 // Answering this is somewhat tricky and depends on the specific device which
3257 // have different rates for fma or all f64 operations.
3258 //
3259 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
3260 // regardless of which device (although the number of cycles differs between
3261 // devices), so it is always profitable for f64.
3262 //
3263 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
3264 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
3265 // which we can always do even without fused FP ops since it returns the same
3266 // result as the separate operations and since it is always full
3267 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
3268 // however does not support denormals, so we do report fma as faster if we have
3269 // a fast fma device and require denormals.
3270 //
3271 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3272   VT = VT.getScalarType();
3273 
3274   switch (VT.getSimpleVT().SimpleTy) {
3275   case MVT::f32: {
3276     // This is as fast on some subtargets. However, we always have full rate f32
3277     // mad available which returns the same result as the separate operations
3278     // which we should prefer over fma. We can't use this if we want to support
3279     // denormals, so only report this in these cases.
3280     if (Subtarget->hasFP32Denormals())
3281       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
3282 
3283     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
3284     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
3285   }
3286   case MVT::f64:
3287     return true;
3288   case MVT::f16:
3289     return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
3290   default:
3291     break;
3292   }
3293 
3294   return false;
3295 }
3296 
3297 //===----------------------------------------------------------------------===//
3298 // Custom DAG Lowering Operations
3299 //===----------------------------------------------------------------------===//
3300 
3301 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3302   switch (Op.getOpcode()) {
3303   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
3304   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
3305   case ISD::LOAD: {
3306     SDValue Result = LowerLOAD(Op, DAG);
3307     assert((!Result.getNode() ||
3308             Result.getNode()->getNumValues() == 2) &&
3309            "Load should return a value and a chain");
3310     return Result;
3311   }
3312 
3313   case ISD::FSIN:
3314   case ISD::FCOS:
3315     return LowerTrig(Op, DAG);
3316   case ISD::SELECT: return LowerSELECT(Op, DAG);
3317   case ISD::FDIV: return LowerFDIV(Op, DAG);
3318   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
3319   case ISD::STORE: return LowerSTORE(Op, DAG);
3320   case ISD::GlobalAddress: {
3321     MachineFunction &MF = DAG.getMachineFunction();
3322     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
3323     return LowerGlobalAddress(MFI, Op, DAG);
3324   }
3325   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3326   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
3327   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
3328   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
3329   case ISD::INSERT_VECTOR_ELT:
3330     return lowerINSERT_VECTOR_ELT(Op, DAG);
3331   case ISD::EXTRACT_VECTOR_ELT:
3332     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3333   case ISD::FP_ROUND:
3334     return lowerFP_ROUND(Op, DAG);
3335   case ISD::TRAP:
3336   case ISD::DEBUGTRAP:
3337     return lowerTRAP(Op, DAG);
3338   }
3339   return SDValue();
3340 }
3341 
3342 static unsigned getImageOpcode(unsigned IID) {
3343   switch (IID) {
3344   case Intrinsic::amdgcn_image_load:
3345     return AMDGPUISD::IMAGE_LOAD;
3346   case Intrinsic::amdgcn_image_load_mip:
3347     return AMDGPUISD::IMAGE_LOAD_MIP;
3348 
3349   // Basic sample.
3350   case Intrinsic::amdgcn_image_sample:
3351     return AMDGPUISD::IMAGE_SAMPLE;
3352   case Intrinsic::amdgcn_image_sample_cl:
3353     return AMDGPUISD::IMAGE_SAMPLE_CL;
3354   case Intrinsic::amdgcn_image_sample_d:
3355     return AMDGPUISD::IMAGE_SAMPLE_D;
3356   case Intrinsic::amdgcn_image_sample_d_cl:
3357     return AMDGPUISD::IMAGE_SAMPLE_D_CL;
3358   case Intrinsic::amdgcn_image_sample_l:
3359     return AMDGPUISD::IMAGE_SAMPLE_L;
3360   case Intrinsic::amdgcn_image_sample_b:
3361     return AMDGPUISD::IMAGE_SAMPLE_B;
3362   case Intrinsic::amdgcn_image_sample_b_cl:
3363     return AMDGPUISD::IMAGE_SAMPLE_B_CL;
3364   case Intrinsic::amdgcn_image_sample_lz:
3365     return AMDGPUISD::IMAGE_SAMPLE_LZ;
3366   case Intrinsic::amdgcn_image_sample_cd:
3367     return AMDGPUISD::IMAGE_SAMPLE_CD;
3368   case Intrinsic::amdgcn_image_sample_cd_cl:
3369     return AMDGPUISD::IMAGE_SAMPLE_CD_CL;
3370 
3371   // Sample with comparison.
3372   case Intrinsic::amdgcn_image_sample_c:
3373     return AMDGPUISD::IMAGE_SAMPLE_C;
3374   case Intrinsic::amdgcn_image_sample_c_cl:
3375     return AMDGPUISD::IMAGE_SAMPLE_C_CL;
3376   case Intrinsic::amdgcn_image_sample_c_d:
3377     return AMDGPUISD::IMAGE_SAMPLE_C_D;
3378   case Intrinsic::amdgcn_image_sample_c_d_cl:
3379     return AMDGPUISD::IMAGE_SAMPLE_C_D_CL;
3380   case Intrinsic::amdgcn_image_sample_c_l:
3381     return AMDGPUISD::IMAGE_SAMPLE_C_L;
3382   case Intrinsic::amdgcn_image_sample_c_b:
3383     return AMDGPUISD::IMAGE_SAMPLE_C_B;
3384   case Intrinsic::amdgcn_image_sample_c_b_cl:
3385     return AMDGPUISD::IMAGE_SAMPLE_C_B_CL;
3386   case Intrinsic::amdgcn_image_sample_c_lz:
3387     return AMDGPUISD::IMAGE_SAMPLE_C_LZ;
3388   case Intrinsic::amdgcn_image_sample_c_cd:
3389     return AMDGPUISD::IMAGE_SAMPLE_C_CD;
3390   case Intrinsic::amdgcn_image_sample_c_cd_cl:
3391     return AMDGPUISD::IMAGE_SAMPLE_C_CD_CL;
3392 
3393   // Sample with offsets.
3394   case Intrinsic::amdgcn_image_sample_o:
3395     return AMDGPUISD::IMAGE_SAMPLE_O;
3396   case Intrinsic::amdgcn_image_sample_cl_o:
3397     return AMDGPUISD::IMAGE_SAMPLE_CL_O;
3398   case Intrinsic::amdgcn_image_sample_d_o:
3399     return AMDGPUISD::IMAGE_SAMPLE_D_O;
3400   case Intrinsic::amdgcn_image_sample_d_cl_o:
3401     return AMDGPUISD::IMAGE_SAMPLE_D_CL_O;
3402   case Intrinsic::amdgcn_image_sample_l_o:
3403     return AMDGPUISD::IMAGE_SAMPLE_L_O;
3404   case Intrinsic::amdgcn_image_sample_b_o:
3405     return AMDGPUISD::IMAGE_SAMPLE_B_O;
3406   case Intrinsic::amdgcn_image_sample_b_cl_o:
3407     return AMDGPUISD::IMAGE_SAMPLE_B_CL_O;
3408   case Intrinsic::amdgcn_image_sample_lz_o:
3409     return AMDGPUISD::IMAGE_SAMPLE_LZ_O;
3410   case Intrinsic::amdgcn_image_sample_cd_o:
3411     return AMDGPUISD::IMAGE_SAMPLE_CD_O;
3412   case Intrinsic::amdgcn_image_sample_cd_cl_o:
3413     return AMDGPUISD::IMAGE_SAMPLE_CD_CL_O;
3414 
3415   // Sample with comparison and offsets.
3416   case Intrinsic::amdgcn_image_sample_c_o:
3417     return AMDGPUISD::IMAGE_SAMPLE_C_O;
3418   case Intrinsic::amdgcn_image_sample_c_cl_o:
3419     return AMDGPUISD::IMAGE_SAMPLE_C_CL_O;
3420   case Intrinsic::amdgcn_image_sample_c_d_o:
3421     return AMDGPUISD::IMAGE_SAMPLE_C_D_O;
3422   case Intrinsic::amdgcn_image_sample_c_d_cl_o:
3423     return AMDGPUISD::IMAGE_SAMPLE_C_D_CL_O;
3424   case Intrinsic::amdgcn_image_sample_c_l_o:
3425     return AMDGPUISD::IMAGE_SAMPLE_C_L_O;
3426   case Intrinsic::amdgcn_image_sample_c_b_o:
3427     return AMDGPUISD::IMAGE_SAMPLE_C_B_O;
3428   case Intrinsic::amdgcn_image_sample_c_b_cl_o:
3429     return AMDGPUISD::IMAGE_SAMPLE_C_B_CL_O;
3430   case Intrinsic::amdgcn_image_sample_c_lz_o:
3431     return AMDGPUISD::IMAGE_SAMPLE_C_LZ_O;
3432   case Intrinsic::amdgcn_image_sample_c_cd_o:
3433     return AMDGPUISD::IMAGE_SAMPLE_C_CD_O;
3434   case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
3435     return AMDGPUISD::IMAGE_SAMPLE_C_CD_CL_O;
3436 
3437   // Basic gather4.
3438   case Intrinsic::amdgcn_image_gather4:
3439     return AMDGPUISD::IMAGE_GATHER4;
3440   case Intrinsic::amdgcn_image_gather4_cl:
3441     return AMDGPUISD::IMAGE_GATHER4_CL;
3442   case Intrinsic::amdgcn_image_gather4_l:
3443     return AMDGPUISD::IMAGE_GATHER4_L;
3444   case Intrinsic::amdgcn_image_gather4_b:
3445     return AMDGPUISD::IMAGE_GATHER4_B;
3446   case Intrinsic::amdgcn_image_gather4_b_cl:
3447     return AMDGPUISD::IMAGE_GATHER4_B_CL;
3448   case Intrinsic::amdgcn_image_gather4_lz:
3449     return AMDGPUISD::IMAGE_GATHER4_LZ;
3450 
3451   // Gather4 with comparison.
3452   case Intrinsic::amdgcn_image_gather4_c:
3453     return AMDGPUISD::IMAGE_GATHER4_C;
3454   case Intrinsic::amdgcn_image_gather4_c_cl:
3455     return AMDGPUISD::IMAGE_GATHER4_C_CL;
3456   case Intrinsic::amdgcn_image_gather4_c_l:
3457     return AMDGPUISD::IMAGE_GATHER4_C_L;
3458   case Intrinsic::amdgcn_image_gather4_c_b:
3459     return AMDGPUISD::IMAGE_GATHER4_C_B;
3460   case Intrinsic::amdgcn_image_gather4_c_b_cl:
3461     return AMDGPUISD::IMAGE_GATHER4_C_B_CL;
3462   case Intrinsic::amdgcn_image_gather4_c_lz:
3463     return AMDGPUISD::IMAGE_GATHER4_C_LZ;
3464 
3465   // Gather4 with offsets.
3466   case Intrinsic::amdgcn_image_gather4_o:
3467     return AMDGPUISD::IMAGE_GATHER4_O;
3468   case Intrinsic::amdgcn_image_gather4_cl_o:
3469     return AMDGPUISD::IMAGE_GATHER4_CL_O;
3470   case Intrinsic::amdgcn_image_gather4_l_o:
3471     return AMDGPUISD::IMAGE_GATHER4_L_O;
3472   case Intrinsic::amdgcn_image_gather4_b_o:
3473     return AMDGPUISD::IMAGE_GATHER4_B_O;
3474   case Intrinsic::amdgcn_image_gather4_b_cl_o:
3475     return AMDGPUISD::IMAGE_GATHER4_B_CL_O;
3476   case Intrinsic::amdgcn_image_gather4_lz_o:
3477     return AMDGPUISD::IMAGE_GATHER4_LZ_O;
3478 
3479   // Gather4 with comparison and offsets.
3480   case Intrinsic::amdgcn_image_gather4_c_o:
3481     return AMDGPUISD::IMAGE_GATHER4_C_O;
3482   case Intrinsic::amdgcn_image_gather4_c_cl_o:
3483     return AMDGPUISD::IMAGE_GATHER4_C_CL_O;
3484   case Intrinsic::amdgcn_image_gather4_c_l_o:
3485     return AMDGPUISD::IMAGE_GATHER4_C_L_O;
3486   case Intrinsic::amdgcn_image_gather4_c_b_o:
3487     return AMDGPUISD::IMAGE_GATHER4_C_B_O;
3488   case Intrinsic::amdgcn_image_gather4_c_b_cl_o:
3489     return AMDGPUISD::IMAGE_GATHER4_C_B_CL_O;
3490   case Intrinsic::amdgcn_image_gather4_c_lz_o:
3491     return AMDGPUISD::IMAGE_GATHER4_C_LZ_O;
3492 
3493   default:
3494     break;
3495   }
3496   return 0;
3497 }
3498 
3499 static SDValue adjustLoadValueType(SDValue Result, EVT LoadVT, SDLoc DL,
3500                                    SelectionDAG &DAG, bool Unpacked) {
3501   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
3502     // Truncate to v2i16/v4i16.
3503     EVT IntLoadVT = LoadVT.changeTypeToInteger();
3504     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, IntLoadVT, Result);
3505     // Bitcast to original type (v2f16/v4f16).
3506     return DAG.getNode(ISD::BITCAST, DL, LoadVT, Trunc);
3507   }
3508   // Cast back to the original packed type.
3509   return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
3510 }
3511 
3512 // This is to lower INTRINSIC_W_CHAIN with illegal result types.
3513 SDValue SITargetLowering::lowerIntrinsicWChain_IllegalReturnType(SDValue Op,
3514                                      SDValue &Chain, SelectionDAG &DAG) const {
3515   EVT LoadVT = Op.getValueType();
3516   // TODO: handle v3f16.
3517   if (LoadVT != MVT::v2f16 && LoadVT != MVT::v4f16)
3518     return SDValue();
3519 
3520   bool Unpacked = Subtarget->hasUnpackedD16VMem();
3521   EVT UnpackedLoadVT = (LoadVT == MVT::v2f16) ? MVT::v2i32 : MVT::v4i32;
3522   EVT EquivLoadVT = Unpacked ? UnpackedLoadVT :
3523                                getEquivalentMemType(*DAG.getContext(), LoadVT);
3524   // Change from v4f16/v2f16 to EquivLoadVT.
3525   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
3526 
3527   SDValue Res;
3528   SDLoc DL(Op);
3529   MemSDNode *M = cast<MemSDNode>(Op);
3530   unsigned IID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
3531   switch (IID) {
3532   case Intrinsic::amdgcn_tbuffer_load: {
3533     SDValue Ops[] = {
3534       Op.getOperand(0),  // Chain
3535       Op.getOperand(2),  // rsrc
3536       Op.getOperand(3),  // vindex
3537       Op.getOperand(4),  // voffset
3538       Op.getOperand(5),  // soffset
3539       Op.getOperand(6),  // offset
3540       Op.getOperand(7),  // dfmt
3541       Op.getOperand(8),  // nfmt
3542       Op.getOperand(9),  // glc
3543       Op.getOperand(10)  // slc
3544     };
3545     Res = DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, DL,
3546                                   VTList, Ops, M->getMemoryVT(),
3547                                   M->getMemOperand());
3548     Chain = Res.getValue(1);
3549     return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3550   }
3551   case Intrinsic::amdgcn_buffer_load_format: {
3552     SDValue Ops[] = {
3553       Op.getOperand(0), // Chain
3554       Op.getOperand(2), // rsrc
3555       Op.getOperand(3), // vindex
3556       Op.getOperand(4), // offset
3557       Op.getOperand(5), // glc
3558       Op.getOperand(6)  // slc
3559     };
3560     Res = DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
3561                                    DL, VTList, Ops, M->getMemoryVT(),
3562                                    M->getMemOperand());
3563     Chain = Res.getValue(1);
3564     return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3565   }
3566   case Intrinsic::amdgcn_image_load:
3567   case Intrinsic::amdgcn_image_load_mip: {
3568     SDValue Ops[] = {
3569         Op.getOperand(0),  // Chain
3570         Op.getOperand(2),  // vaddr
3571         Op.getOperand(3),  // rsrc
3572         Op.getOperand(4),  // dmask
3573         Op.getOperand(5),  // glc
3574         Op.getOperand(6),  // slc
3575         Op.getOperand(7),  // lwe
3576         Op.getOperand(8)   // da
3577     };
3578     unsigned Opc = getImageOpcode(IID);
3579     Res = DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, M->getMemoryVT(),
3580                                   M->getMemOperand());
3581     Chain = Res.getValue(1);
3582     return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3583   }
3584   // Basic sample.
3585   case Intrinsic::amdgcn_image_sample:
3586   case Intrinsic::amdgcn_image_sample_cl:
3587   case Intrinsic::amdgcn_image_sample_d:
3588   case Intrinsic::amdgcn_image_sample_d_cl:
3589   case Intrinsic::amdgcn_image_sample_l:
3590   case Intrinsic::amdgcn_image_sample_b:
3591   case Intrinsic::amdgcn_image_sample_b_cl:
3592   case Intrinsic::amdgcn_image_sample_lz:
3593   case Intrinsic::amdgcn_image_sample_cd:
3594   case Intrinsic::amdgcn_image_sample_cd_cl:
3595 
3596   // Sample with comparison.
3597   case Intrinsic::amdgcn_image_sample_c:
3598   case Intrinsic::amdgcn_image_sample_c_cl:
3599   case Intrinsic::amdgcn_image_sample_c_d:
3600   case Intrinsic::amdgcn_image_sample_c_d_cl:
3601   case Intrinsic::amdgcn_image_sample_c_l:
3602   case Intrinsic::amdgcn_image_sample_c_b:
3603   case Intrinsic::amdgcn_image_sample_c_b_cl:
3604   case Intrinsic::amdgcn_image_sample_c_lz:
3605   case Intrinsic::amdgcn_image_sample_c_cd:
3606   case Intrinsic::amdgcn_image_sample_c_cd_cl:
3607 
3608   // Sample with offsets.
3609   case Intrinsic::amdgcn_image_sample_o:
3610   case Intrinsic::amdgcn_image_sample_cl_o:
3611   case Intrinsic::amdgcn_image_sample_d_o:
3612   case Intrinsic::amdgcn_image_sample_d_cl_o:
3613   case Intrinsic::amdgcn_image_sample_l_o:
3614   case Intrinsic::amdgcn_image_sample_b_o:
3615   case Intrinsic::amdgcn_image_sample_b_cl_o:
3616   case Intrinsic::amdgcn_image_sample_lz_o:
3617   case Intrinsic::amdgcn_image_sample_cd_o:
3618   case Intrinsic::amdgcn_image_sample_cd_cl_o:
3619 
3620   // Sample with comparison and offsets.
3621   case Intrinsic::amdgcn_image_sample_c_o:
3622   case Intrinsic::amdgcn_image_sample_c_cl_o:
3623   case Intrinsic::amdgcn_image_sample_c_d_o:
3624   case Intrinsic::amdgcn_image_sample_c_d_cl_o:
3625   case Intrinsic::amdgcn_image_sample_c_l_o:
3626   case Intrinsic::amdgcn_image_sample_c_b_o:
3627   case Intrinsic::amdgcn_image_sample_c_b_cl_o:
3628   case Intrinsic::amdgcn_image_sample_c_lz_o:
3629   case Intrinsic::amdgcn_image_sample_c_cd_o:
3630   case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
3631 
3632   // Basic gather4
3633   case Intrinsic::amdgcn_image_gather4:
3634   case Intrinsic::amdgcn_image_gather4_cl:
3635   case Intrinsic::amdgcn_image_gather4_l:
3636   case Intrinsic::amdgcn_image_gather4_b:
3637   case Intrinsic::amdgcn_image_gather4_b_cl:
3638   case Intrinsic::amdgcn_image_gather4_lz:
3639 
3640   // Gather4 with comparison
3641   case Intrinsic::amdgcn_image_gather4_c:
3642   case Intrinsic::amdgcn_image_gather4_c_cl:
3643   case Intrinsic::amdgcn_image_gather4_c_l:
3644   case Intrinsic::amdgcn_image_gather4_c_b:
3645   case Intrinsic::amdgcn_image_gather4_c_b_cl:
3646   case Intrinsic::amdgcn_image_gather4_c_lz:
3647 
3648   // Gather4 with offsets
3649   case Intrinsic::amdgcn_image_gather4_o:
3650   case Intrinsic::amdgcn_image_gather4_cl_o:
3651   case Intrinsic::amdgcn_image_gather4_l_o:
3652   case Intrinsic::amdgcn_image_gather4_b_o:
3653   case Intrinsic::amdgcn_image_gather4_b_cl_o:
3654   case Intrinsic::amdgcn_image_gather4_lz_o:
3655 
3656   // Gather4 with comparison and offsets
3657   case Intrinsic::amdgcn_image_gather4_c_o:
3658   case Intrinsic::amdgcn_image_gather4_c_cl_o:
3659   case Intrinsic::amdgcn_image_gather4_c_l_o:
3660   case Intrinsic::amdgcn_image_gather4_c_b_o:
3661   case Intrinsic::amdgcn_image_gather4_c_b_cl_o:
3662   case Intrinsic::amdgcn_image_gather4_c_lz_o: {
3663     SDValue Ops[] = {
3664       Op.getOperand(0),  // Chain
3665       Op.getOperand(2),  // vaddr
3666       Op.getOperand(3),  // rsrc
3667       Op.getOperand(4),  // sampler
3668       Op.getOperand(5),  // dmask
3669       Op.getOperand(6),  // unorm
3670       Op.getOperand(7),  // glc
3671       Op.getOperand(8),  // slc
3672       Op.getOperand(9),  // lwe
3673       Op.getOperand(10)  // da
3674     };
3675     unsigned Opc = getImageOpcode(IID);
3676     Res = DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, M->getMemoryVT(),
3677                                    M->getMemOperand());
3678     Chain = Res.getValue(1);
3679     return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3680   }
3681   default: {
3682     const AMDGPU::D16ImageDimIntrinsic *D16ImageDimIntr =
3683         AMDGPU::lookupD16ImageDimIntrinsicByIntr(IID);
3684     if (D16ImageDimIntr) {
3685       SmallVector<SDValue, 20> Ops;
3686       for (auto Value : Op.getNode()->op_values())
3687         Ops.push_back(Value);
3688       Ops[1] = DAG.getConstant(D16ImageDimIntr->D16HelperIntr, DL, MVT::i32);
3689       Res = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTList, Ops,
3690                                     M->getMemoryVT(), M->getMemOperand());
3691       Chain = Res.getValue(1);
3692       return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3693     }
3694 
3695     return SDValue();
3696   }
3697   }
3698 }
3699 
3700 void SITargetLowering::ReplaceNodeResults(SDNode *N,
3701                                           SmallVectorImpl<SDValue> &Results,
3702                                           SelectionDAG &DAG) const {
3703   switch (N->getOpcode()) {
3704   case ISD::INSERT_VECTOR_ELT: {
3705     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
3706       Results.push_back(Res);
3707     return;
3708   }
3709   case ISD::EXTRACT_VECTOR_ELT: {
3710     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
3711       Results.push_back(Res);
3712     return;
3713   }
3714   case ISD::INTRINSIC_WO_CHAIN: {
3715     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3716     switch (IID) {
3717     case Intrinsic::amdgcn_cvt_pkrtz: {
3718       SDValue Src0 = N->getOperand(1);
3719       SDValue Src1 = N->getOperand(2);
3720       SDLoc SL(N);
3721       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
3722                                 Src0, Src1);
3723       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
3724       return;
3725     }
3726     case Intrinsic::amdgcn_cvt_pknorm_i16:
3727     case Intrinsic::amdgcn_cvt_pknorm_u16:
3728     case Intrinsic::amdgcn_cvt_pk_i16:
3729     case Intrinsic::amdgcn_cvt_pk_u16: {
3730       SDValue Src0 = N->getOperand(1);
3731       SDValue Src1 = N->getOperand(2);
3732       SDLoc SL(N);
3733       unsigned Opcode;
3734 
3735       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
3736         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
3737       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
3738         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
3739       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
3740         Opcode = AMDGPUISD::CVT_PK_I16_I32;
3741       else
3742         Opcode = AMDGPUISD::CVT_PK_U16_U32;
3743 
3744       SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
3745       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
3746       return;
3747     }
3748     }
3749     break;
3750   }
3751   case ISD::INTRINSIC_W_CHAIN: {
3752     SDValue Chain;
3753     if (SDValue Res = lowerIntrinsicWChain_IllegalReturnType(SDValue(N, 0),
3754                                                              Chain, DAG)) {
3755       Results.push_back(Res);
3756       Results.push_back(Chain);
3757       return;
3758     }
3759     break;
3760   }
3761   case ISD::SELECT: {
3762     SDLoc SL(N);
3763     EVT VT = N->getValueType(0);
3764     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3765     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
3766     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
3767 
3768     EVT SelectVT = NewVT;
3769     if (NewVT.bitsLT(MVT::i32)) {
3770       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
3771       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
3772       SelectVT = MVT::i32;
3773     }
3774 
3775     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
3776                                     N->getOperand(0), LHS, RHS);
3777 
3778     if (NewVT != SelectVT)
3779       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
3780     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
3781     return;
3782   }
3783   default:
3784     break;
3785   }
3786 }
3787 
3788 /// Helper function for LowerBRCOND
3789 static SDNode *findUser(SDValue Value, unsigned Opcode) {
3790 
3791   SDNode *Parent = Value.getNode();
3792   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
3793        I != E; ++I) {
3794 
3795     if (I.getUse().get() != Value)
3796       continue;
3797 
3798     if (I->getOpcode() == Opcode)
3799       return *I;
3800   }
3801   return nullptr;
3802 }
3803 
3804 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
3805   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
3806     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
3807     case Intrinsic::amdgcn_if:
3808       return AMDGPUISD::IF;
3809     case Intrinsic::amdgcn_else:
3810       return AMDGPUISD::ELSE;
3811     case Intrinsic::amdgcn_loop:
3812       return AMDGPUISD::LOOP;
3813     case Intrinsic::amdgcn_end_cf:
3814       llvm_unreachable("should not occur");
3815     default:
3816       return 0;
3817     }
3818   }
3819 
3820   // break, if_break, else_break are all only used as inputs to loop, not
3821   // directly as branch conditions.
3822   return 0;
3823 }
3824 
3825 void SITargetLowering::createDebuggerPrologueStackObjects(
3826     MachineFunction &MF) const {
3827   // Create stack objects that are used for emitting debugger prologue.
3828   //
3829   // Debugger prologue writes work group IDs and work item IDs to scratch memory
3830   // at fixed location in the following format:
3831   //   offset 0:  work group ID x
3832   //   offset 4:  work group ID y
3833   //   offset 8:  work group ID z
3834   //   offset 16: work item ID x
3835   //   offset 20: work item ID y
3836   //   offset 24: work item ID z
3837   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3838   int ObjectIdx = 0;
3839 
3840   // For each dimension:
3841   for (unsigned i = 0; i < 3; ++i) {
3842     // Create fixed stack object for work group ID.
3843     ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true);
3844     Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx);
3845     // Create fixed stack object for work item ID.
3846     ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true);
3847     Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx);
3848   }
3849 }
3850 
3851 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
3852   const Triple &TT = getTargetMachine().getTargetTriple();
3853   return (GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
3854           GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
3855          AMDGPU::shouldEmitConstantsToTextSection(TT);
3856 }
3857 
3858 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
3859   return (GV->getType()->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS ||
3860           GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
3861           GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
3862          !shouldEmitFixup(GV) &&
3863          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3864 }
3865 
3866 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
3867   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
3868 }
3869 
3870 /// This transforms the control flow intrinsics to get the branch destination as
3871 /// last parameter, also switches branch target with BR if the need arise
3872 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
3873                                       SelectionDAG &DAG) const {
3874   SDLoc DL(BRCOND);
3875 
3876   SDNode *Intr = BRCOND.getOperand(1).getNode();
3877   SDValue Target = BRCOND.getOperand(2);
3878   SDNode *BR = nullptr;
3879   SDNode *SetCC = nullptr;
3880 
3881   if (Intr->getOpcode() == ISD::SETCC) {
3882     // As long as we negate the condition everything is fine
3883     SetCC = Intr;
3884     Intr = SetCC->getOperand(0).getNode();
3885 
3886   } else {
3887     // Get the target from BR if we don't negate the condition
3888     BR = findUser(BRCOND, ISD::BR);
3889     Target = BR->getOperand(1);
3890   }
3891 
3892   // FIXME: This changes the types of the intrinsics instead of introducing new
3893   // nodes with the correct types.
3894   // e.g. llvm.amdgcn.loop
3895 
3896   // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
3897   // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
3898 
3899   unsigned CFNode = isCFIntrinsic(Intr);
3900   if (CFNode == 0) {
3901     // This is a uniform branch so we don't need to legalize.
3902     return BRCOND;
3903   }
3904 
3905   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
3906                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
3907 
3908   assert(!SetCC ||
3909         (SetCC->getConstantOperandVal(1) == 1 &&
3910          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
3911                                                              ISD::SETNE));
3912 
3913   // operands of the new intrinsic call
3914   SmallVector<SDValue, 4> Ops;
3915   if (HaveChain)
3916     Ops.push_back(BRCOND.getOperand(0));
3917 
3918   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
3919   Ops.push_back(Target);
3920 
3921   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
3922 
3923   // build the new intrinsic call
3924   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
3925 
3926   if (!HaveChain) {
3927     SDValue Ops[] =  {
3928       SDValue(Result, 0),
3929       BRCOND.getOperand(0)
3930     };
3931 
3932     Result = DAG.getMergeValues(Ops, DL).getNode();
3933   }
3934 
3935   if (BR) {
3936     // Give the branch instruction our target
3937     SDValue Ops[] = {
3938       BR->getOperand(0),
3939       BRCOND.getOperand(2)
3940     };
3941     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
3942     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
3943     BR = NewBR.getNode();
3944   }
3945 
3946   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
3947 
3948   // Copy the intrinsic results to registers
3949   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
3950     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
3951     if (!CopyToReg)
3952       continue;
3953 
3954     Chain = DAG.getCopyToReg(
3955       Chain, DL,
3956       CopyToReg->getOperand(1),
3957       SDValue(Result, i - 1),
3958       SDValue());
3959 
3960     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
3961   }
3962 
3963   // Remove the old intrinsic from the chain
3964   DAG.ReplaceAllUsesOfValueWith(
3965     SDValue(Intr, Intr->getNumValues() - 1),
3966     Intr->getOperand(0));
3967 
3968   return Chain;
3969 }
3970 
3971 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
3972                                             SDValue Op,
3973                                             const SDLoc &DL,
3974                                             EVT VT) const {
3975   return Op.getValueType().bitsLE(VT) ?
3976       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
3977       DAG.getNode(ISD::FTRUNC, DL, VT, Op);
3978 }
3979 
3980 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
3981   assert(Op.getValueType() == MVT::f16 &&
3982          "Do not know how to custom lower FP_ROUND for non-f16 type");
3983 
3984   SDValue Src = Op.getOperand(0);
3985   EVT SrcVT = Src.getValueType();
3986   if (SrcVT != MVT::f64)
3987     return Op;
3988 
3989   SDLoc DL(Op);
3990 
3991   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
3992   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
3993   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
3994 }
3995 
3996 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
3997   SDLoc SL(Op);
3998   MachineFunction &MF = DAG.getMachineFunction();
3999   SDValue Chain = Op.getOperand(0);
4000 
4001   unsigned TrapID = Op.getOpcode() == ISD::DEBUGTRAP ?
4002     SISubtarget::TrapIDLLVMDebugTrap : SISubtarget::TrapIDLLVMTrap;
4003 
4004   if (Subtarget->getTrapHandlerAbi() == SISubtarget::TrapHandlerAbiHsa &&
4005       Subtarget->isTrapHandlerEnabled()) {
4006     SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4007     unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4008     assert(UserSGPR != AMDGPU::NoRegister);
4009 
4010     SDValue QueuePtr = CreateLiveInRegister(
4011       DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4012 
4013     SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
4014 
4015     SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
4016                                      QueuePtr, SDValue());
4017 
4018     SDValue Ops[] = {
4019       ToReg,
4020       DAG.getTargetConstant(TrapID, SL, MVT::i16),
4021       SGPR01,
4022       ToReg.getValue(1)
4023     };
4024 
4025     return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4026   }
4027 
4028   switch (TrapID) {
4029   case SISubtarget::TrapIDLLVMTrap:
4030     return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
4031   case SISubtarget::TrapIDLLVMDebugTrap: {
4032     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
4033                                      "debugtrap handler not supported",
4034                                      Op.getDebugLoc(),
4035                                      DS_Warning);
4036     LLVMContext &Ctx = MF.getFunction().getContext();
4037     Ctx.diagnose(NoTrap);
4038     return Chain;
4039   }
4040   default:
4041     llvm_unreachable("unsupported trap handler type!");
4042   }
4043 
4044   return Chain;
4045 }
4046 
4047 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
4048                                              SelectionDAG &DAG) const {
4049   // FIXME: Use inline constants (src_{shared, private}_base) instead.
4050   if (Subtarget->hasApertureRegs()) {
4051     unsigned Offset = AS == AMDGPUASI.LOCAL_ADDRESS ?
4052         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
4053         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
4054     unsigned WidthM1 = AS == AMDGPUASI.LOCAL_ADDRESS ?
4055         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
4056         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
4057     unsigned Encoding =
4058         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
4059         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
4060         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
4061 
4062     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
4063     SDValue ApertureReg = SDValue(
4064         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
4065     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
4066     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
4067   }
4068 
4069   MachineFunction &MF = DAG.getMachineFunction();
4070   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4071   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4072   assert(UserSGPR != AMDGPU::NoRegister);
4073 
4074   SDValue QueuePtr = CreateLiveInRegister(
4075     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4076 
4077   // Offset into amd_queue_t for group_segment_aperture_base_hi /
4078   // private_segment_aperture_base_hi.
4079   uint32_t StructOffset = (AS == AMDGPUASI.LOCAL_ADDRESS) ? 0x40 : 0x44;
4080 
4081   SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
4082 
4083   // TODO: Use custom target PseudoSourceValue.
4084   // TODO: We should use the value from the IR intrinsic call, but it might not
4085   // be available and how do we get it?
4086   Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
4087                                               AMDGPUASI.CONSTANT_ADDRESS));
4088 
4089   MachinePointerInfo PtrInfo(V, StructOffset);
4090   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
4091                      MinAlign(64, StructOffset),
4092                      MachineMemOperand::MODereferenceable |
4093                          MachineMemOperand::MOInvariant);
4094 }
4095 
4096 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
4097                                              SelectionDAG &DAG) const {
4098   SDLoc SL(Op);
4099   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
4100 
4101   SDValue Src = ASC->getOperand(0);
4102   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
4103 
4104   const AMDGPUTargetMachine &TM =
4105     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
4106 
4107   // flat -> local/private
4108   if (ASC->getSrcAddressSpace() == AMDGPUASI.FLAT_ADDRESS) {
4109     unsigned DestAS = ASC->getDestAddressSpace();
4110 
4111     if (DestAS == AMDGPUASI.LOCAL_ADDRESS ||
4112         DestAS == AMDGPUASI.PRIVATE_ADDRESS) {
4113       unsigned NullVal = TM.getNullPointerValue(DestAS);
4114       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4115       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
4116       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
4117 
4118       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
4119                          NonNull, Ptr, SegmentNullPtr);
4120     }
4121   }
4122 
4123   // local/private -> flat
4124   if (ASC->getDestAddressSpace() == AMDGPUASI.FLAT_ADDRESS) {
4125     unsigned SrcAS = ASC->getSrcAddressSpace();
4126 
4127     if (SrcAS == AMDGPUASI.LOCAL_ADDRESS ||
4128         SrcAS == AMDGPUASI.PRIVATE_ADDRESS) {
4129       unsigned NullVal = TM.getNullPointerValue(SrcAS);
4130       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4131 
4132       SDValue NonNull
4133         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
4134 
4135       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
4136       SDValue CvtPtr
4137         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
4138 
4139       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
4140                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
4141                          FlatNullPtr);
4142     }
4143   }
4144 
4145   // global <-> flat are no-ops and never emitted.
4146 
4147   const MachineFunction &MF = DAG.getMachineFunction();
4148   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
4149     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
4150   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
4151 
4152   return DAG.getUNDEF(ASC->getValueType(0));
4153 }
4154 
4155 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4156                                                  SelectionDAG &DAG) const {
4157   SDValue Idx = Op.getOperand(2);
4158   if (isa<ConstantSDNode>(Idx))
4159     return SDValue();
4160 
4161   // Avoid stack access for dynamic indexing.
4162   SDLoc SL(Op);
4163   SDValue Vec = Op.getOperand(0);
4164   SDValue Val = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Op.getOperand(1));
4165 
4166   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
4167   SDValue ExtVal = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Val);
4168 
4169   // Convert vector index to bit-index.
4170   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx,
4171                                   DAG.getConstant(4, SL, MVT::i32));
4172 
4173   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
4174 
4175   SDValue BFM = DAG.getNode(ISD::SHL, SL, MVT::i32,
4176                             DAG.getConstant(0xffff, SL, MVT::i32),
4177                             ScaledIdx);
4178 
4179   SDValue LHS = DAG.getNode(ISD::AND, SL, MVT::i32, BFM, ExtVal);
4180   SDValue RHS = DAG.getNode(ISD::AND, SL, MVT::i32,
4181                             DAG.getNOT(SL, BFM, MVT::i32), BCVec);
4182 
4183   SDValue BFI = DAG.getNode(ISD::OR, SL, MVT::i32, LHS, RHS);
4184   return DAG.getNode(ISD::BITCAST, SL, Op.getValueType(), BFI);
4185 }
4186 
4187 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4188                                                   SelectionDAG &DAG) const {
4189   SDLoc SL(Op);
4190 
4191   EVT ResultVT = Op.getValueType();
4192   SDValue Vec = Op.getOperand(0);
4193   SDValue Idx = Op.getOperand(1);
4194 
4195   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
4196 
4197   // Make sure we do any optimizations that will make it easier to fold
4198   // source modifiers before obscuring it with bit operations.
4199 
4200   // XXX - Why doesn't this get called when vector_shuffle is expanded?
4201   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
4202     return Combined;
4203 
4204   SDValue Four = DAG.getConstant(4, SL, MVT::i32);
4205 
4206   // Convert vector index to bit-index (* 16)
4207   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, Four);
4208 
4209   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
4210   SDValue Elt = DAG.getNode(ISD::SRL, SL, MVT::i32, BC, ScaledIdx);
4211 
4212   SDValue Result = Elt;
4213   if (ResultVT.bitsLT(MVT::i32))
4214     Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result);
4215 
4216   return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4217 }
4218 
4219 bool
4220 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4221   // We can fold offsets for anything that doesn't require a GOT relocation.
4222   return (GA->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS ||
4223           GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
4224           GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
4225          !shouldEmitGOTReloc(GA->getGlobal());
4226 }
4227 
4228 static SDValue
4229 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
4230                         const SDLoc &DL, unsigned Offset, EVT PtrVT,
4231                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
4232   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
4233   // lowered to the following code sequence:
4234   //
4235   // For constant address space:
4236   //   s_getpc_b64 s[0:1]
4237   //   s_add_u32 s0, s0, $symbol
4238   //   s_addc_u32 s1, s1, 0
4239   //
4240   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
4241   //   a fixup or relocation is emitted to replace $symbol with a literal
4242   //   constant, which is a pc-relative offset from the encoding of the $symbol
4243   //   operand to the global variable.
4244   //
4245   // For global address space:
4246   //   s_getpc_b64 s[0:1]
4247   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
4248   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
4249   //
4250   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
4251   //   fixups or relocations are emitted to replace $symbol@*@lo and
4252   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
4253   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
4254   //   operand to the global variable.
4255   //
4256   // What we want here is an offset from the value returned by s_getpc
4257   // (which is the address of the s_add_u32 instruction) to the global
4258   // variable, but since the encoding of $symbol starts 4 bytes after the start
4259   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
4260   // small. This requires us to add 4 to the global variable offset in order to
4261   // compute the correct address.
4262   SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
4263                                              GAFlags);
4264   SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
4265                                              GAFlags == SIInstrInfo::MO_NONE ?
4266                                              GAFlags : GAFlags + 1);
4267   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
4268 }
4269 
4270 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
4271                                              SDValue Op,
4272                                              SelectionDAG &DAG) const {
4273   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
4274   const GlobalValue *GV = GSD->getGlobal();
4275 
4276   if (GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS &&
4277       GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS_32BIT &&
4278       GSD->getAddressSpace() != AMDGPUASI.GLOBAL_ADDRESS &&
4279       // FIXME: It isn't correct to rely on the type of the pointer. This should
4280       // be removed when address space 0 is 64-bit.
4281       !GV->getType()->getElementType()->isFunctionTy())
4282     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
4283 
4284   SDLoc DL(GSD);
4285   EVT PtrVT = Op.getValueType();
4286 
4287   if (shouldEmitFixup(GV))
4288     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
4289   else if (shouldEmitPCReloc(GV))
4290     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
4291                                    SIInstrInfo::MO_REL32);
4292 
4293   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
4294                                             SIInstrInfo::MO_GOTPCREL32);
4295 
4296   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
4297   PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS);
4298   const DataLayout &DataLayout = DAG.getDataLayout();
4299   unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
4300   // FIXME: Use a PseudoSourceValue once those can be assigned an address space.
4301   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
4302 
4303   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
4304                      MachineMemOperand::MODereferenceable |
4305                          MachineMemOperand::MOInvariant);
4306 }
4307 
4308 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
4309                                    const SDLoc &DL, SDValue V) const {
4310   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
4311   // the destination register.
4312   //
4313   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
4314   // so we will end up with redundant moves to m0.
4315   //
4316   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
4317 
4318   // A Null SDValue creates a glue result.
4319   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
4320                                   V, Chain);
4321   return SDValue(M0, 0);
4322 }
4323 
4324 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
4325                                                  SDValue Op,
4326                                                  MVT VT,
4327                                                  unsigned Offset) const {
4328   SDLoc SL(Op);
4329   SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
4330                                            DAG.getEntryNode(), Offset, false);
4331   // The local size values will have the hi 16-bits as zero.
4332   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
4333                      DAG.getValueType(VT));
4334 }
4335 
4336 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
4337                                         EVT VT) {
4338   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
4339                                       "non-hsa intrinsic with hsa target",
4340                                       DL.getDebugLoc());
4341   DAG.getContext()->diagnose(BadIntrin);
4342   return DAG.getUNDEF(VT);
4343 }
4344 
4345 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
4346                                          EVT VT) {
4347   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
4348                                       "intrinsic not supported on subtarget",
4349                                       DL.getDebugLoc());
4350   DAG.getContext()->diagnose(BadIntrin);
4351   return DAG.getUNDEF(VT);
4352 }
4353 
4354 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4355                                                   SelectionDAG &DAG) const {
4356   MachineFunction &MF = DAG.getMachineFunction();
4357   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
4358 
4359   EVT VT = Op.getValueType();
4360   SDLoc DL(Op);
4361   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4362 
4363   // TODO: Should this propagate fast-math-flags?
4364 
4365   switch (IntrinsicID) {
4366   case Intrinsic::amdgcn_implicit_buffer_ptr: {
4367     if (getSubtarget()->isAmdCodeObjectV2(MF))
4368       return emitNonHSAIntrinsicError(DAG, DL, VT);
4369     return getPreloadedValue(DAG, *MFI, VT,
4370                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
4371   }
4372   case Intrinsic::amdgcn_dispatch_ptr:
4373   case Intrinsic::amdgcn_queue_ptr: {
4374     if (!Subtarget->isAmdCodeObjectV2(MF)) {
4375       DiagnosticInfoUnsupported BadIntrin(
4376           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
4377           DL.getDebugLoc());
4378       DAG.getContext()->diagnose(BadIntrin);
4379       return DAG.getUNDEF(VT);
4380     }
4381 
4382     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
4383       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
4384     return getPreloadedValue(DAG, *MFI, VT, RegID);
4385   }
4386   case Intrinsic::amdgcn_implicitarg_ptr: {
4387     if (MFI->isEntryFunction())
4388       return getImplicitArgPtr(DAG, DL);
4389     return getPreloadedValue(DAG, *MFI, VT,
4390                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
4391   }
4392   case Intrinsic::amdgcn_kernarg_segment_ptr: {
4393     return getPreloadedValue(DAG, *MFI, VT,
4394                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
4395   }
4396   case Intrinsic::amdgcn_dispatch_id: {
4397     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
4398   }
4399   case Intrinsic::amdgcn_rcp:
4400     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
4401   case Intrinsic::amdgcn_rsq:
4402     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
4403   case Intrinsic::amdgcn_rsq_legacy:
4404     if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
4405       return emitRemovedIntrinsicError(DAG, DL, VT);
4406 
4407     return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
4408   case Intrinsic::amdgcn_rcp_legacy:
4409     if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
4410       return emitRemovedIntrinsicError(DAG, DL, VT);
4411     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
4412   case Intrinsic::amdgcn_rsq_clamp: {
4413     if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
4414       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
4415 
4416     Type *Type = VT.getTypeForEVT(*DAG.getContext());
4417     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
4418     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
4419 
4420     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
4421     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
4422                               DAG.getConstantFP(Max, DL, VT));
4423     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
4424                        DAG.getConstantFP(Min, DL, VT));
4425   }
4426   case Intrinsic::r600_read_ngroups_x:
4427     if (Subtarget->isAmdHsaOS())
4428       return emitNonHSAIntrinsicError(DAG, DL, VT);
4429 
4430     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4431                                     SI::KernelInputOffsets::NGROUPS_X, false);
4432   case Intrinsic::r600_read_ngroups_y:
4433     if (Subtarget->isAmdHsaOS())
4434       return emitNonHSAIntrinsicError(DAG, DL, VT);
4435 
4436     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4437                                     SI::KernelInputOffsets::NGROUPS_Y, false);
4438   case Intrinsic::r600_read_ngroups_z:
4439     if (Subtarget->isAmdHsaOS())
4440       return emitNonHSAIntrinsicError(DAG, DL, VT);
4441 
4442     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4443                                     SI::KernelInputOffsets::NGROUPS_Z, false);
4444   case Intrinsic::r600_read_global_size_x:
4445     if (Subtarget->isAmdHsaOS())
4446       return emitNonHSAIntrinsicError(DAG, DL, VT);
4447 
4448     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4449                                     SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
4450   case Intrinsic::r600_read_global_size_y:
4451     if (Subtarget->isAmdHsaOS())
4452       return emitNonHSAIntrinsicError(DAG, DL, VT);
4453 
4454     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4455                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
4456   case Intrinsic::r600_read_global_size_z:
4457     if (Subtarget->isAmdHsaOS())
4458       return emitNonHSAIntrinsicError(DAG, DL, VT);
4459 
4460     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4461                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
4462   case Intrinsic::r600_read_local_size_x:
4463     if (Subtarget->isAmdHsaOS())
4464       return emitNonHSAIntrinsicError(DAG, DL, VT);
4465 
4466     return lowerImplicitZextParam(DAG, Op, MVT::i16,
4467                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
4468   case Intrinsic::r600_read_local_size_y:
4469     if (Subtarget->isAmdHsaOS())
4470       return emitNonHSAIntrinsicError(DAG, DL, VT);
4471 
4472     return lowerImplicitZextParam(DAG, Op, MVT::i16,
4473                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
4474   case Intrinsic::r600_read_local_size_z:
4475     if (Subtarget->isAmdHsaOS())
4476       return emitNonHSAIntrinsicError(DAG, DL, VT);
4477 
4478     return lowerImplicitZextParam(DAG, Op, MVT::i16,
4479                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
4480   case Intrinsic::amdgcn_workgroup_id_x:
4481   case Intrinsic::r600_read_tgid_x:
4482     return getPreloadedValue(DAG, *MFI, VT,
4483                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
4484   case Intrinsic::amdgcn_workgroup_id_y:
4485   case Intrinsic::r600_read_tgid_y:
4486     return getPreloadedValue(DAG, *MFI, VT,
4487                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
4488   case Intrinsic::amdgcn_workgroup_id_z:
4489   case Intrinsic::r600_read_tgid_z:
4490     return getPreloadedValue(DAG, *MFI, VT,
4491                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
4492   case Intrinsic::amdgcn_workitem_id_x: {
4493   case Intrinsic::r600_read_tidig_x:
4494     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
4495                           SDLoc(DAG.getEntryNode()),
4496                           MFI->getArgInfo().WorkItemIDX);
4497   }
4498   case Intrinsic::amdgcn_workitem_id_y:
4499   case Intrinsic::r600_read_tidig_y:
4500     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
4501                           SDLoc(DAG.getEntryNode()),
4502                           MFI->getArgInfo().WorkItemIDY);
4503   case Intrinsic::amdgcn_workitem_id_z:
4504   case Intrinsic::r600_read_tidig_z:
4505     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
4506                           SDLoc(DAG.getEntryNode()),
4507                           MFI->getArgInfo().WorkItemIDZ);
4508   case AMDGPUIntrinsic::SI_load_const: {
4509     SDValue Ops[] = {
4510       Op.getOperand(1),
4511       Op.getOperand(2)
4512     };
4513 
4514     MachineMemOperand *MMO = MF.getMachineMemOperand(
4515         MachinePointerInfo(),
4516         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
4517             MachineMemOperand::MOInvariant,
4518         VT.getStoreSize(), 4);
4519     return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
4520                                    Op->getVTList(), Ops, VT, MMO);
4521   }
4522   case Intrinsic::amdgcn_fdiv_fast:
4523     return lowerFDIV_FAST(Op, DAG);
4524   case Intrinsic::amdgcn_interp_mov: {
4525     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
4526     SDValue Glue = M0.getValue(1);
4527     return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
4528                        Op.getOperand(2), Op.getOperand(3), Glue);
4529   }
4530   case Intrinsic::amdgcn_interp_p1: {
4531     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
4532     SDValue Glue = M0.getValue(1);
4533     return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
4534                        Op.getOperand(2), Op.getOperand(3), Glue);
4535   }
4536   case Intrinsic::amdgcn_interp_p2: {
4537     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
4538     SDValue Glue = SDValue(M0.getNode(), 1);
4539     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
4540                        Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
4541                        Glue);
4542   }
4543   case Intrinsic::amdgcn_sin:
4544     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
4545 
4546   case Intrinsic::amdgcn_cos:
4547     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
4548 
4549   case Intrinsic::amdgcn_log_clamp: {
4550     if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
4551       return SDValue();
4552 
4553     DiagnosticInfoUnsupported BadIntrin(
4554       MF.getFunction(), "intrinsic not supported on subtarget",
4555       DL.getDebugLoc());
4556       DAG.getContext()->diagnose(BadIntrin);
4557       return DAG.getUNDEF(VT);
4558   }
4559   case Intrinsic::amdgcn_ldexp:
4560     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
4561                        Op.getOperand(1), Op.getOperand(2));
4562 
4563   case Intrinsic::amdgcn_fract:
4564     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
4565 
4566   case Intrinsic::amdgcn_class:
4567     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
4568                        Op.getOperand(1), Op.getOperand(2));
4569   case Intrinsic::amdgcn_div_fmas:
4570     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
4571                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
4572                        Op.getOperand(4));
4573 
4574   case Intrinsic::amdgcn_div_fixup:
4575     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
4576                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4577 
4578   case Intrinsic::amdgcn_trig_preop:
4579     return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
4580                        Op.getOperand(1), Op.getOperand(2));
4581   case Intrinsic::amdgcn_div_scale: {
4582     // 3rd parameter required to be a constant.
4583     const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4584     if (!Param)
4585       return DAG.getMergeValues({ DAG.getUNDEF(VT), DAG.getUNDEF(MVT::i1) }, DL);
4586 
4587     // Translate to the operands expected by the machine instruction. The
4588     // first parameter must be the same as the first instruction.
4589     SDValue Numerator = Op.getOperand(1);
4590     SDValue Denominator = Op.getOperand(2);
4591 
4592     // Note this order is opposite of the machine instruction's operations,
4593     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
4594     // intrinsic has the numerator as the first operand to match a normal
4595     // division operation.
4596 
4597     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
4598 
4599     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
4600                        Denominator, Numerator);
4601   }
4602   case Intrinsic::amdgcn_icmp: {
4603     const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4604     if (!CD)
4605       return DAG.getUNDEF(VT);
4606 
4607     int CondCode = CD->getSExtValue();
4608     if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
4609         CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
4610       return DAG.getUNDEF(VT);
4611 
4612     ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4613     ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4614     return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
4615                        Op.getOperand(2), DAG.getCondCode(CCOpcode));
4616   }
4617   case Intrinsic::amdgcn_fcmp: {
4618     const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4619     if (!CD)
4620       return DAG.getUNDEF(VT);
4621 
4622     int CondCode = CD->getSExtValue();
4623     if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
4624         CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE)
4625       return DAG.getUNDEF(VT);
4626 
4627     FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4628     ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4629     return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
4630                        Op.getOperand(2), DAG.getCondCode(CCOpcode));
4631   }
4632   case Intrinsic::amdgcn_fmed3:
4633     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
4634                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4635   case Intrinsic::amdgcn_fmul_legacy:
4636     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
4637                        Op.getOperand(1), Op.getOperand(2));
4638   case Intrinsic::amdgcn_sffbh:
4639     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
4640   case Intrinsic::amdgcn_sbfe:
4641     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
4642                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4643   case Intrinsic::amdgcn_ubfe:
4644     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
4645                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4646   case Intrinsic::amdgcn_cvt_pkrtz:
4647   case Intrinsic::amdgcn_cvt_pknorm_i16:
4648   case Intrinsic::amdgcn_cvt_pknorm_u16:
4649   case Intrinsic::amdgcn_cvt_pk_i16:
4650   case Intrinsic::amdgcn_cvt_pk_u16: {
4651     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
4652     EVT VT = Op.getValueType();
4653     unsigned Opcode;
4654 
4655     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
4656       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
4657     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
4658       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4659     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
4660       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4661     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
4662       Opcode = AMDGPUISD::CVT_PK_I16_I32;
4663     else
4664       Opcode = AMDGPUISD::CVT_PK_U16_U32;
4665 
4666     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
4667                                Op.getOperand(1), Op.getOperand(2));
4668     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
4669   }
4670   case Intrinsic::amdgcn_wqm: {
4671     SDValue Src = Op.getOperand(1);
4672     return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src),
4673                    0);
4674   }
4675   case Intrinsic::amdgcn_wwm: {
4676     SDValue Src = Op.getOperand(1);
4677     return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src),
4678                    0);
4679   }
4680   case Intrinsic::amdgcn_image_getlod:
4681   case Intrinsic::amdgcn_image_getresinfo: {
4682     unsigned Idx = (IntrinsicID == Intrinsic::amdgcn_image_getresinfo) ? 3 : 4;
4683 
4684     // Replace dmask with everything disabled with undef.
4685     const ConstantSDNode *DMask = dyn_cast<ConstantSDNode>(Op.getOperand(Idx));
4686     if (!DMask || DMask->isNullValue())
4687       return DAG.getUNDEF(Op.getValueType());
4688     return SDValue();
4689   }
4690   default:
4691     return Op;
4692   }
4693 }
4694 
4695 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4696                                                  SelectionDAG &DAG) const {
4697   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4698   SDLoc DL(Op);
4699 
4700   switch (IntrID) {
4701   case Intrinsic::amdgcn_atomic_inc:
4702   case Intrinsic::amdgcn_atomic_dec:
4703   case Intrinsic::amdgcn_ds_fadd:
4704   case Intrinsic::amdgcn_ds_fmin:
4705   case Intrinsic::amdgcn_ds_fmax: {
4706     MemSDNode *M = cast<MemSDNode>(Op);
4707     unsigned Opc;
4708     switch (IntrID) {
4709     case Intrinsic::amdgcn_atomic_inc:
4710       Opc = AMDGPUISD::ATOMIC_INC;
4711       break;
4712     case Intrinsic::amdgcn_atomic_dec:
4713       Opc = AMDGPUISD::ATOMIC_DEC;
4714       break;
4715     case Intrinsic::amdgcn_ds_fadd:
4716       Opc = AMDGPUISD::ATOMIC_LOAD_FADD;
4717       break;
4718     case Intrinsic::amdgcn_ds_fmin:
4719       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
4720       break;
4721     case Intrinsic::amdgcn_ds_fmax:
4722       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
4723       break;
4724     default:
4725       llvm_unreachable("Unknown intrinsic!");
4726     }
4727     SDValue Ops[] = {
4728       M->getOperand(0), // Chain
4729       M->getOperand(2), // Ptr
4730       M->getOperand(3)  // Value
4731     };
4732 
4733     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
4734                                    M->getMemoryVT(), M->getMemOperand());
4735   }
4736   case Intrinsic::amdgcn_buffer_load:
4737   case Intrinsic::amdgcn_buffer_load_format: {
4738     SDValue Ops[] = {
4739       Op.getOperand(0), // Chain
4740       Op.getOperand(2), // rsrc
4741       Op.getOperand(3), // vindex
4742       Op.getOperand(4), // offset
4743       Op.getOperand(5), // glc
4744       Op.getOperand(6)  // slc
4745     };
4746 
4747     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
4748         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
4749     EVT VT = Op.getValueType();
4750     EVT IntVT = VT.changeTypeToInteger();
4751 
4752     auto *M = cast<MemSDNode>(Op);
4753     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
4754                                    M->getMemOperand());
4755   }
4756   case Intrinsic::amdgcn_tbuffer_load: {
4757     MemSDNode *M = cast<MemSDNode>(Op);
4758     SDValue Ops[] = {
4759       Op.getOperand(0),  // Chain
4760       Op.getOperand(2),  // rsrc
4761       Op.getOperand(3),  // vindex
4762       Op.getOperand(4),  // voffset
4763       Op.getOperand(5),  // soffset
4764       Op.getOperand(6),  // offset
4765       Op.getOperand(7),  // dfmt
4766       Op.getOperand(8),  // nfmt
4767       Op.getOperand(9),  // glc
4768       Op.getOperand(10)   // slc
4769     };
4770 
4771     EVT VT = Op.getValueType();
4772 
4773     return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
4774                                    Op->getVTList(), Ops, VT, M->getMemOperand());
4775   }
4776   case Intrinsic::amdgcn_buffer_atomic_swap:
4777   case Intrinsic::amdgcn_buffer_atomic_add:
4778   case Intrinsic::amdgcn_buffer_atomic_sub:
4779   case Intrinsic::amdgcn_buffer_atomic_smin:
4780   case Intrinsic::amdgcn_buffer_atomic_umin:
4781   case Intrinsic::amdgcn_buffer_atomic_smax:
4782   case Intrinsic::amdgcn_buffer_atomic_umax:
4783   case Intrinsic::amdgcn_buffer_atomic_and:
4784   case Intrinsic::amdgcn_buffer_atomic_or:
4785   case Intrinsic::amdgcn_buffer_atomic_xor: {
4786     SDValue Ops[] = {
4787       Op.getOperand(0), // Chain
4788       Op.getOperand(2), // vdata
4789       Op.getOperand(3), // rsrc
4790       Op.getOperand(4), // vindex
4791       Op.getOperand(5), // offset
4792       Op.getOperand(6)  // slc
4793     };
4794     EVT VT = Op.getValueType();
4795 
4796     auto *M = cast<MemSDNode>(Op);
4797     unsigned Opcode = 0;
4798 
4799     switch (IntrID) {
4800     case Intrinsic::amdgcn_buffer_atomic_swap:
4801       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
4802       break;
4803     case Intrinsic::amdgcn_buffer_atomic_add:
4804       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
4805       break;
4806     case Intrinsic::amdgcn_buffer_atomic_sub:
4807       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
4808       break;
4809     case Intrinsic::amdgcn_buffer_atomic_smin:
4810       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
4811       break;
4812     case Intrinsic::amdgcn_buffer_atomic_umin:
4813       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
4814       break;
4815     case Intrinsic::amdgcn_buffer_atomic_smax:
4816       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
4817       break;
4818     case Intrinsic::amdgcn_buffer_atomic_umax:
4819       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
4820       break;
4821     case Intrinsic::amdgcn_buffer_atomic_and:
4822       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
4823       break;
4824     case Intrinsic::amdgcn_buffer_atomic_or:
4825       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
4826       break;
4827     case Intrinsic::amdgcn_buffer_atomic_xor:
4828       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
4829       break;
4830     default:
4831       llvm_unreachable("unhandled atomic opcode");
4832     }
4833 
4834     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
4835                                    M->getMemOperand());
4836   }
4837 
4838   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
4839     SDValue Ops[] = {
4840       Op.getOperand(0), // Chain
4841       Op.getOperand(2), // src
4842       Op.getOperand(3), // cmp
4843       Op.getOperand(4), // rsrc
4844       Op.getOperand(5), // vindex
4845       Op.getOperand(6), // offset
4846       Op.getOperand(7)  // slc
4847     };
4848     EVT VT = Op.getValueType();
4849     auto *M = cast<MemSDNode>(Op);
4850 
4851     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
4852                                    Op->getVTList(), Ops, VT, M->getMemOperand());
4853   }
4854 
4855   // Basic sample.
4856   case Intrinsic::amdgcn_image_sample:
4857   case Intrinsic::amdgcn_image_sample_cl:
4858   case Intrinsic::amdgcn_image_sample_d:
4859   case Intrinsic::amdgcn_image_sample_d_cl:
4860   case Intrinsic::amdgcn_image_sample_l:
4861   case Intrinsic::amdgcn_image_sample_b:
4862   case Intrinsic::amdgcn_image_sample_b_cl:
4863   case Intrinsic::amdgcn_image_sample_lz:
4864   case Intrinsic::amdgcn_image_sample_cd:
4865   case Intrinsic::amdgcn_image_sample_cd_cl:
4866 
4867   // Sample with comparison.
4868   case Intrinsic::amdgcn_image_sample_c:
4869   case Intrinsic::amdgcn_image_sample_c_cl:
4870   case Intrinsic::amdgcn_image_sample_c_d:
4871   case Intrinsic::amdgcn_image_sample_c_d_cl:
4872   case Intrinsic::amdgcn_image_sample_c_l:
4873   case Intrinsic::amdgcn_image_sample_c_b:
4874   case Intrinsic::amdgcn_image_sample_c_b_cl:
4875   case Intrinsic::amdgcn_image_sample_c_lz:
4876   case Intrinsic::amdgcn_image_sample_c_cd:
4877   case Intrinsic::amdgcn_image_sample_c_cd_cl:
4878 
4879   // Sample with offsets.
4880   case Intrinsic::amdgcn_image_sample_o:
4881   case Intrinsic::amdgcn_image_sample_cl_o:
4882   case Intrinsic::amdgcn_image_sample_d_o:
4883   case Intrinsic::amdgcn_image_sample_d_cl_o:
4884   case Intrinsic::amdgcn_image_sample_l_o:
4885   case Intrinsic::amdgcn_image_sample_b_o:
4886   case Intrinsic::amdgcn_image_sample_b_cl_o:
4887   case Intrinsic::amdgcn_image_sample_lz_o:
4888   case Intrinsic::amdgcn_image_sample_cd_o:
4889   case Intrinsic::amdgcn_image_sample_cd_cl_o:
4890 
4891   // Sample with comparison and offsets.
4892   case Intrinsic::amdgcn_image_sample_c_o:
4893   case Intrinsic::amdgcn_image_sample_c_cl_o:
4894   case Intrinsic::amdgcn_image_sample_c_d_o:
4895   case Intrinsic::amdgcn_image_sample_c_d_cl_o:
4896   case Intrinsic::amdgcn_image_sample_c_l_o:
4897   case Intrinsic::amdgcn_image_sample_c_b_o:
4898   case Intrinsic::amdgcn_image_sample_c_b_cl_o:
4899   case Intrinsic::amdgcn_image_sample_c_lz_o:
4900   case Intrinsic::amdgcn_image_sample_c_cd_o:
4901   case Intrinsic::amdgcn_image_sample_c_cd_cl_o: {
4902     // Replace dmask with everything disabled with undef.
4903     const ConstantSDNode *DMask = dyn_cast<ConstantSDNode>(Op.getOperand(5));
4904     if (!DMask || DMask->isNullValue()) {
4905       SDValue Undef = DAG.getUNDEF(Op.getValueType());
4906       return DAG.getMergeValues({ Undef, Op.getOperand(0) }, SDLoc(Op));
4907     }
4908 
4909     return SDValue();
4910   }
4911   default:
4912     return SDValue();
4913   }
4914 }
4915 
4916 SDValue SITargetLowering::handleD16VData(SDValue VData,
4917                                          SelectionDAG &DAG) const {
4918   EVT StoreVT = VData.getValueType();
4919   SDLoc DL(VData);
4920 
4921   if (StoreVT.isVector()) {
4922     assert ((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
4923     if (!Subtarget->hasUnpackedD16VMem()) {
4924       if (!isTypeLegal(StoreVT)) {
4925         // If Target supports packed vmem, we just need to workaround
4926         // the illegal type by casting to an equivalent one.
4927         EVT EquivStoreVT = getEquivalentMemType(*DAG.getContext(), StoreVT);
4928         return DAG.getNode(ISD::BITCAST, DL, EquivStoreVT, VData);
4929       }
4930     } else { // We need to unpack the packed data to store.
4931       EVT IntStoreVT = StoreVT.changeTypeToInteger();
4932       SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
4933       EVT EquivStoreVT = (StoreVT == MVT::v2f16) ? MVT::v2i32 : MVT::v4i32;
4934       return DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
4935     }
4936   }
4937   // No change for f16 and legal vector D16 types.
4938   return VData;
4939 }
4940 
4941 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4942                                               SelectionDAG &DAG) const {
4943   SDLoc DL(Op);
4944   SDValue Chain = Op.getOperand(0);
4945   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4946   MachineFunction &MF = DAG.getMachineFunction();
4947 
4948   switch (IntrinsicID) {
4949   case Intrinsic::amdgcn_exp: {
4950     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
4951     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
4952     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
4953     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
4954 
4955     const SDValue Ops[] = {
4956       Chain,
4957       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
4958       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
4959       Op.getOperand(4), // src0
4960       Op.getOperand(5), // src1
4961       Op.getOperand(6), // src2
4962       Op.getOperand(7), // src3
4963       DAG.getTargetConstant(0, DL, MVT::i1), // compr
4964       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
4965     };
4966 
4967     unsigned Opc = Done->isNullValue() ?
4968       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
4969     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
4970   }
4971   case Intrinsic::amdgcn_exp_compr: {
4972     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
4973     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
4974     SDValue Src0 = Op.getOperand(4);
4975     SDValue Src1 = Op.getOperand(5);
4976     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
4977     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
4978 
4979     SDValue Undef = DAG.getUNDEF(MVT::f32);
4980     const SDValue Ops[] = {
4981       Chain,
4982       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
4983       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
4984       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
4985       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
4986       Undef, // src2
4987       Undef, // src3
4988       DAG.getTargetConstant(1, DL, MVT::i1), // compr
4989       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
4990     };
4991 
4992     unsigned Opc = Done->isNullValue() ?
4993       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
4994     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
4995   }
4996   case Intrinsic::amdgcn_s_sendmsg:
4997   case Intrinsic::amdgcn_s_sendmsghalt: {
4998     unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ?
4999       AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT;
5000     Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
5001     SDValue Glue = Chain.getValue(1);
5002     return DAG.getNode(NodeOp, DL, MVT::Other, Chain,
5003                        Op.getOperand(2), Glue);
5004   }
5005   case Intrinsic::amdgcn_init_exec: {
5006     return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain,
5007                        Op.getOperand(2));
5008   }
5009   case Intrinsic::amdgcn_init_exec_from_input: {
5010     return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain,
5011                        Op.getOperand(2), Op.getOperand(3));
5012   }
5013   case AMDGPUIntrinsic::AMDGPU_kill: {
5014     SDValue Src = Op.getOperand(2);
5015     if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Src)) {
5016       if (!K->isNegative())
5017         return Chain;
5018 
5019       SDValue NegOne = DAG.getTargetConstant(FloatToBits(-1.0f), DL, MVT::i32);
5020       return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, NegOne);
5021     }
5022 
5023     SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Src);
5024     return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, Cast);
5025   }
5026   case Intrinsic::amdgcn_s_barrier: {
5027     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
5028       const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
5029       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
5030       if (WGSize <= ST.getWavefrontSize())
5031         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
5032                                           Op.getOperand(0)), 0);
5033     }
5034     return SDValue();
5035   };
5036   case AMDGPUIntrinsic::SI_tbuffer_store: {
5037 
5038     // Extract vindex and voffset from vaddr as appropriate
5039     const ConstantSDNode *OffEn = cast<ConstantSDNode>(Op.getOperand(10));
5040     const ConstantSDNode *IdxEn = cast<ConstantSDNode>(Op.getOperand(11));
5041     SDValue VAddr = Op.getOperand(5);
5042 
5043     SDValue Zero = DAG.getTargetConstant(0, DL, MVT::i32);
5044 
5045     assert(!(OffEn->isOne() && IdxEn->isOne()) &&
5046            "Legacy intrinsic doesn't support both offset and index - use new version");
5047 
5048     SDValue VIndex = IdxEn->isOne() ? VAddr : Zero;
5049     SDValue VOffset = OffEn->isOne() ? VAddr : Zero;
5050 
5051     // Deal with the vec-3 case
5052     const ConstantSDNode *NumChannels = cast<ConstantSDNode>(Op.getOperand(4));
5053     auto Opcode = NumChannels->getZExtValue() == 3 ?
5054       AMDGPUISD::TBUFFER_STORE_FORMAT_X3 : AMDGPUISD::TBUFFER_STORE_FORMAT;
5055 
5056     SDValue Ops[] = {
5057      Chain,
5058      Op.getOperand(3),  // vdata
5059      Op.getOperand(2),  // rsrc
5060      VIndex,
5061      VOffset,
5062      Op.getOperand(6),  // soffset
5063      Op.getOperand(7),  // inst_offset
5064      Op.getOperand(8),  // dfmt
5065      Op.getOperand(9),  // nfmt
5066      Op.getOperand(12), // glc
5067      Op.getOperand(13), // slc
5068     };
5069 
5070     assert((cast<ConstantSDNode>(Op.getOperand(14)))->getZExtValue() == 0 &&
5071            "Value of tfe other than zero is unsupported");
5072 
5073     EVT VT = Op.getOperand(3).getValueType();
5074     MachineMemOperand *MMO = MF.getMachineMemOperand(
5075       MachinePointerInfo(),
5076       MachineMemOperand::MOStore,
5077       VT.getStoreSize(), 4);
5078     return DAG.getMemIntrinsicNode(Opcode, DL,
5079                                    Op->getVTList(), Ops, VT, MMO);
5080   }
5081 
5082   case Intrinsic::amdgcn_tbuffer_store: {
5083     SDValue VData = Op.getOperand(2);
5084     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5085     if (IsD16)
5086       VData = handleD16VData(VData, DAG);
5087     SDValue Ops[] = {
5088       Chain,
5089       VData,             // vdata
5090       Op.getOperand(3),  // rsrc
5091       Op.getOperand(4),  // vindex
5092       Op.getOperand(5),  // voffset
5093       Op.getOperand(6),  // soffset
5094       Op.getOperand(7),  // offset
5095       Op.getOperand(8),  // dfmt
5096       Op.getOperand(9),  // nfmt
5097       Op.getOperand(10), // glc
5098       Op.getOperand(11)  // slc
5099     };
5100     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
5101                            AMDGPUISD::TBUFFER_STORE_FORMAT;
5102     MemSDNode *M = cast<MemSDNode>(Op);
5103     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5104                                    M->getMemoryVT(), M->getMemOperand());
5105   }
5106 
5107   case Intrinsic::amdgcn_buffer_store:
5108   case Intrinsic::amdgcn_buffer_store_format: {
5109     SDValue VData = Op.getOperand(2);
5110     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5111     if (IsD16)
5112       VData = handleD16VData(VData, DAG);
5113     SDValue Ops[] = {
5114       Chain,
5115       VData,            // vdata
5116       Op.getOperand(3), // rsrc
5117       Op.getOperand(4), // vindex
5118       Op.getOperand(5), // offset
5119       Op.getOperand(6), // glc
5120       Op.getOperand(7)  // slc
5121     };
5122     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
5123                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
5124     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
5125     MemSDNode *M = cast<MemSDNode>(Op);
5126     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5127                                    M->getMemoryVT(), M->getMemOperand());
5128   }
5129 
5130   case Intrinsic::amdgcn_image_store:
5131   case Intrinsic::amdgcn_image_store_mip: {
5132     SDValue VData = Op.getOperand(2);
5133     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5134     if (IsD16)
5135       VData = handleD16VData(VData, DAG);
5136     SDValue Ops[] = {
5137       Chain, // Chain
5138       VData, // vdata
5139       Op.getOperand(3), // vaddr
5140       Op.getOperand(4), // rsrc
5141       Op.getOperand(5), // dmask
5142       Op.getOperand(6), // glc
5143       Op.getOperand(7), // slc
5144       Op.getOperand(8), // lwe
5145       Op.getOperand(9)  // da
5146     };
5147     unsigned Opc = (IntrinsicID==Intrinsic::amdgcn_image_store) ?
5148                   AMDGPUISD::IMAGE_STORE : AMDGPUISD::IMAGE_STORE_MIP;
5149     MemSDNode *M = cast<MemSDNode>(Op);
5150     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5151                                    M->getMemoryVT(), M->getMemOperand());
5152   }
5153 
5154   default: {
5155     const AMDGPU::D16ImageDimIntrinsic *D16ImageDimIntr =
5156         AMDGPU::lookupD16ImageDimIntrinsicByIntr(IntrinsicID);
5157     if (D16ImageDimIntr) {
5158       SDValue VData = Op.getOperand(2);
5159       EVT StoreVT = VData.getValueType();
5160       if ((StoreVT == MVT::v2f16 && !isTypeLegal(StoreVT)) ||
5161           StoreVT == MVT::v4f16) {
5162         VData = handleD16VData(VData, DAG);
5163 
5164         SmallVector<SDValue, 12> Ops;
5165         for (auto Value : Op.getNode()->op_values())
5166           Ops.push_back(Value);
5167         Ops[1] = DAG.getConstant(D16ImageDimIntr->D16HelperIntr, DL, MVT::i32);
5168         Ops[2] = VData;
5169 
5170         MemSDNode *M = cast<MemSDNode>(Op);
5171         return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Op->getVTList(),
5172                                        Ops, M->getMemoryVT(),
5173                                        M->getMemOperand());
5174       }
5175     }
5176 
5177     return Op;
5178   }
5179   }
5180 }
5181 
5182 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
5183   SDLoc DL(Op);
5184   LoadSDNode *Load = cast<LoadSDNode>(Op);
5185   ISD::LoadExtType ExtType = Load->getExtensionType();
5186   EVT MemVT = Load->getMemoryVT();
5187 
5188   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
5189     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
5190       return SDValue();
5191 
5192     // FIXME: Copied from PPC
5193     // First, load into 32 bits, then truncate to 1 bit.
5194 
5195     SDValue Chain = Load->getChain();
5196     SDValue BasePtr = Load->getBasePtr();
5197     MachineMemOperand *MMO = Load->getMemOperand();
5198 
5199     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
5200 
5201     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
5202                                    BasePtr, RealMemVT, MMO);
5203 
5204     SDValue Ops[] = {
5205       DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
5206       NewLD.getValue(1)
5207     };
5208 
5209     return DAG.getMergeValues(Ops, DL);
5210   }
5211 
5212   if (!MemVT.isVector())
5213     return SDValue();
5214 
5215   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
5216          "Custom lowering for non-i32 vectors hasn't been implemented.");
5217 
5218   unsigned Alignment = Load->getAlignment();
5219   unsigned AS = Load->getAddressSpace();
5220   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
5221                           AS, Alignment)) {
5222     SDValue Ops[2];
5223     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
5224     return DAG.getMergeValues(Ops, DL);
5225   }
5226 
5227   MachineFunction &MF = DAG.getMachineFunction();
5228   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
5229   // If there is a possibilty that flat instruction access scratch memory
5230   // then we need to use the same legalization rules we use for private.
5231   if (AS == AMDGPUASI.FLAT_ADDRESS)
5232     AS = MFI->hasFlatScratchInit() ?
5233          AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS;
5234 
5235   unsigned NumElements = MemVT.getVectorNumElements();
5236 
5237   if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
5238       AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT) {
5239     if (!Op->isDivergent() && Alignment >= 4)
5240       return SDValue();
5241     // Non-uniform loads will be selected to MUBUF instructions, so they
5242     // have the same legalization requirements as global and private
5243     // loads.
5244     //
5245   }
5246 
5247   if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
5248       AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT ||
5249       AS == AMDGPUASI.GLOBAL_ADDRESS) {
5250     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
5251         !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
5252         Alignment >= 4)
5253       return SDValue();
5254     // Non-uniform loads will be selected to MUBUF instructions, so they
5255     // have the same legalization requirements as global and private
5256     // loads.
5257     //
5258   }
5259   if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
5260       AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT ||
5261       AS == AMDGPUASI.GLOBAL_ADDRESS ||
5262       AS == AMDGPUASI.FLAT_ADDRESS) {
5263     if (NumElements > 4)
5264       return SplitVectorLoad(Op, DAG);
5265     // v4 loads are supported for private and global memory.
5266     return SDValue();
5267   }
5268   if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
5269     // Depending on the setting of the private_element_size field in the
5270     // resource descriptor, we can only make private accesses up to a certain
5271     // size.
5272     switch (Subtarget->getMaxPrivateElementSize()) {
5273     case 4:
5274       return scalarizeVectorLoad(Load, DAG);
5275     case 8:
5276       if (NumElements > 2)
5277         return SplitVectorLoad(Op, DAG);
5278       return SDValue();
5279     case 16:
5280       // Same as global/flat
5281       if (NumElements > 4)
5282         return SplitVectorLoad(Op, DAG);
5283       return SDValue();
5284     default:
5285       llvm_unreachable("unsupported private_element_size");
5286     }
5287   } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
5288     // Use ds_read_b128 if possible.
5289     if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
5290         MemVT.getStoreSize() == 16)
5291       return SDValue();
5292 
5293     if (NumElements > 2)
5294       return SplitVectorLoad(Op, DAG);
5295   }
5296   return SDValue();
5297 }
5298 
5299 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
5300   if (Op.getValueType() != MVT::i64)
5301     return SDValue();
5302 
5303   SDLoc DL(Op);
5304   SDValue Cond = Op.getOperand(0);
5305 
5306   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
5307   SDValue One = DAG.getConstant(1, DL, MVT::i32);
5308 
5309   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
5310   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
5311 
5312   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
5313   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
5314 
5315   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
5316 
5317   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
5318   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
5319 
5320   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
5321 
5322   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
5323   return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
5324 }
5325 
5326 // Catch division cases where we can use shortcuts with rcp and rsq
5327 // instructions.
5328 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
5329                                               SelectionDAG &DAG) const {
5330   SDLoc SL(Op);
5331   SDValue LHS = Op.getOperand(0);
5332   SDValue RHS = Op.getOperand(1);
5333   EVT VT = Op.getValueType();
5334   const SDNodeFlags Flags = Op->getFlags();
5335   bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal();
5336 
5337   if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
5338     return SDValue();
5339 
5340   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
5341     if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
5342       if (CLHS->isExactlyValue(1.0)) {
5343         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
5344         // the CI documentation has a worst case error of 1 ulp.
5345         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
5346         // use it as long as we aren't trying to use denormals.
5347         //
5348         // v_rcp_f16 and v_rsq_f16 DO support denormals.
5349 
5350         // 1.0 / sqrt(x) -> rsq(x)
5351 
5352         // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
5353         // error seems really high at 2^29 ULP.
5354         if (RHS.getOpcode() == ISD::FSQRT)
5355           return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
5356 
5357         // 1.0 / x -> rcp(x)
5358         return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
5359       }
5360 
5361       // Same as for 1.0, but expand the sign out of the constant.
5362       if (CLHS->isExactlyValue(-1.0)) {
5363         // -1.0 / x -> rcp (fneg x)
5364         SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
5365         return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
5366       }
5367     }
5368   }
5369 
5370   if (Unsafe) {
5371     // Turn into multiply by the reciprocal.
5372     // x / y -> x * (1.0 / y)
5373     SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
5374     return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
5375   }
5376 
5377   return SDValue();
5378 }
5379 
5380 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
5381                           EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
5382   if (GlueChain->getNumValues() <= 1) {
5383     return DAG.getNode(Opcode, SL, VT, A, B);
5384   }
5385 
5386   assert(GlueChain->getNumValues() == 3);
5387 
5388   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
5389   switch (Opcode) {
5390   default: llvm_unreachable("no chain equivalent for opcode");
5391   case ISD::FMUL:
5392     Opcode = AMDGPUISD::FMUL_W_CHAIN;
5393     break;
5394   }
5395 
5396   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
5397                      GlueChain.getValue(2));
5398 }
5399 
5400 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
5401                            EVT VT, SDValue A, SDValue B, SDValue C,
5402                            SDValue GlueChain) {
5403   if (GlueChain->getNumValues() <= 1) {
5404     return DAG.getNode(Opcode, SL, VT, A, B, C);
5405   }
5406 
5407   assert(GlueChain->getNumValues() == 3);
5408 
5409   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
5410   switch (Opcode) {
5411   default: llvm_unreachable("no chain equivalent for opcode");
5412   case ISD::FMA:
5413     Opcode = AMDGPUISD::FMA_W_CHAIN;
5414     break;
5415   }
5416 
5417   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
5418                      GlueChain.getValue(2));
5419 }
5420 
5421 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
5422   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
5423     return FastLowered;
5424 
5425   SDLoc SL(Op);
5426   SDValue Src0 = Op.getOperand(0);
5427   SDValue Src1 = Op.getOperand(1);
5428 
5429   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
5430   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
5431 
5432   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
5433   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
5434 
5435   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
5436   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
5437 
5438   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
5439 }
5440 
5441 // Faster 2.5 ULP division that does not support denormals.
5442 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
5443   SDLoc SL(Op);
5444   SDValue LHS = Op.getOperand(1);
5445   SDValue RHS = Op.getOperand(2);
5446 
5447   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
5448 
5449   const APFloat K0Val(BitsToFloat(0x6f800000));
5450   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
5451 
5452   const APFloat K1Val(BitsToFloat(0x2f800000));
5453   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
5454 
5455   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
5456 
5457   EVT SetCCVT =
5458     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
5459 
5460   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
5461 
5462   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
5463 
5464   // TODO: Should this propagate fast-math-flags?
5465   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
5466 
5467   // rcp does not support denormals.
5468   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
5469 
5470   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
5471 
5472   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
5473 }
5474 
5475 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
5476   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
5477     return FastLowered;
5478 
5479   SDLoc SL(Op);
5480   SDValue LHS = Op.getOperand(0);
5481   SDValue RHS = Op.getOperand(1);
5482 
5483   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
5484 
5485   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
5486 
5487   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
5488                                           RHS, RHS, LHS);
5489   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
5490                                         LHS, RHS, LHS);
5491 
5492   // Denominator is scaled to not be denormal, so using rcp is ok.
5493   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
5494                                   DenominatorScaled);
5495   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
5496                                      DenominatorScaled);
5497 
5498   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
5499                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
5500                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
5501 
5502   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
5503 
5504   if (!Subtarget->hasFP32Denormals()) {
5505     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
5506     const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
5507                                                       SL, MVT::i32);
5508     SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
5509                                        DAG.getEntryNode(),
5510                                        EnableDenormValue, BitField);
5511     SDValue Ops[3] = {
5512       NegDivScale0,
5513       EnableDenorm.getValue(0),
5514       EnableDenorm.getValue(1)
5515     };
5516 
5517     NegDivScale0 = DAG.getMergeValues(Ops, SL);
5518   }
5519 
5520   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
5521                              ApproxRcp, One, NegDivScale0);
5522 
5523   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
5524                              ApproxRcp, Fma0);
5525 
5526   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
5527                            Fma1, Fma1);
5528 
5529   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
5530                              NumeratorScaled, Mul);
5531 
5532   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
5533 
5534   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
5535                              NumeratorScaled, Fma3);
5536 
5537   if (!Subtarget->hasFP32Denormals()) {
5538     const SDValue DisableDenormValue =
5539         DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
5540     SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
5541                                         Fma4.getValue(1),
5542                                         DisableDenormValue,
5543                                         BitField,
5544                                         Fma4.getValue(2));
5545 
5546     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
5547                                       DisableDenorm, DAG.getRoot());
5548     DAG.setRoot(OutputChain);
5549   }
5550 
5551   SDValue Scale = NumeratorScaled.getValue(1);
5552   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
5553                              Fma4, Fma1, Fma3, Scale);
5554 
5555   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
5556 }
5557 
5558 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
5559   if (DAG.getTarget().Options.UnsafeFPMath)
5560     return lowerFastUnsafeFDIV(Op, DAG);
5561 
5562   SDLoc SL(Op);
5563   SDValue X = Op.getOperand(0);
5564   SDValue Y = Op.getOperand(1);
5565 
5566   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
5567 
5568   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
5569 
5570   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
5571 
5572   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
5573 
5574   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
5575 
5576   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
5577 
5578   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
5579 
5580   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
5581 
5582   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
5583 
5584   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
5585   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
5586 
5587   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
5588                              NegDivScale0, Mul, DivScale1);
5589 
5590   SDValue Scale;
5591 
5592   if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
5593     // Workaround a hardware bug on SI where the condition output from div_scale
5594     // is not usable.
5595 
5596     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
5597 
5598     // Figure out if the scale to use for div_fmas.
5599     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
5600     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
5601     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
5602     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
5603 
5604     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
5605     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
5606 
5607     SDValue Scale0Hi
5608       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
5609     SDValue Scale1Hi
5610       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
5611 
5612     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
5613     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
5614     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
5615   } else {
5616     Scale = DivScale1.getValue(1);
5617   }
5618 
5619   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
5620                              Fma4, Fma3, Mul, Scale);
5621 
5622   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
5623 }
5624 
5625 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
5626   EVT VT = Op.getValueType();
5627 
5628   if (VT == MVT::f32)
5629     return LowerFDIV32(Op, DAG);
5630 
5631   if (VT == MVT::f64)
5632     return LowerFDIV64(Op, DAG);
5633 
5634   if (VT == MVT::f16)
5635     return LowerFDIV16(Op, DAG);
5636 
5637   llvm_unreachable("Unexpected type for fdiv");
5638 }
5639 
5640 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
5641   SDLoc DL(Op);
5642   StoreSDNode *Store = cast<StoreSDNode>(Op);
5643   EVT VT = Store->getMemoryVT();
5644 
5645   if (VT == MVT::i1) {
5646     return DAG.getTruncStore(Store->getChain(), DL,
5647        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
5648        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
5649   }
5650 
5651   assert(VT.isVector() &&
5652          Store->getValue().getValueType().getScalarType() == MVT::i32);
5653 
5654   unsigned AS = Store->getAddressSpace();
5655   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
5656                           AS, Store->getAlignment())) {
5657     return expandUnalignedStore(Store, DAG);
5658   }
5659 
5660   MachineFunction &MF = DAG.getMachineFunction();
5661   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
5662   // If there is a possibilty that flat instruction access scratch memory
5663   // then we need to use the same legalization rules we use for private.
5664   if (AS == AMDGPUASI.FLAT_ADDRESS)
5665     AS = MFI->hasFlatScratchInit() ?
5666          AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS;
5667 
5668   unsigned NumElements = VT.getVectorNumElements();
5669   if (AS == AMDGPUASI.GLOBAL_ADDRESS ||
5670       AS == AMDGPUASI.FLAT_ADDRESS) {
5671     if (NumElements > 4)
5672       return SplitVectorStore(Op, DAG);
5673     return SDValue();
5674   } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
5675     switch (Subtarget->getMaxPrivateElementSize()) {
5676     case 4:
5677       return scalarizeVectorStore(Store, DAG);
5678     case 8:
5679       if (NumElements > 2)
5680         return SplitVectorStore(Op, DAG);
5681       return SDValue();
5682     case 16:
5683       if (NumElements > 4)
5684         return SplitVectorStore(Op, DAG);
5685       return SDValue();
5686     default:
5687       llvm_unreachable("unsupported private_element_size");
5688     }
5689   } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
5690     // Use ds_write_b128 if possible.
5691     if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
5692         VT.getStoreSize() == 16)
5693       return SDValue();
5694 
5695     if (NumElements > 2)
5696       return SplitVectorStore(Op, DAG);
5697     return SDValue();
5698   } else {
5699     llvm_unreachable("unhandled address space");
5700   }
5701 }
5702 
5703 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
5704   SDLoc DL(Op);
5705   EVT VT = Op.getValueType();
5706   SDValue Arg = Op.getOperand(0);
5707   // TODO: Should this propagate fast-math-flags?
5708   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
5709                                   DAG.getNode(ISD::FMUL, DL, VT, Arg,
5710                                               DAG.getConstantFP(0.5/M_PI, DL,
5711                                                                 VT)));
5712 
5713   switch (Op.getOpcode()) {
5714   case ISD::FCOS:
5715     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
5716   case ISD::FSIN:
5717     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
5718   default:
5719     llvm_unreachable("Wrong trig opcode");
5720   }
5721 }
5722 
5723 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
5724   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
5725   assert(AtomicNode->isCompareAndSwap());
5726   unsigned AS = AtomicNode->getAddressSpace();
5727 
5728   // No custom lowering required for local address space
5729   if (!isFlatGlobalAddrSpace(AS, AMDGPUASI))
5730     return Op;
5731 
5732   // Non-local address space requires custom lowering for atomic compare
5733   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
5734   SDLoc DL(Op);
5735   SDValue ChainIn = Op.getOperand(0);
5736   SDValue Addr = Op.getOperand(1);
5737   SDValue Old = Op.getOperand(2);
5738   SDValue New = Op.getOperand(3);
5739   EVT VT = Op.getValueType();
5740   MVT SimpleVT = VT.getSimpleVT();
5741   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
5742 
5743   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
5744   SDValue Ops[] = { ChainIn, Addr, NewOld };
5745 
5746   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
5747                                  Ops, VT, AtomicNode->getMemOperand());
5748 }
5749 
5750 //===----------------------------------------------------------------------===//
5751 // Custom DAG optimizations
5752 //===----------------------------------------------------------------------===//
5753 
5754 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
5755                                                      DAGCombinerInfo &DCI) const {
5756   EVT VT = N->getValueType(0);
5757   EVT ScalarVT = VT.getScalarType();
5758   if (ScalarVT != MVT::f32)
5759     return SDValue();
5760 
5761   SelectionDAG &DAG = DCI.DAG;
5762   SDLoc DL(N);
5763 
5764   SDValue Src = N->getOperand(0);
5765   EVT SrcVT = Src.getValueType();
5766 
5767   // TODO: We could try to match extracting the higher bytes, which would be
5768   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
5769   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
5770   // about in practice.
5771   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
5772     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
5773       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
5774       DCI.AddToWorklist(Cvt.getNode());
5775       return Cvt;
5776     }
5777   }
5778 
5779   return SDValue();
5780 }
5781 
5782 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
5783 
5784 // This is a variant of
5785 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
5786 //
5787 // The normal DAG combiner will do this, but only if the add has one use since
5788 // that would increase the number of instructions.
5789 //
5790 // This prevents us from seeing a constant offset that can be folded into a
5791 // memory instruction's addressing mode. If we know the resulting add offset of
5792 // a pointer can be folded into an addressing offset, we can replace the pointer
5793 // operand with the add of new constant offset. This eliminates one of the uses,
5794 // and may allow the remaining use to also be simplified.
5795 //
5796 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
5797                                                unsigned AddrSpace,
5798                                                EVT MemVT,
5799                                                DAGCombinerInfo &DCI) const {
5800   SDValue N0 = N->getOperand(0);
5801   SDValue N1 = N->getOperand(1);
5802 
5803   // We only do this to handle cases where it's profitable when there are
5804   // multiple uses of the add, so defer to the standard combine.
5805   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
5806       N0->hasOneUse())
5807     return SDValue();
5808 
5809   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
5810   if (!CN1)
5811     return SDValue();
5812 
5813   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5814   if (!CAdd)
5815     return SDValue();
5816 
5817   // If the resulting offset is too large, we can't fold it into the addressing
5818   // mode offset.
5819   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
5820   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
5821 
5822   AddrMode AM;
5823   AM.HasBaseReg = true;
5824   AM.BaseOffs = Offset.getSExtValue();
5825   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
5826     return SDValue();
5827 
5828   SelectionDAG &DAG = DCI.DAG;
5829   SDLoc SL(N);
5830   EVT VT = N->getValueType(0);
5831 
5832   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
5833   SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
5834 
5835   SDNodeFlags Flags;
5836   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
5837                           (N0.getOpcode() == ISD::OR ||
5838                            N0->getFlags().hasNoUnsignedWrap()));
5839 
5840   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
5841 }
5842 
5843 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
5844                                                   DAGCombinerInfo &DCI) const {
5845   SDValue Ptr = N->getBasePtr();
5846   SelectionDAG &DAG = DCI.DAG;
5847   SDLoc SL(N);
5848 
5849   // TODO: We could also do this for multiplies.
5850   if (Ptr.getOpcode() == ISD::SHL) {
5851     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
5852                                           N->getMemoryVT(), DCI);
5853     if (NewPtr) {
5854       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
5855 
5856       NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
5857       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
5858     }
5859   }
5860 
5861   return SDValue();
5862 }
5863 
5864 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
5865   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
5866          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
5867          (Opc == ISD::XOR && Val == 0);
5868 }
5869 
5870 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
5871 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
5872 // integer combine opportunities since most 64-bit operations are decomposed
5873 // this way.  TODO: We won't want this for SALU especially if it is an inline
5874 // immediate.
5875 SDValue SITargetLowering::splitBinaryBitConstantOp(
5876   DAGCombinerInfo &DCI,
5877   const SDLoc &SL,
5878   unsigned Opc, SDValue LHS,
5879   const ConstantSDNode *CRHS) const {
5880   uint64_t Val = CRHS->getZExtValue();
5881   uint32_t ValLo = Lo_32(Val);
5882   uint32_t ValHi = Hi_32(Val);
5883   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
5884 
5885     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
5886          bitOpWithConstantIsReducible(Opc, ValHi)) ||
5887         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
5888     // If we need to materialize a 64-bit immediate, it will be split up later
5889     // anyway. Avoid creating the harder to understand 64-bit immediate
5890     // materialization.
5891     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
5892   }
5893 
5894   return SDValue();
5895 }
5896 
5897 // Returns true if argument is a boolean value which is not serialized into
5898 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
5899 static bool isBoolSGPR(SDValue V) {
5900   if (V.getValueType() != MVT::i1)
5901     return false;
5902   switch (V.getOpcode()) {
5903   default: break;
5904   case ISD::SETCC:
5905   case ISD::AND:
5906   case ISD::OR:
5907   case ISD::XOR:
5908   case AMDGPUISD::FP_CLASS:
5909     return true;
5910   }
5911   return false;
5912 }
5913 
5914 SDValue SITargetLowering::performAndCombine(SDNode *N,
5915                                             DAGCombinerInfo &DCI) const {
5916   if (DCI.isBeforeLegalize())
5917     return SDValue();
5918 
5919   SelectionDAG &DAG = DCI.DAG;
5920   EVT VT = N->getValueType(0);
5921   SDValue LHS = N->getOperand(0);
5922   SDValue RHS = N->getOperand(1);
5923 
5924 
5925   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
5926   if (VT == MVT::i64 && CRHS) {
5927     if (SDValue Split
5928         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
5929       return Split;
5930   }
5931 
5932   if (CRHS && VT == MVT::i32) {
5933     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
5934     // nb = number of trailing zeroes in mask
5935     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
5936     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
5937     uint64_t Mask = CRHS->getZExtValue();
5938     unsigned Bits = countPopulation(Mask);
5939     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
5940         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
5941       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
5942         unsigned Shift = CShift->getZExtValue();
5943         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
5944         unsigned Offset = NB + Shift;
5945         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
5946           SDLoc SL(N);
5947           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
5948                                     LHS->getOperand(0),
5949                                     DAG.getConstant(Offset, SL, MVT::i32),
5950                                     DAG.getConstant(Bits, SL, MVT::i32));
5951           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
5952           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
5953                                     DAG.getValueType(NarrowVT));
5954           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
5955                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
5956           return Shl;
5957         }
5958       }
5959     }
5960   }
5961 
5962   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
5963   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
5964   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
5965     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5966     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
5967 
5968     SDValue X = LHS.getOperand(0);
5969     SDValue Y = RHS.getOperand(0);
5970     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
5971       return SDValue();
5972 
5973     if (LCC == ISD::SETO) {
5974       if (X != LHS.getOperand(1))
5975         return SDValue();
5976 
5977       if (RCC == ISD::SETUNE) {
5978         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
5979         if (!C1 || !C1->isInfinity() || C1->isNegative())
5980           return SDValue();
5981 
5982         const uint32_t Mask = SIInstrFlags::N_NORMAL |
5983                               SIInstrFlags::N_SUBNORMAL |
5984                               SIInstrFlags::N_ZERO |
5985                               SIInstrFlags::P_ZERO |
5986                               SIInstrFlags::P_SUBNORMAL |
5987                               SIInstrFlags::P_NORMAL;
5988 
5989         static_assert(((~(SIInstrFlags::S_NAN |
5990                           SIInstrFlags::Q_NAN |
5991                           SIInstrFlags::N_INFINITY |
5992                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
5993                       "mask not equal");
5994 
5995         SDLoc DL(N);
5996         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
5997                            X, DAG.getConstant(Mask, DL, MVT::i32));
5998       }
5999     }
6000   }
6001 
6002   if (VT == MVT::i32 &&
6003       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
6004     // and x, (sext cc from i1) => select cc, x, 0
6005     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
6006       std::swap(LHS, RHS);
6007     if (isBoolSGPR(RHS.getOperand(0)))
6008       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
6009                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
6010   }
6011 
6012   return SDValue();
6013 }
6014 
6015 SDValue SITargetLowering::performOrCombine(SDNode *N,
6016                                            DAGCombinerInfo &DCI) const {
6017   SelectionDAG &DAG = DCI.DAG;
6018   SDValue LHS = N->getOperand(0);
6019   SDValue RHS = N->getOperand(1);
6020 
6021   EVT VT = N->getValueType(0);
6022   if (VT == MVT::i1) {
6023     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
6024     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
6025         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
6026       SDValue Src = LHS.getOperand(0);
6027       if (Src != RHS.getOperand(0))
6028         return SDValue();
6029 
6030       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
6031       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
6032       if (!CLHS || !CRHS)
6033         return SDValue();
6034 
6035       // Only 10 bits are used.
6036       static const uint32_t MaxMask = 0x3ff;
6037 
6038       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
6039       SDLoc DL(N);
6040       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
6041                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
6042     }
6043 
6044     return SDValue();
6045   }
6046 
6047   if (VT != MVT::i64)
6048     return SDValue();
6049 
6050   // TODO: This could be a generic combine with a predicate for extracting the
6051   // high half of an integer being free.
6052 
6053   // (or i64:x, (zero_extend i32:y)) ->
6054   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
6055   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
6056       RHS.getOpcode() != ISD::ZERO_EXTEND)
6057     std::swap(LHS, RHS);
6058 
6059   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
6060     SDValue ExtSrc = RHS.getOperand(0);
6061     EVT SrcVT = ExtSrc.getValueType();
6062     if (SrcVT == MVT::i32) {
6063       SDLoc SL(N);
6064       SDValue LowLHS, HiBits;
6065       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
6066       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
6067 
6068       DCI.AddToWorklist(LowOr.getNode());
6069       DCI.AddToWorklist(HiBits.getNode());
6070 
6071       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
6072                                 LowOr, HiBits);
6073       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
6074     }
6075   }
6076 
6077   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
6078   if (CRHS) {
6079     if (SDValue Split
6080           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
6081       return Split;
6082   }
6083 
6084   return SDValue();
6085 }
6086 
6087 SDValue SITargetLowering::performXorCombine(SDNode *N,
6088                                             DAGCombinerInfo &DCI) const {
6089   EVT VT = N->getValueType(0);
6090   if (VT != MVT::i64)
6091     return SDValue();
6092 
6093   SDValue LHS = N->getOperand(0);
6094   SDValue RHS = N->getOperand(1);
6095 
6096   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
6097   if (CRHS) {
6098     if (SDValue Split
6099           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
6100       return Split;
6101   }
6102 
6103   return SDValue();
6104 }
6105 
6106 // Instructions that will be lowered with a final instruction that zeros the
6107 // high result bits.
6108 // XXX - probably only need to list legal operations.
6109 static bool fp16SrcZerosHighBits(unsigned Opc) {
6110   switch (Opc) {
6111   case ISD::FADD:
6112   case ISD::FSUB:
6113   case ISD::FMUL:
6114   case ISD::FDIV:
6115   case ISD::FREM:
6116   case ISD::FMA:
6117   case ISD::FMAD:
6118   case ISD::FCANONICALIZE:
6119   case ISD::FP_ROUND:
6120   case ISD::UINT_TO_FP:
6121   case ISD::SINT_TO_FP:
6122   case ISD::FABS:
6123     // Fabs is lowered to a bit operation, but it's an and which will clear the
6124     // high bits anyway.
6125   case ISD::FSQRT:
6126   case ISD::FSIN:
6127   case ISD::FCOS:
6128   case ISD::FPOWI:
6129   case ISD::FPOW:
6130   case ISD::FLOG:
6131   case ISD::FLOG2:
6132   case ISD::FLOG10:
6133   case ISD::FEXP:
6134   case ISD::FEXP2:
6135   case ISD::FCEIL:
6136   case ISD::FTRUNC:
6137   case ISD::FRINT:
6138   case ISD::FNEARBYINT:
6139   case ISD::FROUND:
6140   case ISD::FFLOOR:
6141   case ISD::FMINNUM:
6142   case ISD::FMAXNUM:
6143   case AMDGPUISD::FRACT:
6144   case AMDGPUISD::CLAMP:
6145   case AMDGPUISD::COS_HW:
6146   case AMDGPUISD::SIN_HW:
6147   case AMDGPUISD::FMIN3:
6148   case AMDGPUISD::FMAX3:
6149   case AMDGPUISD::FMED3:
6150   case AMDGPUISD::FMAD_FTZ:
6151   case AMDGPUISD::RCP:
6152   case AMDGPUISD::RSQ:
6153   case AMDGPUISD::LDEXP:
6154     return true;
6155   default:
6156     // fcopysign, select and others may be lowered to 32-bit bit operations
6157     // which don't zero the high bits.
6158     return false;
6159   }
6160 }
6161 
6162 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
6163                                                    DAGCombinerInfo &DCI) const {
6164   if (!Subtarget->has16BitInsts() ||
6165       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
6166     return SDValue();
6167 
6168   EVT VT = N->getValueType(0);
6169   if (VT != MVT::i32)
6170     return SDValue();
6171 
6172   SDValue Src = N->getOperand(0);
6173   if (Src.getValueType() != MVT::i16)
6174     return SDValue();
6175 
6176   // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
6177   // FIXME: It is not universally true that the high bits are zeroed on gfx9.
6178   if (Src.getOpcode() == ISD::BITCAST) {
6179     SDValue BCSrc = Src.getOperand(0);
6180     if (BCSrc.getValueType() == MVT::f16 &&
6181         fp16SrcZerosHighBits(BCSrc.getOpcode()))
6182       return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
6183   }
6184 
6185   return SDValue();
6186 }
6187 
6188 SDValue SITargetLowering::performClassCombine(SDNode *N,
6189                                               DAGCombinerInfo &DCI) const {
6190   SelectionDAG &DAG = DCI.DAG;
6191   SDValue Mask = N->getOperand(1);
6192 
6193   // fp_class x, 0 -> false
6194   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
6195     if (CMask->isNullValue())
6196       return DAG.getConstant(0, SDLoc(N), MVT::i1);
6197   }
6198 
6199   if (N->getOperand(0).isUndef())
6200     return DAG.getUNDEF(MVT::i1);
6201 
6202   return SDValue();
6203 }
6204 
6205 static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
6206   if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
6207     return true;
6208 
6209   return DAG.isKnownNeverNaN(Op);
6210 }
6211 
6212 static bool isCanonicalized(SelectionDAG &DAG, SDValue Op,
6213                             const SISubtarget *ST, unsigned MaxDepth=5) {
6214   // If source is a result of another standard FP operation it is already in
6215   // canonical form.
6216 
6217   switch (Op.getOpcode()) {
6218   default:
6219     break;
6220 
6221   // These will flush denorms if required.
6222   case ISD::FADD:
6223   case ISD::FSUB:
6224   case ISD::FMUL:
6225   case ISD::FSQRT:
6226   case ISD::FCEIL:
6227   case ISD::FFLOOR:
6228   case ISD::FMA:
6229   case ISD::FMAD:
6230 
6231   case ISD::FCANONICALIZE:
6232     return true;
6233 
6234   case ISD::FP_ROUND:
6235     return Op.getValueType().getScalarType() != MVT::f16 ||
6236            ST->hasFP16Denormals();
6237 
6238   case ISD::FP_EXTEND:
6239     return Op.getOperand(0).getValueType().getScalarType() != MVT::f16 ||
6240            ST->hasFP16Denormals();
6241 
6242   case ISD::FP16_TO_FP:
6243   case ISD::FP_TO_FP16:
6244     return ST->hasFP16Denormals();
6245 
6246   // It can/will be lowered or combined as a bit operation.
6247   // Need to check their input recursively to handle.
6248   case ISD::FNEG:
6249   case ISD::FABS:
6250     return (MaxDepth > 0) &&
6251            isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1);
6252 
6253   case ISD::FSIN:
6254   case ISD::FCOS:
6255   case ISD::FSINCOS:
6256     return Op.getValueType().getScalarType() != MVT::f16;
6257 
6258   // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms.
6259   // For such targets need to check their input recursively.
6260   case ISD::FMINNUM:
6261   case ISD::FMAXNUM:
6262   case ISD::FMINNAN:
6263   case ISD::FMAXNAN:
6264 
6265     if (ST->supportsMinMaxDenormModes() &&
6266         DAG.isKnownNeverNaN(Op.getOperand(0)) &&
6267         DAG.isKnownNeverNaN(Op.getOperand(1)))
6268       return true;
6269 
6270     return (MaxDepth > 0) &&
6271            isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1) &&
6272            isCanonicalized(DAG, Op.getOperand(1), ST, MaxDepth - 1);
6273 
6274   case ISD::ConstantFP: {
6275     auto F = cast<ConstantFPSDNode>(Op)->getValueAPF();
6276     return !F.isDenormal() && !(F.isNaN() && F.isSignaling());
6277   }
6278   }
6279   return false;
6280 }
6281 
6282 // Constant fold canonicalize.
6283 SDValue SITargetLowering::performFCanonicalizeCombine(
6284   SDNode *N,
6285   DAGCombinerInfo &DCI) const {
6286   SelectionDAG &DAG = DCI.DAG;
6287   ConstantFPSDNode *CFP = isConstOrConstSplatFP(N->getOperand(0));
6288 
6289   if (!CFP) {
6290     SDValue N0 = N->getOperand(0);
6291     EVT VT = N0.getValueType().getScalarType();
6292     auto ST = getSubtarget();
6293 
6294     if (((VT == MVT::f32 && ST->hasFP32Denormals()) ||
6295          (VT == MVT::f64 && ST->hasFP64Denormals()) ||
6296          (VT == MVT::f16 && ST->hasFP16Denormals())) &&
6297         DAG.isKnownNeverNaN(N0))
6298       return N0;
6299 
6300     bool IsIEEEMode = Subtarget->enableIEEEBit(DAG.getMachineFunction());
6301 
6302     if ((IsIEEEMode || isKnownNeverSNan(DAG, N0)) &&
6303         isCanonicalized(DAG, N0, ST))
6304       return N0;
6305 
6306     return SDValue();
6307   }
6308 
6309   const APFloat &C = CFP->getValueAPF();
6310 
6311   // Flush denormals to 0 if not enabled.
6312   if (C.isDenormal()) {
6313     EVT VT = N->getValueType(0);
6314     EVT SVT = VT.getScalarType();
6315     if (SVT == MVT::f32 && !Subtarget->hasFP32Denormals())
6316       return DAG.getConstantFP(0.0, SDLoc(N), VT);
6317 
6318     if (SVT == MVT::f64 && !Subtarget->hasFP64Denormals())
6319       return DAG.getConstantFP(0.0, SDLoc(N), VT);
6320 
6321     if (SVT == MVT::f16 && !Subtarget->hasFP16Denormals())
6322       return DAG.getConstantFP(0.0, SDLoc(N), VT);
6323   }
6324 
6325   if (C.isNaN()) {
6326     EVT VT = N->getValueType(0);
6327     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
6328     if (C.isSignaling()) {
6329       // Quiet a signaling NaN.
6330       return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
6331     }
6332 
6333     // Make sure it is the canonical NaN bitpattern.
6334     //
6335     // TODO: Can we use -1 as the canonical NaN value since it's an inline
6336     // immediate?
6337     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
6338       return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
6339   }
6340 
6341   return N->getOperand(0);
6342 }
6343 
6344 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
6345   switch (Opc) {
6346   case ISD::FMAXNUM:
6347     return AMDGPUISD::FMAX3;
6348   case ISD::SMAX:
6349     return AMDGPUISD::SMAX3;
6350   case ISD::UMAX:
6351     return AMDGPUISD::UMAX3;
6352   case ISD::FMINNUM:
6353     return AMDGPUISD::FMIN3;
6354   case ISD::SMIN:
6355     return AMDGPUISD::SMIN3;
6356   case ISD::UMIN:
6357     return AMDGPUISD::UMIN3;
6358   default:
6359     llvm_unreachable("Not a min/max opcode");
6360   }
6361 }
6362 
6363 SDValue SITargetLowering::performIntMed3ImmCombine(
6364   SelectionDAG &DAG, const SDLoc &SL,
6365   SDValue Op0, SDValue Op1, bool Signed) const {
6366   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
6367   if (!K1)
6368     return SDValue();
6369 
6370   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
6371   if (!K0)
6372     return SDValue();
6373 
6374   if (Signed) {
6375     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
6376       return SDValue();
6377   } else {
6378     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
6379       return SDValue();
6380   }
6381 
6382   EVT VT = K0->getValueType(0);
6383   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
6384   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
6385     return DAG.getNode(Med3Opc, SL, VT,
6386                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
6387   }
6388 
6389   // If there isn't a 16-bit med3 operation, convert to 32-bit.
6390   MVT NVT = MVT::i32;
6391   unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6392 
6393   SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
6394   SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
6395   SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
6396 
6397   SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
6398   return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
6399 }
6400 
6401 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
6402   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
6403     return C;
6404 
6405   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
6406     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
6407       return C;
6408   }
6409 
6410   return nullptr;
6411 }
6412 
6413 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
6414                                                   const SDLoc &SL,
6415                                                   SDValue Op0,
6416                                                   SDValue Op1) const {
6417   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
6418   if (!K1)
6419     return SDValue();
6420 
6421   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
6422   if (!K0)
6423     return SDValue();
6424 
6425   // Ordered >= (although NaN inputs should have folded away by now).
6426   APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
6427   if (Cmp == APFloat::cmpGreaterThan)
6428     return SDValue();
6429 
6430   // TODO: Check IEEE bit enabled?
6431   EVT VT = Op0.getValueType();
6432   if (Subtarget->enableDX10Clamp()) {
6433     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
6434     // hardware fmed3 behavior converting to a min.
6435     // FIXME: Should this be allowing -0.0?
6436     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
6437       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
6438   }
6439 
6440   // med3 for f16 is only available on gfx9+, and not available for v2f16.
6441   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
6442     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
6443     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
6444     // then give the other result, which is different from med3 with a NaN
6445     // input.
6446     SDValue Var = Op0.getOperand(0);
6447     if (!isKnownNeverSNan(DAG, Var))
6448       return SDValue();
6449 
6450     return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
6451                        Var, SDValue(K0, 0), SDValue(K1, 0));
6452   }
6453 
6454   return SDValue();
6455 }
6456 
6457 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
6458                                                DAGCombinerInfo &DCI) const {
6459   SelectionDAG &DAG = DCI.DAG;
6460 
6461   EVT VT = N->getValueType(0);
6462   unsigned Opc = N->getOpcode();
6463   SDValue Op0 = N->getOperand(0);
6464   SDValue Op1 = N->getOperand(1);
6465 
6466   // Only do this if the inner op has one use since this will just increases
6467   // register pressure for no benefit.
6468 
6469 
6470   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
6471       !VT.isVector() && VT != MVT::f64 &&
6472       ((VT != MVT::f16 && VT != MVT::i16) || Subtarget->hasMin3Max3_16())) {
6473     // max(max(a, b), c) -> max3(a, b, c)
6474     // min(min(a, b), c) -> min3(a, b, c)
6475     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
6476       SDLoc DL(N);
6477       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
6478                          DL,
6479                          N->getValueType(0),
6480                          Op0.getOperand(0),
6481                          Op0.getOperand(1),
6482                          Op1);
6483     }
6484 
6485     // Try commuted.
6486     // max(a, max(b, c)) -> max3(a, b, c)
6487     // min(a, min(b, c)) -> min3(a, b, c)
6488     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
6489       SDLoc DL(N);
6490       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
6491                          DL,
6492                          N->getValueType(0),
6493                          Op0,
6494                          Op1.getOperand(0),
6495                          Op1.getOperand(1));
6496     }
6497   }
6498 
6499   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
6500   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
6501     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
6502       return Med3;
6503   }
6504 
6505   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
6506     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
6507       return Med3;
6508   }
6509 
6510   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
6511   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
6512        (Opc == AMDGPUISD::FMIN_LEGACY &&
6513         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
6514       (VT == MVT::f32 || VT == MVT::f64 ||
6515        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
6516        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
6517       Op0.hasOneUse()) {
6518     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
6519       return Res;
6520   }
6521 
6522   return SDValue();
6523 }
6524 
6525 static bool isClampZeroToOne(SDValue A, SDValue B) {
6526   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
6527     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
6528       // FIXME: Should this be allowing -0.0?
6529       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
6530              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
6531     }
6532   }
6533 
6534   return false;
6535 }
6536 
6537 // FIXME: Should only worry about snans for version with chain.
6538 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
6539                                               DAGCombinerInfo &DCI) const {
6540   EVT VT = N->getValueType(0);
6541   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
6542   // NaNs. With a NaN input, the order of the operands may change the result.
6543 
6544   SelectionDAG &DAG = DCI.DAG;
6545   SDLoc SL(N);
6546 
6547   SDValue Src0 = N->getOperand(0);
6548   SDValue Src1 = N->getOperand(1);
6549   SDValue Src2 = N->getOperand(2);
6550 
6551   if (isClampZeroToOne(Src0, Src1)) {
6552     // const_a, const_b, x -> clamp is safe in all cases including signaling
6553     // nans.
6554     // FIXME: Should this be allowing -0.0?
6555     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
6556   }
6557 
6558   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
6559   // handling no dx10-clamp?
6560   if (Subtarget->enableDX10Clamp()) {
6561     // If NaNs is clamped to 0, we are free to reorder the inputs.
6562 
6563     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
6564       std::swap(Src0, Src1);
6565 
6566     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
6567       std::swap(Src1, Src2);
6568 
6569     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
6570       std::swap(Src0, Src1);
6571 
6572     if (isClampZeroToOne(Src1, Src2))
6573       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
6574   }
6575 
6576   return SDValue();
6577 }
6578 
6579 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
6580                                                  DAGCombinerInfo &DCI) const {
6581   SDValue Src0 = N->getOperand(0);
6582   SDValue Src1 = N->getOperand(1);
6583   if (Src0.isUndef() && Src1.isUndef())
6584     return DCI.DAG.getUNDEF(N->getValueType(0));
6585   return SDValue();
6586 }
6587 
6588 SDValue SITargetLowering::performExtractVectorEltCombine(
6589   SDNode *N, DAGCombinerInfo &DCI) const {
6590   SDValue Vec = N->getOperand(0);
6591 
6592   SelectionDAG &DAG = DCI.DAG;
6593   if ((Vec.getOpcode() == ISD::FNEG ||
6594        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
6595     SDLoc SL(N);
6596     EVT EltVT = N->getValueType(0);
6597     SDValue Idx = N->getOperand(1);
6598     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
6599                               Vec.getOperand(0), Idx);
6600     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
6601   }
6602 
6603   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
6604   //    =>
6605   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
6606   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
6607   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
6608   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
6609     SDLoc SL(N);
6610     EVT EltVT = N->getValueType(0);
6611     SDValue Idx = N->getOperand(1);
6612     unsigned Opc = Vec.getOpcode();
6613 
6614     switch(Opc) {
6615     default:
6616       return SDValue();
6617       // TODO: Support other binary operations.
6618     case ISD::FADD:
6619     case ISD::ADD:
6620     case ISD::UMIN:
6621     case ISD::UMAX:
6622     case ISD::SMIN:
6623     case ISD::SMAX:
6624     case ISD::FMAXNUM:
6625     case ISD::FMINNUM:
6626       return DAG.getNode(Opc, SL, EltVT,
6627                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
6628                                      Vec.getOperand(0), Idx),
6629                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
6630                                      Vec.getOperand(1), Idx));
6631     }
6632   }
6633   return SDValue();
6634 }
6635 
6636 static bool convertBuildVectorCastElt(SelectionDAG &DAG,
6637                                       SDValue &Lo, SDValue &Hi) {
6638   if (Hi.getOpcode() == ISD::BITCAST &&
6639       Hi.getOperand(0).getValueType() == MVT::f16 &&
6640       (isa<ConstantSDNode>(Lo) || Lo.isUndef())) {
6641     Lo = DAG.getNode(ISD::BITCAST, SDLoc(Lo), MVT::f16, Lo);
6642     Hi = Hi.getOperand(0);
6643     return true;
6644   }
6645 
6646   return false;
6647 }
6648 
6649 SDValue SITargetLowering::performBuildVectorCombine(
6650   SDNode *N, DAGCombinerInfo &DCI) const {
6651   SDLoc SL(N);
6652 
6653   if (!isTypeLegal(MVT::v2i16))
6654     return SDValue();
6655   SelectionDAG &DAG = DCI.DAG;
6656   EVT VT = N->getValueType(0);
6657 
6658   if (VT == MVT::v2i16) {
6659     SDValue Lo = N->getOperand(0);
6660     SDValue Hi = N->getOperand(1);
6661 
6662     // v2i16 build_vector (const|undef), (bitcast f16:$x)
6663     // -> bitcast (v2f16 build_vector const|undef, $x
6664     if (convertBuildVectorCastElt(DAG, Lo, Hi)) {
6665       SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Lo, Hi  });
6666       return DAG.getNode(ISD::BITCAST, SL, VT, NewVec);
6667     }
6668 
6669     if (convertBuildVectorCastElt(DAG, Hi, Lo)) {
6670       SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Hi, Lo  });
6671       return DAG.getNode(ISD::BITCAST, SL, VT, NewVec);
6672     }
6673   }
6674 
6675   return SDValue();
6676 }
6677 
6678 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
6679                                           const SDNode *N0,
6680                                           const SDNode *N1) const {
6681   EVT VT = N0->getValueType(0);
6682 
6683   // Only do this if we are not trying to support denormals. v_mad_f32 does not
6684   // support denormals ever.
6685   if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
6686       (VT == MVT::f16 && !Subtarget->hasFP16Denormals()))
6687     return ISD::FMAD;
6688 
6689   const TargetOptions &Options = DAG.getTarget().Options;
6690   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
6691        (N0->getFlags().hasAllowContract() &&
6692         N1->getFlags().hasAllowContract())) &&
6693       isFMAFasterThanFMulAndFAdd(VT)) {
6694     return ISD::FMA;
6695   }
6696 
6697   return 0;
6698 }
6699 
6700 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
6701                            EVT VT,
6702                            SDValue N0, SDValue N1, SDValue N2,
6703                            bool Signed) {
6704   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
6705   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
6706   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
6707   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
6708 }
6709 
6710 SDValue SITargetLowering::performAddCombine(SDNode *N,
6711                                             DAGCombinerInfo &DCI) const {
6712   SelectionDAG &DAG = DCI.DAG;
6713   EVT VT = N->getValueType(0);
6714   SDLoc SL(N);
6715   SDValue LHS = N->getOperand(0);
6716   SDValue RHS = N->getOperand(1);
6717 
6718   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
6719       && Subtarget->hasMad64_32() &&
6720       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
6721       VT.getScalarSizeInBits() <= 64) {
6722     if (LHS.getOpcode() != ISD::MUL)
6723       std::swap(LHS, RHS);
6724 
6725     SDValue MulLHS = LHS.getOperand(0);
6726     SDValue MulRHS = LHS.getOperand(1);
6727     SDValue AddRHS = RHS;
6728 
6729     // TODO: Maybe restrict if SGPR inputs.
6730     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
6731         numBitsUnsigned(MulRHS, DAG) <= 32) {
6732       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
6733       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
6734       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
6735       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
6736     }
6737 
6738     if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
6739       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
6740       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
6741       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
6742       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
6743     }
6744 
6745     return SDValue();
6746   }
6747 
6748   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
6749     return SDValue();
6750 
6751   // add x, zext (setcc) => addcarry x, 0, setcc
6752   // add x, sext (setcc) => subcarry x, 0, setcc
6753   unsigned Opc = LHS.getOpcode();
6754   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
6755       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
6756     std::swap(RHS, LHS);
6757 
6758   Opc = RHS.getOpcode();
6759   switch (Opc) {
6760   default: break;
6761   case ISD::ZERO_EXTEND:
6762   case ISD::SIGN_EXTEND:
6763   case ISD::ANY_EXTEND: {
6764     auto Cond = RHS.getOperand(0);
6765     if (!isBoolSGPR(Cond))
6766       break;
6767     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
6768     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
6769     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
6770     return DAG.getNode(Opc, SL, VTList, Args);
6771   }
6772   case ISD::ADDCARRY: {
6773     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
6774     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
6775     if (!C || C->getZExtValue() != 0) break;
6776     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
6777     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
6778   }
6779   }
6780   return SDValue();
6781 }
6782 
6783 SDValue SITargetLowering::performSubCombine(SDNode *N,
6784                                             DAGCombinerInfo &DCI) const {
6785   SelectionDAG &DAG = DCI.DAG;
6786   EVT VT = N->getValueType(0);
6787 
6788   if (VT != MVT::i32)
6789     return SDValue();
6790 
6791   SDLoc SL(N);
6792   SDValue LHS = N->getOperand(0);
6793   SDValue RHS = N->getOperand(1);
6794 
6795   unsigned Opc = LHS.getOpcode();
6796   if (Opc != ISD::SUBCARRY)
6797     std::swap(RHS, LHS);
6798 
6799   if (LHS.getOpcode() == ISD::SUBCARRY) {
6800     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
6801     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
6802     if (!C || C->getZExtValue() != 0)
6803       return SDValue();
6804     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
6805     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
6806   }
6807   return SDValue();
6808 }
6809 
6810 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
6811   DAGCombinerInfo &DCI) const {
6812 
6813   if (N->getValueType(0) != MVT::i32)
6814     return SDValue();
6815 
6816   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6817   if (!C || C->getZExtValue() != 0)
6818     return SDValue();
6819 
6820   SelectionDAG &DAG = DCI.DAG;
6821   SDValue LHS = N->getOperand(0);
6822 
6823   // addcarry (add x, y), 0, cc => addcarry x, y, cc
6824   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
6825   unsigned LHSOpc = LHS.getOpcode();
6826   unsigned Opc = N->getOpcode();
6827   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
6828       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
6829     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
6830     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
6831   }
6832   return SDValue();
6833 }
6834 
6835 SDValue SITargetLowering::performFAddCombine(SDNode *N,
6836                                              DAGCombinerInfo &DCI) const {
6837   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
6838     return SDValue();
6839 
6840   SelectionDAG &DAG = DCI.DAG;
6841   EVT VT = N->getValueType(0);
6842 
6843   SDLoc SL(N);
6844   SDValue LHS = N->getOperand(0);
6845   SDValue RHS = N->getOperand(1);
6846 
6847   // These should really be instruction patterns, but writing patterns with
6848   // source modiifiers is a pain.
6849 
6850   // fadd (fadd (a, a), b) -> mad 2.0, a, b
6851   if (LHS.getOpcode() == ISD::FADD) {
6852     SDValue A = LHS.getOperand(0);
6853     if (A == LHS.getOperand(1)) {
6854       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
6855       if (FusedOp != 0) {
6856         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
6857         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
6858       }
6859     }
6860   }
6861 
6862   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
6863   if (RHS.getOpcode() == ISD::FADD) {
6864     SDValue A = RHS.getOperand(0);
6865     if (A == RHS.getOperand(1)) {
6866       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
6867       if (FusedOp != 0) {
6868         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
6869         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
6870       }
6871     }
6872   }
6873 
6874   return SDValue();
6875 }
6876 
6877 SDValue SITargetLowering::performFSubCombine(SDNode *N,
6878                                              DAGCombinerInfo &DCI) const {
6879   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
6880     return SDValue();
6881 
6882   SelectionDAG &DAG = DCI.DAG;
6883   SDLoc SL(N);
6884   EVT VT = N->getValueType(0);
6885   assert(!VT.isVector());
6886 
6887   // Try to get the fneg to fold into the source modifier. This undoes generic
6888   // DAG combines and folds them into the mad.
6889   //
6890   // Only do this if we are not trying to support denormals. v_mad_f32 does
6891   // not support denormals ever.
6892   SDValue LHS = N->getOperand(0);
6893   SDValue RHS = N->getOperand(1);
6894   if (LHS.getOpcode() == ISD::FADD) {
6895     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
6896     SDValue A = LHS.getOperand(0);
6897     if (A == LHS.getOperand(1)) {
6898       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
6899       if (FusedOp != 0){
6900         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
6901         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
6902 
6903         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
6904       }
6905     }
6906   }
6907 
6908   if (RHS.getOpcode() == ISD::FADD) {
6909     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
6910 
6911     SDValue A = RHS.getOperand(0);
6912     if (A == RHS.getOperand(1)) {
6913       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
6914       if (FusedOp != 0){
6915         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
6916         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
6917       }
6918     }
6919   }
6920 
6921   return SDValue();
6922 }
6923 
6924 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
6925                                               DAGCombinerInfo &DCI) const {
6926   SelectionDAG &DAG = DCI.DAG;
6927   SDLoc SL(N);
6928 
6929   SDValue LHS = N->getOperand(0);
6930   SDValue RHS = N->getOperand(1);
6931   EVT VT = LHS.getValueType();
6932   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
6933 
6934   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
6935   if (!CRHS) {
6936     CRHS = dyn_cast<ConstantSDNode>(LHS);
6937     if (CRHS) {
6938       std::swap(LHS, RHS);
6939       CC = getSetCCSwappedOperands(CC);
6940     }
6941   }
6942 
6943   if (CRHS && VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
6944       isBoolSGPR(LHS.getOperand(0))) {
6945     // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
6946     // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
6947     // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
6948     // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
6949     if ((CRHS->isAllOnesValue() &&
6950          (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
6951         (CRHS->isNullValue() &&
6952          (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
6953       return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
6954                          DAG.getConstant(-1, SL, MVT::i1));
6955     if ((CRHS->isAllOnesValue() &&
6956          (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
6957         (CRHS->isNullValue() &&
6958          (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
6959       return LHS.getOperand(0);
6960   }
6961 
6962   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
6963                                            VT != MVT::f16))
6964     return SDValue();
6965 
6966   // Match isinf pattern
6967   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
6968   if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
6969     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
6970     if (!CRHS)
6971       return SDValue();
6972 
6973     const APFloat &APF = CRHS->getValueAPF();
6974     if (APF.isInfinity() && !APF.isNegative()) {
6975       unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
6976       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
6977                          DAG.getConstant(Mask, SL, MVT::i32));
6978     }
6979   }
6980 
6981   return SDValue();
6982 }
6983 
6984 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
6985                                                      DAGCombinerInfo &DCI) const {
6986   SelectionDAG &DAG = DCI.DAG;
6987   SDLoc SL(N);
6988   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
6989 
6990   SDValue Src = N->getOperand(0);
6991   SDValue Srl = N->getOperand(0);
6992   if (Srl.getOpcode() == ISD::ZERO_EXTEND)
6993     Srl = Srl.getOperand(0);
6994 
6995   // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
6996   if (Srl.getOpcode() == ISD::SRL) {
6997     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
6998     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
6999     // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
7000 
7001     if (const ConstantSDNode *C =
7002         dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
7003       Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
7004                                EVT(MVT::i32));
7005 
7006       unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
7007       if (SrcOffset < 32 && SrcOffset % 8 == 0) {
7008         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
7009                            MVT::f32, Srl);
7010       }
7011     }
7012   }
7013 
7014   APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
7015 
7016   KnownBits Known;
7017   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
7018                                         !DCI.isBeforeLegalizeOps());
7019   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7020   if (TLI.ShrinkDemandedConstant(Src, Demanded, TLO) ||
7021       TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
7022     DCI.CommitTargetLoweringOpt(TLO);
7023   }
7024 
7025   return SDValue();
7026 }
7027 
7028 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
7029                                             DAGCombinerInfo &DCI) const {
7030   switch (N->getOpcode()) {
7031   default:
7032     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
7033   case ISD::ADD:
7034     return performAddCombine(N, DCI);
7035   case ISD::SUB:
7036     return performSubCombine(N, DCI);
7037   case ISD::ADDCARRY:
7038   case ISD::SUBCARRY:
7039     return performAddCarrySubCarryCombine(N, DCI);
7040   case ISD::FADD:
7041     return performFAddCombine(N, DCI);
7042   case ISD::FSUB:
7043     return performFSubCombine(N, DCI);
7044   case ISD::SETCC:
7045     return performSetCCCombine(N, DCI);
7046   case ISD::FMAXNUM:
7047   case ISD::FMINNUM:
7048   case ISD::SMAX:
7049   case ISD::SMIN:
7050   case ISD::UMAX:
7051   case ISD::UMIN:
7052   case AMDGPUISD::FMIN_LEGACY:
7053   case AMDGPUISD::FMAX_LEGACY: {
7054     if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
7055         getTargetMachine().getOptLevel() > CodeGenOpt::None)
7056       return performMinMaxCombine(N, DCI);
7057     break;
7058   }
7059   case ISD::LOAD:
7060   case ISD::STORE:
7061   case ISD::ATOMIC_LOAD:
7062   case ISD::ATOMIC_STORE:
7063   case ISD::ATOMIC_CMP_SWAP:
7064   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
7065   case ISD::ATOMIC_SWAP:
7066   case ISD::ATOMIC_LOAD_ADD:
7067   case ISD::ATOMIC_LOAD_SUB:
7068   case ISD::ATOMIC_LOAD_AND:
7069   case ISD::ATOMIC_LOAD_OR:
7070   case ISD::ATOMIC_LOAD_XOR:
7071   case ISD::ATOMIC_LOAD_NAND:
7072   case ISD::ATOMIC_LOAD_MIN:
7073   case ISD::ATOMIC_LOAD_MAX:
7074   case ISD::ATOMIC_LOAD_UMIN:
7075   case ISD::ATOMIC_LOAD_UMAX:
7076   case AMDGPUISD::ATOMIC_INC:
7077   case AMDGPUISD::ATOMIC_DEC:
7078   case AMDGPUISD::ATOMIC_LOAD_FADD:
7079   case AMDGPUISD::ATOMIC_LOAD_FMIN:
7080   case AMDGPUISD::ATOMIC_LOAD_FMAX:  // TODO: Target mem intrinsics.
7081     if (DCI.isBeforeLegalize())
7082       break;
7083     return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
7084   case ISD::AND:
7085     return performAndCombine(N, DCI);
7086   case ISD::OR:
7087     return performOrCombine(N, DCI);
7088   case ISD::XOR:
7089     return performXorCombine(N, DCI);
7090   case ISD::ZERO_EXTEND:
7091     return performZeroExtendCombine(N, DCI);
7092   case AMDGPUISD::FP_CLASS:
7093     return performClassCombine(N, DCI);
7094   case ISD::FCANONICALIZE:
7095     return performFCanonicalizeCombine(N, DCI);
7096   case AMDGPUISD::FRACT:
7097   case AMDGPUISD::RCP:
7098   case AMDGPUISD::RSQ:
7099   case AMDGPUISD::RCP_LEGACY:
7100   case AMDGPUISD::RSQ_LEGACY:
7101   case AMDGPUISD::RSQ_CLAMP:
7102   case AMDGPUISD::LDEXP: {
7103     SDValue Src = N->getOperand(0);
7104     if (Src.isUndef())
7105       return Src;
7106     break;
7107   }
7108   case ISD::SINT_TO_FP:
7109   case ISD::UINT_TO_FP:
7110     return performUCharToFloatCombine(N, DCI);
7111   case AMDGPUISD::CVT_F32_UBYTE0:
7112   case AMDGPUISD::CVT_F32_UBYTE1:
7113   case AMDGPUISD::CVT_F32_UBYTE2:
7114   case AMDGPUISD::CVT_F32_UBYTE3:
7115     return performCvtF32UByteNCombine(N, DCI);
7116   case AMDGPUISD::FMED3:
7117     return performFMed3Combine(N, DCI);
7118   case AMDGPUISD::CVT_PKRTZ_F16_F32:
7119     return performCvtPkRTZCombine(N, DCI);
7120   case ISD::SCALAR_TO_VECTOR: {
7121     SelectionDAG &DAG = DCI.DAG;
7122     EVT VT = N->getValueType(0);
7123 
7124     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
7125     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
7126       SDLoc SL(N);
7127       SDValue Src = N->getOperand(0);
7128       EVT EltVT = Src.getValueType();
7129       if (EltVT == MVT::f16)
7130         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
7131 
7132       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
7133       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
7134     }
7135 
7136     break;
7137   }
7138   case ISD::EXTRACT_VECTOR_ELT:
7139     return performExtractVectorEltCombine(N, DCI);
7140   case ISD::BUILD_VECTOR:
7141     return performBuildVectorCombine(N, DCI);
7142   }
7143   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
7144 }
7145 
7146 /// Helper function for adjustWritemask
7147 static unsigned SubIdx2Lane(unsigned Idx) {
7148   switch (Idx) {
7149   default: return 0;
7150   case AMDGPU::sub0: return 0;
7151   case AMDGPU::sub1: return 1;
7152   case AMDGPU::sub2: return 2;
7153   case AMDGPU::sub3: return 3;
7154   }
7155 }
7156 
7157 /// Adjust the writemask of MIMG instructions
7158 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
7159                                           SelectionDAG &DAG) const {
7160   SDNode *Users[4] = { nullptr };
7161   unsigned Lane = 0;
7162   unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3;
7163   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
7164   unsigned NewDmask = 0;
7165   bool HasChain = Node->getNumValues() > 1;
7166 
7167   if (OldDmask == 0) {
7168     // These are folded out, but on the chance it happens don't assert.
7169     return Node;
7170   }
7171 
7172   // Try to figure out the used register components
7173   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
7174        I != E; ++I) {
7175 
7176     // Don't look at users of the chain.
7177     if (I.getUse().getResNo() != 0)
7178       continue;
7179 
7180     // Abort if we can't understand the usage
7181     if (!I->isMachineOpcode() ||
7182         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
7183       return Node;
7184 
7185     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
7186     // Note that subregs are packed, i.e. Lane==0 is the first bit set
7187     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
7188     // set, etc.
7189     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
7190 
7191     // Set which texture component corresponds to the lane.
7192     unsigned Comp;
7193     for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
7194       Comp = countTrailingZeros(Dmask);
7195       Dmask &= ~(1 << Comp);
7196     }
7197 
7198     // Abort if we have more than one user per component
7199     if (Users[Lane])
7200       return Node;
7201 
7202     Users[Lane] = *I;
7203     NewDmask |= 1 << Comp;
7204   }
7205 
7206   // Abort if there's no change
7207   if (NewDmask == OldDmask)
7208     return Node;
7209 
7210   unsigned BitsSet = countPopulation(NewDmask);
7211 
7212   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7213   int NewOpcode = AMDGPU::getMaskedMIMGOp(*TII,
7214                                           Node->getMachineOpcode(), BitsSet);
7215   assert(NewOpcode != -1 &&
7216          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
7217          "failed to find equivalent MIMG op");
7218 
7219   // Adjust the writemask in the node
7220   SmallVector<SDValue, 12> Ops;
7221   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
7222   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
7223   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
7224 
7225   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
7226 
7227   MVT ResultVT = BitsSet == 1 ?
7228     SVT : MVT::getVectorVT(SVT, BitsSet == 3 ? 4 : BitsSet);
7229   SDVTList NewVTList = HasChain ?
7230     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
7231 
7232 
7233   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
7234                                               NewVTList, Ops);
7235 
7236   if (HasChain) {
7237     // Update chain.
7238     NewNode->setMemRefs(Node->memoperands_begin(), Node->memoperands_end());
7239     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
7240   }
7241 
7242   if (BitsSet == 1) {
7243     assert(Node->hasNUsesOfValue(1, 0));
7244     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
7245                                       SDLoc(Node), Users[Lane]->getValueType(0),
7246                                       SDValue(NewNode, 0));
7247     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
7248     return nullptr;
7249   }
7250 
7251   // Update the users of the node with the new indices
7252   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
7253     SDNode *User = Users[i];
7254     if (!User)
7255       continue;
7256 
7257     SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
7258     DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
7259 
7260     switch (Idx) {
7261     default: break;
7262     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
7263     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
7264     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
7265     }
7266   }
7267 
7268   DAG.RemoveDeadNode(Node);
7269   return nullptr;
7270 }
7271 
7272 static bool isFrameIndexOp(SDValue Op) {
7273   if (Op.getOpcode() == ISD::AssertZext)
7274     Op = Op.getOperand(0);
7275 
7276   return isa<FrameIndexSDNode>(Op);
7277 }
7278 
7279 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
7280 /// with frame index operands.
7281 /// LLVM assumes that inputs are to these instructions are registers.
7282 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
7283                                                         SelectionDAG &DAG) const {
7284   if (Node->getOpcode() == ISD::CopyToReg) {
7285     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
7286     SDValue SrcVal = Node->getOperand(2);
7287 
7288     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
7289     // to try understanding copies to physical registers.
7290     if (SrcVal.getValueType() == MVT::i1 &&
7291         TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) {
7292       SDLoc SL(Node);
7293       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
7294       SDValue VReg = DAG.getRegister(
7295         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
7296 
7297       SDNode *Glued = Node->getGluedNode();
7298       SDValue ToVReg
7299         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
7300                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
7301       SDValue ToResultReg
7302         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
7303                            VReg, ToVReg.getValue(1));
7304       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
7305       DAG.RemoveDeadNode(Node);
7306       return ToResultReg.getNode();
7307     }
7308   }
7309 
7310   SmallVector<SDValue, 8> Ops;
7311   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
7312     if (!isFrameIndexOp(Node->getOperand(i))) {
7313       Ops.push_back(Node->getOperand(i));
7314       continue;
7315     }
7316 
7317     SDLoc DL(Node);
7318     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
7319                                      Node->getOperand(i).getValueType(),
7320                                      Node->getOperand(i)), 0));
7321   }
7322 
7323   return DAG.UpdateNodeOperands(Node, Ops);
7324 }
7325 
7326 /// Fold the instructions after selecting them.
7327 /// Returns null if users were already updated.
7328 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
7329                                           SelectionDAG &DAG) const {
7330   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7331   unsigned Opcode = Node->getMachineOpcode();
7332 
7333   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
7334       !TII->isGather4(Opcode) && !TII->isD16(Opcode)) {
7335     return adjustWritemask(Node, DAG);
7336   }
7337 
7338   if (Opcode == AMDGPU::INSERT_SUBREG ||
7339       Opcode == AMDGPU::REG_SEQUENCE) {
7340     legalizeTargetIndependentNode(Node, DAG);
7341     return Node;
7342   }
7343 
7344   switch (Opcode) {
7345   case AMDGPU::V_DIV_SCALE_F32:
7346   case AMDGPU::V_DIV_SCALE_F64: {
7347     // Satisfy the operand register constraint when one of the inputs is
7348     // undefined. Ordinarily each undef value will have its own implicit_def of
7349     // a vreg, so force these to use a single register.
7350     SDValue Src0 = Node->getOperand(0);
7351     SDValue Src1 = Node->getOperand(1);
7352     SDValue Src2 = Node->getOperand(2);
7353 
7354     if ((Src0.isMachineOpcode() &&
7355          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
7356         (Src0 == Src1 || Src0 == Src2))
7357       break;
7358 
7359     MVT VT = Src0.getValueType().getSimpleVT();
7360     const TargetRegisterClass *RC = getRegClassFor(VT);
7361 
7362     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
7363     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
7364 
7365     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
7366                                       UndefReg, Src0, SDValue());
7367 
7368     // src0 must be the same register as src1 or src2, even if the value is
7369     // undefined, so make sure we don't violate this constraint.
7370     if (Src0.isMachineOpcode() &&
7371         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
7372       if (Src1.isMachineOpcode() &&
7373           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
7374         Src0 = Src1;
7375       else if (Src2.isMachineOpcode() &&
7376                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
7377         Src0 = Src2;
7378       else {
7379         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
7380         Src0 = UndefReg;
7381         Src1 = UndefReg;
7382       }
7383     } else
7384       break;
7385 
7386     SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
7387     for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
7388       Ops.push_back(Node->getOperand(I));
7389 
7390     Ops.push_back(ImpDef.getValue(1));
7391     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
7392   }
7393   default:
7394     break;
7395   }
7396 
7397   return Node;
7398 }
7399 
7400 /// Assign the register class depending on the number of
7401 /// bits set in the writemask
7402 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
7403                                                      SDNode *Node) const {
7404   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7405 
7406   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
7407 
7408   if (TII->isVOP3(MI.getOpcode())) {
7409     // Make sure constant bus requirements are respected.
7410     TII->legalizeOperandsVOP3(MRI, MI);
7411     return;
7412   }
7413 
7414   // Replace unused atomics with the no return version.
7415   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
7416   if (NoRetAtomicOp != -1) {
7417     if (!Node->hasAnyUseOfValue(0)) {
7418       MI.setDesc(TII->get(NoRetAtomicOp));
7419       MI.RemoveOperand(0);
7420       return;
7421     }
7422 
7423     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
7424     // instruction, because the return type of these instructions is a vec2 of
7425     // the memory type, so it can be tied to the input operand.
7426     // This means these instructions always have a use, so we need to add a
7427     // special case to check if the atomic has only one extract_subreg use,
7428     // which itself has no uses.
7429     if ((Node->hasNUsesOfValue(1, 0) &&
7430          Node->use_begin()->isMachineOpcode() &&
7431          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
7432          !Node->use_begin()->hasAnyUseOfValue(0))) {
7433       unsigned Def = MI.getOperand(0).getReg();
7434 
7435       // Change this into a noret atomic.
7436       MI.setDesc(TII->get(NoRetAtomicOp));
7437       MI.RemoveOperand(0);
7438 
7439       // If we only remove the def operand from the atomic instruction, the
7440       // extract_subreg will be left with a use of a vreg without a def.
7441       // So we need to insert an implicit_def to avoid machine verifier
7442       // errors.
7443       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
7444               TII->get(AMDGPU::IMPLICIT_DEF), Def);
7445     }
7446     return;
7447   }
7448 }
7449 
7450 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
7451                               uint64_t Val) {
7452   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
7453   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
7454 }
7455 
7456 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
7457                                                 const SDLoc &DL,
7458                                                 SDValue Ptr) const {
7459   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7460 
7461   // Build the half of the subregister with the constants before building the
7462   // full 128-bit register. If we are building multiple resource descriptors,
7463   // this will allow CSEing of the 2-component register.
7464   const SDValue Ops0[] = {
7465     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
7466     buildSMovImm32(DAG, DL, 0),
7467     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
7468     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
7469     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
7470   };
7471 
7472   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
7473                                                 MVT::v2i32, Ops0), 0);
7474 
7475   // Combine the constants and the pointer.
7476   const SDValue Ops1[] = {
7477     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
7478     Ptr,
7479     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
7480     SubRegHi,
7481     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
7482   };
7483 
7484   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
7485 }
7486 
7487 /// Return a resource descriptor with the 'Add TID' bit enabled
7488 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
7489 ///        of the resource descriptor) to create an offset, which is added to
7490 ///        the resource pointer.
7491 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
7492                                            SDValue Ptr, uint32_t RsrcDword1,
7493                                            uint64_t RsrcDword2And3) const {
7494   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
7495   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
7496   if (RsrcDword1) {
7497     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
7498                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
7499                     0);
7500   }
7501 
7502   SDValue DataLo = buildSMovImm32(DAG, DL,
7503                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
7504   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
7505 
7506   const SDValue Ops[] = {
7507     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
7508     PtrLo,
7509     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
7510     PtrHi,
7511     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
7512     DataLo,
7513     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
7514     DataHi,
7515     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
7516   };
7517 
7518   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
7519 }
7520 
7521 //===----------------------------------------------------------------------===//
7522 //                         SI Inline Assembly Support
7523 //===----------------------------------------------------------------------===//
7524 
7525 std::pair<unsigned, const TargetRegisterClass *>
7526 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
7527                                                StringRef Constraint,
7528                                                MVT VT) const {
7529   if (!isTypeLegal(VT))
7530     return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
7531 
7532   if (Constraint.size() == 1) {
7533     switch (Constraint[0]) {
7534     case 's':
7535     case 'r':
7536       switch (VT.getSizeInBits()) {
7537       default:
7538         return std::make_pair(0U, nullptr);
7539       case 32:
7540       case 16:
7541         return std::make_pair(0U, &AMDGPU::SReg_32_XM0RegClass);
7542       case 64:
7543         return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
7544       case 128:
7545         return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
7546       case 256:
7547         return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
7548       case 512:
7549         return std::make_pair(0U, &AMDGPU::SReg_512RegClass);
7550       }
7551 
7552     case 'v':
7553       switch (VT.getSizeInBits()) {
7554       default:
7555         return std::make_pair(0U, nullptr);
7556       case 32:
7557       case 16:
7558         return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
7559       case 64:
7560         return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
7561       case 96:
7562         return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
7563       case 128:
7564         return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
7565       case 256:
7566         return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
7567       case 512:
7568         return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
7569       }
7570     }
7571   }
7572 
7573   if (Constraint.size() > 1) {
7574     const TargetRegisterClass *RC = nullptr;
7575     if (Constraint[1] == 'v') {
7576       RC = &AMDGPU::VGPR_32RegClass;
7577     } else if (Constraint[1] == 's') {
7578       RC = &AMDGPU::SGPR_32RegClass;
7579     }
7580 
7581     if (RC) {
7582       uint32_t Idx;
7583       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
7584       if (!Failed && Idx < RC->getNumRegs())
7585         return std::make_pair(RC->getRegister(Idx), RC);
7586     }
7587   }
7588   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
7589 }
7590 
7591 SITargetLowering::ConstraintType
7592 SITargetLowering::getConstraintType(StringRef Constraint) const {
7593   if (Constraint.size() == 1) {
7594     switch (Constraint[0]) {
7595     default: break;
7596     case 's':
7597     case 'v':
7598       return C_RegisterClass;
7599     }
7600   }
7601   return TargetLowering::getConstraintType(Constraint);
7602 }
7603 
7604 // Figure out which registers should be reserved for stack access. Only after
7605 // the function is legalized do we know all of the non-spill stack objects or if
7606 // calls are present.
7607 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
7608   MachineRegisterInfo &MRI = MF.getRegInfo();
7609   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
7610   const MachineFrameInfo &MFI = MF.getFrameInfo();
7611   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
7612   const SIRegisterInfo *TRI = ST.getRegisterInfo();
7613 
7614   if (Info->isEntryFunction()) {
7615     // Callable functions have fixed registers used for stack access.
7616     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
7617   }
7618 
7619   // We have to assume the SP is needed in case there are calls in the function
7620   // during lowering. Calls are only detected after the function is
7621   // lowered. We're about to reserve registers, so don't bother using it if we
7622   // aren't really going to use it.
7623   bool NeedSP = !Info->isEntryFunction() ||
7624     MFI.hasVarSizedObjects() ||
7625     MFI.hasCalls();
7626 
7627   if (NeedSP) {
7628     unsigned ReservedStackPtrOffsetReg = TRI->reservedStackPtrOffsetReg(MF);
7629     Info->setStackPtrOffsetReg(ReservedStackPtrOffsetReg);
7630 
7631     assert(Info->getStackPtrOffsetReg() != Info->getFrameOffsetReg());
7632     assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
7633                                Info->getStackPtrOffsetReg()));
7634     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
7635   }
7636 
7637   MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
7638   MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
7639   MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
7640                      Info->getScratchWaveOffsetReg());
7641 
7642   TargetLoweringBase::finalizeLowering(MF);
7643 }
7644 
7645 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
7646                                                      KnownBits &Known,
7647                                                      const APInt &DemandedElts,
7648                                                      const SelectionDAG &DAG,
7649                                                      unsigned Depth) const {
7650   TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
7651                                                 DAG, Depth);
7652 
7653   if (getSubtarget()->enableHugePrivateBuffer())
7654     return;
7655 
7656   // Technically it may be possible to have a dispatch with a single workitem
7657   // that uses the full private memory size, but that's not really useful. We
7658   // can't use vaddr in MUBUF instructions if we don't know the address
7659   // calculation won't overflow, so assume the sign bit is never set.
7660   Known.Zero.setHighBits(AssumeFrameIndexHighZeroBits);
7661 }
7662