1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIISelLowering.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 19 #include "SIDefines.h" 20 #include "SIInstrInfo.h" 21 #include "SIMachineFunctionInfo.h" 22 #include "SIRegisterInfo.h" 23 #include "Utils/AMDGPUBaseInfo.h" 24 #include "llvm/ADT/APFloat.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/BitVector.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/ADT/StringSwitch.h" 32 #include "llvm/ADT/Twine.h" 33 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/CallingConvLower.h" 36 #include "llvm/CodeGen/DAGCombine.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineLoopInfo.h" 44 #include "llvm/CodeGen/MachineMemOperand.h" 45 #include "llvm/CodeGen/MachineModuleInfo.h" 46 #include "llvm/CodeGen/MachineOperand.h" 47 #include "llvm/CodeGen/MachineRegisterInfo.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGNodes.h" 50 #include "llvm/CodeGen/TargetCallingConv.h" 51 #include "llvm/CodeGen/TargetRegisterInfo.h" 52 #include "llvm/CodeGen/ValueTypes.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/DiagnosticInfo.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GlobalValue.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CodeGen.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MachineValueType.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Target/TargetOptions.h" 74 #include <cassert> 75 #include <cmath> 76 #include <cstdint> 77 #include <iterator> 78 #include <tuple> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 #define DEBUG_TYPE "si-lower" 85 86 STATISTIC(NumTailCalls, "Number of tail calls"); 87 88 static cl::opt<bool> DisableLoopAlignment( 89 "amdgpu-disable-loop-alignment", 90 cl::desc("Do not align and prefetch loops"), 91 cl::init(false)); 92 93 static cl::opt<bool> VGPRReserveforSGPRSpill( 94 "amdgpu-reserve-vgpr-for-sgpr-spill", 95 cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true)); 96 97 static cl::opt<bool> UseDivergentRegisterIndexing( 98 "amdgpu-use-divergent-register-indexing", 99 cl::Hidden, 100 cl::desc("Use indirect register addressing for divergent indexes"), 101 cl::init(false)); 102 103 static bool hasFP32Denormals(const MachineFunction &MF) { 104 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 105 return Info->getMode().allFP32Denormals(); 106 } 107 108 static bool hasFP64FP16Denormals(const MachineFunction &MF) { 109 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 110 return Info->getMode().allFP64FP16Denormals(); 111 } 112 113 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 114 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 115 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 116 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 117 return AMDGPU::SGPR0 + Reg; 118 } 119 } 120 llvm_unreachable("Cannot allocate sgpr"); 121 } 122 123 SITargetLowering::SITargetLowering(const TargetMachine &TM, 124 const GCNSubtarget &STI) 125 : AMDGPUTargetLowering(TM, STI), 126 Subtarget(&STI) { 127 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 128 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 129 130 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 131 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 132 133 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); 134 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 135 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); 136 137 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 138 addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass); 139 140 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); 141 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); 142 143 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); 144 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); 145 146 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 147 addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass); 148 149 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); 150 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); 151 152 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); 153 addRegisterClass(MVT::v4f64, &AMDGPU::VReg_256RegClass); 154 155 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); 156 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); 157 158 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); 159 addRegisterClass(MVT::v8f64, &AMDGPU::VReg_512RegClass); 160 161 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); 162 addRegisterClass(MVT::v16f64, &AMDGPU::VReg_1024RegClass); 163 164 if (Subtarget->has16BitInsts()) { 165 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); 166 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); 167 168 // Unless there are also VOP3P operations, not operations are really legal. 169 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); 170 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); 171 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 172 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 173 } 174 175 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 176 addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass); 177 178 computeRegisterProperties(Subtarget->getRegisterInfo()); 179 180 // The boolean content concept here is too inflexible. Compares only ever 181 // really produce a 1-bit result. Any copy/extend from these will turn into a 182 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as 183 // it's what most targets use. 184 setBooleanContents(ZeroOrOneBooleanContent); 185 setBooleanVectorContents(ZeroOrOneBooleanContent); 186 187 // We need to custom lower vector stores from local memory 188 setOperationAction(ISD::LOAD, MVT::v2i32, Custom); 189 setOperationAction(ISD::LOAD, MVT::v3i32, Custom); 190 setOperationAction(ISD::LOAD, MVT::v4i32, Custom); 191 setOperationAction(ISD::LOAD, MVT::v5i32, Custom); 192 setOperationAction(ISD::LOAD, MVT::v8i32, Custom); 193 setOperationAction(ISD::LOAD, MVT::v16i32, Custom); 194 setOperationAction(ISD::LOAD, MVT::i1, Custom); 195 setOperationAction(ISD::LOAD, MVT::v32i32, Custom); 196 197 setOperationAction(ISD::STORE, MVT::v2i32, Custom); 198 setOperationAction(ISD::STORE, MVT::v3i32, Custom); 199 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 200 setOperationAction(ISD::STORE, MVT::v5i32, Custom); 201 setOperationAction(ISD::STORE, MVT::v8i32, Custom); 202 setOperationAction(ISD::STORE, MVT::v16i32, Custom); 203 setOperationAction(ISD::STORE, MVT::i1, Custom); 204 setOperationAction(ISD::STORE, MVT::v32i32, Custom); 205 206 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 207 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 208 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 209 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 210 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 211 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 212 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 213 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 214 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 215 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 216 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 217 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); 218 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); 219 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); 220 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); 221 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); 222 223 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); 224 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); 225 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); 226 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); 227 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); 228 229 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 230 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 231 232 setOperationAction(ISD::SELECT, MVT::i1, Promote); 233 setOperationAction(ISD::SELECT, MVT::i64, Custom); 234 setOperationAction(ISD::SELECT, MVT::f64, Promote); 235 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 236 237 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 238 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 239 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 240 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 241 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); 242 243 setOperationAction(ISD::SETCC, MVT::i1, Promote); 244 setOperationAction(ISD::SETCC, MVT::v2i1, Expand); 245 setOperationAction(ISD::SETCC, MVT::v4i1, Expand); 246 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 247 248 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); 249 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); 250 setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand); 251 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand); 252 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand); 253 setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand); 254 setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand); 255 setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand); 256 257 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); 258 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); 259 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 260 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); 261 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 262 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom); 263 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); 264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); 265 266 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 267 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 268 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 269 setOperationAction(ISD::BR_CC, MVT::i64, Expand); 270 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 271 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 272 273 setOperationAction(ISD::UADDO, MVT::i32, Legal); 274 setOperationAction(ISD::USUBO, MVT::i32, Legal); 275 276 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); 277 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); 278 279 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 280 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 281 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 282 283 #if 0 284 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); 285 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); 286 #endif 287 288 // We only support LOAD/STORE and vector manipulation ops for vectors 289 // with > 4 elements. 290 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, 291 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, 292 MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, 293 MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) { 294 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 295 switch (Op) { 296 case ISD::LOAD: 297 case ISD::STORE: 298 case ISD::BUILD_VECTOR: 299 case ISD::BITCAST: 300 case ISD::EXTRACT_VECTOR_ELT: 301 case ISD::INSERT_VECTOR_ELT: 302 case ISD::INSERT_SUBVECTOR: 303 case ISD::EXTRACT_SUBVECTOR: 304 case ISD::SCALAR_TO_VECTOR: 305 break; 306 case ISD::CONCAT_VECTORS: 307 setOperationAction(Op, VT, Custom); 308 break; 309 default: 310 setOperationAction(Op, VT, Expand); 311 break; 312 } 313 } 314 } 315 316 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 317 318 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 319 // is expanded to avoid having two separate loops in case the index is a VGPR. 320 321 // Most operations are naturally 32-bit vector operations. We only support 322 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 323 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 324 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 325 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 326 327 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 328 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 329 330 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 331 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 332 333 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 334 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 335 } 336 337 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { 338 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 339 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); 340 341 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 342 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); 343 344 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 345 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); 346 347 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 348 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); 349 } 350 351 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { 352 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 353 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); 354 355 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 356 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); 357 358 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 359 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); 360 361 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 362 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); 363 } 364 365 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { 366 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 367 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); 368 369 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 370 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); 371 372 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 373 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); 374 375 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 376 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); 377 } 378 379 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); 380 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); 381 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); 382 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); 383 384 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom); 385 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); 386 387 // Avoid stack access for these. 388 // TODO: Generalize to more vector types. 389 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); 390 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); 391 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 392 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 393 394 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 395 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 396 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom); 397 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); 398 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom); 399 400 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom); 401 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); 402 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom); 403 404 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom); 405 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom); 406 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 407 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 408 409 // Deal with vec3 vector operations when widened to vec4. 410 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom); 411 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom); 412 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom); 413 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom); 414 415 // Deal with vec5 vector operations when widened to vec8. 416 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom); 417 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom); 418 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom); 419 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom); 420 421 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 422 // and output demarshalling 423 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 424 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); 425 426 // We can't return success/failure, only the old value, 427 // let LLVM add the comparison 428 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); 429 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); 430 431 if (Subtarget->hasFlatAddressSpace()) { 432 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); 433 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); 434 } 435 436 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 437 438 // FIXME: This should be narrowed to i32, but that only happens if i64 is 439 // illegal. 440 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. 441 setOperationAction(ISD::BSWAP, MVT::i64, Legal); 442 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 443 444 // On SI this is s_memtime and s_memrealtime on VI. 445 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 446 setOperationAction(ISD::TRAP, MVT::Other, Custom); 447 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); 448 449 if (Subtarget->has16BitInsts()) { 450 setOperationAction(ISD::FPOW, MVT::f16, Promote); 451 setOperationAction(ISD::FLOG, MVT::f16, Custom); 452 setOperationAction(ISD::FEXP, MVT::f16, Custom); 453 setOperationAction(ISD::FLOG10, MVT::f16, Custom); 454 } 455 456 // v_mad_f32 does not support denormals. We report it as unconditionally 457 // legal, and the context where it is formed will disallow it when fp32 458 // denormals are enabled. 459 setOperationAction(ISD::FMAD, MVT::f32, Legal); 460 461 if (!Subtarget->hasBFI()) { 462 // fcopysign can be done in a single instruction with BFI. 463 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 464 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 465 } 466 467 if (!Subtarget->hasBCNT(32)) 468 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 469 470 if (!Subtarget->hasBCNT(64)) 471 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 472 473 if (Subtarget->hasFFBH()) 474 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 475 476 if (Subtarget->hasFFBL()) 477 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 478 479 // We only really have 32-bit BFE instructions (and 16-bit on VI). 480 // 481 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 482 // effort to match them now. We want this to be false for i64 cases when the 483 // extraction isn't restricted to the upper or lower half. Ideally we would 484 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 485 // span the midpoint are probably relatively rare, so don't worry about them 486 // for now. 487 if (Subtarget->hasBFE()) 488 setHasExtractBitsInsn(true); 489 490 setOperationAction(ISD::FMINNUM, MVT::f32, Custom); 491 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom); 492 setOperationAction(ISD::FMINNUM, MVT::f64, Custom); 493 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom); 494 495 496 // These are really only legal for ieee_mode functions. We should be avoiding 497 // them for functions that don't have ieee_mode enabled, so just say they are 498 // legal. 499 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 500 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 501 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 502 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 503 504 505 if (Subtarget->haveRoundOpsF64()) { 506 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 507 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 508 setOperationAction(ISD::FRINT, MVT::f64, Legal); 509 } else { 510 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 511 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 512 setOperationAction(ISD::FRINT, MVT::f64, Custom); 513 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 514 } 515 516 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 517 518 setOperationAction(ISD::FSIN, MVT::f32, Custom); 519 setOperationAction(ISD::FCOS, MVT::f32, Custom); 520 setOperationAction(ISD::FDIV, MVT::f32, Custom); 521 setOperationAction(ISD::FDIV, MVT::f64, Custom); 522 523 if (Subtarget->has16BitInsts()) { 524 setOperationAction(ISD::Constant, MVT::i16, Legal); 525 526 setOperationAction(ISD::SMIN, MVT::i16, Legal); 527 setOperationAction(ISD::SMAX, MVT::i16, Legal); 528 529 setOperationAction(ISD::UMIN, MVT::i16, Legal); 530 setOperationAction(ISD::UMAX, MVT::i16, Legal); 531 532 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); 533 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 534 535 setOperationAction(ISD::ROTR, MVT::i16, Promote); 536 setOperationAction(ISD::ROTL, MVT::i16, Promote); 537 538 setOperationAction(ISD::SDIV, MVT::i16, Promote); 539 setOperationAction(ISD::UDIV, MVT::i16, Promote); 540 setOperationAction(ISD::SREM, MVT::i16, Promote); 541 setOperationAction(ISD::UREM, MVT::i16, Promote); 542 543 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); 544 545 setOperationAction(ISD::CTTZ, MVT::i16, Promote); 546 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); 547 setOperationAction(ISD::CTLZ, MVT::i16, Promote); 548 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); 549 setOperationAction(ISD::CTPOP, MVT::i16, Promote); 550 551 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); 552 553 setOperationAction(ISD::BR_CC, MVT::i16, Expand); 554 555 setOperationAction(ISD::LOAD, MVT::i16, Custom); 556 557 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 558 559 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 560 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 561 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 562 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 563 564 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); 565 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); 566 567 // F16 - Constant Actions. 568 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 569 570 // F16 - Load/Store Actions. 571 setOperationAction(ISD::LOAD, MVT::f16, Promote); 572 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 573 setOperationAction(ISD::STORE, MVT::f16, Promote); 574 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 575 576 // F16 - VOP1 Actions. 577 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); 578 setOperationAction(ISD::FCOS, MVT::f16, Custom); 579 setOperationAction(ISD::FSIN, MVT::f16, Custom); 580 581 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom); 582 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom); 583 584 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); 585 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); 586 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); 587 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); 588 setOperationAction(ISD::FROUND, MVT::f16, Custom); 589 590 // F16 - VOP2 Actions. 591 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 592 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 593 594 setOperationAction(ISD::FDIV, MVT::f16, Custom); 595 596 // F16 - VOP3 Actions. 597 setOperationAction(ISD::FMA, MVT::f16, Legal); 598 if (STI.hasMadF16()) 599 setOperationAction(ISD::FMAD, MVT::f16, Legal); 600 601 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) { 602 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 603 switch (Op) { 604 case ISD::LOAD: 605 case ISD::STORE: 606 case ISD::BUILD_VECTOR: 607 case ISD::BITCAST: 608 case ISD::EXTRACT_VECTOR_ELT: 609 case ISD::INSERT_VECTOR_ELT: 610 case ISD::INSERT_SUBVECTOR: 611 case ISD::EXTRACT_SUBVECTOR: 612 case ISD::SCALAR_TO_VECTOR: 613 break; 614 case ISD::CONCAT_VECTORS: 615 setOperationAction(Op, VT, Custom); 616 break; 617 default: 618 setOperationAction(Op, VT, Expand); 619 break; 620 } 621 } 622 } 623 624 // v_perm_b32 can handle either of these. 625 setOperationAction(ISD::BSWAP, MVT::i16, Legal); 626 setOperationAction(ISD::BSWAP, MVT::v2i16, Legal); 627 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); 628 629 // XXX - Do these do anything? Vector constants turn into build_vector. 630 setOperationAction(ISD::Constant, MVT::v2i16, Legal); 631 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); 632 633 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal); 634 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal); 635 636 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 637 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 638 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 639 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 640 641 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 642 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 643 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 644 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 645 646 setOperationAction(ISD::AND, MVT::v2i16, Promote); 647 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 648 setOperationAction(ISD::OR, MVT::v2i16, Promote); 649 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 650 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 651 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 652 653 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 654 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 655 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 656 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 657 658 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 659 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 660 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 661 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 662 663 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); 664 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); 665 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); 666 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 667 668 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand); 669 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand); 670 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand); 671 672 if (!Subtarget->hasVOP3PInsts()) { 673 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); 674 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); 675 } 676 677 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 678 // This isn't really legal, but this avoids the legalizer unrolling it (and 679 // allows matching fneg (fabs x) patterns) 680 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 681 682 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom); 683 setOperationAction(ISD::FMINNUM, MVT::f16, Custom); 684 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal); 685 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal); 686 687 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom); 688 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom); 689 690 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand); 691 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand); 692 } 693 694 if (Subtarget->hasVOP3PInsts()) { 695 setOperationAction(ISD::ADD, MVT::v2i16, Legal); 696 setOperationAction(ISD::SUB, MVT::v2i16, Legal); 697 setOperationAction(ISD::MUL, MVT::v2i16, Legal); 698 setOperationAction(ISD::SHL, MVT::v2i16, Legal); 699 setOperationAction(ISD::SRL, MVT::v2i16, Legal); 700 setOperationAction(ISD::SRA, MVT::v2i16, Legal); 701 setOperationAction(ISD::SMIN, MVT::v2i16, Legal); 702 setOperationAction(ISD::UMIN, MVT::v2i16, Legal); 703 setOperationAction(ISD::SMAX, MVT::v2i16, Legal); 704 setOperationAction(ISD::UMAX, MVT::v2i16, Legal); 705 706 setOperationAction(ISD::FADD, MVT::v2f16, Legal); 707 setOperationAction(ISD::FMUL, MVT::v2f16, Legal); 708 setOperationAction(ISD::FMA, MVT::v2f16, Legal); 709 710 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal); 711 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal); 712 713 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal); 714 715 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 716 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 717 718 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom); 719 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 720 721 setOperationAction(ISD::SHL, MVT::v4i16, Custom); 722 setOperationAction(ISD::SRA, MVT::v4i16, Custom); 723 setOperationAction(ISD::SRL, MVT::v4i16, Custom); 724 setOperationAction(ISD::ADD, MVT::v4i16, Custom); 725 setOperationAction(ISD::SUB, MVT::v4i16, Custom); 726 setOperationAction(ISD::MUL, MVT::v4i16, Custom); 727 728 setOperationAction(ISD::SMIN, MVT::v4i16, Custom); 729 setOperationAction(ISD::SMAX, MVT::v4i16, Custom); 730 setOperationAction(ISD::UMIN, MVT::v4i16, Custom); 731 setOperationAction(ISD::UMAX, MVT::v4i16, Custom); 732 733 setOperationAction(ISD::FADD, MVT::v4f16, Custom); 734 setOperationAction(ISD::FMUL, MVT::v4f16, Custom); 735 setOperationAction(ISD::FMA, MVT::v4f16, Custom); 736 737 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom); 738 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom); 739 740 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom); 741 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom); 742 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom); 743 744 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 745 setOperationAction(ISD::SELECT, MVT::v4i16, Custom); 746 setOperationAction(ISD::SELECT, MVT::v4f16, Custom); 747 } 748 749 setOperationAction(ISD::FNEG, MVT::v4f16, Custom); 750 setOperationAction(ISD::FABS, MVT::v4f16, Custom); 751 752 if (Subtarget->has16BitInsts()) { 753 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 754 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 755 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 756 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 757 } else { 758 // Legalization hack. 759 setOperationAction(ISD::SELECT, MVT::v2i16, Custom); 760 setOperationAction(ISD::SELECT, MVT::v2f16, Custom); 761 762 setOperationAction(ISD::FNEG, MVT::v2f16, Custom); 763 setOperationAction(ISD::FABS, MVT::v2f16, Custom); 764 } 765 766 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) { 767 setOperationAction(ISD::SELECT, VT, Custom); 768 } 769 770 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 771 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); 772 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 773 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 774 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom); 775 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom); 776 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); 777 778 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom); 779 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom); 780 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom); 781 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom); 782 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom); 783 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 784 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom); 785 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 786 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 787 788 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 789 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); 790 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); 791 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom); 792 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom); 793 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom); 794 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 795 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 796 797 setTargetDAGCombine(ISD::ADD); 798 setTargetDAGCombine(ISD::ADDCARRY); 799 setTargetDAGCombine(ISD::SUB); 800 setTargetDAGCombine(ISD::SUBCARRY); 801 setTargetDAGCombine(ISD::FADD); 802 setTargetDAGCombine(ISD::FSUB); 803 setTargetDAGCombine(ISD::FMINNUM); 804 setTargetDAGCombine(ISD::FMAXNUM); 805 setTargetDAGCombine(ISD::FMINNUM_IEEE); 806 setTargetDAGCombine(ISD::FMAXNUM_IEEE); 807 setTargetDAGCombine(ISD::FMA); 808 setTargetDAGCombine(ISD::SMIN); 809 setTargetDAGCombine(ISD::SMAX); 810 setTargetDAGCombine(ISD::UMIN); 811 setTargetDAGCombine(ISD::UMAX); 812 setTargetDAGCombine(ISD::SETCC); 813 setTargetDAGCombine(ISD::AND); 814 setTargetDAGCombine(ISD::OR); 815 setTargetDAGCombine(ISD::XOR); 816 setTargetDAGCombine(ISD::SINT_TO_FP); 817 setTargetDAGCombine(ISD::UINT_TO_FP); 818 setTargetDAGCombine(ISD::FCANONICALIZE); 819 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); 820 setTargetDAGCombine(ISD::ZERO_EXTEND); 821 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 822 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 823 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 824 825 // All memory operations. Some folding on the pointer operand is done to help 826 // matching the constant offsets in the addressing modes. 827 setTargetDAGCombine(ISD::LOAD); 828 setTargetDAGCombine(ISD::STORE); 829 setTargetDAGCombine(ISD::ATOMIC_LOAD); 830 setTargetDAGCombine(ISD::ATOMIC_STORE); 831 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); 832 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 833 setTargetDAGCombine(ISD::ATOMIC_SWAP); 834 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); 835 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); 836 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); 837 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); 838 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); 839 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); 840 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); 841 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); 842 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); 843 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); 844 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD); 845 846 // FIXME: In other contexts we pretend this is a per-function property. 847 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); 848 849 setSchedulingPreference(Sched::RegPressure); 850 } 851 852 const GCNSubtarget *SITargetLowering::getSubtarget() const { 853 return Subtarget; 854 } 855 856 //===----------------------------------------------------------------------===// 857 // TargetLowering queries 858 //===----------------------------------------------------------------------===// 859 860 // v_mad_mix* support a conversion from f16 to f32. 861 // 862 // There is only one special case when denormals are enabled we don't currently, 863 // where this is OK to use. 864 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, 865 EVT DestVT, EVT SrcVT) const { 866 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 867 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 868 DestVT.getScalarType() == MVT::f32 && 869 SrcVT.getScalarType() == MVT::f16 && 870 // TODO: This probably only requires no input flushing? 871 !hasFP32Denormals(DAG.getMachineFunction()); 872 } 873 874 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 875 // SI has some legal vector types, but no legal vector operations. Say no 876 // shuffles are legal in order to prefer scalarizing some vector operations. 877 return false; 878 } 879 880 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 881 CallingConv::ID CC, 882 EVT VT) const { 883 if (CC == CallingConv::AMDGPU_KERNEL) 884 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 885 886 if (VT.isVector()) { 887 EVT ScalarVT = VT.getScalarType(); 888 unsigned Size = ScalarVT.getSizeInBits(); 889 if (Size == 32) 890 return ScalarVT.getSimpleVT(); 891 892 if (Size > 32) 893 return MVT::i32; 894 895 if (Size == 16 && Subtarget->has16BitInsts()) 896 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 897 } else if (VT.getSizeInBits() > 32) 898 return MVT::i32; 899 900 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 901 } 902 903 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 904 CallingConv::ID CC, 905 EVT VT) const { 906 if (CC == CallingConv::AMDGPU_KERNEL) 907 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 908 909 if (VT.isVector()) { 910 unsigned NumElts = VT.getVectorNumElements(); 911 EVT ScalarVT = VT.getScalarType(); 912 unsigned Size = ScalarVT.getSizeInBits(); 913 914 if (Size == 32) 915 return NumElts; 916 917 if (Size > 32) 918 return NumElts * ((Size + 31) / 32); 919 920 if (Size == 16 && Subtarget->has16BitInsts()) 921 return (NumElts + 1) / 2; 922 } else if (VT.getSizeInBits() > 32) 923 return (VT.getSizeInBits() + 31) / 32; 924 925 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 926 } 927 928 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 929 LLVMContext &Context, CallingConv::ID CC, 930 EVT VT, EVT &IntermediateVT, 931 unsigned &NumIntermediates, MVT &RegisterVT) const { 932 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 933 unsigned NumElts = VT.getVectorNumElements(); 934 EVT ScalarVT = VT.getScalarType(); 935 unsigned Size = ScalarVT.getSizeInBits(); 936 if (Size == 32) { 937 RegisterVT = ScalarVT.getSimpleVT(); 938 IntermediateVT = RegisterVT; 939 NumIntermediates = NumElts; 940 return NumIntermediates; 941 } 942 943 if (Size > 32) { 944 RegisterVT = MVT::i32; 945 IntermediateVT = RegisterVT; 946 NumIntermediates = NumElts * ((Size + 31) / 32); 947 return NumIntermediates; 948 } 949 950 // FIXME: We should fix the ABI to be the same on targets without 16-bit 951 // support, but unless we can properly handle 3-vectors, it will be still be 952 // inconsistent. 953 if (Size == 16 && Subtarget->has16BitInsts()) { 954 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 955 IntermediateVT = RegisterVT; 956 NumIntermediates = (NumElts + 1) / 2; 957 return NumIntermediates; 958 } 959 } 960 961 return TargetLowering::getVectorTypeBreakdownForCallingConv( 962 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 963 } 964 965 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) { 966 assert(DMaskLanes != 0); 967 968 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 969 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements()); 970 return EVT::getVectorVT(Ty->getContext(), 971 EVT::getEVT(VT->getElementType()), 972 NumElts); 973 } 974 975 return EVT::getEVT(Ty); 976 } 977 978 // Peek through TFE struct returns to only use the data size. 979 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) { 980 auto *ST = dyn_cast<StructType>(Ty); 981 if (!ST) 982 return memVTFromImageData(Ty, DMaskLanes); 983 984 // Some intrinsics return an aggregate type - special case to work out the 985 // correct memVT. 986 // 987 // Only limited forms of aggregate type currently expected. 988 if (ST->getNumContainedTypes() != 2 || 989 !ST->getContainedType(1)->isIntegerTy(32)) 990 return EVT(); 991 return memVTFromImageData(ST->getContainedType(0), DMaskLanes); 992 } 993 994 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 995 const CallInst &CI, 996 MachineFunction &MF, 997 unsigned IntrID) const { 998 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 999 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 1000 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 1001 (Intrinsic::ID)IntrID); 1002 if (Attr.hasFnAttribute(Attribute::ReadNone)) 1003 return false; 1004 1005 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1006 1007 if (RsrcIntr->IsImage) { 1008 Info.ptrVal = MFI->getImagePSV( 1009 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 1010 CI.getArgOperand(RsrcIntr->RsrcArg)); 1011 Info.align.reset(); 1012 } else { 1013 Info.ptrVal = MFI->getBufferPSV( 1014 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 1015 CI.getArgOperand(RsrcIntr->RsrcArg)); 1016 } 1017 1018 Info.flags = MachineMemOperand::MODereferenceable; 1019 if (Attr.hasFnAttribute(Attribute::ReadOnly)) { 1020 unsigned DMaskLanes = 4; 1021 1022 if (RsrcIntr->IsImage) { 1023 const AMDGPU::ImageDimIntrinsicInfo *Intr 1024 = AMDGPU::getImageDimIntrinsicInfo(IntrID); 1025 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1026 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 1027 1028 if (!BaseOpcode->Gather4) { 1029 // If this isn't a gather, we may have excess loaded elements in the 1030 // IR type. Check the dmask for the real number of elements loaded. 1031 unsigned DMask 1032 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); 1033 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1034 } 1035 1036 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes); 1037 } else 1038 Info.memVT = EVT::getEVT(CI.getType()); 1039 1040 // FIXME: What does alignment mean for an image? 1041 Info.opc = ISD::INTRINSIC_W_CHAIN; 1042 Info.flags |= MachineMemOperand::MOLoad; 1043 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) { 1044 Info.opc = ISD::INTRINSIC_VOID; 1045 1046 Type *DataTy = CI.getArgOperand(0)->getType(); 1047 if (RsrcIntr->IsImage) { 1048 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); 1049 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1050 Info.memVT = memVTFromImageData(DataTy, DMaskLanes); 1051 } else 1052 Info.memVT = EVT::getEVT(DataTy); 1053 1054 Info.flags |= MachineMemOperand::MOStore; 1055 } else { 1056 // Atomic 1057 Info.opc = ISD::INTRINSIC_W_CHAIN; 1058 Info.memVT = MVT::getVT(CI.getType()); 1059 Info.flags = MachineMemOperand::MOLoad | 1060 MachineMemOperand::MOStore | 1061 MachineMemOperand::MODereferenceable; 1062 1063 // XXX - Should this be volatile without known ordering? 1064 Info.flags |= MachineMemOperand::MOVolatile; 1065 } 1066 return true; 1067 } 1068 1069 switch (IntrID) { 1070 case Intrinsic::amdgcn_atomic_inc: 1071 case Intrinsic::amdgcn_atomic_dec: 1072 case Intrinsic::amdgcn_ds_ordered_add: 1073 case Intrinsic::amdgcn_ds_ordered_swap: 1074 case Intrinsic::amdgcn_ds_fadd: 1075 case Intrinsic::amdgcn_ds_fmin: 1076 case Intrinsic::amdgcn_ds_fmax: { 1077 Info.opc = ISD::INTRINSIC_W_CHAIN; 1078 Info.memVT = MVT::getVT(CI.getType()); 1079 Info.ptrVal = CI.getOperand(0); 1080 Info.align.reset(); 1081 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1082 1083 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 1084 if (!Vol->isZero()) 1085 Info.flags |= MachineMemOperand::MOVolatile; 1086 1087 return true; 1088 } 1089 case Intrinsic::amdgcn_buffer_atomic_fadd: { 1090 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1091 1092 Info.opc = ISD::INTRINSIC_VOID; 1093 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1094 Info.ptrVal = MFI->getBufferPSV( 1095 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 1096 CI.getArgOperand(1)); 1097 Info.align.reset(); 1098 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1099 1100 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 1101 if (!Vol || !Vol->isZero()) 1102 Info.flags |= MachineMemOperand::MOVolatile; 1103 1104 return true; 1105 } 1106 case Intrinsic::amdgcn_global_atomic_fadd: { 1107 Info.opc = ISD::INTRINSIC_VOID; 1108 Info.memVT = MVT::getVT(CI.getOperand(0)->getType() 1109 ->getPointerElementType()); 1110 Info.ptrVal = CI.getOperand(0); 1111 Info.align.reset(); 1112 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1113 1114 return true; 1115 } 1116 case Intrinsic::amdgcn_ds_append: 1117 case Intrinsic::amdgcn_ds_consume: { 1118 Info.opc = ISD::INTRINSIC_W_CHAIN; 1119 Info.memVT = MVT::getVT(CI.getType()); 1120 Info.ptrVal = CI.getOperand(0); 1121 Info.align.reset(); 1122 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1123 1124 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1125 if (!Vol->isZero()) 1126 Info.flags |= MachineMemOperand::MOVolatile; 1127 1128 return true; 1129 } 1130 case Intrinsic::amdgcn_ds_gws_init: 1131 case Intrinsic::amdgcn_ds_gws_barrier: 1132 case Intrinsic::amdgcn_ds_gws_sema_v: 1133 case Intrinsic::amdgcn_ds_gws_sema_br: 1134 case Intrinsic::amdgcn_ds_gws_sema_p: 1135 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1136 Info.opc = ISD::INTRINSIC_VOID; 1137 1138 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1139 Info.ptrVal = 1140 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1141 1142 // This is an abstract access, but we need to specify a type and size. 1143 Info.memVT = MVT::i32; 1144 Info.size = 4; 1145 Info.align = Align(4); 1146 1147 Info.flags = MachineMemOperand::MOStore; 1148 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1149 Info.flags = MachineMemOperand::MOLoad; 1150 return true; 1151 } 1152 default: 1153 return false; 1154 } 1155 } 1156 1157 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1158 SmallVectorImpl<Value*> &Ops, 1159 Type *&AccessTy) const { 1160 switch (II->getIntrinsicID()) { 1161 case Intrinsic::amdgcn_atomic_inc: 1162 case Intrinsic::amdgcn_atomic_dec: 1163 case Intrinsic::amdgcn_ds_ordered_add: 1164 case Intrinsic::amdgcn_ds_ordered_swap: 1165 case Intrinsic::amdgcn_ds_fadd: 1166 case Intrinsic::amdgcn_ds_fmin: 1167 case Intrinsic::amdgcn_ds_fmax: { 1168 Value *Ptr = II->getArgOperand(0); 1169 AccessTy = II->getType(); 1170 Ops.push_back(Ptr); 1171 return true; 1172 } 1173 default: 1174 return false; 1175 } 1176 } 1177 1178 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 1179 if (!Subtarget->hasFlatInstOffsets()) { 1180 // Flat instructions do not have offsets, and only have the register 1181 // address. 1182 return AM.BaseOffs == 0 && AM.Scale == 0; 1183 } 1184 1185 return AM.Scale == 0 && 1186 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1187 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, 1188 /*Signed=*/false)); 1189 } 1190 1191 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1192 if (Subtarget->hasFlatGlobalInsts()) 1193 return AM.Scale == 0 && 1194 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1195 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, 1196 /*Signed=*/true)); 1197 1198 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1199 // Assume the we will use FLAT for all global memory accesses 1200 // on VI. 1201 // FIXME: This assumption is currently wrong. On VI we still use 1202 // MUBUF instructions for the r + i addressing mode. As currently 1203 // implemented, the MUBUF instructions only work on buffer < 4GB. 1204 // It may be possible to support > 4GB buffers with MUBUF instructions, 1205 // by setting the stride value in the resource descriptor which would 1206 // increase the size limit to (stride * 4GB). However, this is risky, 1207 // because it has never been validated. 1208 return isLegalFlatAddressingMode(AM); 1209 } 1210 1211 return isLegalMUBUFAddressingMode(AM); 1212 } 1213 1214 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1215 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1216 // additionally can do r + r + i with addr64. 32-bit has more addressing 1217 // mode options. Depending on the resource constant, it can also do 1218 // (i64 r0) + (i32 r1) * (i14 i). 1219 // 1220 // Private arrays end up using a scratch buffer most of the time, so also 1221 // assume those use MUBUF instructions. Scratch loads / stores are currently 1222 // implemented as mubuf instructions with offen bit set, so slightly 1223 // different than the normal addr64. 1224 if (!isUInt<12>(AM.BaseOffs)) 1225 return false; 1226 1227 // FIXME: Since we can split immediate into soffset and immediate offset, 1228 // would it make sense to allow any immediate? 1229 1230 switch (AM.Scale) { 1231 case 0: // r + i or just i, depending on HasBaseReg. 1232 return true; 1233 case 1: 1234 return true; // We have r + r or r + i. 1235 case 2: 1236 if (AM.HasBaseReg) { 1237 // Reject 2 * r + r. 1238 return false; 1239 } 1240 1241 // Allow 2 * r as r + r 1242 // Or 2 * r + i is allowed as r + r + i. 1243 return true; 1244 default: // Don't allow n * r 1245 return false; 1246 } 1247 } 1248 1249 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1250 const AddrMode &AM, Type *Ty, 1251 unsigned AS, Instruction *I) const { 1252 // No global is ever allowed as a base. 1253 if (AM.BaseGV) 1254 return false; 1255 1256 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1257 return isLegalGlobalAddressingMode(AM); 1258 1259 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1260 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1261 AS == AMDGPUAS::BUFFER_FAT_POINTER) { 1262 // If the offset isn't a multiple of 4, it probably isn't going to be 1263 // correctly aligned. 1264 // FIXME: Can we get the real alignment here? 1265 if (AM.BaseOffs % 4 != 0) 1266 return isLegalMUBUFAddressingMode(AM); 1267 1268 // There are no SMRD extloads, so if we have to do a small type access we 1269 // will use a MUBUF load. 1270 // FIXME?: We also need to do this if unaligned, but we don't know the 1271 // alignment here. 1272 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1273 return isLegalGlobalAddressingMode(AM); 1274 1275 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1276 // SMRD instructions have an 8-bit, dword offset on SI. 1277 if (!isUInt<8>(AM.BaseOffs / 4)) 1278 return false; 1279 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1280 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1281 // in 8-bits, it can use a smaller encoding. 1282 if (!isUInt<32>(AM.BaseOffs / 4)) 1283 return false; 1284 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 1285 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1286 if (!isUInt<20>(AM.BaseOffs)) 1287 return false; 1288 } else 1289 llvm_unreachable("unhandled generation"); 1290 1291 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1292 return true; 1293 1294 if (AM.Scale == 1 && AM.HasBaseReg) 1295 return true; 1296 1297 return false; 1298 1299 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1300 return isLegalMUBUFAddressingMode(AM); 1301 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 1302 AS == AMDGPUAS::REGION_ADDRESS) { 1303 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1304 // field. 1305 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1306 // an 8-bit dword offset but we don't know the alignment here. 1307 if (!isUInt<16>(AM.BaseOffs)) 1308 return false; 1309 1310 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1311 return true; 1312 1313 if (AM.Scale == 1 && AM.HasBaseReg) 1314 return true; 1315 1316 return false; 1317 } else if (AS == AMDGPUAS::FLAT_ADDRESS || 1318 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1319 // For an unknown address space, this usually means that this is for some 1320 // reason being used for pure arithmetic, and not based on some addressing 1321 // computation. We don't have instructions that compute pointers with any 1322 // addressing modes, so treat them as having no offset like flat 1323 // instructions. 1324 return isLegalFlatAddressingMode(AM); 1325 } 1326 1327 // Assume a user alias of global for unknown address spaces. 1328 return isLegalGlobalAddressingMode(AM); 1329 } 1330 1331 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1332 const SelectionDAG &DAG) const { 1333 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1334 return (MemVT.getSizeInBits() <= 4 * 32); 1335 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1336 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1337 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1338 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1339 return (MemVT.getSizeInBits() <= 2 * 32); 1340 } 1341 return true; 1342 } 1343 1344 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1345 unsigned Size, unsigned AddrSpace, unsigned Align, 1346 MachineMemOperand::Flags Flags, bool *IsFast) const { 1347 if (IsFast) 1348 *IsFast = false; 1349 1350 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1351 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1352 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte 1353 // aligned, 8 byte access in a single operation using ds_read2/write2_b32 1354 // with adjacent offsets. 1355 bool AlignedBy4 = (Align % 4 == 0); 1356 if (IsFast) 1357 *IsFast = AlignedBy4; 1358 1359 return AlignedBy4; 1360 } 1361 1362 // FIXME: We have to be conservative here and assume that flat operations 1363 // will access scratch. If we had access to the IR function, then we 1364 // could determine if any private memory was used in the function. 1365 if (!Subtarget->hasUnalignedScratchAccess() && 1366 (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 1367 AddrSpace == AMDGPUAS::FLAT_ADDRESS)) { 1368 bool AlignedBy4 = Align >= 4; 1369 if (IsFast) 1370 *IsFast = AlignedBy4; 1371 1372 return AlignedBy4; 1373 } 1374 1375 if (Subtarget->hasUnalignedBufferAccess()) { 1376 // If we have an uniform constant load, it still requires using a slow 1377 // buffer instruction if unaligned. 1378 if (IsFast) { 1379 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so 1380 // 2-byte alignment is worse than 1 unless doing a 2-byte accesss. 1381 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 1382 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? 1383 Align >= 4 : Align != 2; 1384 } 1385 1386 return true; 1387 } 1388 1389 // Smaller than dword value must be aligned. 1390 if (Size < 32) 1391 return false; 1392 1393 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1394 // byte-address are ignored, thus forcing Dword alignment. 1395 // This applies to private, global, and constant memory. 1396 if (IsFast) 1397 *IsFast = true; 1398 1399 return Size >= 32 && Align >= 4; 1400 } 1401 1402 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1403 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, 1404 bool *IsFast) const { 1405 if (IsFast) 1406 *IsFast = false; 1407 1408 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, 1409 // which isn't a simple VT. 1410 // Until MVT is extended to handle this, simply check for the size and 1411 // rely on the condition below: allow accesses if the size is a multiple of 4. 1412 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && 1413 VT.getStoreSize() > 16)) { 1414 return false; 1415 } 1416 1417 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1418 Align, Flags, IsFast); 1419 } 1420 1421 EVT SITargetLowering::getOptimalMemOpType( 1422 const MemOp &Op, const AttributeList &FuncAttributes) const { 1423 // FIXME: Should account for address space here. 1424 1425 // The default fallback uses the private pointer size as a guess for a type to 1426 // use. Make sure we switch these to 64-bit accesses. 1427 1428 if (Op.size() >= 16 && 1429 Op.isDstAligned(Align(4))) // XXX: Should only do for global 1430 return MVT::v4i32; 1431 1432 if (Op.size() >= 8 && Op.isDstAligned(Align(4))) 1433 return MVT::v2i32; 1434 1435 // Use the default. 1436 return MVT::Other; 1437 } 1438 1439 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, 1440 unsigned DestAS) const { 1441 return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS); 1442 } 1443 1444 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1445 const MemSDNode *MemNode = cast<MemSDNode>(N); 1446 const Value *Ptr = MemNode->getMemOperand()->getValue(); 1447 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr); 1448 return I && I->getMetadata("amdgpu.noclobber"); 1449 } 1450 1451 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1452 unsigned DestAS) const { 1453 // Flat -> private/local is a simple truncate. 1454 // Flat -> global is no-op 1455 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1456 return true; 1457 1458 return isNoopAddrSpaceCast(SrcAS, DestAS); 1459 } 1460 1461 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1462 const MemSDNode *MemNode = cast<MemSDNode>(N); 1463 1464 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1465 } 1466 1467 TargetLoweringBase::LegalizeTypeAction 1468 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1469 int NumElts = VT.getVectorNumElements(); 1470 if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16)) 1471 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1472 return TargetLoweringBase::getPreferredVectorAction(VT); 1473 } 1474 1475 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1476 Type *Ty) const { 1477 // FIXME: Could be smarter if called for vector constants. 1478 return true; 1479 } 1480 1481 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1482 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1483 switch (Op) { 1484 case ISD::LOAD: 1485 case ISD::STORE: 1486 1487 // These operations are done with 32-bit instructions anyway. 1488 case ISD::AND: 1489 case ISD::OR: 1490 case ISD::XOR: 1491 case ISD::SELECT: 1492 // TODO: Extensions? 1493 return true; 1494 default: 1495 return false; 1496 } 1497 } 1498 1499 // SimplifySetCC uses this function to determine whether or not it should 1500 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1501 if (VT == MVT::i1 && Op == ISD::SETCC) 1502 return false; 1503 1504 return TargetLowering::isTypeDesirableForOp(Op, VT); 1505 } 1506 1507 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1508 const SDLoc &SL, 1509 SDValue Chain, 1510 uint64_t Offset) const { 1511 const DataLayout &DL = DAG.getDataLayout(); 1512 MachineFunction &MF = DAG.getMachineFunction(); 1513 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1514 1515 const ArgDescriptor *InputPtrReg; 1516 const TargetRegisterClass *RC; 1517 1518 std::tie(InputPtrReg, RC) 1519 = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1520 1521 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1522 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1523 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1524 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1525 1526 return DAG.getObjectPtrOffset(SL, BasePtr, Offset); 1527 } 1528 1529 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1530 const SDLoc &SL) const { 1531 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1532 FIRST_IMPLICIT); 1533 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1534 } 1535 1536 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1537 const SDLoc &SL, SDValue Val, 1538 bool Signed, 1539 const ISD::InputArg *Arg) const { 1540 // First, if it is a widened vector, narrow it. 1541 if (VT.isVector() && 1542 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1543 EVT NarrowedVT = 1544 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1545 VT.getVectorNumElements()); 1546 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1547 DAG.getConstant(0, SL, MVT::i32)); 1548 } 1549 1550 // Then convert the vector elements or scalar value. 1551 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1552 VT.bitsLT(MemVT)) { 1553 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1554 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1555 } 1556 1557 if (MemVT.isFloatingPoint()) 1558 Val = getFPExtOrFPRound(DAG, Val, SL, VT); 1559 else if (Signed) 1560 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1561 else 1562 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1563 1564 return Val; 1565 } 1566 1567 SDValue SITargetLowering::lowerKernargMemParameter( 1568 SelectionDAG &DAG, EVT VT, EVT MemVT, 1569 const SDLoc &SL, SDValue Chain, 1570 uint64_t Offset, unsigned Align, bool Signed, 1571 const ISD::InputArg *Arg) const { 1572 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1573 1574 // Try to avoid using an extload by loading earlier than the argument address, 1575 // and extracting the relevant bits. The load should hopefully be merged with 1576 // the previous argument. 1577 if (MemVT.getStoreSize() < 4 && Align < 4) { 1578 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1579 int64_t AlignDownOffset = alignDown(Offset, 4); 1580 int64_t OffsetDiff = Offset - AlignDownOffset; 1581 1582 EVT IntVT = MemVT.changeTypeToInteger(); 1583 1584 // TODO: If we passed in the base kernel offset we could have a better 1585 // alignment than 4, but we don't really need it. 1586 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1587 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4, 1588 MachineMemOperand::MODereferenceable | 1589 MachineMemOperand::MOInvariant); 1590 1591 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1592 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1593 1594 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1595 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1596 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1597 1598 1599 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1600 } 1601 1602 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 1603 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align, 1604 MachineMemOperand::MODereferenceable | 1605 MachineMemOperand::MOInvariant); 1606 1607 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 1608 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 1609 } 1610 1611 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 1612 const SDLoc &SL, SDValue Chain, 1613 const ISD::InputArg &Arg) const { 1614 MachineFunction &MF = DAG.getMachineFunction(); 1615 MachineFrameInfo &MFI = MF.getFrameInfo(); 1616 1617 if (Arg.Flags.isByVal()) { 1618 unsigned Size = Arg.Flags.getByValSize(); 1619 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 1620 return DAG.getFrameIndex(FrameIdx, MVT::i32); 1621 } 1622 1623 unsigned ArgOffset = VA.getLocMemOffset(); 1624 unsigned ArgSize = VA.getValVT().getStoreSize(); 1625 1626 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 1627 1628 // Create load nodes to retrieve arguments from the stack. 1629 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1630 SDValue ArgValue; 1631 1632 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 1633 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 1634 MVT MemVT = VA.getValVT(); 1635 1636 switch (VA.getLocInfo()) { 1637 default: 1638 break; 1639 case CCValAssign::BCvt: 1640 MemVT = VA.getLocVT(); 1641 break; 1642 case CCValAssign::SExt: 1643 ExtType = ISD::SEXTLOAD; 1644 break; 1645 case CCValAssign::ZExt: 1646 ExtType = ISD::ZEXTLOAD; 1647 break; 1648 case CCValAssign::AExt: 1649 ExtType = ISD::EXTLOAD; 1650 break; 1651 } 1652 1653 ArgValue = DAG.getExtLoad( 1654 ExtType, SL, VA.getLocVT(), Chain, FIN, 1655 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 1656 MemVT); 1657 return ArgValue; 1658 } 1659 1660 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 1661 const SIMachineFunctionInfo &MFI, 1662 EVT VT, 1663 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 1664 const ArgDescriptor *Reg; 1665 const TargetRegisterClass *RC; 1666 1667 std::tie(Reg, RC) = MFI.getPreloadedValue(PVID); 1668 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); 1669 } 1670 1671 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 1672 CallingConv::ID CallConv, 1673 ArrayRef<ISD::InputArg> Ins, 1674 BitVector &Skipped, 1675 FunctionType *FType, 1676 SIMachineFunctionInfo *Info) { 1677 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 1678 const ISD::InputArg *Arg = &Ins[I]; 1679 1680 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 1681 "vector type argument should have been split"); 1682 1683 // First check if it's a PS input addr. 1684 if (CallConv == CallingConv::AMDGPU_PS && 1685 !Arg->Flags.isInReg() && PSInputNum <= 15) { 1686 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 1687 1688 // Inconveniently only the first part of the split is marked as isSplit, 1689 // so skip to the end. We only want to increment PSInputNum once for the 1690 // entire split argument. 1691 if (Arg->Flags.isSplit()) { 1692 while (!Arg->Flags.isSplitEnd()) { 1693 assert((!Arg->VT.isVector() || 1694 Arg->VT.getScalarSizeInBits() == 16) && 1695 "unexpected vector split in ps argument type"); 1696 if (!SkipArg) 1697 Splits.push_back(*Arg); 1698 Arg = &Ins[++I]; 1699 } 1700 } 1701 1702 if (SkipArg) { 1703 // We can safely skip PS inputs. 1704 Skipped.set(Arg->getOrigArgIndex()); 1705 ++PSInputNum; 1706 continue; 1707 } 1708 1709 Info->markPSInputAllocated(PSInputNum); 1710 if (Arg->Used) 1711 Info->markPSInputEnabled(PSInputNum); 1712 1713 ++PSInputNum; 1714 } 1715 1716 Splits.push_back(*Arg); 1717 } 1718 } 1719 1720 // Allocate special inputs passed in VGPRs. 1721 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 1722 MachineFunction &MF, 1723 const SIRegisterInfo &TRI, 1724 SIMachineFunctionInfo &Info) const { 1725 const LLT S32 = LLT::scalar(32); 1726 MachineRegisterInfo &MRI = MF.getRegInfo(); 1727 1728 if (Info.hasWorkItemIDX()) { 1729 Register Reg = AMDGPU::VGPR0; 1730 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1731 1732 CCInfo.AllocateReg(Reg); 1733 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg)); 1734 } 1735 1736 if (Info.hasWorkItemIDY()) { 1737 Register Reg = AMDGPU::VGPR1; 1738 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1739 1740 CCInfo.AllocateReg(Reg); 1741 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 1742 } 1743 1744 if (Info.hasWorkItemIDZ()) { 1745 Register Reg = AMDGPU::VGPR2; 1746 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1747 1748 CCInfo.AllocateReg(Reg); 1749 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 1750 } 1751 } 1752 1753 // Try to allocate a VGPR at the end of the argument list, or if no argument 1754 // VGPRs are left allocating a stack slot. 1755 // If \p Mask is is given it indicates bitfield position in the register. 1756 // If \p Arg is given use it with new ]p Mask instead of allocating new. 1757 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 1758 ArgDescriptor Arg = ArgDescriptor()) { 1759 if (Arg.isSet()) 1760 return ArgDescriptor::createArg(Arg, Mask); 1761 1762 ArrayRef<MCPhysReg> ArgVGPRs 1763 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 1764 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 1765 if (RegIdx == ArgVGPRs.size()) { 1766 // Spill to stack required. 1767 int64_t Offset = CCInfo.AllocateStack(4, 4); 1768 1769 return ArgDescriptor::createStack(Offset, Mask); 1770 } 1771 1772 unsigned Reg = ArgVGPRs[RegIdx]; 1773 Reg = CCInfo.AllocateReg(Reg); 1774 assert(Reg != AMDGPU::NoRegister); 1775 1776 MachineFunction &MF = CCInfo.getMachineFunction(); 1777 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1778 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 1779 return ArgDescriptor::createRegister(Reg, Mask); 1780 } 1781 1782 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 1783 const TargetRegisterClass *RC, 1784 unsigned NumArgRegs) { 1785 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); 1786 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 1787 if (RegIdx == ArgSGPRs.size()) 1788 report_fatal_error("ran out of SGPRs for arguments"); 1789 1790 unsigned Reg = ArgSGPRs[RegIdx]; 1791 Reg = CCInfo.AllocateReg(Reg); 1792 assert(Reg != AMDGPU::NoRegister); 1793 1794 MachineFunction &MF = CCInfo.getMachineFunction(); 1795 MF.addLiveIn(Reg, RC); 1796 return ArgDescriptor::createRegister(Reg); 1797 } 1798 1799 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) { 1800 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 1801 } 1802 1803 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) { 1804 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 1805 } 1806 1807 /// Allocate implicit function VGPR arguments at the end of allocated user 1808 /// arguments. 1809 void SITargetLowering::allocateSpecialInputVGPRs( 1810 CCState &CCInfo, MachineFunction &MF, 1811 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 1812 const unsigned Mask = 0x3ff; 1813 ArgDescriptor Arg; 1814 1815 if (Info.hasWorkItemIDX()) { 1816 Arg = allocateVGPR32Input(CCInfo, Mask); 1817 Info.setWorkItemIDX(Arg); 1818 } 1819 1820 if (Info.hasWorkItemIDY()) { 1821 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 1822 Info.setWorkItemIDY(Arg); 1823 } 1824 1825 if (Info.hasWorkItemIDZ()) 1826 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 1827 } 1828 1829 /// Allocate implicit function VGPR arguments in fixed registers. 1830 void SITargetLowering::allocateSpecialInputVGPRsFixed( 1831 CCState &CCInfo, MachineFunction &MF, 1832 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 1833 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); 1834 if (!Reg) 1835 report_fatal_error("failed to allocated VGPR for implicit arguments"); 1836 1837 const unsigned Mask = 0x3ff; 1838 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 1839 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); 1840 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); 1841 } 1842 1843 void SITargetLowering::allocateSpecialInputSGPRs( 1844 CCState &CCInfo, 1845 MachineFunction &MF, 1846 const SIRegisterInfo &TRI, 1847 SIMachineFunctionInfo &Info) const { 1848 auto &ArgInfo = Info.getArgInfo(); 1849 1850 // TODO: Unify handling with private memory pointers. 1851 1852 if (Info.hasDispatchPtr()) 1853 ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo); 1854 1855 if (Info.hasQueuePtr()) 1856 ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo); 1857 1858 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a 1859 // constant offset from the kernarg segment. 1860 if (Info.hasImplicitArgPtr()) 1861 ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo); 1862 1863 if (Info.hasDispatchID()) 1864 ArgInfo.DispatchID = allocateSGPR64Input(CCInfo); 1865 1866 // flat_scratch_init is not applicable for non-kernel functions. 1867 1868 if (Info.hasWorkGroupIDX()) 1869 ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo); 1870 1871 if (Info.hasWorkGroupIDY()) 1872 ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo); 1873 1874 if (Info.hasWorkGroupIDZ()) 1875 ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo); 1876 } 1877 1878 // Allocate special inputs passed in user SGPRs. 1879 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 1880 MachineFunction &MF, 1881 const SIRegisterInfo &TRI, 1882 SIMachineFunctionInfo &Info) const { 1883 if (Info.hasImplicitBufferPtr()) { 1884 unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 1885 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 1886 CCInfo.AllocateReg(ImplicitBufferPtrReg); 1887 } 1888 1889 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 1890 if (Info.hasPrivateSegmentBuffer()) { 1891 unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 1892 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 1893 CCInfo.AllocateReg(PrivateSegmentBufferReg); 1894 } 1895 1896 if (Info.hasDispatchPtr()) { 1897 unsigned DispatchPtrReg = Info.addDispatchPtr(TRI); 1898 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 1899 CCInfo.AllocateReg(DispatchPtrReg); 1900 } 1901 1902 if (Info.hasQueuePtr()) { 1903 unsigned QueuePtrReg = Info.addQueuePtr(TRI); 1904 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 1905 CCInfo.AllocateReg(QueuePtrReg); 1906 } 1907 1908 if (Info.hasKernargSegmentPtr()) { 1909 MachineRegisterInfo &MRI = MF.getRegInfo(); 1910 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 1911 CCInfo.AllocateReg(InputPtrReg); 1912 1913 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 1914 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 1915 } 1916 1917 if (Info.hasDispatchID()) { 1918 unsigned DispatchIDReg = Info.addDispatchID(TRI); 1919 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 1920 CCInfo.AllocateReg(DispatchIDReg); 1921 } 1922 1923 if (Info.hasFlatScratchInit()) { 1924 unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI); 1925 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 1926 CCInfo.AllocateReg(FlatScratchInitReg); 1927 } 1928 1929 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 1930 // these from the dispatch pointer. 1931 } 1932 1933 // Allocate special input registers that are initialized per-wave. 1934 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 1935 MachineFunction &MF, 1936 SIMachineFunctionInfo &Info, 1937 CallingConv::ID CallConv, 1938 bool IsShader) const { 1939 if (Info.hasWorkGroupIDX()) { 1940 unsigned Reg = Info.addWorkGroupIDX(); 1941 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 1942 CCInfo.AllocateReg(Reg); 1943 } 1944 1945 if (Info.hasWorkGroupIDY()) { 1946 unsigned Reg = Info.addWorkGroupIDY(); 1947 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 1948 CCInfo.AllocateReg(Reg); 1949 } 1950 1951 if (Info.hasWorkGroupIDZ()) { 1952 unsigned Reg = Info.addWorkGroupIDZ(); 1953 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 1954 CCInfo.AllocateReg(Reg); 1955 } 1956 1957 if (Info.hasWorkGroupInfo()) { 1958 unsigned Reg = Info.addWorkGroupInfo(); 1959 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 1960 CCInfo.AllocateReg(Reg); 1961 } 1962 1963 if (Info.hasPrivateSegmentWaveByteOffset()) { 1964 // Scratch wave offset passed in system SGPR. 1965 unsigned PrivateSegmentWaveByteOffsetReg; 1966 1967 if (IsShader) { 1968 PrivateSegmentWaveByteOffsetReg = 1969 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 1970 1971 // This is true if the scratch wave byte offset doesn't have a fixed 1972 // location. 1973 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 1974 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 1975 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 1976 } 1977 } else 1978 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 1979 1980 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 1981 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 1982 } 1983 } 1984 1985 static void reservePrivateMemoryRegs(const TargetMachine &TM, 1986 MachineFunction &MF, 1987 const SIRegisterInfo &TRI, 1988 SIMachineFunctionInfo &Info) { 1989 // Now that we've figured out where the scratch register inputs are, see if 1990 // should reserve the arguments and use them directly. 1991 MachineFrameInfo &MFI = MF.getFrameInfo(); 1992 bool HasStackObjects = MFI.hasStackObjects(); 1993 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1994 1995 // Record that we know we have non-spill stack objects so we don't need to 1996 // check all stack objects later. 1997 if (HasStackObjects) 1998 Info.setHasNonSpillStackObjects(true); 1999 2000 // Everything live out of a block is spilled with fast regalloc, so it's 2001 // almost certain that spilling will be required. 2002 if (TM.getOptLevel() == CodeGenOpt::None) 2003 HasStackObjects = true; 2004 2005 // For now assume stack access is needed in any callee functions, so we need 2006 // the scratch registers to pass in. 2007 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 2008 2009 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 2010 // If we have stack objects, we unquestionably need the private buffer 2011 // resource. For the Code Object V2 ABI, this will be the first 4 user 2012 // SGPR inputs. We can reserve those and use them directly. 2013 2014 Register PrivateSegmentBufferReg = 2015 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 2016 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 2017 } else { 2018 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 2019 // We tentatively reserve the last registers (skipping the last registers 2020 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 2021 // we'll replace these with the ones immediately after those which were 2022 // really allocated. In the prologue copies will be inserted from the 2023 // argument to these reserved registers. 2024 2025 // Without HSA, relocations are used for the scratch pointer and the 2026 // buffer resource setup is always inserted in the prologue. Scratch wave 2027 // offset is still in an input SGPR. 2028 Info.setScratchRSrcReg(ReservedBufferReg); 2029 } 2030 2031 MachineRegisterInfo &MRI = MF.getRegInfo(); 2032 2033 // For entry functions we have to set up the stack pointer if we use it, 2034 // whereas non-entry functions get this "for free". This means there is no 2035 // intrinsic advantage to using S32 over S34 in cases where we do not have 2036 // calls but do need a frame pointer (i.e. if we are requested to have one 2037 // because frame pointer elimination is disabled). To keep things simple we 2038 // only ever use S32 as the call ABI stack pointer, and so using it does not 2039 // imply we need a separate frame pointer. 2040 // 2041 // Try to use s32 as the SP, but move it if it would interfere with input 2042 // arguments. This won't work with calls though. 2043 // 2044 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 2045 // registers. 2046 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 2047 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 2048 } else { 2049 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 2050 2051 if (MFI.hasCalls()) 2052 report_fatal_error("call in graphics shader with too many input SGPRs"); 2053 2054 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 2055 if (!MRI.isLiveIn(Reg)) { 2056 Info.setStackPtrOffsetReg(Reg); 2057 break; 2058 } 2059 } 2060 2061 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 2062 report_fatal_error("failed to find register for SP"); 2063 } 2064 2065 // hasFP should be accurate for entry functions even before the frame is 2066 // finalized, because it does not rely on the known stack size, only 2067 // properties like whether variable sized objects are present. 2068 if (ST.getFrameLowering()->hasFP(MF)) { 2069 Info.setFrameOffsetReg(AMDGPU::SGPR33); 2070 } 2071 } 2072 2073 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 2074 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2075 return !Info->isEntryFunction(); 2076 } 2077 2078 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 2079 2080 } 2081 2082 void SITargetLowering::insertCopiesSplitCSR( 2083 MachineBasicBlock *Entry, 2084 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2085 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2086 2087 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 2088 if (!IStart) 2089 return; 2090 2091 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2092 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 2093 MachineBasicBlock::iterator MBBI = Entry->begin(); 2094 for (const MCPhysReg *I = IStart; *I; ++I) { 2095 const TargetRegisterClass *RC = nullptr; 2096 if (AMDGPU::SReg_64RegClass.contains(*I)) 2097 RC = &AMDGPU::SGPR_64RegClass; 2098 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2099 RC = &AMDGPU::SGPR_32RegClass; 2100 else 2101 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2102 2103 Register NewVR = MRI->createVirtualRegister(RC); 2104 // Create copy from CSR to a virtual register. 2105 Entry->addLiveIn(*I); 2106 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2107 .addReg(*I); 2108 2109 // Insert the copy-back instructions right before the terminator. 2110 for (auto *Exit : Exits) 2111 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2112 TII->get(TargetOpcode::COPY), *I) 2113 .addReg(NewVR); 2114 } 2115 } 2116 2117 SDValue SITargetLowering::LowerFormalArguments( 2118 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2119 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2120 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2121 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2122 2123 MachineFunction &MF = DAG.getMachineFunction(); 2124 const Function &Fn = MF.getFunction(); 2125 FunctionType *FType = MF.getFunction().getFunctionType(); 2126 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2127 2128 if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) { 2129 DiagnosticInfoUnsupported NoGraphicsHSA( 2130 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2131 DAG.getContext()->diagnose(NoGraphicsHSA); 2132 return DAG.getEntryNode(); 2133 } 2134 2135 SmallVector<ISD::InputArg, 16> Splits; 2136 SmallVector<CCValAssign, 16> ArgLocs; 2137 BitVector Skipped(Ins.size()); 2138 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2139 *DAG.getContext()); 2140 2141 bool IsShader = AMDGPU::isShader(CallConv); 2142 bool IsKernel = AMDGPU::isKernel(CallConv); 2143 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2144 2145 if (IsShader) { 2146 processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2147 2148 // At least one interpolation mode must be enabled or else the GPU will 2149 // hang. 2150 // 2151 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2152 // set PSInputAddr, the user wants to enable some bits after the compilation 2153 // based on run-time states. Since we can't know what the final PSInputEna 2154 // will look like, so we shouldn't do anything here and the user should take 2155 // responsibility for the correct programming. 2156 // 2157 // Otherwise, the following restrictions apply: 2158 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2159 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2160 // enabled too. 2161 if (CallConv == CallingConv::AMDGPU_PS) { 2162 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2163 ((Info->getPSInputAddr() & 0xF) == 0 && 2164 Info->isPSInputAllocated(11))) { 2165 CCInfo.AllocateReg(AMDGPU::VGPR0); 2166 CCInfo.AllocateReg(AMDGPU::VGPR1); 2167 Info->markPSInputAllocated(0); 2168 Info->markPSInputEnabled(0); 2169 } 2170 if (Subtarget->isAmdPalOS()) { 2171 // For isAmdPalOS, the user does not enable some bits after compilation 2172 // based on run-time states; the register values being generated here are 2173 // the final ones set in hardware. Therefore we need to apply the 2174 // workaround to PSInputAddr and PSInputEnable together. (The case where 2175 // a bit is set in PSInputAddr but not PSInputEnable is where the 2176 // frontend set up an input arg for a particular interpolation mode, but 2177 // nothing uses that input arg. Really we should have an earlier pass 2178 // that removes such an arg.) 2179 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2180 if ((PsInputBits & 0x7F) == 0 || 2181 ((PsInputBits & 0xF) == 0 && 2182 (PsInputBits >> 11 & 1))) 2183 Info->markPSInputEnabled( 2184 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 2185 } 2186 } 2187 2188 assert(!Info->hasDispatchPtr() && 2189 !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && 2190 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2191 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && 2192 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && 2193 !Info->hasWorkItemIDZ()); 2194 } else if (IsKernel) { 2195 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2196 } else { 2197 Splits.append(Ins.begin(), Ins.end()); 2198 } 2199 2200 if (IsEntryFunc) { 2201 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2202 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2203 } else { 2204 // For the fixed ABI, pass workitem IDs in the last argument register. 2205 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 2206 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 2207 } 2208 2209 if (IsKernel) { 2210 analyzeFormalArgumentsCompute(CCInfo, Ins); 2211 } else { 2212 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2213 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2214 } 2215 2216 SmallVector<SDValue, 16> Chains; 2217 2218 // FIXME: This is the minimum kernel argument alignment. We should improve 2219 // this to the maximum alignment of the arguments. 2220 // 2221 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2222 // kern arg offset. 2223 const unsigned KernelArgBaseAlign = 16; 2224 2225 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2226 const ISD::InputArg &Arg = Ins[i]; 2227 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2228 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2229 continue; 2230 } 2231 2232 CCValAssign &VA = ArgLocs[ArgIdx++]; 2233 MVT VT = VA.getLocVT(); 2234 2235 if (IsEntryFunc && VA.isMemLoc()) { 2236 VT = Ins[i].VT; 2237 EVT MemVT = VA.getLocVT(); 2238 2239 const uint64_t Offset = VA.getLocMemOffset(); 2240 unsigned Align = MinAlign(KernelArgBaseAlign, Offset); 2241 2242 SDValue Arg = lowerKernargMemParameter( 2243 DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]); 2244 Chains.push_back(Arg.getValue(1)); 2245 2246 auto *ParamTy = 2247 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2248 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2249 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2250 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2251 // On SI local pointers are just offsets into LDS, so they are always 2252 // less than 16-bits. On CI and newer they could potentially be 2253 // real pointers, so we can't guarantee their size. 2254 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 2255 DAG.getValueType(MVT::i16)); 2256 } 2257 2258 InVals.push_back(Arg); 2259 continue; 2260 } else if (!IsEntryFunc && VA.isMemLoc()) { 2261 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2262 InVals.push_back(Val); 2263 if (!Arg.Flags.isByVal()) 2264 Chains.push_back(Val.getValue(1)); 2265 continue; 2266 } 2267 2268 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2269 2270 Register Reg = VA.getLocReg(); 2271 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2272 EVT ValVT = VA.getValVT(); 2273 2274 Reg = MF.addLiveIn(Reg, RC); 2275 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2276 2277 if (Arg.Flags.isSRet()) { 2278 // The return object should be reasonably addressable. 2279 2280 // FIXME: This helps when the return is a real sret. If it is a 2281 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2282 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2283 unsigned NumBits 2284 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 2285 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2286 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 2287 } 2288 2289 // If this is an 8 or 16-bit value, it is really passed promoted 2290 // to 32 bits. Insert an assert[sz]ext to capture this, then 2291 // truncate to the right size. 2292 switch (VA.getLocInfo()) { 2293 case CCValAssign::Full: 2294 break; 2295 case CCValAssign::BCvt: 2296 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2297 break; 2298 case CCValAssign::SExt: 2299 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 2300 DAG.getValueType(ValVT)); 2301 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2302 break; 2303 case CCValAssign::ZExt: 2304 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2305 DAG.getValueType(ValVT)); 2306 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2307 break; 2308 case CCValAssign::AExt: 2309 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2310 break; 2311 default: 2312 llvm_unreachable("Unknown loc info!"); 2313 } 2314 2315 InVals.push_back(Val); 2316 } 2317 2318 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 2319 // Special inputs come after user arguments. 2320 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 2321 } 2322 2323 // Start adding system SGPRs. 2324 if (IsEntryFunc) { 2325 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader); 2326 } else { 2327 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2328 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2329 } 2330 2331 auto &ArgUsageInfo = 2332 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2333 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 2334 2335 unsigned StackArgSize = CCInfo.getNextStackOffset(); 2336 Info->setBytesInStackArgArea(StackArgSize); 2337 2338 return Chains.empty() ? Chain : 2339 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2340 } 2341 2342 // TODO: If return values can't fit in registers, we should return as many as 2343 // possible in registers before passing on stack. 2344 bool SITargetLowering::CanLowerReturn( 2345 CallingConv::ID CallConv, 2346 MachineFunction &MF, bool IsVarArg, 2347 const SmallVectorImpl<ISD::OutputArg> &Outs, 2348 LLVMContext &Context) const { 2349 // Replacing returns with sret/stack usage doesn't make sense for shaders. 2350 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 2351 // for shaders. Vector types should be explicitly handled by CC. 2352 if (AMDGPU::isEntryFunctionCC(CallConv)) 2353 return true; 2354 2355 SmallVector<CCValAssign, 16> RVLocs; 2356 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2357 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); 2358 } 2359 2360 SDValue 2361 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2362 bool isVarArg, 2363 const SmallVectorImpl<ISD::OutputArg> &Outs, 2364 const SmallVectorImpl<SDValue> &OutVals, 2365 const SDLoc &DL, SelectionDAG &DAG) const { 2366 MachineFunction &MF = DAG.getMachineFunction(); 2367 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2368 2369 if (AMDGPU::isKernel(CallConv)) { 2370 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 2371 OutVals, DL, DAG); 2372 } 2373 2374 bool IsShader = AMDGPU::isShader(CallConv); 2375 2376 Info->setIfReturnsVoid(Outs.empty()); 2377 bool IsWaveEnd = Info->returnsVoid() && IsShader; 2378 2379 // CCValAssign - represent the assignment of the return value to a location. 2380 SmallVector<CCValAssign, 48> RVLocs; 2381 SmallVector<ISD::OutputArg, 48> Splits; 2382 2383 // CCState - Info about the registers and stack slots. 2384 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2385 *DAG.getContext()); 2386 2387 // Analyze outgoing return values. 2388 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 2389 2390 SDValue Flag; 2391 SmallVector<SDValue, 48> RetOps; 2392 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2393 2394 // Add return address for callable functions. 2395 if (!Info->isEntryFunction()) { 2396 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2397 SDValue ReturnAddrReg = CreateLiveInRegister( 2398 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 2399 2400 SDValue ReturnAddrVirtualReg = DAG.getRegister( 2401 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass), 2402 MVT::i64); 2403 Chain = 2404 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag); 2405 Flag = Chain.getValue(1); 2406 RetOps.push_back(ReturnAddrVirtualReg); 2407 } 2408 2409 // Copy the result values into the output registers. 2410 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 2411 ++I, ++RealRVLocIdx) { 2412 CCValAssign &VA = RVLocs[I]; 2413 assert(VA.isRegLoc() && "Can only return in registers!"); 2414 // TODO: Partially return in registers if return values don't fit. 2415 SDValue Arg = OutVals[RealRVLocIdx]; 2416 2417 // Copied from other backends. 2418 switch (VA.getLocInfo()) { 2419 case CCValAssign::Full: 2420 break; 2421 case CCValAssign::BCvt: 2422 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2423 break; 2424 case CCValAssign::SExt: 2425 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2426 break; 2427 case CCValAssign::ZExt: 2428 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2429 break; 2430 case CCValAssign::AExt: 2431 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2432 break; 2433 default: 2434 llvm_unreachable("Unknown loc info!"); 2435 } 2436 2437 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 2438 Flag = Chain.getValue(1); 2439 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2440 } 2441 2442 // FIXME: Does sret work properly? 2443 if (!Info->isEntryFunction()) { 2444 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2445 const MCPhysReg *I = 2446 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 2447 if (I) { 2448 for (; *I; ++I) { 2449 if (AMDGPU::SReg_64RegClass.contains(*I)) 2450 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 2451 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2452 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 2453 else 2454 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2455 } 2456 } 2457 } 2458 2459 // Update chain and glue. 2460 RetOps[0] = Chain; 2461 if (Flag.getNode()) 2462 RetOps.push_back(Flag); 2463 2464 unsigned Opc = AMDGPUISD::ENDPGM; 2465 if (!IsWaveEnd) 2466 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; 2467 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 2468 } 2469 2470 SDValue SITargetLowering::LowerCallResult( 2471 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2472 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2473 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 2474 SDValue ThisVal) const { 2475 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 2476 2477 // Assign locations to each value returned by this call. 2478 SmallVector<CCValAssign, 16> RVLocs; 2479 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2480 *DAG.getContext()); 2481 CCInfo.AnalyzeCallResult(Ins, RetCC); 2482 2483 // Copy all of the result registers out of their specified physreg. 2484 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2485 CCValAssign VA = RVLocs[i]; 2486 SDValue Val; 2487 2488 if (VA.isRegLoc()) { 2489 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 2490 Chain = Val.getValue(1); 2491 InFlag = Val.getValue(2); 2492 } else if (VA.isMemLoc()) { 2493 report_fatal_error("TODO: return values in memory"); 2494 } else 2495 llvm_unreachable("unknown argument location type"); 2496 2497 switch (VA.getLocInfo()) { 2498 case CCValAssign::Full: 2499 break; 2500 case CCValAssign::BCvt: 2501 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2502 break; 2503 case CCValAssign::ZExt: 2504 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2505 DAG.getValueType(VA.getValVT())); 2506 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2507 break; 2508 case CCValAssign::SExt: 2509 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2510 DAG.getValueType(VA.getValVT())); 2511 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2512 break; 2513 case CCValAssign::AExt: 2514 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2515 break; 2516 default: 2517 llvm_unreachable("Unknown loc info!"); 2518 } 2519 2520 InVals.push_back(Val); 2521 } 2522 2523 return Chain; 2524 } 2525 2526 // Add code to pass special inputs required depending on used features separate 2527 // from the explicit user arguments present in the IR. 2528 void SITargetLowering::passSpecialInputs( 2529 CallLoweringInfo &CLI, 2530 CCState &CCInfo, 2531 const SIMachineFunctionInfo &Info, 2532 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 2533 SmallVectorImpl<SDValue> &MemOpChains, 2534 SDValue Chain) const { 2535 // If we don't have a call site, this was a call inserted by 2536 // legalization. These can never use special inputs. 2537 if (!CLI.CB) 2538 return; 2539 2540 SelectionDAG &DAG = CLI.DAG; 2541 const SDLoc &DL = CLI.DL; 2542 2543 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2544 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 2545 2546 const AMDGPUFunctionArgInfo *CalleeArgInfo 2547 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 2548 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { 2549 auto &ArgUsageInfo = 2550 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2551 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 2552 } 2553 2554 // TODO: Unify with private memory register handling. This is complicated by 2555 // the fact that at least in kernels, the input argument is not necessarily 2556 // in the same location as the input. 2557 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 2558 AMDGPUFunctionArgInfo::DISPATCH_PTR, 2559 AMDGPUFunctionArgInfo::QUEUE_PTR, 2560 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 2561 AMDGPUFunctionArgInfo::DISPATCH_ID, 2562 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 2563 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 2564 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 2565 }; 2566 2567 for (auto InputID : InputRegs) { 2568 const ArgDescriptor *OutgoingArg; 2569 const TargetRegisterClass *ArgRC; 2570 2571 std::tie(OutgoingArg, ArgRC) = CalleeArgInfo->getPreloadedValue(InputID); 2572 if (!OutgoingArg) 2573 continue; 2574 2575 const ArgDescriptor *IncomingArg; 2576 const TargetRegisterClass *IncomingArgRC; 2577 std::tie(IncomingArg, IncomingArgRC) 2578 = CallerArgInfo.getPreloadedValue(InputID); 2579 assert(IncomingArgRC == ArgRC); 2580 2581 // All special arguments are ints for now. 2582 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 2583 SDValue InputReg; 2584 2585 if (IncomingArg) { 2586 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 2587 } else { 2588 // The implicit arg ptr is special because it doesn't have a corresponding 2589 // input for kernels, and is computed from the kernarg segment pointer. 2590 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 2591 InputReg = getImplicitArgPtr(DAG, DL); 2592 } 2593 2594 if (OutgoingArg->isRegister()) { 2595 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2596 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 2597 report_fatal_error("failed to allocate implicit input argument"); 2598 } else { 2599 unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4); 2600 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2601 SpecialArgOffset); 2602 MemOpChains.push_back(ArgStore); 2603 } 2604 } 2605 2606 // Pack workitem IDs into a single register or pass it as is if already 2607 // packed. 2608 const ArgDescriptor *OutgoingArg; 2609 const TargetRegisterClass *ArgRC; 2610 2611 std::tie(OutgoingArg, ArgRC) = 2612 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 2613 if (!OutgoingArg) 2614 std::tie(OutgoingArg, ArgRC) = 2615 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 2616 if (!OutgoingArg) 2617 std::tie(OutgoingArg, ArgRC) = 2618 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 2619 if (!OutgoingArg) 2620 return; 2621 2622 const ArgDescriptor *IncomingArgX 2623 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first; 2624 const ArgDescriptor *IncomingArgY 2625 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first; 2626 const ArgDescriptor *IncomingArgZ 2627 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first; 2628 2629 SDValue InputReg; 2630 SDLoc SL; 2631 2632 // If incoming ids are not packed we need to pack them. 2633 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) 2634 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 2635 2636 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 2637 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 2638 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 2639 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 2640 InputReg = InputReg.getNode() ? 2641 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 2642 } 2643 2644 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 2645 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 2646 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 2647 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 2648 InputReg = InputReg.getNode() ? 2649 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 2650 } 2651 2652 if (!InputReg.getNode()) { 2653 // Workitem ids are already packed, any of present incoming arguments 2654 // will carry all required fields. 2655 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 2656 IncomingArgX ? *IncomingArgX : 2657 IncomingArgY ? *IncomingArgY : 2658 *IncomingArgZ, ~0u); 2659 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 2660 } 2661 2662 if (OutgoingArg->isRegister()) { 2663 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2664 CCInfo.AllocateReg(OutgoingArg->getRegister()); 2665 } else { 2666 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4); 2667 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2668 SpecialArgOffset); 2669 MemOpChains.push_back(ArgStore); 2670 } 2671 } 2672 2673 static bool canGuaranteeTCO(CallingConv::ID CC) { 2674 return CC == CallingConv::Fast; 2675 } 2676 2677 /// Return true if we might ever do TCO for calls with this calling convention. 2678 static bool mayTailCallThisCC(CallingConv::ID CC) { 2679 switch (CC) { 2680 case CallingConv::C: 2681 return true; 2682 default: 2683 return canGuaranteeTCO(CC); 2684 } 2685 } 2686 2687 bool SITargetLowering::isEligibleForTailCallOptimization( 2688 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 2689 const SmallVectorImpl<ISD::OutputArg> &Outs, 2690 const SmallVectorImpl<SDValue> &OutVals, 2691 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 2692 if (!mayTailCallThisCC(CalleeCC)) 2693 return false; 2694 2695 MachineFunction &MF = DAG.getMachineFunction(); 2696 const Function &CallerF = MF.getFunction(); 2697 CallingConv::ID CallerCC = CallerF.getCallingConv(); 2698 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2699 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2700 2701 // Kernels aren't callable, and don't have a live in return address so it 2702 // doesn't make sense to do a tail call with entry functions. 2703 if (!CallerPreserved) 2704 return false; 2705 2706 bool CCMatch = CallerCC == CalleeCC; 2707 2708 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 2709 if (canGuaranteeTCO(CalleeCC) && CCMatch) 2710 return true; 2711 return false; 2712 } 2713 2714 // TODO: Can we handle var args? 2715 if (IsVarArg) 2716 return false; 2717 2718 for (const Argument &Arg : CallerF.args()) { 2719 if (Arg.hasByValAttr()) 2720 return false; 2721 } 2722 2723 LLVMContext &Ctx = *DAG.getContext(); 2724 2725 // Check that the call results are passed in the same way. 2726 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 2727 CCAssignFnForCall(CalleeCC, IsVarArg), 2728 CCAssignFnForCall(CallerCC, IsVarArg))) 2729 return false; 2730 2731 // The callee has to preserve all registers the caller needs to preserve. 2732 if (!CCMatch) { 2733 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2734 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2735 return false; 2736 } 2737 2738 // Nothing more to check if the callee is taking no arguments. 2739 if (Outs.empty()) 2740 return true; 2741 2742 SmallVector<CCValAssign, 16> ArgLocs; 2743 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 2744 2745 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 2746 2747 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 2748 // If the stack arguments for this call do not fit into our own save area then 2749 // the call cannot be made tail. 2750 // TODO: Is this really necessary? 2751 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 2752 return false; 2753 2754 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2755 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 2756 } 2757 2758 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 2759 if (!CI->isTailCall()) 2760 return false; 2761 2762 const Function *ParentFn = CI->getParent()->getParent(); 2763 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 2764 return false; 2765 return true; 2766 } 2767 2768 // The wave scratch offset register is used as the global base pointer. 2769 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 2770 SmallVectorImpl<SDValue> &InVals) const { 2771 SelectionDAG &DAG = CLI.DAG; 2772 const SDLoc &DL = CLI.DL; 2773 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 2774 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 2775 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 2776 SDValue Chain = CLI.Chain; 2777 SDValue Callee = CLI.Callee; 2778 bool &IsTailCall = CLI.IsTailCall; 2779 CallingConv::ID CallConv = CLI.CallConv; 2780 bool IsVarArg = CLI.IsVarArg; 2781 bool IsSibCall = false; 2782 bool IsThisReturn = false; 2783 MachineFunction &MF = DAG.getMachineFunction(); 2784 2785 if (Callee.isUndef() || isNullConstant(Callee)) { 2786 if (!CLI.IsTailCall) { 2787 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 2788 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 2789 } 2790 2791 return Chain; 2792 } 2793 2794 if (IsVarArg) { 2795 return lowerUnhandledCall(CLI, InVals, 2796 "unsupported call to variadic function "); 2797 } 2798 2799 if (!CLI.CB) 2800 report_fatal_error("unsupported libcall legalization"); 2801 2802 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 2803 !CLI.CB->getCalledFunction()) { 2804 return lowerUnhandledCall(CLI, InVals, 2805 "unsupported indirect call to function "); 2806 } 2807 2808 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 2809 return lowerUnhandledCall(CLI, InVals, 2810 "unsupported required tail call to function "); 2811 } 2812 2813 if (AMDGPU::isShader(MF.getFunction().getCallingConv())) { 2814 // Note the issue is with the CC of the calling function, not of the call 2815 // itself. 2816 return lowerUnhandledCall(CLI, InVals, 2817 "unsupported call from graphics shader of function "); 2818 } 2819 2820 if (IsTailCall) { 2821 IsTailCall = isEligibleForTailCallOptimization( 2822 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 2823 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { 2824 report_fatal_error("failed to perform tail call elimination on a call " 2825 "site marked musttail"); 2826 } 2827 2828 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 2829 2830 // A sibling call is one where we're under the usual C ABI and not planning 2831 // to change that but can still do a tail call: 2832 if (!TailCallOpt && IsTailCall) 2833 IsSibCall = true; 2834 2835 if (IsTailCall) 2836 ++NumTailCalls; 2837 } 2838 2839 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2840 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2841 SmallVector<SDValue, 8> MemOpChains; 2842 2843 // Analyze operands of the call, assigning locations to each operand. 2844 SmallVector<CCValAssign, 16> ArgLocs; 2845 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2846 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 2847 2848 if (AMDGPUTargetMachine::EnableFixedFunctionABI) { 2849 // With a fixed ABI, allocate fixed registers before user arguments. 2850 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 2851 } 2852 2853 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 2854 2855 // Get a count of how many bytes are to be pushed on the stack. 2856 unsigned NumBytes = CCInfo.getNextStackOffset(); 2857 2858 if (IsSibCall) { 2859 // Since we're not changing the ABI to make this a tail call, the memory 2860 // operands are already available in the caller's incoming argument space. 2861 NumBytes = 0; 2862 } 2863 2864 // FPDiff is the byte offset of the call's argument area from the callee's. 2865 // Stores to callee stack arguments will be placed in FixedStackSlots offset 2866 // by this amount for a tail call. In a sibling call it must be 0 because the 2867 // caller will deallocate the entire stack and the callee still expects its 2868 // arguments to begin at SP+0. Completely unused for non-tail calls. 2869 int32_t FPDiff = 0; 2870 MachineFrameInfo &MFI = MF.getFrameInfo(); 2871 2872 // Adjust the stack pointer for the new arguments... 2873 // These operations are automatically eliminated by the prolog/epilog pass 2874 if (!IsSibCall) { 2875 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 2876 2877 SmallVector<SDValue, 4> CopyFromChains; 2878 2879 // In the HSA case, this should be an identity copy. 2880 SDValue ScratchRSrcReg 2881 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 2882 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 2883 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 2884 Chain = DAG.getTokenFactor(DL, CopyFromChains); 2885 } 2886 2887 MVT PtrVT = MVT::i32; 2888 2889 // Walk the register/memloc assignments, inserting copies/loads. 2890 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2891 CCValAssign &VA = ArgLocs[i]; 2892 SDValue Arg = OutVals[i]; 2893 2894 // Promote the value if needed. 2895 switch (VA.getLocInfo()) { 2896 case CCValAssign::Full: 2897 break; 2898 case CCValAssign::BCvt: 2899 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2900 break; 2901 case CCValAssign::ZExt: 2902 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2903 break; 2904 case CCValAssign::SExt: 2905 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2906 break; 2907 case CCValAssign::AExt: 2908 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2909 break; 2910 case CCValAssign::FPExt: 2911 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 2912 break; 2913 default: 2914 llvm_unreachable("Unknown loc info!"); 2915 } 2916 2917 if (VA.isRegLoc()) { 2918 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 2919 } else { 2920 assert(VA.isMemLoc()); 2921 2922 SDValue DstAddr; 2923 MachinePointerInfo DstInfo; 2924 2925 unsigned LocMemOffset = VA.getLocMemOffset(); 2926 int32_t Offset = LocMemOffset; 2927 2928 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 2929 MaybeAlign Alignment; 2930 2931 if (IsTailCall) { 2932 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2933 unsigned OpSize = Flags.isByVal() ? 2934 Flags.getByValSize() : VA.getValVT().getStoreSize(); 2935 2936 // FIXME: We can have better than the minimum byval required alignment. 2937 Alignment = 2938 Flags.isByVal() 2939 ? Flags.getNonZeroByValAlign() 2940 : commonAlignment(Subtarget->getStackAlignment(), Offset); 2941 2942 Offset = Offset + FPDiff; 2943 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 2944 2945 DstAddr = DAG.getFrameIndex(FI, PtrVT); 2946 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 2947 2948 // Make sure any stack arguments overlapping with where we're storing 2949 // are loaded before this eventual operation. Otherwise they'll be 2950 // clobbered. 2951 2952 // FIXME: Why is this really necessary? This seems to just result in a 2953 // lot of code to copy the stack and write them back to the same 2954 // locations, which are supposed to be immutable? 2955 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 2956 } else { 2957 DstAddr = PtrOff; 2958 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 2959 Alignment = 2960 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); 2961 } 2962 2963 if (Outs[i].Flags.isByVal()) { 2964 SDValue SizeNode = 2965 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 2966 SDValue Cpy = 2967 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, 2968 Outs[i].Flags.getNonZeroByValAlign(), 2969 /*isVol = */ false, /*AlwaysInline = */ true, 2970 /*isTailCall = */ false, DstInfo, 2971 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); 2972 2973 MemOpChains.push_back(Cpy); 2974 } else { 2975 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, 2976 Alignment ? Alignment->value() : 0); 2977 MemOpChains.push_back(Store); 2978 } 2979 } 2980 } 2981 2982 if (!AMDGPUTargetMachine::EnableFixedFunctionABI) { 2983 // Copy special input registers after user input arguments. 2984 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 2985 } 2986 2987 if (!MemOpChains.empty()) 2988 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2989 2990 // Build a sequence of copy-to-reg nodes chained together with token chain 2991 // and flag operands which copy the outgoing args into the appropriate regs. 2992 SDValue InFlag; 2993 for (auto &RegToPass : RegsToPass) { 2994 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 2995 RegToPass.second, InFlag); 2996 InFlag = Chain.getValue(1); 2997 } 2998 2999 3000 SDValue PhysReturnAddrReg; 3001 if (IsTailCall) { 3002 // Since the return is being combined with the call, we need to pass on the 3003 // return address. 3004 3005 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 3006 SDValue ReturnAddrReg = CreateLiveInRegister( 3007 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 3008 3009 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), 3010 MVT::i64); 3011 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); 3012 InFlag = Chain.getValue(1); 3013 } 3014 3015 // We don't usually want to end the call-sequence here because we would tidy 3016 // the frame up *after* the call, however in the ABI-changing tail-call case 3017 // we've carefully laid out the parameters so that when sp is reset they'll be 3018 // in the correct location. 3019 if (IsTailCall && !IsSibCall) { 3020 Chain = DAG.getCALLSEQ_END(Chain, 3021 DAG.getTargetConstant(NumBytes, DL, MVT::i32), 3022 DAG.getTargetConstant(0, DL, MVT::i32), 3023 InFlag, DL); 3024 InFlag = Chain.getValue(1); 3025 } 3026 3027 std::vector<SDValue> Ops; 3028 Ops.push_back(Chain); 3029 Ops.push_back(Callee); 3030 // Add a redundant copy of the callee global which will not be legalized, as 3031 // we need direct access to the callee later. 3032 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { 3033 const GlobalValue *GV = GSD->getGlobal(); 3034 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 3035 } else { 3036 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); 3037 } 3038 3039 if (IsTailCall) { 3040 // Each tail call may have to adjust the stack by a different amount, so 3041 // this information must travel along with the operation for eventual 3042 // consumption by emitEpilogue. 3043 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 3044 3045 Ops.push_back(PhysReturnAddrReg); 3046 } 3047 3048 // Add argument registers to the end of the list so that they are known live 3049 // into the call. 3050 for (auto &RegToPass : RegsToPass) { 3051 Ops.push_back(DAG.getRegister(RegToPass.first, 3052 RegToPass.second.getValueType())); 3053 } 3054 3055 // Add a register mask operand representing the call-preserved registers. 3056 3057 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 3058 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3059 assert(Mask && "Missing call preserved mask for calling convention"); 3060 Ops.push_back(DAG.getRegisterMask(Mask)); 3061 3062 if (InFlag.getNode()) 3063 Ops.push_back(InFlag); 3064 3065 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3066 3067 // If we're doing a tall call, use a TC_RETURN here rather than an 3068 // actual call instruction. 3069 if (IsTailCall) { 3070 MFI.setHasTailCall(); 3071 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); 3072 } 3073 3074 // Returns a chain and a flag for retval copy to use. 3075 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 3076 Chain = Call.getValue(0); 3077 InFlag = Call.getValue(1); 3078 3079 uint64_t CalleePopBytes = NumBytes; 3080 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), 3081 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), 3082 InFlag, DL); 3083 if (!Ins.empty()) 3084 InFlag = Chain.getValue(1); 3085 3086 // Handle result values, copying them out of physregs into vregs that we 3087 // return. 3088 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 3089 InVals, IsThisReturn, 3090 IsThisReturn ? OutVals[0] : SDValue()); 3091 } 3092 3093 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, 3094 // except for applying the wave size scale to the increment amount. 3095 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( 3096 SDValue Op, SelectionDAG &DAG) const { 3097 const MachineFunction &MF = DAG.getMachineFunction(); 3098 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3099 3100 SDLoc dl(Op); 3101 EVT VT = Op.getValueType(); 3102 SDValue Tmp1 = Op; 3103 SDValue Tmp2 = Op.getValue(1); 3104 SDValue Tmp3 = Op.getOperand(2); 3105 SDValue Chain = Tmp1.getOperand(0); 3106 3107 Register SPReg = Info->getStackPtrOffsetReg(); 3108 3109 // Chain the dynamic stack allocation so that it doesn't modify the stack 3110 // pointer when other instructions are using the stack. 3111 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 3112 3113 SDValue Size = Tmp2.getOperand(1); 3114 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 3115 Chain = SP.getValue(1); 3116 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 3117 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 3118 const TargetFrameLowering *TFL = ST.getFrameLowering(); 3119 unsigned Opc = 3120 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 3121 ISD::ADD : ISD::SUB; 3122 3123 SDValue ScaledSize = DAG.getNode( 3124 ISD::SHL, dl, VT, Size, 3125 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); 3126 3127 unsigned StackAlign = TFL->getStackAlignment(); 3128 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value 3129 if (Align > StackAlign) { 3130 Tmp1 = DAG.getNode( 3131 ISD::AND, dl, VT, Tmp1, 3132 DAG.getConstant(-(uint64_t)Align << ST.getWavefrontSizeLog2(), dl, VT)); 3133 } 3134 3135 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 3136 Tmp2 = DAG.getCALLSEQ_END( 3137 Chain, DAG.getIntPtrConstant(0, dl, true), 3138 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 3139 3140 return DAG.getMergeValues({Tmp1, Tmp2}, dl); 3141 } 3142 3143 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3144 SelectionDAG &DAG) const { 3145 // We only handle constant sizes here to allow non-entry block, static sized 3146 // allocas. A truly dynamic value is more difficult to support because we 3147 // don't know if the size value is uniform or not. If the size isn't uniform, 3148 // we would need to do a wave reduction to get the maximum size to know how 3149 // much to increment the uniform stack pointer. 3150 SDValue Size = Op.getOperand(1); 3151 if (isa<ConstantSDNode>(Size)) 3152 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. 3153 3154 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); 3155 } 3156 3157 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, 3158 const MachineFunction &MF) const { 3159 Register Reg = StringSwitch<Register>(RegName) 3160 .Case("m0", AMDGPU::M0) 3161 .Case("exec", AMDGPU::EXEC) 3162 .Case("exec_lo", AMDGPU::EXEC_LO) 3163 .Case("exec_hi", AMDGPU::EXEC_HI) 3164 .Case("flat_scratch", AMDGPU::FLAT_SCR) 3165 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 3166 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 3167 .Default(Register()); 3168 3169 if (Reg == AMDGPU::NoRegister) { 3170 report_fatal_error(Twine("invalid register name \"" 3171 + StringRef(RegName) + "\".")); 3172 3173 } 3174 3175 if (!Subtarget->hasFlatScrRegister() && 3176 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 3177 report_fatal_error(Twine("invalid register \"" 3178 + StringRef(RegName) + "\" for subtarget.")); 3179 } 3180 3181 switch (Reg) { 3182 case AMDGPU::M0: 3183 case AMDGPU::EXEC_LO: 3184 case AMDGPU::EXEC_HI: 3185 case AMDGPU::FLAT_SCR_LO: 3186 case AMDGPU::FLAT_SCR_HI: 3187 if (VT.getSizeInBits() == 32) 3188 return Reg; 3189 break; 3190 case AMDGPU::EXEC: 3191 case AMDGPU::FLAT_SCR: 3192 if (VT.getSizeInBits() == 64) 3193 return Reg; 3194 break; 3195 default: 3196 llvm_unreachable("missing register type checking"); 3197 } 3198 3199 report_fatal_error(Twine("invalid type for register \"" 3200 + StringRef(RegName) + "\".")); 3201 } 3202 3203 // If kill is not the last instruction, split the block so kill is always a 3204 // proper terminator. 3205 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI, 3206 MachineBasicBlock *BB) const { 3207 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3208 3209 MachineBasicBlock::iterator SplitPoint(&MI); 3210 ++SplitPoint; 3211 3212 if (SplitPoint == BB->end()) { 3213 // Don't bother with a new block. 3214 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3215 return BB; 3216 } 3217 3218 MachineFunction *MF = BB->getParent(); 3219 MachineBasicBlock *SplitBB 3220 = MF->CreateMachineBasicBlock(BB->getBasicBlock()); 3221 3222 MF->insert(++MachineFunction::iterator(BB), SplitBB); 3223 SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end()); 3224 3225 SplitBB->transferSuccessorsAndUpdatePHIs(BB); 3226 BB->addSuccessor(SplitBB); 3227 3228 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3229 return SplitBB; 3230 } 3231 3232 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 3233 // \p MI will be the only instruction in the loop body block. Otherwise, it will 3234 // be the first instruction in the remainder block. 3235 // 3236 /// \returns { LoopBody, Remainder } 3237 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 3238 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 3239 MachineFunction *MF = MBB.getParent(); 3240 MachineBasicBlock::iterator I(&MI); 3241 3242 // To insert the loop we need to split the block. Move everything after this 3243 // point to a new block, and insert a new empty block between the two. 3244 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 3245 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 3246 MachineFunction::iterator MBBI(MBB); 3247 ++MBBI; 3248 3249 MF->insert(MBBI, LoopBB); 3250 MF->insert(MBBI, RemainderBB); 3251 3252 LoopBB->addSuccessor(LoopBB); 3253 LoopBB->addSuccessor(RemainderBB); 3254 3255 // Move the rest of the block into a new block. 3256 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 3257 3258 if (InstInLoop) { 3259 auto Next = std::next(I); 3260 3261 // Move instruction to loop body. 3262 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 3263 3264 // Move the rest of the block. 3265 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 3266 } else { 3267 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 3268 } 3269 3270 MBB.addSuccessor(LoopBB); 3271 3272 return std::make_pair(LoopBB, RemainderBB); 3273 } 3274 3275 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 3276 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 3277 MachineBasicBlock *MBB = MI.getParent(); 3278 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3279 auto I = MI.getIterator(); 3280 auto E = std::next(I); 3281 3282 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 3283 .addImm(0); 3284 3285 MIBundleBuilder Bundler(*MBB, I, E); 3286 finalizeBundle(*MBB, Bundler.begin()); 3287 } 3288 3289 MachineBasicBlock * 3290 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 3291 MachineBasicBlock *BB) const { 3292 const DebugLoc &DL = MI.getDebugLoc(); 3293 3294 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3295 3296 MachineBasicBlock *LoopBB; 3297 MachineBasicBlock *RemainderBB; 3298 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3299 3300 // Apparently kill flags are only valid if the def is in the same block? 3301 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 3302 Src->setIsKill(false); 3303 3304 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 3305 3306 MachineBasicBlock::iterator I = LoopBB->end(); 3307 3308 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 3309 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 3310 3311 // Clear TRAP_STS.MEM_VIOL 3312 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 3313 .addImm(0) 3314 .addImm(EncodedReg); 3315 3316 bundleInstWithWaitcnt(MI); 3317 3318 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3319 3320 // Load and check TRAP_STS.MEM_VIOL 3321 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 3322 .addImm(EncodedReg); 3323 3324 // FIXME: Do we need to use an isel pseudo that may clobber scc? 3325 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 3326 .addReg(Reg, RegState::Kill) 3327 .addImm(0); 3328 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3329 .addMBB(LoopBB); 3330 3331 return RemainderBB; 3332 } 3333 3334 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 3335 // wavefront. If the value is uniform and just happens to be in a VGPR, this 3336 // will only do one iteration. In the worst case, this will loop 64 times. 3337 // 3338 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 3339 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop( 3340 const SIInstrInfo *TII, 3341 MachineRegisterInfo &MRI, 3342 MachineBasicBlock &OrigBB, 3343 MachineBasicBlock &LoopBB, 3344 const DebugLoc &DL, 3345 const MachineOperand &IdxReg, 3346 unsigned InitReg, 3347 unsigned ResultReg, 3348 unsigned PhiReg, 3349 unsigned InitSaveExecReg, 3350 int Offset, 3351 bool UseGPRIdxMode, 3352 bool IsIndirectSrc) { 3353 MachineFunction *MF = OrigBB.getParent(); 3354 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3355 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3356 MachineBasicBlock::iterator I = LoopBB.begin(); 3357 3358 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3359 Register PhiExec = MRI.createVirtualRegister(BoolRC); 3360 Register NewExec = MRI.createVirtualRegister(BoolRC); 3361 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3362 Register CondReg = MRI.createVirtualRegister(BoolRC); 3363 3364 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 3365 .addReg(InitReg) 3366 .addMBB(&OrigBB) 3367 .addReg(ResultReg) 3368 .addMBB(&LoopBB); 3369 3370 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 3371 .addReg(InitSaveExecReg) 3372 .addMBB(&OrigBB) 3373 .addReg(NewExec) 3374 .addMBB(&LoopBB); 3375 3376 // Read the next variant <- also loop target. 3377 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 3378 .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef())); 3379 3380 // Compare the just read M0 value to all possible Idx values. 3381 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 3382 .addReg(CurrentIdxReg) 3383 .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg()); 3384 3385 // Update EXEC, save the original EXEC value to VCC. 3386 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 3387 : AMDGPU::S_AND_SAVEEXEC_B64), 3388 NewExec) 3389 .addReg(CondReg, RegState::Kill); 3390 3391 MRI.setSimpleHint(NewExec, CondReg); 3392 3393 if (UseGPRIdxMode) { 3394 unsigned IdxReg; 3395 if (Offset == 0) { 3396 IdxReg = CurrentIdxReg; 3397 } else { 3398 IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3399 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg) 3400 .addReg(CurrentIdxReg, RegState::Kill) 3401 .addImm(Offset); 3402 } 3403 unsigned IdxMode = IsIndirectSrc ? 3404 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE; 3405 MachineInstr *SetOn = 3406 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 3407 .addReg(IdxReg, RegState::Kill) 3408 .addImm(IdxMode); 3409 SetOn->getOperand(3).setIsUndef(); 3410 } else { 3411 // Move index from VCC into M0 3412 if (Offset == 0) { 3413 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3414 .addReg(CurrentIdxReg, RegState::Kill); 3415 } else { 3416 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3417 .addReg(CurrentIdxReg, RegState::Kill) 3418 .addImm(Offset); 3419 } 3420 } 3421 3422 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 3423 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3424 MachineInstr *InsertPt = 3425 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 3426 : AMDGPU::S_XOR_B64_term), Exec) 3427 .addReg(Exec) 3428 .addReg(NewExec); 3429 3430 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 3431 // s_cbranch_scc0? 3432 3433 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 3434 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 3435 .addMBB(&LoopBB); 3436 3437 return InsertPt->getIterator(); 3438 } 3439 3440 // This has slightly sub-optimal regalloc when the source vector is killed by 3441 // the read. The register allocator does not understand that the kill is 3442 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 3443 // subregister from it, using 1 more VGPR than necessary. This was saved when 3444 // this was expanded after register allocation. 3445 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, 3446 MachineBasicBlock &MBB, 3447 MachineInstr &MI, 3448 unsigned InitResultReg, 3449 unsigned PhiReg, 3450 int Offset, 3451 bool UseGPRIdxMode, 3452 bool IsIndirectSrc) { 3453 MachineFunction *MF = MBB.getParent(); 3454 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3455 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3456 MachineRegisterInfo &MRI = MF->getRegInfo(); 3457 const DebugLoc &DL = MI.getDebugLoc(); 3458 MachineBasicBlock::iterator I(&MI); 3459 3460 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3461 Register DstReg = MI.getOperand(0).getReg(); 3462 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 3463 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 3464 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3465 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 3466 3467 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 3468 3469 // Save the EXEC mask 3470 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 3471 .addReg(Exec); 3472 3473 MachineBasicBlock *LoopBB; 3474 MachineBasicBlock *RemainderBB; 3475 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 3476 3477 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3478 3479 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 3480 InitResultReg, DstReg, PhiReg, TmpExec, 3481 Offset, UseGPRIdxMode, IsIndirectSrc); 3482 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); 3483 MachineFunction::iterator MBBI(LoopBB); 3484 ++MBBI; 3485 MF->insert(MBBI, LandingPad); 3486 LoopBB->removeSuccessor(RemainderBB); 3487 LandingPad->addSuccessor(RemainderBB); 3488 LoopBB->addSuccessor(LandingPad); 3489 MachineBasicBlock::iterator First = LandingPad->begin(); 3490 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) 3491 .addReg(SaveExec); 3492 3493 return InsPt; 3494 } 3495 3496 // Returns subreg index, offset 3497 static std::pair<unsigned, int> 3498 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 3499 const TargetRegisterClass *SuperRC, 3500 unsigned VecReg, 3501 int Offset) { 3502 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 3503 3504 // Skip out of bounds offsets, or else we would end up using an undefined 3505 // register. 3506 if (Offset >= NumElts || Offset < 0) 3507 return std::make_pair(AMDGPU::sub0, Offset); 3508 3509 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); 3510 } 3511 3512 // Return true if the index is an SGPR and was set. 3513 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII, 3514 MachineRegisterInfo &MRI, 3515 MachineInstr &MI, 3516 int Offset, 3517 bool UseGPRIdxMode, 3518 bool IsIndirectSrc) { 3519 MachineBasicBlock *MBB = MI.getParent(); 3520 const DebugLoc &DL = MI.getDebugLoc(); 3521 MachineBasicBlock::iterator I(&MI); 3522 3523 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3524 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3525 3526 assert(Idx->getReg() != AMDGPU::NoRegister); 3527 3528 if (!TII->getRegisterInfo().isSGPRClass(IdxRC)) 3529 return false; 3530 3531 if (UseGPRIdxMode) { 3532 unsigned IdxMode = IsIndirectSrc ? 3533 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE; 3534 if (Offset == 0) { 3535 MachineInstr *SetOn = 3536 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 3537 .add(*Idx) 3538 .addImm(IdxMode); 3539 3540 SetOn->getOperand(3).setIsUndef(); 3541 } else { 3542 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3543 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 3544 .add(*Idx) 3545 .addImm(Offset); 3546 MachineInstr *SetOn = 3547 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 3548 .addReg(Tmp, RegState::Kill) 3549 .addImm(IdxMode); 3550 3551 SetOn->getOperand(3).setIsUndef(); 3552 } 3553 3554 return true; 3555 } 3556 3557 if (Offset == 0) { 3558 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3559 .add(*Idx); 3560 } else { 3561 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3562 .add(*Idx) 3563 .addImm(Offset); 3564 } 3565 3566 return true; 3567 } 3568 3569 // Control flow needs to be inserted if indexing with a VGPR. 3570 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 3571 MachineBasicBlock &MBB, 3572 const GCNSubtarget &ST) { 3573 const SIInstrInfo *TII = ST.getInstrInfo(); 3574 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3575 MachineFunction *MF = MBB.getParent(); 3576 MachineRegisterInfo &MRI = MF->getRegInfo(); 3577 3578 Register Dst = MI.getOperand(0).getReg(); 3579 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 3580 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3581 3582 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 3583 3584 unsigned SubReg; 3585 std::tie(SubReg, Offset) 3586 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 3587 3588 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3589 3590 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) { 3591 MachineBasicBlock::iterator I(&MI); 3592 const DebugLoc &DL = MI.getDebugLoc(); 3593 3594 if (UseGPRIdxMode) { 3595 // TODO: Look at the uses to avoid the copy. This may require rescheduling 3596 // to avoid interfering with other uses, so probably requires a new 3597 // optimization pass. 3598 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) 3599 .addReg(SrcReg, RegState::Undef, SubReg) 3600 .addReg(SrcReg, RegState::Implicit) 3601 .addReg(AMDGPU::M0, RegState::Implicit); 3602 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3603 } else { 3604 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3605 .addReg(SrcReg, RegState::Undef, SubReg) 3606 .addReg(SrcReg, RegState::Implicit); 3607 } 3608 3609 MI.eraseFromParent(); 3610 3611 return &MBB; 3612 } 3613 3614 const DebugLoc &DL = MI.getDebugLoc(); 3615 MachineBasicBlock::iterator I(&MI); 3616 3617 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3618 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3619 3620 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 3621 3622 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, 3623 Offset, UseGPRIdxMode, true); 3624 MachineBasicBlock *LoopBB = InsPt->getParent(); 3625 3626 if (UseGPRIdxMode) { 3627 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) 3628 .addReg(SrcReg, RegState::Undef, SubReg) 3629 .addReg(SrcReg, RegState::Implicit) 3630 .addReg(AMDGPU::M0, RegState::Implicit); 3631 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3632 } else { 3633 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3634 .addReg(SrcReg, RegState::Undef, SubReg) 3635 .addReg(SrcReg, RegState::Implicit); 3636 } 3637 3638 MI.eraseFromParent(); 3639 3640 return LoopBB; 3641 } 3642 3643 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 3644 MachineBasicBlock &MBB, 3645 const GCNSubtarget &ST) { 3646 const SIInstrInfo *TII = ST.getInstrInfo(); 3647 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3648 MachineFunction *MF = MBB.getParent(); 3649 MachineRegisterInfo &MRI = MF->getRegInfo(); 3650 3651 Register Dst = MI.getOperand(0).getReg(); 3652 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 3653 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3654 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 3655 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3656 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 3657 3658 // This can be an immediate, but will be folded later. 3659 assert(Val->getReg()); 3660 3661 unsigned SubReg; 3662 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 3663 SrcVec->getReg(), 3664 Offset); 3665 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3666 3667 if (Idx->getReg() == AMDGPU::NoRegister) { 3668 MachineBasicBlock::iterator I(&MI); 3669 const DebugLoc &DL = MI.getDebugLoc(); 3670 3671 assert(Offset == 0); 3672 3673 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 3674 .add(*SrcVec) 3675 .add(*Val) 3676 .addImm(SubReg); 3677 3678 MI.eraseFromParent(); 3679 return &MBB; 3680 } 3681 3682 const MCInstrDesc &MovRelDesc 3683 = TII->getIndirectRegWritePseudo(TRI.getRegSizeInBits(*VecRC), 32, false); 3684 3685 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) { 3686 MachineBasicBlock::iterator I(&MI); 3687 const DebugLoc &DL = MI.getDebugLoc(); 3688 BuildMI(MBB, I, DL, MovRelDesc, Dst) 3689 .addReg(SrcVec->getReg()) 3690 .add(*Val) 3691 .addImm(SubReg); 3692 if (UseGPRIdxMode) 3693 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3694 3695 MI.eraseFromParent(); 3696 return &MBB; 3697 } 3698 3699 if (Val->isReg()) 3700 MRI.clearKillFlags(Val->getReg()); 3701 3702 const DebugLoc &DL = MI.getDebugLoc(); 3703 3704 Register PhiReg = MRI.createVirtualRegister(VecRC); 3705 3706 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, 3707 Offset, UseGPRIdxMode, false); 3708 MachineBasicBlock *LoopBB = InsPt->getParent(); 3709 3710 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) 3711 .addReg(PhiReg) 3712 .add(*Val) 3713 .addImm(AMDGPU::sub0); 3714 if (UseGPRIdxMode) 3715 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3716 3717 MI.eraseFromParent(); 3718 return LoopBB; 3719 } 3720 3721 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 3722 MachineInstr &MI, MachineBasicBlock *BB) const { 3723 3724 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3725 MachineFunction *MF = BB->getParent(); 3726 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 3727 3728 switch (MI.getOpcode()) { 3729 case AMDGPU::S_UADDO_PSEUDO: 3730 case AMDGPU::S_USUBO_PSEUDO: { 3731 const DebugLoc &DL = MI.getDebugLoc(); 3732 MachineOperand &Dest0 = MI.getOperand(0); 3733 MachineOperand &Dest1 = MI.getOperand(1); 3734 MachineOperand &Src0 = MI.getOperand(2); 3735 MachineOperand &Src1 = MI.getOperand(3); 3736 3737 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 3738 ? AMDGPU::S_ADD_I32 3739 : AMDGPU::S_SUB_I32; 3740 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); 3741 3742 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) 3743 .addImm(1) 3744 .addImm(0); 3745 3746 MI.eraseFromParent(); 3747 return BB; 3748 } 3749 case AMDGPU::S_ADD_U64_PSEUDO: 3750 case AMDGPU::S_SUB_U64_PSEUDO: { 3751 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3752 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3753 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3754 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3755 const DebugLoc &DL = MI.getDebugLoc(); 3756 3757 MachineOperand &Dest = MI.getOperand(0); 3758 MachineOperand &Src0 = MI.getOperand(1); 3759 MachineOperand &Src1 = MI.getOperand(2); 3760 3761 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3762 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3763 3764 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 3765 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 3766 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 3767 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 3768 3769 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 3770 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 3771 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 3772 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 3773 3774 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 3775 3776 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 3777 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 3778 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); 3779 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); 3780 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 3781 .addReg(DestSub0) 3782 .addImm(AMDGPU::sub0) 3783 .addReg(DestSub1) 3784 .addImm(AMDGPU::sub1); 3785 MI.eraseFromParent(); 3786 return BB; 3787 } 3788 case AMDGPU::V_ADD_U64_PSEUDO: 3789 case AMDGPU::V_SUB_U64_PSEUDO: { 3790 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3791 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3792 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3793 const DebugLoc &DL = MI.getDebugLoc(); 3794 3795 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); 3796 3797 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3798 3799 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3800 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3801 3802 Register CarryReg = MRI.createVirtualRegister(CarryRC); 3803 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 3804 3805 MachineOperand &Dest = MI.getOperand(0); 3806 MachineOperand &Src0 = MI.getOperand(1); 3807 MachineOperand &Src1 = MI.getOperand(2); 3808 3809 const TargetRegisterClass *Src0RC = Src0.isReg() 3810 ? MRI.getRegClass(Src0.getReg()) 3811 : &AMDGPU::VReg_64RegClass; 3812 const TargetRegisterClass *Src1RC = Src1.isReg() 3813 ? MRI.getRegClass(Src1.getReg()) 3814 : &AMDGPU::VReg_64RegClass; 3815 3816 const TargetRegisterClass *Src0SubRC = 3817 TRI->getSubRegClass(Src0RC, AMDGPU::sub0); 3818 const TargetRegisterClass *Src1SubRC = 3819 TRI->getSubRegClass(Src1RC, AMDGPU::sub1); 3820 3821 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( 3822 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 3823 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( 3824 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 3825 3826 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( 3827 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 3828 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( 3829 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 3830 3831 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64; 3832 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 3833 .addReg(CarryReg, RegState::Define) 3834 .add(SrcReg0Sub0) 3835 .add(SrcReg1Sub0) 3836 .addImm(0); // clamp bit 3837 3838 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 3839 MachineInstr *HiHalf = 3840 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 3841 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 3842 .add(SrcReg0Sub1) 3843 .add(SrcReg1Sub1) 3844 .addReg(CarryReg, RegState::Kill) 3845 .addImm(0); // clamp bit 3846 3847 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 3848 .addReg(DestSub0) 3849 .addImm(AMDGPU::sub0) 3850 .addReg(DestSub1) 3851 .addImm(AMDGPU::sub1); 3852 TII->legalizeOperands(*LoHalf); 3853 TII->legalizeOperands(*HiHalf); 3854 MI.eraseFromParent(); 3855 return BB; 3856 } 3857 case AMDGPU::S_ADD_CO_PSEUDO: 3858 case AMDGPU::S_SUB_CO_PSEUDO: { 3859 // This pseudo has a chance to be selected 3860 // only from uniform add/subcarry node. All the VGPR operands 3861 // therefore assumed to be splat vectors. 3862 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3863 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3864 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3865 MachineBasicBlock::iterator MII = MI; 3866 const DebugLoc &DL = MI.getDebugLoc(); 3867 MachineOperand &Dest = MI.getOperand(0); 3868 MachineOperand &Src0 = MI.getOperand(2); 3869 MachineOperand &Src1 = MI.getOperand(3); 3870 MachineOperand &Src2 = MI.getOperand(4); 3871 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 3872 ? AMDGPU::S_ADDC_U32 3873 : AMDGPU::S_SUBB_U32; 3874 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { 3875 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3876 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) 3877 .addReg(Src0.getReg()); 3878 Src0.setReg(RegOp0); 3879 } 3880 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { 3881 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3882 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) 3883 .addReg(Src1.getReg()); 3884 Src1.setReg(RegOp1); 3885 } 3886 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3887 if (TRI->isVectorRegister(MRI, Src2.getReg())) { 3888 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) 3889 .addReg(Src2.getReg()); 3890 Src2.setReg(RegOp2); 3891 } 3892 3893 if (TRI->getRegSizeInBits(*MRI.getRegClass(Src2.getReg())) == 64) { 3894 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) 3895 .addReg(Src2.getReg()) 3896 .addImm(0); 3897 } else { 3898 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32)) 3899 .addReg(Src2.getReg()) 3900 .addImm(0); 3901 } 3902 3903 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); 3904 MI.eraseFromParent(); 3905 return BB; 3906 } 3907 case AMDGPU::SI_INIT_M0: { 3908 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 3909 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3910 .add(MI.getOperand(0)); 3911 MI.eraseFromParent(); 3912 return BB; 3913 } 3914 case AMDGPU::SI_INIT_EXEC: 3915 // This should be before all vector instructions. 3916 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 3917 AMDGPU::EXEC) 3918 .addImm(MI.getOperand(0).getImm()); 3919 MI.eraseFromParent(); 3920 return BB; 3921 3922 case AMDGPU::SI_INIT_EXEC_LO: 3923 // This should be before all vector instructions. 3924 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), 3925 AMDGPU::EXEC_LO) 3926 .addImm(MI.getOperand(0).getImm()); 3927 MI.eraseFromParent(); 3928 return BB; 3929 3930 case AMDGPU::SI_INIT_EXEC_FROM_INPUT: { 3931 // Extract the thread count from an SGPR input and set EXEC accordingly. 3932 // Since BFM can't shift by 64, handle that case with CMP + CMOV. 3933 // 3934 // S_BFE_U32 count, input, {shift, 7} 3935 // S_BFM_B64 exec, count, 0 3936 // S_CMP_EQ_U32 count, 64 3937 // S_CMOV_B64 exec, -1 3938 MachineInstr *FirstMI = &*BB->begin(); 3939 MachineRegisterInfo &MRI = MF->getRegInfo(); 3940 Register InputReg = MI.getOperand(0).getReg(); 3941 Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3942 bool Found = false; 3943 3944 // Move the COPY of the input reg to the beginning, so that we can use it. 3945 for (auto I = BB->begin(); I != &MI; I++) { 3946 if (I->getOpcode() != TargetOpcode::COPY || 3947 I->getOperand(0).getReg() != InputReg) 3948 continue; 3949 3950 if (I == FirstMI) { 3951 FirstMI = &*++BB->begin(); 3952 } else { 3953 I->removeFromParent(); 3954 BB->insert(FirstMI, &*I); 3955 } 3956 Found = true; 3957 break; 3958 } 3959 assert(Found); 3960 (void)Found; 3961 3962 // This should be before all vector instructions. 3963 unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1; 3964 bool isWave32 = getSubtarget()->isWave32(); 3965 unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3966 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg) 3967 .addReg(InputReg) 3968 .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000); 3969 BuildMI(*BB, FirstMI, DebugLoc(), 3970 TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64), 3971 Exec) 3972 .addReg(CountReg) 3973 .addImm(0); 3974 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32)) 3975 .addReg(CountReg, RegState::Kill) 3976 .addImm(getSubtarget()->getWavefrontSize()); 3977 BuildMI(*BB, FirstMI, DebugLoc(), 3978 TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64), 3979 Exec) 3980 .addImm(-1); 3981 MI.eraseFromParent(); 3982 return BB; 3983 } 3984 3985 case AMDGPU::GET_GROUPSTATICSIZE: { 3986 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 3987 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 3988 DebugLoc DL = MI.getDebugLoc(); 3989 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 3990 .add(MI.getOperand(0)) 3991 .addImm(MFI->getLDSSize()); 3992 MI.eraseFromParent(); 3993 return BB; 3994 } 3995 case AMDGPU::SI_INDIRECT_SRC_V1: 3996 case AMDGPU::SI_INDIRECT_SRC_V2: 3997 case AMDGPU::SI_INDIRECT_SRC_V4: 3998 case AMDGPU::SI_INDIRECT_SRC_V8: 3999 case AMDGPU::SI_INDIRECT_SRC_V16: 4000 case AMDGPU::SI_INDIRECT_SRC_V32: 4001 return emitIndirectSrc(MI, *BB, *getSubtarget()); 4002 case AMDGPU::SI_INDIRECT_DST_V1: 4003 case AMDGPU::SI_INDIRECT_DST_V2: 4004 case AMDGPU::SI_INDIRECT_DST_V4: 4005 case AMDGPU::SI_INDIRECT_DST_V8: 4006 case AMDGPU::SI_INDIRECT_DST_V16: 4007 case AMDGPU::SI_INDIRECT_DST_V32: 4008 return emitIndirectDst(MI, *BB, *getSubtarget()); 4009 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 4010 case AMDGPU::SI_KILL_I1_PSEUDO: 4011 return splitKillBlock(MI, BB); 4012 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 4013 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4014 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4015 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4016 4017 Register Dst = MI.getOperand(0).getReg(); 4018 Register Src0 = MI.getOperand(1).getReg(); 4019 Register Src1 = MI.getOperand(2).getReg(); 4020 const DebugLoc &DL = MI.getDebugLoc(); 4021 Register SrcCond = MI.getOperand(3).getReg(); 4022 4023 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4024 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4025 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4026 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 4027 4028 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 4029 .addReg(SrcCond); 4030 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 4031 .addImm(0) 4032 .addReg(Src0, 0, AMDGPU::sub0) 4033 .addImm(0) 4034 .addReg(Src1, 0, AMDGPU::sub0) 4035 .addReg(SrcCondCopy); 4036 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 4037 .addImm(0) 4038 .addReg(Src0, 0, AMDGPU::sub1) 4039 .addImm(0) 4040 .addReg(Src1, 0, AMDGPU::sub1) 4041 .addReg(SrcCondCopy); 4042 4043 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 4044 .addReg(DstLo) 4045 .addImm(AMDGPU::sub0) 4046 .addReg(DstHi) 4047 .addImm(AMDGPU::sub1); 4048 MI.eraseFromParent(); 4049 return BB; 4050 } 4051 case AMDGPU::SI_BR_UNDEF: { 4052 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4053 const DebugLoc &DL = MI.getDebugLoc(); 4054 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4055 .add(MI.getOperand(0)); 4056 Br->getOperand(1).setIsUndef(true); // read undef SCC 4057 MI.eraseFromParent(); 4058 return BB; 4059 } 4060 case AMDGPU::ADJCALLSTACKUP: 4061 case AMDGPU::ADJCALLSTACKDOWN: { 4062 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 4063 MachineInstrBuilder MIB(*MF, &MI); 4064 4065 // Add an implicit use of the frame offset reg to prevent the restore copy 4066 // inserted after the call from being reorderd after stack operations in the 4067 // the caller's frame. 4068 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 4069 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit) 4070 .addReg(Info->getFrameOffsetReg(), RegState::Implicit); 4071 return BB; 4072 } 4073 case AMDGPU::SI_CALL_ISEL: { 4074 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4075 const DebugLoc &DL = MI.getDebugLoc(); 4076 4077 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 4078 4079 MachineInstrBuilder MIB; 4080 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 4081 4082 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) 4083 MIB.add(MI.getOperand(I)); 4084 4085 MIB.cloneMemRefs(MI); 4086 MI.eraseFromParent(); 4087 return BB; 4088 } 4089 case AMDGPU::V_ADD_I32_e32: 4090 case AMDGPU::V_SUB_I32_e32: 4091 case AMDGPU::V_SUBREV_I32_e32: { 4092 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 4093 const DebugLoc &DL = MI.getDebugLoc(); 4094 unsigned Opc = MI.getOpcode(); 4095 4096 bool NeedClampOperand = false; 4097 if (TII->pseudoToMCOpcode(Opc) == -1) { 4098 Opc = AMDGPU::getVOPe64(Opc); 4099 NeedClampOperand = true; 4100 } 4101 4102 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 4103 if (TII->isVOP3(*I)) { 4104 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4105 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4106 I.addReg(TRI->getVCC(), RegState::Define); 4107 } 4108 I.add(MI.getOperand(1)) 4109 .add(MI.getOperand(2)); 4110 if (NeedClampOperand) 4111 I.addImm(0); // clamp bit for e64 encoding 4112 4113 TII->legalizeOperands(*I); 4114 4115 MI.eraseFromParent(); 4116 return BB; 4117 } 4118 case AMDGPU::DS_GWS_INIT: 4119 case AMDGPU::DS_GWS_SEMA_V: 4120 case AMDGPU::DS_GWS_SEMA_BR: 4121 case AMDGPU::DS_GWS_SEMA_P: 4122 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 4123 case AMDGPU::DS_GWS_BARRIER: 4124 // A s_waitcnt 0 is required to be the instruction immediately following. 4125 if (getSubtarget()->hasGWSAutoReplay()) { 4126 bundleInstWithWaitcnt(MI); 4127 return BB; 4128 } 4129 4130 return emitGWSMemViolTestLoop(MI, BB); 4131 case AMDGPU::S_SETREG_B32: { 4132 if (!getSubtarget()->hasDenormModeInst()) 4133 return BB; 4134 4135 // Try to optimize cases that only set the denormal mode or rounding mode. 4136 // 4137 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or 4138 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode 4139 // instead. 4140 // 4141 // FIXME: This could be predicates on the immediate, but tablegen doesn't 4142 // allow you to have a no side effect instruction in the output of a 4143 // sideeffecting pattern. 4144 4145 // TODO: Should also emit a no side effects pseudo if only FP bits are 4146 // touched, even if not all of them or to a variable. 4147 unsigned ID, Offset, Width; 4148 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); 4149 if (ID != AMDGPU::Hwreg::ID_MODE) 4150 return BB; 4151 4152 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); 4153 const unsigned SetMask = WidthMask << Offset; 4154 unsigned SetDenormOp = 0; 4155 unsigned SetRoundOp = 0; 4156 4157 // The dedicated instructions can only set the whole denorm or round mode at 4158 // once, not a subset of bits in either. 4159 if (Width == 8 && (SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | 4160 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) { 4161 // If this fully sets both the round and denorm mode, emit the two 4162 // dedicated instructions for these. 4163 assert(Offset == 0); 4164 SetRoundOp = AMDGPU::S_ROUND_MODE; 4165 SetDenormOp = AMDGPU::S_DENORM_MODE; 4166 } else if (Width == 4) { 4167 if ((SetMask & AMDGPU::Hwreg::FP_ROUND_MASK) == SetMask) { 4168 SetRoundOp = AMDGPU::S_ROUND_MODE; 4169 assert(Offset == 0); 4170 } else if ((SetMask & AMDGPU::Hwreg::FP_DENORM_MASK) == SetMask) { 4171 SetDenormOp = AMDGPU::S_DENORM_MODE; 4172 assert(Offset == 4); 4173 } 4174 } 4175 4176 if (SetRoundOp || SetDenormOp) { 4177 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4178 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); 4179 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { 4180 unsigned ImmVal = Def->getOperand(1).getImm(); 4181 if (SetRoundOp) { 4182 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) 4183 .addImm(ImmVal & 0xf); 4184 4185 // If we also have the denorm mode, get just the denorm mode bits. 4186 ImmVal >>= 4; 4187 } 4188 4189 if (SetDenormOp) { 4190 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) 4191 .addImm(ImmVal & 0xf); 4192 } 4193 4194 MI.eraseFromParent(); 4195 } 4196 } 4197 4198 return BB; 4199 } 4200 default: 4201 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 4202 } 4203 } 4204 4205 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { 4206 return isTypeLegal(VT.getScalarType()); 4207 } 4208 4209 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 4210 // This currently forces unfolding various combinations of fsub into fma with 4211 // free fneg'd operands. As long as we have fast FMA (controlled by 4212 // isFMAFasterThanFMulAndFAdd), we should perform these. 4213 4214 // When fma is quarter rate, for f64 where add / sub are at best half rate, 4215 // most of these combines appear to be cycle neutral but save on instruction 4216 // count / code size. 4217 return true; 4218 } 4219 4220 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 4221 EVT VT) const { 4222 if (!VT.isVector()) { 4223 return MVT::i1; 4224 } 4225 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 4226 } 4227 4228 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 4229 // TODO: Should i16 be used always if legal? For now it would force VALU 4230 // shifts. 4231 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 4232 } 4233 4234 // Answering this is somewhat tricky and depends on the specific device which 4235 // have different rates for fma or all f64 operations. 4236 // 4237 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 4238 // regardless of which device (although the number of cycles differs between 4239 // devices), so it is always profitable for f64. 4240 // 4241 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 4242 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 4243 // which we can always do even without fused FP ops since it returns the same 4244 // result as the separate operations and since it is always full 4245 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 4246 // however does not support denormals, so we do report fma as faster if we have 4247 // a fast fma device and require denormals. 4248 // 4249 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4250 EVT VT) const { 4251 VT = VT.getScalarType(); 4252 4253 switch (VT.getSimpleVT().SimpleTy) { 4254 case MVT::f32: { 4255 // This is as fast on some subtargets. However, we always have full rate f32 4256 // mad available which returns the same result as the separate operations 4257 // which we should prefer over fma. We can't use this if we want to support 4258 // denormals, so only report this in these cases. 4259 if (hasFP32Denormals(MF)) 4260 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 4261 4262 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 4263 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 4264 } 4265 case MVT::f64: 4266 return true; 4267 case MVT::f16: 4268 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); 4269 default: 4270 break; 4271 } 4272 4273 return false; 4274 } 4275 4276 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, 4277 const SDNode *N) const { 4278 // TODO: Check future ftz flag 4279 // v_mad_f32/v_mac_f32 do not support denormals. 4280 EVT VT = N->getValueType(0); 4281 if (VT == MVT::f32) 4282 return !hasFP32Denormals(DAG.getMachineFunction()); 4283 if (VT == MVT::f16) { 4284 return Subtarget->hasMadF16() && 4285 !hasFP64FP16Denormals(DAG.getMachineFunction()); 4286 } 4287 4288 return false; 4289 } 4290 4291 //===----------------------------------------------------------------------===// 4292 // Custom DAG Lowering Operations 4293 //===----------------------------------------------------------------------===// 4294 4295 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4296 // wider vector type is legal. 4297 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 4298 SelectionDAG &DAG) const { 4299 unsigned Opc = Op.getOpcode(); 4300 EVT VT = Op.getValueType(); 4301 assert(VT == MVT::v4f16 || VT == MVT::v4i16); 4302 4303 SDValue Lo, Hi; 4304 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4305 4306 SDLoc SL(Op); 4307 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 4308 Op->getFlags()); 4309 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 4310 Op->getFlags()); 4311 4312 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4313 } 4314 4315 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4316 // wider vector type is legal. 4317 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 4318 SelectionDAG &DAG) const { 4319 unsigned Opc = Op.getOpcode(); 4320 EVT VT = Op.getValueType(); 4321 assert(VT == MVT::v4i16 || VT == MVT::v4f16); 4322 4323 SDValue Lo0, Hi0; 4324 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4325 SDValue Lo1, Hi1; 4326 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4327 4328 SDLoc SL(Op); 4329 4330 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 4331 Op->getFlags()); 4332 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 4333 Op->getFlags()); 4334 4335 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4336 } 4337 4338 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 4339 SelectionDAG &DAG) const { 4340 unsigned Opc = Op.getOpcode(); 4341 EVT VT = Op.getValueType(); 4342 assert(VT == MVT::v4i16 || VT == MVT::v4f16); 4343 4344 SDValue Lo0, Hi0; 4345 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4346 SDValue Lo1, Hi1; 4347 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4348 SDValue Lo2, Hi2; 4349 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 4350 4351 SDLoc SL(Op); 4352 4353 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2, 4354 Op->getFlags()); 4355 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2, 4356 Op->getFlags()); 4357 4358 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4359 } 4360 4361 4362 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4363 switch (Op.getOpcode()) { 4364 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 4365 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 4366 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4367 case ISD::LOAD: { 4368 SDValue Result = LowerLOAD(Op, DAG); 4369 assert((!Result.getNode() || 4370 Result.getNode()->getNumValues() == 2) && 4371 "Load should return a value and a chain"); 4372 return Result; 4373 } 4374 4375 case ISD::FSIN: 4376 case ISD::FCOS: 4377 return LowerTrig(Op, DAG); 4378 case ISD::SELECT: return LowerSELECT(Op, DAG); 4379 case ISD::FDIV: return LowerFDIV(Op, DAG); 4380 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 4381 case ISD::STORE: return LowerSTORE(Op, DAG); 4382 case ISD::GlobalAddress: { 4383 MachineFunction &MF = DAG.getMachineFunction(); 4384 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 4385 return LowerGlobalAddress(MFI, Op, DAG); 4386 } 4387 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4388 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 4389 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 4390 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 4391 case ISD::INSERT_SUBVECTOR: 4392 return lowerINSERT_SUBVECTOR(Op, DAG); 4393 case ISD::INSERT_VECTOR_ELT: 4394 return lowerINSERT_VECTOR_ELT(Op, DAG); 4395 case ISD::EXTRACT_VECTOR_ELT: 4396 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4397 case ISD::VECTOR_SHUFFLE: 4398 return lowerVECTOR_SHUFFLE(Op, DAG); 4399 case ISD::BUILD_VECTOR: 4400 return lowerBUILD_VECTOR(Op, DAG); 4401 case ISD::FP_ROUND: 4402 return lowerFP_ROUND(Op, DAG); 4403 case ISD::TRAP: 4404 return lowerTRAP(Op, DAG); 4405 case ISD::DEBUGTRAP: 4406 return lowerDEBUGTRAP(Op, DAG); 4407 case ISD::FABS: 4408 case ISD::FNEG: 4409 case ISD::FCANONICALIZE: 4410 case ISD::BSWAP: 4411 return splitUnaryVectorOp(Op, DAG); 4412 case ISD::FMINNUM: 4413 case ISD::FMAXNUM: 4414 return lowerFMINNUM_FMAXNUM(Op, DAG); 4415 case ISD::FMA: 4416 return splitTernaryVectorOp(Op, DAG); 4417 case ISD::SHL: 4418 case ISD::SRA: 4419 case ISD::SRL: 4420 case ISD::ADD: 4421 case ISD::SUB: 4422 case ISD::MUL: 4423 case ISD::SMIN: 4424 case ISD::SMAX: 4425 case ISD::UMIN: 4426 case ISD::UMAX: 4427 case ISD::FADD: 4428 case ISD::FMUL: 4429 case ISD::FMINNUM_IEEE: 4430 case ISD::FMAXNUM_IEEE: 4431 return splitBinaryVectorOp(Op, DAG); 4432 case ISD::DYNAMIC_STACKALLOC: 4433 return LowerDYNAMIC_STACKALLOC(Op, DAG); 4434 } 4435 return SDValue(); 4436 } 4437 4438 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 4439 const SDLoc &DL, 4440 SelectionDAG &DAG, bool Unpacked) { 4441 if (!LoadVT.isVector()) 4442 return Result; 4443 4444 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 4445 // Truncate to v2i16/v4i16. 4446 EVT IntLoadVT = LoadVT.changeTypeToInteger(); 4447 4448 // Workaround legalizer not scalarizing truncate after vector op 4449 // legalization byt not creating intermediate vector trunc. 4450 SmallVector<SDValue, 4> Elts; 4451 DAG.ExtractVectorElements(Result, Elts); 4452 for (SDValue &Elt : Elts) 4453 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 4454 4455 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 4456 4457 // Bitcast to original type (v2f16/v4f16). 4458 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); 4459 } 4460 4461 // Cast back to the original packed type. 4462 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); 4463 } 4464 4465 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 4466 MemSDNode *M, 4467 SelectionDAG &DAG, 4468 ArrayRef<SDValue> Ops, 4469 bool IsIntrinsic) const { 4470 SDLoc DL(M); 4471 4472 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 4473 EVT LoadVT = M->getValueType(0); 4474 4475 EVT EquivLoadVT = LoadVT; 4476 if (Unpacked && LoadVT.isVector()) { 4477 EquivLoadVT = LoadVT.isVector() ? 4478 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 4479 LoadVT.getVectorNumElements()) : LoadVT; 4480 } 4481 4482 // Change from v4f16/v2f16 to EquivLoadVT. 4483 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 4484 4485 SDValue Load 4486 = DAG.getMemIntrinsicNode( 4487 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 4488 VTList, Ops, M->getMemoryVT(), 4489 M->getMemOperand()); 4490 if (!Unpacked) // Just adjusted the opcode. 4491 return Load; 4492 4493 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 4494 4495 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 4496 } 4497 4498 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 4499 SelectionDAG &DAG, 4500 ArrayRef<SDValue> Ops) const { 4501 SDLoc DL(M); 4502 EVT LoadVT = M->getValueType(0); 4503 EVT EltType = LoadVT.getScalarType(); 4504 EVT IntVT = LoadVT.changeTypeToInteger(); 4505 4506 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 4507 4508 unsigned Opc = 4509 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD; 4510 4511 if (IsD16) { 4512 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 4513 } 4514 4515 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 4516 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 4517 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 4518 4519 if (isTypeLegal(LoadVT)) { 4520 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 4521 M->getMemOperand(), DAG); 4522 } 4523 4524 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 4525 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 4526 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 4527 M->getMemOperand(), DAG); 4528 return DAG.getMergeValues( 4529 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 4530 DL); 4531 } 4532 4533 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 4534 SDNode *N, SelectionDAG &DAG) { 4535 EVT VT = N->getValueType(0); 4536 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4537 int CondCode = CD->getSExtValue(); 4538 if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE || 4539 CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE) 4540 return DAG.getUNDEF(VT); 4541 4542 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 4543 4544 SDValue LHS = N->getOperand(1); 4545 SDValue RHS = N->getOperand(2); 4546 4547 SDLoc DL(N); 4548 4549 EVT CmpVT = LHS.getValueType(); 4550 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 4551 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 4552 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4553 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 4554 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 4555 } 4556 4557 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 4558 4559 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4560 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4561 4562 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 4563 DAG.getCondCode(CCOpcode)); 4564 if (VT.bitsEq(CCVT)) 4565 return SetCC; 4566 return DAG.getZExtOrTrunc(SetCC, DL, VT); 4567 } 4568 4569 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 4570 SDNode *N, SelectionDAG &DAG) { 4571 EVT VT = N->getValueType(0); 4572 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4573 4574 int CondCode = CD->getSExtValue(); 4575 if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE || 4576 CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) { 4577 return DAG.getUNDEF(VT); 4578 } 4579 4580 SDValue Src0 = N->getOperand(1); 4581 SDValue Src1 = N->getOperand(2); 4582 EVT CmpVT = Src0.getValueType(); 4583 SDLoc SL(N); 4584 4585 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 4586 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 4587 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 4588 } 4589 4590 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 4591 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 4592 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4593 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4594 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 4595 Src1, DAG.getCondCode(CCOpcode)); 4596 if (VT.bitsEq(CCVT)) 4597 return SetCC; 4598 return DAG.getZExtOrTrunc(SetCC, SL, VT); 4599 } 4600 4601 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, 4602 SelectionDAG &DAG) { 4603 EVT VT = N->getValueType(0); 4604 SDValue Src = N->getOperand(1); 4605 SDLoc SL(N); 4606 4607 if (Src.getOpcode() == ISD::SETCC) { 4608 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) 4609 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), 4610 Src.getOperand(1), Src.getOperand(2)); 4611 } 4612 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { 4613 // (ballot 0) -> 0 4614 if (Arg->isNullValue()) 4615 return DAG.getConstant(0, SL, VT); 4616 4617 // (ballot 1) -> EXEC/EXEC_LO 4618 if (Arg->isOne()) { 4619 Register Exec; 4620 if (VT.getScalarSizeInBits() == 32) 4621 Exec = AMDGPU::EXEC_LO; 4622 else if (VT.getScalarSizeInBits() == 64) 4623 Exec = AMDGPU::EXEC; 4624 else 4625 return SDValue(); 4626 4627 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); 4628 } 4629 } 4630 4631 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) 4632 // ISD::SETNE) 4633 return DAG.getNode( 4634 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), 4635 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); 4636 } 4637 4638 void SITargetLowering::ReplaceNodeResults(SDNode *N, 4639 SmallVectorImpl<SDValue> &Results, 4640 SelectionDAG &DAG) const { 4641 switch (N->getOpcode()) { 4642 case ISD::INSERT_VECTOR_ELT: { 4643 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 4644 Results.push_back(Res); 4645 return; 4646 } 4647 case ISD::EXTRACT_VECTOR_ELT: { 4648 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 4649 Results.push_back(Res); 4650 return; 4651 } 4652 case ISD::INTRINSIC_WO_CHAIN: { 4653 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4654 switch (IID) { 4655 case Intrinsic::amdgcn_cvt_pkrtz: { 4656 SDValue Src0 = N->getOperand(1); 4657 SDValue Src1 = N->getOperand(2); 4658 SDLoc SL(N); 4659 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 4660 Src0, Src1); 4661 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 4662 return; 4663 } 4664 case Intrinsic::amdgcn_cvt_pknorm_i16: 4665 case Intrinsic::amdgcn_cvt_pknorm_u16: 4666 case Intrinsic::amdgcn_cvt_pk_i16: 4667 case Intrinsic::amdgcn_cvt_pk_u16: { 4668 SDValue Src0 = N->getOperand(1); 4669 SDValue Src1 = N->getOperand(2); 4670 SDLoc SL(N); 4671 unsigned Opcode; 4672 4673 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 4674 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 4675 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 4676 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 4677 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 4678 Opcode = AMDGPUISD::CVT_PK_I16_I32; 4679 else 4680 Opcode = AMDGPUISD::CVT_PK_U16_U32; 4681 4682 EVT VT = N->getValueType(0); 4683 if (isTypeLegal(VT)) 4684 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 4685 else { 4686 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 4687 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 4688 } 4689 return; 4690 } 4691 } 4692 break; 4693 } 4694 case ISD::INTRINSIC_W_CHAIN: { 4695 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 4696 if (Res.getOpcode() == ISD::MERGE_VALUES) { 4697 // FIXME: Hacky 4698 Results.push_back(Res.getOperand(0)); 4699 Results.push_back(Res.getOperand(1)); 4700 } else { 4701 Results.push_back(Res); 4702 Results.push_back(Res.getValue(1)); 4703 } 4704 return; 4705 } 4706 4707 break; 4708 } 4709 case ISD::SELECT: { 4710 SDLoc SL(N); 4711 EVT VT = N->getValueType(0); 4712 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 4713 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 4714 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 4715 4716 EVT SelectVT = NewVT; 4717 if (NewVT.bitsLT(MVT::i32)) { 4718 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 4719 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 4720 SelectVT = MVT::i32; 4721 } 4722 4723 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 4724 N->getOperand(0), LHS, RHS); 4725 4726 if (NewVT != SelectVT) 4727 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 4728 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 4729 return; 4730 } 4731 case ISD::FNEG: { 4732 if (N->getValueType(0) != MVT::v2f16) 4733 break; 4734 4735 SDLoc SL(N); 4736 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 4737 4738 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 4739 BC, 4740 DAG.getConstant(0x80008000, SL, MVT::i32)); 4741 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 4742 return; 4743 } 4744 case ISD::FABS: { 4745 if (N->getValueType(0) != MVT::v2f16) 4746 break; 4747 4748 SDLoc SL(N); 4749 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 4750 4751 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 4752 BC, 4753 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 4754 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 4755 return; 4756 } 4757 default: 4758 break; 4759 } 4760 } 4761 4762 /// Helper function for LowerBRCOND 4763 static SDNode *findUser(SDValue Value, unsigned Opcode) { 4764 4765 SDNode *Parent = Value.getNode(); 4766 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 4767 I != E; ++I) { 4768 4769 if (I.getUse().get() != Value) 4770 continue; 4771 4772 if (I->getOpcode() == Opcode) 4773 return *I; 4774 } 4775 return nullptr; 4776 } 4777 4778 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 4779 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 4780 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { 4781 case Intrinsic::amdgcn_if: 4782 return AMDGPUISD::IF; 4783 case Intrinsic::amdgcn_else: 4784 return AMDGPUISD::ELSE; 4785 case Intrinsic::amdgcn_loop: 4786 return AMDGPUISD::LOOP; 4787 case Intrinsic::amdgcn_end_cf: 4788 llvm_unreachable("should not occur"); 4789 default: 4790 return 0; 4791 } 4792 } 4793 4794 // break, if_break, else_break are all only used as inputs to loop, not 4795 // directly as branch conditions. 4796 return 0; 4797 } 4798 4799 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 4800 const Triple &TT = getTargetMachine().getTargetTriple(); 4801 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 4802 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 4803 AMDGPU::shouldEmitConstantsToTextSection(TT); 4804 } 4805 4806 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 4807 // FIXME: Either avoid relying on address space here or change the default 4808 // address space for functions to avoid the explicit check. 4809 return (GV->getValueType()->isFunctionTy() || 4810 !isNonGlobalAddrSpace(GV->getAddressSpace())) && 4811 !shouldEmitFixup(GV) && 4812 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 4813 } 4814 4815 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 4816 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 4817 } 4818 4819 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { 4820 if (!GV->hasExternalLinkage()) 4821 return true; 4822 4823 const auto OS = getTargetMachine().getTargetTriple().getOS(); 4824 return OS == Triple::AMDHSA || OS == Triple::AMDPAL; 4825 } 4826 4827 /// This transforms the control flow intrinsics to get the branch destination as 4828 /// last parameter, also switches branch target with BR if the need arise 4829 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 4830 SelectionDAG &DAG) const { 4831 SDLoc DL(BRCOND); 4832 4833 SDNode *Intr = BRCOND.getOperand(1).getNode(); 4834 SDValue Target = BRCOND.getOperand(2); 4835 SDNode *BR = nullptr; 4836 SDNode *SetCC = nullptr; 4837 4838 if (Intr->getOpcode() == ISD::SETCC) { 4839 // As long as we negate the condition everything is fine 4840 SetCC = Intr; 4841 Intr = SetCC->getOperand(0).getNode(); 4842 4843 } else { 4844 // Get the target from BR if we don't negate the condition 4845 BR = findUser(BRCOND, ISD::BR); 4846 assert(BR && "brcond missing unconditional branch user"); 4847 Target = BR->getOperand(1); 4848 } 4849 4850 unsigned CFNode = isCFIntrinsic(Intr); 4851 if (CFNode == 0) { 4852 // This is a uniform branch so we don't need to legalize. 4853 return BRCOND; 4854 } 4855 4856 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 4857 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 4858 4859 assert(!SetCC || 4860 (SetCC->getConstantOperandVal(1) == 1 && 4861 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 4862 ISD::SETNE)); 4863 4864 // operands of the new intrinsic call 4865 SmallVector<SDValue, 4> Ops; 4866 if (HaveChain) 4867 Ops.push_back(BRCOND.getOperand(0)); 4868 4869 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 4870 Ops.push_back(Target); 4871 4872 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 4873 4874 // build the new intrinsic call 4875 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 4876 4877 if (!HaveChain) { 4878 SDValue Ops[] = { 4879 SDValue(Result, 0), 4880 BRCOND.getOperand(0) 4881 }; 4882 4883 Result = DAG.getMergeValues(Ops, DL).getNode(); 4884 } 4885 4886 if (BR) { 4887 // Give the branch instruction our target 4888 SDValue Ops[] = { 4889 BR->getOperand(0), 4890 BRCOND.getOperand(2) 4891 }; 4892 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 4893 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 4894 } 4895 4896 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 4897 4898 // Copy the intrinsic results to registers 4899 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 4900 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 4901 if (!CopyToReg) 4902 continue; 4903 4904 Chain = DAG.getCopyToReg( 4905 Chain, DL, 4906 CopyToReg->getOperand(1), 4907 SDValue(Result, i - 1), 4908 SDValue()); 4909 4910 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 4911 } 4912 4913 // Remove the old intrinsic from the chain 4914 DAG.ReplaceAllUsesOfValueWith( 4915 SDValue(Intr, Intr->getNumValues() - 1), 4916 Intr->getOperand(0)); 4917 4918 return Chain; 4919 } 4920 4921 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 4922 SelectionDAG &DAG) const { 4923 MVT VT = Op.getSimpleValueType(); 4924 SDLoc DL(Op); 4925 // Checking the depth 4926 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) 4927 return DAG.getConstant(0, DL, VT); 4928 4929 MachineFunction &MF = DAG.getMachineFunction(); 4930 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4931 // Check for kernel and shader functions 4932 if (Info->isEntryFunction()) 4933 return DAG.getConstant(0, DL, VT); 4934 4935 MachineFrameInfo &MFI = MF.getFrameInfo(); 4936 // There is a call to @llvm.returnaddress in this function 4937 MFI.setReturnAddressIsTaken(true); 4938 4939 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 4940 // Get the return address reg and mark it as an implicit live-in 4941 unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 4942 4943 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 4944 } 4945 4946 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, 4947 SDValue Op, 4948 const SDLoc &DL, 4949 EVT VT) const { 4950 return Op.getValueType().bitsLE(VT) ? 4951 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 4952 DAG.getNode(ISD::FP_ROUND, DL, VT, Op, 4953 DAG.getTargetConstant(0, DL, MVT::i32)); 4954 } 4955 4956 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 4957 assert(Op.getValueType() == MVT::f16 && 4958 "Do not know how to custom lower FP_ROUND for non-f16 type"); 4959 4960 SDValue Src = Op.getOperand(0); 4961 EVT SrcVT = Src.getValueType(); 4962 if (SrcVT != MVT::f64) 4963 return Op; 4964 4965 SDLoc DL(Op); 4966 4967 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 4968 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 4969 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 4970 } 4971 4972 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 4973 SelectionDAG &DAG) const { 4974 EVT VT = Op.getValueType(); 4975 const MachineFunction &MF = DAG.getMachineFunction(); 4976 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4977 bool IsIEEEMode = Info->getMode().IEEE; 4978 4979 // FIXME: Assert during selection that this is only selected for 4980 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 4981 // mode functions, but this happens to be OK since it's only done in cases 4982 // where there is known no sNaN. 4983 if (IsIEEEMode) 4984 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 4985 4986 if (VT == MVT::v4f16) 4987 return splitBinaryVectorOp(Op, DAG); 4988 return Op; 4989 } 4990 4991 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 4992 SDLoc SL(Op); 4993 SDValue Chain = Op.getOperand(0); 4994 4995 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4996 !Subtarget->isTrapHandlerEnabled()) 4997 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); 4998 4999 MachineFunction &MF = DAG.getMachineFunction(); 5000 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5001 unsigned UserSGPR = Info->getQueuePtrUserSGPR(); 5002 assert(UserSGPR != AMDGPU::NoRegister); 5003 SDValue QueuePtr = CreateLiveInRegister( 5004 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5005 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 5006 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 5007 QueuePtr, SDValue()); 5008 SDValue Ops[] = { 5009 ToReg, 5010 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16), 5011 SGPR01, 5012 ToReg.getValue(1) 5013 }; 5014 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5015 } 5016 5017 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 5018 SDLoc SL(Op); 5019 SDValue Chain = Op.getOperand(0); 5020 MachineFunction &MF = DAG.getMachineFunction(); 5021 5022 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 5023 !Subtarget->isTrapHandlerEnabled()) { 5024 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 5025 "debugtrap handler not supported", 5026 Op.getDebugLoc(), 5027 DS_Warning); 5028 LLVMContext &Ctx = MF.getFunction().getContext(); 5029 Ctx.diagnose(NoTrap); 5030 return Chain; 5031 } 5032 5033 SDValue Ops[] = { 5034 Chain, 5035 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16) 5036 }; 5037 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5038 } 5039 5040 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 5041 SelectionDAG &DAG) const { 5042 // FIXME: Use inline constants (src_{shared, private}_base) instead. 5043 if (Subtarget->hasApertureRegs()) { 5044 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 5045 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 5046 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 5047 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 5048 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 5049 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 5050 unsigned Encoding = 5051 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 5052 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 5053 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 5054 5055 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); 5056 SDValue ApertureReg = SDValue( 5057 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); 5058 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); 5059 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); 5060 } 5061 5062 MachineFunction &MF = DAG.getMachineFunction(); 5063 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5064 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5065 assert(UserSGPR != AMDGPU::NoRegister); 5066 5067 SDValue QueuePtr = CreateLiveInRegister( 5068 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5069 5070 // Offset into amd_queue_t for group_segment_aperture_base_hi / 5071 // private_segment_aperture_base_hi. 5072 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 5073 5074 SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset); 5075 5076 // TODO: Use custom target PseudoSourceValue. 5077 // TODO: We should use the value from the IR intrinsic call, but it might not 5078 // be available and how do we get it? 5079 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5080 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 5081 MinAlign(64, StructOffset), 5082 MachineMemOperand::MODereferenceable | 5083 MachineMemOperand::MOInvariant); 5084 } 5085 5086 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 5087 SelectionDAG &DAG) const { 5088 SDLoc SL(Op); 5089 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 5090 5091 SDValue Src = ASC->getOperand(0); 5092 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 5093 5094 const AMDGPUTargetMachine &TM = 5095 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 5096 5097 // flat -> local/private 5098 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5099 unsigned DestAS = ASC->getDestAddressSpace(); 5100 5101 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 5102 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 5103 unsigned NullVal = TM.getNullPointerValue(DestAS); 5104 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5105 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 5106 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5107 5108 return DAG.getNode(ISD::SELECT, SL, MVT::i32, 5109 NonNull, Ptr, SegmentNullPtr); 5110 } 5111 } 5112 5113 // local/private -> flat 5114 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5115 unsigned SrcAS = ASC->getSrcAddressSpace(); 5116 5117 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 5118 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 5119 unsigned NullVal = TM.getNullPointerValue(SrcAS); 5120 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5121 5122 SDValue NonNull 5123 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 5124 5125 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 5126 SDValue CvtPtr 5127 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 5128 5129 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, 5130 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), 5131 FlatNullPtr); 5132 } 5133 } 5134 5135 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5136 Src.getValueType() == MVT::i64) 5137 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5138 5139 // global <-> flat are no-ops and never emitted. 5140 5141 const MachineFunction &MF = DAG.getMachineFunction(); 5142 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 5143 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 5144 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 5145 5146 return DAG.getUNDEF(ASC->getValueType(0)); 5147 } 5148 5149 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 5150 // the small vector and inserting them into the big vector. That is better than 5151 // the default expansion of doing it via a stack slot. Even though the use of 5152 // the stack slot would be optimized away afterwards, the stack slot itself 5153 // remains. 5154 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5155 SelectionDAG &DAG) const { 5156 SDValue Vec = Op.getOperand(0); 5157 SDValue Ins = Op.getOperand(1); 5158 SDValue Idx = Op.getOperand(2); 5159 EVT VecVT = Vec.getValueType(); 5160 EVT InsVT = Ins.getValueType(); 5161 EVT EltVT = VecVT.getVectorElementType(); 5162 unsigned InsNumElts = InsVT.getVectorNumElements(); 5163 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); 5164 SDLoc SL(Op); 5165 5166 for (unsigned I = 0; I != InsNumElts; ++I) { 5167 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 5168 DAG.getConstant(I, SL, MVT::i32)); 5169 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 5170 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 5171 } 5172 return Vec; 5173 } 5174 5175 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5176 SelectionDAG &DAG) const { 5177 SDValue Vec = Op.getOperand(0); 5178 SDValue InsVal = Op.getOperand(1); 5179 SDValue Idx = Op.getOperand(2); 5180 EVT VecVT = Vec.getValueType(); 5181 EVT EltVT = VecVT.getVectorElementType(); 5182 unsigned VecSize = VecVT.getSizeInBits(); 5183 unsigned EltSize = EltVT.getSizeInBits(); 5184 5185 5186 assert(VecSize <= 64); 5187 5188 unsigned NumElts = VecVT.getVectorNumElements(); 5189 SDLoc SL(Op); 5190 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 5191 5192 if (NumElts == 4 && EltSize == 16 && KIdx) { 5193 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 5194 5195 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5196 DAG.getConstant(0, SL, MVT::i32)); 5197 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5198 DAG.getConstant(1, SL, MVT::i32)); 5199 5200 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 5201 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 5202 5203 unsigned Idx = KIdx->getZExtValue(); 5204 bool InsertLo = Idx < 2; 5205 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 5206 InsertLo ? LoVec : HiVec, 5207 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 5208 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 5209 5210 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 5211 5212 SDValue Concat = InsertLo ? 5213 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 5214 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 5215 5216 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 5217 } 5218 5219 if (isa<ConstantSDNode>(Idx)) 5220 return SDValue(); 5221 5222 MVT IntVT = MVT::getIntegerVT(VecSize); 5223 5224 // Avoid stack access for dynamic indexing. 5225 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 5226 5227 // Create a congruent vector with the target value in each element so that 5228 // the required element can be masked and ORed into the target vector. 5229 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 5230 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 5231 5232 assert(isPowerOf2_32(EltSize)); 5233 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5234 5235 // Convert vector index to bit-index. 5236 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5237 5238 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5239 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 5240 DAG.getConstant(0xffff, SL, IntVT), 5241 ScaledIdx); 5242 5243 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 5244 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 5245 DAG.getNOT(SL, BFM, IntVT), BCVec); 5246 5247 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 5248 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 5249 } 5250 5251 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5252 SelectionDAG &DAG) const { 5253 SDLoc SL(Op); 5254 5255 EVT ResultVT = Op.getValueType(); 5256 SDValue Vec = Op.getOperand(0); 5257 SDValue Idx = Op.getOperand(1); 5258 EVT VecVT = Vec.getValueType(); 5259 unsigned VecSize = VecVT.getSizeInBits(); 5260 EVT EltVT = VecVT.getVectorElementType(); 5261 assert(VecSize <= 64); 5262 5263 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 5264 5265 // Make sure we do any optimizations that will make it easier to fold 5266 // source modifiers before obscuring it with bit operations. 5267 5268 // XXX - Why doesn't this get called when vector_shuffle is expanded? 5269 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 5270 return Combined; 5271 5272 unsigned EltSize = EltVT.getSizeInBits(); 5273 assert(isPowerOf2_32(EltSize)); 5274 5275 MVT IntVT = MVT::getIntegerVT(VecSize); 5276 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5277 5278 // Convert vector index to bit-index (* EltSize) 5279 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5280 5281 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5282 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 5283 5284 if (ResultVT == MVT::f16) { 5285 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 5286 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 5287 } 5288 5289 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 5290 } 5291 5292 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 5293 assert(Elt % 2 == 0); 5294 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 5295 } 5296 5297 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5298 SelectionDAG &DAG) const { 5299 SDLoc SL(Op); 5300 EVT ResultVT = Op.getValueType(); 5301 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 5302 5303 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 5304 EVT EltVT = PackVT.getVectorElementType(); 5305 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 5306 5307 // vector_shuffle <0,1,6,7> lhs, rhs 5308 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 5309 // 5310 // vector_shuffle <6,7,2,3> lhs, rhs 5311 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 5312 // 5313 // vector_shuffle <6,7,0,1> lhs, rhs 5314 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 5315 5316 // Avoid scalarizing when both halves are reading from consecutive elements. 5317 SmallVector<SDValue, 4> Pieces; 5318 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 5319 if (elementPairIsContiguous(SVN->getMask(), I)) { 5320 const int Idx = SVN->getMaskElt(I); 5321 int VecIdx = Idx < SrcNumElts ? 0 : 1; 5322 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 5323 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 5324 PackVT, SVN->getOperand(VecIdx), 5325 DAG.getConstant(EltIdx, SL, MVT::i32)); 5326 Pieces.push_back(SubVec); 5327 } else { 5328 const int Idx0 = SVN->getMaskElt(I); 5329 const int Idx1 = SVN->getMaskElt(I + 1); 5330 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 5331 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 5332 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 5333 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 5334 5335 SDValue Vec0 = SVN->getOperand(VecIdx0); 5336 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5337 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 5338 5339 SDValue Vec1 = SVN->getOperand(VecIdx1); 5340 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5341 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 5342 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 5343 } 5344 } 5345 5346 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 5347 } 5348 5349 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 5350 SelectionDAG &DAG) const { 5351 SDLoc SL(Op); 5352 EVT VT = Op.getValueType(); 5353 5354 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 5355 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2); 5356 5357 // Turn into pair of packed build_vectors. 5358 // TODO: Special case for constants that can be materialized with s_mov_b64. 5359 SDValue Lo = DAG.getBuildVector(HalfVT, SL, 5360 { Op.getOperand(0), Op.getOperand(1) }); 5361 SDValue Hi = DAG.getBuildVector(HalfVT, SL, 5362 { Op.getOperand(2), Op.getOperand(3) }); 5363 5364 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo); 5365 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi); 5366 5367 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi }); 5368 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 5369 } 5370 5371 assert(VT == MVT::v2f16 || VT == MVT::v2i16); 5372 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 5373 5374 SDValue Lo = Op.getOperand(0); 5375 SDValue Hi = Op.getOperand(1); 5376 5377 // Avoid adding defined bits with the zero_extend. 5378 if (Hi.isUndef()) { 5379 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5380 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 5381 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 5382 } 5383 5384 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 5385 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 5386 5387 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 5388 DAG.getConstant(16, SL, MVT::i32)); 5389 if (Lo.isUndef()) 5390 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 5391 5392 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5393 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 5394 5395 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 5396 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 5397 } 5398 5399 bool 5400 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5401 // We can fold offsets for anything that doesn't require a GOT relocation. 5402 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 5403 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5404 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5405 !shouldEmitGOTReloc(GA->getGlobal()); 5406 } 5407 5408 static SDValue 5409 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 5410 const SDLoc &DL, unsigned Offset, EVT PtrVT, 5411 unsigned GAFlags = SIInstrInfo::MO_NONE) { 5412 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 5413 // lowered to the following code sequence: 5414 // 5415 // For constant address space: 5416 // s_getpc_b64 s[0:1] 5417 // s_add_u32 s0, s0, $symbol 5418 // s_addc_u32 s1, s1, 0 5419 // 5420 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5421 // a fixup or relocation is emitted to replace $symbol with a literal 5422 // constant, which is a pc-relative offset from the encoding of the $symbol 5423 // operand to the global variable. 5424 // 5425 // For global address space: 5426 // s_getpc_b64 s[0:1] 5427 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 5428 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 5429 // 5430 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5431 // fixups or relocations are emitted to replace $symbol@*@lo and 5432 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 5433 // which is a 64-bit pc-relative offset from the encoding of the $symbol 5434 // operand to the global variable. 5435 // 5436 // What we want here is an offset from the value returned by s_getpc 5437 // (which is the address of the s_add_u32 instruction) to the global 5438 // variable, but since the encoding of $symbol starts 4 bytes after the start 5439 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 5440 // small. This requires us to add 4 to the global variable offset in order to 5441 // compute the correct address. 5442 SDValue PtrLo = 5443 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); 5444 SDValue PtrHi; 5445 if (GAFlags == SIInstrInfo::MO_NONE) { 5446 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 5447 } else { 5448 PtrHi = 5449 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1); 5450 } 5451 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 5452 } 5453 5454 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 5455 SDValue Op, 5456 SelectionDAG &DAG) const { 5457 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 5458 const GlobalValue *GV = GSD->getGlobal(); 5459 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 5460 shouldUseLDSConstAddress(GV)) || 5461 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 5462 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) 5463 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 5464 5465 SDLoc DL(GSD); 5466 EVT PtrVT = Op.getValueType(); 5467 5468 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 5469 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 5470 SIInstrInfo::MO_ABS32_LO); 5471 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 5472 } 5473 5474 if (shouldEmitFixup(GV)) 5475 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 5476 else if (shouldEmitPCReloc(GV)) 5477 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 5478 SIInstrInfo::MO_REL32); 5479 5480 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 5481 SIInstrInfo::MO_GOTPCREL32); 5482 5483 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 5484 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 5485 const DataLayout &DataLayout = DAG.getDataLayout(); 5486 unsigned Align = DataLayout.getABITypeAlignment(PtrTy); 5487 MachinePointerInfo PtrInfo 5488 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 5489 5490 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align, 5491 MachineMemOperand::MODereferenceable | 5492 MachineMemOperand::MOInvariant); 5493 } 5494 5495 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 5496 const SDLoc &DL, SDValue V) const { 5497 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 5498 // the destination register. 5499 // 5500 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 5501 // so we will end up with redundant moves to m0. 5502 // 5503 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 5504 5505 // A Null SDValue creates a glue result. 5506 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 5507 V, Chain); 5508 return SDValue(M0, 0); 5509 } 5510 5511 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 5512 SDValue Op, 5513 MVT VT, 5514 unsigned Offset) const { 5515 SDLoc SL(Op); 5516 SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL, 5517 DAG.getEntryNode(), Offset, 4, false); 5518 // The local size values will have the hi 16-bits as zero. 5519 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 5520 DAG.getValueType(VT)); 5521 } 5522 5523 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 5524 EVT VT) { 5525 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 5526 "non-hsa intrinsic with hsa target", 5527 DL.getDebugLoc()); 5528 DAG.getContext()->diagnose(BadIntrin); 5529 return DAG.getUNDEF(VT); 5530 } 5531 5532 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 5533 EVT VT) { 5534 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 5535 "intrinsic not supported on subtarget", 5536 DL.getDebugLoc()); 5537 DAG.getContext()->diagnose(BadIntrin); 5538 return DAG.getUNDEF(VT); 5539 } 5540 5541 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 5542 ArrayRef<SDValue> Elts) { 5543 assert(!Elts.empty()); 5544 MVT Type; 5545 unsigned NumElts; 5546 5547 if (Elts.size() == 1) { 5548 Type = MVT::f32; 5549 NumElts = 1; 5550 } else if (Elts.size() == 2) { 5551 Type = MVT::v2f32; 5552 NumElts = 2; 5553 } else if (Elts.size() == 3) { 5554 Type = MVT::v3f32; 5555 NumElts = 3; 5556 } else if (Elts.size() <= 4) { 5557 Type = MVT::v4f32; 5558 NumElts = 4; 5559 } else if (Elts.size() <= 8) { 5560 Type = MVT::v8f32; 5561 NumElts = 8; 5562 } else { 5563 assert(Elts.size() <= 16); 5564 Type = MVT::v16f32; 5565 NumElts = 16; 5566 } 5567 5568 SmallVector<SDValue, 16> VecElts(NumElts); 5569 for (unsigned i = 0; i < Elts.size(); ++i) { 5570 SDValue Elt = Elts[i]; 5571 if (Elt.getValueType() != MVT::f32) 5572 Elt = DAG.getBitcast(MVT::f32, Elt); 5573 VecElts[i] = Elt; 5574 } 5575 for (unsigned i = Elts.size(); i < NumElts; ++i) 5576 VecElts[i] = DAG.getUNDEF(MVT::f32); 5577 5578 if (NumElts == 1) 5579 return VecElts[0]; 5580 return DAG.getBuildVector(Type, DL, VecElts); 5581 } 5582 5583 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG, 5584 SDValue *GLC, SDValue *SLC, SDValue *DLC) { 5585 auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode()); 5586 5587 uint64_t Value = CachePolicyConst->getZExtValue(); 5588 SDLoc DL(CachePolicy); 5589 if (GLC) { 5590 *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 5591 Value &= ~(uint64_t)0x1; 5592 } 5593 if (SLC) { 5594 *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 5595 Value &= ~(uint64_t)0x2; 5596 } 5597 if (DLC) { 5598 *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32); 5599 Value &= ~(uint64_t)0x4; 5600 } 5601 5602 return Value == 0; 5603 } 5604 5605 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, 5606 SDValue Src, int ExtraElts) { 5607 EVT SrcVT = Src.getValueType(); 5608 5609 SmallVector<SDValue, 8> Elts; 5610 5611 if (SrcVT.isVector()) 5612 DAG.ExtractVectorElements(Src, Elts); 5613 else 5614 Elts.push_back(Src); 5615 5616 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); 5617 while (ExtraElts--) 5618 Elts.push_back(Undef); 5619 5620 return DAG.getBuildVector(CastVT, DL, Elts); 5621 } 5622 5623 // Re-construct the required return value for a image load intrinsic. 5624 // This is more complicated due to the optional use TexFailCtrl which means the required 5625 // return type is an aggregate 5626 static SDValue constructRetValue(SelectionDAG &DAG, 5627 MachineSDNode *Result, 5628 ArrayRef<EVT> ResultTypes, 5629 bool IsTexFail, bool Unpacked, bool IsD16, 5630 int DMaskPop, int NumVDataDwords, 5631 const SDLoc &DL, LLVMContext &Context) { 5632 // Determine the required return type. This is the same regardless of IsTexFail flag 5633 EVT ReqRetVT = ResultTypes[0]; 5634 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 5635 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? 5636 ReqRetNumElts : (ReqRetNumElts + 1) / 2; 5637 5638 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? 5639 DMaskPop : (DMaskPop + 1) / 2; 5640 5641 MVT DataDwordVT = NumDataDwords == 1 ? 5642 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); 5643 5644 MVT MaskPopVT = MaskPopDwords == 1 ? 5645 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); 5646 5647 SDValue Data(Result, 0); 5648 SDValue TexFail; 5649 5650 if (IsTexFail) { 5651 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); 5652 if (MaskPopVT.isVector()) { 5653 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, 5654 SDValue(Result, 0), ZeroIdx); 5655 } else { 5656 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, 5657 SDValue(Result, 0), ZeroIdx); 5658 } 5659 5660 TexFail = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 5661 SDValue(Result, 0), 5662 DAG.getConstant(MaskPopDwords, DL, MVT::i32)); 5663 } 5664 5665 if (DataDwordVT.isVector()) 5666 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, 5667 NumDataDwords - MaskPopDwords); 5668 5669 if (IsD16) 5670 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); 5671 5672 if (!ReqRetVT.isVector()) 5673 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); 5674 5675 Data = DAG.getNode(ISD::BITCAST, DL, ReqRetVT, Data); 5676 5677 if (TexFail) 5678 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); 5679 5680 if (Result->getNumValues() == 1) 5681 return Data; 5682 5683 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); 5684 } 5685 5686 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 5687 SDValue *LWE, bool &IsTexFail) { 5688 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 5689 5690 uint64_t Value = TexFailCtrlConst->getZExtValue(); 5691 if (Value) { 5692 IsTexFail = true; 5693 } 5694 5695 SDLoc DL(TexFailCtrlConst); 5696 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 5697 Value &= ~(uint64_t)0x1; 5698 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 5699 Value &= ~(uint64_t)0x2; 5700 5701 return Value == 0; 5702 } 5703 5704 SDValue SITargetLowering::lowerImage(SDValue Op, 5705 const AMDGPU::ImageDimIntrinsicInfo *Intr, 5706 SelectionDAG &DAG) const { 5707 SDLoc DL(Op); 5708 MachineFunction &MF = DAG.getMachineFunction(); 5709 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 5710 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 5711 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 5712 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 5713 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = 5714 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode); 5715 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo = 5716 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode); 5717 unsigned IntrOpcode = Intr->BaseOpcode; 5718 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10; 5719 5720 SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end()); 5721 SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end()); 5722 bool IsD16 = false; 5723 bool IsA16 = false; 5724 SDValue VData; 5725 int NumVDataDwords; 5726 bool AdjustRetType = false; 5727 5728 unsigned AddrIdx; // Index of first address argument 5729 unsigned DMask; 5730 unsigned DMaskLanes = 0; 5731 5732 if (BaseOpcode->Atomic) { 5733 VData = Op.getOperand(2); 5734 5735 bool Is64Bit = VData.getValueType() == MVT::i64; 5736 if (BaseOpcode->AtomicX2) { 5737 SDValue VData2 = Op.getOperand(3); 5738 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 5739 {VData, VData2}); 5740 if (Is64Bit) 5741 VData = DAG.getBitcast(MVT::v4i32, VData); 5742 5743 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 5744 DMask = Is64Bit ? 0xf : 0x3; 5745 NumVDataDwords = Is64Bit ? 4 : 2; 5746 AddrIdx = 4; 5747 } else { 5748 DMask = Is64Bit ? 0x3 : 0x1; 5749 NumVDataDwords = Is64Bit ? 2 : 1; 5750 AddrIdx = 3; 5751 } 5752 } else { 5753 unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1; 5754 auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx)); 5755 DMask = DMaskConst->getZExtValue(); 5756 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); 5757 5758 if (BaseOpcode->Store) { 5759 VData = Op.getOperand(2); 5760 5761 MVT StoreVT = VData.getSimpleValueType(); 5762 if (StoreVT.getScalarType() == MVT::f16) { 5763 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 5764 return Op; // D16 is unsupported for this instruction 5765 5766 IsD16 = true; 5767 VData = handleD16VData(VData, DAG); 5768 } 5769 5770 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 5771 } else { 5772 // Work out the num dwords based on the dmask popcount and underlying type 5773 // and whether packing is supported. 5774 MVT LoadVT = ResultTypes[0].getSimpleVT(); 5775 if (LoadVT.getScalarType() == MVT::f16) { 5776 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 5777 return Op; // D16 is unsupported for this instruction 5778 5779 IsD16 = true; 5780 } 5781 5782 // Confirm that the return type is large enough for the dmask specified 5783 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 5784 (!LoadVT.isVector() && DMaskLanes > 1)) 5785 return Op; 5786 5787 if (IsD16 && !Subtarget->hasUnpackedD16VMem()) 5788 NumVDataDwords = (DMaskLanes + 1) / 2; 5789 else 5790 NumVDataDwords = DMaskLanes; 5791 5792 AdjustRetType = true; 5793 } 5794 5795 AddrIdx = DMaskIdx + 1; 5796 } 5797 5798 unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0; 5799 unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0; 5800 unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0; 5801 unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients + 5802 NumCoords + NumLCM; 5803 unsigned NumMIVAddrs = NumVAddrs; 5804 5805 SmallVector<SDValue, 4> VAddrs; 5806 5807 // Optimize _L to _LZ when _L is zero 5808 if (LZMappingInfo) { 5809 if (auto ConstantLod = 5810 dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { 5811 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 5812 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l 5813 NumMIVAddrs--; // remove 'lod' 5814 } 5815 } 5816 } 5817 5818 // Optimize _mip away, when 'lod' is zero 5819 if (MIPMappingInfo) { 5820 if (auto ConstantLod = 5821 dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { 5822 if (ConstantLod->isNullValue()) { 5823 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip 5824 NumMIVAddrs--; // remove 'lod' 5825 } 5826 } 5827 } 5828 5829 // Check for 16 bit addresses and pack if true. 5830 unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs; 5831 MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType(); 5832 const MVT VAddrScalarVT = VAddrVT.getScalarType(); 5833 if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16))) { 5834 // Illegal to use a16 images 5835 if (!ST->hasFeature(AMDGPU::FeatureR128A16) && !ST->hasFeature(AMDGPU::FeatureGFX10A16)) 5836 return Op; 5837 5838 IsA16 = true; 5839 const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 5840 for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) { 5841 SDValue AddrLo; 5842 // Push back extra arguments. 5843 if (i < DimIdx) { 5844 AddrLo = Op.getOperand(i); 5845 } else { 5846 // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, 5847 // in 1D, derivatives dx/dh and dx/dv are packed with undef. 5848 if (((i + 1) >= (AddrIdx + NumMIVAddrs)) || 5849 ((NumGradients / 2) % 2 == 1 && 5850 (i == DimIdx + (NumGradients / 2) - 1 || 5851 i == DimIdx + NumGradients - 1))) { 5852 AddrLo = Op.getOperand(i); 5853 if (AddrLo.getValueType() != MVT::i16) 5854 AddrLo = DAG.getBitcast(MVT::i16, Op.getOperand(i)); 5855 AddrLo = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, AddrLo); 5856 } else { 5857 AddrLo = DAG.getBuildVector(VectorVT, DL, 5858 {Op.getOperand(i), Op.getOperand(i + 1)}); 5859 i++; 5860 } 5861 AddrLo = DAG.getBitcast(MVT::f32, AddrLo); 5862 } 5863 VAddrs.push_back(AddrLo); 5864 } 5865 } else { 5866 for (unsigned i = 0; i < NumMIVAddrs; ++i) 5867 VAddrs.push_back(Op.getOperand(AddrIdx + i)); 5868 } 5869 5870 // If the register allocator cannot place the address registers contiguously 5871 // without introducing moves, then using the non-sequential address encoding 5872 // is always preferable, since it saves VALU instructions and is usually a 5873 // wash in terms of code size or even better. 5874 // 5875 // However, we currently have no way of hinting to the register allocator that 5876 // MIMG addresses should be placed contiguously when it is possible to do so, 5877 // so force non-NSA for the common 2-address case as a heuristic. 5878 // 5879 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 5880 // allocation when possible. 5881 bool UseNSA = 5882 ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3; 5883 SDValue VAddr; 5884 if (!UseNSA) 5885 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 5886 5887 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 5888 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 5889 unsigned CtrlIdx; // Index of texfailctrl argument 5890 SDValue Unorm; 5891 if (!BaseOpcode->Sampler) { 5892 Unorm = True; 5893 CtrlIdx = AddrIdx + NumVAddrs + 1; 5894 } else { 5895 auto UnormConst = 5896 cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2)); 5897 5898 Unorm = UnormConst->getZExtValue() ? True : False; 5899 CtrlIdx = AddrIdx + NumVAddrs + 3; 5900 } 5901 5902 SDValue TFE; 5903 SDValue LWE; 5904 SDValue TexFail = Op.getOperand(CtrlIdx); 5905 bool IsTexFail = false; 5906 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 5907 return Op; 5908 5909 if (IsTexFail) { 5910 if (!DMaskLanes) { 5911 // Expecting to get an error flag since TFC is on - and dmask is 0 5912 // Force dmask to be at least 1 otherwise the instruction will fail 5913 DMask = 0x1; 5914 DMaskLanes = 1; 5915 NumVDataDwords = 1; 5916 } 5917 NumVDataDwords += 1; 5918 AdjustRetType = true; 5919 } 5920 5921 // Has something earlier tagged that the return type needs adjusting 5922 // This happens if the instruction is a load or has set TexFailCtrl flags 5923 if (AdjustRetType) { 5924 // NumVDataDwords reflects the true number of dwords required in the return type 5925 if (DMaskLanes == 0 && !BaseOpcode->Store) { 5926 // This is a no-op load. This can be eliminated 5927 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 5928 if (isa<MemSDNode>(Op)) 5929 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 5930 return Undef; 5931 } 5932 5933 EVT NewVT = NumVDataDwords > 1 ? 5934 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) 5935 : MVT::i32; 5936 5937 ResultTypes[0] = NewVT; 5938 if (ResultTypes.size() == 3) { 5939 // Original result was aggregate type used for TexFailCtrl results 5940 // The actual instruction returns as a vector type which has now been 5941 // created. Remove the aggregate result. 5942 ResultTypes.erase(&ResultTypes[1]); 5943 } 5944 } 5945 5946 SDValue GLC; 5947 SDValue SLC; 5948 SDValue DLC; 5949 if (BaseOpcode->Atomic) { 5950 GLC = True; // TODO no-return optimization 5951 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC, 5952 IsGFX10 ? &DLC : nullptr)) 5953 return Op; 5954 } else { 5955 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC, 5956 IsGFX10 ? &DLC : nullptr)) 5957 return Op; 5958 } 5959 5960 SmallVector<SDValue, 26> Ops; 5961 if (BaseOpcode->Store || BaseOpcode->Atomic) 5962 Ops.push_back(VData); // vdata 5963 if (UseNSA) { 5964 for (const SDValue &Addr : VAddrs) 5965 Ops.push_back(Addr); 5966 } else { 5967 Ops.push_back(VAddr); 5968 } 5969 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc 5970 if (BaseOpcode->Sampler) 5971 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler 5972 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 5973 if (IsGFX10) 5974 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 5975 Ops.push_back(Unorm); 5976 if (IsGFX10) 5977 Ops.push_back(DLC); 5978 Ops.push_back(GLC); 5979 Ops.push_back(SLC); 5980 Ops.push_back(IsA16 && // r128, a16 for gfx9 5981 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 5982 if (IsGFX10) 5983 Ops.push_back(IsA16 ? True : False); 5984 Ops.push_back(TFE); 5985 Ops.push_back(LWE); 5986 if (!IsGFX10) 5987 Ops.push_back(DimInfo->DA ? True : False); 5988 if (BaseOpcode->HasD16) 5989 Ops.push_back(IsD16 ? True : False); 5990 if (isa<MemSDNode>(Op)) 5991 Ops.push_back(Op.getOperand(0)); // chain 5992 5993 int NumVAddrDwords = 5994 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 5995 int Opcode = -1; 5996 5997 if (IsGFX10) { 5998 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 5999 UseNSA ? AMDGPU::MIMGEncGfx10NSA 6000 : AMDGPU::MIMGEncGfx10Default, 6001 NumVDataDwords, NumVAddrDwords); 6002 } else { 6003 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6004 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 6005 NumVDataDwords, NumVAddrDwords); 6006 if (Opcode == -1) 6007 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 6008 NumVDataDwords, NumVAddrDwords); 6009 } 6010 assert(Opcode != -1); 6011 6012 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 6013 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 6014 MachineMemOperand *MemRef = MemOp->getMemOperand(); 6015 DAG.setNodeMemRefs(NewNode, {MemRef}); 6016 } 6017 6018 if (BaseOpcode->AtomicX2) { 6019 SmallVector<SDValue, 1> Elt; 6020 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 6021 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 6022 } else if (!BaseOpcode->Store) { 6023 return constructRetValue(DAG, NewNode, 6024 OrigResultTypes, IsTexFail, 6025 Subtarget->hasUnpackedD16VMem(), IsD16, 6026 DMaskLanes, NumVDataDwords, DL, 6027 *DAG.getContext()); 6028 } 6029 6030 return SDValue(NewNode, 0); 6031 } 6032 6033 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 6034 SDValue Offset, SDValue CachePolicy, 6035 SelectionDAG &DAG) const { 6036 MachineFunction &MF = DAG.getMachineFunction(); 6037 6038 const DataLayout &DataLayout = DAG.getDataLayout(); 6039 Align Alignment = 6040 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); 6041 6042 MachineMemOperand *MMO = MF.getMachineMemOperand( 6043 MachinePointerInfo(), 6044 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 6045 MachineMemOperand::MOInvariant, 6046 VT.getStoreSize(), Alignment); 6047 6048 if (!Offset->isDivergent()) { 6049 SDValue Ops[] = { 6050 Rsrc, 6051 Offset, // Offset 6052 CachePolicy 6053 }; 6054 6055 // Widen vec3 load to vec4. 6056 if (VT.isVector() && VT.getVectorNumElements() == 3) { 6057 EVT WidenedVT = 6058 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 6059 auto WidenedOp = DAG.getMemIntrinsicNode( 6060 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, 6061 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); 6062 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, 6063 DAG.getVectorIdxConstant(0, DL)); 6064 return Subvector; 6065 } 6066 6067 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 6068 DAG.getVTList(VT), Ops, VT, MMO); 6069 } 6070 6071 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 6072 // assume that the buffer is unswizzled. 6073 SmallVector<SDValue, 4> Loads; 6074 unsigned NumLoads = 1; 6075 MVT LoadVT = VT.getSimpleVT(); 6076 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 6077 assert((LoadVT.getScalarType() == MVT::i32 || 6078 LoadVT.getScalarType() == MVT::f32)); 6079 6080 if (NumElts == 8 || NumElts == 16) { 6081 NumLoads = NumElts / 4; 6082 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); 6083 } 6084 6085 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 6086 SDValue Ops[] = { 6087 DAG.getEntryNode(), // Chain 6088 Rsrc, // rsrc 6089 DAG.getConstant(0, DL, MVT::i32), // vindex 6090 {}, // voffset 6091 {}, // soffset 6092 {}, // offset 6093 CachePolicy, // cachepolicy 6094 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6095 }; 6096 6097 // Use the alignment to ensure that the required offsets will fit into the 6098 // immediate offsets. 6099 setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4); 6100 6101 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); 6102 for (unsigned i = 0; i < NumLoads; ++i) { 6103 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 6104 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, 6105 LoadVT, MMO, DAG)); 6106 } 6107 6108 if (NumElts == 8 || NumElts == 16) 6109 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 6110 6111 return Loads[0]; 6112 } 6113 6114 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 6115 SelectionDAG &DAG) const { 6116 MachineFunction &MF = DAG.getMachineFunction(); 6117 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 6118 6119 EVT VT = Op.getValueType(); 6120 SDLoc DL(Op); 6121 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6122 6123 // TODO: Should this propagate fast-math-flags? 6124 6125 switch (IntrinsicID) { 6126 case Intrinsic::amdgcn_implicit_buffer_ptr: { 6127 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 6128 return emitNonHSAIntrinsicError(DAG, DL, VT); 6129 return getPreloadedValue(DAG, *MFI, VT, 6130 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 6131 } 6132 case Intrinsic::amdgcn_dispatch_ptr: 6133 case Intrinsic::amdgcn_queue_ptr: { 6134 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 6135 DiagnosticInfoUnsupported BadIntrin( 6136 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 6137 DL.getDebugLoc()); 6138 DAG.getContext()->diagnose(BadIntrin); 6139 return DAG.getUNDEF(VT); 6140 } 6141 6142 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 6143 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 6144 return getPreloadedValue(DAG, *MFI, VT, RegID); 6145 } 6146 case Intrinsic::amdgcn_implicitarg_ptr: { 6147 if (MFI->isEntryFunction()) 6148 return getImplicitArgPtr(DAG, DL); 6149 return getPreloadedValue(DAG, *MFI, VT, 6150 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 6151 } 6152 case Intrinsic::amdgcn_kernarg_segment_ptr: { 6153 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { 6154 // This only makes sense to call in a kernel, so just lower to null. 6155 return DAG.getConstant(0, DL, VT); 6156 } 6157 6158 return getPreloadedValue(DAG, *MFI, VT, 6159 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 6160 } 6161 case Intrinsic::amdgcn_dispatch_id: { 6162 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 6163 } 6164 case Intrinsic::amdgcn_rcp: 6165 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 6166 case Intrinsic::amdgcn_rsq: 6167 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6168 case Intrinsic::amdgcn_rsq_legacy: 6169 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6170 return emitRemovedIntrinsicError(DAG, DL, VT); 6171 return SDValue(); 6172 case Intrinsic::amdgcn_rcp_legacy: 6173 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6174 return emitRemovedIntrinsicError(DAG, DL, VT); 6175 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 6176 case Intrinsic::amdgcn_rsq_clamp: { 6177 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6178 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 6179 6180 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 6181 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 6182 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 6183 6184 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6185 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 6186 DAG.getConstantFP(Max, DL, VT)); 6187 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 6188 DAG.getConstantFP(Min, DL, VT)); 6189 } 6190 case Intrinsic::r600_read_ngroups_x: 6191 if (Subtarget->isAmdHsaOS()) 6192 return emitNonHSAIntrinsicError(DAG, DL, VT); 6193 6194 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6195 SI::KernelInputOffsets::NGROUPS_X, 4, false); 6196 case Intrinsic::r600_read_ngroups_y: 6197 if (Subtarget->isAmdHsaOS()) 6198 return emitNonHSAIntrinsicError(DAG, DL, VT); 6199 6200 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6201 SI::KernelInputOffsets::NGROUPS_Y, 4, false); 6202 case Intrinsic::r600_read_ngroups_z: 6203 if (Subtarget->isAmdHsaOS()) 6204 return emitNonHSAIntrinsicError(DAG, DL, VT); 6205 6206 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6207 SI::KernelInputOffsets::NGROUPS_Z, 4, false); 6208 case Intrinsic::r600_read_global_size_x: 6209 if (Subtarget->isAmdHsaOS()) 6210 return emitNonHSAIntrinsicError(DAG, DL, VT); 6211 6212 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6213 SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false); 6214 case Intrinsic::r600_read_global_size_y: 6215 if (Subtarget->isAmdHsaOS()) 6216 return emitNonHSAIntrinsicError(DAG, DL, VT); 6217 6218 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6219 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false); 6220 case Intrinsic::r600_read_global_size_z: 6221 if (Subtarget->isAmdHsaOS()) 6222 return emitNonHSAIntrinsicError(DAG, DL, VT); 6223 6224 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6225 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false); 6226 case Intrinsic::r600_read_local_size_x: 6227 if (Subtarget->isAmdHsaOS()) 6228 return emitNonHSAIntrinsicError(DAG, DL, VT); 6229 6230 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6231 SI::KernelInputOffsets::LOCAL_SIZE_X); 6232 case Intrinsic::r600_read_local_size_y: 6233 if (Subtarget->isAmdHsaOS()) 6234 return emitNonHSAIntrinsicError(DAG, DL, VT); 6235 6236 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6237 SI::KernelInputOffsets::LOCAL_SIZE_Y); 6238 case Intrinsic::r600_read_local_size_z: 6239 if (Subtarget->isAmdHsaOS()) 6240 return emitNonHSAIntrinsicError(DAG, DL, VT); 6241 6242 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6243 SI::KernelInputOffsets::LOCAL_SIZE_Z); 6244 case Intrinsic::amdgcn_workgroup_id_x: 6245 return getPreloadedValue(DAG, *MFI, VT, 6246 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 6247 case Intrinsic::amdgcn_workgroup_id_y: 6248 return getPreloadedValue(DAG, *MFI, VT, 6249 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 6250 case Intrinsic::amdgcn_workgroup_id_z: 6251 return getPreloadedValue(DAG, *MFI, VT, 6252 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 6253 case Intrinsic::amdgcn_workitem_id_x: 6254 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6255 SDLoc(DAG.getEntryNode()), 6256 MFI->getArgInfo().WorkItemIDX); 6257 case Intrinsic::amdgcn_workitem_id_y: 6258 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6259 SDLoc(DAG.getEntryNode()), 6260 MFI->getArgInfo().WorkItemIDY); 6261 case Intrinsic::amdgcn_workitem_id_z: 6262 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6263 SDLoc(DAG.getEntryNode()), 6264 MFI->getArgInfo().WorkItemIDZ); 6265 case Intrinsic::amdgcn_wavefrontsize: 6266 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 6267 SDLoc(Op), MVT::i32); 6268 case Intrinsic::amdgcn_s_buffer_load: { 6269 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10; 6270 SDValue GLC; 6271 SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1); 6272 if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr, 6273 IsGFX10 ? &DLC : nullptr)) 6274 return Op; 6275 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6276 DAG); 6277 } 6278 case Intrinsic::amdgcn_fdiv_fast: 6279 return lowerFDIV_FAST(Op, DAG); 6280 case Intrinsic::amdgcn_sin: 6281 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 6282 6283 case Intrinsic::amdgcn_cos: 6284 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 6285 6286 case Intrinsic::amdgcn_mul_u24: 6287 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6288 case Intrinsic::amdgcn_mul_i24: 6289 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6290 6291 case Intrinsic::amdgcn_log_clamp: { 6292 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6293 return SDValue(); 6294 6295 DiagnosticInfoUnsupported BadIntrin( 6296 MF.getFunction(), "intrinsic not supported on subtarget", 6297 DL.getDebugLoc()); 6298 DAG.getContext()->diagnose(BadIntrin); 6299 return DAG.getUNDEF(VT); 6300 } 6301 case Intrinsic::amdgcn_ldexp: 6302 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, 6303 Op.getOperand(1), Op.getOperand(2)); 6304 6305 case Intrinsic::amdgcn_fract: 6306 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 6307 6308 case Intrinsic::amdgcn_class: 6309 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 6310 Op.getOperand(1), Op.getOperand(2)); 6311 case Intrinsic::amdgcn_div_fmas: 6312 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 6313 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6314 Op.getOperand(4)); 6315 6316 case Intrinsic::amdgcn_div_fixup: 6317 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 6318 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6319 6320 case Intrinsic::amdgcn_trig_preop: 6321 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, 6322 Op.getOperand(1), Op.getOperand(2)); 6323 case Intrinsic::amdgcn_div_scale: { 6324 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 6325 6326 // Translate to the operands expected by the machine instruction. The 6327 // first parameter must be the same as the first instruction. 6328 SDValue Numerator = Op.getOperand(1); 6329 SDValue Denominator = Op.getOperand(2); 6330 6331 // Note this order is opposite of the machine instruction's operations, 6332 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 6333 // intrinsic has the numerator as the first operand to match a normal 6334 // division operation. 6335 6336 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 6337 6338 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 6339 Denominator, Numerator); 6340 } 6341 case Intrinsic::amdgcn_icmp: { 6342 // There is a Pat that handles this variant, so return it as-is. 6343 if (Op.getOperand(1).getValueType() == MVT::i1 && 6344 Op.getConstantOperandVal(2) == 0 && 6345 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 6346 return Op; 6347 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 6348 } 6349 case Intrinsic::amdgcn_fcmp: { 6350 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 6351 } 6352 case Intrinsic::amdgcn_ballot: 6353 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); 6354 case Intrinsic::amdgcn_fmed3: 6355 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 6356 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6357 case Intrinsic::amdgcn_fdot2: 6358 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 6359 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6360 Op.getOperand(4)); 6361 case Intrinsic::amdgcn_fmul_legacy: 6362 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 6363 Op.getOperand(1), Op.getOperand(2)); 6364 case Intrinsic::amdgcn_sffbh: 6365 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 6366 case Intrinsic::amdgcn_sbfe: 6367 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 6368 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6369 case Intrinsic::amdgcn_ubfe: 6370 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 6371 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6372 case Intrinsic::amdgcn_cvt_pkrtz: 6373 case Intrinsic::amdgcn_cvt_pknorm_i16: 6374 case Intrinsic::amdgcn_cvt_pknorm_u16: 6375 case Intrinsic::amdgcn_cvt_pk_i16: 6376 case Intrinsic::amdgcn_cvt_pk_u16: { 6377 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 6378 EVT VT = Op.getValueType(); 6379 unsigned Opcode; 6380 6381 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 6382 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 6383 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 6384 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 6385 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 6386 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 6387 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 6388 Opcode = AMDGPUISD::CVT_PK_I16_I32; 6389 else 6390 Opcode = AMDGPUISD::CVT_PK_U16_U32; 6391 6392 if (isTypeLegal(VT)) 6393 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6394 6395 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 6396 Op.getOperand(1), Op.getOperand(2)); 6397 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 6398 } 6399 case Intrinsic::amdgcn_fmad_ftz: 6400 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 6401 Op.getOperand(2), Op.getOperand(3)); 6402 6403 case Intrinsic::amdgcn_if_break: 6404 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 6405 Op->getOperand(1), Op->getOperand(2)), 0); 6406 6407 case Intrinsic::amdgcn_groupstaticsize: { 6408 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 6409 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 6410 return Op; 6411 6412 const Module *M = MF.getFunction().getParent(); 6413 const GlobalValue *GV = 6414 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 6415 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 6416 SIInstrInfo::MO_ABS32_LO); 6417 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 6418 } 6419 case Intrinsic::amdgcn_is_shared: 6420 case Intrinsic::amdgcn_is_private: { 6421 SDLoc SL(Op); 6422 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 6423 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 6424 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 6425 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 6426 Op.getOperand(1)); 6427 6428 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 6429 DAG.getConstant(1, SL, MVT::i32)); 6430 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 6431 } 6432 case Intrinsic::amdgcn_alignbit: 6433 return DAG.getNode(ISD::FSHR, DL, VT, 6434 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6435 case Intrinsic::amdgcn_reloc_constant: { 6436 Module *M = const_cast<Module *>(MF.getFunction().getParent()); 6437 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); 6438 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); 6439 auto RelocSymbol = cast<GlobalVariable>( 6440 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); 6441 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, 6442 SIInstrInfo::MO_ABS32_LO); 6443 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 6444 } 6445 default: 6446 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 6447 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 6448 return lowerImage(Op, ImageDimIntr, DAG); 6449 6450 return Op; 6451 } 6452 } 6453 6454 // This function computes an appropriate offset to pass to 6455 // MachineMemOperand::setOffset() based on the offset inputs to 6456 // an intrinsic. If any of the offsets are non-contstant or 6457 // if VIndex is non-zero then this function returns 0. Otherwise, 6458 // it returns the sum of VOffset, SOffset, and Offset. 6459 static unsigned getBufferOffsetForMMO(SDValue VOffset, 6460 SDValue SOffset, 6461 SDValue Offset, 6462 SDValue VIndex = SDValue()) { 6463 6464 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) || 6465 !isa<ConstantSDNode>(Offset)) 6466 return 0; 6467 6468 if (VIndex) { 6469 if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue()) 6470 return 0; 6471 } 6472 6473 return cast<ConstantSDNode>(VOffset)->getSExtValue() + 6474 cast<ConstantSDNode>(SOffset)->getSExtValue() + 6475 cast<ConstantSDNode>(Offset)->getSExtValue(); 6476 } 6477 6478 static unsigned getDSShaderTypeValue(const MachineFunction &MF) { 6479 switch (MF.getFunction().getCallingConv()) { 6480 case CallingConv::AMDGPU_PS: 6481 return 1; 6482 case CallingConv::AMDGPU_VS: 6483 return 2; 6484 case CallingConv::AMDGPU_GS: 6485 return 3; 6486 case CallingConv::AMDGPU_HS: 6487 case CallingConv::AMDGPU_LS: 6488 case CallingConv::AMDGPU_ES: 6489 report_fatal_error("ds_ordered_count unsupported for this calling conv"); 6490 case CallingConv::AMDGPU_CS: 6491 case CallingConv::AMDGPU_KERNEL: 6492 case CallingConv::C: 6493 case CallingConv::Fast: 6494 default: 6495 // Assume other calling conventions are various compute callable functions 6496 return 0; 6497 } 6498 } 6499 6500 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 6501 SelectionDAG &DAG) const { 6502 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 6503 SDLoc DL(Op); 6504 6505 switch (IntrID) { 6506 case Intrinsic::amdgcn_ds_ordered_add: 6507 case Intrinsic::amdgcn_ds_ordered_swap: { 6508 MemSDNode *M = cast<MemSDNode>(Op); 6509 SDValue Chain = M->getOperand(0); 6510 SDValue M0 = M->getOperand(2); 6511 SDValue Value = M->getOperand(3); 6512 unsigned IndexOperand = M->getConstantOperandVal(7); 6513 unsigned WaveRelease = M->getConstantOperandVal(8); 6514 unsigned WaveDone = M->getConstantOperandVal(9); 6515 6516 unsigned OrderedCountIndex = IndexOperand & 0x3f; 6517 IndexOperand &= ~0x3f; 6518 unsigned CountDw = 0; 6519 6520 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 6521 CountDw = (IndexOperand >> 24) & 0xf; 6522 IndexOperand &= ~(0xf << 24); 6523 6524 if (CountDw < 1 || CountDw > 4) { 6525 report_fatal_error( 6526 "ds_ordered_count: dword count must be between 1 and 4"); 6527 } 6528 } 6529 6530 if (IndexOperand) 6531 report_fatal_error("ds_ordered_count: bad index operand"); 6532 6533 if (WaveDone && !WaveRelease) 6534 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 6535 6536 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; 6537 unsigned ShaderType = getDSShaderTypeValue(DAG.getMachineFunction()); 6538 unsigned Offset0 = OrderedCountIndex << 2; 6539 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) | 6540 (Instruction << 4); 6541 6542 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 6543 Offset1 |= (CountDw - 1) << 6; 6544 6545 unsigned Offset = Offset0 | (Offset1 << 8); 6546 6547 SDValue Ops[] = { 6548 Chain, 6549 Value, 6550 DAG.getTargetConstant(Offset, DL, MVT::i16), 6551 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 6552 }; 6553 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 6554 M->getVTList(), Ops, M->getMemoryVT(), 6555 M->getMemOperand()); 6556 } 6557 case Intrinsic::amdgcn_ds_fadd: { 6558 MemSDNode *M = cast<MemSDNode>(Op); 6559 unsigned Opc; 6560 switch (IntrID) { 6561 case Intrinsic::amdgcn_ds_fadd: 6562 Opc = ISD::ATOMIC_LOAD_FADD; 6563 break; 6564 } 6565 6566 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 6567 M->getOperand(0), M->getOperand(2), M->getOperand(3), 6568 M->getMemOperand()); 6569 } 6570 case Intrinsic::amdgcn_atomic_inc: 6571 case Intrinsic::amdgcn_atomic_dec: 6572 case Intrinsic::amdgcn_ds_fmin: 6573 case Intrinsic::amdgcn_ds_fmax: { 6574 MemSDNode *M = cast<MemSDNode>(Op); 6575 unsigned Opc; 6576 switch (IntrID) { 6577 case Intrinsic::amdgcn_atomic_inc: 6578 Opc = AMDGPUISD::ATOMIC_INC; 6579 break; 6580 case Intrinsic::amdgcn_atomic_dec: 6581 Opc = AMDGPUISD::ATOMIC_DEC; 6582 break; 6583 case Intrinsic::amdgcn_ds_fmin: 6584 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 6585 break; 6586 case Intrinsic::amdgcn_ds_fmax: 6587 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 6588 break; 6589 default: 6590 llvm_unreachable("Unknown intrinsic!"); 6591 } 6592 SDValue Ops[] = { 6593 M->getOperand(0), // Chain 6594 M->getOperand(2), // Ptr 6595 M->getOperand(3) // Value 6596 }; 6597 6598 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 6599 M->getMemoryVT(), M->getMemOperand()); 6600 } 6601 case Intrinsic::amdgcn_buffer_load: 6602 case Intrinsic::amdgcn_buffer_load_format: { 6603 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 6604 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6605 unsigned IdxEn = 1; 6606 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 6607 IdxEn = Idx->getZExtValue() != 0; 6608 SDValue Ops[] = { 6609 Op.getOperand(0), // Chain 6610 Op.getOperand(2), // rsrc 6611 Op.getOperand(3), // vindex 6612 SDValue(), // voffset -- will be set by setBufferOffsets 6613 SDValue(), // soffset -- will be set by setBufferOffsets 6614 SDValue(), // offset -- will be set by setBufferOffsets 6615 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6616 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6617 }; 6618 6619 unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 6620 // We don't know the offset if vindex is non-zero, so clear it. 6621 if (IdxEn) 6622 Offset = 0; 6623 6624 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 6625 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 6626 6627 EVT VT = Op.getValueType(); 6628 EVT IntVT = VT.changeTypeToInteger(); 6629 auto *M = cast<MemSDNode>(Op); 6630 M->getMemOperand()->setOffset(Offset); 6631 EVT LoadVT = Op.getValueType(); 6632 6633 if (LoadVT.getScalarType() == MVT::f16) 6634 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 6635 M, DAG, Ops); 6636 6637 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 6638 if (LoadVT.getScalarType() == MVT::i8 || 6639 LoadVT.getScalarType() == MVT::i16) 6640 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 6641 6642 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 6643 M->getMemOperand(), DAG); 6644 } 6645 case Intrinsic::amdgcn_raw_buffer_load: 6646 case Intrinsic::amdgcn_raw_buffer_load_format: { 6647 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; 6648 6649 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 6650 SDValue Ops[] = { 6651 Op.getOperand(0), // Chain 6652 Op.getOperand(2), // rsrc 6653 DAG.getConstant(0, DL, MVT::i32), // vindex 6654 Offsets.first, // voffset 6655 Op.getOperand(4), // soffset 6656 Offsets.second, // offset 6657 Op.getOperand(5), // cachepolicy, swizzled buffer 6658 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6659 }; 6660 6661 auto *M = cast<MemSDNode>(Op); 6662 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5])); 6663 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); 6664 } 6665 case Intrinsic::amdgcn_struct_buffer_load: 6666 case Intrinsic::amdgcn_struct_buffer_load_format: { 6667 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; 6668 6669 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6670 SDValue Ops[] = { 6671 Op.getOperand(0), // Chain 6672 Op.getOperand(2), // rsrc 6673 Op.getOperand(3), // vindex 6674 Offsets.first, // voffset 6675 Op.getOperand(5), // soffset 6676 Offsets.second, // offset 6677 Op.getOperand(6), // cachepolicy, swizzled buffer 6678 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6679 }; 6680 6681 auto *M = cast<MemSDNode>(Op); 6682 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5], 6683 Ops[2])); 6684 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 6685 } 6686 case Intrinsic::amdgcn_tbuffer_load: { 6687 MemSDNode *M = cast<MemSDNode>(Op); 6688 EVT LoadVT = Op.getValueType(); 6689 6690 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 6691 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 6692 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 6693 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 6694 unsigned IdxEn = 1; 6695 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 6696 IdxEn = Idx->getZExtValue() != 0; 6697 SDValue Ops[] = { 6698 Op.getOperand(0), // Chain 6699 Op.getOperand(2), // rsrc 6700 Op.getOperand(3), // vindex 6701 Op.getOperand(4), // voffset 6702 Op.getOperand(5), // soffset 6703 Op.getOperand(6), // offset 6704 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 6705 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6706 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 6707 }; 6708 6709 if (LoadVT.getScalarType() == MVT::f16) 6710 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6711 M, DAG, Ops); 6712 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6713 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6714 DAG); 6715 } 6716 case Intrinsic::amdgcn_raw_tbuffer_load: { 6717 MemSDNode *M = cast<MemSDNode>(Op); 6718 EVT LoadVT = Op.getValueType(); 6719 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 6720 6721 SDValue Ops[] = { 6722 Op.getOperand(0), // Chain 6723 Op.getOperand(2), // rsrc 6724 DAG.getConstant(0, DL, MVT::i32), // vindex 6725 Offsets.first, // voffset 6726 Op.getOperand(4), // soffset 6727 Offsets.second, // offset 6728 Op.getOperand(5), // format 6729 Op.getOperand(6), // cachepolicy, swizzled buffer 6730 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6731 }; 6732 6733 if (LoadVT.getScalarType() == MVT::f16) 6734 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6735 M, DAG, Ops); 6736 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6737 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6738 DAG); 6739 } 6740 case Intrinsic::amdgcn_struct_tbuffer_load: { 6741 MemSDNode *M = cast<MemSDNode>(Op); 6742 EVT LoadVT = Op.getValueType(); 6743 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6744 6745 SDValue Ops[] = { 6746 Op.getOperand(0), // Chain 6747 Op.getOperand(2), // rsrc 6748 Op.getOperand(3), // vindex 6749 Offsets.first, // voffset 6750 Op.getOperand(5), // soffset 6751 Offsets.second, // offset 6752 Op.getOperand(6), // format 6753 Op.getOperand(7), // cachepolicy, swizzled buffer 6754 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6755 }; 6756 6757 if (LoadVT.getScalarType() == MVT::f16) 6758 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6759 M, DAG, Ops); 6760 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6761 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6762 DAG); 6763 } 6764 case Intrinsic::amdgcn_buffer_atomic_swap: 6765 case Intrinsic::amdgcn_buffer_atomic_add: 6766 case Intrinsic::amdgcn_buffer_atomic_sub: 6767 case Intrinsic::amdgcn_buffer_atomic_smin: 6768 case Intrinsic::amdgcn_buffer_atomic_umin: 6769 case Intrinsic::amdgcn_buffer_atomic_smax: 6770 case Intrinsic::amdgcn_buffer_atomic_umax: 6771 case Intrinsic::amdgcn_buffer_atomic_and: 6772 case Intrinsic::amdgcn_buffer_atomic_or: 6773 case Intrinsic::amdgcn_buffer_atomic_xor: { 6774 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6775 unsigned IdxEn = 1; 6776 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 6777 IdxEn = Idx->getZExtValue() != 0; 6778 SDValue Ops[] = { 6779 Op.getOperand(0), // Chain 6780 Op.getOperand(2), // vdata 6781 Op.getOperand(3), // rsrc 6782 Op.getOperand(4), // vindex 6783 SDValue(), // voffset -- will be set by setBufferOffsets 6784 SDValue(), // soffset -- will be set by setBufferOffsets 6785 SDValue(), // offset -- will be set by setBufferOffsets 6786 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 6787 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6788 }; 6789 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 6790 // We don't know the offset if vindex is non-zero, so clear it. 6791 if (IdxEn) 6792 Offset = 0; 6793 EVT VT = Op.getValueType(); 6794 6795 auto *M = cast<MemSDNode>(Op); 6796 M->getMemOperand()->setOffset(Offset); 6797 unsigned Opcode = 0; 6798 6799 switch (IntrID) { 6800 case Intrinsic::amdgcn_buffer_atomic_swap: 6801 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 6802 break; 6803 case Intrinsic::amdgcn_buffer_atomic_add: 6804 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 6805 break; 6806 case Intrinsic::amdgcn_buffer_atomic_sub: 6807 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 6808 break; 6809 case Intrinsic::amdgcn_buffer_atomic_smin: 6810 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 6811 break; 6812 case Intrinsic::amdgcn_buffer_atomic_umin: 6813 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 6814 break; 6815 case Intrinsic::amdgcn_buffer_atomic_smax: 6816 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 6817 break; 6818 case Intrinsic::amdgcn_buffer_atomic_umax: 6819 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 6820 break; 6821 case Intrinsic::amdgcn_buffer_atomic_and: 6822 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 6823 break; 6824 case Intrinsic::amdgcn_buffer_atomic_or: 6825 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 6826 break; 6827 case Intrinsic::amdgcn_buffer_atomic_xor: 6828 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 6829 break; 6830 default: 6831 llvm_unreachable("unhandled atomic opcode"); 6832 } 6833 6834 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 6835 M->getMemOperand()); 6836 } 6837 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 6838 case Intrinsic::amdgcn_raw_buffer_atomic_add: 6839 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 6840 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 6841 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 6842 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 6843 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 6844 case Intrinsic::amdgcn_raw_buffer_atomic_and: 6845 case Intrinsic::amdgcn_raw_buffer_atomic_or: 6846 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 6847 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 6848 case Intrinsic::amdgcn_raw_buffer_atomic_dec: { 6849 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6850 SDValue Ops[] = { 6851 Op.getOperand(0), // Chain 6852 Op.getOperand(2), // vdata 6853 Op.getOperand(3), // rsrc 6854 DAG.getConstant(0, DL, MVT::i32), // vindex 6855 Offsets.first, // voffset 6856 Op.getOperand(5), // soffset 6857 Offsets.second, // offset 6858 Op.getOperand(6), // cachepolicy 6859 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6860 }; 6861 EVT VT = Op.getValueType(); 6862 6863 auto *M = cast<MemSDNode>(Op); 6864 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6])); 6865 unsigned Opcode = 0; 6866 6867 switch (IntrID) { 6868 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 6869 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 6870 break; 6871 case Intrinsic::amdgcn_raw_buffer_atomic_add: 6872 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 6873 break; 6874 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 6875 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 6876 break; 6877 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 6878 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 6879 break; 6880 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 6881 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 6882 break; 6883 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 6884 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 6885 break; 6886 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 6887 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 6888 break; 6889 case Intrinsic::amdgcn_raw_buffer_atomic_and: 6890 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 6891 break; 6892 case Intrinsic::amdgcn_raw_buffer_atomic_or: 6893 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 6894 break; 6895 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 6896 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 6897 break; 6898 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 6899 Opcode = AMDGPUISD::BUFFER_ATOMIC_INC; 6900 break; 6901 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 6902 Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC; 6903 break; 6904 default: 6905 llvm_unreachable("unhandled atomic opcode"); 6906 } 6907 6908 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 6909 M->getMemOperand()); 6910 } 6911 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 6912 case Intrinsic::amdgcn_struct_buffer_atomic_add: 6913 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 6914 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 6915 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 6916 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 6917 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 6918 case Intrinsic::amdgcn_struct_buffer_atomic_and: 6919 case Intrinsic::amdgcn_struct_buffer_atomic_or: 6920 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 6921 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 6922 case Intrinsic::amdgcn_struct_buffer_atomic_dec: { 6923 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 6924 SDValue Ops[] = { 6925 Op.getOperand(0), // Chain 6926 Op.getOperand(2), // vdata 6927 Op.getOperand(3), // rsrc 6928 Op.getOperand(4), // vindex 6929 Offsets.first, // voffset 6930 Op.getOperand(6), // soffset 6931 Offsets.second, // offset 6932 Op.getOperand(7), // cachepolicy 6933 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6934 }; 6935 EVT VT = Op.getValueType(); 6936 6937 auto *M = cast<MemSDNode>(Op); 6938 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6], 6939 Ops[3])); 6940 unsigned Opcode = 0; 6941 6942 switch (IntrID) { 6943 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 6944 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 6945 break; 6946 case Intrinsic::amdgcn_struct_buffer_atomic_add: 6947 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 6948 break; 6949 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 6950 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 6951 break; 6952 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 6953 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 6954 break; 6955 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 6956 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 6957 break; 6958 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 6959 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 6960 break; 6961 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 6962 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 6963 break; 6964 case Intrinsic::amdgcn_struct_buffer_atomic_and: 6965 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 6966 break; 6967 case Intrinsic::amdgcn_struct_buffer_atomic_or: 6968 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 6969 break; 6970 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 6971 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 6972 break; 6973 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 6974 Opcode = AMDGPUISD::BUFFER_ATOMIC_INC; 6975 break; 6976 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 6977 Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC; 6978 break; 6979 default: 6980 llvm_unreachable("unhandled atomic opcode"); 6981 } 6982 6983 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 6984 M->getMemOperand()); 6985 } 6986 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 6987 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 6988 unsigned IdxEn = 1; 6989 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5))) 6990 IdxEn = Idx->getZExtValue() != 0; 6991 SDValue Ops[] = { 6992 Op.getOperand(0), // Chain 6993 Op.getOperand(2), // src 6994 Op.getOperand(3), // cmp 6995 Op.getOperand(4), // rsrc 6996 Op.getOperand(5), // vindex 6997 SDValue(), // voffset -- will be set by setBufferOffsets 6998 SDValue(), // soffset -- will be set by setBufferOffsets 6999 SDValue(), // offset -- will be set by setBufferOffsets 7000 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7001 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7002 }; 7003 unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 7004 // We don't know the offset if vindex is non-zero, so clear it. 7005 if (IdxEn) 7006 Offset = 0; 7007 EVT VT = Op.getValueType(); 7008 auto *M = cast<MemSDNode>(Op); 7009 M->getMemOperand()->setOffset(Offset); 7010 7011 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7012 Op->getVTList(), Ops, VT, M->getMemOperand()); 7013 } 7014 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { 7015 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7016 SDValue Ops[] = { 7017 Op.getOperand(0), // Chain 7018 Op.getOperand(2), // src 7019 Op.getOperand(3), // cmp 7020 Op.getOperand(4), // rsrc 7021 DAG.getConstant(0, DL, MVT::i32), // vindex 7022 Offsets.first, // voffset 7023 Op.getOperand(6), // soffset 7024 Offsets.second, // offset 7025 Op.getOperand(7), // cachepolicy 7026 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7027 }; 7028 EVT VT = Op.getValueType(); 7029 auto *M = cast<MemSDNode>(Op); 7030 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7])); 7031 7032 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7033 Op->getVTList(), Ops, VT, M->getMemOperand()); 7034 } 7035 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { 7036 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 7037 SDValue Ops[] = { 7038 Op.getOperand(0), // Chain 7039 Op.getOperand(2), // src 7040 Op.getOperand(3), // cmp 7041 Op.getOperand(4), // rsrc 7042 Op.getOperand(5), // vindex 7043 Offsets.first, // voffset 7044 Op.getOperand(7), // soffset 7045 Offsets.second, // offset 7046 Op.getOperand(8), // cachepolicy 7047 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7048 }; 7049 EVT VT = Op.getValueType(); 7050 auto *M = cast<MemSDNode>(Op); 7051 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7], 7052 Ops[4])); 7053 7054 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7055 Op->getVTList(), Ops, VT, M->getMemOperand()); 7056 } 7057 7058 default: 7059 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7060 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 7061 return lowerImage(Op, ImageDimIntr, DAG); 7062 7063 return SDValue(); 7064 } 7065 } 7066 7067 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 7068 // dwordx4 if on SI. 7069 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 7070 SDVTList VTList, 7071 ArrayRef<SDValue> Ops, EVT MemVT, 7072 MachineMemOperand *MMO, 7073 SelectionDAG &DAG) const { 7074 EVT VT = VTList.VTs[0]; 7075 EVT WidenedVT = VT; 7076 EVT WidenedMemVT = MemVT; 7077 if (!Subtarget->hasDwordx3LoadStores() && 7078 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { 7079 WidenedVT = EVT::getVectorVT(*DAG.getContext(), 7080 WidenedVT.getVectorElementType(), 4); 7081 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), 7082 WidenedMemVT.getVectorElementType(), 4); 7083 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); 7084 } 7085 7086 assert(VTList.NumVTs == 2); 7087 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 7088 7089 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 7090 WidenedMemVT, MMO); 7091 if (WidenedVT != VT) { 7092 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, 7093 DAG.getVectorIdxConstant(0, DL)); 7094 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); 7095 } 7096 return NewOp; 7097 } 7098 7099 SDValue SITargetLowering::handleD16VData(SDValue VData, 7100 SelectionDAG &DAG) const { 7101 EVT StoreVT = VData.getValueType(); 7102 7103 // No change for f16 and legal vector D16 types. 7104 if (!StoreVT.isVector()) 7105 return VData; 7106 7107 SDLoc DL(VData); 7108 assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16"); 7109 7110 if (Subtarget->hasUnpackedD16VMem()) { 7111 // We need to unpack the packed data to store. 7112 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7113 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7114 7115 EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 7116 StoreVT.getVectorNumElements()); 7117 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 7118 return DAG.UnrollVectorOp(ZExt.getNode()); 7119 } 7120 7121 assert(isTypeLegal(StoreVT)); 7122 return VData; 7123 } 7124 7125 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 7126 SelectionDAG &DAG) const { 7127 SDLoc DL(Op); 7128 SDValue Chain = Op.getOperand(0); 7129 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7130 MachineFunction &MF = DAG.getMachineFunction(); 7131 7132 switch (IntrinsicID) { 7133 case Intrinsic::amdgcn_exp_compr: { 7134 SDValue Src0 = Op.getOperand(4); 7135 SDValue Src1 = Op.getOperand(5); 7136 // Hack around illegal type on SI by directly selecting it. 7137 if (isTypeLegal(Src0.getValueType())) 7138 return SDValue(); 7139 7140 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 7141 SDValue Undef = DAG.getUNDEF(MVT::f32); 7142 const SDValue Ops[] = { 7143 Op.getOperand(2), // tgt 7144 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 7145 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 7146 Undef, // src2 7147 Undef, // src3 7148 Op.getOperand(7), // vm 7149 DAG.getTargetConstant(1, DL, MVT::i1), // compr 7150 Op.getOperand(3), // en 7151 Op.getOperand(0) // Chain 7152 }; 7153 7154 unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE; 7155 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); 7156 } 7157 case Intrinsic::amdgcn_s_barrier: { 7158 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { 7159 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 7160 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 7161 if (WGSize <= ST.getWavefrontSize()) 7162 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 7163 Op.getOperand(0)), 0); 7164 } 7165 return SDValue(); 7166 }; 7167 case Intrinsic::amdgcn_tbuffer_store: { 7168 SDValue VData = Op.getOperand(2); 7169 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7170 if (IsD16) 7171 VData = handleD16VData(VData, DAG); 7172 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 7173 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 7174 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 7175 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); 7176 unsigned IdxEn = 1; 7177 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 7178 IdxEn = Idx->getZExtValue() != 0; 7179 SDValue Ops[] = { 7180 Chain, 7181 VData, // vdata 7182 Op.getOperand(3), // rsrc 7183 Op.getOperand(4), // vindex 7184 Op.getOperand(5), // voffset 7185 Op.getOperand(6), // soffset 7186 Op.getOperand(7), // offset 7187 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 7188 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7189 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen 7190 }; 7191 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7192 AMDGPUISD::TBUFFER_STORE_FORMAT; 7193 MemSDNode *M = cast<MemSDNode>(Op); 7194 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7195 M->getMemoryVT(), M->getMemOperand()); 7196 } 7197 7198 case Intrinsic::amdgcn_struct_tbuffer_store: { 7199 SDValue VData = Op.getOperand(2); 7200 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7201 if (IsD16) 7202 VData = handleD16VData(VData, DAG); 7203 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7204 SDValue Ops[] = { 7205 Chain, 7206 VData, // vdata 7207 Op.getOperand(3), // rsrc 7208 Op.getOperand(4), // vindex 7209 Offsets.first, // voffset 7210 Op.getOperand(6), // soffset 7211 Offsets.second, // offset 7212 Op.getOperand(7), // format 7213 Op.getOperand(8), // cachepolicy, swizzled buffer 7214 DAG.getTargetConstant(1, DL, MVT::i1), // idexen 7215 }; 7216 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7217 AMDGPUISD::TBUFFER_STORE_FORMAT; 7218 MemSDNode *M = cast<MemSDNode>(Op); 7219 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7220 M->getMemoryVT(), M->getMemOperand()); 7221 } 7222 7223 case Intrinsic::amdgcn_raw_tbuffer_store: { 7224 SDValue VData = Op.getOperand(2); 7225 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7226 if (IsD16) 7227 VData = handleD16VData(VData, DAG); 7228 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7229 SDValue Ops[] = { 7230 Chain, 7231 VData, // vdata 7232 Op.getOperand(3), // rsrc 7233 DAG.getConstant(0, DL, MVT::i32), // vindex 7234 Offsets.first, // voffset 7235 Op.getOperand(5), // soffset 7236 Offsets.second, // offset 7237 Op.getOperand(6), // format 7238 Op.getOperand(7), // cachepolicy, swizzled buffer 7239 DAG.getTargetConstant(0, DL, MVT::i1), // idexen 7240 }; 7241 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7242 AMDGPUISD::TBUFFER_STORE_FORMAT; 7243 MemSDNode *M = cast<MemSDNode>(Op); 7244 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7245 M->getMemoryVT(), M->getMemOperand()); 7246 } 7247 7248 case Intrinsic::amdgcn_buffer_store: 7249 case Intrinsic::amdgcn_buffer_store_format: { 7250 SDValue VData = Op.getOperand(2); 7251 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7252 if (IsD16) 7253 VData = handleD16VData(VData, DAG); 7254 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7255 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7256 unsigned IdxEn = 1; 7257 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 7258 IdxEn = Idx->getZExtValue() != 0; 7259 SDValue Ops[] = { 7260 Chain, 7261 VData, 7262 Op.getOperand(3), // rsrc 7263 Op.getOperand(4), // vindex 7264 SDValue(), // voffset -- will be set by setBufferOffsets 7265 SDValue(), // soffset -- will be set by setBufferOffsets 7266 SDValue(), // offset -- will be set by setBufferOffsets 7267 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7268 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7269 }; 7270 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7271 // We don't know the offset if vindex is non-zero, so clear it. 7272 if (IdxEn) 7273 Offset = 0; 7274 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 7275 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 7276 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7277 MemSDNode *M = cast<MemSDNode>(Op); 7278 M->getMemOperand()->setOffset(Offset); 7279 7280 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7281 EVT VDataType = VData.getValueType().getScalarType(); 7282 if (VDataType == MVT::i8 || VDataType == MVT::i16) 7283 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 7284 7285 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7286 M->getMemoryVT(), M->getMemOperand()); 7287 } 7288 7289 case Intrinsic::amdgcn_raw_buffer_store: 7290 case Intrinsic::amdgcn_raw_buffer_store_format: { 7291 const bool IsFormat = 7292 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; 7293 7294 SDValue VData = Op.getOperand(2); 7295 EVT VDataVT = VData.getValueType(); 7296 EVT EltType = VDataVT.getScalarType(); 7297 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 7298 if (IsD16) 7299 VData = handleD16VData(VData, DAG); 7300 7301 if (!isTypeLegal(VDataVT)) { 7302 VData = 7303 DAG.getNode(ISD::BITCAST, DL, 7304 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 7305 } 7306 7307 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7308 SDValue Ops[] = { 7309 Chain, 7310 VData, 7311 Op.getOperand(3), // rsrc 7312 DAG.getConstant(0, DL, MVT::i32), // vindex 7313 Offsets.first, // voffset 7314 Op.getOperand(5), // soffset 7315 Offsets.second, // offset 7316 Op.getOperand(6), // cachepolicy, swizzled buffer 7317 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7318 }; 7319 unsigned Opc = 7320 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 7321 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7322 MemSDNode *M = cast<MemSDNode>(Op); 7323 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6])); 7324 7325 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7326 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 7327 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 7328 7329 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7330 M->getMemoryVT(), M->getMemOperand()); 7331 } 7332 7333 case Intrinsic::amdgcn_struct_buffer_store: 7334 case Intrinsic::amdgcn_struct_buffer_store_format: { 7335 const bool IsFormat = 7336 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; 7337 7338 SDValue VData = Op.getOperand(2); 7339 EVT VDataVT = VData.getValueType(); 7340 EVT EltType = VDataVT.getScalarType(); 7341 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 7342 7343 if (IsD16) 7344 VData = handleD16VData(VData, DAG); 7345 7346 if (!isTypeLegal(VDataVT)) { 7347 VData = 7348 DAG.getNode(ISD::BITCAST, DL, 7349 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 7350 } 7351 7352 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7353 SDValue Ops[] = { 7354 Chain, 7355 VData, 7356 Op.getOperand(3), // rsrc 7357 Op.getOperand(4), // vindex 7358 Offsets.first, // voffset 7359 Op.getOperand(6), // soffset 7360 Offsets.second, // offset 7361 Op.getOperand(7), // cachepolicy, swizzled buffer 7362 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7363 }; 7364 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? 7365 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 7366 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7367 MemSDNode *M = cast<MemSDNode>(Op); 7368 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6], 7369 Ops[3])); 7370 7371 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7372 EVT VDataType = VData.getValueType().getScalarType(); 7373 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 7374 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 7375 7376 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7377 M->getMemoryVT(), M->getMemOperand()); 7378 } 7379 7380 case Intrinsic::amdgcn_buffer_atomic_fadd: { 7381 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7382 unsigned IdxEn = 1; 7383 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 7384 IdxEn = Idx->getZExtValue() != 0; 7385 SDValue Ops[] = { 7386 Chain, 7387 Op.getOperand(2), // vdata 7388 Op.getOperand(3), // rsrc 7389 Op.getOperand(4), // vindex 7390 SDValue(), // voffset -- will be set by setBufferOffsets 7391 SDValue(), // soffset -- will be set by setBufferOffsets 7392 SDValue(), // offset -- will be set by setBufferOffsets 7393 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7394 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7395 }; 7396 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7397 // We don't know the offset if vindex is non-zero, so clear it. 7398 if (IdxEn) 7399 Offset = 0; 7400 EVT VT = Op.getOperand(2).getValueType(); 7401 7402 auto *M = cast<MemSDNode>(Op); 7403 M->getMemOperand()->setOffset(Offset); 7404 unsigned Opcode = VT.isVector() ? AMDGPUISD::BUFFER_ATOMIC_PK_FADD 7405 : AMDGPUISD::BUFFER_ATOMIC_FADD; 7406 7407 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7408 M->getMemOperand()); 7409 } 7410 7411 case Intrinsic::amdgcn_global_atomic_fadd: { 7412 SDValue Ops[] = { 7413 Chain, 7414 Op.getOperand(2), // ptr 7415 Op.getOperand(3) // vdata 7416 }; 7417 EVT VT = Op.getOperand(3).getValueType(); 7418 7419 auto *M = cast<MemSDNode>(Op); 7420 if (VT.isVector()) { 7421 return DAG.getMemIntrinsicNode( 7422 AMDGPUISD::ATOMIC_PK_FADD, DL, Op->getVTList(), Ops, VT, 7423 M->getMemOperand()); 7424 } 7425 7426 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT, 7427 DAG.getVTList(VT, MVT::Other), Ops, 7428 M->getMemOperand()).getValue(1); 7429 } 7430 case Intrinsic::amdgcn_end_cf: 7431 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 7432 Op->getOperand(2), Chain), 0); 7433 7434 default: { 7435 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7436 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 7437 return lowerImage(Op, ImageDimIntr, DAG); 7438 7439 return Op; 7440 } 7441 } 7442 } 7443 7444 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 7445 // offset (the offset that is included in bounds checking and swizzling, to be 7446 // split between the instruction's voffset and immoffset fields) and soffset 7447 // (the offset that is excluded from bounds checking and swizzling, to go in 7448 // the instruction's soffset field). This function takes the first kind of 7449 // offset and figures out how to split it between voffset and immoffset. 7450 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 7451 SDValue Offset, SelectionDAG &DAG) const { 7452 SDLoc DL(Offset); 7453 const unsigned MaxImm = 4095; 7454 SDValue N0 = Offset; 7455 ConstantSDNode *C1 = nullptr; 7456 7457 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 7458 N0 = SDValue(); 7459 else if (DAG.isBaseWithConstantOffset(N0)) { 7460 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 7461 N0 = N0.getOperand(0); 7462 } 7463 7464 if (C1) { 7465 unsigned ImmOffset = C1->getZExtValue(); 7466 // If the immediate value is too big for the immoffset field, put the value 7467 // and -4096 into the immoffset field so that the value that is copied/added 7468 // for the voffset field is a multiple of 4096, and it stands more chance 7469 // of being CSEd with the copy/add for another similar load/store. 7470 // However, do not do that rounding down to a multiple of 4096 if that is a 7471 // negative number, as it appears to be illegal to have a negative offset 7472 // in the vgpr, even if adding the immediate offset makes it positive. 7473 unsigned Overflow = ImmOffset & ~MaxImm; 7474 ImmOffset -= Overflow; 7475 if ((int32_t)Overflow < 0) { 7476 Overflow += ImmOffset; 7477 ImmOffset = 0; 7478 } 7479 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 7480 if (Overflow) { 7481 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 7482 if (!N0) 7483 N0 = OverflowVal; 7484 else { 7485 SDValue Ops[] = { N0, OverflowVal }; 7486 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 7487 } 7488 } 7489 } 7490 if (!N0) 7491 N0 = DAG.getConstant(0, DL, MVT::i32); 7492 if (!C1) 7493 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 7494 return {N0, SDValue(C1, 0)}; 7495 } 7496 7497 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 7498 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 7499 // pointed to by Offsets. 7500 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 7501 SelectionDAG &DAG, SDValue *Offsets, 7502 unsigned Align) const { 7503 SDLoc DL(CombinedOffset); 7504 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 7505 uint32_t Imm = C->getZExtValue(); 7506 uint32_t SOffset, ImmOffset; 7507 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) { 7508 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 7509 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 7510 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 7511 return SOffset + ImmOffset; 7512 } 7513 } 7514 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 7515 SDValue N0 = CombinedOffset.getOperand(0); 7516 SDValue N1 = CombinedOffset.getOperand(1); 7517 uint32_t SOffset, ImmOffset; 7518 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 7519 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, 7520 Subtarget, Align)) { 7521 Offsets[0] = N0; 7522 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 7523 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 7524 return 0; 7525 } 7526 } 7527 Offsets[0] = CombinedOffset; 7528 Offsets[1] = DAG.getConstant(0, DL, MVT::i32); 7529 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 7530 return 0; 7531 } 7532 7533 // Handle 8 bit and 16 bit buffer loads 7534 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, 7535 EVT LoadVT, SDLoc DL, 7536 ArrayRef<SDValue> Ops, 7537 MemSDNode *M) const { 7538 EVT IntVT = LoadVT.changeTypeToInteger(); 7539 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 7540 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 7541 7542 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 7543 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, 7544 Ops, IntVT, 7545 M->getMemOperand()); 7546 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 7547 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 7548 7549 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 7550 } 7551 7552 // Handle 8 bit and 16 bit buffer stores 7553 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 7554 EVT VDataType, SDLoc DL, 7555 SDValue Ops[], 7556 MemSDNode *M) const { 7557 if (VDataType == MVT::f16) 7558 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 7559 7560 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 7561 Ops[1] = BufferStoreExt; 7562 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 7563 AMDGPUISD::BUFFER_STORE_SHORT; 7564 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); 7565 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 7566 M->getMemOperand()); 7567 } 7568 7569 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 7570 ISD::LoadExtType ExtType, SDValue Op, 7571 const SDLoc &SL, EVT VT) { 7572 if (VT.bitsLT(Op.getValueType())) 7573 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 7574 7575 switch (ExtType) { 7576 case ISD::SEXTLOAD: 7577 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 7578 case ISD::ZEXTLOAD: 7579 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 7580 case ISD::EXTLOAD: 7581 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 7582 case ISD::NON_EXTLOAD: 7583 return Op; 7584 } 7585 7586 llvm_unreachable("invalid ext type"); 7587 } 7588 7589 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 7590 SelectionDAG &DAG = DCI.DAG; 7591 if (Ld->getAlignment() < 4 || Ld->isDivergent()) 7592 return SDValue(); 7593 7594 // FIXME: Constant loads should all be marked invariant. 7595 unsigned AS = Ld->getAddressSpace(); 7596 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 7597 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 7598 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 7599 return SDValue(); 7600 7601 // Don't do this early, since it may interfere with adjacent load merging for 7602 // illegal types. We can avoid losing alignment information for exotic types 7603 // pre-legalize. 7604 EVT MemVT = Ld->getMemoryVT(); 7605 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 7606 MemVT.getSizeInBits() >= 32) 7607 return SDValue(); 7608 7609 SDLoc SL(Ld); 7610 7611 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 7612 "unexpected vector extload"); 7613 7614 // TODO: Drop only high part of range. 7615 SDValue Ptr = Ld->getBasePtr(); 7616 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 7617 MVT::i32, SL, Ld->getChain(), Ptr, 7618 Ld->getOffset(), 7619 Ld->getPointerInfo(), MVT::i32, 7620 Ld->getAlignment(), 7621 Ld->getMemOperand()->getFlags(), 7622 Ld->getAAInfo(), 7623 nullptr); // Drop ranges 7624 7625 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 7626 if (MemVT.isFloatingPoint()) { 7627 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 7628 "unexpected fp extload"); 7629 TruncVT = MemVT.changeTypeToInteger(); 7630 } 7631 7632 SDValue Cvt = NewLoad; 7633 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 7634 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 7635 DAG.getValueType(TruncVT)); 7636 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 7637 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 7638 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 7639 } else { 7640 assert(Ld->getExtensionType() == ISD::EXTLOAD); 7641 } 7642 7643 EVT VT = Ld->getValueType(0); 7644 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7645 7646 DCI.AddToWorklist(Cvt.getNode()); 7647 7648 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 7649 // the appropriate extension from the 32-bit load. 7650 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 7651 DCI.AddToWorklist(Cvt.getNode()); 7652 7653 // Handle conversion back to floating point if necessary. 7654 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 7655 7656 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 7657 } 7658 7659 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7660 SDLoc DL(Op); 7661 LoadSDNode *Load = cast<LoadSDNode>(Op); 7662 ISD::LoadExtType ExtType = Load->getExtensionType(); 7663 EVT MemVT = Load->getMemoryVT(); 7664 7665 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 7666 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 7667 return SDValue(); 7668 7669 // FIXME: Copied from PPC 7670 // First, load into 32 bits, then truncate to 1 bit. 7671 7672 SDValue Chain = Load->getChain(); 7673 SDValue BasePtr = Load->getBasePtr(); 7674 MachineMemOperand *MMO = Load->getMemOperand(); 7675 7676 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 7677 7678 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 7679 BasePtr, RealMemVT, MMO); 7680 7681 if (!MemVT.isVector()) { 7682 SDValue Ops[] = { 7683 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 7684 NewLD.getValue(1) 7685 }; 7686 7687 return DAG.getMergeValues(Ops, DL); 7688 } 7689 7690 SmallVector<SDValue, 3> Elts; 7691 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 7692 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 7693 DAG.getConstant(I, DL, MVT::i32)); 7694 7695 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 7696 } 7697 7698 SDValue Ops[] = { 7699 DAG.getBuildVector(MemVT, DL, Elts), 7700 NewLD.getValue(1) 7701 }; 7702 7703 return DAG.getMergeValues(Ops, DL); 7704 } 7705 7706 if (!MemVT.isVector()) 7707 return SDValue(); 7708 7709 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 7710 "Custom lowering for non-i32 vectors hasn't been implemented."); 7711 7712 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 7713 MemVT, *Load->getMemOperand())) { 7714 SDValue Ops[2]; 7715 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 7716 return DAG.getMergeValues(Ops, DL); 7717 } 7718 7719 unsigned Alignment = Load->getAlignment(); 7720 unsigned AS = Load->getAddressSpace(); 7721 if (Subtarget->hasLDSMisalignedBug() && 7722 AS == AMDGPUAS::FLAT_ADDRESS && 7723 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 7724 return SplitVectorLoad(Op, DAG); 7725 } 7726 7727 MachineFunction &MF = DAG.getMachineFunction(); 7728 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 7729 // If there is a possibilty that flat instruction access scratch memory 7730 // then we need to use the same legalization rules we use for private. 7731 if (AS == AMDGPUAS::FLAT_ADDRESS && 7732 !Subtarget->hasMultiDwordFlatScratchAddressing()) 7733 AS = MFI->hasFlatScratchInit() ? 7734 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 7735 7736 unsigned NumElements = MemVT.getVectorNumElements(); 7737 7738 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7739 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 7740 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) { 7741 if (MemVT.isPow2VectorType()) 7742 return SDValue(); 7743 if (NumElements == 3) 7744 return WidenVectorLoad(Op, DAG); 7745 return SplitVectorLoad(Op, DAG); 7746 } 7747 // Non-uniform loads will be selected to MUBUF instructions, so they 7748 // have the same legalization requirements as global and private 7749 // loads. 7750 // 7751 } 7752 7753 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7754 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 7755 AS == AMDGPUAS::GLOBAL_ADDRESS) { 7756 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 7757 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && 7758 Alignment >= 4 && NumElements < 32) { 7759 if (MemVT.isPow2VectorType()) 7760 return SDValue(); 7761 if (NumElements == 3) 7762 return WidenVectorLoad(Op, DAG); 7763 return SplitVectorLoad(Op, DAG); 7764 } 7765 // Non-uniform loads will be selected to MUBUF instructions, so they 7766 // have the same legalization requirements as global and private 7767 // loads. 7768 // 7769 } 7770 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7771 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 7772 AS == AMDGPUAS::GLOBAL_ADDRESS || 7773 AS == AMDGPUAS::FLAT_ADDRESS) { 7774 if (NumElements > 4) 7775 return SplitVectorLoad(Op, DAG); 7776 // v3 loads not supported on SI. 7777 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 7778 return WidenVectorLoad(Op, DAG); 7779 // v3 and v4 loads are supported for private and global memory. 7780 return SDValue(); 7781 } 7782 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 7783 // Depending on the setting of the private_element_size field in the 7784 // resource descriptor, we can only make private accesses up to a certain 7785 // size. 7786 switch (Subtarget->getMaxPrivateElementSize()) { 7787 case 4: { 7788 SDValue Ops[2]; 7789 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 7790 return DAG.getMergeValues(Ops, DL); 7791 } 7792 case 8: 7793 if (NumElements > 2) 7794 return SplitVectorLoad(Op, DAG); 7795 return SDValue(); 7796 case 16: 7797 // Same as global/flat 7798 if (NumElements > 4) 7799 return SplitVectorLoad(Op, DAG); 7800 // v3 loads not supported on SI. 7801 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 7802 return WidenVectorLoad(Op, DAG); 7803 return SDValue(); 7804 default: 7805 llvm_unreachable("unsupported private_element_size"); 7806 } 7807 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 7808 // Use ds_read_b128 if possible. 7809 if (Subtarget->useDS128() && Load->getAlignment() >= 16 && 7810 MemVT.getStoreSize() == 16) 7811 return SDValue(); 7812 7813 if (NumElements > 2) 7814 return SplitVectorLoad(Op, DAG); 7815 7816 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 7817 // address is negative, then the instruction is incorrectly treated as 7818 // out-of-bounds even if base + offsets is in bounds. Split vectorized 7819 // loads here to avoid emitting ds_read2_b32. We may re-combine the 7820 // load later in the SILoadStoreOptimizer. 7821 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 7822 NumElements == 2 && MemVT.getStoreSize() == 8 && 7823 Load->getAlignment() < 8) { 7824 return SplitVectorLoad(Op, DAG); 7825 } 7826 } 7827 return SDValue(); 7828 } 7829 7830 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 7831 EVT VT = Op.getValueType(); 7832 assert(VT.getSizeInBits() == 64); 7833 7834 SDLoc DL(Op); 7835 SDValue Cond = Op.getOperand(0); 7836 7837 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 7838 SDValue One = DAG.getConstant(1, DL, MVT::i32); 7839 7840 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 7841 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 7842 7843 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 7844 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 7845 7846 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 7847 7848 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 7849 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 7850 7851 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 7852 7853 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 7854 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 7855 } 7856 7857 // Catch division cases where we can use shortcuts with rcp and rsq 7858 // instructions. 7859 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 7860 SelectionDAG &DAG) const { 7861 SDLoc SL(Op); 7862 SDValue LHS = Op.getOperand(0); 7863 SDValue RHS = Op.getOperand(1); 7864 EVT VT = Op.getValueType(); 7865 const SDNodeFlags Flags = Op->getFlags(); 7866 7867 bool AllowInaccurateRcp = DAG.getTarget().Options.UnsafeFPMath || 7868 Flags.hasApproximateFuncs(); 7869 7870 // Without !fpmath accuracy information, we can't do more because we don't 7871 // know exactly whether rcp is accurate enough to meet !fpmath requirement. 7872 if (!AllowInaccurateRcp) 7873 return SDValue(); 7874 7875 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 7876 if (CLHS->isExactlyValue(1.0)) { 7877 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 7878 // the CI documentation has a worst case error of 1 ulp. 7879 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 7880 // use it as long as we aren't trying to use denormals. 7881 // 7882 // v_rcp_f16 and v_rsq_f16 DO support denormals. 7883 7884 // 1.0 / sqrt(x) -> rsq(x) 7885 7886 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 7887 // error seems really high at 2^29 ULP. 7888 if (RHS.getOpcode() == ISD::FSQRT) 7889 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 7890 7891 // 1.0 / x -> rcp(x) 7892 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 7893 } 7894 7895 // Same as for 1.0, but expand the sign out of the constant. 7896 if (CLHS->isExactlyValue(-1.0)) { 7897 // -1.0 / x -> rcp (fneg x) 7898 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 7899 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 7900 } 7901 } 7902 7903 // Turn into multiply by the reciprocal. 7904 // x / y -> x * (1.0 / y) 7905 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 7906 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 7907 } 7908 7909 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 7910 EVT VT, SDValue A, SDValue B, SDValue GlueChain, 7911 SDNodeFlags Flags) { 7912 if (GlueChain->getNumValues() <= 1) { 7913 return DAG.getNode(Opcode, SL, VT, A, B, Flags); 7914 } 7915 7916 assert(GlueChain->getNumValues() == 3); 7917 7918 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 7919 switch (Opcode) { 7920 default: llvm_unreachable("no chain equivalent for opcode"); 7921 case ISD::FMUL: 7922 Opcode = AMDGPUISD::FMUL_W_CHAIN; 7923 break; 7924 } 7925 7926 return DAG.getNode(Opcode, SL, VTList, 7927 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, 7928 Flags); 7929 } 7930 7931 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 7932 EVT VT, SDValue A, SDValue B, SDValue C, 7933 SDValue GlueChain, SDNodeFlags Flags) { 7934 if (GlueChain->getNumValues() <= 1) { 7935 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); 7936 } 7937 7938 assert(GlueChain->getNumValues() == 3); 7939 7940 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 7941 switch (Opcode) { 7942 default: llvm_unreachable("no chain equivalent for opcode"); 7943 case ISD::FMA: 7944 Opcode = AMDGPUISD::FMA_W_CHAIN; 7945 break; 7946 } 7947 7948 return DAG.getNode(Opcode, SL, VTList, 7949 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, 7950 Flags); 7951 } 7952 7953 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 7954 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 7955 return FastLowered; 7956 7957 SDLoc SL(Op); 7958 SDValue Src0 = Op.getOperand(0); 7959 SDValue Src1 = Op.getOperand(1); 7960 7961 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 7962 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 7963 7964 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 7965 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 7966 7967 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 7968 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 7969 7970 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 7971 } 7972 7973 // Faster 2.5 ULP division that does not support denormals. 7974 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 7975 SDLoc SL(Op); 7976 SDValue LHS = Op.getOperand(1); 7977 SDValue RHS = Op.getOperand(2); 7978 7979 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); 7980 7981 const APFloat K0Val(BitsToFloat(0x6f800000)); 7982 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 7983 7984 const APFloat K1Val(BitsToFloat(0x2f800000)); 7985 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 7986 7987 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 7988 7989 EVT SetCCVT = 7990 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 7991 7992 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 7993 7994 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); 7995 7996 // TODO: Should this propagate fast-math-flags? 7997 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); 7998 7999 // rcp does not support denormals. 8000 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); 8001 8002 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); 8003 8004 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); 8005 } 8006 8007 // Returns immediate value for setting the F32 denorm mode when using the 8008 // S_DENORM_MODE instruction. 8009 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, 8010 const SDLoc &SL, const GCNSubtarget *ST) { 8011 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 8012 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction()) 8013 ? FP_DENORM_FLUSH_NONE 8014 : FP_DENORM_FLUSH_IN_FLUSH_OUT; 8015 8016 int Mode = SPDenormMode | (DPDenormModeDefault << 2); 8017 return DAG.getTargetConstant(Mode, SL, MVT::i32); 8018 } 8019 8020 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 8021 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8022 return FastLowered; 8023 8024 // The selection matcher assumes anything with a chain selecting to a 8025 // mayRaiseFPException machine instruction. Since we're introducing a chain 8026 // here, we need to explicitly report nofpexcept for the regular fdiv 8027 // lowering. 8028 SDNodeFlags Flags = Op->getFlags(); 8029 Flags.setNoFPExcept(true); 8030 8031 SDLoc SL(Op); 8032 SDValue LHS = Op.getOperand(0); 8033 SDValue RHS = Op.getOperand(1); 8034 8035 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8036 8037 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 8038 8039 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 8040 {RHS, RHS, LHS}, Flags); 8041 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 8042 {LHS, RHS, LHS}, Flags); 8043 8044 // Denominator is scaled to not be denormal, so using rcp is ok. 8045 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 8046 DenominatorScaled, Flags); 8047 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 8048 DenominatorScaled, Flags); 8049 8050 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 8051 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 8052 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 8053 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); 8054 8055 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction()); 8056 8057 if (!HasFP32Denormals) { 8058 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV 8059 // lowering. The chain dependence is insufficient, and we need glue. We do 8060 // not need the glue variants in a strictfp function. 8061 8062 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 8063 8064 SDNode *EnableDenorm; 8065 if (Subtarget->hasDenormModeInst()) { 8066 const SDValue EnableDenormValue = 8067 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget); 8068 8069 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, 8070 DAG.getEntryNode(), EnableDenormValue).getNode(); 8071 } else { 8072 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 8073 SL, MVT::i32); 8074 EnableDenorm = 8075 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, 8076 {EnableDenormValue, BitField, DAG.getEntryNode()}); 8077 } 8078 8079 SDValue Ops[3] = { 8080 NegDivScale0, 8081 SDValue(EnableDenorm, 0), 8082 SDValue(EnableDenorm, 1) 8083 }; 8084 8085 NegDivScale0 = DAG.getMergeValues(Ops, SL); 8086 } 8087 8088 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 8089 ApproxRcp, One, NegDivScale0, Flags); 8090 8091 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 8092 ApproxRcp, Fma0, Flags); 8093 8094 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 8095 Fma1, Fma1, Flags); 8096 8097 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 8098 NumeratorScaled, Mul, Flags); 8099 8100 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, 8101 Fma2, Fma1, Mul, Fma2, Flags); 8102 8103 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 8104 NumeratorScaled, Fma3, Flags); 8105 8106 if (!HasFP32Denormals) { 8107 SDNode *DisableDenorm; 8108 if (Subtarget->hasDenormModeInst()) { 8109 const SDValue DisableDenormValue = 8110 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget); 8111 8112 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 8113 Fma4.getValue(1), DisableDenormValue, 8114 Fma4.getValue(2)).getNode(); 8115 } else { 8116 const SDValue DisableDenormValue = 8117 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 8118 8119 DisableDenorm = DAG.getMachineNode( 8120 AMDGPU::S_SETREG_B32, SL, MVT::Other, 8121 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); 8122 } 8123 8124 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 8125 SDValue(DisableDenorm, 0), DAG.getRoot()); 8126 DAG.setRoot(OutputChain); 8127 } 8128 8129 SDValue Scale = NumeratorScaled.getValue(1); 8130 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 8131 {Fma4, Fma1, Fma3, Scale}, Flags); 8132 8133 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); 8134 } 8135 8136 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 8137 if (DAG.getTarget().Options.UnsafeFPMath) 8138 return lowerFastUnsafeFDIV(Op, DAG); 8139 8140 SDLoc SL(Op); 8141 SDValue X = Op.getOperand(0); 8142 SDValue Y = Op.getOperand(1); 8143 8144 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 8145 8146 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 8147 8148 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 8149 8150 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 8151 8152 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 8153 8154 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 8155 8156 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 8157 8158 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 8159 8160 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 8161 8162 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 8163 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 8164 8165 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 8166 NegDivScale0, Mul, DivScale1); 8167 8168 SDValue Scale; 8169 8170 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 8171 // Workaround a hardware bug on SI where the condition output from div_scale 8172 // is not usable. 8173 8174 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 8175 8176 // Figure out if the scale to use for div_fmas. 8177 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 8178 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 8179 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 8180 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 8181 8182 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 8183 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 8184 8185 SDValue Scale0Hi 8186 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 8187 SDValue Scale1Hi 8188 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 8189 8190 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 8191 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 8192 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 8193 } else { 8194 Scale = DivScale1.getValue(1); 8195 } 8196 8197 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 8198 Fma4, Fma3, Mul, Scale); 8199 8200 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 8201 } 8202 8203 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 8204 EVT VT = Op.getValueType(); 8205 8206 if (VT == MVT::f32) 8207 return LowerFDIV32(Op, DAG); 8208 8209 if (VT == MVT::f64) 8210 return LowerFDIV64(Op, DAG); 8211 8212 if (VT == MVT::f16) 8213 return LowerFDIV16(Op, DAG); 8214 8215 llvm_unreachable("Unexpected type for fdiv"); 8216 } 8217 8218 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 8219 SDLoc DL(Op); 8220 StoreSDNode *Store = cast<StoreSDNode>(Op); 8221 EVT VT = Store->getMemoryVT(); 8222 8223 if (VT == MVT::i1) { 8224 return DAG.getTruncStore(Store->getChain(), DL, 8225 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 8226 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 8227 } 8228 8229 assert(VT.isVector() && 8230 Store->getValue().getValueType().getScalarType() == MVT::i32); 8231 8232 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8233 VT, *Store->getMemOperand())) { 8234 return expandUnalignedStore(Store, DAG); 8235 } 8236 8237 unsigned AS = Store->getAddressSpace(); 8238 if (Subtarget->hasLDSMisalignedBug() && 8239 AS == AMDGPUAS::FLAT_ADDRESS && 8240 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 8241 return SplitVectorStore(Op, DAG); 8242 } 8243 8244 MachineFunction &MF = DAG.getMachineFunction(); 8245 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 8246 // If there is a possibilty that flat instruction access scratch memory 8247 // then we need to use the same legalization rules we use for private. 8248 if (AS == AMDGPUAS::FLAT_ADDRESS && 8249 !Subtarget->hasMultiDwordFlatScratchAddressing()) 8250 AS = MFI->hasFlatScratchInit() ? 8251 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 8252 8253 unsigned NumElements = VT.getVectorNumElements(); 8254 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 8255 AS == AMDGPUAS::FLAT_ADDRESS) { 8256 if (NumElements > 4) 8257 return SplitVectorStore(Op, DAG); 8258 // v3 stores not supported on SI. 8259 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8260 return SplitVectorStore(Op, DAG); 8261 return SDValue(); 8262 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 8263 switch (Subtarget->getMaxPrivateElementSize()) { 8264 case 4: 8265 return scalarizeVectorStore(Store, DAG); 8266 case 8: 8267 if (NumElements > 2) 8268 return SplitVectorStore(Op, DAG); 8269 return SDValue(); 8270 case 16: 8271 if (NumElements > 4 || NumElements == 3) 8272 return SplitVectorStore(Op, DAG); 8273 return SDValue(); 8274 default: 8275 llvm_unreachable("unsupported private_element_size"); 8276 } 8277 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 8278 // Use ds_write_b128 if possible. 8279 if (Subtarget->useDS128() && Store->getAlignment() >= 16 && 8280 VT.getStoreSize() == 16 && NumElements != 3) 8281 return SDValue(); 8282 8283 if (NumElements > 2) 8284 return SplitVectorStore(Op, DAG); 8285 8286 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 8287 // address is negative, then the instruction is incorrectly treated as 8288 // out-of-bounds even if base + offsets is in bounds. Split vectorized 8289 // stores here to avoid emitting ds_write2_b32. We may re-combine the 8290 // store later in the SILoadStoreOptimizer. 8291 if (!Subtarget->hasUsableDSOffset() && 8292 NumElements == 2 && VT.getStoreSize() == 8 && 8293 Store->getAlignment() < 8) { 8294 return SplitVectorStore(Op, DAG); 8295 } 8296 8297 return SDValue(); 8298 } else { 8299 llvm_unreachable("unhandled address space"); 8300 } 8301 } 8302 8303 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 8304 SDLoc DL(Op); 8305 EVT VT = Op.getValueType(); 8306 SDValue Arg = Op.getOperand(0); 8307 SDValue TrigVal; 8308 8309 // Propagate fast-math flags so that the multiply we introduce can be folded 8310 // if Arg is already the result of a multiply by constant. 8311 auto Flags = Op->getFlags(); 8312 8313 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); 8314 8315 if (Subtarget->hasTrigReducedRange()) { 8316 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 8317 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); 8318 } else { 8319 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 8320 } 8321 8322 switch (Op.getOpcode()) { 8323 case ISD::FCOS: 8324 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); 8325 case ISD::FSIN: 8326 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); 8327 default: 8328 llvm_unreachable("Wrong trig opcode"); 8329 } 8330 } 8331 8332 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 8333 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 8334 assert(AtomicNode->isCompareAndSwap()); 8335 unsigned AS = AtomicNode->getAddressSpace(); 8336 8337 // No custom lowering required for local address space 8338 if (!isFlatGlobalAddrSpace(AS)) 8339 return Op; 8340 8341 // Non-local address space requires custom lowering for atomic compare 8342 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 8343 SDLoc DL(Op); 8344 SDValue ChainIn = Op.getOperand(0); 8345 SDValue Addr = Op.getOperand(1); 8346 SDValue Old = Op.getOperand(2); 8347 SDValue New = Op.getOperand(3); 8348 EVT VT = Op.getValueType(); 8349 MVT SimpleVT = VT.getSimpleVT(); 8350 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 8351 8352 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 8353 SDValue Ops[] = { ChainIn, Addr, NewOld }; 8354 8355 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 8356 Ops, VT, AtomicNode->getMemOperand()); 8357 } 8358 8359 //===----------------------------------------------------------------------===// 8360 // Custom DAG optimizations 8361 //===----------------------------------------------------------------------===// 8362 8363 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 8364 DAGCombinerInfo &DCI) const { 8365 EVT VT = N->getValueType(0); 8366 EVT ScalarVT = VT.getScalarType(); 8367 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) 8368 return SDValue(); 8369 8370 SelectionDAG &DAG = DCI.DAG; 8371 SDLoc DL(N); 8372 8373 SDValue Src = N->getOperand(0); 8374 EVT SrcVT = Src.getValueType(); 8375 8376 // TODO: We could try to match extracting the higher bytes, which would be 8377 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 8378 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 8379 // about in practice. 8380 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 8381 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 8382 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); 8383 DCI.AddToWorklist(Cvt.getNode()); 8384 8385 // For the f16 case, fold to a cast to f32 and then cast back to f16. 8386 if (ScalarVT != MVT::f32) { 8387 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, 8388 DAG.getTargetConstant(0, DL, MVT::i32)); 8389 } 8390 return Cvt; 8391 } 8392 } 8393 8394 return SDValue(); 8395 } 8396 8397 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 8398 8399 // This is a variant of 8400 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 8401 // 8402 // The normal DAG combiner will do this, but only if the add has one use since 8403 // that would increase the number of instructions. 8404 // 8405 // This prevents us from seeing a constant offset that can be folded into a 8406 // memory instruction's addressing mode. If we know the resulting add offset of 8407 // a pointer can be folded into an addressing offset, we can replace the pointer 8408 // operand with the add of new constant offset. This eliminates one of the uses, 8409 // and may allow the remaining use to also be simplified. 8410 // 8411 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 8412 unsigned AddrSpace, 8413 EVT MemVT, 8414 DAGCombinerInfo &DCI) const { 8415 SDValue N0 = N->getOperand(0); 8416 SDValue N1 = N->getOperand(1); 8417 8418 // We only do this to handle cases where it's profitable when there are 8419 // multiple uses of the add, so defer to the standard combine. 8420 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 8421 N0->hasOneUse()) 8422 return SDValue(); 8423 8424 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 8425 if (!CN1) 8426 return SDValue(); 8427 8428 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 8429 if (!CAdd) 8430 return SDValue(); 8431 8432 // If the resulting offset is too large, we can't fold it into the addressing 8433 // mode offset. 8434 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 8435 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 8436 8437 AddrMode AM; 8438 AM.HasBaseReg = true; 8439 AM.BaseOffs = Offset.getSExtValue(); 8440 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 8441 return SDValue(); 8442 8443 SelectionDAG &DAG = DCI.DAG; 8444 SDLoc SL(N); 8445 EVT VT = N->getValueType(0); 8446 8447 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 8448 SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); 8449 8450 SDNodeFlags Flags; 8451 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 8452 (N0.getOpcode() == ISD::OR || 8453 N0->getFlags().hasNoUnsignedWrap())); 8454 8455 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 8456 } 8457 8458 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 8459 DAGCombinerInfo &DCI) const { 8460 SDValue Ptr = N->getBasePtr(); 8461 SelectionDAG &DAG = DCI.DAG; 8462 SDLoc SL(N); 8463 8464 // TODO: We could also do this for multiplies. 8465 if (Ptr.getOpcode() == ISD::SHL) { 8466 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 8467 N->getMemoryVT(), DCI); 8468 if (NewPtr) { 8469 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 8470 8471 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; 8472 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 8473 } 8474 } 8475 8476 return SDValue(); 8477 } 8478 8479 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 8480 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 8481 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 8482 (Opc == ISD::XOR && Val == 0); 8483 } 8484 8485 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 8486 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 8487 // integer combine opportunities since most 64-bit operations are decomposed 8488 // this way. TODO: We won't want this for SALU especially if it is an inline 8489 // immediate. 8490 SDValue SITargetLowering::splitBinaryBitConstantOp( 8491 DAGCombinerInfo &DCI, 8492 const SDLoc &SL, 8493 unsigned Opc, SDValue LHS, 8494 const ConstantSDNode *CRHS) const { 8495 uint64_t Val = CRHS->getZExtValue(); 8496 uint32_t ValLo = Lo_32(Val); 8497 uint32_t ValHi = Hi_32(Val); 8498 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8499 8500 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 8501 bitOpWithConstantIsReducible(Opc, ValHi)) || 8502 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 8503 // If we need to materialize a 64-bit immediate, it will be split up later 8504 // anyway. Avoid creating the harder to understand 64-bit immediate 8505 // materialization. 8506 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 8507 } 8508 8509 return SDValue(); 8510 } 8511 8512 // Returns true if argument is a boolean value which is not serialized into 8513 // memory or argument and does not require v_cmdmask_b32 to be deserialized. 8514 static bool isBoolSGPR(SDValue V) { 8515 if (V.getValueType() != MVT::i1) 8516 return false; 8517 switch (V.getOpcode()) { 8518 default: break; 8519 case ISD::SETCC: 8520 case ISD::AND: 8521 case ISD::OR: 8522 case ISD::XOR: 8523 case AMDGPUISD::FP_CLASS: 8524 return true; 8525 } 8526 return false; 8527 } 8528 8529 // If a constant has all zeroes or all ones within each byte return it. 8530 // Otherwise return 0. 8531 static uint32_t getConstantPermuteMask(uint32_t C) { 8532 // 0xff for any zero byte in the mask 8533 uint32_t ZeroByteMask = 0; 8534 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 8535 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 8536 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 8537 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 8538 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 8539 if ((NonZeroByteMask & C) != NonZeroByteMask) 8540 return 0; // Partial bytes selected. 8541 return C; 8542 } 8543 8544 // Check if a node selects whole bytes from its operand 0 starting at a byte 8545 // boundary while masking the rest. Returns select mask as in the v_perm_b32 8546 // or -1 if not succeeded. 8547 // Note byte select encoding: 8548 // value 0-3 selects corresponding source byte; 8549 // value 0xc selects zero; 8550 // value 0xff selects 0xff. 8551 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { 8552 assert(V.getValueSizeInBits() == 32); 8553 8554 if (V.getNumOperands() != 2) 8555 return ~0; 8556 8557 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 8558 if (!N1) 8559 return ~0; 8560 8561 uint32_t C = N1->getZExtValue(); 8562 8563 switch (V.getOpcode()) { 8564 default: 8565 break; 8566 case ISD::AND: 8567 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 8568 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 8569 } 8570 break; 8571 8572 case ISD::OR: 8573 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 8574 return (0x03020100 & ~ConstMask) | ConstMask; 8575 } 8576 break; 8577 8578 case ISD::SHL: 8579 if (C % 8) 8580 return ~0; 8581 8582 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 8583 8584 case ISD::SRL: 8585 if (C % 8) 8586 return ~0; 8587 8588 return uint32_t(0x0c0c0c0c03020100ull >> C); 8589 } 8590 8591 return ~0; 8592 } 8593 8594 SDValue SITargetLowering::performAndCombine(SDNode *N, 8595 DAGCombinerInfo &DCI) const { 8596 if (DCI.isBeforeLegalize()) 8597 return SDValue(); 8598 8599 SelectionDAG &DAG = DCI.DAG; 8600 EVT VT = N->getValueType(0); 8601 SDValue LHS = N->getOperand(0); 8602 SDValue RHS = N->getOperand(1); 8603 8604 8605 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 8606 if (VT == MVT::i64 && CRHS) { 8607 if (SDValue Split 8608 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 8609 return Split; 8610 } 8611 8612 if (CRHS && VT == MVT::i32) { 8613 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 8614 // nb = number of trailing zeroes in mask 8615 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 8616 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 8617 uint64_t Mask = CRHS->getZExtValue(); 8618 unsigned Bits = countPopulation(Mask); 8619 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 8620 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 8621 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 8622 unsigned Shift = CShift->getZExtValue(); 8623 unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); 8624 unsigned Offset = NB + Shift; 8625 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 8626 SDLoc SL(N); 8627 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 8628 LHS->getOperand(0), 8629 DAG.getConstant(Offset, SL, MVT::i32), 8630 DAG.getConstant(Bits, SL, MVT::i32)); 8631 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8632 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 8633 DAG.getValueType(NarrowVT)); 8634 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 8635 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 8636 return Shl; 8637 } 8638 } 8639 } 8640 8641 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 8642 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 8643 isa<ConstantSDNode>(LHS.getOperand(2))) { 8644 uint32_t Sel = getConstantPermuteMask(Mask); 8645 if (!Sel) 8646 return SDValue(); 8647 8648 // Select 0xc for all zero bytes 8649 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 8650 SDLoc DL(N); 8651 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 8652 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 8653 } 8654 } 8655 8656 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 8657 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 8658 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 8659 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8660 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 8661 8662 SDValue X = LHS.getOperand(0); 8663 SDValue Y = RHS.getOperand(0); 8664 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) 8665 return SDValue(); 8666 8667 if (LCC == ISD::SETO) { 8668 if (X != LHS.getOperand(1)) 8669 return SDValue(); 8670 8671 if (RCC == ISD::SETUNE) { 8672 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 8673 if (!C1 || !C1->isInfinity() || C1->isNegative()) 8674 return SDValue(); 8675 8676 const uint32_t Mask = SIInstrFlags::N_NORMAL | 8677 SIInstrFlags::N_SUBNORMAL | 8678 SIInstrFlags::N_ZERO | 8679 SIInstrFlags::P_ZERO | 8680 SIInstrFlags::P_SUBNORMAL | 8681 SIInstrFlags::P_NORMAL; 8682 8683 static_assert(((~(SIInstrFlags::S_NAN | 8684 SIInstrFlags::Q_NAN | 8685 SIInstrFlags::N_INFINITY | 8686 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 8687 "mask not equal"); 8688 8689 SDLoc DL(N); 8690 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 8691 X, DAG.getConstant(Mask, DL, MVT::i32)); 8692 } 8693 } 8694 } 8695 8696 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 8697 std::swap(LHS, RHS); 8698 8699 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 8700 RHS.hasOneUse()) { 8701 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8702 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 8703 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 8704 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 8705 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 8706 (RHS.getOperand(0) == LHS.getOperand(0) && 8707 LHS.getOperand(0) == LHS.getOperand(1))) { 8708 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 8709 unsigned NewMask = LCC == ISD::SETO ? 8710 Mask->getZExtValue() & ~OrdMask : 8711 Mask->getZExtValue() & OrdMask; 8712 8713 SDLoc DL(N); 8714 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 8715 DAG.getConstant(NewMask, DL, MVT::i32)); 8716 } 8717 } 8718 8719 if (VT == MVT::i32 && 8720 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 8721 // and x, (sext cc from i1) => select cc, x, 0 8722 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 8723 std::swap(LHS, RHS); 8724 if (isBoolSGPR(RHS.getOperand(0))) 8725 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 8726 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 8727 } 8728 8729 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 8730 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8731 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 8732 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { 8733 uint32_t LHSMask = getPermuteMask(DAG, LHS); 8734 uint32_t RHSMask = getPermuteMask(DAG, RHS); 8735 if (LHSMask != ~0u && RHSMask != ~0u) { 8736 // Canonicalize the expression in an attempt to have fewer unique masks 8737 // and therefore fewer registers used to hold the masks. 8738 if (LHSMask > RHSMask) { 8739 std::swap(LHSMask, RHSMask); 8740 std::swap(LHS, RHS); 8741 } 8742 8743 // Select 0xc for each lane used from source operand. Zero has 0xc mask 8744 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 8745 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8746 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8747 8748 // Check of we need to combine values from two sources within a byte. 8749 if (!(LHSUsedLanes & RHSUsedLanes) && 8750 // If we select high and lower word keep it for SDWA. 8751 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 8752 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 8753 // Each byte in each mask is either selector mask 0-3, or has higher 8754 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 8755 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 8756 // mask which is not 0xff wins. By anding both masks we have a correct 8757 // result except that 0x0c shall be corrected to give 0x0c only. 8758 uint32_t Mask = LHSMask & RHSMask; 8759 for (unsigned I = 0; I < 32; I += 8) { 8760 uint32_t ByteSel = 0xff << I; 8761 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 8762 Mask &= (0x0c << I) & 0xffffffff; 8763 } 8764 8765 // Add 4 to each active LHS lane. It will not affect any existing 0xff 8766 // or 0x0c. 8767 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 8768 SDLoc DL(N); 8769 8770 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 8771 LHS.getOperand(0), RHS.getOperand(0), 8772 DAG.getConstant(Sel, DL, MVT::i32)); 8773 } 8774 } 8775 } 8776 8777 return SDValue(); 8778 } 8779 8780 SDValue SITargetLowering::performOrCombine(SDNode *N, 8781 DAGCombinerInfo &DCI) const { 8782 SelectionDAG &DAG = DCI.DAG; 8783 SDValue LHS = N->getOperand(0); 8784 SDValue RHS = N->getOperand(1); 8785 8786 EVT VT = N->getValueType(0); 8787 if (VT == MVT::i1) { 8788 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 8789 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 8790 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 8791 SDValue Src = LHS.getOperand(0); 8792 if (Src != RHS.getOperand(0)) 8793 return SDValue(); 8794 8795 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 8796 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 8797 if (!CLHS || !CRHS) 8798 return SDValue(); 8799 8800 // Only 10 bits are used. 8801 static const uint32_t MaxMask = 0x3ff; 8802 8803 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 8804 SDLoc DL(N); 8805 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 8806 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 8807 } 8808 8809 return SDValue(); 8810 } 8811 8812 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 8813 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 8814 LHS.getOpcode() == AMDGPUISD::PERM && 8815 isa<ConstantSDNode>(LHS.getOperand(2))) { 8816 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 8817 if (!Sel) 8818 return SDValue(); 8819 8820 Sel |= LHS.getConstantOperandVal(2); 8821 SDLoc DL(N); 8822 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 8823 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 8824 } 8825 8826 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 8827 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8828 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 8829 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { 8830 uint32_t LHSMask = getPermuteMask(DAG, LHS); 8831 uint32_t RHSMask = getPermuteMask(DAG, RHS); 8832 if (LHSMask != ~0u && RHSMask != ~0u) { 8833 // Canonicalize the expression in an attempt to have fewer unique masks 8834 // and therefore fewer registers used to hold the masks. 8835 if (LHSMask > RHSMask) { 8836 std::swap(LHSMask, RHSMask); 8837 std::swap(LHS, RHS); 8838 } 8839 8840 // Select 0xc for each lane used from source operand. Zero has 0xc mask 8841 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 8842 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8843 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8844 8845 // Check of we need to combine values from two sources within a byte. 8846 if (!(LHSUsedLanes & RHSUsedLanes) && 8847 // If we select high and lower word keep it for SDWA. 8848 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 8849 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 8850 // Kill zero bytes selected by other mask. Zero value is 0xc. 8851 LHSMask &= ~RHSUsedLanes; 8852 RHSMask &= ~LHSUsedLanes; 8853 // Add 4 to each active LHS lane 8854 LHSMask |= LHSUsedLanes & 0x04040404; 8855 // Combine masks 8856 uint32_t Sel = LHSMask | RHSMask; 8857 SDLoc DL(N); 8858 8859 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 8860 LHS.getOperand(0), RHS.getOperand(0), 8861 DAG.getConstant(Sel, DL, MVT::i32)); 8862 } 8863 } 8864 } 8865 8866 if (VT != MVT::i64) 8867 return SDValue(); 8868 8869 // TODO: This could be a generic combine with a predicate for extracting the 8870 // high half of an integer being free. 8871 8872 // (or i64:x, (zero_extend i32:y)) -> 8873 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 8874 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 8875 RHS.getOpcode() != ISD::ZERO_EXTEND) 8876 std::swap(LHS, RHS); 8877 8878 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 8879 SDValue ExtSrc = RHS.getOperand(0); 8880 EVT SrcVT = ExtSrc.getValueType(); 8881 if (SrcVT == MVT::i32) { 8882 SDLoc SL(N); 8883 SDValue LowLHS, HiBits; 8884 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 8885 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 8886 8887 DCI.AddToWorklist(LowOr.getNode()); 8888 DCI.AddToWorklist(HiBits.getNode()); 8889 8890 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 8891 LowOr, HiBits); 8892 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 8893 } 8894 } 8895 8896 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8897 if (CRHS) { 8898 if (SDValue Split 8899 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS)) 8900 return Split; 8901 } 8902 8903 return SDValue(); 8904 } 8905 8906 SDValue SITargetLowering::performXorCombine(SDNode *N, 8907 DAGCombinerInfo &DCI) const { 8908 EVT VT = N->getValueType(0); 8909 if (VT != MVT::i64) 8910 return SDValue(); 8911 8912 SDValue LHS = N->getOperand(0); 8913 SDValue RHS = N->getOperand(1); 8914 8915 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 8916 if (CRHS) { 8917 if (SDValue Split 8918 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 8919 return Split; 8920 } 8921 8922 return SDValue(); 8923 } 8924 8925 // Instructions that will be lowered with a final instruction that zeros the 8926 // high result bits. 8927 // XXX - probably only need to list legal operations. 8928 static bool fp16SrcZerosHighBits(unsigned Opc) { 8929 switch (Opc) { 8930 case ISD::FADD: 8931 case ISD::FSUB: 8932 case ISD::FMUL: 8933 case ISD::FDIV: 8934 case ISD::FREM: 8935 case ISD::FMA: 8936 case ISD::FMAD: 8937 case ISD::FCANONICALIZE: 8938 case ISD::FP_ROUND: 8939 case ISD::UINT_TO_FP: 8940 case ISD::SINT_TO_FP: 8941 case ISD::FABS: 8942 // Fabs is lowered to a bit operation, but it's an and which will clear the 8943 // high bits anyway. 8944 case ISD::FSQRT: 8945 case ISD::FSIN: 8946 case ISD::FCOS: 8947 case ISD::FPOWI: 8948 case ISD::FPOW: 8949 case ISD::FLOG: 8950 case ISD::FLOG2: 8951 case ISD::FLOG10: 8952 case ISD::FEXP: 8953 case ISD::FEXP2: 8954 case ISD::FCEIL: 8955 case ISD::FTRUNC: 8956 case ISD::FRINT: 8957 case ISD::FNEARBYINT: 8958 case ISD::FROUND: 8959 case ISD::FFLOOR: 8960 case ISD::FMINNUM: 8961 case ISD::FMAXNUM: 8962 case AMDGPUISD::FRACT: 8963 case AMDGPUISD::CLAMP: 8964 case AMDGPUISD::COS_HW: 8965 case AMDGPUISD::SIN_HW: 8966 case AMDGPUISD::FMIN3: 8967 case AMDGPUISD::FMAX3: 8968 case AMDGPUISD::FMED3: 8969 case AMDGPUISD::FMAD_FTZ: 8970 case AMDGPUISD::RCP: 8971 case AMDGPUISD::RSQ: 8972 case AMDGPUISD::RCP_IFLAG: 8973 case AMDGPUISD::LDEXP: 8974 return true; 8975 default: 8976 // fcopysign, select and others may be lowered to 32-bit bit operations 8977 // which don't zero the high bits. 8978 return false; 8979 } 8980 } 8981 8982 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 8983 DAGCombinerInfo &DCI) const { 8984 if (!Subtarget->has16BitInsts() || 8985 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 8986 return SDValue(); 8987 8988 EVT VT = N->getValueType(0); 8989 if (VT != MVT::i32) 8990 return SDValue(); 8991 8992 SDValue Src = N->getOperand(0); 8993 if (Src.getValueType() != MVT::i16) 8994 return SDValue(); 8995 8996 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src 8997 // FIXME: It is not universally true that the high bits are zeroed on gfx9. 8998 if (Src.getOpcode() == ISD::BITCAST) { 8999 SDValue BCSrc = Src.getOperand(0); 9000 if (BCSrc.getValueType() == MVT::f16 && 9001 fp16SrcZerosHighBits(BCSrc.getOpcode())) 9002 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc); 9003 } 9004 9005 return SDValue(); 9006 } 9007 9008 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, 9009 DAGCombinerInfo &DCI) 9010 const { 9011 SDValue Src = N->getOperand(0); 9012 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 9013 9014 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 9015 VTSign->getVT() == MVT::i8) || 9016 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 9017 VTSign->getVT() == MVT::i16)) && 9018 Src.hasOneUse()) { 9019 auto *M = cast<MemSDNode>(Src); 9020 SDValue Ops[] = { 9021 Src.getOperand(0), // Chain 9022 Src.getOperand(1), // rsrc 9023 Src.getOperand(2), // vindex 9024 Src.getOperand(3), // voffset 9025 Src.getOperand(4), // soffset 9026 Src.getOperand(5), // offset 9027 Src.getOperand(6), 9028 Src.getOperand(7) 9029 }; 9030 // replace with BUFFER_LOAD_BYTE/SHORT 9031 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 9032 Src.getOperand(0).getValueType()); 9033 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 9034 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 9035 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 9036 ResList, 9037 Ops, M->getMemoryVT(), 9038 M->getMemOperand()); 9039 return DCI.DAG.getMergeValues({BufferLoadSignExt, 9040 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 9041 } 9042 return SDValue(); 9043 } 9044 9045 SDValue SITargetLowering::performClassCombine(SDNode *N, 9046 DAGCombinerInfo &DCI) const { 9047 SelectionDAG &DAG = DCI.DAG; 9048 SDValue Mask = N->getOperand(1); 9049 9050 // fp_class x, 0 -> false 9051 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 9052 if (CMask->isNullValue()) 9053 return DAG.getConstant(0, SDLoc(N), MVT::i1); 9054 } 9055 9056 if (N->getOperand(0).isUndef()) 9057 return DAG.getUNDEF(MVT::i1); 9058 9059 return SDValue(); 9060 } 9061 9062 SDValue SITargetLowering::performRcpCombine(SDNode *N, 9063 DAGCombinerInfo &DCI) const { 9064 EVT VT = N->getValueType(0); 9065 SDValue N0 = N->getOperand(0); 9066 9067 if (N0.isUndef()) 9068 return N0; 9069 9070 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 9071 N0.getOpcode() == ISD::SINT_TO_FP)) { 9072 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 9073 N->getFlags()); 9074 } 9075 9076 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) { 9077 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, 9078 N0.getOperand(0), N->getFlags()); 9079 } 9080 9081 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 9082 } 9083 9084 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 9085 unsigned MaxDepth) const { 9086 unsigned Opcode = Op.getOpcode(); 9087 if (Opcode == ISD::FCANONICALIZE) 9088 return true; 9089 9090 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 9091 auto F = CFP->getValueAPF(); 9092 if (F.isNaN() && F.isSignaling()) 9093 return false; 9094 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType()); 9095 } 9096 9097 // If source is a result of another standard FP operation it is already in 9098 // canonical form. 9099 if (MaxDepth == 0) 9100 return false; 9101 9102 switch (Opcode) { 9103 // These will flush denorms if required. 9104 case ISD::FADD: 9105 case ISD::FSUB: 9106 case ISD::FMUL: 9107 case ISD::FCEIL: 9108 case ISD::FFLOOR: 9109 case ISD::FMA: 9110 case ISD::FMAD: 9111 case ISD::FSQRT: 9112 case ISD::FDIV: 9113 case ISD::FREM: 9114 case ISD::FP_ROUND: 9115 case ISD::FP_EXTEND: 9116 case AMDGPUISD::FMUL_LEGACY: 9117 case AMDGPUISD::FMAD_FTZ: 9118 case AMDGPUISD::RCP: 9119 case AMDGPUISD::RSQ: 9120 case AMDGPUISD::RSQ_CLAMP: 9121 case AMDGPUISD::RCP_LEGACY: 9122 case AMDGPUISD::RCP_IFLAG: 9123 case AMDGPUISD::TRIG_PREOP: 9124 case AMDGPUISD::DIV_SCALE: 9125 case AMDGPUISD::DIV_FMAS: 9126 case AMDGPUISD::DIV_FIXUP: 9127 case AMDGPUISD::FRACT: 9128 case AMDGPUISD::LDEXP: 9129 case AMDGPUISD::CVT_PKRTZ_F16_F32: 9130 case AMDGPUISD::CVT_F32_UBYTE0: 9131 case AMDGPUISD::CVT_F32_UBYTE1: 9132 case AMDGPUISD::CVT_F32_UBYTE2: 9133 case AMDGPUISD::CVT_F32_UBYTE3: 9134 return true; 9135 9136 // It can/will be lowered or combined as a bit operation. 9137 // Need to check their input recursively to handle. 9138 case ISD::FNEG: 9139 case ISD::FABS: 9140 case ISD::FCOPYSIGN: 9141 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 9142 9143 case ISD::FSIN: 9144 case ISD::FCOS: 9145 case ISD::FSINCOS: 9146 return Op.getValueType().getScalarType() != MVT::f16; 9147 9148 case ISD::FMINNUM: 9149 case ISD::FMAXNUM: 9150 case ISD::FMINNUM_IEEE: 9151 case ISD::FMAXNUM_IEEE: 9152 case AMDGPUISD::CLAMP: 9153 case AMDGPUISD::FMED3: 9154 case AMDGPUISD::FMAX3: 9155 case AMDGPUISD::FMIN3: { 9156 // FIXME: Shouldn't treat the generic operations different based these. 9157 // However, we aren't really required to flush the result from 9158 // minnum/maxnum.. 9159 9160 // snans will be quieted, so we only need to worry about denormals. 9161 if (Subtarget->supportsMinMaxDenormModes() || 9162 denormalsEnabledForType(DAG, Op.getValueType())) 9163 return true; 9164 9165 // Flushing may be required. 9166 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 9167 // targets need to check their input recursively. 9168 9169 // FIXME: Does this apply with clamp? It's implemented with max. 9170 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 9171 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 9172 return false; 9173 } 9174 9175 return true; 9176 } 9177 case ISD::SELECT: { 9178 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 9179 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 9180 } 9181 case ISD::BUILD_VECTOR: { 9182 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 9183 SDValue SrcOp = Op.getOperand(i); 9184 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 9185 return false; 9186 } 9187 9188 return true; 9189 } 9190 case ISD::EXTRACT_VECTOR_ELT: 9191 case ISD::EXTRACT_SUBVECTOR: { 9192 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 9193 } 9194 case ISD::INSERT_VECTOR_ELT: { 9195 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 9196 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 9197 } 9198 case ISD::UNDEF: 9199 // Could be anything. 9200 return false; 9201 9202 case ISD::BITCAST: { 9203 // Hack round the mess we make when legalizing extract_vector_elt 9204 SDValue Src = Op.getOperand(0); 9205 if (Src.getValueType() == MVT::i16 && 9206 Src.getOpcode() == ISD::TRUNCATE) { 9207 SDValue TruncSrc = Src.getOperand(0); 9208 if (TruncSrc.getValueType() == MVT::i32 && 9209 TruncSrc.getOpcode() == ISD::BITCAST && 9210 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 9211 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 9212 } 9213 } 9214 9215 return false; 9216 } 9217 case ISD::INTRINSIC_WO_CHAIN: { 9218 unsigned IntrinsicID 9219 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9220 // TODO: Handle more intrinsics 9221 switch (IntrinsicID) { 9222 case Intrinsic::amdgcn_cvt_pkrtz: 9223 case Intrinsic::amdgcn_cubeid: 9224 case Intrinsic::amdgcn_frexp_mant: 9225 case Intrinsic::amdgcn_fdot2: 9226 case Intrinsic::amdgcn_rcp: 9227 case Intrinsic::amdgcn_rsq: 9228 case Intrinsic::amdgcn_rsq_clamp: 9229 case Intrinsic::amdgcn_rcp_legacy: 9230 case Intrinsic::amdgcn_rsq_legacy: 9231 return true; 9232 default: 9233 break; 9234 } 9235 9236 LLVM_FALLTHROUGH; 9237 } 9238 default: 9239 return denormalsEnabledForType(DAG, Op.getValueType()) && 9240 DAG.isKnownNeverSNaN(Op); 9241 } 9242 9243 llvm_unreachable("invalid operation"); 9244 } 9245 9246 // Constant fold canonicalize. 9247 SDValue SITargetLowering::getCanonicalConstantFP( 9248 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 9249 // Flush denormals to 0 if not enabled. 9250 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) 9251 return DAG.getConstantFP(0.0, SL, VT); 9252 9253 if (C.isNaN()) { 9254 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 9255 if (C.isSignaling()) { 9256 // Quiet a signaling NaN. 9257 // FIXME: Is this supposed to preserve payload bits? 9258 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 9259 } 9260 9261 // Make sure it is the canonical NaN bitpattern. 9262 // 9263 // TODO: Can we use -1 as the canonical NaN value since it's an inline 9264 // immediate? 9265 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 9266 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 9267 } 9268 9269 // Already canonical. 9270 return DAG.getConstantFP(C, SL, VT); 9271 } 9272 9273 static bool vectorEltWillFoldAway(SDValue Op) { 9274 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 9275 } 9276 9277 SDValue SITargetLowering::performFCanonicalizeCombine( 9278 SDNode *N, 9279 DAGCombinerInfo &DCI) const { 9280 SelectionDAG &DAG = DCI.DAG; 9281 SDValue N0 = N->getOperand(0); 9282 EVT VT = N->getValueType(0); 9283 9284 // fcanonicalize undef -> qnan 9285 if (N0.isUndef()) { 9286 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 9287 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 9288 } 9289 9290 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 9291 EVT VT = N->getValueType(0); 9292 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 9293 } 9294 9295 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 9296 // (fcanonicalize k) 9297 // 9298 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 9299 9300 // TODO: This could be better with wider vectors that will be split to v2f16, 9301 // and to consider uses since there aren't that many packed operations. 9302 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 9303 isTypeLegal(MVT::v2f16)) { 9304 SDLoc SL(N); 9305 SDValue NewElts[2]; 9306 SDValue Lo = N0.getOperand(0); 9307 SDValue Hi = N0.getOperand(1); 9308 EVT EltVT = Lo.getValueType(); 9309 9310 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 9311 for (unsigned I = 0; I != 2; ++I) { 9312 SDValue Op = N0.getOperand(I); 9313 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 9314 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 9315 CFP->getValueAPF()); 9316 } else if (Op.isUndef()) { 9317 // Handled below based on what the other operand is. 9318 NewElts[I] = Op; 9319 } else { 9320 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 9321 } 9322 } 9323 9324 // If one half is undef, and one is constant, perfer a splat vector rather 9325 // than the normal qNaN. If it's a register, prefer 0.0 since that's 9326 // cheaper to use and may be free with a packed operation. 9327 if (NewElts[0].isUndef()) { 9328 if (isa<ConstantFPSDNode>(NewElts[1])) 9329 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 9330 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 9331 } 9332 9333 if (NewElts[1].isUndef()) { 9334 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 9335 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 9336 } 9337 9338 return DAG.getBuildVector(VT, SL, NewElts); 9339 } 9340 } 9341 9342 unsigned SrcOpc = N0.getOpcode(); 9343 9344 // If it's free to do so, push canonicalizes further up the source, which may 9345 // find a canonical source. 9346 // 9347 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for 9348 // sNaNs. 9349 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 9350 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9351 if (CRHS && N0.hasOneUse()) { 9352 SDLoc SL(N); 9353 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 9354 N0.getOperand(0)); 9355 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 9356 DCI.AddToWorklist(Canon0.getNode()); 9357 9358 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 9359 } 9360 } 9361 9362 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 9363 } 9364 9365 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 9366 switch (Opc) { 9367 case ISD::FMAXNUM: 9368 case ISD::FMAXNUM_IEEE: 9369 return AMDGPUISD::FMAX3; 9370 case ISD::SMAX: 9371 return AMDGPUISD::SMAX3; 9372 case ISD::UMAX: 9373 return AMDGPUISD::UMAX3; 9374 case ISD::FMINNUM: 9375 case ISD::FMINNUM_IEEE: 9376 return AMDGPUISD::FMIN3; 9377 case ISD::SMIN: 9378 return AMDGPUISD::SMIN3; 9379 case ISD::UMIN: 9380 return AMDGPUISD::UMIN3; 9381 default: 9382 llvm_unreachable("Not a min/max opcode"); 9383 } 9384 } 9385 9386 SDValue SITargetLowering::performIntMed3ImmCombine( 9387 SelectionDAG &DAG, const SDLoc &SL, 9388 SDValue Op0, SDValue Op1, bool Signed) const { 9389 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); 9390 if (!K1) 9391 return SDValue(); 9392 9393 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 9394 if (!K0) 9395 return SDValue(); 9396 9397 if (Signed) { 9398 if (K0->getAPIntValue().sge(K1->getAPIntValue())) 9399 return SDValue(); 9400 } else { 9401 if (K0->getAPIntValue().uge(K1->getAPIntValue())) 9402 return SDValue(); 9403 } 9404 9405 EVT VT = K0->getValueType(0); 9406 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 9407 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { 9408 return DAG.getNode(Med3Opc, SL, VT, 9409 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); 9410 } 9411 9412 // If there isn't a 16-bit med3 operation, convert to 32-bit. 9413 MVT NVT = MVT::i32; 9414 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9415 9416 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); 9417 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); 9418 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); 9419 9420 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); 9421 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); 9422 } 9423 9424 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 9425 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 9426 return C; 9427 9428 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 9429 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 9430 return C; 9431 } 9432 9433 return nullptr; 9434 } 9435 9436 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 9437 const SDLoc &SL, 9438 SDValue Op0, 9439 SDValue Op1) const { 9440 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 9441 if (!K1) 9442 return SDValue(); 9443 9444 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 9445 if (!K0) 9446 return SDValue(); 9447 9448 // Ordered >= (although NaN inputs should have folded away by now). 9449 if (K0->getValueAPF() > K1->getValueAPF()) 9450 return SDValue(); 9451 9452 const MachineFunction &MF = DAG.getMachineFunction(); 9453 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9454 9455 // TODO: Check IEEE bit enabled? 9456 EVT VT = Op0.getValueType(); 9457 if (Info->getMode().DX10Clamp) { 9458 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 9459 // hardware fmed3 behavior converting to a min. 9460 // FIXME: Should this be allowing -0.0? 9461 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 9462 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 9463 } 9464 9465 // med3 for f16 is only available on gfx9+, and not available for v2f16. 9466 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 9467 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 9468 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 9469 // then give the other result, which is different from med3 with a NaN 9470 // input. 9471 SDValue Var = Op0.getOperand(0); 9472 if (!DAG.isKnownNeverSNaN(Var)) 9473 return SDValue(); 9474 9475 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9476 9477 if ((!K0->hasOneUse() || 9478 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 9479 (!K1->hasOneUse() || 9480 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 9481 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 9482 Var, SDValue(K0, 0), SDValue(K1, 0)); 9483 } 9484 } 9485 9486 return SDValue(); 9487 } 9488 9489 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 9490 DAGCombinerInfo &DCI) const { 9491 SelectionDAG &DAG = DCI.DAG; 9492 9493 EVT VT = N->getValueType(0); 9494 unsigned Opc = N->getOpcode(); 9495 SDValue Op0 = N->getOperand(0); 9496 SDValue Op1 = N->getOperand(1); 9497 9498 // Only do this if the inner op has one use since this will just increases 9499 // register pressure for no benefit. 9500 9501 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 9502 !VT.isVector() && 9503 (VT == MVT::i32 || VT == MVT::f32 || 9504 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 9505 // max(max(a, b), c) -> max3(a, b, c) 9506 // min(min(a, b), c) -> min3(a, b, c) 9507 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 9508 SDLoc DL(N); 9509 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 9510 DL, 9511 N->getValueType(0), 9512 Op0.getOperand(0), 9513 Op0.getOperand(1), 9514 Op1); 9515 } 9516 9517 // Try commuted. 9518 // max(a, max(b, c)) -> max3(a, b, c) 9519 // min(a, min(b, c)) -> min3(a, b, c) 9520 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 9521 SDLoc DL(N); 9522 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 9523 DL, 9524 N->getValueType(0), 9525 Op0, 9526 Op1.getOperand(0), 9527 Op1.getOperand(1)); 9528 } 9529 } 9530 9531 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 9532 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 9533 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) 9534 return Med3; 9535 } 9536 9537 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 9538 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) 9539 return Med3; 9540 } 9541 9542 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 9543 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 9544 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 9545 (Opc == AMDGPUISD::FMIN_LEGACY && 9546 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 9547 (VT == MVT::f32 || VT == MVT::f64 || 9548 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 9549 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 9550 Op0.hasOneUse()) { 9551 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 9552 return Res; 9553 } 9554 9555 return SDValue(); 9556 } 9557 9558 static bool isClampZeroToOne(SDValue A, SDValue B) { 9559 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 9560 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 9561 // FIXME: Should this be allowing -0.0? 9562 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 9563 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 9564 } 9565 } 9566 9567 return false; 9568 } 9569 9570 // FIXME: Should only worry about snans for version with chain. 9571 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 9572 DAGCombinerInfo &DCI) const { 9573 EVT VT = N->getValueType(0); 9574 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 9575 // NaNs. With a NaN input, the order of the operands may change the result. 9576 9577 SelectionDAG &DAG = DCI.DAG; 9578 SDLoc SL(N); 9579 9580 SDValue Src0 = N->getOperand(0); 9581 SDValue Src1 = N->getOperand(1); 9582 SDValue Src2 = N->getOperand(2); 9583 9584 if (isClampZeroToOne(Src0, Src1)) { 9585 // const_a, const_b, x -> clamp is safe in all cases including signaling 9586 // nans. 9587 // FIXME: Should this be allowing -0.0? 9588 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 9589 } 9590 9591 const MachineFunction &MF = DAG.getMachineFunction(); 9592 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9593 9594 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 9595 // handling no dx10-clamp? 9596 if (Info->getMode().DX10Clamp) { 9597 // If NaNs is clamped to 0, we are free to reorder the inputs. 9598 9599 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 9600 std::swap(Src0, Src1); 9601 9602 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 9603 std::swap(Src1, Src2); 9604 9605 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 9606 std::swap(Src0, Src1); 9607 9608 if (isClampZeroToOne(Src1, Src2)) 9609 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 9610 } 9611 9612 return SDValue(); 9613 } 9614 9615 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 9616 DAGCombinerInfo &DCI) const { 9617 SDValue Src0 = N->getOperand(0); 9618 SDValue Src1 = N->getOperand(1); 9619 if (Src0.isUndef() && Src1.isUndef()) 9620 return DCI.DAG.getUNDEF(N->getValueType(0)); 9621 return SDValue(); 9622 } 9623 9624 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be 9625 // expanded into a set of cmp/select instructions. 9626 static bool shouldExpandVectorDynExt(SDNode *N) { 9627 SDValue Idx = N->getOperand(N->getNumOperands() - 1); 9628 if (UseDivergentRegisterIndexing || isa<ConstantSDNode>(Idx)) 9629 return false; 9630 9631 SDValue Vec = N->getOperand(0); 9632 EVT VecVT = Vec.getValueType(); 9633 EVT EltVT = VecVT.getVectorElementType(); 9634 unsigned VecSize = VecVT.getSizeInBits(); 9635 unsigned EltSize = EltVT.getSizeInBits(); 9636 unsigned NumElem = VecVT.getVectorNumElements(); 9637 9638 // Sub-dword vectors of size 2 dword or less have better implementation. 9639 if (VecSize <= 64 && EltSize < 32) 9640 return false; 9641 9642 // Always expand the rest of sub-dword instructions, otherwise it will be 9643 // lowered via memory. 9644 if (EltSize < 32) 9645 return true; 9646 9647 // Always do this if var-idx is divergent, otherwise it will become a loop. 9648 if (Idx->isDivergent()) 9649 return true; 9650 9651 // Large vectors would yield too many compares and v_cndmask_b32 instructions. 9652 unsigned NumInsts = NumElem /* Number of compares */ + 9653 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; 9654 return NumInsts <= 16; 9655 } 9656 9657 SDValue SITargetLowering::performExtractVectorEltCombine( 9658 SDNode *N, DAGCombinerInfo &DCI) const { 9659 SDValue Vec = N->getOperand(0); 9660 SelectionDAG &DAG = DCI.DAG; 9661 9662 EVT VecVT = Vec.getValueType(); 9663 EVT EltVT = VecVT.getVectorElementType(); 9664 9665 if ((Vec.getOpcode() == ISD::FNEG || 9666 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 9667 SDLoc SL(N); 9668 EVT EltVT = N->getValueType(0); 9669 SDValue Idx = N->getOperand(1); 9670 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9671 Vec.getOperand(0), Idx); 9672 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); 9673 } 9674 9675 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 9676 // => 9677 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 9678 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 9679 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 9680 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { 9681 SDLoc SL(N); 9682 EVT EltVT = N->getValueType(0); 9683 SDValue Idx = N->getOperand(1); 9684 unsigned Opc = Vec.getOpcode(); 9685 9686 switch(Opc) { 9687 default: 9688 break; 9689 // TODO: Support other binary operations. 9690 case ISD::FADD: 9691 case ISD::FSUB: 9692 case ISD::FMUL: 9693 case ISD::ADD: 9694 case ISD::UMIN: 9695 case ISD::UMAX: 9696 case ISD::SMIN: 9697 case ISD::SMAX: 9698 case ISD::FMAXNUM: 9699 case ISD::FMINNUM: 9700 case ISD::FMAXNUM_IEEE: 9701 case ISD::FMINNUM_IEEE: { 9702 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9703 Vec.getOperand(0), Idx); 9704 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9705 Vec.getOperand(1), Idx); 9706 9707 DCI.AddToWorklist(Elt0.getNode()); 9708 DCI.AddToWorklist(Elt1.getNode()); 9709 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); 9710 } 9711 } 9712 } 9713 9714 unsigned VecSize = VecVT.getSizeInBits(); 9715 unsigned EltSize = EltVT.getSizeInBits(); 9716 9717 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 9718 if (shouldExpandVectorDynExt(N)) { 9719 SDLoc SL(N); 9720 SDValue Idx = N->getOperand(1); 9721 SDValue V; 9722 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 9723 SDValue IC = DAG.getVectorIdxConstant(I, SL); 9724 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 9725 if (I == 0) 9726 V = Elt; 9727 else 9728 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 9729 } 9730 return V; 9731 } 9732 9733 if (!DCI.isBeforeLegalize()) 9734 return SDValue(); 9735 9736 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 9737 // elements. This exposes more load reduction opportunities by replacing 9738 // multiple small extract_vector_elements with a single 32-bit extract. 9739 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9740 if (isa<MemSDNode>(Vec) && 9741 EltSize <= 16 && 9742 EltVT.isByteSized() && 9743 VecSize > 32 && 9744 VecSize % 32 == 0 && 9745 Idx) { 9746 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 9747 9748 unsigned BitIndex = Idx->getZExtValue() * EltSize; 9749 unsigned EltIdx = BitIndex / 32; 9750 unsigned LeftoverBitIdx = BitIndex % 32; 9751 SDLoc SL(N); 9752 9753 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 9754 DCI.AddToWorklist(Cast.getNode()); 9755 9756 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 9757 DAG.getConstant(EltIdx, SL, MVT::i32)); 9758 DCI.AddToWorklist(Elt.getNode()); 9759 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 9760 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 9761 DCI.AddToWorklist(Srl.getNode()); 9762 9763 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); 9764 DCI.AddToWorklist(Trunc.getNode()); 9765 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); 9766 } 9767 9768 return SDValue(); 9769 } 9770 9771 SDValue 9772 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 9773 DAGCombinerInfo &DCI) const { 9774 SDValue Vec = N->getOperand(0); 9775 SDValue Idx = N->getOperand(2); 9776 EVT VecVT = Vec.getValueType(); 9777 EVT EltVT = VecVT.getVectorElementType(); 9778 9779 // INSERT_VECTOR_ELT (<n x e>, var-idx) 9780 // => BUILD_VECTOR n x select (e, const-idx) 9781 if (!shouldExpandVectorDynExt(N)) 9782 return SDValue(); 9783 9784 SelectionDAG &DAG = DCI.DAG; 9785 SDLoc SL(N); 9786 SDValue Ins = N->getOperand(1); 9787 EVT IdxVT = Idx.getValueType(); 9788 9789 SmallVector<SDValue, 16> Ops; 9790 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 9791 SDValue IC = DAG.getConstant(I, SL, IdxVT); 9792 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 9793 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 9794 Ops.push_back(V); 9795 } 9796 9797 return DAG.getBuildVector(VecVT, SL, Ops); 9798 } 9799 9800 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 9801 const SDNode *N0, 9802 const SDNode *N1) const { 9803 EVT VT = N0->getValueType(0); 9804 9805 // Only do this if we are not trying to support denormals. v_mad_f32 does not 9806 // support denormals ever. 9807 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) || 9808 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) && 9809 getSubtarget()->hasMadF16())) && 9810 isOperationLegal(ISD::FMAD, VT)) 9811 return ISD::FMAD; 9812 9813 const TargetOptions &Options = DAG.getTarget().Options; 9814 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 9815 (N0->getFlags().hasAllowContract() && 9816 N1->getFlags().hasAllowContract())) && 9817 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 9818 return ISD::FMA; 9819 } 9820 9821 return 0; 9822 } 9823 9824 // For a reassociatable opcode perform: 9825 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 9826 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 9827 SelectionDAG &DAG) const { 9828 EVT VT = N->getValueType(0); 9829 if (VT != MVT::i32 && VT != MVT::i64) 9830 return SDValue(); 9831 9832 unsigned Opc = N->getOpcode(); 9833 SDValue Op0 = N->getOperand(0); 9834 SDValue Op1 = N->getOperand(1); 9835 9836 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 9837 return SDValue(); 9838 9839 if (Op0->isDivergent()) 9840 std::swap(Op0, Op1); 9841 9842 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 9843 return SDValue(); 9844 9845 SDValue Op2 = Op1.getOperand(1); 9846 Op1 = Op1.getOperand(0); 9847 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 9848 return SDValue(); 9849 9850 if (Op1->isDivergent()) 9851 std::swap(Op1, Op2); 9852 9853 // If either operand is constant this will conflict with 9854 // DAGCombiner::ReassociateOps(). 9855 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 9856 DAG.isConstantIntBuildVectorOrConstantInt(Op1)) 9857 return SDValue(); 9858 9859 SDLoc SL(N); 9860 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 9861 return DAG.getNode(Opc, SL, VT, Add1, Op2); 9862 } 9863 9864 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 9865 EVT VT, 9866 SDValue N0, SDValue N1, SDValue N2, 9867 bool Signed) { 9868 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 9869 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 9870 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 9871 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 9872 } 9873 9874 SDValue SITargetLowering::performAddCombine(SDNode *N, 9875 DAGCombinerInfo &DCI) const { 9876 SelectionDAG &DAG = DCI.DAG; 9877 EVT VT = N->getValueType(0); 9878 SDLoc SL(N); 9879 SDValue LHS = N->getOperand(0); 9880 SDValue RHS = N->getOperand(1); 9881 9882 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) 9883 && Subtarget->hasMad64_32() && 9884 !VT.isVector() && VT.getScalarSizeInBits() > 32 && 9885 VT.getScalarSizeInBits() <= 64) { 9886 if (LHS.getOpcode() != ISD::MUL) 9887 std::swap(LHS, RHS); 9888 9889 SDValue MulLHS = LHS.getOperand(0); 9890 SDValue MulRHS = LHS.getOperand(1); 9891 SDValue AddRHS = RHS; 9892 9893 // TODO: Maybe restrict if SGPR inputs. 9894 if (numBitsUnsigned(MulLHS, DAG) <= 32 && 9895 numBitsUnsigned(MulRHS, DAG) <= 32) { 9896 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); 9897 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); 9898 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); 9899 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); 9900 } 9901 9902 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) { 9903 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); 9904 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); 9905 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); 9906 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); 9907 } 9908 9909 return SDValue(); 9910 } 9911 9912 if (SDValue V = reassociateScalarOps(N, DAG)) { 9913 return V; 9914 } 9915 9916 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 9917 return SDValue(); 9918 9919 // add x, zext (setcc) => addcarry x, 0, setcc 9920 // add x, sext (setcc) => subcarry x, 0, setcc 9921 unsigned Opc = LHS.getOpcode(); 9922 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 9923 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) 9924 std::swap(RHS, LHS); 9925 9926 Opc = RHS.getOpcode(); 9927 switch (Opc) { 9928 default: break; 9929 case ISD::ZERO_EXTEND: 9930 case ISD::SIGN_EXTEND: 9931 case ISD::ANY_EXTEND: { 9932 auto Cond = RHS.getOperand(0); 9933 // If this won't be a real VOPC output, we would still need to insert an 9934 // extra instruction anyway. 9935 if (!isBoolSGPR(Cond)) 9936 break; 9937 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 9938 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 9939 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; 9940 return DAG.getNode(Opc, SL, VTList, Args); 9941 } 9942 case ISD::ADDCARRY: { 9943 // add x, (addcarry y, 0, cc) => addcarry x, y, cc 9944 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9945 if (!C || C->getZExtValue() != 0) break; 9946 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 9947 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); 9948 } 9949 } 9950 return SDValue(); 9951 } 9952 9953 SDValue SITargetLowering::performSubCombine(SDNode *N, 9954 DAGCombinerInfo &DCI) const { 9955 SelectionDAG &DAG = DCI.DAG; 9956 EVT VT = N->getValueType(0); 9957 9958 if (VT != MVT::i32) 9959 return SDValue(); 9960 9961 SDLoc SL(N); 9962 SDValue LHS = N->getOperand(0); 9963 SDValue RHS = N->getOperand(1); 9964 9965 // sub x, zext (setcc) => subcarry x, 0, setcc 9966 // sub x, sext (setcc) => addcarry x, 0, setcc 9967 unsigned Opc = RHS.getOpcode(); 9968 switch (Opc) { 9969 default: break; 9970 case ISD::ZERO_EXTEND: 9971 case ISD::SIGN_EXTEND: 9972 case ISD::ANY_EXTEND: { 9973 auto Cond = RHS.getOperand(0); 9974 // If this won't be a real VOPC output, we would still need to insert an 9975 // extra instruction anyway. 9976 if (!isBoolSGPR(Cond)) 9977 break; 9978 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 9979 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 9980 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY; 9981 return DAG.getNode(Opc, SL, VTList, Args); 9982 } 9983 } 9984 9985 if (LHS.getOpcode() == ISD::SUBCARRY) { 9986 // sub (subcarry x, 0, cc), y => subcarry x, y, cc 9987 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 9988 if (!C || !C->isNullValue()) 9989 return SDValue(); 9990 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 9991 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); 9992 } 9993 return SDValue(); 9994 } 9995 9996 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 9997 DAGCombinerInfo &DCI) const { 9998 9999 if (N->getValueType(0) != MVT::i32) 10000 return SDValue(); 10001 10002 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10003 if (!C || C->getZExtValue() != 0) 10004 return SDValue(); 10005 10006 SelectionDAG &DAG = DCI.DAG; 10007 SDValue LHS = N->getOperand(0); 10008 10009 // addcarry (add x, y), 0, cc => addcarry x, y, cc 10010 // subcarry (sub x, y), 0, cc => subcarry x, y, cc 10011 unsigned LHSOpc = LHS.getOpcode(); 10012 unsigned Opc = N->getOpcode(); 10013 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || 10014 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { 10015 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 10016 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 10017 } 10018 return SDValue(); 10019 } 10020 10021 SDValue SITargetLowering::performFAddCombine(SDNode *N, 10022 DAGCombinerInfo &DCI) const { 10023 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 10024 return SDValue(); 10025 10026 SelectionDAG &DAG = DCI.DAG; 10027 EVT VT = N->getValueType(0); 10028 10029 SDLoc SL(N); 10030 SDValue LHS = N->getOperand(0); 10031 SDValue RHS = N->getOperand(1); 10032 10033 // These should really be instruction patterns, but writing patterns with 10034 // source modiifiers is a pain. 10035 10036 // fadd (fadd (a, a), b) -> mad 2.0, a, b 10037 if (LHS.getOpcode() == ISD::FADD) { 10038 SDValue A = LHS.getOperand(0); 10039 if (A == LHS.getOperand(1)) { 10040 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 10041 if (FusedOp != 0) { 10042 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10043 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 10044 } 10045 } 10046 } 10047 10048 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 10049 if (RHS.getOpcode() == ISD::FADD) { 10050 SDValue A = RHS.getOperand(0); 10051 if (A == RHS.getOperand(1)) { 10052 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 10053 if (FusedOp != 0) { 10054 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10055 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 10056 } 10057 } 10058 } 10059 10060 return SDValue(); 10061 } 10062 10063 SDValue SITargetLowering::performFSubCombine(SDNode *N, 10064 DAGCombinerInfo &DCI) const { 10065 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 10066 return SDValue(); 10067 10068 SelectionDAG &DAG = DCI.DAG; 10069 SDLoc SL(N); 10070 EVT VT = N->getValueType(0); 10071 assert(!VT.isVector()); 10072 10073 // Try to get the fneg to fold into the source modifier. This undoes generic 10074 // DAG combines and folds them into the mad. 10075 // 10076 // Only do this if we are not trying to support denormals. v_mad_f32 does 10077 // not support denormals ever. 10078 SDValue LHS = N->getOperand(0); 10079 SDValue RHS = N->getOperand(1); 10080 if (LHS.getOpcode() == ISD::FADD) { 10081 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 10082 SDValue A = LHS.getOperand(0); 10083 if (A == LHS.getOperand(1)) { 10084 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 10085 if (FusedOp != 0){ 10086 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10087 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 10088 10089 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 10090 } 10091 } 10092 } 10093 10094 if (RHS.getOpcode() == ISD::FADD) { 10095 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 10096 10097 SDValue A = RHS.getOperand(0); 10098 if (A == RHS.getOperand(1)) { 10099 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 10100 if (FusedOp != 0){ 10101 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 10102 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 10103 } 10104 } 10105 } 10106 10107 return SDValue(); 10108 } 10109 10110 SDValue SITargetLowering::performFMACombine(SDNode *N, 10111 DAGCombinerInfo &DCI) const { 10112 SelectionDAG &DAG = DCI.DAG; 10113 EVT VT = N->getValueType(0); 10114 SDLoc SL(N); 10115 10116 if (!Subtarget->hasDot2Insts() || VT != MVT::f32) 10117 return SDValue(); 10118 10119 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 10120 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 10121 SDValue Op1 = N->getOperand(0); 10122 SDValue Op2 = N->getOperand(1); 10123 SDValue FMA = N->getOperand(2); 10124 10125 if (FMA.getOpcode() != ISD::FMA || 10126 Op1.getOpcode() != ISD::FP_EXTEND || 10127 Op2.getOpcode() != ISD::FP_EXTEND) 10128 return SDValue(); 10129 10130 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 10131 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract 10132 // is sufficient to allow generaing fdot2. 10133 const TargetOptions &Options = DAG.getTarget().Options; 10134 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 10135 (N->getFlags().hasAllowContract() && 10136 FMA->getFlags().hasAllowContract())) { 10137 Op1 = Op1.getOperand(0); 10138 Op2 = Op2.getOperand(0); 10139 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10140 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10141 return SDValue(); 10142 10143 SDValue Vec1 = Op1.getOperand(0); 10144 SDValue Idx1 = Op1.getOperand(1); 10145 SDValue Vec2 = Op2.getOperand(0); 10146 10147 SDValue FMAOp1 = FMA.getOperand(0); 10148 SDValue FMAOp2 = FMA.getOperand(1); 10149 SDValue FMAAcc = FMA.getOperand(2); 10150 10151 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 10152 FMAOp2.getOpcode() != ISD::FP_EXTEND) 10153 return SDValue(); 10154 10155 FMAOp1 = FMAOp1.getOperand(0); 10156 FMAOp2 = FMAOp2.getOperand(0); 10157 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10158 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10159 return SDValue(); 10160 10161 SDValue Vec3 = FMAOp1.getOperand(0); 10162 SDValue Vec4 = FMAOp2.getOperand(0); 10163 SDValue Idx2 = FMAOp1.getOperand(1); 10164 10165 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 10166 // Idx1 and Idx2 cannot be the same. 10167 Idx1 == Idx2) 10168 return SDValue(); 10169 10170 if (Vec1 == Vec2 || Vec3 == Vec4) 10171 return SDValue(); 10172 10173 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 10174 return SDValue(); 10175 10176 if ((Vec1 == Vec3 && Vec2 == Vec4) || 10177 (Vec1 == Vec4 && Vec2 == Vec3)) { 10178 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 10179 DAG.getTargetConstant(0, SL, MVT::i1)); 10180 } 10181 } 10182 return SDValue(); 10183 } 10184 10185 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 10186 DAGCombinerInfo &DCI) const { 10187 SelectionDAG &DAG = DCI.DAG; 10188 SDLoc SL(N); 10189 10190 SDValue LHS = N->getOperand(0); 10191 SDValue RHS = N->getOperand(1); 10192 EVT VT = LHS.getValueType(); 10193 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 10194 10195 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 10196 if (!CRHS) { 10197 CRHS = dyn_cast<ConstantSDNode>(LHS); 10198 if (CRHS) { 10199 std::swap(LHS, RHS); 10200 CC = getSetCCSwappedOperands(CC); 10201 } 10202 } 10203 10204 if (CRHS) { 10205 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 10206 isBoolSGPR(LHS.getOperand(0))) { 10207 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 10208 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 10209 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 10210 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 10211 if ((CRHS->isAllOnesValue() && 10212 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 10213 (CRHS->isNullValue() && 10214 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 10215 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 10216 DAG.getConstant(-1, SL, MVT::i1)); 10217 if ((CRHS->isAllOnesValue() && 10218 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 10219 (CRHS->isNullValue() && 10220 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 10221 return LHS.getOperand(0); 10222 } 10223 10224 uint64_t CRHSVal = CRHS->getZExtValue(); 10225 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 10226 LHS.getOpcode() == ISD::SELECT && 10227 isa<ConstantSDNode>(LHS.getOperand(1)) && 10228 isa<ConstantSDNode>(LHS.getOperand(2)) && 10229 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 10230 isBoolSGPR(LHS.getOperand(0))) { 10231 // Given CT != FT: 10232 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 10233 // setcc (select cc, CT, CF), CF, ne => cc 10234 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 10235 // setcc (select cc, CT, CF), CT, eq => cc 10236 uint64_t CT = LHS.getConstantOperandVal(1); 10237 uint64_t CF = LHS.getConstantOperandVal(2); 10238 10239 if ((CF == CRHSVal && CC == ISD::SETEQ) || 10240 (CT == CRHSVal && CC == ISD::SETNE)) 10241 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 10242 DAG.getConstant(-1, SL, MVT::i1)); 10243 if ((CF == CRHSVal && CC == ISD::SETNE) || 10244 (CT == CRHSVal && CC == ISD::SETEQ)) 10245 return LHS.getOperand(0); 10246 } 10247 } 10248 10249 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && 10250 VT != MVT::f16)) 10251 return SDValue(); 10252 10253 // Match isinf/isfinite pattern 10254 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 10255 // (fcmp one (fabs x), inf) -> (fp_class x, 10256 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 10257 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 10258 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 10259 if (!CRHS) 10260 return SDValue(); 10261 10262 const APFloat &APF = CRHS->getValueAPF(); 10263 if (APF.isInfinity() && !APF.isNegative()) { 10264 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 10265 SIInstrFlags::N_INFINITY; 10266 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 10267 SIInstrFlags::P_ZERO | 10268 SIInstrFlags::N_NORMAL | 10269 SIInstrFlags::P_NORMAL | 10270 SIInstrFlags::N_SUBNORMAL | 10271 SIInstrFlags::P_SUBNORMAL; 10272 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 10273 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 10274 DAG.getConstant(Mask, SL, MVT::i32)); 10275 } 10276 } 10277 10278 return SDValue(); 10279 } 10280 10281 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 10282 DAGCombinerInfo &DCI) const { 10283 SelectionDAG &DAG = DCI.DAG; 10284 SDLoc SL(N); 10285 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 10286 10287 SDValue Src = N->getOperand(0); 10288 SDValue Shift = N->getOperand(0); 10289 10290 // TODO: Extend type shouldn't matter (assuming legal types). 10291 if (Shift.getOpcode() == ISD::ZERO_EXTEND) 10292 Shift = Shift.getOperand(0); 10293 10294 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { 10295 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x 10296 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x 10297 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 10298 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 10299 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 10300 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { 10301 Shift = DAG.getZExtOrTrunc(Shift.getOperand(0), 10302 SDLoc(Shift.getOperand(0)), MVT::i32); 10303 10304 unsigned ShiftOffset = 8 * Offset; 10305 if (Shift.getOpcode() == ISD::SHL) 10306 ShiftOffset -= C->getZExtValue(); 10307 else 10308 ShiftOffset += C->getZExtValue(); 10309 10310 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { 10311 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, 10312 MVT::f32, Shift); 10313 } 10314 } 10315 } 10316 10317 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10318 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 10319 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { 10320 // We simplified Src. If this node is not dead, visit it again so it is 10321 // folded properly. 10322 if (N->getOpcode() != ISD::DELETED_NODE) 10323 DCI.AddToWorklist(N); 10324 return SDValue(N, 0); 10325 } 10326 10327 // Handle (or x, (srl y, 8)) pattern when known bits are zero. 10328 if (SDValue DemandedSrc = 10329 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) 10330 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); 10331 10332 return SDValue(); 10333 } 10334 10335 SDValue SITargetLowering::performClampCombine(SDNode *N, 10336 DAGCombinerInfo &DCI) const { 10337 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 10338 if (!CSrc) 10339 return SDValue(); 10340 10341 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 10342 const APFloat &F = CSrc->getValueAPF(); 10343 APFloat Zero = APFloat::getZero(F.getSemantics()); 10344 if (F < Zero || 10345 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 10346 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 10347 } 10348 10349 APFloat One(F.getSemantics(), "1.0"); 10350 if (F > One) 10351 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 10352 10353 return SDValue(CSrc, 0); 10354 } 10355 10356 10357 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 10358 DAGCombinerInfo &DCI) const { 10359 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 10360 return SDValue(); 10361 switch (N->getOpcode()) { 10362 default: 10363 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 10364 case ISD::ADD: 10365 return performAddCombine(N, DCI); 10366 case ISD::SUB: 10367 return performSubCombine(N, DCI); 10368 case ISD::ADDCARRY: 10369 case ISD::SUBCARRY: 10370 return performAddCarrySubCarryCombine(N, DCI); 10371 case ISD::FADD: 10372 return performFAddCombine(N, DCI); 10373 case ISD::FSUB: 10374 return performFSubCombine(N, DCI); 10375 case ISD::SETCC: 10376 return performSetCCCombine(N, DCI); 10377 case ISD::FMAXNUM: 10378 case ISD::FMINNUM: 10379 case ISD::FMAXNUM_IEEE: 10380 case ISD::FMINNUM_IEEE: 10381 case ISD::SMAX: 10382 case ISD::SMIN: 10383 case ISD::UMAX: 10384 case ISD::UMIN: 10385 case AMDGPUISD::FMIN_LEGACY: 10386 case AMDGPUISD::FMAX_LEGACY: 10387 return performMinMaxCombine(N, DCI); 10388 case ISD::FMA: 10389 return performFMACombine(N, DCI); 10390 case ISD::LOAD: { 10391 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 10392 return Widended; 10393 LLVM_FALLTHROUGH; 10394 } 10395 case ISD::STORE: 10396 case ISD::ATOMIC_LOAD: 10397 case ISD::ATOMIC_STORE: 10398 case ISD::ATOMIC_CMP_SWAP: 10399 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 10400 case ISD::ATOMIC_SWAP: 10401 case ISD::ATOMIC_LOAD_ADD: 10402 case ISD::ATOMIC_LOAD_SUB: 10403 case ISD::ATOMIC_LOAD_AND: 10404 case ISD::ATOMIC_LOAD_OR: 10405 case ISD::ATOMIC_LOAD_XOR: 10406 case ISD::ATOMIC_LOAD_NAND: 10407 case ISD::ATOMIC_LOAD_MIN: 10408 case ISD::ATOMIC_LOAD_MAX: 10409 case ISD::ATOMIC_LOAD_UMIN: 10410 case ISD::ATOMIC_LOAD_UMAX: 10411 case ISD::ATOMIC_LOAD_FADD: 10412 case AMDGPUISD::ATOMIC_INC: 10413 case AMDGPUISD::ATOMIC_DEC: 10414 case AMDGPUISD::ATOMIC_LOAD_FMIN: 10415 case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics. 10416 if (DCI.isBeforeLegalize()) 10417 break; 10418 return performMemSDNodeCombine(cast<MemSDNode>(N), DCI); 10419 case ISD::AND: 10420 return performAndCombine(N, DCI); 10421 case ISD::OR: 10422 return performOrCombine(N, DCI); 10423 case ISD::XOR: 10424 return performXorCombine(N, DCI); 10425 case ISD::ZERO_EXTEND: 10426 return performZeroExtendCombine(N, DCI); 10427 case ISD::SIGN_EXTEND_INREG: 10428 return performSignExtendInRegCombine(N , DCI); 10429 case AMDGPUISD::FP_CLASS: 10430 return performClassCombine(N, DCI); 10431 case ISD::FCANONICALIZE: 10432 return performFCanonicalizeCombine(N, DCI); 10433 case AMDGPUISD::RCP: 10434 return performRcpCombine(N, DCI); 10435 case AMDGPUISD::FRACT: 10436 case AMDGPUISD::RSQ: 10437 case AMDGPUISD::RCP_LEGACY: 10438 case AMDGPUISD::RCP_IFLAG: 10439 case AMDGPUISD::RSQ_CLAMP: 10440 case AMDGPUISD::LDEXP: { 10441 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 10442 SDValue Src = N->getOperand(0); 10443 if (Src.isUndef()) 10444 return Src; 10445 break; 10446 } 10447 case ISD::SINT_TO_FP: 10448 case ISD::UINT_TO_FP: 10449 return performUCharToFloatCombine(N, DCI); 10450 case AMDGPUISD::CVT_F32_UBYTE0: 10451 case AMDGPUISD::CVT_F32_UBYTE1: 10452 case AMDGPUISD::CVT_F32_UBYTE2: 10453 case AMDGPUISD::CVT_F32_UBYTE3: 10454 return performCvtF32UByteNCombine(N, DCI); 10455 case AMDGPUISD::FMED3: 10456 return performFMed3Combine(N, DCI); 10457 case AMDGPUISD::CVT_PKRTZ_F16_F32: 10458 return performCvtPkRTZCombine(N, DCI); 10459 case AMDGPUISD::CLAMP: 10460 return performClampCombine(N, DCI); 10461 case ISD::SCALAR_TO_VECTOR: { 10462 SelectionDAG &DAG = DCI.DAG; 10463 EVT VT = N->getValueType(0); 10464 10465 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 10466 if (VT == MVT::v2i16 || VT == MVT::v2f16) { 10467 SDLoc SL(N); 10468 SDValue Src = N->getOperand(0); 10469 EVT EltVT = Src.getValueType(); 10470 if (EltVT == MVT::f16) 10471 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 10472 10473 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 10474 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 10475 } 10476 10477 break; 10478 } 10479 case ISD::EXTRACT_VECTOR_ELT: 10480 return performExtractVectorEltCombine(N, DCI); 10481 case ISD::INSERT_VECTOR_ELT: 10482 return performInsertVectorEltCombine(N, DCI); 10483 } 10484 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 10485 } 10486 10487 /// Helper function for adjustWritemask 10488 static unsigned SubIdx2Lane(unsigned Idx) { 10489 switch (Idx) { 10490 default: return 0; 10491 case AMDGPU::sub0: return 0; 10492 case AMDGPU::sub1: return 1; 10493 case AMDGPU::sub2: return 2; 10494 case AMDGPU::sub3: return 3; 10495 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 10496 } 10497 } 10498 10499 /// Adjust the writemask of MIMG instructions 10500 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 10501 SelectionDAG &DAG) const { 10502 unsigned Opcode = Node->getMachineOpcode(); 10503 10504 // Subtract 1 because the vdata output is not a MachineSDNode operand. 10505 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 10506 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 10507 return Node; // not implemented for D16 10508 10509 SDNode *Users[5] = { nullptr }; 10510 unsigned Lane = 0; 10511 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 10512 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 10513 unsigned NewDmask = 0; 10514 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 10515 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 10516 bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) || 10517 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0; 10518 unsigned TFCLane = 0; 10519 bool HasChain = Node->getNumValues() > 1; 10520 10521 if (OldDmask == 0) { 10522 // These are folded out, but on the chance it happens don't assert. 10523 return Node; 10524 } 10525 10526 unsigned OldBitsSet = countPopulation(OldDmask); 10527 // Work out which is the TFE/LWE lane if that is enabled. 10528 if (UsesTFC) { 10529 TFCLane = OldBitsSet; 10530 } 10531 10532 // Try to figure out the used register components 10533 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 10534 I != E; ++I) { 10535 10536 // Don't look at users of the chain. 10537 if (I.getUse().getResNo() != 0) 10538 continue; 10539 10540 // Abort if we can't understand the usage 10541 if (!I->isMachineOpcode() || 10542 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 10543 return Node; 10544 10545 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 10546 // Note that subregs are packed, i.e. Lane==0 is the first bit set 10547 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 10548 // set, etc. 10549 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 10550 10551 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 10552 if (UsesTFC && Lane == TFCLane) { 10553 Users[Lane] = *I; 10554 } else { 10555 // Set which texture component corresponds to the lane. 10556 unsigned Comp; 10557 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 10558 Comp = countTrailingZeros(Dmask); 10559 Dmask &= ~(1 << Comp); 10560 } 10561 10562 // Abort if we have more than one user per component. 10563 if (Users[Lane]) 10564 return Node; 10565 10566 Users[Lane] = *I; 10567 NewDmask |= 1 << Comp; 10568 } 10569 } 10570 10571 // Don't allow 0 dmask, as hardware assumes one channel enabled. 10572 bool NoChannels = !NewDmask; 10573 if (NoChannels) { 10574 if (!UsesTFC) { 10575 // No uses of the result and not using TFC. Then do nothing. 10576 return Node; 10577 } 10578 // If the original dmask has one channel - then nothing to do 10579 if (OldBitsSet == 1) 10580 return Node; 10581 // Use an arbitrary dmask - required for the instruction to work 10582 NewDmask = 1; 10583 } 10584 // Abort if there's no change 10585 if (NewDmask == OldDmask) 10586 return Node; 10587 10588 unsigned BitsSet = countPopulation(NewDmask); 10589 10590 // Check for TFE or LWE - increase the number of channels by one to account 10591 // for the extra return value 10592 // This will need adjustment for D16 if this is also included in 10593 // adjustWriteMask (this function) but at present D16 are excluded. 10594 unsigned NewChannels = BitsSet + UsesTFC; 10595 10596 int NewOpcode = 10597 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 10598 assert(NewOpcode != -1 && 10599 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 10600 "failed to find equivalent MIMG op"); 10601 10602 // Adjust the writemask in the node 10603 SmallVector<SDValue, 12> Ops; 10604 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 10605 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 10606 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 10607 10608 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 10609 10610 MVT ResultVT = NewChannels == 1 ? 10611 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 10612 NewChannels == 5 ? 8 : NewChannels); 10613 SDVTList NewVTList = HasChain ? 10614 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 10615 10616 10617 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 10618 NewVTList, Ops); 10619 10620 if (HasChain) { 10621 // Update chain. 10622 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 10623 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 10624 } 10625 10626 if (NewChannels == 1) { 10627 assert(Node->hasNUsesOfValue(1, 0)); 10628 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 10629 SDLoc(Node), Users[Lane]->getValueType(0), 10630 SDValue(NewNode, 0)); 10631 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 10632 return nullptr; 10633 } 10634 10635 // Update the users of the node with the new indices 10636 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 10637 SDNode *User = Users[i]; 10638 if (!User) { 10639 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 10640 // Users[0] is still nullptr because channel 0 doesn't really have a use. 10641 if (i || !NoChannels) 10642 continue; 10643 } else { 10644 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 10645 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 10646 } 10647 10648 switch (Idx) { 10649 default: break; 10650 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 10651 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 10652 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 10653 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 10654 } 10655 } 10656 10657 DAG.RemoveDeadNode(Node); 10658 return nullptr; 10659 } 10660 10661 static bool isFrameIndexOp(SDValue Op) { 10662 if (Op.getOpcode() == ISD::AssertZext) 10663 Op = Op.getOperand(0); 10664 10665 return isa<FrameIndexSDNode>(Op); 10666 } 10667 10668 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 10669 /// with frame index operands. 10670 /// LLVM assumes that inputs are to these instructions are registers. 10671 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 10672 SelectionDAG &DAG) const { 10673 if (Node->getOpcode() == ISD::CopyToReg) { 10674 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 10675 SDValue SrcVal = Node->getOperand(2); 10676 10677 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 10678 // to try understanding copies to physical registers. 10679 if (SrcVal.getValueType() == MVT::i1 && 10680 Register::isPhysicalRegister(DestReg->getReg())) { 10681 SDLoc SL(Node); 10682 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 10683 SDValue VReg = DAG.getRegister( 10684 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 10685 10686 SDNode *Glued = Node->getGluedNode(); 10687 SDValue ToVReg 10688 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 10689 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 10690 SDValue ToResultReg 10691 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 10692 VReg, ToVReg.getValue(1)); 10693 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 10694 DAG.RemoveDeadNode(Node); 10695 return ToResultReg.getNode(); 10696 } 10697 } 10698 10699 SmallVector<SDValue, 8> Ops; 10700 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 10701 if (!isFrameIndexOp(Node->getOperand(i))) { 10702 Ops.push_back(Node->getOperand(i)); 10703 continue; 10704 } 10705 10706 SDLoc DL(Node); 10707 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 10708 Node->getOperand(i).getValueType(), 10709 Node->getOperand(i)), 0)); 10710 } 10711 10712 return DAG.UpdateNodeOperands(Node, Ops); 10713 } 10714 10715 /// Fold the instructions after selecting them. 10716 /// Returns null if users were already updated. 10717 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 10718 SelectionDAG &DAG) const { 10719 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10720 unsigned Opcode = Node->getMachineOpcode(); 10721 10722 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && 10723 !TII->isGather4(Opcode)) { 10724 return adjustWritemask(Node, DAG); 10725 } 10726 10727 if (Opcode == AMDGPU::INSERT_SUBREG || 10728 Opcode == AMDGPU::REG_SEQUENCE) { 10729 legalizeTargetIndependentNode(Node, DAG); 10730 return Node; 10731 } 10732 10733 switch (Opcode) { 10734 case AMDGPU::V_DIV_SCALE_F32: 10735 case AMDGPU::V_DIV_SCALE_F64: { 10736 // Satisfy the operand register constraint when one of the inputs is 10737 // undefined. Ordinarily each undef value will have its own implicit_def of 10738 // a vreg, so force these to use a single register. 10739 SDValue Src0 = Node->getOperand(0); 10740 SDValue Src1 = Node->getOperand(1); 10741 SDValue Src2 = Node->getOperand(2); 10742 10743 if ((Src0.isMachineOpcode() && 10744 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 10745 (Src0 == Src1 || Src0 == Src2)) 10746 break; 10747 10748 MVT VT = Src0.getValueType().getSimpleVT(); 10749 const TargetRegisterClass *RC = 10750 getRegClassFor(VT, Src0.getNode()->isDivergent()); 10751 10752 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 10753 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 10754 10755 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 10756 UndefReg, Src0, SDValue()); 10757 10758 // src0 must be the same register as src1 or src2, even if the value is 10759 // undefined, so make sure we don't violate this constraint. 10760 if (Src0.isMachineOpcode() && 10761 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 10762 if (Src1.isMachineOpcode() && 10763 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 10764 Src0 = Src1; 10765 else if (Src2.isMachineOpcode() && 10766 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 10767 Src0 = Src2; 10768 else { 10769 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 10770 Src0 = UndefReg; 10771 Src1 = UndefReg; 10772 } 10773 } else 10774 break; 10775 10776 SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 }; 10777 for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I) 10778 Ops.push_back(Node->getOperand(I)); 10779 10780 Ops.push_back(ImpDef.getValue(1)); 10781 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 10782 } 10783 default: 10784 break; 10785 } 10786 10787 return Node; 10788 } 10789 10790 /// Assign the register class depending on the number of 10791 /// bits set in the writemask 10792 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 10793 SDNode *Node) const { 10794 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10795 10796 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 10797 10798 if (TII->isVOP3(MI.getOpcode())) { 10799 // Make sure constant bus requirements are respected. 10800 TII->legalizeOperandsVOP3(MRI, MI); 10801 10802 // Prefer VGPRs over AGPRs in mAI instructions where possible. 10803 // This saves a chain-copy of registers and better ballance register 10804 // use between vgpr and agpr as agpr tuples tend to be big. 10805 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) { 10806 unsigned Opc = MI.getOpcode(); 10807 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 10808 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 10809 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { 10810 if (I == -1) 10811 break; 10812 MachineOperand &Op = MI.getOperand(I); 10813 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID && 10814 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) || 10815 !Register::isVirtualRegister(Op.getReg()) || 10816 !TRI->isAGPR(MRI, Op.getReg())) 10817 continue; 10818 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 10819 if (!Src || !Src->isCopy() || 10820 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 10821 continue; 10822 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 10823 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 10824 // All uses of agpr64 and agpr32 can also accept vgpr except for 10825 // v_accvgpr_read, but we do not produce agpr reads during selection, 10826 // so no use checks are needed. 10827 MRI.setRegClass(Op.getReg(), NewRC); 10828 } 10829 } 10830 10831 return; 10832 } 10833 10834 // Replace unused atomics with the no return version. 10835 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); 10836 if (NoRetAtomicOp != -1) { 10837 if (!Node->hasAnyUseOfValue(0)) { 10838 MI.setDesc(TII->get(NoRetAtomicOp)); 10839 MI.RemoveOperand(0); 10840 return; 10841 } 10842 10843 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg 10844 // instruction, because the return type of these instructions is a vec2 of 10845 // the memory type, so it can be tied to the input operand. 10846 // This means these instructions always have a use, so we need to add a 10847 // special case to check if the atomic has only one extract_subreg use, 10848 // which itself has no uses. 10849 if ((Node->hasNUsesOfValue(1, 0) && 10850 Node->use_begin()->isMachineOpcode() && 10851 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && 10852 !Node->use_begin()->hasAnyUseOfValue(0))) { 10853 Register Def = MI.getOperand(0).getReg(); 10854 10855 // Change this into a noret atomic. 10856 MI.setDesc(TII->get(NoRetAtomicOp)); 10857 MI.RemoveOperand(0); 10858 10859 // If we only remove the def operand from the atomic instruction, the 10860 // extract_subreg will be left with a use of a vreg without a def. 10861 // So we need to insert an implicit_def to avoid machine verifier 10862 // errors. 10863 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 10864 TII->get(AMDGPU::IMPLICIT_DEF), Def); 10865 } 10866 return; 10867 } 10868 } 10869 10870 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 10871 uint64_t Val) { 10872 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 10873 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 10874 } 10875 10876 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 10877 const SDLoc &DL, 10878 SDValue Ptr) const { 10879 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10880 10881 // Build the half of the subregister with the constants before building the 10882 // full 128-bit register. If we are building multiple resource descriptors, 10883 // this will allow CSEing of the 2-component register. 10884 const SDValue Ops0[] = { 10885 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 10886 buildSMovImm32(DAG, DL, 0), 10887 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 10888 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 10889 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 10890 }; 10891 10892 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 10893 MVT::v2i32, Ops0), 0); 10894 10895 // Combine the constants and the pointer. 10896 const SDValue Ops1[] = { 10897 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 10898 Ptr, 10899 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 10900 SubRegHi, 10901 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 10902 }; 10903 10904 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 10905 } 10906 10907 /// Return a resource descriptor with the 'Add TID' bit enabled 10908 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 10909 /// of the resource descriptor) to create an offset, which is added to 10910 /// the resource pointer. 10911 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 10912 SDValue Ptr, uint32_t RsrcDword1, 10913 uint64_t RsrcDword2And3) const { 10914 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 10915 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 10916 if (RsrcDword1) { 10917 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 10918 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 10919 0); 10920 } 10921 10922 SDValue DataLo = buildSMovImm32(DAG, DL, 10923 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 10924 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 10925 10926 const SDValue Ops[] = { 10927 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 10928 PtrLo, 10929 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 10930 PtrHi, 10931 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 10932 DataLo, 10933 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 10934 DataHi, 10935 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 10936 }; 10937 10938 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 10939 } 10940 10941 //===----------------------------------------------------------------------===// 10942 // SI Inline Assembly Support 10943 //===----------------------------------------------------------------------===// 10944 10945 std::pair<unsigned, const TargetRegisterClass *> 10946 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10947 StringRef Constraint, 10948 MVT VT) const { 10949 const TargetRegisterClass *RC = nullptr; 10950 if (Constraint.size() == 1) { 10951 const unsigned BitWidth = VT.getSizeInBits(); 10952 switch (Constraint[0]) { 10953 default: 10954 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10955 case 's': 10956 case 'r': 10957 switch (BitWidth) { 10958 case 16: 10959 RC = &AMDGPU::SReg_32RegClass; 10960 break; 10961 case 64: 10962 RC = &AMDGPU::SGPR_64RegClass; 10963 break; 10964 default: 10965 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); 10966 if (!RC) 10967 return std::make_pair(0U, nullptr); 10968 break; 10969 } 10970 break; 10971 case 'v': 10972 switch (BitWidth) { 10973 case 16: 10974 RC = &AMDGPU::VGPR_32RegClass; 10975 break; 10976 default: 10977 RC = SIRegisterInfo::getVGPRClassForBitWidth(BitWidth); 10978 if (!RC) 10979 return std::make_pair(0U, nullptr); 10980 break; 10981 } 10982 break; 10983 case 'a': 10984 if (!Subtarget->hasMAIInsts()) 10985 break; 10986 switch (BitWidth) { 10987 case 16: 10988 RC = &AMDGPU::AGPR_32RegClass; 10989 break; 10990 default: 10991 RC = SIRegisterInfo::getAGPRClassForBitWidth(BitWidth); 10992 if (!RC) 10993 return std::make_pair(0U, nullptr); 10994 break; 10995 } 10996 break; 10997 } 10998 // We actually support i128, i16 and f16 as inline parameters 10999 // even if they are not reported as legal 11000 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 11001 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 11002 return std::make_pair(0U, RC); 11003 } 11004 11005 if (Constraint.size() > 1) { 11006 if (Constraint[1] == 'v') { 11007 RC = &AMDGPU::VGPR_32RegClass; 11008 } else if (Constraint[1] == 's') { 11009 RC = &AMDGPU::SGPR_32RegClass; 11010 } else if (Constraint[1] == 'a') { 11011 RC = &AMDGPU::AGPR_32RegClass; 11012 } 11013 11014 if (RC) { 11015 uint32_t Idx; 11016 bool Failed = Constraint.substr(2).getAsInteger(10, Idx); 11017 if (!Failed && Idx < RC->getNumRegs()) 11018 return std::make_pair(RC->getRegister(Idx), RC); 11019 } 11020 } 11021 11022 // FIXME: Returns VS_32 for physical SGPR constraints 11023 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11024 } 11025 11026 SITargetLowering::ConstraintType 11027 SITargetLowering::getConstraintType(StringRef Constraint) const { 11028 if (Constraint.size() == 1) { 11029 switch (Constraint[0]) { 11030 default: break; 11031 case 's': 11032 case 'v': 11033 case 'a': 11034 return C_RegisterClass; 11035 case 'A': 11036 return C_Other; 11037 } 11038 } 11039 return TargetLowering::getConstraintType(Constraint); 11040 } 11041 11042 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, 11043 std::string &Constraint, 11044 std::vector<SDValue> &Ops, 11045 SelectionDAG &DAG) const { 11046 if (Constraint.length() == 1 && Constraint[0] == 'A') { 11047 LowerAsmOperandForConstraintA(Op, Ops, DAG); 11048 } else { 11049 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11050 } 11051 } 11052 11053 void SITargetLowering::LowerAsmOperandForConstraintA(SDValue Op, 11054 std::vector<SDValue> &Ops, 11055 SelectionDAG &DAG) const { 11056 unsigned Size = Op.getScalarValueSizeInBits(); 11057 if (Size > 64) 11058 return; 11059 11060 uint64_t Val; 11061 bool IsConst = false; 11062 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 11063 Val = C->getSExtValue(); 11064 IsConst = true; 11065 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 11066 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 11067 IsConst = true; 11068 } else if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { 11069 if (Size != 16 || Op.getNumOperands() != 2) 11070 return; 11071 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) 11072 return; 11073 if (ConstantSDNode *C = V->getConstantSplatNode()) { 11074 Val = C->getSExtValue(); 11075 IsConst = true; 11076 } else if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { 11077 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 11078 IsConst = true; 11079 } 11080 } 11081 11082 if (IsConst) { 11083 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); 11084 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || 11085 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || 11086 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { 11087 // Clear unused bits of fp constants 11088 if (!AMDGPU::isInlinableIntLiteral(Val)) { 11089 unsigned UnusedBits = 64 - Size; 11090 Val = (Val << UnusedBits) >> UnusedBits; 11091 } 11092 auto Res = DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64); 11093 Ops.push_back(Res); 11094 } 11095 } 11096 } 11097 11098 // Figure out which registers should be reserved for stack access. Only after 11099 // the function is legalized do we know all of the non-spill stack objects or if 11100 // calls are present. 11101 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 11102 MachineRegisterInfo &MRI = MF.getRegInfo(); 11103 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 11104 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 11105 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11106 11107 if (Info->isEntryFunction()) { 11108 // Callable functions have fixed registers used for stack access. 11109 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 11110 } 11111 11112 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 11113 Info->getStackPtrOffsetReg())); 11114 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 11115 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 11116 11117 // We need to worry about replacing the default register with itself in case 11118 // of MIR testcases missing the MFI. 11119 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 11120 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 11121 11122 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 11123 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 11124 11125 Info->limitOccupancy(MF); 11126 11127 if (ST.isWave32() && !MF.empty()) { 11128 // Add VCC_HI def because many instructions marked as imp-use VCC where 11129 // we may only define VCC_LO. If nothing defines VCC_HI we may end up 11130 // having a use of undef. 11131 11132 const SIInstrInfo *TII = ST.getInstrInfo(); 11133 DebugLoc DL; 11134 11135 MachineBasicBlock &MBB = MF.front(); 11136 MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr(); 11137 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI); 11138 11139 for (auto &MBB : MF) { 11140 for (auto &MI : MBB) { 11141 TII->fixImplicitOperands(MI); 11142 } 11143 } 11144 } 11145 11146 TargetLoweringBase::finalizeLowering(MF); 11147 11148 // Allocate a VGPR for future SGPR Spill if 11149 // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used 11150 // FIXME: We won't need this hack if we split SGPR allocation from VGPR 11151 if (VGPRReserveforSGPRSpill && !Info->VGPRReservedForSGPRSpill && 11152 !Info->isEntryFunction() && MF.getFrameInfo().hasStackObjects()) 11153 Info->reserveVGPRforSGPRSpills(MF); 11154 } 11155 11156 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 11157 KnownBits &Known, 11158 const APInt &DemandedElts, 11159 const SelectionDAG &DAG, 11160 unsigned Depth) const { 11161 TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts, 11162 DAG, Depth); 11163 11164 // Set the high bits to zero based on the maximum allowed scratch size per 11165 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 11166 // calculation won't overflow, so assume the sign bit is never set. 11167 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 11168 } 11169 11170 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 11171 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 11172 const Align CacheLineAlign = Align(64); 11173 11174 // Pre-GFX10 target did not benefit from loop alignment 11175 if (!ML || DisableLoopAlignment || 11176 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || 11177 getSubtarget()->hasInstFwdPrefetchBug()) 11178 return PrefAlign; 11179 11180 // On GFX10 I$ is 4 x 64 bytes cache lines. 11181 // By default prefetcher keeps one cache line behind and reads two ahead. 11182 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 11183 // behind and one ahead. 11184 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 11185 // If loop fits 64 bytes it always spans no more than two cache lines and 11186 // does not need an alignment. 11187 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 11188 // Else if loop is less or equal 192 bytes we need two lines behind. 11189 11190 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11191 const MachineBasicBlock *Header = ML->getHeader(); 11192 if (Header->getAlignment() != PrefAlign) 11193 return Header->getAlignment(); // Already processed. 11194 11195 unsigned LoopSize = 0; 11196 for (const MachineBasicBlock *MBB : ML->blocks()) { 11197 // If inner loop block is aligned assume in average half of the alignment 11198 // size to be added as nops. 11199 if (MBB != Header) 11200 LoopSize += MBB->getAlignment().value() / 2; 11201 11202 for (const MachineInstr &MI : *MBB) { 11203 LoopSize += TII->getInstSizeInBytes(MI); 11204 if (LoopSize > 192) 11205 return PrefAlign; 11206 } 11207 } 11208 11209 if (LoopSize <= 64) 11210 return PrefAlign; 11211 11212 if (LoopSize <= 128) 11213 return CacheLineAlign; 11214 11215 // If any of parent loops is surrounded by prefetch instructions do not 11216 // insert new for inner loop, which would reset parent's settings. 11217 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 11218 if (MachineBasicBlock *Exit = P->getExitBlock()) { 11219 auto I = Exit->getFirstNonDebugInstr(); 11220 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 11221 return CacheLineAlign; 11222 } 11223 } 11224 11225 MachineBasicBlock *Pre = ML->getLoopPreheader(); 11226 MachineBasicBlock *Exit = ML->getExitBlock(); 11227 11228 if (Pre && Exit) { 11229 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(), 11230 TII->get(AMDGPU::S_INST_PREFETCH)) 11231 .addImm(1); // prefetch 2 lines behind PC 11232 11233 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(), 11234 TII->get(AMDGPU::S_INST_PREFETCH)) 11235 .addImm(2); // prefetch 1 line behind PC 11236 } 11237 11238 return CacheLineAlign; 11239 } 11240 11241 LLVM_ATTRIBUTE_UNUSED 11242 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 11243 assert(N->getOpcode() == ISD::CopyFromReg); 11244 do { 11245 // Follow the chain until we find an INLINEASM node. 11246 N = N->getOperand(0).getNode(); 11247 if (N->getOpcode() == ISD::INLINEASM || 11248 N->getOpcode() == ISD::INLINEASM_BR) 11249 return true; 11250 } while (N->getOpcode() == ISD::CopyFromReg); 11251 return false; 11252 } 11253 11254 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N, 11255 FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const 11256 { 11257 switch (N->getOpcode()) { 11258 case ISD::CopyFromReg: 11259 { 11260 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 11261 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); 11262 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11263 Register Reg = R->getReg(); 11264 11265 // FIXME: Why does this need to consider isLiveIn? 11266 if (Reg.isPhysical() || MRI.isLiveIn(Reg)) 11267 return !TRI->isSGPRReg(MRI, Reg); 11268 11269 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) 11270 return KDA->isDivergent(V); 11271 11272 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 11273 return !TRI->isSGPRReg(MRI, Reg); 11274 } 11275 break; 11276 case ISD::LOAD: { 11277 const LoadSDNode *L = cast<LoadSDNode>(N); 11278 unsigned AS = L->getAddressSpace(); 11279 // A flat load may access private memory. 11280 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 11281 } break; 11282 case ISD::CALLSEQ_END: 11283 return true; 11284 break; 11285 case ISD::INTRINSIC_WO_CHAIN: 11286 { 11287 11288 } 11289 return AMDGPU::isIntrinsicSourceOfDivergence( 11290 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 11291 case ISD::INTRINSIC_W_CHAIN: 11292 return AMDGPU::isIntrinsicSourceOfDivergence( 11293 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 11294 } 11295 return false; 11296 } 11297 11298 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, 11299 EVT VT) const { 11300 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 11301 case MVT::f32: 11302 return hasFP32Denormals(DAG.getMachineFunction()); 11303 case MVT::f64: 11304 case MVT::f16: 11305 return hasFP64FP16Denormals(DAG.getMachineFunction()); 11306 default: 11307 return false; 11308 } 11309 } 11310 11311 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 11312 const SelectionDAG &DAG, 11313 bool SNaN, 11314 unsigned Depth) const { 11315 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 11316 const MachineFunction &MF = DAG.getMachineFunction(); 11317 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 11318 11319 if (Info->getMode().DX10Clamp) 11320 return true; // Clamped to 0. 11321 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 11322 } 11323 11324 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 11325 SNaN, Depth); 11326 } 11327 11328 TargetLowering::AtomicExpansionKind 11329 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 11330 switch (RMW->getOperation()) { 11331 case AtomicRMWInst::FAdd: { 11332 Type *Ty = RMW->getType(); 11333 11334 // We don't have a way to support 16-bit atomics now, so just leave them 11335 // as-is. 11336 if (Ty->isHalfTy()) 11337 return AtomicExpansionKind::None; 11338 11339 if (!Ty->isFloatTy()) 11340 return AtomicExpansionKind::CmpXChg; 11341 11342 // TODO: Do have these for flat. Older targets also had them for buffers. 11343 unsigned AS = RMW->getPointerAddressSpace(); 11344 11345 if (AS == AMDGPUAS::GLOBAL_ADDRESS && Subtarget->hasAtomicFaddInsts()) { 11346 return RMW->use_empty() ? AtomicExpansionKind::None : 11347 AtomicExpansionKind::CmpXChg; 11348 } 11349 11350 return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ? 11351 AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg; 11352 } 11353 default: 11354 break; 11355 } 11356 11357 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 11358 } 11359 11360 const TargetRegisterClass * 11361 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 11362 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); 11363 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11364 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) 11365 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass 11366 : &AMDGPU::SReg_32RegClass; 11367 if (!TRI->isSGPRClass(RC) && !isDivergent) 11368 return TRI->getEquivalentSGPRClass(RC); 11369 else if (TRI->isSGPRClass(RC) && isDivergent) 11370 return TRI->getEquivalentVGPRClass(RC); 11371 11372 return RC; 11373 } 11374 11375 // FIXME: This is a workaround for DivergenceAnalysis not understanding always 11376 // uniform values (as produced by the mask results of control flow intrinsics) 11377 // used outside of divergent blocks. The phi users need to also be treated as 11378 // always uniform. 11379 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, 11380 unsigned WaveSize) { 11381 // FIXME: We asssume we never cast the mask results of a control flow 11382 // intrinsic. 11383 // Early exit if the type won't be consistent as a compile time hack. 11384 IntegerType *IT = dyn_cast<IntegerType>(V->getType()); 11385 if (!IT || IT->getBitWidth() != WaveSize) 11386 return false; 11387 11388 if (!isa<Instruction>(V)) 11389 return false; 11390 if (!Visited.insert(V).second) 11391 return false; 11392 bool Result = false; 11393 for (auto U : V->users()) { 11394 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { 11395 if (V == U->getOperand(1)) { 11396 switch (Intrinsic->getIntrinsicID()) { 11397 default: 11398 Result = false; 11399 break; 11400 case Intrinsic::amdgcn_if_break: 11401 case Intrinsic::amdgcn_if: 11402 case Intrinsic::amdgcn_else: 11403 Result = true; 11404 break; 11405 } 11406 } 11407 if (V == U->getOperand(0)) { 11408 switch (Intrinsic->getIntrinsicID()) { 11409 default: 11410 Result = false; 11411 break; 11412 case Intrinsic::amdgcn_end_cf: 11413 case Intrinsic::amdgcn_loop: 11414 Result = true; 11415 break; 11416 } 11417 } 11418 } else { 11419 Result = hasCFUser(U, Visited, WaveSize); 11420 } 11421 if (Result) 11422 break; 11423 } 11424 return Result; 11425 } 11426 11427 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, 11428 const Value *V) const { 11429 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 11430 if (CI->isInlineAsm()) { 11431 // FIXME: This cannot give a correct answer. This should only trigger in 11432 // the case where inline asm returns mixed SGPR and VGPR results, used 11433 // outside the defining block. We don't have a specific result to 11434 // consider, so this assumes if any value is SGPR, the overall register 11435 // also needs to be SGPR. 11436 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); 11437 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( 11438 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); 11439 for (auto &TC : TargetConstraints) { 11440 if (TC.Type == InlineAsm::isOutput) { 11441 ComputeConstraintToUse(TC, SDValue()); 11442 unsigned AssignedReg; 11443 const TargetRegisterClass *RC; 11444 std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint( 11445 SIRI, TC.ConstraintCode, TC.ConstraintVT); 11446 if (RC) { 11447 MachineRegisterInfo &MRI = MF.getRegInfo(); 11448 if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg)) 11449 return true; 11450 else if (SIRI->isSGPRClass(RC)) 11451 return true; 11452 } 11453 } 11454 } 11455 } 11456 } 11457 SmallPtrSet<const Value *, 16> Visited; 11458 return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); 11459 } 11460