1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Custom DAG lowering for SI
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifdef _MSC_VER
16 // Provide M_PI.
17 #define _USE_MATH_DEFINES
18 #endif
19 
20 #include "AMDGPU.h"
21 #include "AMDGPUIntrinsicInfo.h"
22 #include "AMDGPUSubtarget.h"
23 #include "SIDefines.h"
24 #include "SIISelLowering.h"
25 #include "SIInstrInfo.h"
26 #include "SIMachineFunctionInfo.h"
27 #include "SIRegisterInfo.h"
28 #include "Utils/AMDGPUBaseInfo.h"
29 #include "llvm/ADT/APFloat.h"
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/BitVector.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/StringSwitch.h"
36 #include "llvm/ADT/Twine.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/CallingConvLower.h"
39 #include "llvm/CodeGen/DAGCombine.h"
40 #include "llvm/CodeGen/ISDOpcodes.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBuilder.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/MachineValueType.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGNodes.h"
52 #include "llvm/CodeGen/ValueTypes.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/DiagnosticInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GlobalValue.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Target/TargetCallingConv.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include "llvm/Target/TargetOptions.h"
73 #include "llvm/Target/TargetRegisterInfo.h"
74 #include <cassert>
75 #include <cmath>
76 #include <cstdint>
77 #include <iterator>
78 #include <tuple>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 static cl::opt<bool> EnableVGPRIndexMode(
85   "amdgpu-vgpr-index-mode",
86   cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
87   cl::init(false));
88 
89 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
90   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
91   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
92     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
93       return AMDGPU::SGPR0 + Reg;
94     }
95   }
96   llvm_unreachable("Cannot allocate sgpr");
97 }
98 
99 SITargetLowering::SITargetLowering(const TargetMachine &TM,
100                                    const SISubtarget &STI)
101     : AMDGPUTargetLowering(TM, STI) {
102   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
103   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
104 
105   addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
106   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
107 
108   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
109   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
110   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
111 
112   addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
113   addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
114 
115   addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
116   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
117 
118   addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
119   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
120 
121   addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
122   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
123 
124   if (Subtarget->has16BitInsts()) {
125     addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
126     addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
127   }
128 
129   computeRegisterProperties(STI.getRegisterInfo());
130 
131   // We need to custom lower vector stores from local memory
132   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
133   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
134   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
135   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
136   setOperationAction(ISD::LOAD, MVT::i1, Custom);
137 
138   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
139   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
140   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
141   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
142   setOperationAction(ISD::STORE, MVT::i1, Custom);
143 
144   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
145   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
146   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
147   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
148   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
149   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
150   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
151   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
152   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
153   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
154 
155   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
156   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
157   setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
158 
159   setOperationAction(ISD::SELECT, MVT::i1, Promote);
160   setOperationAction(ISD::SELECT, MVT::i64, Custom);
161   setOperationAction(ISD::SELECT, MVT::f64, Promote);
162   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
163 
164   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
165   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
166   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
167   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
168   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
169 
170   setOperationAction(ISD::SETCC, MVT::i1, Promote);
171   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
172   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
173   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
174 
175   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
176   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
177 
178   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
179   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
180   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
181   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
182   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
183   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
184   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
185 
186   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
187   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
188   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
189   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
190   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
191 
192   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
193   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
194   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
195   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
196   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
197   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
198 
199   setOperationAction(ISD::UADDO, MVT::i32, Legal);
200   setOperationAction(ISD::USUBO, MVT::i32, Legal);
201 
202   // We only support LOAD/STORE and vector manipulation ops for vectors
203   // with > 4 elements.
204   for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) {
205     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
206       switch (Op) {
207       case ISD::LOAD:
208       case ISD::STORE:
209       case ISD::BUILD_VECTOR:
210       case ISD::BITCAST:
211       case ISD::EXTRACT_VECTOR_ELT:
212       case ISD::INSERT_VECTOR_ELT:
213       case ISD::INSERT_SUBVECTOR:
214       case ISD::EXTRACT_SUBVECTOR:
215       case ISD::SCALAR_TO_VECTOR:
216         break;
217       case ISD::CONCAT_VECTORS:
218         setOperationAction(Op, VT, Custom);
219         break;
220       default:
221         setOperationAction(Op, VT, Expand);
222         break;
223       }
224     }
225   }
226 
227   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
228   // is expanded to avoid having two separate loops in case the index is a VGPR.
229 
230   // Most operations are naturally 32-bit vector operations. We only support
231   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
232   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
233     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
234     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
235 
236     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
237     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
238 
239     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
240     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
241 
242     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
243     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
244   }
245 
246   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
247   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
248   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
249   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
250 
251   // Avoid stack access for these.
252   // TODO: Generalize to more vector types.
253   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
254   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
255   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
256   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
257 
258   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
259   // and output demarshalling
260   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
261   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
262 
263   // We can't return success/failure, only the old value,
264   // let LLVM add the comparison
265   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
266   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
267 
268   if (getSubtarget()->hasFlatAddressSpace()) {
269     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
270     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
271   }
272 
273   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
274   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
275 
276   // On SI this is s_memtime and s_memrealtime on VI.
277   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
278   setOperationAction(ISD::TRAP, MVT::Other, Legal);
279 
280   setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
281   setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
282 
283   if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) {
284     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
285     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
286     setOperationAction(ISD::FRINT, MVT::f64, Legal);
287   }
288 
289   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
290 
291   setOperationAction(ISD::FSIN, MVT::f32, Custom);
292   setOperationAction(ISD::FCOS, MVT::f32, Custom);
293   setOperationAction(ISD::FDIV, MVT::f32, Custom);
294   setOperationAction(ISD::FDIV, MVT::f64, Custom);
295 
296   if (Subtarget->has16BitInsts()) {
297     setOperationAction(ISD::Constant, MVT::i16, Legal);
298 
299     setOperationAction(ISD::SMIN, MVT::i16, Legal);
300     setOperationAction(ISD::SMAX, MVT::i16, Legal);
301 
302     setOperationAction(ISD::UMIN, MVT::i16, Legal);
303     setOperationAction(ISD::UMAX, MVT::i16, Legal);
304 
305     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
306     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
307 
308     setOperationAction(ISD::ROTR, MVT::i16, Promote);
309     setOperationAction(ISD::ROTL, MVT::i16, Promote);
310 
311     setOperationAction(ISD::SDIV, MVT::i16, Promote);
312     setOperationAction(ISD::UDIV, MVT::i16, Promote);
313     setOperationAction(ISD::SREM, MVT::i16, Promote);
314     setOperationAction(ISD::UREM, MVT::i16, Promote);
315 
316     setOperationAction(ISD::BSWAP, MVT::i16, Promote);
317     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
318 
319     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
320     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
321     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
322     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
323 
324     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
325 
326     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
327 
328     setOperationAction(ISD::LOAD, MVT::i16, Custom);
329 
330     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
331 
332     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
333     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
334     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
335     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
336 
337     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
338     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
339     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
340     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
341 
342     // F16 - Constant Actions.
343     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
344 
345     // F16 - Load/Store Actions.
346     setOperationAction(ISD::LOAD, MVT::f16, Promote);
347     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
348     setOperationAction(ISD::STORE, MVT::f16, Promote);
349     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
350 
351     // F16 - VOP1 Actions.
352     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
353     setOperationAction(ISD::FCOS, MVT::f16, Promote);
354     setOperationAction(ISD::FSIN, MVT::f16, Promote);
355     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
356     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
357     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
358     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
359 
360     // F16 - VOP2 Actions.
361     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
362     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
363     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
364     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
365     setOperationAction(ISD::FDIV, MVT::f16, Custom);
366 
367     // F16 - VOP3 Actions.
368     setOperationAction(ISD::FMA, MVT::f16, Legal);
369     if (!Subtarget->hasFP16Denormals())
370       setOperationAction(ISD::FMAD, MVT::f16, Legal);
371   }
372 
373   setTargetDAGCombine(ISD::FADD);
374   setTargetDAGCombine(ISD::FSUB);
375   setTargetDAGCombine(ISD::FMINNUM);
376   setTargetDAGCombine(ISD::FMAXNUM);
377   setTargetDAGCombine(ISD::SMIN);
378   setTargetDAGCombine(ISD::SMAX);
379   setTargetDAGCombine(ISD::UMIN);
380   setTargetDAGCombine(ISD::UMAX);
381   setTargetDAGCombine(ISD::SETCC);
382   setTargetDAGCombine(ISD::AND);
383   setTargetDAGCombine(ISD::OR);
384   setTargetDAGCombine(ISD::XOR);
385   setTargetDAGCombine(ISD::SINT_TO_FP);
386   setTargetDAGCombine(ISD::UINT_TO_FP);
387   setTargetDAGCombine(ISD::FCANONICALIZE);
388 
389   // All memory operations. Some folding on the pointer operand is done to help
390   // matching the constant offsets in the addressing modes.
391   setTargetDAGCombine(ISD::LOAD);
392   setTargetDAGCombine(ISD::STORE);
393   setTargetDAGCombine(ISD::ATOMIC_LOAD);
394   setTargetDAGCombine(ISD::ATOMIC_STORE);
395   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
396   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
397   setTargetDAGCombine(ISD::ATOMIC_SWAP);
398   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
399   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
400   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
401   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
402   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
403   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
404   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
405   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
406   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
407   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
408 
409   setSchedulingPreference(Sched::RegPressure);
410 }
411 
412 const SISubtarget *SITargetLowering::getSubtarget() const {
413   return static_cast<const SISubtarget *>(Subtarget);
414 }
415 
416 //===----------------------------------------------------------------------===//
417 // TargetLowering queries
418 //===----------------------------------------------------------------------===//
419 
420 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
421                                           const CallInst &CI,
422                                           unsigned IntrID) const {
423   switch (IntrID) {
424   case Intrinsic::amdgcn_atomic_inc:
425   case Intrinsic::amdgcn_atomic_dec:
426     Info.opc = ISD::INTRINSIC_W_CHAIN;
427     Info.memVT = MVT::getVT(CI.getType());
428     Info.ptrVal = CI.getOperand(0);
429     Info.align = 0;
430     Info.vol = false;
431     Info.readMem = true;
432     Info.writeMem = true;
433     return true;
434   default:
435     return false;
436   }
437 }
438 
439 bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
440                                           EVT) const {
441   // SI has some legal vector types, but no legal vector operations. Say no
442   // shuffles are legal in order to prefer scalarizing some vector operations.
443   return false;
444 }
445 
446 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
447   // Flat instructions do not have offsets, and only have the register
448   // address.
449   return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
450 }
451 
452 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
453   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
454   // additionally can do r + r + i with addr64. 32-bit has more addressing
455   // mode options. Depending on the resource constant, it can also do
456   // (i64 r0) + (i32 r1) * (i14 i).
457   //
458   // Private arrays end up using a scratch buffer most of the time, so also
459   // assume those use MUBUF instructions. Scratch loads / stores are currently
460   // implemented as mubuf instructions with offen bit set, so slightly
461   // different than the normal addr64.
462   if (!isUInt<12>(AM.BaseOffs))
463     return false;
464 
465   // FIXME: Since we can split immediate into soffset and immediate offset,
466   // would it make sense to allow any immediate?
467 
468   switch (AM.Scale) {
469   case 0: // r + i or just i, depending on HasBaseReg.
470     return true;
471   case 1:
472     return true; // We have r + r or r + i.
473   case 2:
474     if (AM.HasBaseReg) {
475       // Reject 2 * r + r.
476       return false;
477     }
478 
479     // Allow 2 * r as r + r
480     // Or  2 * r + i is allowed as r + r + i.
481     return true;
482   default: // Don't allow n * r
483     return false;
484   }
485 }
486 
487 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
488                                              const AddrMode &AM, Type *Ty,
489                                              unsigned AS) const {
490   // No global is ever allowed as a base.
491   if (AM.BaseGV)
492     return false;
493 
494   switch (AS) {
495   case AMDGPUAS::GLOBAL_ADDRESS:
496     if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
497       // Assume the we will use FLAT for all global memory accesses
498       // on VI.
499       // FIXME: This assumption is currently wrong.  On VI we still use
500       // MUBUF instructions for the r + i addressing mode.  As currently
501       // implemented, the MUBUF instructions only work on buffer < 4GB.
502       // It may be possible to support > 4GB buffers with MUBUF instructions,
503       // by setting the stride value in the resource descriptor which would
504       // increase the size limit to (stride * 4GB).  However, this is risky,
505       // because it has never been validated.
506       return isLegalFlatAddressingMode(AM);
507     }
508 
509     return isLegalMUBUFAddressingMode(AM);
510 
511   case AMDGPUAS::CONSTANT_ADDRESS:
512     // If the offset isn't a multiple of 4, it probably isn't going to be
513     // correctly aligned.
514     // FIXME: Can we get the real alignment here?
515     if (AM.BaseOffs % 4 != 0)
516       return isLegalMUBUFAddressingMode(AM);
517 
518     // There are no SMRD extloads, so if we have to do a small type access we
519     // will use a MUBUF load.
520     // FIXME?: We also need to do this if unaligned, but we don't know the
521     // alignment here.
522     if (DL.getTypeStoreSize(Ty) < 4)
523       return isLegalMUBUFAddressingMode(AM);
524 
525     if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
526       // SMRD instructions have an 8-bit, dword offset on SI.
527       if (!isUInt<8>(AM.BaseOffs / 4))
528         return false;
529     } else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) {
530       // On CI+, this can also be a 32-bit literal constant offset. If it fits
531       // in 8-bits, it can use a smaller encoding.
532       if (!isUInt<32>(AM.BaseOffs / 4))
533         return false;
534     } else if (Subtarget->getGeneration() == SISubtarget::VOLCANIC_ISLANDS) {
535       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
536       if (!isUInt<20>(AM.BaseOffs))
537         return false;
538     } else
539       llvm_unreachable("unhandled generation");
540 
541     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
542       return true;
543 
544     if (AM.Scale == 1 && AM.HasBaseReg)
545       return true;
546 
547     return false;
548 
549   case AMDGPUAS::PRIVATE_ADDRESS:
550     return isLegalMUBUFAddressingMode(AM);
551 
552   case AMDGPUAS::LOCAL_ADDRESS:
553   case AMDGPUAS::REGION_ADDRESS:
554     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
555     // field.
556     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
557     // an 8-bit dword offset but we don't know the alignment here.
558     if (!isUInt<16>(AM.BaseOffs))
559       return false;
560 
561     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
562       return true;
563 
564     if (AM.Scale == 1 && AM.HasBaseReg)
565       return true;
566 
567     return false;
568 
569   case AMDGPUAS::FLAT_ADDRESS:
570   case AMDGPUAS::UNKNOWN_ADDRESS_SPACE:
571     // For an unknown address space, this usually means that this is for some
572     // reason being used for pure arithmetic, and not based on some addressing
573     // computation. We don't have instructions that compute pointers with any
574     // addressing modes, so treat them as having no offset like flat
575     // instructions.
576     return isLegalFlatAddressingMode(AM);
577 
578   default:
579     llvm_unreachable("unhandled address space");
580   }
581 }
582 
583 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
584                                                       unsigned AddrSpace,
585                                                       unsigned Align,
586                                                       bool *IsFast) const {
587   if (IsFast)
588     *IsFast = false;
589 
590   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
591   // which isn't a simple VT.
592   // Until MVT is extended to handle this, simply check for the size and
593   // rely on the condition below: allow accesses if the size is a multiple of 4.
594   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
595                            VT.getStoreSize() > 16)) {
596     return false;
597   }
598 
599   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
600       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
601     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
602     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
603     // with adjacent offsets.
604     bool AlignedBy4 = (Align % 4 == 0);
605     if (IsFast)
606       *IsFast = AlignedBy4;
607 
608     return AlignedBy4;
609   }
610 
611   // FIXME: We have to be conservative here and assume that flat operations
612   // will access scratch.  If we had access to the IR function, then we
613   // could determine if any private memory was used in the function.
614   if (!Subtarget->hasUnalignedScratchAccess() &&
615       (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
616        AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
617     return false;
618   }
619 
620   if (Subtarget->hasUnalignedBufferAccess()) {
621     // If we have an uniform constant load, it still requires using a slow
622     // buffer instruction if unaligned.
623     if (IsFast) {
624       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) ?
625         (Align % 4 == 0) : true;
626     }
627 
628     return true;
629   }
630 
631   // Smaller than dword value must be aligned.
632   if (VT.bitsLT(MVT::i32))
633     return false;
634 
635   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
636   // byte-address are ignored, thus forcing Dword alignment.
637   // This applies to private, global, and constant memory.
638   if (IsFast)
639     *IsFast = true;
640 
641   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
642 }
643 
644 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
645                                           unsigned SrcAlign, bool IsMemset,
646                                           bool ZeroMemset,
647                                           bool MemcpyStrSrc,
648                                           MachineFunction &MF) const {
649   // FIXME: Should account for address space here.
650 
651   // The default fallback uses the private pointer size as a guess for a type to
652   // use. Make sure we switch these to 64-bit accesses.
653 
654   if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
655     return MVT::v4i32;
656 
657   if (Size >= 8 && DstAlign >= 4)
658     return MVT::v2i32;
659 
660   // Use the default.
661   return MVT::Other;
662 }
663 
664 static bool isFlatGlobalAddrSpace(unsigned AS) {
665   return AS == AMDGPUAS::GLOBAL_ADDRESS ||
666          AS == AMDGPUAS::FLAT_ADDRESS ||
667          AS == AMDGPUAS::CONSTANT_ADDRESS;
668 }
669 
670 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
671                                            unsigned DestAS) const {
672   return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
673 }
674 
675 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
676   const MemSDNode *MemNode = cast<MemSDNode>(N);
677   const Value *Ptr = MemNode->getMemOperand()->getValue();
678   const Instruction *I = dyn_cast<Instruction>(Ptr);
679   return I && I->getMetadata("amdgpu.noclobber");
680 }
681 
682 bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS,
683                                             unsigned DestAS) const {
684   // Flat -> private/local is a simple truncate.
685   // Flat -> global is no-op
686   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
687     return true;
688 
689   return isNoopAddrSpaceCast(SrcAS, DestAS);
690 }
691 
692 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
693   const MemSDNode *MemNode = cast<MemSDNode>(N);
694 
695   return AMDGPU::isUniformMMO(MemNode->getMemOperand());
696 }
697 
698 TargetLoweringBase::LegalizeTypeAction
699 SITargetLowering::getPreferredVectorAction(EVT VT) const {
700   if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
701     return TypeSplitVector;
702 
703   return TargetLoweringBase::getPreferredVectorAction(VT);
704 }
705 
706 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
707                                                          Type *Ty) const {
708   // FIXME: Could be smarter if called for vector constants.
709   return true;
710 }
711 
712 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
713   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
714     switch (Op) {
715     case ISD::LOAD:
716     case ISD::STORE:
717 
718     // These operations are done with 32-bit instructions anyway.
719     case ISD::AND:
720     case ISD::OR:
721     case ISD::XOR:
722     case ISD::SELECT:
723       // TODO: Extensions?
724       return true;
725     default:
726       return false;
727     }
728   }
729 
730   // SimplifySetCC uses this function to determine whether or not it should
731   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
732   if (VT == MVT::i1 && Op == ISD::SETCC)
733     return false;
734 
735   return TargetLowering::isTypeDesirableForOp(Op, VT);
736 }
737 
738 SDValue SITargetLowering::LowerParameterPtr(SelectionDAG &DAG,
739                                             const SDLoc &SL, SDValue Chain,
740                                             unsigned Offset) const {
741   const DataLayout &DL = DAG.getDataLayout();
742   MachineFunction &MF = DAG.getMachineFunction();
743   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
744   unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
745 
746   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
747   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
748   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
749                                        MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
750   return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
751                      DAG.getConstant(Offset, SL, PtrVT));
752 }
753 
754 SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
755                                          const SDLoc &SL, SDValue Chain,
756                                          unsigned Offset, bool Signed,
757                                          const ISD::InputArg *Arg) const {
758   const DataLayout &DL = DAG.getDataLayout();
759   Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
760   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
761   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
762 
763   unsigned Align = DL.getABITypeAlignment(Ty);
764 
765   SDValue Ptr = LowerParameterPtr(DAG, SL, Chain, Offset);
766   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
767                              MachineMemOperand::MONonTemporal |
768                              MachineMemOperand::MODereferenceable |
769                              MachineMemOperand::MOInvariant);
770 
771   SDValue Val = Load;
772   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
773       VT.bitsLT(MemVT)) {
774     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
775     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
776   }
777 
778   if (MemVT.isFloatingPoint())
779     Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
780   else if (Signed)
781     Val = DAG.getSExtOrTrunc(Val, SL, VT);
782   else
783     Val = DAG.getZExtOrTrunc(Val, SL, VT);
784 
785   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
786 }
787 
788 SDValue SITargetLowering::LowerFormalArguments(
789     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
790     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
791     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
792   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
793 
794   MachineFunction &MF = DAG.getMachineFunction();
795   FunctionType *FType = MF.getFunction()->getFunctionType();
796   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
797   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
798 
799   if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
800     const Function *Fn = MF.getFunction();
801     DiagnosticInfoUnsupported NoGraphicsHSA(
802         *Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
803     DAG.getContext()->diagnose(NoGraphicsHSA);
804     return DAG.getEntryNode();
805   }
806 
807   // Create stack objects that are used for emitting debugger prologue if
808   // "amdgpu-debugger-emit-prologue" attribute was specified.
809   if (ST.debuggerEmitPrologue())
810     createDebuggerPrologueStackObjects(MF);
811 
812   SmallVector<ISD::InputArg, 16> Splits;
813   BitVector Skipped(Ins.size());
814 
815   for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
816     const ISD::InputArg &Arg = Ins[i];
817 
818     // First check if it's a PS input addr
819     if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() &&
820         !Arg.Flags.isByVal() && PSInputNum <= 15) {
821 
822       if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
823         // We can safely skip PS inputs
824         Skipped.set(i);
825         ++PSInputNum;
826         continue;
827       }
828 
829       Info->markPSInputAllocated(PSInputNum);
830       if (Arg.Used)
831         Info->PSInputEna |= 1 << PSInputNum;
832 
833       ++PSInputNum;
834     }
835 
836     if (AMDGPU::isShader(CallConv)) {
837       // Second split vertices into their elements
838       if (Arg.VT.isVector()) {
839         ISD::InputArg NewArg = Arg;
840         NewArg.Flags.setSplit();
841         NewArg.VT = Arg.VT.getVectorElementType();
842 
843         // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
844         // three or five element vertex only needs three or five registers,
845         // NOT four or eight.
846         Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
847         unsigned NumElements = ParamType->getVectorNumElements();
848 
849         for (unsigned j = 0; j != NumElements; ++j) {
850           Splits.push_back(NewArg);
851           NewArg.PartOffset += NewArg.VT.getStoreSize();
852         }
853       } else {
854         Splits.push_back(Arg);
855       }
856     }
857   }
858 
859   SmallVector<CCValAssign, 16> ArgLocs;
860   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
861                  *DAG.getContext());
862 
863   // At least one interpolation mode must be enabled or else the GPU will hang.
864   //
865   // Check PSInputAddr instead of PSInputEna. The idea is that if the user set
866   // PSInputAddr, the user wants to enable some bits after the compilation
867   // based on run-time states. Since we can't know what the final PSInputEna
868   // will look like, so we shouldn't do anything here and the user should take
869   // responsibility for the correct programming.
870   //
871   // Otherwise, the following restrictions apply:
872   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
873   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
874   //   enabled too.
875   if (CallConv == CallingConv::AMDGPU_PS &&
876       ((Info->getPSInputAddr() & 0x7F) == 0 ||
877        ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11)))) {
878     CCInfo.AllocateReg(AMDGPU::VGPR0);
879     CCInfo.AllocateReg(AMDGPU::VGPR1);
880     Info->markPSInputAllocated(0);
881     Info->PSInputEna |= 1;
882   }
883 
884   if (!AMDGPU::isShader(CallConv)) {
885     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
886   } else {
887     assert(!Info->hasDispatchPtr() &&
888            !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
889            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
890            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
891            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
892            !Info->hasWorkItemIDZ());
893   }
894 
895   if (Info->hasPrivateMemoryInputPtr()) {
896     unsigned PrivateMemoryPtrReg = Info->addPrivateMemoryPtr(*TRI);
897     MF.addLiveIn(PrivateMemoryPtrReg, &AMDGPU::SReg_64RegClass);
898     CCInfo.AllocateReg(PrivateMemoryPtrReg);
899   }
900 
901   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
902   if (Info->hasPrivateSegmentBuffer()) {
903     unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI);
904     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass);
905     CCInfo.AllocateReg(PrivateSegmentBufferReg);
906   }
907 
908   if (Info->hasDispatchPtr()) {
909     unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI);
910     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
911     CCInfo.AllocateReg(DispatchPtrReg);
912   }
913 
914   if (Info->hasQueuePtr()) {
915     unsigned QueuePtrReg = Info->addQueuePtr(*TRI);
916     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
917     CCInfo.AllocateReg(QueuePtrReg);
918   }
919 
920   if (Info->hasKernargSegmentPtr()) {
921     unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI);
922     MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
923     CCInfo.AllocateReg(InputPtrReg);
924   }
925 
926   if (Info->hasDispatchID()) {
927     unsigned DispatchIDReg = Info->addDispatchID(*TRI);
928     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
929     CCInfo.AllocateReg(DispatchIDReg);
930   }
931 
932   if (Info->hasFlatScratchInit()) {
933     unsigned FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
934     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
935     CCInfo.AllocateReg(FlatScratchInitReg);
936   }
937 
938   if (!AMDGPU::isShader(CallConv))
939     analyzeFormalArgumentsCompute(CCInfo, Ins);
940   else
941     AnalyzeFormalArguments(CCInfo, Splits);
942 
943   SmallVector<SDValue, 16> Chains;
944 
945   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
946     const ISD::InputArg &Arg = Ins[i];
947     if (Skipped[i]) {
948       InVals.push_back(DAG.getUNDEF(Arg.VT));
949       continue;
950     }
951 
952     CCValAssign &VA = ArgLocs[ArgIdx++];
953     MVT VT = VA.getLocVT();
954 
955     if (VA.isMemLoc()) {
956       VT = Ins[i].VT;
957       EVT MemVT = VA.getLocVT();
958       const unsigned Offset = Subtarget->getExplicitKernelArgOffset(MF) +
959                               VA.getLocMemOffset();
960       // The first 36 bytes of the input buffer contains information about
961       // thread group and global sizes.
962       SDValue Arg = LowerParameter(DAG, VT, MemVT,  DL, Chain,
963                                    Offset, Ins[i].Flags.isSExt(),
964                                    &Ins[i]);
965       Chains.push_back(Arg.getValue(1));
966 
967       auto *ParamTy =
968         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
969       if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
970           ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
971         // On SI local pointers are just offsets into LDS, so they are always
972         // less than 16-bits.  On CI and newer they could potentially be
973         // real pointers, so we can't guarantee their size.
974         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
975                           DAG.getValueType(MVT::i16));
976       }
977 
978       InVals.push_back(Arg);
979       Info->setABIArgOffset(Offset + MemVT.getStoreSize());
980       continue;
981     }
982     assert(VA.isRegLoc() && "Parameter must be in a register!");
983 
984     unsigned Reg = VA.getLocReg();
985 
986     if (VT == MVT::i64) {
987       // For now assume it is a pointer
988       Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
989                                      &AMDGPU::SGPR_64RegClass);
990       Reg = MF.addLiveIn(Reg, &AMDGPU::SGPR_64RegClass);
991       SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
992       InVals.push_back(Copy);
993       continue;
994     }
995 
996     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
997 
998     Reg = MF.addLiveIn(Reg, RC);
999     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1000 
1001     if (Arg.VT.isVector()) {
1002       // Build a vector from the registers
1003       Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
1004       unsigned NumElements = ParamType->getVectorNumElements();
1005 
1006       SmallVector<SDValue, 4> Regs;
1007       Regs.push_back(Val);
1008       for (unsigned j = 1; j != NumElements; ++j) {
1009         Reg = ArgLocs[ArgIdx++].getLocReg();
1010         Reg = MF.addLiveIn(Reg, RC);
1011 
1012         SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1013         Regs.push_back(Copy);
1014       }
1015 
1016       // Fill up the missing vector elements
1017       NumElements = Arg.VT.getVectorNumElements() - NumElements;
1018       Regs.append(NumElements, DAG.getUNDEF(VT));
1019 
1020       InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs));
1021       continue;
1022     }
1023 
1024     InVals.push_back(Val);
1025   }
1026 
1027   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1028   // these from the dispatch pointer.
1029 
1030   // Start adding system SGPRs.
1031   if (Info->hasWorkGroupIDX()) {
1032     unsigned Reg = Info->addWorkGroupIDX();
1033     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1034     CCInfo.AllocateReg(Reg);
1035   }
1036 
1037   if (Info->hasWorkGroupIDY()) {
1038     unsigned Reg = Info->addWorkGroupIDY();
1039     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1040     CCInfo.AllocateReg(Reg);
1041   }
1042 
1043   if (Info->hasWorkGroupIDZ()) {
1044     unsigned Reg = Info->addWorkGroupIDZ();
1045     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1046     CCInfo.AllocateReg(Reg);
1047   }
1048 
1049   if (Info->hasWorkGroupInfo()) {
1050     unsigned Reg = Info->addWorkGroupInfo();
1051     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1052     CCInfo.AllocateReg(Reg);
1053   }
1054 
1055   if (Info->hasPrivateSegmentWaveByteOffset()) {
1056     // Scratch wave offset passed in system SGPR.
1057     unsigned PrivateSegmentWaveByteOffsetReg;
1058 
1059     if (AMDGPU::isShader(CallConv)) {
1060       PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1061       Info->setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1062     } else
1063       PrivateSegmentWaveByteOffsetReg = Info->addPrivateSegmentWaveByteOffset();
1064 
1065     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1066     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1067   }
1068 
1069   // Now that we've figured out where the scratch register inputs are, see if
1070   // should reserve the arguments and use them directly.
1071   bool HasStackObjects = MF.getFrameInfo().hasStackObjects();
1072   // Record that we know we have non-spill stack objects so we don't need to
1073   // check all stack objects later.
1074   if (HasStackObjects)
1075     Info->setHasNonSpillStackObjects(true);
1076 
1077   // Everything live out of a block is spilled with fast regalloc, so it's
1078   // almost certain that spilling will be required.
1079   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
1080     HasStackObjects = true;
1081 
1082   if (ST.isAmdCodeObjectV2(MF)) {
1083     if (HasStackObjects) {
1084       // If we have stack objects, we unquestionably need the private buffer
1085       // resource. For the Code Object V2 ABI, this will be the first 4 user
1086       // SGPR inputs. We can reserve those and use them directly.
1087 
1088       unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue(
1089         MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
1090       Info->setScratchRSrcReg(PrivateSegmentBufferReg);
1091 
1092       unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue(
1093         MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1094       Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
1095     } else {
1096       unsigned ReservedBufferReg
1097         = TRI->reservedPrivateSegmentBufferReg(MF);
1098       unsigned ReservedOffsetReg
1099         = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
1100 
1101       // We tentatively reserve the last registers (skipping the last two
1102       // which may contain VCC). After register allocation, we'll replace
1103       // these with the ones immediately after those which were really
1104       // allocated. In the prologue copies will be inserted from the argument
1105       // to these reserved registers.
1106       Info->setScratchRSrcReg(ReservedBufferReg);
1107       Info->setScratchWaveOffsetReg(ReservedOffsetReg);
1108     }
1109   } else {
1110     unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF);
1111 
1112     // Without HSA, relocations are used for the scratch pointer and the
1113     // buffer resource setup is always inserted in the prologue. Scratch wave
1114     // offset is still in an input SGPR.
1115     Info->setScratchRSrcReg(ReservedBufferReg);
1116 
1117     if (HasStackObjects) {
1118       unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue(
1119         MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1120       Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg);
1121     } else {
1122       unsigned ReservedOffsetReg
1123         = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
1124       Info->setScratchWaveOffsetReg(ReservedOffsetReg);
1125     }
1126   }
1127 
1128   if (Info->hasWorkItemIDX()) {
1129     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
1130     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1131     CCInfo.AllocateReg(Reg);
1132   }
1133 
1134   if (Info->hasWorkItemIDY()) {
1135     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
1136     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1137     CCInfo.AllocateReg(Reg);
1138   }
1139 
1140   if (Info->hasWorkItemIDZ()) {
1141     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
1142     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1143     CCInfo.AllocateReg(Reg);
1144   }
1145 
1146   if (Chains.empty())
1147     return Chain;
1148 
1149   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1150 }
1151 
1152 SDValue
1153 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1154                               bool isVarArg,
1155                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1156                               const SmallVectorImpl<SDValue> &OutVals,
1157                               const SDLoc &DL, SelectionDAG &DAG) const {
1158   MachineFunction &MF = DAG.getMachineFunction();
1159   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1160 
1161   if (!AMDGPU::isShader(CallConv))
1162     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
1163                                              OutVals, DL, DAG);
1164 
1165   Info->setIfReturnsVoid(Outs.size() == 0);
1166 
1167   SmallVector<ISD::OutputArg, 48> Splits;
1168   SmallVector<SDValue, 48> SplitVals;
1169 
1170   // Split vectors into their elements.
1171   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
1172     const ISD::OutputArg &Out = Outs[i];
1173 
1174     if (Out.VT.isVector()) {
1175       MVT VT = Out.VT.getVectorElementType();
1176       ISD::OutputArg NewOut = Out;
1177       NewOut.Flags.setSplit();
1178       NewOut.VT = VT;
1179 
1180       // We want the original number of vector elements here, e.g.
1181       // three or five, not four or eight.
1182       unsigned NumElements = Out.ArgVT.getVectorNumElements();
1183 
1184       for (unsigned j = 0; j != NumElements; ++j) {
1185         SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
1186                                    DAG.getConstant(j, DL, MVT::i32));
1187         SplitVals.push_back(Elem);
1188         Splits.push_back(NewOut);
1189         NewOut.PartOffset += NewOut.VT.getStoreSize();
1190       }
1191     } else {
1192       SplitVals.push_back(OutVals[i]);
1193       Splits.push_back(Out);
1194     }
1195   }
1196 
1197   // CCValAssign - represent the assignment of the return value to a location.
1198   SmallVector<CCValAssign, 48> RVLocs;
1199 
1200   // CCState - Info about the registers and stack slots.
1201   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1202                  *DAG.getContext());
1203 
1204   // Analyze outgoing return values.
1205   AnalyzeReturn(CCInfo, Splits);
1206 
1207   SDValue Flag;
1208   SmallVector<SDValue, 48> RetOps;
1209   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1210 
1211   // Copy the result values into the output registers.
1212   for (unsigned i = 0, realRVLocIdx = 0;
1213        i != RVLocs.size();
1214        ++i, ++realRVLocIdx) {
1215     CCValAssign &VA = RVLocs[i];
1216     assert(VA.isRegLoc() && "Can only return in registers!");
1217 
1218     SDValue Arg = SplitVals[realRVLocIdx];
1219 
1220     // Copied from other backends.
1221     switch (VA.getLocInfo()) {
1222     default: llvm_unreachable("Unknown loc info!");
1223     case CCValAssign::Full:
1224       break;
1225     case CCValAssign::BCvt:
1226       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1227       break;
1228     }
1229 
1230     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
1231     Flag = Chain.getValue(1);
1232     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1233   }
1234 
1235   // Update chain and glue.
1236   RetOps[0] = Chain;
1237   if (Flag.getNode())
1238     RetOps.push_back(Flag);
1239 
1240   unsigned Opc = Info->returnsVoid() ? AMDGPUISD::ENDPGM : AMDGPUISD::RETURN;
1241   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
1242 }
1243 
1244 unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
1245                                              SelectionDAG &DAG) const {
1246   unsigned Reg = StringSwitch<unsigned>(RegName)
1247     .Case("m0", AMDGPU::M0)
1248     .Case("exec", AMDGPU::EXEC)
1249     .Case("exec_lo", AMDGPU::EXEC_LO)
1250     .Case("exec_hi", AMDGPU::EXEC_HI)
1251     .Case("flat_scratch", AMDGPU::FLAT_SCR)
1252     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
1253     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
1254     .Default(AMDGPU::NoRegister);
1255 
1256   if (Reg == AMDGPU::NoRegister) {
1257     report_fatal_error(Twine("invalid register name \""
1258                              + StringRef(RegName)  + "\"."));
1259 
1260   }
1261 
1262   if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
1263       Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
1264     report_fatal_error(Twine("invalid register \""
1265                              + StringRef(RegName)  + "\" for subtarget."));
1266   }
1267 
1268   switch (Reg) {
1269   case AMDGPU::M0:
1270   case AMDGPU::EXEC_LO:
1271   case AMDGPU::EXEC_HI:
1272   case AMDGPU::FLAT_SCR_LO:
1273   case AMDGPU::FLAT_SCR_HI:
1274     if (VT.getSizeInBits() == 32)
1275       return Reg;
1276     break;
1277   case AMDGPU::EXEC:
1278   case AMDGPU::FLAT_SCR:
1279     if (VT.getSizeInBits() == 64)
1280       return Reg;
1281     break;
1282   default:
1283     llvm_unreachable("missing register type checking");
1284   }
1285 
1286   report_fatal_error(Twine("invalid type for register \""
1287                            + StringRef(RegName) + "\"."));
1288 }
1289 
1290 // If kill is not the last instruction, split the block so kill is always a
1291 // proper terminator.
1292 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
1293                                                     MachineBasicBlock *BB) const {
1294   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1295 
1296   MachineBasicBlock::iterator SplitPoint(&MI);
1297   ++SplitPoint;
1298 
1299   if (SplitPoint == BB->end()) {
1300     // Don't bother with a new block.
1301     MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR));
1302     return BB;
1303   }
1304 
1305   MachineFunction *MF = BB->getParent();
1306   MachineBasicBlock *SplitBB
1307     = MF->CreateMachineBasicBlock(BB->getBasicBlock());
1308 
1309   MF->insert(++MachineFunction::iterator(BB), SplitBB);
1310   SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
1311 
1312   SplitBB->transferSuccessorsAndUpdatePHIs(BB);
1313   BB->addSuccessor(SplitBB);
1314 
1315   MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR));
1316   return SplitBB;
1317 }
1318 
1319 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
1320 // wavefront. If the value is uniform and just happens to be in a VGPR, this
1321 // will only do one iteration. In the worst case, this will loop 64 times.
1322 //
1323 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
1324 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
1325   const SIInstrInfo *TII,
1326   MachineRegisterInfo &MRI,
1327   MachineBasicBlock &OrigBB,
1328   MachineBasicBlock &LoopBB,
1329   const DebugLoc &DL,
1330   const MachineOperand &IdxReg,
1331   unsigned InitReg,
1332   unsigned ResultReg,
1333   unsigned PhiReg,
1334   unsigned InitSaveExecReg,
1335   int Offset,
1336   bool UseGPRIdxMode) {
1337   MachineBasicBlock::iterator I = LoopBB.begin();
1338 
1339   unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1340   unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1341   unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
1342   unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1343 
1344   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
1345     .addReg(InitReg)
1346     .addMBB(&OrigBB)
1347     .addReg(ResultReg)
1348     .addMBB(&LoopBB);
1349 
1350   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
1351     .addReg(InitSaveExecReg)
1352     .addMBB(&OrigBB)
1353     .addReg(NewExec)
1354     .addMBB(&LoopBB);
1355 
1356   // Read the next variant <- also loop target.
1357   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
1358     .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
1359 
1360   // Compare the just read M0 value to all possible Idx values.
1361   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
1362     .addReg(CurrentIdxReg)
1363     .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
1364 
1365   if (UseGPRIdxMode) {
1366     unsigned IdxReg;
1367     if (Offset == 0) {
1368       IdxReg = CurrentIdxReg;
1369     } else {
1370       IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
1371       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
1372         .addReg(CurrentIdxReg, RegState::Kill)
1373         .addImm(Offset);
1374     }
1375 
1376     MachineInstr *SetIdx =
1377       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_IDX))
1378       .addReg(IdxReg, RegState::Kill);
1379     SetIdx->getOperand(2).setIsUndef();
1380   } else {
1381     // Move index from VCC into M0
1382     if (Offset == 0) {
1383       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
1384         .addReg(CurrentIdxReg, RegState::Kill);
1385     } else {
1386       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
1387         .addReg(CurrentIdxReg, RegState::Kill)
1388         .addImm(Offset);
1389     }
1390   }
1391 
1392   // Update EXEC, save the original EXEC value to VCC.
1393   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec)
1394     .addReg(CondReg, RegState::Kill);
1395 
1396   MRI.setSimpleHint(NewExec, CondReg);
1397 
1398   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
1399   MachineInstr *InsertPt =
1400     BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
1401     .addReg(AMDGPU::EXEC)
1402     .addReg(NewExec);
1403 
1404   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
1405   // s_cbranch_scc0?
1406 
1407   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
1408   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
1409     .addMBB(&LoopBB);
1410 
1411   return InsertPt->getIterator();
1412 }
1413 
1414 // This has slightly sub-optimal regalloc when the source vector is killed by
1415 // the read. The register allocator does not understand that the kill is
1416 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
1417 // subregister from it, using 1 more VGPR than necessary. This was saved when
1418 // this was expanded after register allocation.
1419 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
1420                                                   MachineBasicBlock &MBB,
1421                                                   MachineInstr &MI,
1422                                                   unsigned InitResultReg,
1423                                                   unsigned PhiReg,
1424                                                   int Offset,
1425                                                   bool UseGPRIdxMode) {
1426   MachineFunction *MF = MBB.getParent();
1427   MachineRegisterInfo &MRI = MF->getRegInfo();
1428   const DebugLoc &DL = MI.getDebugLoc();
1429   MachineBasicBlock::iterator I(&MI);
1430 
1431   unsigned DstReg = MI.getOperand(0).getReg();
1432   unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1433   unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1434 
1435   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
1436 
1437   // Save the EXEC mask
1438   BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec)
1439     .addReg(AMDGPU::EXEC);
1440 
1441   // To insert the loop we need to split the block. Move everything after this
1442   // point to a new block, and insert a new empty block between the two.
1443   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
1444   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
1445   MachineFunction::iterator MBBI(MBB);
1446   ++MBBI;
1447 
1448   MF->insert(MBBI, LoopBB);
1449   MF->insert(MBBI, RemainderBB);
1450 
1451   LoopBB->addSuccessor(LoopBB);
1452   LoopBB->addSuccessor(RemainderBB);
1453 
1454   // Move the rest of the block into a new block.
1455   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
1456   RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
1457 
1458   MBB.addSuccessor(LoopBB);
1459 
1460   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
1461 
1462   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
1463                                       InitResultReg, DstReg, PhiReg, TmpExec,
1464                                       Offset, UseGPRIdxMode);
1465 
1466   MachineBasicBlock::iterator First = RemainderBB->begin();
1467   BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
1468     .addReg(SaveExec);
1469 
1470   return InsPt;
1471 }
1472 
1473 // Returns subreg index, offset
1474 static std::pair<unsigned, int>
1475 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
1476                             const TargetRegisterClass *SuperRC,
1477                             unsigned VecReg,
1478                             int Offset) {
1479   int NumElts = SuperRC->getSize() / 4;
1480 
1481   // Skip out of bounds offsets, or else we would end up using an undefined
1482   // register.
1483   if (Offset >= NumElts || Offset < 0)
1484     return std::make_pair(AMDGPU::sub0, Offset);
1485 
1486   return std::make_pair(AMDGPU::sub0 + Offset, 0);
1487 }
1488 
1489 // Return true if the index is an SGPR and was set.
1490 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
1491                                  MachineRegisterInfo &MRI,
1492                                  MachineInstr &MI,
1493                                  int Offset,
1494                                  bool UseGPRIdxMode,
1495                                  bool IsIndirectSrc) {
1496   MachineBasicBlock *MBB = MI.getParent();
1497   const DebugLoc &DL = MI.getDebugLoc();
1498   MachineBasicBlock::iterator I(&MI);
1499 
1500   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
1501   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
1502 
1503   assert(Idx->getReg() != AMDGPU::NoRegister);
1504 
1505   if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
1506     return false;
1507 
1508   if (UseGPRIdxMode) {
1509     unsigned IdxMode = IsIndirectSrc ?
1510       VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
1511     if (Offset == 0) {
1512       MachineInstr *SetOn =
1513           BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
1514               .add(*Idx)
1515               .addImm(IdxMode);
1516 
1517       SetOn->getOperand(3).setIsUndef();
1518     } else {
1519       unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
1520       BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
1521           .add(*Idx)
1522           .addImm(Offset);
1523       MachineInstr *SetOn =
1524         BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
1525         .addReg(Tmp, RegState::Kill)
1526         .addImm(IdxMode);
1527 
1528       SetOn->getOperand(3).setIsUndef();
1529     }
1530 
1531     return true;
1532   }
1533 
1534   if (Offset == 0) {
1535     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
1536   } else {
1537     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
1538         .add(*Idx)
1539         .addImm(Offset);
1540   }
1541 
1542   return true;
1543 }
1544 
1545 // Control flow needs to be inserted if indexing with a VGPR.
1546 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
1547                                           MachineBasicBlock &MBB,
1548                                           const SISubtarget &ST) {
1549   const SIInstrInfo *TII = ST.getInstrInfo();
1550   const SIRegisterInfo &TRI = TII->getRegisterInfo();
1551   MachineFunction *MF = MBB.getParent();
1552   MachineRegisterInfo &MRI = MF->getRegInfo();
1553 
1554   unsigned Dst = MI.getOperand(0).getReg();
1555   unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
1556   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
1557 
1558   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
1559 
1560   unsigned SubReg;
1561   std::tie(SubReg, Offset)
1562     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
1563 
1564   bool UseGPRIdxMode = ST.hasVGPRIndexMode() && EnableVGPRIndexMode;
1565 
1566   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
1567     MachineBasicBlock::iterator I(&MI);
1568     const DebugLoc &DL = MI.getDebugLoc();
1569 
1570     if (UseGPRIdxMode) {
1571       // TODO: Look at the uses to avoid the copy. This may require rescheduling
1572       // to avoid interfering with other uses, so probably requires a new
1573       // optimization pass.
1574       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
1575         .addReg(SrcReg, RegState::Undef, SubReg)
1576         .addReg(SrcReg, RegState::Implicit)
1577         .addReg(AMDGPU::M0, RegState::Implicit);
1578       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
1579     } else {
1580       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
1581         .addReg(SrcReg, RegState::Undef, SubReg)
1582         .addReg(SrcReg, RegState::Implicit);
1583     }
1584 
1585     MI.eraseFromParent();
1586 
1587     return &MBB;
1588   }
1589 
1590   const DebugLoc &DL = MI.getDebugLoc();
1591   MachineBasicBlock::iterator I(&MI);
1592 
1593   unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
1594   unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
1595 
1596   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
1597 
1598   if (UseGPRIdxMode) {
1599     MachineInstr *SetOn = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
1600       .addImm(0) // Reset inside loop.
1601       .addImm(VGPRIndexMode::SRC0_ENABLE);
1602     SetOn->getOperand(3).setIsUndef();
1603 
1604     // Disable again after the loop.
1605     BuildMI(MBB, std::next(I), DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
1606   }
1607 
1608   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, UseGPRIdxMode);
1609   MachineBasicBlock *LoopBB = InsPt->getParent();
1610 
1611   if (UseGPRIdxMode) {
1612     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
1613       .addReg(SrcReg, RegState::Undef, SubReg)
1614       .addReg(SrcReg, RegState::Implicit)
1615       .addReg(AMDGPU::M0, RegState::Implicit);
1616   } else {
1617     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
1618       .addReg(SrcReg, RegState::Undef, SubReg)
1619       .addReg(SrcReg, RegState::Implicit);
1620   }
1621 
1622   MI.eraseFromParent();
1623 
1624   return LoopBB;
1625 }
1626 
1627 static unsigned getMOVRELDPseudo(const TargetRegisterClass *VecRC) {
1628   switch (VecRC->getSize()) {
1629   case 4:
1630     return AMDGPU::V_MOVRELD_B32_V1;
1631   case 8:
1632     return AMDGPU::V_MOVRELD_B32_V2;
1633   case 16:
1634     return AMDGPU::V_MOVRELD_B32_V4;
1635   case 32:
1636     return AMDGPU::V_MOVRELD_B32_V8;
1637   case 64:
1638     return AMDGPU::V_MOVRELD_B32_V16;
1639   default:
1640     llvm_unreachable("unsupported size for MOVRELD pseudos");
1641   }
1642 }
1643 
1644 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
1645                                           MachineBasicBlock &MBB,
1646                                           const SISubtarget &ST) {
1647   const SIInstrInfo *TII = ST.getInstrInfo();
1648   const SIRegisterInfo &TRI = TII->getRegisterInfo();
1649   MachineFunction *MF = MBB.getParent();
1650   MachineRegisterInfo &MRI = MF->getRegInfo();
1651 
1652   unsigned Dst = MI.getOperand(0).getReg();
1653   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
1654   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
1655   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
1656   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
1657   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
1658 
1659   // This can be an immediate, but will be folded later.
1660   assert(Val->getReg());
1661 
1662   unsigned SubReg;
1663   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
1664                                                          SrcVec->getReg(),
1665                                                          Offset);
1666   bool UseGPRIdxMode = ST.hasVGPRIndexMode() && EnableVGPRIndexMode;
1667 
1668   if (Idx->getReg() == AMDGPU::NoRegister) {
1669     MachineBasicBlock::iterator I(&MI);
1670     const DebugLoc &DL = MI.getDebugLoc();
1671 
1672     assert(Offset == 0);
1673 
1674     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
1675         .add(*SrcVec)
1676         .add(*Val)
1677         .addImm(SubReg);
1678 
1679     MI.eraseFromParent();
1680     return &MBB;
1681   }
1682 
1683   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
1684     MachineBasicBlock::iterator I(&MI);
1685     const DebugLoc &DL = MI.getDebugLoc();
1686 
1687     if (UseGPRIdxMode) {
1688       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
1689           .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
1690           .add(*Val)
1691           .addReg(Dst, RegState::ImplicitDefine)
1692           .addReg(SrcVec->getReg(), RegState::Implicit)
1693           .addReg(AMDGPU::M0, RegState::Implicit);
1694 
1695       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
1696     } else {
1697       const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(VecRC));
1698 
1699       BuildMI(MBB, I, DL, MovRelDesc)
1700           .addReg(Dst, RegState::Define)
1701           .addReg(SrcVec->getReg())
1702           .add(*Val)
1703           .addImm(SubReg - AMDGPU::sub0);
1704     }
1705 
1706     MI.eraseFromParent();
1707     return &MBB;
1708   }
1709 
1710   if (Val->isReg())
1711     MRI.clearKillFlags(Val->getReg());
1712 
1713   const DebugLoc &DL = MI.getDebugLoc();
1714 
1715   if (UseGPRIdxMode) {
1716     MachineBasicBlock::iterator I(&MI);
1717 
1718     MachineInstr *SetOn = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
1719       .addImm(0) // Reset inside loop.
1720       .addImm(VGPRIndexMode::DST_ENABLE);
1721     SetOn->getOperand(3).setIsUndef();
1722 
1723     // Disable again after the loop.
1724     BuildMI(MBB, std::next(I), DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
1725   }
1726 
1727   unsigned PhiReg = MRI.createVirtualRegister(VecRC);
1728 
1729   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
1730                               Offset, UseGPRIdxMode);
1731   MachineBasicBlock *LoopBB = InsPt->getParent();
1732 
1733   if (UseGPRIdxMode) {
1734     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
1735         .addReg(PhiReg, RegState::Undef, SubReg) // vdst
1736         .add(*Val)                               // src0
1737         .addReg(Dst, RegState::ImplicitDefine)
1738         .addReg(PhiReg, RegState::Implicit)
1739         .addReg(AMDGPU::M0, RegState::Implicit);
1740   } else {
1741     const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(VecRC));
1742 
1743     BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
1744         .addReg(Dst, RegState::Define)
1745         .addReg(PhiReg)
1746         .add(*Val)
1747         .addImm(SubReg - AMDGPU::sub0);
1748   }
1749 
1750   MI.eraseFromParent();
1751 
1752   return LoopBB;
1753 }
1754 
1755 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
1756   MachineInstr &MI, MachineBasicBlock *BB) const {
1757 
1758   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1759   MachineFunction *MF = BB->getParent();
1760   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
1761 
1762   if (TII->isMIMG(MI)) {
1763       if (!MI.memoperands_empty())
1764         return BB;
1765     // Add a memoperand for mimg instructions so that they aren't assumed to
1766     // be ordered memory instuctions.
1767 
1768     MachinePointerInfo PtrInfo(MFI->getImagePSV());
1769     MachineMemOperand::Flags Flags = MachineMemOperand::MODereferenceable;
1770     if (MI.mayStore())
1771       Flags |= MachineMemOperand::MOStore;
1772 
1773     if (MI.mayLoad())
1774       Flags |= MachineMemOperand::MOLoad;
1775 
1776     auto MMO = MF->getMachineMemOperand(PtrInfo, Flags, 0, 0);
1777     MI.addMemOperand(*MF, MMO);
1778     return BB;
1779   }
1780 
1781   switch (MI.getOpcode()) {
1782    case AMDGPU::S_TRAP_PSEUDO: {
1783 	DebugLoc DL = MI.getDebugLoc();
1784 	BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), AMDGPU::VGPR0)
1785      .addImm(1);
1786 
1787     MachineFunction *MF = BB->getParent();
1788     SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
1789     unsigned UserSGPR = Info->getQueuePtrUserSGPR();
1790     assert(UserSGPR != AMDGPU::NoRegister);
1791 
1792     if (!BB->isLiveIn(UserSGPR))
1793       BB->addLiveIn(UserSGPR);
1794 
1795     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), AMDGPU::SGPR0_SGPR1)
1796      .addReg(UserSGPR);
1797     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_TRAP)).addImm(0x1)
1798      .addReg(AMDGPU::VGPR0, RegState::Implicit)
1799      .addReg(AMDGPU::SGPR0_SGPR1, RegState::Implicit);
1800 
1801     MI.eraseFromParent();
1802     return BB;
1803   }
1804 
1805   case AMDGPU::SI_INIT_M0:
1806     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
1807             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
1808         .add(MI.getOperand(0));
1809     MI.eraseFromParent();
1810     return BB;
1811 
1812   case AMDGPU::GET_GROUPSTATICSIZE: {
1813     DebugLoc DL = MI.getDebugLoc();
1814     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
1815         .add(MI.getOperand(0))
1816         .addImm(MFI->getLDSSize());
1817     MI.eraseFromParent();
1818     return BB;
1819   }
1820   case AMDGPU::SI_INDIRECT_SRC_V1:
1821   case AMDGPU::SI_INDIRECT_SRC_V2:
1822   case AMDGPU::SI_INDIRECT_SRC_V4:
1823   case AMDGPU::SI_INDIRECT_SRC_V8:
1824   case AMDGPU::SI_INDIRECT_SRC_V16:
1825     return emitIndirectSrc(MI, *BB, *getSubtarget());
1826   case AMDGPU::SI_INDIRECT_DST_V1:
1827   case AMDGPU::SI_INDIRECT_DST_V2:
1828   case AMDGPU::SI_INDIRECT_DST_V4:
1829   case AMDGPU::SI_INDIRECT_DST_V8:
1830   case AMDGPU::SI_INDIRECT_DST_V16:
1831     return emitIndirectDst(MI, *BB, *getSubtarget());
1832   case AMDGPU::SI_KILL:
1833     return splitKillBlock(MI, BB);
1834   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
1835     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
1836 
1837     unsigned Dst = MI.getOperand(0).getReg();
1838     unsigned Src0 = MI.getOperand(1).getReg();
1839     unsigned Src1 = MI.getOperand(2).getReg();
1840     const DebugLoc &DL = MI.getDebugLoc();
1841     unsigned SrcCond = MI.getOperand(3).getReg();
1842 
1843     unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
1844     unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
1845 
1846     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
1847       .addReg(Src0, 0, AMDGPU::sub0)
1848       .addReg(Src1, 0, AMDGPU::sub0)
1849       .addReg(SrcCond);
1850     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
1851       .addReg(Src0, 0, AMDGPU::sub1)
1852       .addReg(Src1, 0, AMDGPU::sub1)
1853       .addReg(SrcCond);
1854 
1855     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
1856       .addReg(DstLo)
1857       .addImm(AMDGPU::sub0)
1858       .addReg(DstHi)
1859       .addImm(AMDGPU::sub1);
1860     MI.eraseFromParent();
1861     return BB;
1862   }
1863   case AMDGPU::SI_BR_UNDEF: {
1864     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1865     const DebugLoc &DL = MI.getDebugLoc();
1866     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
1867                            .add(MI.getOperand(0));
1868     Br->getOperand(1).setIsUndef(true); // read undef SCC
1869     MI.eraseFromParent();
1870     return BB;
1871   }
1872   default:
1873     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1874   }
1875 }
1876 
1877 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1878   // This currently forces unfolding various combinations of fsub into fma with
1879   // free fneg'd operands. As long as we have fast FMA (controlled by
1880   // isFMAFasterThanFMulAndFAdd), we should perform these.
1881 
1882   // When fma is quarter rate, for f64 where add / sub are at best half rate,
1883   // most of these combines appear to be cycle neutral but save on instruction
1884   // count / code size.
1885   return true;
1886 }
1887 
1888 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
1889                                          EVT VT) const {
1890   if (!VT.isVector()) {
1891     return MVT::i1;
1892   }
1893   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
1894 }
1895 
1896 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
1897   // TODO: Should i16 be used always if legal? For now it would force VALU
1898   // shifts.
1899   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
1900 }
1901 
1902 // Answering this is somewhat tricky and depends on the specific device which
1903 // have different rates for fma or all f64 operations.
1904 //
1905 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
1906 // regardless of which device (although the number of cycles differs between
1907 // devices), so it is always profitable for f64.
1908 //
1909 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
1910 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
1911 // which we can always do even without fused FP ops since it returns the same
1912 // result as the separate operations and since it is always full
1913 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
1914 // however does not support denormals, so we do report fma as faster if we have
1915 // a fast fma device and require denormals.
1916 //
1917 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
1918   VT = VT.getScalarType();
1919 
1920   switch (VT.getSimpleVT().SimpleTy) {
1921   case MVT::f32:
1922     // This is as fast on some subtargets. However, we always have full rate f32
1923     // mad available which returns the same result as the separate operations
1924     // which we should prefer over fma. We can't use this if we want to support
1925     // denormals, so only report this in these cases.
1926     return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
1927   case MVT::f64:
1928     return true;
1929   case MVT::f16:
1930     return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
1931   default:
1932     break;
1933   }
1934 
1935   return false;
1936 }
1937 
1938 //===----------------------------------------------------------------------===//
1939 // Custom DAG Lowering Operations
1940 //===----------------------------------------------------------------------===//
1941 
1942 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
1943   switch (Op.getOpcode()) {
1944   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
1945   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
1946   case ISD::LOAD: {
1947     SDValue Result = LowerLOAD(Op, DAG);
1948     assert((!Result.getNode() ||
1949             Result.getNode()->getNumValues() == 2) &&
1950            "Load should return a value and a chain");
1951     return Result;
1952   }
1953 
1954   case ISD::FSIN:
1955   case ISD::FCOS:
1956     return LowerTrig(Op, DAG);
1957   case ISD::SELECT: return LowerSELECT(Op, DAG);
1958   case ISD::FDIV: return LowerFDIV(Op, DAG);
1959   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
1960   case ISD::STORE: return LowerSTORE(Op, DAG);
1961   case ISD::GlobalAddress: {
1962     MachineFunction &MF = DAG.getMachineFunction();
1963     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1964     return LowerGlobalAddress(MFI, Op, DAG);
1965   }
1966   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1967   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
1968   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
1969   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
1970   case ISD::INSERT_VECTOR_ELT:
1971     return lowerINSERT_VECTOR_ELT(Op, DAG);
1972   case ISD::EXTRACT_VECTOR_ELT:
1973     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
1974   case ISD::FP_ROUND:
1975     return lowerFP_ROUND(Op, DAG);
1976   }
1977   return SDValue();
1978 }
1979 
1980 void SITargetLowering::ReplaceNodeResults(SDNode *N,
1981                                           SmallVectorImpl<SDValue> &Results,
1982                                           SelectionDAG &DAG) const {
1983   switch (N->getOpcode()) {
1984   case ISD::INSERT_VECTOR_ELT: {
1985     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
1986       Results.push_back(Res);
1987     return;
1988   }
1989   case ISD::EXTRACT_VECTOR_ELT: {
1990     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
1991       Results.push_back(Res);
1992     return;
1993   }
1994   default:
1995     break;
1996   }
1997 }
1998 
1999 /// \brief Helper function for LowerBRCOND
2000 static SDNode *findUser(SDValue Value, unsigned Opcode) {
2001 
2002   SDNode *Parent = Value.getNode();
2003   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
2004        I != E; ++I) {
2005 
2006     if (I.getUse().get() != Value)
2007       continue;
2008 
2009     if (I->getOpcode() == Opcode)
2010       return *I;
2011   }
2012   return nullptr;
2013 }
2014 
2015 bool SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
2016   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
2017     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
2018     case AMDGPUIntrinsic::amdgcn_if:
2019     case AMDGPUIntrinsic::amdgcn_else:
2020     case AMDGPUIntrinsic::amdgcn_end_cf:
2021     case AMDGPUIntrinsic::amdgcn_loop:
2022       return true;
2023     default:
2024       return false;
2025     }
2026   }
2027 
2028   if (Intr->getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
2029     switch (cast<ConstantSDNode>(Intr->getOperand(0))->getZExtValue()) {
2030     case AMDGPUIntrinsic::amdgcn_break:
2031     case AMDGPUIntrinsic::amdgcn_if_break:
2032     case AMDGPUIntrinsic::amdgcn_else_break:
2033       return true;
2034     default:
2035       return false;
2036     }
2037   }
2038 
2039   return false;
2040 }
2041 
2042 void SITargetLowering::createDebuggerPrologueStackObjects(
2043     MachineFunction &MF) const {
2044   // Create stack objects that are used for emitting debugger prologue.
2045   //
2046   // Debugger prologue writes work group IDs and work item IDs to scratch memory
2047   // at fixed location in the following format:
2048   //   offset 0:  work group ID x
2049   //   offset 4:  work group ID y
2050   //   offset 8:  work group ID z
2051   //   offset 16: work item ID x
2052   //   offset 20: work item ID y
2053   //   offset 24: work item ID z
2054   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2055   int ObjectIdx = 0;
2056 
2057   // For each dimension:
2058   for (unsigned i = 0; i < 3; ++i) {
2059     // Create fixed stack object for work group ID.
2060     ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true);
2061     Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx);
2062     // Create fixed stack object for work item ID.
2063     ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true);
2064     Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx);
2065   }
2066 }
2067 
2068 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
2069   const Triple &TT = getTargetMachine().getTargetTriple();
2070   return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS &&
2071          AMDGPU::shouldEmitConstantsToTextSection(TT);
2072 }
2073 
2074 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
2075   return (GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
2076               GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS) &&
2077          !shouldEmitFixup(GV) &&
2078          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
2079 }
2080 
2081 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
2082   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
2083 }
2084 
2085 /// This transforms the control flow intrinsics to get the branch destination as
2086 /// last parameter, also switches branch target with BR if the need arise
2087 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
2088                                       SelectionDAG &DAG) const {
2089   SDLoc DL(BRCOND);
2090 
2091   SDNode *Intr = BRCOND.getOperand(1).getNode();
2092   SDValue Target = BRCOND.getOperand(2);
2093   SDNode *BR = nullptr;
2094   SDNode *SetCC = nullptr;
2095 
2096   if (Intr->getOpcode() == ISD::SETCC) {
2097     // As long as we negate the condition everything is fine
2098     SetCC = Intr;
2099     Intr = SetCC->getOperand(0).getNode();
2100 
2101   } else {
2102     // Get the target from BR if we don't negate the condition
2103     BR = findUser(BRCOND, ISD::BR);
2104     Target = BR->getOperand(1);
2105   }
2106 
2107   // FIXME: This changes the types of the intrinsics instead of introducing new
2108   // nodes with the correct types.
2109   // e.g. llvm.amdgcn.loop
2110 
2111   // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
2112   // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
2113 
2114   if (!isCFIntrinsic(Intr)) {
2115     // This is a uniform branch so we don't need to legalize.
2116     return BRCOND;
2117   }
2118 
2119   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
2120                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
2121 
2122   assert(!SetCC ||
2123         (SetCC->getConstantOperandVal(1) == 1 &&
2124          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
2125                                                              ISD::SETNE));
2126 
2127   // operands of the new intrinsic call
2128   SmallVector<SDValue, 4> Ops;
2129   if (HaveChain)
2130     Ops.push_back(BRCOND.getOperand(0));
2131 
2132   Ops.append(Intr->op_begin() + (HaveChain ?  1 : 0), Intr->op_end());
2133   Ops.push_back(Target);
2134 
2135   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
2136 
2137   // build the new intrinsic call
2138   SDNode *Result = DAG.getNode(
2139     Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
2140     DAG.getVTList(Res), Ops).getNode();
2141 
2142   if (!HaveChain) {
2143     SDValue Ops[] =  {
2144       SDValue(Result, 0),
2145       BRCOND.getOperand(0)
2146     };
2147 
2148     Result = DAG.getMergeValues(Ops, DL).getNode();
2149   }
2150 
2151   if (BR) {
2152     // Give the branch instruction our target
2153     SDValue Ops[] = {
2154       BR->getOperand(0),
2155       BRCOND.getOperand(2)
2156     };
2157     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
2158     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
2159     BR = NewBR.getNode();
2160   }
2161 
2162   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
2163 
2164   // Copy the intrinsic results to registers
2165   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
2166     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
2167     if (!CopyToReg)
2168       continue;
2169 
2170     Chain = DAG.getCopyToReg(
2171       Chain, DL,
2172       CopyToReg->getOperand(1),
2173       SDValue(Result, i - 1),
2174       SDValue());
2175 
2176     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
2177   }
2178 
2179   // Remove the old intrinsic from the chain
2180   DAG.ReplaceAllUsesOfValueWith(
2181     SDValue(Intr, Intr->getNumValues() - 1),
2182     Intr->getOperand(0));
2183 
2184   return Chain;
2185 }
2186 
2187 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
2188                                             SDValue Op,
2189                                             const SDLoc &DL,
2190                                             EVT VT) const {
2191   return Op.getValueType().bitsLE(VT) ?
2192       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
2193       DAG.getNode(ISD::FTRUNC, DL, VT, Op);
2194 }
2195 
2196 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
2197   assert(Op.getValueType() == MVT::f16 &&
2198          "Do not know how to custom lower FP_ROUND for non-f16 type");
2199 
2200   SDValue Src = Op.getOperand(0);
2201   EVT SrcVT = Src.getValueType();
2202   if (SrcVT != MVT::f64)
2203     return Op;
2204 
2205   SDLoc DL(Op);
2206 
2207   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
2208   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
2209   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);;
2210 }
2211 
2212 SDValue SITargetLowering::getSegmentAperture(unsigned AS,
2213                                              SelectionDAG &DAG) const {
2214   SDLoc SL;
2215   MachineFunction &MF = DAG.getMachineFunction();
2216   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2217   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
2218   assert(UserSGPR != AMDGPU::NoRegister);
2219 
2220   SDValue QueuePtr = CreateLiveInRegister(
2221     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
2222 
2223   // Offset into amd_queue_t for group_segment_aperture_base_hi /
2224   // private_segment_aperture_base_hi.
2225   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
2226 
2227   SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, QueuePtr,
2228                             DAG.getConstant(StructOffset, SL, MVT::i64));
2229 
2230   // TODO: Use custom target PseudoSourceValue.
2231   // TODO: We should use the value from the IR intrinsic call, but it might not
2232   // be available and how do we get it?
2233   Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
2234                                               AMDGPUAS::CONSTANT_ADDRESS));
2235 
2236   MachinePointerInfo PtrInfo(V, StructOffset);
2237   return DAG.getLoad(MVT::i32, SL, QueuePtr.getValue(1), Ptr, PtrInfo,
2238                      MinAlign(64, StructOffset),
2239                      MachineMemOperand::MODereferenceable |
2240                          MachineMemOperand::MOInvariant);
2241 }
2242 
2243 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
2244                                              SelectionDAG &DAG) const {
2245   SDLoc SL(Op);
2246   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
2247 
2248   SDValue Src = ASC->getOperand(0);
2249 
2250   // FIXME: Really support non-0 null pointers.
2251   SDValue SegmentNullPtr = DAG.getConstant(-1, SL, MVT::i32);
2252   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
2253 
2254   // flat -> local/private
2255   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
2256     if (ASC->getDestAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2257         ASC->getDestAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
2258       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
2259       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
2260 
2261       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
2262                          NonNull, Ptr, SegmentNullPtr);
2263     }
2264   }
2265 
2266   // local/private -> flat
2267   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
2268     if (ASC->getSrcAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2269         ASC->getSrcAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
2270       SDValue NonNull
2271         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
2272 
2273       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), DAG);
2274       SDValue CvtPtr
2275         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
2276 
2277       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
2278                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
2279                          FlatNullPtr);
2280     }
2281   }
2282 
2283   // global <-> flat are no-ops and never emitted.
2284 
2285   const MachineFunction &MF = DAG.getMachineFunction();
2286   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
2287     *MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
2288   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
2289 
2290   return DAG.getUNDEF(ASC->getValueType(0));
2291 }
2292 
2293 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
2294                                                  SelectionDAG &DAG) const {
2295   SDValue Idx = Op.getOperand(2);
2296   if (isa<ConstantSDNode>(Idx))
2297     return SDValue();
2298 
2299   // Avoid stack access for dynamic indexing.
2300   SDLoc SL(Op);
2301   SDValue Vec = Op.getOperand(0);
2302   SDValue Val = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Op.getOperand(1));
2303 
2304   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
2305   SDValue ExtVal = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Val);
2306 
2307   // Convert vector index to bit-index.
2308   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx,
2309                                   DAG.getConstant(16, SL, MVT::i32));
2310 
2311   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
2312 
2313   SDValue BFM = DAG.getNode(ISD::SHL, SL, MVT::i32,
2314                             DAG.getConstant(0xffff, SL, MVT::i32),
2315                             ScaledIdx);
2316 
2317   SDValue LHS = DAG.getNode(ISD::AND, SL, MVT::i32, BFM, ExtVal);
2318   SDValue RHS = DAG.getNode(ISD::AND, SL, MVT::i32,
2319                             DAG.getNOT(SL, BFM, MVT::i32), BCVec);
2320 
2321   SDValue BFI = DAG.getNode(ISD::OR, SL, MVT::i32, LHS, RHS);
2322   return DAG.getNode(ISD::BITCAST, SL, Op.getValueType(), BFI);
2323 }
2324 
2325 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
2326                                                   SelectionDAG &DAG) const {
2327   SDLoc SL(Op);
2328 
2329   EVT ResultVT = Op.getValueType();
2330   SDValue Vec = Op.getOperand(0);
2331   SDValue Idx = Op.getOperand(1);
2332 
2333   if (const ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
2334     SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
2335 
2336     if (CIdx->getZExtValue() == 1) {
2337       Result = DAG.getNode(ISD::SRL, SL, MVT::i32, Result,
2338                            DAG.getConstant(16, SL, MVT::i32));
2339     } else {
2340       assert(CIdx->getZExtValue() == 0);
2341     }
2342 
2343     if (ResultVT.bitsLT(MVT::i32))
2344       Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result);
2345     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
2346   }
2347 
2348   SDValue Sixteen = DAG.getConstant(16, SL, MVT::i32);
2349 
2350   // Convert vector index to bit-index.
2351   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, Sixteen);
2352 
2353   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
2354   SDValue Elt = DAG.getNode(ISD::SRL, SL, MVT::i32, BC, ScaledIdx);
2355 
2356   SDValue Result = Elt;
2357   if (ResultVT.bitsLT(MVT::i32))
2358     Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result);
2359 
2360   return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
2361 }
2362 
2363 bool
2364 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
2365   // We can fold offsets for anything that doesn't require a GOT relocation.
2366   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
2367               GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS) &&
2368          !shouldEmitGOTReloc(GA->getGlobal());
2369 }
2370 
2371 static SDValue
2372 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
2373                         const SDLoc &DL, unsigned Offset, EVT PtrVT,
2374                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
2375   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
2376   // lowered to the following code sequence:
2377   //
2378   // For constant address space:
2379   //   s_getpc_b64 s[0:1]
2380   //   s_add_u32 s0, s0, $symbol
2381   //   s_addc_u32 s1, s1, 0
2382   //
2383   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
2384   //   a fixup or relocation is emitted to replace $symbol with a literal
2385   //   constant, which is a pc-relative offset from the encoding of the $symbol
2386   //   operand to the global variable.
2387   //
2388   // For global address space:
2389   //   s_getpc_b64 s[0:1]
2390   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
2391   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
2392   //
2393   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
2394   //   fixups or relocations are emitted to replace $symbol@*@lo and
2395   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
2396   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
2397   //   operand to the global variable.
2398   //
2399   // What we want here is an offset from the value returned by s_getpc
2400   // (which is the address of the s_add_u32 instruction) to the global
2401   // variable, but since the encoding of $symbol starts 4 bytes after the start
2402   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
2403   // small. This requires us to add 4 to the global variable offset in order to
2404   // compute the correct address.
2405   SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
2406                                              GAFlags);
2407   SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
2408                                              GAFlags == SIInstrInfo::MO_NONE ?
2409                                              GAFlags : GAFlags + 1);
2410   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
2411 }
2412 
2413 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
2414                                              SDValue Op,
2415                                              SelectionDAG &DAG) const {
2416   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
2417 
2418   if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS &&
2419       GSD->getAddressSpace() != AMDGPUAS::GLOBAL_ADDRESS)
2420     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
2421 
2422   SDLoc DL(GSD);
2423   const GlobalValue *GV = GSD->getGlobal();
2424   EVT PtrVT = Op.getValueType();
2425 
2426   if (shouldEmitFixup(GV))
2427     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
2428   else if (shouldEmitPCReloc(GV))
2429     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
2430                                    SIInstrInfo::MO_REL32);
2431 
2432   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
2433                                             SIInstrInfo::MO_GOTPCREL32);
2434 
2435   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
2436   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
2437   const DataLayout &DataLayout = DAG.getDataLayout();
2438   unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
2439   // FIXME: Use a PseudoSourceValue once those can be assigned an address space.
2440   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
2441 
2442   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
2443                      MachineMemOperand::MODereferenceable |
2444                          MachineMemOperand::MOInvariant);
2445 }
2446 
2447 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
2448                                    const SDLoc &DL, SDValue V) const {
2449   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
2450   // the destination register.
2451   //
2452   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
2453   // so we will end up with redundant moves to m0.
2454   //
2455   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
2456 
2457   // A Null SDValue creates a glue result.
2458   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
2459                                   V, Chain);
2460   return SDValue(M0, 0);
2461 }
2462 
2463 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
2464                                                  SDValue Op,
2465                                                  MVT VT,
2466                                                  unsigned Offset) const {
2467   SDLoc SL(Op);
2468   SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL,
2469                                  DAG.getEntryNode(), Offset, false);
2470   // The local size values will have the hi 16-bits as zero.
2471   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
2472                      DAG.getValueType(VT));
2473 }
2474 
2475 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
2476                                         EVT VT) {
2477   DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
2478                                       "non-hsa intrinsic with hsa target",
2479                                       DL.getDebugLoc());
2480   DAG.getContext()->diagnose(BadIntrin);
2481   return DAG.getUNDEF(VT);
2482 }
2483 
2484 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
2485                                          EVT VT) {
2486   DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
2487                                       "intrinsic not supported on subtarget",
2488                                       DL.getDebugLoc());
2489   DAG.getContext()->diagnose(BadIntrin);
2490   return DAG.getUNDEF(VT);
2491 }
2492 
2493 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2494                                                   SelectionDAG &DAG) const {
2495   MachineFunction &MF = DAG.getMachineFunction();
2496   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
2497   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2498 
2499   EVT VT = Op.getValueType();
2500   SDLoc DL(Op);
2501   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2502 
2503   // TODO: Should this propagate fast-math-flags?
2504 
2505   switch (IntrinsicID) {
2506   case Intrinsic::amdgcn_implicit_buffer_ptr: {
2507     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
2508     return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
2509   }
2510   case Intrinsic::amdgcn_dispatch_ptr:
2511   case Intrinsic::amdgcn_queue_ptr: {
2512     if (!Subtarget->isAmdCodeObjectV2(MF)) {
2513       DiagnosticInfoUnsupported BadIntrin(
2514           *MF.getFunction(), "unsupported hsa intrinsic without hsa target",
2515           DL.getDebugLoc());
2516       DAG.getContext()->diagnose(BadIntrin);
2517       return DAG.getUNDEF(VT);
2518     }
2519 
2520     auto Reg = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
2521       SIRegisterInfo::DISPATCH_PTR : SIRegisterInfo::QUEUE_PTR;
2522     return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
2523                                 TRI->getPreloadedValue(MF, Reg), VT);
2524   }
2525   case Intrinsic::amdgcn_implicitarg_ptr: {
2526     unsigned offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT);
2527     return LowerParameterPtr(DAG, DL, DAG.getEntryNode(), offset);
2528   }
2529   case Intrinsic::amdgcn_kernarg_segment_ptr: {
2530     unsigned Reg
2531       = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
2532     return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
2533   }
2534   case Intrinsic::amdgcn_dispatch_id: {
2535     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::DISPATCH_ID);
2536     return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
2537   }
2538   case Intrinsic::amdgcn_rcp:
2539     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
2540   case Intrinsic::amdgcn_rsq:
2541   case AMDGPUIntrinsic::AMDGPU_rsq: // Legacy name
2542     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
2543   case Intrinsic::amdgcn_rsq_legacy:
2544     if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
2545       return emitRemovedIntrinsicError(DAG, DL, VT);
2546 
2547     return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
2548   case Intrinsic::amdgcn_rcp_legacy:
2549     if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
2550       return emitRemovedIntrinsicError(DAG, DL, VT);
2551     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
2552   case Intrinsic::amdgcn_rsq_clamp: {
2553     if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
2554       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
2555 
2556     Type *Type = VT.getTypeForEVT(*DAG.getContext());
2557     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
2558     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
2559 
2560     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
2561     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
2562                               DAG.getConstantFP(Max, DL, VT));
2563     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
2564                        DAG.getConstantFP(Min, DL, VT));
2565   }
2566   case Intrinsic::r600_read_ngroups_x:
2567     if (Subtarget->isAmdHsaOS())
2568       return emitNonHSAIntrinsicError(DAG, DL, VT);
2569 
2570     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2571                           SI::KernelInputOffsets::NGROUPS_X, false);
2572   case Intrinsic::r600_read_ngroups_y:
2573     if (Subtarget->isAmdHsaOS())
2574       return emitNonHSAIntrinsicError(DAG, DL, VT);
2575 
2576     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2577                           SI::KernelInputOffsets::NGROUPS_Y, false);
2578   case Intrinsic::r600_read_ngroups_z:
2579     if (Subtarget->isAmdHsaOS())
2580       return emitNonHSAIntrinsicError(DAG, DL, VT);
2581 
2582     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2583                           SI::KernelInputOffsets::NGROUPS_Z, false);
2584   case Intrinsic::r600_read_global_size_x:
2585     if (Subtarget->isAmdHsaOS())
2586       return emitNonHSAIntrinsicError(DAG, DL, VT);
2587 
2588     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2589                           SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
2590   case Intrinsic::r600_read_global_size_y:
2591     if (Subtarget->isAmdHsaOS())
2592       return emitNonHSAIntrinsicError(DAG, DL, VT);
2593 
2594     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2595                           SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
2596   case Intrinsic::r600_read_global_size_z:
2597     if (Subtarget->isAmdHsaOS())
2598       return emitNonHSAIntrinsicError(DAG, DL, VT);
2599 
2600     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2601                           SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
2602   case Intrinsic::r600_read_local_size_x:
2603     if (Subtarget->isAmdHsaOS())
2604       return emitNonHSAIntrinsicError(DAG, DL, VT);
2605 
2606     return lowerImplicitZextParam(DAG, Op, MVT::i16,
2607                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
2608   case Intrinsic::r600_read_local_size_y:
2609     if (Subtarget->isAmdHsaOS())
2610       return emitNonHSAIntrinsicError(DAG, DL, VT);
2611 
2612     return lowerImplicitZextParam(DAG, Op, MVT::i16,
2613                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
2614   case Intrinsic::r600_read_local_size_z:
2615     if (Subtarget->isAmdHsaOS())
2616       return emitNonHSAIntrinsicError(DAG, DL, VT);
2617 
2618     return lowerImplicitZextParam(DAG, Op, MVT::i16,
2619                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
2620   case Intrinsic::amdgcn_workgroup_id_x:
2621   case Intrinsic::r600_read_tgid_x:
2622     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32_XM0RegClass,
2623       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
2624   case Intrinsic::amdgcn_workgroup_id_y:
2625   case Intrinsic::r600_read_tgid_y:
2626     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32_XM0RegClass,
2627       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
2628   case Intrinsic::amdgcn_workgroup_id_z:
2629   case Intrinsic::r600_read_tgid_z:
2630     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32_XM0RegClass,
2631       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
2632   case Intrinsic::amdgcn_workitem_id_x:
2633   case Intrinsic::r600_read_tidig_x:
2634     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
2635       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
2636   case Intrinsic::amdgcn_workitem_id_y:
2637   case Intrinsic::r600_read_tidig_y:
2638     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
2639       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
2640   case Intrinsic::amdgcn_workitem_id_z:
2641   case Intrinsic::r600_read_tidig_z:
2642     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
2643       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
2644   case AMDGPUIntrinsic::SI_load_const: {
2645     SDValue Ops[] = {
2646       Op.getOperand(1),
2647       Op.getOperand(2)
2648     };
2649 
2650     MachineMemOperand *MMO = MF.getMachineMemOperand(
2651         MachinePointerInfo(),
2652         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
2653             MachineMemOperand::MOInvariant,
2654         VT.getStoreSize(), 4);
2655     return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
2656                                    Op->getVTList(), Ops, VT, MMO);
2657   }
2658   case AMDGPUIntrinsic::amdgcn_fdiv_fast:
2659     return lowerFDIV_FAST(Op, DAG);
2660   case AMDGPUIntrinsic::SI_vs_load_input:
2661     return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
2662                        Op.getOperand(1),
2663                        Op.getOperand(2),
2664                        Op.getOperand(3));
2665 
2666   case AMDGPUIntrinsic::SI_fs_constant: {
2667     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
2668     SDValue Glue = M0.getValue(1);
2669     return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
2670                        DAG.getConstant(2, DL, MVT::i32), // P0
2671                        Op.getOperand(1), Op.getOperand(2), Glue);
2672   }
2673   case AMDGPUIntrinsic::SI_packf16:
2674     if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef())
2675       return DAG.getUNDEF(MVT::i32);
2676     return Op;
2677   case AMDGPUIntrinsic::SI_fs_interp: {
2678     SDValue IJ = Op.getOperand(4);
2679     SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
2680                             DAG.getConstant(0, DL, MVT::i32));
2681     SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
2682                             DAG.getConstant(1, DL, MVT::i32));
2683     I = DAG.getNode(ISD::BITCAST, DL, MVT::f32, I);
2684     J = DAG.getNode(ISD::BITCAST, DL, MVT::f32, J);
2685     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
2686     SDValue Glue = M0.getValue(1);
2687     SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
2688                              DAG.getVTList(MVT::f32, MVT::Glue),
2689                              I, Op.getOperand(1), Op.getOperand(2), Glue);
2690     Glue = SDValue(P1.getNode(), 1);
2691     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
2692                              Op.getOperand(1), Op.getOperand(2), Glue);
2693   }
2694   case Intrinsic::amdgcn_interp_mov: {
2695     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
2696     SDValue Glue = M0.getValue(1);
2697     return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
2698                        Op.getOperand(2), Op.getOperand(3), Glue);
2699   }
2700   case Intrinsic::amdgcn_interp_p1: {
2701     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
2702     SDValue Glue = M0.getValue(1);
2703     return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
2704                        Op.getOperand(2), Op.getOperand(3), Glue);
2705   }
2706   case Intrinsic::amdgcn_interp_p2: {
2707     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
2708     SDValue Glue = SDValue(M0.getNode(), 1);
2709     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
2710                        Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
2711                        Glue);
2712   }
2713   case Intrinsic::amdgcn_sin:
2714     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
2715 
2716   case Intrinsic::amdgcn_cos:
2717     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
2718 
2719   case Intrinsic::amdgcn_log_clamp: {
2720     if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
2721       return SDValue();
2722 
2723     DiagnosticInfoUnsupported BadIntrin(
2724       *MF.getFunction(), "intrinsic not supported on subtarget",
2725       DL.getDebugLoc());
2726       DAG.getContext()->diagnose(BadIntrin);
2727       return DAG.getUNDEF(VT);
2728   }
2729   case Intrinsic::amdgcn_ldexp:
2730     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
2731                        Op.getOperand(1), Op.getOperand(2));
2732 
2733   case Intrinsic::amdgcn_fract:
2734     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
2735 
2736   case Intrinsic::amdgcn_class:
2737     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
2738                        Op.getOperand(1), Op.getOperand(2));
2739   case Intrinsic::amdgcn_div_fmas:
2740     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
2741                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
2742                        Op.getOperand(4));
2743 
2744   case Intrinsic::amdgcn_div_fixup:
2745     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
2746                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
2747 
2748   case Intrinsic::amdgcn_trig_preop:
2749     return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
2750                        Op.getOperand(1), Op.getOperand(2));
2751   case Intrinsic::amdgcn_div_scale: {
2752     // 3rd parameter required to be a constant.
2753     const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
2754     if (!Param)
2755       return DAG.getUNDEF(VT);
2756 
2757     // Translate to the operands expected by the machine instruction. The
2758     // first parameter must be the same as the first instruction.
2759     SDValue Numerator = Op.getOperand(1);
2760     SDValue Denominator = Op.getOperand(2);
2761 
2762     // Note this order is opposite of the machine instruction's operations,
2763     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
2764     // intrinsic has the numerator as the first operand to match a normal
2765     // division operation.
2766 
2767     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
2768 
2769     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
2770                        Denominator, Numerator);
2771   }
2772   case Intrinsic::amdgcn_icmp: {
2773     const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
2774     int CondCode = CD->getSExtValue();
2775 
2776     if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
2777         CondCode >= ICmpInst::Predicate::BAD_ICMP_PREDICATE)
2778       return DAG.getUNDEF(VT);
2779 
2780     ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
2781     ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
2782     return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
2783                        Op.getOperand(2), DAG.getCondCode(CCOpcode));
2784   }
2785   case Intrinsic::amdgcn_fcmp: {
2786     const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
2787     int CondCode = CD->getSExtValue();
2788 
2789     if (CondCode <= FCmpInst::Predicate::FCMP_FALSE ||
2790         CondCode >= FCmpInst::Predicate::FCMP_TRUE)
2791       return DAG.getUNDEF(VT);
2792 
2793     FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
2794     ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
2795     return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
2796                        Op.getOperand(2), DAG.getCondCode(CCOpcode));
2797   }
2798   case Intrinsic::amdgcn_fmed3:
2799     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
2800                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
2801   case Intrinsic::amdgcn_fmul_legacy:
2802     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
2803                        Op.getOperand(1), Op.getOperand(2));
2804   case Intrinsic::amdgcn_sffbh:
2805   case AMDGPUIntrinsic::AMDGPU_flbit_i32: // Legacy name.
2806     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
2807   default:
2808     return AMDGPUTargetLowering::LowerOperation(Op, DAG);
2809   }
2810 }
2811 
2812 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2813                                                  SelectionDAG &DAG) const {
2814   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2815   SDLoc DL(Op);
2816   switch (IntrID) {
2817   case Intrinsic::amdgcn_atomic_inc:
2818   case Intrinsic::amdgcn_atomic_dec: {
2819     MemSDNode *M = cast<MemSDNode>(Op);
2820     unsigned Opc = (IntrID == Intrinsic::amdgcn_atomic_inc) ?
2821       AMDGPUISD::ATOMIC_INC : AMDGPUISD::ATOMIC_DEC;
2822     SDValue Ops[] = {
2823       M->getOperand(0), // Chain
2824       M->getOperand(2), // Ptr
2825       M->getOperand(3)  // Value
2826     };
2827 
2828     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
2829                                    M->getMemoryVT(), M->getMemOperand());
2830   }
2831   case Intrinsic::amdgcn_buffer_load:
2832   case Intrinsic::amdgcn_buffer_load_format: {
2833     SDValue Ops[] = {
2834       Op.getOperand(0), // Chain
2835       Op.getOperand(2), // rsrc
2836       Op.getOperand(3), // vindex
2837       Op.getOperand(4), // offset
2838       Op.getOperand(5), // glc
2839       Op.getOperand(6)  // slc
2840     };
2841     MachineFunction &MF = DAG.getMachineFunction();
2842     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2843 
2844     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
2845         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
2846     EVT VT = Op.getValueType();
2847     EVT IntVT = VT.changeTypeToInteger();
2848 
2849     MachineMemOperand *MMO = MF.getMachineMemOperand(
2850       MachinePointerInfo(MFI->getBufferPSV()),
2851       MachineMemOperand::MOLoad,
2852       VT.getStoreSize(), VT.getStoreSize());
2853 
2854     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, MMO);
2855   }
2856   default:
2857     return SDValue();
2858   }
2859 }
2860 
2861 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
2862                                               SelectionDAG &DAG) const {
2863   MachineFunction &MF = DAG.getMachineFunction();
2864   SDLoc DL(Op);
2865   SDValue Chain = Op.getOperand(0);
2866   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2867 
2868   switch (IntrinsicID) {
2869       case Intrinsic::amdgcn_exp: {
2870     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
2871     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
2872     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
2873     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
2874 
2875     const SDValue Ops[] = {
2876       Chain,
2877       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
2878       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
2879       Op.getOperand(4), // src0
2880       Op.getOperand(5), // src1
2881       Op.getOperand(6), // src2
2882       Op.getOperand(7), // src3
2883       DAG.getTargetConstant(0, DL, MVT::i1), // compr
2884       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
2885     };
2886 
2887     unsigned Opc = Done->isNullValue() ?
2888       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
2889     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
2890   }
2891   case Intrinsic::amdgcn_exp_compr: {
2892     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
2893     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
2894     SDValue Src0 = Op.getOperand(4);
2895     SDValue Src1 = Op.getOperand(5);
2896     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
2897     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
2898 
2899     SDValue Undef = DAG.getUNDEF(MVT::f32);
2900     const SDValue Ops[] = {
2901       Chain,
2902       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
2903       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
2904       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
2905       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
2906       Undef, // src2
2907       Undef, // src3
2908       DAG.getTargetConstant(1, DL, MVT::i1), // compr
2909       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
2910     };
2911 
2912     unsigned Opc = Done->isNullValue() ?
2913       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
2914     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
2915   }
2916   case Intrinsic::amdgcn_s_sendmsg:
2917   case AMDGPUIntrinsic::SI_sendmsg: {
2918     Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
2919     SDValue Glue = Chain.getValue(1);
2920     return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
2921                        Op.getOperand(2), Glue);
2922   }
2923   case Intrinsic::amdgcn_s_sendmsghalt: {
2924     Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
2925     SDValue Glue = Chain.getValue(1);
2926     return DAG.getNode(AMDGPUISD::SENDMSGHALT, DL, MVT::Other, Chain,
2927                        Op.getOperand(2), Glue);
2928   }
2929   case AMDGPUIntrinsic::SI_tbuffer_store: {
2930     SDValue Ops[] = {
2931       Chain,
2932       Op.getOperand(2),
2933       Op.getOperand(3),
2934       Op.getOperand(4),
2935       Op.getOperand(5),
2936       Op.getOperand(6),
2937       Op.getOperand(7),
2938       Op.getOperand(8),
2939       Op.getOperand(9),
2940       Op.getOperand(10),
2941       Op.getOperand(11),
2942       Op.getOperand(12),
2943       Op.getOperand(13),
2944       Op.getOperand(14)
2945     };
2946 
2947     EVT VT = Op.getOperand(3).getValueType();
2948 
2949     MachineMemOperand *MMO = MF.getMachineMemOperand(
2950       MachinePointerInfo(),
2951       MachineMemOperand::MOStore,
2952       VT.getStoreSize(), 4);
2953     return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
2954                                    Op->getVTList(), Ops, VT, MMO);
2955   }
2956   case AMDGPUIntrinsic::AMDGPU_kill: {
2957     SDValue Src = Op.getOperand(2);
2958     if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Src)) {
2959       if (!K->isNegative())
2960         return Chain;
2961 
2962       SDValue NegOne = DAG.getTargetConstant(FloatToBits(-1.0f), DL, MVT::i32);
2963       return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, NegOne);
2964     }
2965 
2966     SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Src);
2967     return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, Cast);
2968   }
2969   case AMDGPUIntrinsic::SI_export: { // Legacy intrinsic.
2970     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(2));
2971     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(3));
2972     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(4));
2973     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(5));
2974     const ConstantSDNode *Compr = cast<ConstantSDNode>(Op.getOperand(6));
2975 
2976     const SDValue Ops[] = {
2977       Chain,
2978       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8),
2979       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),
2980       Op.getOperand(7),  // src0
2981       Op.getOperand(8),  // src1
2982       Op.getOperand(9),  // src2
2983       Op.getOperand(10), // src3
2984       DAG.getTargetConstant(Compr->getZExtValue(), DL, MVT::i1),
2985       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
2986     };
2987 
2988     unsigned Opc = Done->isNullValue() ?
2989       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
2990     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
2991   }
2992   default:
2993     return SDValue();
2994   }
2995 }
2996 
2997 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2998   SDLoc DL(Op);
2999   LoadSDNode *Load = cast<LoadSDNode>(Op);
3000   ISD::LoadExtType ExtType = Load->getExtensionType();
3001   EVT MemVT = Load->getMemoryVT();
3002 
3003   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
3004     // FIXME: Copied from PPC
3005     // First, load into 32 bits, then truncate to 1 bit.
3006 
3007     SDValue Chain = Load->getChain();
3008     SDValue BasePtr = Load->getBasePtr();
3009     MachineMemOperand *MMO = Load->getMemOperand();
3010 
3011     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
3012 
3013     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
3014                                    BasePtr, RealMemVT, MMO);
3015 
3016     SDValue Ops[] = {
3017       DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
3018       NewLD.getValue(1)
3019     };
3020 
3021     return DAG.getMergeValues(Ops, DL);
3022   }
3023 
3024   if (!MemVT.isVector())
3025     return SDValue();
3026 
3027   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
3028          "Custom lowering for non-i32 vectors hasn't been implemented.");
3029 
3030   unsigned AS = Load->getAddressSpace();
3031   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
3032                           AS, Load->getAlignment())) {
3033     SDValue Ops[2];
3034     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
3035     return DAG.getMergeValues(Ops, DL);
3036   }
3037 
3038   MachineFunction &MF = DAG.getMachineFunction();
3039   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
3040   // If there is a possibilty that flat instruction access scratch memory
3041   // then we need to use the same legalization rules we use for private.
3042   if (AS == AMDGPUAS::FLAT_ADDRESS)
3043     AS = MFI->hasFlatScratchInit() ?
3044          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
3045 
3046   unsigned NumElements = MemVT.getVectorNumElements();
3047   switch (AS) {
3048   case AMDGPUAS::CONSTANT_ADDRESS:
3049     if (isMemOpUniform(Load))
3050       return SDValue();
3051     // Non-uniform loads will be selected to MUBUF instructions, so they
3052     // have the same legalization requirements as global and private
3053     // loads.
3054     //
3055     LLVM_FALLTHROUGH;
3056   case AMDGPUAS::GLOBAL_ADDRESS:
3057     if (Subtarget->getScalarizeGlobalBehavior() && isMemOpUniform(Load) &&
3058                   isMemOpHasNoClobberedMemOperand(Load))
3059       return SDValue();
3060     // Non-uniform loads will be selected to MUBUF instructions, so they
3061     // have the same legalization requirements as global and private
3062     // loads.
3063     //
3064     LLVM_FALLTHROUGH;
3065   case AMDGPUAS::FLAT_ADDRESS:
3066     if (NumElements > 4)
3067       return SplitVectorLoad(Op, DAG);
3068     // v4 loads are supported for private and global memory.
3069     return SDValue();
3070   case AMDGPUAS::PRIVATE_ADDRESS:
3071     // Depending on the setting of the private_element_size field in the
3072     // resource descriptor, we can only make private accesses up to a certain
3073     // size.
3074     switch (Subtarget->getMaxPrivateElementSize()) {
3075     case 4:
3076       return scalarizeVectorLoad(Load, DAG);
3077     case 8:
3078       if (NumElements > 2)
3079         return SplitVectorLoad(Op, DAG);
3080       return SDValue();
3081     case 16:
3082       // Same as global/flat
3083       if (NumElements > 4)
3084         return SplitVectorLoad(Op, DAG);
3085       return SDValue();
3086     default:
3087       llvm_unreachable("unsupported private_element_size");
3088     }
3089   case AMDGPUAS::LOCAL_ADDRESS:
3090     if (NumElements > 2)
3091       return SplitVectorLoad(Op, DAG);
3092 
3093     if (NumElements == 2)
3094       return SDValue();
3095 
3096     // If properly aligned, if we split we might be able to use ds_read_b64.
3097     return SplitVectorLoad(Op, DAG);
3098   default:
3099     return SDValue();
3100   }
3101 }
3102 
3103 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3104   if (Op.getValueType() != MVT::i64)
3105     return SDValue();
3106 
3107   SDLoc DL(Op);
3108   SDValue Cond = Op.getOperand(0);
3109 
3110   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
3111   SDValue One = DAG.getConstant(1, DL, MVT::i32);
3112 
3113   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
3114   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
3115 
3116   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
3117   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
3118 
3119   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
3120 
3121   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
3122   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
3123 
3124   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
3125 
3126   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
3127   return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
3128 }
3129 
3130 // Catch division cases where we can use shortcuts with rcp and rsq
3131 // instructions.
3132 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
3133                                               SelectionDAG &DAG) const {
3134   SDLoc SL(Op);
3135   SDValue LHS = Op.getOperand(0);
3136   SDValue RHS = Op.getOperand(1);
3137   EVT VT = Op.getValueType();
3138   bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
3139 
3140   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
3141     if (Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
3142         VT == MVT::f16) {
3143       if (CLHS->isExactlyValue(1.0)) {
3144         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
3145         // the CI documentation has a worst case error of 1 ulp.
3146         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
3147         // use it as long as we aren't trying to use denormals.
3148         //
3149         // v_rcp_f16 and v_rsq_f16 DO support denormals.
3150 
3151         // 1.0 / sqrt(x) -> rsq(x)
3152 
3153         // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
3154         // error seems really high at 2^29 ULP.
3155         if (RHS.getOpcode() == ISD::FSQRT)
3156           return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
3157 
3158         // 1.0 / x -> rcp(x)
3159         return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
3160       }
3161 
3162       // Same as for 1.0, but expand the sign out of the constant.
3163       if (CLHS->isExactlyValue(-1.0)) {
3164         // -1.0 / x -> rcp (fneg x)
3165         SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3166         return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
3167       }
3168     }
3169   }
3170 
3171   const SDNodeFlags *Flags = Op->getFlags();
3172 
3173   if (Unsafe || Flags->hasAllowReciprocal()) {
3174     // Turn into multiply by the reciprocal.
3175     // x / y -> x * (1.0 / y)
3176     SDNodeFlags Flags;
3177     Flags.setUnsafeAlgebra(true);
3178     SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
3179     return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags);
3180   }
3181 
3182   return SDValue();
3183 }
3184 
3185 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
3186                           EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
3187   if (GlueChain->getNumValues() <= 1) {
3188     return DAG.getNode(Opcode, SL, VT, A, B);
3189   }
3190 
3191   assert(GlueChain->getNumValues() == 3);
3192 
3193   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
3194   switch (Opcode) {
3195   default: llvm_unreachable("no chain equivalent for opcode");
3196   case ISD::FMUL:
3197     Opcode = AMDGPUISD::FMUL_W_CHAIN;
3198     break;
3199   }
3200 
3201   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
3202                      GlueChain.getValue(2));
3203 }
3204 
3205 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
3206                            EVT VT, SDValue A, SDValue B, SDValue C,
3207                            SDValue GlueChain) {
3208   if (GlueChain->getNumValues() <= 1) {
3209     return DAG.getNode(Opcode, SL, VT, A, B, C);
3210   }
3211 
3212   assert(GlueChain->getNumValues() == 3);
3213 
3214   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
3215   switch (Opcode) {
3216   default: llvm_unreachable("no chain equivalent for opcode");
3217   case ISD::FMA:
3218     Opcode = AMDGPUISD::FMA_W_CHAIN;
3219     break;
3220   }
3221 
3222   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
3223                      GlueChain.getValue(2));
3224 }
3225 
3226 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
3227   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
3228     return FastLowered;
3229 
3230   SDLoc SL(Op);
3231   SDValue Src0 = Op.getOperand(0);
3232   SDValue Src1 = Op.getOperand(1);
3233 
3234   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
3235   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
3236 
3237   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
3238   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
3239 
3240   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
3241   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
3242 
3243   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
3244 }
3245 
3246 // Faster 2.5 ULP division that does not support denormals.
3247 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
3248   SDLoc SL(Op);
3249   SDValue LHS = Op.getOperand(1);
3250   SDValue RHS = Op.getOperand(2);
3251 
3252   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
3253 
3254   const APFloat K0Val(BitsToFloat(0x6f800000));
3255   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
3256 
3257   const APFloat K1Val(BitsToFloat(0x2f800000));
3258   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
3259 
3260   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
3261 
3262   EVT SetCCVT =
3263     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
3264 
3265   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
3266 
3267   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
3268 
3269   // TODO: Should this propagate fast-math-flags?
3270   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
3271 
3272   // rcp does not support denormals.
3273   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
3274 
3275   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
3276 
3277   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
3278 }
3279 
3280 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
3281   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
3282     return FastLowered;
3283 
3284   SDLoc SL(Op);
3285   SDValue LHS = Op.getOperand(0);
3286   SDValue RHS = Op.getOperand(1);
3287 
3288   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
3289 
3290   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
3291 
3292   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
3293                                           RHS, RHS, LHS);
3294   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
3295                                         LHS, RHS, LHS);
3296 
3297   // Denominator is scaled to not be denormal, so using rcp is ok.
3298   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
3299                                   DenominatorScaled);
3300   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
3301                                      DenominatorScaled);
3302 
3303   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
3304                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
3305                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
3306 
3307   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
3308 
3309   if (!Subtarget->hasFP32Denormals()) {
3310     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
3311     const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
3312                                                       SL, MVT::i32);
3313     SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
3314                                        DAG.getEntryNode(),
3315                                        EnableDenormValue, BitField);
3316     SDValue Ops[3] = {
3317       NegDivScale0,
3318       EnableDenorm.getValue(0),
3319       EnableDenorm.getValue(1)
3320     };
3321 
3322     NegDivScale0 = DAG.getMergeValues(Ops, SL);
3323   }
3324 
3325   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
3326                              ApproxRcp, One, NegDivScale0);
3327 
3328   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
3329                              ApproxRcp, Fma0);
3330 
3331   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
3332                            Fma1, Fma1);
3333 
3334   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
3335                              NumeratorScaled, Mul);
3336 
3337   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
3338 
3339   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
3340                              NumeratorScaled, Fma3);
3341 
3342   if (!Subtarget->hasFP32Denormals()) {
3343     const SDValue DisableDenormValue =
3344         DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
3345     SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
3346                                         Fma4.getValue(1),
3347                                         DisableDenormValue,
3348                                         BitField,
3349                                         Fma4.getValue(2));
3350 
3351     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
3352                                       DisableDenorm, DAG.getRoot());
3353     DAG.setRoot(OutputChain);
3354   }
3355 
3356   SDValue Scale = NumeratorScaled.getValue(1);
3357   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
3358                              Fma4, Fma1, Fma3, Scale);
3359 
3360   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
3361 }
3362 
3363 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
3364   if (DAG.getTarget().Options.UnsafeFPMath)
3365     return lowerFastUnsafeFDIV(Op, DAG);
3366 
3367   SDLoc SL(Op);
3368   SDValue X = Op.getOperand(0);
3369   SDValue Y = Op.getOperand(1);
3370 
3371   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
3372 
3373   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
3374 
3375   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
3376 
3377   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
3378 
3379   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
3380 
3381   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
3382 
3383   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
3384 
3385   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
3386 
3387   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
3388 
3389   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
3390   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
3391 
3392   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
3393                              NegDivScale0, Mul, DivScale1);
3394 
3395   SDValue Scale;
3396 
3397   if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
3398     // Workaround a hardware bug on SI where the condition output from div_scale
3399     // is not usable.
3400 
3401     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
3402 
3403     // Figure out if the scale to use for div_fmas.
3404     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
3405     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
3406     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
3407     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
3408 
3409     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
3410     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
3411 
3412     SDValue Scale0Hi
3413       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
3414     SDValue Scale1Hi
3415       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
3416 
3417     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
3418     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
3419     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
3420   } else {
3421     Scale = DivScale1.getValue(1);
3422   }
3423 
3424   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
3425                              Fma4, Fma3, Mul, Scale);
3426 
3427   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
3428 }
3429 
3430 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
3431   EVT VT = Op.getValueType();
3432 
3433   if (VT == MVT::f32)
3434     return LowerFDIV32(Op, DAG);
3435 
3436   if (VT == MVT::f64)
3437     return LowerFDIV64(Op, DAG);
3438 
3439   if (VT == MVT::f16)
3440     return LowerFDIV16(Op, DAG);
3441 
3442   llvm_unreachable("Unexpected type for fdiv");
3443 }
3444 
3445 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
3446   SDLoc DL(Op);
3447   StoreSDNode *Store = cast<StoreSDNode>(Op);
3448   EVT VT = Store->getMemoryVT();
3449 
3450   if (VT == MVT::i1) {
3451     return DAG.getTruncStore(Store->getChain(), DL,
3452        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
3453        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
3454   }
3455 
3456   assert(VT.isVector() &&
3457          Store->getValue().getValueType().getScalarType() == MVT::i32);
3458 
3459   unsigned AS = Store->getAddressSpace();
3460   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
3461                           AS, Store->getAlignment())) {
3462     return expandUnalignedStore(Store, DAG);
3463   }
3464 
3465   MachineFunction &MF = DAG.getMachineFunction();
3466   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
3467   // If there is a possibilty that flat instruction access scratch memory
3468   // then we need to use the same legalization rules we use for private.
3469   if (AS == AMDGPUAS::FLAT_ADDRESS)
3470     AS = MFI->hasFlatScratchInit() ?
3471          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
3472 
3473   unsigned NumElements = VT.getVectorNumElements();
3474   switch (AS) {
3475   case AMDGPUAS::GLOBAL_ADDRESS:
3476   case AMDGPUAS::FLAT_ADDRESS:
3477     if (NumElements > 4)
3478       return SplitVectorStore(Op, DAG);
3479     return SDValue();
3480   case AMDGPUAS::PRIVATE_ADDRESS: {
3481     switch (Subtarget->getMaxPrivateElementSize()) {
3482     case 4:
3483       return scalarizeVectorStore(Store, DAG);
3484     case 8:
3485       if (NumElements > 2)
3486         return SplitVectorStore(Op, DAG);
3487       return SDValue();
3488     case 16:
3489       if (NumElements > 4)
3490         return SplitVectorStore(Op, DAG);
3491       return SDValue();
3492     default:
3493       llvm_unreachable("unsupported private_element_size");
3494     }
3495   }
3496   case AMDGPUAS::LOCAL_ADDRESS: {
3497     if (NumElements > 2)
3498       return SplitVectorStore(Op, DAG);
3499 
3500     if (NumElements == 2)
3501       return Op;
3502 
3503     // If properly aligned, if we split we might be able to use ds_write_b64.
3504     return SplitVectorStore(Op, DAG);
3505   }
3506   default:
3507     llvm_unreachable("unhandled address space");
3508   }
3509 }
3510 
3511 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
3512   SDLoc DL(Op);
3513   EVT VT = Op.getValueType();
3514   SDValue Arg = Op.getOperand(0);
3515   // TODO: Should this propagate fast-math-flags?
3516   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
3517                                   DAG.getNode(ISD::FMUL, DL, VT, Arg,
3518                                               DAG.getConstantFP(0.5/M_PI, DL,
3519                                                                 VT)));
3520 
3521   switch (Op.getOpcode()) {
3522   case ISD::FCOS:
3523     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
3524   case ISD::FSIN:
3525     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
3526   default:
3527     llvm_unreachable("Wrong trig opcode");
3528   }
3529 }
3530 
3531 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
3532   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
3533   assert(AtomicNode->isCompareAndSwap());
3534   unsigned AS = AtomicNode->getAddressSpace();
3535 
3536   // No custom lowering required for local address space
3537   if (!isFlatGlobalAddrSpace(AS))
3538     return Op;
3539 
3540   // Non-local address space requires custom lowering for atomic compare
3541   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
3542   SDLoc DL(Op);
3543   SDValue ChainIn = Op.getOperand(0);
3544   SDValue Addr = Op.getOperand(1);
3545   SDValue Old = Op.getOperand(2);
3546   SDValue New = Op.getOperand(3);
3547   EVT VT = Op.getValueType();
3548   MVT SimpleVT = VT.getSimpleVT();
3549   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
3550 
3551   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
3552   SDValue Ops[] = { ChainIn, Addr, NewOld };
3553 
3554   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
3555                                  Ops, VT, AtomicNode->getMemOperand());
3556 }
3557 
3558 //===----------------------------------------------------------------------===//
3559 // Custom DAG optimizations
3560 //===----------------------------------------------------------------------===//
3561 
3562 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
3563                                                      DAGCombinerInfo &DCI) const {
3564   EVT VT = N->getValueType(0);
3565   EVT ScalarVT = VT.getScalarType();
3566   if (ScalarVT != MVT::f32)
3567     return SDValue();
3568 
3569   SelectionDAG &DAG = DCI.DAG;
3570   SDLoc DL(N);
3571 
3572   SDValue Src = N->getOperand(0);
3573   EVT SrcVT = Src.getValueType();
3574 
3575   // TODO: We could try to match extracting the higher bytes, which would be
3576   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
3577   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
3578   // about in practice.
3579   if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
3580     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
3581       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
3582       DCI.AddToWorklist(Cvt.getNode());
3583       return Cvt;
3584     }
3585   }
3586 
3587   return SDValue();
3588 }
3589 
3590 /// \brief Return true if the given offset Size in bytes can be folded into
3591 /// the immediate offsets of a memory instruction for the given address space.
3592 static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
3593                           const SISubtarget &STI) {
3594   switch (AS) {
3595   case AMDGPUAS::GLOBAL_ADDRESS:
3596     // MUBUF instructions a 12-bit offset in bytes.
3597     return isUInt<12>(OffsetSize);
3598   case AMDGPUAS::CONSTANT_ADDRESS:
3599     // SMRD instructions have an 8-bit offset in dwords on SI and
3600     // a 20-bit offset in bytes on VI.
3601     if (STI.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
3602       return isUInt<20>(OffsetSize);
3603     else
3604       return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
3605   case AMDGPUAS::LOCAL_ADDRESS:
3606   case AMDGPUAS::REGION_ADDRESS:
3607     // The single offset versions have a 16-bit offset in bytes.
3608     return isUInt<16>(OffsetSize);
3609   case AMDGPUAS::PRIVATE_ADDRESS:
3610   // Indirect register addressing does not use any offsets.
3611   default:
3612     return false;
3613   }
3614 }
3615 
3616 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
3617 
3618 // This is a variant of
3619 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
3620 //
3621 // The normal DAG combiner will do this, but only if the add has one use since
3622 // that would increase the number of instructions.
3623 //
3624 // This prevents us from seeing a constant offset that can be folded into a
3625 // memory instruction's addressing mode. If we know the resulting add offset of
3626 // a pointer can be folded into an addressing offset, we can replace the pointer
3627 // operand with the add of new constant offset. This eliminates one of the uses,
3628 // and may allow the remaining use to also be simplified.
3629 //
3630 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
3631                                                unsigned AddrSpace,
3632                                                DAGCombinerInfo &DCI) const {
3633   SDValue N0 = N->getOperand(0);
3634   SDValue N1 = N->getOperand(1);
3635 
3636   if (N0.getOpcode() != ISD::ADD)
3637     return SDValue();
3638 
3639   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
3640   if (!CN1)
3641     return SDValue();
3642 
3643   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3644   if (!CAdd)
3645     return SDValue();
3646 
3647   // If the resulting offset is too large, we can't fold it into the addressing
3648   // mode offset.
3649   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
3650   if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *getSubtarget()))
3651     return SDValue();
3652 
3653   SelectionDAG &DAG = DCI.DAG;
3654   SDLoc SL(N);
3655   EVT VT = N->getValueType(0);
3656 
3657   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
3658   SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
3659 
3660   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
3661 }
3662 
3663 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
3664                                                   DAGCombinerInfo &DCI) const {
3665   SDValue Ptr = N->getBasePtr();
3666   SelectionDAG &DAG = DCI.DAG;
3667   SDLoc SL(N);
3668 
3669   // TODO: We could also do this for multiplies.
3670   unsigned AS = N->getAddressSpace();
3671   if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
3672     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
3673     if (NewPtr) {
3674       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
3675 
3676       NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
3677       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
3678     }
3679   }
3680 
3681   return SDValue();
3682 }
3683 
3684 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
3685   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
3686          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
3687          (Opc == ISD::XOR && Val == 0);
3688 }
3689 
3690 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
3691 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
3692 // integer combine opportunities since most 64-bit operations are decomposed
3693 // this way.  TODO: We won't want this for SALU especially if it is an inline
3694 // immediate.
3695 SDValue SITargetLowering::splitBinaryBitConstantOp(
3696   DAGCombinerInfo &DCI,
3697   const SDLoc &SL,
3698   unsigned Opc, SDValue LHS,
3699   const ConstantSDNode *CRHS) const {
3700   uint64_t Val = CRHS->getZExtValue();
3701   uint32_t ValLo = Lo_32(Val);
3702   uint32_t ValHi = Hi_32(Val);
3703   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3704 
3705     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
3706          bitOpWithConstantIsReducible(Opc, ValHi)) ||
3707         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
3708     // If we need to materialize a 64-bit immediate, it will be split up later
3709     // anyway. Avoid creating the harder to understand 64-bit immediate
3710     // materialization.
3711     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
3712   }
3713 
3714   return SDValue();
3715 }
3716 
3717 SDValue SITargetLowering::performAndCombine(SDNode *N,
3718                                             DAGCombinerInfo &DCI) const {
3719   if (DCI.isBeforeLegalize())
3720     return SDValue();
3721 
3722   SelectionDAG &DAG = DCI.DAG;
3723   EVT VT = N->getValueType(0);
3724   SDValue LHS = N->getOperand(0);
3725   SDValue RHS = N->getOperand(1);
3726 
3727 
3728   if (VT == MVT::i64) {
3729     const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
3730     if (CRHS) {
3731       if (SDValue Split
3732           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
3733         return Split;
3734     }
3735   }
3736 
3737   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
3738   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
3739   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
3740     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
3741     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
3742 
3743     SDValue X = LHS.getOperand(0);
3744     SDValue Y = RHS.getOperand(0);
3745     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
3746       return SDValue();
3747 
3748     if (LCC == ISD::SETO) {
3749       if (X != LHS.getOperand(1))
3750         return SDValue();
3751 
3752       if (RCC == ISD::SETUNE) {
3753         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
3754         if (!C1 || !C1->isInfinity() || C1->isNegative())
3755           return SDValue();
3756 
3757         const uint32_t Mask = SIInstrFlags::N_NORMAL |
3758                               SIInstrFlags::N_SUBNORMAL |
3759                               SIInstrFlags::N_ZERO |
3760                               SIInstrFlags::P_ZERO |
3761                               SIInstrFlags::P_SUBNORMAL |
3762                               SIInstrFlags::P_NORMAL;
3763 
3764         static_assert(((~(SIInstrFlags::S_NAN |
3765                           SIInstrFlags::Q_NAN |
3766                           SIInstrFlags::N_INFINITY |
3767                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
3768                       "mask not equal");
3769 
3770         SDLoc DL(N);
3771         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
3772                            X, DAG.getConstant(Mask, DL, MVT::i32));
3773       }
3774     }
3775   }
3776 
3777   return SDValue();
3778 }
3779 
3780 SDValue SITargetLowering::performOrCombine(SDNode *N,
3781                                            DAGCombinerInfo &DCI) const {
3782   SelectionDAG &DAG = DCI.DAG;
3783   SDValue LHS = N->getOperand(0);
3784   SDValue RHS = N->getOperand(1);
3785 
3786   EVT VT = N->getValueType(0);
3787   if (VT == MVT::i1) {
3788     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
3789     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
3790         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
3791       SDValue Src = LHS.getOperand(0);
3792       if (Src != RHS.getOperand(0))
3793         return SDValue();
3794 
3795       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
3796       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
3797       if (!CLHS || !CRHS)
3798         return SDValue();
3799 
3800       // Only 10 bits are used.
3801       static const uint32_t MaxMask = 0x3ff;
3802 
3803       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
3804       SDLoc DL(N);
3805       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
3806                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
3807     }
3808 
3809     return SDValue();
3810   }
3811 
3812   if (VT != MVT::i64)
3813     return SDValue();
3814 
3815   // TODO: This could be a generic combine with a predicate for extracting the
3816   // high half of an integer being free.
3817 
3818   // (or i64:x, (zero_extend i32:y)) ->
3819   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
3820   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
3821       RHS.getOpcode() != ISD::ZERO_EXTEND)
3822     std::swap(LHS, RHS);
3823 
3824   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
3825     SDValue ExtSrc = RHS.getOperand(0);
3826     EVT SrcVT = ExtSrc.getValueType();
3827     if (SrcVT == MVT::i32) {
3828       SDLoc SL(N);
3829       SDValue LowLHS, HiBits;
3830       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
3831       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
3832 
3833       DCI.AddToWorklist(LowOr.getNode());
3834       DCI.AddToWorklist(HiBits.getNode());
3835 
3836       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3837                                 LowOr, HiBits);
3838       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3839     }
3840   }
3841 
3842   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3843   if (CRHS) {
3844     if (SDValue Split
3845           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
3846       return Split;
3847   }
3848 
3849   return SDValue();
3850 }
3851 
3852 SDValue SITargetLowering::performXorCombine(SDNode *N,
3853                                             DAGCombinerInfo &DCI) const {
3854   EVT VT = N->getValueType(0);
3855   if (VT != MVT::i64)
3856     return SDValue();
3857 
3858   SDValue LHS = N->getOperand(0);
3859   SDValue RHS = N->getOperand(1);
3860 
3861   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
3862   if (CRHS) {
3863     if (SDValue Split
3864           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
3865       return Split;
3866   }
3867 
3868   return SDValue();
3869 }
3870 
3871 SDValue SITargetLowering::performClassCombine(SDNode *N,
3872                                               DAGCombinerInfo &DCI) const {
3873   SelectionDAG &DAG = DCI.DAG;
3874   SDValue Mask = N->getOperand(1);
3875 
3876   // fp_class x, 0 -> false
3877   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
3878     if (CMask->isNullValue())
3879       return DAG.getConstant(0, SDLoc(N), MVT::i1);
3880   }
3881 
3882   if (N->getOperand(0).isUndef())
3883     return DAG.getUNDEF(MVT::i1);
3884 
3885   return SDValue();
3886 }
3887 
3888 // Constant fold canonicalize.
3889 SDValue SITargetLowering::performFCanonicalizeCombine(
3890   SDNode *N,
3891   DAGCombinerInfo &DCI) const {
3892   ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3893   if (!CFP)
3894     return SDValue();
3895 
3896   SelectionDAG &DAG = DCI.DAG;
3897   const APFloat &C = CFP->getValueAPF();
3898 
3899   // Flush denormals to 0 if not enabled.
3900   if (C.isDenormal()) {
3901     EVT VT = N->getValueType(0);
3902     if (VT == MVT::f32 && !Subtarget->hasFP32Denormals())
3903       return DAG.getConstantFP(0.0, SDLoc(N), VT);
3904 
3905     if (VT == MVT::f64 && !Subtarget->hasFP64Denormals())
3906       return DAG.getConstantFP(0.0, SDLoc(N), VT);
3907 
3908     if (VT == MVT::f16 && !Subtarget->hasFP16Denormals())
3909       return DAG.getConstantFP(0.0, SDLoc(N), VT);
3910   }
3911 
3912   if (C.isNaN()) {
3913     EVT VT = N->getValueType(0);
3914     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
3915     if (C.isSignaling()) {
3916       // Quiet a signaling NaN.
3917       return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
3918     }
3919 
3920     // Make sure it is the canonical NaN bitpattern.
3921     //
3922     // TODO: Can we use -1 as the canonical NaN value since it's an inline
3923     // immediate?
3924     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
3925       return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
3926   }
3927 
3928   return SDValue(CFP, 0);
3929 }
3930 
3931 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
3932   switch (Opc) {
3933   case ISD::FMAXNUM:
3934     return AMDGPUISD::FMAX3;
3935   case ISD::SMAX:
3936     return AMDGPUISD::SMAX3;
3937   case ISD::UMAX:
3938     return AMDGPUISD::UMAX3;
3939   case ISD::FMINNUM:
3940     return AMDGPUISD::FMIN3;
3941   case ISD::SMIN:
3942     return AMDGPUISD::SMIN3;
3943   case ISD::UMIN:
3944     return AMDGPUISD::UMIN3;
3945   default:
3946     llvm_unreachable("Not a min/max opcode");
3947   }
3948 }
3949 
3950 static SDValue performIntMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL,
3951                                         SDValue Op0, SDValue Op1, bool Signed) {
3952   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
3953   if (!K1)
3954     return SDValue();
3955 
3956   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
3957   if (!K0)
3958     return SDValue();
3959 
3960   if (Signed) {
3961     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
3962       return SDValue();
3963   } else {
3964     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
3965       return SDValue();
3966   }
3967 
3968   EVT VT = K0->getValueType(0);
3969 
3970   MVT NVT = MVT::i32;
3971   unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3972 
3973   SDValue Tmp1, Tmp2, Tmp3;
3974   Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
3975   Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
3976   Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
3977 
3978   if (VT == MVT::i16) {
3979     Tmp1 = DAG.getNode(Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3, SL, NVT,
3980                        Tmp1, Tmp2, Tmp3);
3981 
3982     return DAG.getNode(ISD::TRUNCATE, SL, VT, Tmp1);
3983   } else
3984     return DAG.getNode(Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3, SL, VT,
3985                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
3986 }
3987 
3988 static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
3989   if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
3990     return true;
3991 
3992   return DAG.isKnownNeverNaN(Op);
3993 }
3994 
3995 static SDValue performFPMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL,
3996                                        SDValue Op0, SDValue Op1) {
3997   ConstantFPSDNode *K1 = dyn_cast<ConstantFPSDNode>(Op1);
3998   if (!K1)
3999     return SDValue();
4000 
4001   ConstantFPSDNode *K0 = dyn_cast<ConstantFPSDNode>(Op0.getOperand(1));
4002   if (!K0)
4003     return SDValue();
4004 
4005   // Ordered >= (although NaN inputs should have folded away by now).
4006   APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
4007   if (Cmp == APFloat::cmpGreaterThan)
4008     return SDValue();
4009 
4010   // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
4011   // signaling NaN gives a quiet NaN. The quiet NaN input to the min would then
4012   // give the other result, which is different from med3 with a NaN input.
4013   SDValue Var = Op0.getOperand(0);
4014   if (!isKnownNeverSNan(DAG, Var))
4015     return SDValue();
4016 
4017   return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
4018                      Var, SDValue(K0, 0), SDValue(K1, 0));
4019 }
4020 
4021 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
4022                                                DAGCombinerInfo &DCI) const {
4023   SelectionDAG &DAG = DCI.DAG;
4024 
4025   unsigned Opc = N->getOpcode();
4026   SDValue Op0 = N->getOperand(0);
4027   SDValue Op1 = N->getOperand(1);
4028 
4029   // Only do this if the inner op has one use since this will just increases
4030   // register pressure for no benefit.
4031 
4032   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY) {
4033     // max(max(a, b), c) -> max3(a, b, c)
4034     // min(min(a, b), c) -> min3(a, b, c)
4035     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
4036       SDLoc DL(N);
4037       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
4038                          DL,
4039                          N->getValueType(0),
4040                          Op0.getOperand(0),
4041                          Op0.getOperand(1),
4042                          Op1);
4043     }
4044 
4045     // Try commuted.
4046     // max(a, max(b, c)) -> max3(a, b, c)
4047     // min(a, min(b, c)) -> min3(a, b, c)
4048     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
4049       SDLoc DL(N);
4050       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
4051                          DL,
4052                          N->getValueType(0),
4053                          Op0,
4054                          Op1.getOperand(0),
4055                          Op1.getOperand(1));
4056     }
4057   }
4058 
4059   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
4060   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
4061     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
4062       return Med3;
4063   }
4064 
4065   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
4066     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
4067       return Med3;
4068   }
4069 
4070   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
4071   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
4072        (Opc == AMDGPUISD::FMIN_LEGACY &&
4073         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
4074       N->getValueType(0) == MVT::f32 && Op0.hasOneUse()) {
4075     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
4076       return Res;
4077   }
4078 
4079   return SDValue();
4080 }
4081 
4082 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
4083                                           const SDNode *N0,
4084                                           const SDNode *N1) const {
4085   EVT VT = N0->getValueType(0);
4086 
4087   // Only do this if we are not trying to support denormals. v_mad_f32 does not
4088   // support denormals ever.
4089   if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
4090       (VT == MVT::f16 && !Subtarget->hasFP16Denormals()))
4091     return ISD::FMAD;
4092 
4093   const TargetOptions &Options = DAG.getTarget().Options;
4094   if ((Options.AllowFPOpFusion == FPOpFusion::Fast ||
4095        Options.UnsafeFPMath ||
4096        (cast<BinaryWithFlagsSDNode>(N0)->Flags.hasUnsafeAlgebra() &&
4097         cast<BinaryWithFlagsSDNode>(N1)->Flags.hasUnsafeAlgebra())) &&
4098       isFMAFasterThanFMulAndFAdd(VT)) {
4099     return ISD::FMA;
4100   }
4101 
4102   return 0;
4103 }
4104 
4105 SDValue SITargetLowering::performFAddCombine(SDNode *N,
4106                                              DAGCombinerInfo &DCI) const {
4107   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4108     return SDValue();
4109 
4110   SelectionDAG &DAG = DCI.DAG;
4111   EVT VT = N->getValueType(0);
4112   assert(!VT.isVector());
4113 
4114   SDLoc SL(N);
4115   SDValue LHS = N->getOperand(0);
4116   SDValue RHS = N->getOperand(1);
4117 
4118   // These should really be instruction patterns, but writing patterns with
4119   // source modiifiers is a pain.
4120 
4121   // fadd (fadd (a, a), b) -> mad 2.0, a, b
4122   if (LHS.getOpcode() == ISD::FADD) {
4123     SDValue A = LHS.getOperand(0);
4124     if (A == LHS.getOperand(1)) {
4125       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
4126       if (FusedOp != 0) {
4127         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
4128         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
4129       }
4130     }
4131   }
4132 
4133   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
4134   if (RHS.getOpcode() == ISD::FADD) {
4135     SDValue A = RHS.getOperand(0);
4136     if (A == RHS.getOperand(1)) {
4137       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
4138       if (FusedOp != 0) {
4139         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
4140         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
4141       }
4142     }
4143   }
4144 
4145   return SDValue();
4146 }
4147 
4148 SDValue SITargetLowering::performFSubCombine(SDNode *N,
4149                                              DAGCombinerInfo &DCI) const {
4150   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4151     return SDValue();
4152 
4153   SelectionDAG &DAG = DCI.DAG;
4154   SDLoc SL(N);
4155   EVT VT = N->getValueType(0);
4156   assert(!VT.isVector());
4157 
4158   // Try to get the fneg to fold into the source modifier. This undoes generic
4159   // DAG combines and folds them into the mad.
4160   //
4161   // Only do this if we are not trying to support denormals. v_mad_f32 does
4162   // not support denormals ever.
4163   SDValue LHS = N->getOperand(0);
4164   SDValue RHS = N->getOperand(1);
4165   if (LHS.getOpcode() == ISD::FADD) {
4166     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
4167     SDValue A = LHS.getOperand(0);
4168     if (A == LHS.getOperand(1)) {
4169       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
4170       if (FusedOp != 0){
4171         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
4172         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
4173 
4174         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
4175       }
4176     }
4177   }
4178 
4179   if (RHS.getOpcode() == ISD::FADD) {
4180     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
4181 
4182     SDValue A = RHS.getOperand(0);
4183     if (A == RHS.getOperand(1)) {
4184       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
4185       if (FusedOp != 0){
4186         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
4187         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
4188       }
4189     }
4190   }
4191 
4192   return SDValue();
4193 }
4194 
4195 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
4196                                               DAGCombinerInfo &DCI) const {
4197   SelectionDAG &DAG = DCI.DAG;
4198   SDLoc SL(N);
4199 
4200   SDValue LHS = N->getOperand(0);
4201   SDValue RHS = N->getOperand(1);
4202   EVT VT = LHS.getValueType();
4203 
4204   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
4205                                            VT != MVT::f16))
4206     return SDValue();
4207 
4208   // Match isinf pattern
4209   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
4210   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
4211   if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
4212     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
4213     if (!CRHS)
4214       return SDValue();
4215 
4216     const APFloat &APF = CRHS->getValueAPF();
4217     if (APF.isInfinity() && !APF.isNegative()) {
4218       unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
4219       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
4220                          DAG.getConstant(Mask, SL, MVT::i32));
4221     }
4222   }
4223 
4224   return SDValue();
4225 }
4226 
4227 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
4228                                                      DAGCombinerInfo &DCI) const {
4229   SelectionDAG &DAG = DCI.DAG;
4230   SDLoc SL(N);
4231   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
4232 
4233   SDValue Src = N->getOperand(0);
4234   SDValue Srl = N->getOperand(0);
4235   if (Srl.getOpcode() == ISD::ZERO_EXTEND)
4236     Srl = Srl.getOperand(0);
4237 
4238   // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
4239   if (Srl.getOpcode() == ISD::SRL) {
4240     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
4241     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
4242     // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
4243 
4244     if (const ConstantSDNode *C =
4245         dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
4246       Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
4247                                EVT(MVT::i32));
4248 
4249       unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
4250       if (SrcOffset < 32 && SrcOffset % 8 == 0) {
4251         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
4252                            MVT::f32, Srl);
4253       }
4254     }
4255   }
4256 
4257   APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
4258 
4259   APInt KnownZero, KnownOne;
4260   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4261                                         !DCI.isBeforeLegalizeOps());
4262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4263   if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
4264       TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
4265     DCI.CommitTargetLoweringOpt(TLO);
4266   }
4267 
4268   return SDValue();
4269 }
4270 
4271 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
4272                                             DAGCombinerInfo &DCI) const {
4273   switch (N->getOpcode()) {
4274   default:
4275     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
4276   case ISD::FADD:
4277     return performFAddCombine(N, DCI);
4278   case ISD::FSUB:
4279     return performFSubCombine(N, DCI);
4280   case ISD::SETCC:
4281     return performSetCCCombine(N, DCI);
4282   case ISD::FMAXNUM:
4283   case ISD::FMINNUM:
4284   case ISD::SMAX:
4285   case ISD::SMIN:
4286   case ISD::UMAX:
4287   case ISD::UMIN:
4288   case AMDGPUISD::FMIN_LEGACY:
4289   case AMDGPUISD::FMAX_LEGACY: {
4290     if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
4291         N->getValueType(0) != MVT::f64 &&
4292         getTargetMachine().getOptLevel() > CodeGenOpt::None)
4293       return performMinMaxCombine(N, DCI);
4294     break;
4295   }
4296   case ISD::LOAD:
4297   case ISD::STORE:
4298   case ISD::ATOMIC_LOAD:
4299   case ISD::ATOMIC_STORE:
4300   case ISD::ATOMIC_CMP_SWAP:
4301   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4302   case ISD::ATOMIC_SWAP:
4303   case ISD::ATOMIC_LOAD_ADD:
4304   case ISD::ATOMIC_LOAD_SUB:
4305   case ISD::ATOMIC_LOAD_AND:
4306   case ISD::ATOMIC_LOAD_OR:
4307   case ISD::ATOMIC_LOAD_XOR:
4308   case ISD::ATOMIC_LOAD_NAND:
4309   case ISD::ATOMIC_LOAD_MIN:
4310   case ISD::ATOMIC_LOAD_MAX:
4311   case ISD::ATOMIC_LOAD_UMIN:
4312   case ISD::ATOMIC_LOAD_UMAX:
4313   case AMDGPUISD::ATOMIC_INC:
4314   case AMDGPUISD::ATOMIC_DEC: // TODO: Target mem intrinsics.
4315     if (DCI.isBeforeLegalize())
4316       break;
4317     return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
4318   case ISD::AND:
4319     return performAndCombine(N, DCI);
4320   case ISD::OR:
4321     return performOrCombine(N, DCI);
4322   case ISD::XOR:
4323     return performXorCombine(N, DCI);
4324   case AMDGPUISD::FP_CLASS:
4325     return performClassCombine(N, DCI);
4326   case ISD::FCANONICALIZE:
4327     return performFCanonicalizeCombine(N, DCI);
4328   case AMDGPUISD::FRACT:
4329   case AMDGPUISD::RCP:
4330   case AMDGPUISD::RSQ:
4331   case AMDGPUISD::RCP_LEGACY:
4332   case AMDGPUISD::RSQ_LEGACY:
4333   case AMDGPUISD::RSQ_CLAMP:
4334   case AMDGPUISD::LDEXP: {
4335     SDValue Src = N->getOperand(0);
4336     if (Src.isUndef())
4337       return Src;
4338     break;
4339   }
4340   case ISD::SINT_TO_FP:
4341   case ISD::UINT_TO_FP:
4342     return performUCharToFloatCombine(N, DCI);
4343   case AMDGPUISD::CVT_F32_UBYTE0:
4344   case AMDGPUISD::CVT_F32_UBYTE1:
4345   case AMDGPUISD::CVT_F32_UBYTE2:
4346   case AMDGPUISD::CVT_F32_UBYTE3:
4347     return performCvtF32UByteNCombine(N, DCI);
4348   }
4349   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
4350 }
4351 
4352 /// \brief Helper function for adjustWritemask
4353 static unsigned SubIdx2Lane(unsigned Idx) {
4354   switch (Idx) {
4355   default: return 0;
4356   case AMDGPU::sub0: return 0;
4357   case AMDGPU::sub1: return 1;
4358   case AMDGPU::sub2: return 2;
4359   case AMDGPU::sub3: return 3;
4360   }
4361 }
4362 
4363 /// \brief Adjust the writemask of MIMG instructions
4364 void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
4365                                        SelectionDAG &DAG) const {
4366   SDNode *Users[4] = { };
4367   unsigned Lane = 0;
4368   unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3;
4369   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
4370   unsigned NewDmask = 0;
4371 
4372   // Try to figure out the used register components
4373   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
4374        I != E; ++I) {
4375 
4376     // Abort if we can't understand the usage
4377     if (!I->isMachineOpcode() ||
4378         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
4379       return;
4380 
4381     // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
4382     // Note that subregs are packed, i.e. Lane==0 is the first bit set
4383     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
4384     // set, etc.
4385     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
4386 
4387     // Set which texture component corresponds to the lane.
4388     unsigned Comp;
4389     for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
4390       assert(Dmask);
4391       Comp = countTrailingZeros(Dmask);
4392       Dmask &= ~(1 << Comp);
4393     }
4394 
4395     // Abort if we have more than one user per component
4396     if (Users[Lane])
4397       return;
4398 
4399     Users[Lane] = *I;
4400     NewDmask |= 1 << Comp;
4401   }
4402 
4403   // Abort if there's no change
4404   if (NewDmask == OldDmask)
4405     return;
4406 
4407   // Adjust the writemask in the node
4408   std::vector<SDValue> Ops;
4409   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
4410   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
4411   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
4412   Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
4413 
4414   // If we only got one lane, replace it with a copy
4415   // (if NewDmask has only one bit set...)
4416   if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
4417     SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
4418                                        MVT::i32);
4419     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4420                                       SDLoc(), Users[Lane]->getValueType(0),
4421                                       SDValue(Node, 0), RC);
4422     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
4423     return;
4424   }
4425 
4426   // Update the users of the node with the new indices
4427   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
4428     SDNode *User = Users[i];
4429     if (!User)
4430       continue;
4431 
4432     SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
4433     DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
4434 
4435     switch (Idx) {
4436     default: break;
4437     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
4438     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
4439     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
4440     }
4441   }
4442 }
4443 
4444 static bool isFrameIndexOp(SDValue Op) {
4445   if (Op.getOpcode() == ISD::AssertZext)
4446     Op = Op.getOperand(0);
4447 
4448   return isa<FrameIndexSDNode>(Op);
4449 }
4450 
4451 /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
4452 /// with frame index operands.
4453 /// LLVM assumes that inputs are to these instructions are registers.
4454 void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
4455                                                      SelectionDAG &DAG) const {
4456 
4457   SmallVector<SDValue, 8> Ops;
4458   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
4459     if (!isFrameIndexOp(Node->getOperand(i))) {
4460       Ops.push_back(Node->getOperand(i));
4461       continue;
4462     }
4463 
4464     SDLoc DL(Node);
4465     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
4466                                      Node->getOperand(i).getValueType(),
4467                                      Node->getOperand(i)), 0));
4468   }
4469 
4470   DAG.UpdateNodeOperands(Node, Ops);
4471 }
4472 
4473 /// \brief Fold the instructions after selecting them.
4474 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
4475                                           SelectionDAG &DAG) const {
4476   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4477   unsigned Opcode = Node->getMachineOpcode();
4478 
4479   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
4480       !TII->isGather4(Opcode))
4481     adjustWritemask(Node, DAG);
4482 
4483   if (Opcode == AMDGPU::INSERT_SUBREG ||
4484       Opcode == AMDGPU::REG_SEQUENCE) {
4485     legalizeTargetIndependentNode(Node, DAG);
4486     return Node;
4487   }
4488   return Node;
4489 }
4490 
4491 /// \brief Assign the register class depending on the number of
4492 /// bits set in the writemask
4493 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
4494                                                      SDNode *Node) const {
4495   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4496 
4497   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4498 
4499   if (TII->isVOP3(MI.getOpcode())) {
4500     // Make sure constant bus requirements are respected.
4501     TII->legalizeOperandsVOP3(MRI, MI);
4502     return;
4503   }
4504 
4505   if (TII->isMIMG(MI)) {
4506     unsigned VReg = MI.getOperand(0).getReg();
4507     const TargetRegisterClass *RC = MRI.getRegClass(VReg);
4508     // TODO: Need mapping tables to handle other cases (register classes).
4509     if (RC != &AMDGPU::VReg_128RegClass)
4510       return;
4511 
4512     unsigned DmaskIdx = MI.getNumOperands() == 12 ? 3 : 4;
4513     unsigned Writemask = MI.getOperand(DmaskIdx).getImm();
4514     unsigned BitsSet = 0;
4515     for (unsigned i = 0; i < 4; ++i)
4516       BitsSet += Writemask & (1 << i) ? 1 : 0;
4517     switch (BitsSet) {
4518     default: return;
4519     case 1:  RC = &AMDGPU::VGPR_32RegClass; break;
4520     case 2:  RC = &AMDGPU::VReg_64RegClass; break;
4521     case 3:  RC = &AMDGPU::VReg_96RegClass; break;
4522     }
4523 
4524     unsigned NewOpcode = TII->getMaskedMIMGOp(MI.getOpcode(), BitsSet);
4525     MI.setDesc(TII->get(NewOpcode));
4526     MRI.setRegClass(VReg, RC);
4527     return;
4528   }
4529 
4530   // Replace unused atomics with the no return version.
4531   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
4532   if (NoRetAtomicOp != -1) {
4533     if (!Node->hasAnyUseOfValue(0)) {
4534       MI.setDesc(TII->get(NoRetAtomicOp));
4535       MI.RemoveOperand(0);
4536       return;
4537     }
4538 
4539     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
4540     // instruction, because the return type of these instructions is a vec2 of
4541     // the memory type, so it can be tied to the input operand.
4542     // This means these instructions always have a use, so we need to add a
4543     // special case to check if the atomic has only one extract_subreg use,
4544     // which itself has no uses.
4545     if ((Node->hasNUsesOfValue(1, 0) &&
4546          Node->use_begin()->isMachineOpcode() &&
4547          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
4548          !Node->use_begin()->hasAnyUseOfValue(0))) {
4549       unsigned Def = MI.getOperand(0).getReg();
4550 
4551       // Change this into a noret atomic.
4552       MI.setDesc(TII->get(NoRetAtomicOp));
4553       MI.RemoveOperand(0);
4554 
4555       // If we only remove the def operand from the atomic instruction, the
4556       // extract_subreg will be left with a use of a vreg without a def.
4557       // So we need to insert an implicit_def to avoid machine verifier
4558       // errors.
4559       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
4560               TII->get(AMDGPU::IMPLICIT_DEF), Def);
4561     }
4562     return;
4563   }
4564 }
4565 
4566 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
4567                               uint64_t Val) {
4568   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
4569   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
4570 }
4571 
4572 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
4573                                                 const SDLoc &DL,
4574                                                 SDValue Ptr) const {
4575   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4576 
4577   // Build the half of the subregister with the constants before building the
4578   // full 128-bit register. If we are building multiple resource descriptors,
4579   // this will allow CSEing of the 2-component register.
4580   const SDValue Ops0[] = {
4581     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
4582     buildSMovImm32(DAG, DL, 0),
4583     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
4584     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
4585     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
4586   };
4587 
4588   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
4589                                                 MVT::v2i32, Ops0), 0);
4590 
4591   // Combine the constants and the pointer.
4592   const SDValue Ops1[] = {
4593     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
4594     Ptr,
4595     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
4596     SubRegHi,
4597     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
4598   };
4599 
4600   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
4601 }
4602 
4603 /// \brief Return a resource descriptor with the 'Add TID' bit enabled
4604 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
4605 ///        of the resource descriptor) to create an offset, which is added to
4606 ///        the resource pointer.
4607 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
4608                                            SDValue Ptr, uint32_t RsrcDword1,
4609                                            uint64_t RsrcDword2And3) const {
4610   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
4611   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
4612   if (RsrcDword1) {
4613     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
4614                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
4615                     0);
4616   }
4617 
4618   SDValue DataLo = buildSMovImm32(DAG, DL,
4619                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
4620   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
4621 
4622   const SDValue Ops[] = {
4623     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
4624     PtrLo,
4625     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
4626     PtrHi,
4627     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
4628     DataLo,
4629     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
4630     DataHi,
4631     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
4632   };
4633 
4634   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
4635 }
4636 
4637 SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4638                                                const TargetRegisterClass *RC,
4639                                                unsigned Reg, EVT VT) const {
4640   SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
4641 
4642   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
4643                             cast<RegisterSDNode>(VReg)->getReg(), VT);
4644 }
4645 
4646 //===----------------------------------------------------------------------===//
4647 //                         SI Inline Assembly Support
4648 //===----------------------------------------------------------------------===//
4649 
4650 std::pair<unsigned, const TargetRegisterClass *>
4651 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4652                                                StringRef Constraint,
4653                                                MVT VT) const {
4654   if (!isTypeLegal(VT))
4655     return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4656 
4657   if (Constraint.size() == 1) {
4658     switch (Constraint[0]) {
4659     case 's':
4660     case 'r':
4661       switch (VT.getSizeInBits()) {
4662       default:
4663         return std::make_pair(0U, nullptr);
4664       case 32:
4665       case 16:
4666         return std::make_pair(0U, &AMDGPU::SReg_32_XM0RegClass);
4667       case 64:
4668         return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
4669       case 128:
4670         return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
4671       case 256:
4672         return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
4673       }
4674 
4675     case 'v':
4676       switch (VT.getSizeInBits()) {
4677       default:
4678         return std::make_pair(0U, nullptr);
4679       case 32:
4680       case 16:
4681         return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
4682       case 64:
4683         return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
4684       case 96:
4685         return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
4686       case 128:
4687         return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
4688       case 256:
4689         return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
4690       case 512:
4691         return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
4692       }
4693     }
4694   }
4695 
4696   if (Constraint.size() > 1) {
4697     const TargetRegisterClass *RC = nullptr;
4698     if (Constraint[1] == 'v') {
4699       RC = &AMDGPU::VGPR_32RegClass;
4700     } else if (Constraint[1] == 's') {
4701       RC = &AMDGPU::SGPR_32RegClass;
4702     }
4703 
4704     if (RC) {
4705       uint32_t Idx;
4706       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
4707       if (!Failed && Idx < RC->getNumRegs())
4708         return std::make_pair(RC->getRegister(Idx), RC);
4709     }
4710   }
4711   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4712 }
4713 
4714 SITargetLowering::ConstraintType
4715 SITargetLowering::getConstraintType(StringRef Constraint) const {
4716   if (Constraint.size() == 1) {
4717     switch (Constraint[0]) {
4718     default: break;
4719     case 's':
4720     case 'v':
4721       return C_RegisterClass;
4722     }
4723   }
4724   return TargetLowering::getConstraintType(Constraint);
4725 }
4726