1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #if defined(_MSC_VER) || defined(__MINGW32__) 15 // Provide M_PI. 16 #define _USE_MATH_DEFINES 17 #endif 18 19 #include "SIISelLowering.h" 20 #include "AMDGPU.h" 21 #include "AMDGPUSubtarget.h" 22 #include "AMDGPUTargetMachine.h" 23 #include "SIDefines.h" 24 #include "SIInstrInfo.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIRegisterInfo.h" 27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 28 #include "Utils/AMDGPUBaseInfo.h" 29 #include "llvm/ADT/APFloat.h" 30 #include "llvm/ADT/APInt.h" 31 #include "llvm/ADT/ArrayRef.h" 32 #include "llvm/ADT/BitVector.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/CallingConvLower.h" 40 #include "llvm/CodeGen/DAGCombine.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineModuleInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetCallingConv.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/ValueTypes.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/DebugLoc.h" 59 #include "llvm/IR/DerivedTypes.h" 60 #include "llvm/IR/DiagnosticInfo.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/GlobalValue.h" 63 #include "llvm/IR/InstrTypes.h" 64 #include "llvm/IR/Instruction.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/CodeGen.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/ErrorHandling.h" 73 #include "llvm/Support/KnownBits.h" 74 #include "llvm/Support/MachineValueType.h" 75 #include "llvm/Support/MathExtras.h" 76 #include "llvm/Target/TargetOptions.h" 77 #include <cassert> 78 #include <cmath> 79 #include <cstdint> 80 #include <iterator> 81 #include <tuple> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 #define DEBUG_TYPE "si-lower" 88 89 STATISTIC(NumTailCalls, "Number of tail calls"); 90 91 static cl::opt<bool> EnableVGPRIndexMode( 92 "amdgpu-vgpr-index-mode", 93 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), 94 cl::init(false)); 95 96 static cl::opt<bool> DisableLoopAlignment( 97 "amdgpu-disable-loop-alignment", 98 cl::desc("Do not align and prefetch loops"), 99 cl::init(false)); 100 101 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 102 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 103 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 104 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 105 return AMDGPU::SGPR0 + Reg; 106 } 107 } 108 llvm_unreachable("Cannot allocate sgpr"); 109 } 110 111 SITargetLowering::SITargetLowering(const TargetMachine &TM, 112 const GCNSubtarget &STI) 113 : AMDGPUTargetLowering(TM, STI), 114 Subtarget(&STI) { 115 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 116 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 117 118 addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass); 119 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 120 121 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); 122 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 123 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); 124 125 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 126 addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass); 127 128 addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass); 129 addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass); 130 131 addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); 132 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); 133 134 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 135 addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass); 136 137 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); 138 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); 139 140 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass); 141 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); 142 143 if (Subtarget->has16BitInsts()) { 144 addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass); 145 addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass); 146 147 // Unless there are also VOP3P operations, not operations are really legal. 148 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass); 149 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass); 150 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 151 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 152 } 153 154 if (Subtarget->hasMAIInsts()) { 155 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 156 addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass); 157 } 158 159 computeRegisterProperties(Subtarget->getRegisterInfo()); 160 161 // We need to custom lower vector stores from local memory 162 setOperationAction(ISD::LOAD, MVT::v2i32, Custom); 163 setOperationAction(ISD::LOAD, MVT::v3i32, Custom); 164 setOperationAction(ISD::LOAD, MVT::v4i32, Custom); 165 setOperationAction(ISD::LOAD, MVT::v5i32, Custom); 166 setOperationAction(ISD::LOAD, MVT::v8i32, Custom); 167 setOperationAction(ISD::LOAD, MVT::v16i32, Custom); 168 setOperationAction(ISD::LOAD, MVT::i1, Custom); 169 setOperationAction(ISD::LOAD, MVT::v32i32, Custom); 170 171 setOperationAction(ISD::STORE, MVT::v2i32, Custom); 172 setOperationAction(ISD::STORE, MVT::v3i32, Custom); 173 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 174 setOperationAction(ISD::STORE, MVT::v5i32, Custom); 175 setOperationAction(ISD::STORE, MVT::v8i32, Custom); 176 setOperationAction(ISD::STORE, MVT::v16i32, Custom); 177 setOperationAction(ISD::STORE, MVT::i1, Custom); 178 setOperationAction(ISD::STORE, MVT::v32i32, Custom); 179 180 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 181 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 182 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 183 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 184 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 185 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 186 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 187 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 188 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 189 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 190 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 191 192 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 193 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 194 195 setOperationAction(ISD::SELECT, MVT::i1, Promote); 196 setOperationAction(ISD::SELECT, MVT::i64, Custom); 197 setOperationAction(ISD::SELECT, MVT::f64, Promote); 198 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 199 200 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 201 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 202 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 203 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 204 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); 205 206 setOperationAction(ISD::SETCC, MVT::i1, Promote); 207 setOperationAction(ISD::SETCC, MVT::v2i1, Expand); 208 setOperationAction(ISD::SETCC, MVT::v4i1, Expand); 209 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 210 211 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); 212 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); 213 214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); 215 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); 216 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 217 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); 218 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 219 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom); 220 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); 221 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); 222 223 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 224 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 225 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 226 setOperationAction(ISD::BR_CC, MVT::i64, Expand); 227 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 228 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 229 230 setOperationAction(ISD::UADDO, MVT::i32, Legal); 231 setOperationAction(ISD::USUBO, MVT::i32, Legal); 232 233 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); 234 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); 235 236 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 237 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 238 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 239 240 #if 0 241 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); 242 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); 243 #endif 244 245 // We only support LOAD/STORE and vector manipulation ops for vectors 246 // with > 4 elements. 247 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, 248 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, 249 MVT::v32i32, MVT::v32f32 }) { 250 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 251 switch (Op) { 252 case ISD::LOAD: 253 case ISD::STORE: 254 case ISD::BUILD_VECTOR: 255 case ISD::BITCAST: 256 case ISD::EXTRACT_VECTOR_ELT: 257 case ISD::INSERT_VECTOR_ELT: 258 case ISD::INSERT_SUBVECTOR: 259 case ISD::EXTRACT_SUBVECTOR: 260 case ISD::SCALAR_TO_VECTOR: 261 break; 262 case ISD::CONCAT_VECTORS: 263 setOperationAction(Op, VT, Custom); 264 break; 265 default: 266 setOperationAction(Op, VT, Expand); 267 break; 268 } 269 } 270 } 271 272 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 273 274 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 275 // is expanded to avoid having two separate loops in case the index is a VGPR. 276 277 // Most operations are naturally 32-bit vector operations. We only support 278 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 279 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 280 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 281 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 282 283 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 284 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 285 286 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 287 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 288 289 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 290 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 291 } 292 293 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); 294 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); 295 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); 296 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); 297 298 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom); 299 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); 300 301 // Avoid stack access for these. 302 // TODO: Generalize to more vector types. 303 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); 304 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); 305 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 306 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 307 308 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 309 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 310 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom); 311 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); 312 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom); 313 314 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom); 315 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); 316 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom); 317 318 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom); 319 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom); 320 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 321 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 322 323 // Deal with vec3 vector operations when widened to vec4. 324 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom); 325 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom); 326 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom); 327 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom); 328 329 // Deal with vec5 vector operations when widened to vec8. 330 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom); 331 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom); 332 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom); 333 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom); 334 335 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 336 // and output demarshalling 337 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 338 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); 339 340 // We can't return success/failure, only the old value, 341 // let LLVM add the comparison 342 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); 343 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); 344 345 if (Subtarget->hasFlatAddressSpace()) { 346 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); 347 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); 348 } 349 350 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 351 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 352 353 // On SI this is s_memtime and s_memrealtime on VI. 354 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 355 setOperationAction(ISD::TRAP, MVT::Other, Custom); 356 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); 357 358 if (Subtarget->has16BitInsts()) { 359 setOperationAction(ISD::FLOG, MVT::f16, Custom); 360 setOperationAction(ISD::FEXP, MVT::f16, Custom); 361 setOperationAction(ISD::FLOG10, MVT::f16, Custom); 362 } 363 364 // v_mad_f32 does not support denormals according to some sources. 365 if (!Subtarget->hasFP32Denormals()) 366 setOperationAction(ISD::FMAD, MVT::f32, Legal); 367 368 if (!Subtarget->hasBFI()) { 369 // fcopysign can be done in a single instruction with BFI. 370 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 371 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 372 } 373 374 if (!Subtarget->hasBCNT(32)) 375 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 376 377 if (!Subtarget->hasBCNT(64)) 378 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 379 380 if (Subtarget->hasFFBH()) 381 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 382 383 if (Subtarget->hasFFBL()) 384 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 385 386 // We only really have 32-bit BFE instructions (and 16-bit on VI). 387 // 388 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 389 // effort to match them now. We want this to be false for i64 cases when the 390 // extraction isn't restricted to the upper or lower half. Ideally we would 391 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 392 // span the midpoint are probably relatively rare, so don't worry about them 393 // for now. 394 if (Subtarget->hasBFE()) 395 setHasExtractBitsInsn(true); 396 397 setOperationAction(ISD::FMINNUM, MVT::f32, Custom); 398 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom); 399 setOperationAction(ISD::FMINNUM, MVT::f64, Custom); 400 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom); 401 402 403 // These are really only legal for ieee_mode functions. We should be avoiding 404 // them for functions that don't have ieee_mode enabled, so just say they are 405 // legal. 406 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 407 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 408 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 409 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 410 411 412 if (Subtarget->haveRoundOpsF64()) { 413 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 414 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 415 setOperationAction(ISD::FRINT, MVT::f64, Legal); 416 } else { 417 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 418 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 419 setOperationAction(ISD::FRINT, MVT::f64, Custom); 420 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 421 } 422 423 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 424 425 setOperationAction(ISD::FSIN, MVT::f32, Custom); 426 setOperationAction(ISD::FCOS, MVT::f32, Custom); 427 setOperationAction(ISD::FDIV, MVT::f32, Custom); 428 setOperationAction(ISD::FDIV, MVT::f64, Custom); 429 430 if (Subtarget->has16BitInsts()) { 431 setOperationAction(ISD::Constant, MVT::i16, Legal); 432 433 setOperationAction(ISD::SMIN, MVT::i16, Legal); 434 setOperationAction(ISD::SMAX, MVT::i16, Legal); 435 436 setOperationAction(ISD::UMIN, MVT::i16, Legal); 437 setOperationAction(ISD::UMAX, MVT::i16, Legal); 438 439 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); 440 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 441 442 setOperationAction(ISD::ROTR, MVT::i16, Promote); 443 setOperationAction(ISD::ROTL, MVT::i16, Promote); 444 445 setOperationAction(ISD::SDIV, MVT::i16, Promote); 446 setOperationAction(ISD::UDIV, MVT::i16, Promote); 447 setOperationAction(ISD::SREM, MVT::i16, Promote); 448 setOperationAction(ISD::UREM, MVT::i16, Promote); 449 450 setOperationAction(ISD::BSWAP, MVT::i16, Promote); 451 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); 452 453 setOperationAction(ISD::CTTZ, MVT::i16, Promote); 454 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); 455 setOperationAction(ISD::CTLZ, MVT::i16, Promote); 456 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); 457 setOperationAction(ISD::CTPOP, MVT::i16, Promote); 458 459 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); 460 461 setOperationAction(ISD::BR_CC, MVT::i16, Expand); 462 463 setOperationAction(ISD::LOAD, MVT::i16, Custom); 464 465 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 466 467 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 468 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 469 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 470 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 471 472 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); 473 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); 474 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); 475 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); 476 477 // F16 - Constant Actions. 478 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 479 480 // F16 - Load/Store Actions. 481 setOperationAction(ISD::LOAD, MVT::f16, Promote); 482 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 483 setOperationAction(ISD::STORE, MVT::f16, Promote); 484 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 485 486 // F16 - VOP1 Actions. 487 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); 488 setOperationAction(ISD::FCOS, MVT::f16, Promote); 489 setOperationAction(ISD::FSIN, MVT::f16, Promote); 490 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); 491 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); 492 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); 493 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); 494 setOperationAction(ISD::FROUND, MVT::f16, Custom); 495 496 // F16 - VOP2 Actions. 497 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 498 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 499 500 setOperationAction(ISD::FDIV, MVT::f16, Custom); 501 502 // F16 - VOP3 Actions. 503 setOperationAction(ISD::FMA, MVT::f16, Legal); 504 if (!Subtarget->hasFP16Denormals() && STI.hasMadF16()) 505 setOperationAction(ISD::FMAD, MVT::f16, Legal); 506 507 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) { 508 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 509 switch (Op) { 510 case ISD::LOAD: 511 case ISD::STORE: 512 case ISD::BUILD_VECTOR: 513 case ISD::BITCAST: 514 case ISD::EXTRACT_VECTOR_ELT: 515 case ISD::INSERT_VECTOR_ELT: 516 case ISD::INSERT_SUBVECTOR: 517 case ISD::EXTRACT_SUBVECTOR: 518 case ISD::SCALAR_TO_VECTOR: 519 break; 520 case ISD::CONCAT_VECTORS: 521 setOperationAction(Op, VT, Custom); 522 break; 523 default: 524 setOperationAction(Op, VT, Expand); 525 break; 526 } 527 } 528 } 529 530 // XXX - Do these do anything? Vector constants turn into build_vector. 531 setOperationAction(ISD::Constant, MVT::v2i16, Legal); 532 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); 533 534 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal); 535 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal); 536 537 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 538 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 539 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 540 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 541 542 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 543 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 544 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 545 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 546 547 setOperationAction(ISD::AND, MVT::v2i16, Promote); 548 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 549 setOperationAction(ISD::OR, MVT::v2i16, Promote); 550 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 551 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 552 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 553 554 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 555 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 556 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 557 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 558 559 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 560 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 561 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 562 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 563 564 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); 565 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); 566 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); 567 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 568 569 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand); 570 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand); 571 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand); 572 573 if (!Subtarget->hasVOP3PInsts()) { 574 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); 575 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); 576 } 577 578 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 579 // This isn't really legal, but this avoids the legalizer unrolling it (and 580 // allows matching fneg (fabs x) patterns) 581 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 582 583 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom); 584 setOperationAction(ISD::FMINNUM, MVT::f16, Custom); 585 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal); 586 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal); 587 588 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom); 589 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom); 590 591 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand); 592 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand); 593 } 594 595 if (Subtarget->hasVOP3PInsts()) { 596 setOperationAction(ISD::ADD, MVT::v2i16, Legal); 597 setOperationAction(ISD::SUB, MVT::v2i16, Legal); 598 setOperationAction(ISD::MUL, MVT::v2i16, Legal); 599 setOperationAction(ISD::SHL, MVT::v2i16, Legal); 600 setOperationAction(ISD::SRL, MVT::v2i16, Legal); 601 setOperationAction(ISD::SRA, MVT::v2i16, Legal); 602 setOperationAction(ISD::SMIN, MVT::v2i16, Legal); 603 setOperationAction(ISD::UMIN, MVT::v2i16, Legal); 604 setOperationAction(ISD::SMAX, MVT::v2i16, Legal); 605 setOperationAction(ISD::UMAX, MVT::v2i16, Legal); 606 607 setOperationAction(ISD::FADD, MVT::v2f16, Legal); 608 setOperationAction(ISD::FMUL, MVT::v2f16, Legal); 609 setOperationAction(ISD::FMA, MVT::v2f16, Legal); 610 611 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal); 612 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal); 613 614 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal); 615 616 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 617 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 618 619 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom); 620 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 621 622 setOperationAction(ISD::SHL, MVT::v4i16, Custom); 623 setOperationAction(ISD::SRA, MVT::v4i16, Custom); 624 setOperationAction(ISD::SRL, MVT::v4i16, Custom); 625 setOperationAction(ISD::ADD, MVT::v4i16, Custom); 626 setOperationAction(ISD::SUB, MVT::v4i16, Custom); 627 setOperationAction(ISD::MUL, MVT::v4i16, Custom); 628 629 setOperationAction(ISD::SMIN, MVT::v4i16, Custom); 630 setOperationAction(ISD::SMAX, MVT::v4i16, Custom); 631 setOperationAction(ISD::UMIN, MVT::v4i16, Custom); 632 setOperationAction(ISD::UMAX, MVT::v4i16, Custom); 633 634 setOperationAction(ISD::FADD, MVT::v4f16, Custom); 635 setOperationAction(ISD::FMUL, MVT::v4f16, Custom); 636 setOperationAction(ISD::FMA, MVT::v4f16, Custom); 637 638 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom); 639 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom); 640 641 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom); 642 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom); 643 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom); 644 645 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 646 setOperationAction(ISD::SELECT, MVT::v4i16, Custom); 647 setOperationAction(ISD::SELECT, MVT::v4f16, Custom); 648 } 649 650 setOperationAction(ISD::FNEG, MVT::v4f16, Custom); 651 setOperationAction(ISD::FABS, MVT::v4f16, Custom); 652 653 if (Subtarget->has16BitInsts()) { 654 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 655 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 656 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 657 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 658 } else { 659 // Legalization hack. 660 setOperationAction(ISD::SELECT, MVT::v2i16, Custom); 661 setOperationAction(ISD::SELECT, MVT::v2f16, Custom); 662 663 setOperationAction(ISD::FNEG, MVT::v2f16, Custom); 664 setOperationAction(ISD::FABS, MVT::v2f16, Custom); 665 } 666 667 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) { 668 setOperationAction(ISD::SELECT, VT, Custom); 669 } 670 671 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 672 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); 673 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 674 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 675 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom); 676 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom); 677 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); 678 679 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom); 680 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom); 681 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom); 682 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom); 683 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom); 684 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 685 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom); 686 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 687 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 688 689 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 690 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); 691 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); 692 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom); 693 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom); 694 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom); 695 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 696 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 697 698 setTargetDAGCombine(ISD::ADD); 699 setTargetDAGCombine(ISD::ADDCARRY); 700 setTargetDAGCombine(ISD::SUB); 701 setTargetDAGCombine(ISD::SUBCARRY); 702 setTargetDAGCombine(ISD::FADD); 703 setTargetDAGCombine(ISD::FSUB); 704 setTargetDAGCombine(ISD::FMINNUM); 705 setTargetDAGCombine(ISD::FMAXNUM); 706 setTargetDAGCombine(ISD::FMINNUM_IEEE); 707 setTargetDAGCombine(ISD::FMAXNUM_IEEE); 708 setTargetDAGCombine(ISD::FMA); 709 setTargetDAGCombine(ISD::SMIN); 710 setTargetDAGCombine(ISD::SMAX); 711 setTargetDAGCombine(ISD::UMIN); 712 setTargetDAGCombine(ISD::UMAX); 713 setTargetDAGCombine(ISD::SETCC); 714 setTargetDAGCombine(ISD::AND); 715 setTargetDAGCombine(ISD::OR); 716 setTargetDAGCombine(ISD::XOR); 717 setTargetDAGCombine(ISD::SINT_TO_FP); 718 setTargetDAGCombine(ISD::UINT_TO_FP); 719 setTargetDAGCombine(ISD::FCANONICALIZE); 720 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); 721 setTargetDAGCombine(ISD::ZERO_EXTEND); 722 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 723 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 724 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 725 726 // All memory operations. Some folding on the pointer operand is done to help 727 // matching the constant offsets in the addressing modes. 728 setTargetDAGCombine(ISD::LOAD); 729 setTargetDAGCombine(ISD::STORE); 730 setTargetDAGCombine(ISD::ATOMIC_LOAD); 731 setTargetDAGCombine(ISD::ATOMIC_STORE); 732 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); 733 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 734 setTargetDAGCombine(ISD::ATOMIC_SWAP); 735 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); 736 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); 737 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); 738 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); 739 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); 740 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); 741 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); 742 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); 743 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); 744 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); 745 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD); 746 747 setSchedulingPreference(Sched::RegPressure); 748 } 749 750 const GCNSubtarget *SITargetLowering::getSubtarget() const { 751 return Subtarget; 752 } 753 754 //===----------------------------------------------------------------------===// 755 // TargetLowering queries 756 //===----------------------------------------------------------------------===// 757 758 // v_mad_mix* support a conversion from f16 to f32. 759 // 760 // There is only one special case when denormals are enabled we don't currently, 761 // where this is OK to use. 762 bool SITargetLowering::isFPExtFoldable(unsigned Opcode, 763 EVT DestVT, EVT SrcVT) const { 764 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 765 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 766 DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() && 767 SrcVT.getScalarType() == MVT::f16; 768 } 769 770 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 771 // SI has some legal vector types, but no legal vector operations. Say no 772 // shuffles are legal in order to prefer scalarizing some vector operations. 773 return false; 774 } 775 776 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 777 CallingConv::ID CC, 778 EVT VT) const { 779 if (CC == CallingConv::AMDGPU_KERNEL) 780 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 781 782 if (VT.isVector()) { 783 EVT ScalarVT = VT.getScalarType(); 784 unsigned Size = ScalarVT.getSizeInBits(); 785 if (Size == 32) 786 return ScalarVT.getSimpleVT(); 787 788 if (Size > 32) 789 return MVT::i32; 790 791 if (Size == 16 && Subtarget->has16BitInsts()) 792 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 793 } else if (VT.getSizeInBits() > 32) 794 return MVT::i32; 795 796 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 797 } 798 799 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 800 CallingConv::ID CC, 801 EVT VT) const { 802 if (CC == CallingConv::AMDGPU_KERNEL) 803 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 804 805 if (VT.isVector()) { 806 unsigned NumElts = VT.getVectorNumElements(); 807 EVT ScalarVT = VT.getScalarType(); 808 unsigned Size = ScalarVT.getSizeInBits(); 809 810 if (Size == 32) 811 return NumElts; 812 813 if (Size > 32) 814 return NumElts * ((Size + 31) / 32); 815 816 if (Size == 16 && Subtarget->has16BitInsts()) 817 return (NumElts + 1) / 2; 818 } else if (VT.getSizeInBits() > 32) 819 return (VT.getSizeInBits() + 31) / 32; 820 821 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 822 } 823 824 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 825 LLVMContext &Context, CallingConv::ID CC, 826 EVT VT, EVT &IntermediateVT, 827 unsigned &NumIntermediates, MVT &RegisterVT) const { 828 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 829 unsigned NumElts = VT.getVectorNumElements(); 830 EVT ScalarVT = VT.getScalarType(); 831 unsigned Size = ScalarVT.getSizeInBits(); 832 if (Size == 32) { 833 RegisterVT = ScalarVT.getSimpleVT(); 834 IntermediateVT = RegisterVT; 835 NumIntermediates = NumElts; 836 return NumIntermediates; 837 } 838 839 if (Size > 32) { 840 RegisterVT = MVT::i32; 841 IntermediateVT = RegisterVT; 842 NumIntermediates = NumElts * ((Size + 31) / 32); 843 return NumIntermediates; 844 } 845 846 // FIXME: We should fix the ABI to be the same on targets without 16-bit 847 // support, but unless we can properly handle 3-vectors, it will be still be 848 // inconsistent. 849 if (Size == 16 && Subtarget->has16BitInsts()) { 850 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 851 IntermediateVT = RegisterVT; 852 NumIntermediates = (NumElts + 1) / 2; 853 return NumIntermediates; 854 } 855 } 856 857 return TargetLowering::getVectorTypeBreakdownForCallingConv( 858 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 859 } 860 861 static MVT memVTFromAggregate(Type *Ty) { 862 // Only limited forms of aggregate type currently expected. 863 assert(Ty->isStructTy() && "Expected struct type"); 864 865 866 Type *ElementType = nullptr; 867 unsigned NumElts; 868 if (Ty->getContainedType(0)->isVectorTy()) { 869 VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0)); 870 ElementType = VecComponent->getElementType(); 871 NumElts = VecComponent->getNumElements(); 872 } else { 873 ElementType = Ty->getContainedType(0); 874 NumElts = 1; 875 } 876 877 assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type"); 878 879 // Calculate the size of the memVT type from the aggregate 880 unsigned Pow2Elts = 0; 881 unsigned ElementSize; 882 switch (ElementType->getTypeID()) { 883 default: 884 llvm_unreachable("Unknown type!"); 885 case Type::IntegerTyID: 886 ElementSize = cast<IntegerType>(ElementType)->getBitWidth(); 887 break; 888 case Type::HalfTyID: 889 ElementSize = 16; 890 break; 891 case Type::FloatTyID: 892 ElementSize = 32; 893 break; 894 } 895 unsigned AdditionalElts = ElementSize == 16 ? 2 : 1; 896 Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts); 897 898 return MVT::getVectorVT(MVT::getVT(ElementType, false), 899 Pow2Elts); 900 } 901 902 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 903 const CallInst &CI, 904 MachineFunction &MF, 905 unsigned IntrID) const { 906 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 907 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 908 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 909 (Intrinsic::ID)IntrID); 910 if (Attr.hasFnAttribute(Attribute::ReadNone)) 911 return false; 912 913 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 914 915 if (RsrcIntr->IsImage) { 916 Info.ptrVal = MFI->getImagePSV( 917 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 918 CI.getArgOperand(RsrcIntr->RsrcArg)); 919 Info.align.reset(); 920 } else { 921 Info.ptrVal = MFI->getBufferPSV( 922 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 923 CI.getArgOperand(RsrcIntr->RsrcArg)); 924 } 925 926 Info.flags = MachineMemOperand::MODereferenceable; 927 if (Attr.hasFnAttribute(Attribute::ReadOnly)) { 928 Info.opc = ISD::INTRINSIC_W_CHAIN; 929 Info.memVT = MVT::getVT(CI.getType(), true); 930 if (Info.memVT == MVT::Other) { 931 // Some intrinsics return an aggregate type - special case to work out 932 // the correct memVT 933 Info.memVT = memVTFromAggregate(CI.getType()); 934 } 935 Info.flags |= MachineMemOperand::MOLoad; 936 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) { 937 Info.opc = ISD::INTRINSIC_VOID; 938 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); 939 Info.flags |= MachineMemOperand::MOStore; 940 } else { 941 // Atomic 942 Info.opc = ISD::INTRINSIC_W_CHAIN; 943 Info.memVT = MVT::getVT(CI.getType()); 944 Info.flags = MachineMemOperand::MOLoad | 945 MachineMemOperand::MOStore | 946 MachineMemOperand::MODereferenceable; 947 948 // XXX - Should this be volatile without known ordering? 949 Info.flags |= MachineMemOperand::MOVolatile; 950 } 951 return true; 952 } 953 954 switch (IntrID) { 955 case Intrinsic::amdgcn_atomic_inc: 956 case Intrinsic::amdgcn_atomic_dec: 957 case Intrinsic::amdgcn_ds_ordered_add: 958 case Intrinsic::amdgcn_ds_ordered_swap: 959 case Intrinsic::amdgcn_ds_fadd: 960 case Intrinsic::amdgcn_ds_fmin: 961 case Intrinsic::amdgcn_ds_fmax: { 962 Info.opc = ISD::INTRINSIC_W_CHAIN; 963 Info.memVT = MVT::getVT(CI.getType()); 964 Info.ptrVal = CI.getOperand(0); 965 Info.align.reset(); 966 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 967 968 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 969 if (!Vol->isZero()) 970 Info.flags |= MachineMemOperand::MOVolatile; 971 972 return true; 973 } 974 case Intrinsic::amdgcn_buffer_atomic_fadd: { 975 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 976 977 Info.opc = ISD::INTRINSIC_VOID; 978 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 979 Info.ptrVal = MFI->getBufferPSV( 980 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 981 CI.getArgOperand(1)); 982 Info.align.reset(); 983 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 984 985 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 986 if (!Vol || !Vol->isZero()) 987 Info.flags |= MachineMemOperand::MOVolatile; 988 989 return true; 990 } 991 case Intrinsic::amdgcn_global_atomic_fadd: { 992 Info.opc = ISD::INTRINSIC_VOID; 993 Info.memVT = MVT::getVT(CI.getOperand(0)->getType() 994 ->getPointerElementType()); 995 Info.ptrVal = CI.getOperand(0); 996 Info.align.reset(); 997 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 998 999 return true; 1000 } 1001 case Intrinsic::amdgcn_ds_append: 1002 case Intrinsic::amdgcn_ds_consume: { 1003 Info.opc = ISD::INTRINSIC_W_CHAIN; 1004 Info.memVT = MVT::getVT(CI.getType()); 1005 Info.ptrVal = CI.getOperand(0); 1006 Info.align.reset(); 1007 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1008 1009 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1010 if (!Vol->isZero()) 1011 Info.flags |= MachineMemOperand::MOVolatile; 1012 1013 return true; 1014 } 1015 case Intrinsic::amdgcn_ds_gws_init: 1016 case Intrinsic::amdgcn_ds_gws_barrier: 1017 case Intrinsic::amdgcn_ds_gws_sema_v: 1018 case Intrinsic::amdgcn_ds_gws_sema_br: 1019 case Intrinsic::amdgcn_ds_gws_sema_p: 1020 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1021 Info.opc = ISD::INTRINSIC_VOID; 1022 1023 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1024 Info.ptrVal = 1025 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1026 1027 // This is an abstract access, but we need to specify a type and size. 1028 Info.memVT = MVT::i32; 1029 Info.size = 4; 1030 Info.align = Align(4); 1031 1032 Info.flags = MachineMemOperand::MOStore; 1033 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1034 Info.flags = MachineMemOperand::MOLoad; 1035 return true; 1036 } 1037 default: 1038 return false; 1039 } 1040 } 1041 1042 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1043 SmallVectorImpl<Value*> &Ops, 1044 Type *&AccessTy) const { 1045 switch (II->getIntrinsicID()) { 1046 case Intrinsic::amdgcn_atomic_inc: 1047 case Intrinsic::amdgcn_atomic_dec: 1048 case Intrinsic::amdgcn_ds_ordered_add: 1049 case Intrinsic::amdgcn_ds_ordered_swap: 1050 case Intrinsic::amdgcn_ds_fadd: 1051 case Intrinsic::amdgcn_ds_fmin: 1052 case Intrinsic::amdgcn_ds_fmax: { 1053 Value *Ptr = II->getArgOperand(0); 1054 AccessTy = II->getType(); 1055 Ops.push_back(Ptr); 1056 return true; 1057 } 1058 default: 1059 return false; 1060 } 1061 } 1062 1063 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 1064 if (!Subtarget->hasFlatInstOffsets()) { 1065 // Flat instructions do not have offsets, and only have the register 1066 // address. 1067 return AM.BaseOffs == 0 && AM.Scale == 0; 1068 } 1069 1070 // GFX9 added a 13-bit signed offset. When using regular flat instructions, 1071 // the sign bit is ignored and is treated as a 12-bit unsigned offset. 1072 1073 // GFX10 shrinked signed offset to 12 bits. When using regular flat 1074 // instructions, the sign bit is also ignored and is treated as 11-bit 1075 // unsigned offset. 1076 1077 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 1078 return isUInt<11>(AM.BaseOffs) && AM.Scale == 0; 1079 1080 // Just r + i 1081 return isUInt<12>(AM.BaseOffs) && AM.Scale == 0; 1082 } 1083 1084 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1085 if (Subtarget->hasFlatGlobalInsts()) 1086 return isInt<13>(AM.BaseOffs) && AM.Scale == 0; 1087 1088 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1089 // Assume the we will use FLAT for all global memory accesses 1090 // on VI. 1091 // FIXME: This assumption is currently wrong. On VI we still use 1092 // MUBUF instructions for the r + i addressing mode. As currently 1093 // implemented, the MUBUF instructions only work on buffer < 4GB. 1094 // It may be possible to support > 4GB buffers with MUBUF instructions, 1095 // by setting the stride value in the resource descriptor which would 1096 // increase the size limit to (stride * 4GB). However, this is risky, 1097 // because it has never been validated. 1098 return isLegalFlatAddressingMode(AM); 1099 } 1100 1101 return isLegalMUBUFAddressingMode(AM); 1102 } 1103 1104 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1105 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1106 // additionally can do r + r + i with addr64. 32-bit has more addressing 1107 // mode options. Depending on the resource constant, it can also do 1108 // (i64 r0) + (i32 r1) * (i14 i). 1109 // 1110 // Private arrays end up using a scratch buffer most of the time, so also 1111 // assume those use MUBUF instructions. Scratch loads / stores are currently 1112 // implemented as mubuf instructions with offen bit set, so slightly 1113 // different than the normal addr64. 1114 if (!isUInt<12>(AM.BaseOffs)) 1115 return false; 1116 1117 // FIXME: Since we can split immediate into soffset and immediate offset, 1118 // would it make sense to allow any immediate? 1119 1120 switch (AM.Scale) { 1121 case 0: // r + i or just i, depending on HasBaseReg. 1122 return true; 1123 case 1: 1124 return true; // We have r + r or r + i. 1125 case 2: 1126 if (AM.HasBaseReg) { 1127 // Reject 2 * r + r. 1128 return false; 1129 } 1130 1131 // Allow 2 * r as r + r 1132 // Or 2 * r + i is allowed as r + r + i. 1133 return true; 1134 default: // Don't allow n * r 1135 return false; 1136 } 1137 } 1138 1139 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1140 const AddrMode &AM, Type *Ty, 1141 unsigned AS, Instruction *I) const { 1142 // No global is ever allowed as a base. 1143 if (AM.BaseGV) 1144 return false; 1145 1146 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1147 return isLegalGlobalAddressingMode(AM); 1148 1149 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1150 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1151 AS == AMDGPUAS::BUFFER_FAT_POINTER) { 1152 // If the offset isn't a multiple of 4, it probably isn't going to be 1153 // correctly aligned. 1154 // FIXME: Can we get the real alignment here? 1155 if (AM.BaseOffs % 4 != 0) 1156 return isLegalMUBUFAddressingMode(AM); 1157 1158 // There are no SMRD extloads, so if we have to do a small type access we 1159 // will use a MUBUF load. 1160 // FIXME?: We also need to do this if unaligned, but we don't know the 1161 // alignment here. 1162 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1163 return isLegalGlobalAddressingMode(AM); 1164 1165 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1166 // SMRD instructions have an 8-bit, dword offset on SI. 1167 if (!isUInt<8>(AM.BaseOffs / 4)) 1168 return false; 1169 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1170 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1171 // in 8-bits, it can use a smaller encoding. 1172 if (!isUInt<32>(AM.BaseOffs / 4)) 1173 return false; 1174 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 1175 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1176 if (!isUInt<20>(AM.BaseOffs)) 1177 return false; 1178 } else 1179 llvm_unreachable("unhandled generation"); 1180 1181 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1182 return true; 1183 1184 if (AM.Scale == 1 && AM.HasBaseReg) 1185 return true; 1186 1187 return false; 1188 1189 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1190 return isLegalMUBUFAddressingMode(AM); 1191 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 1192 AS == AMDGPUAS::REGION_ADDRESS) { 1193 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1194 // field. 1195 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1196 // an 8-bit dword offset but we don't know the alignment here. 1197 if (!isUInt<16>(AM.BaseOffs)) 1198 return false; 1199 1200 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1201 return true; 1202 1203 if (AM.Scale == 1 && AM.HasBaseReg) 1204 return true; 1205 1206 return false; 1207 } else if (AS == AMDGPUAS::FLAT_ADDRESS || 1208 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1209 // For an unknown address space, this usually means that this is for some 1210 // reason being used for pure arithmetic, and not based on some addressing 1211 // computation. We don't have instructions that compute pointers with any 1212 // addressing modes, so treat them as having no offset like flat 1213 // instructions. 1214 return isLegalFlatAddressingMode(AM); 1215 } else { 1216 llvm_unreachable("unhandled address space"); 1217 } 1218 } 1219 1220 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1221 const SelectionDAG &DAG) const { 1222 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1223 return (MemVT.getSizeInBits() <= 4 * 32); 1224 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1225 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1226 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1227 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1228 return (MemVT.getSizeInBits() <= 2 * 32); 1229 } 1230 return true; 1231 } 1232 1233 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1234 unsigned Size, unsigned AddrSpace, unsigned Align, 1235 MachineMemOperand::Flags Flags, bool *IsFast) const { 1236 if (IsFast) 1237 *IsFast = false; 1238 1239 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1240 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1241 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte 1242 // aligned, 8 byte access in a single operation using ds_read2/write2_b32 1243 // with adjacent offsets. 1244 bool AlignedBy4 = (Align % 4 == 0); 1245 if (IsFast) 1246 *IsFast = AlignedBy4; 1247 1248 return AlignedBy4; 1249 } 1250 1251 // FIXME: We have to be conservative here and assume that flat operations 1252 // will access scratch. If we had access to the IR function, then we 1253 // could determine if any private memory was used in the function. 1254 if (!Subtarget->hasUnalignedScratchAccess() && 1255 (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 1256 AddrSpace == AMDGPUAS::FLAT_ADDRESS)) { 1257 bool AlignedBy4 = Align >= 4; 1258 if (IsFast) 1259 *IsFast = AlignedBy4; 1260 1261 return AlignedBy4; 1262 } 1263 1264 if (Subtarget->hasUnalignedBufferAccess()) { 1265 // If we have an uniform constant load, it still requires using a slow 1266 // buffer instruction if unaligned. 1267 if (IsFast) { 1268 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 1269 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? 1270 (Align % 4 == 0) : true; 1271 } 1272 1273 return true; 1274 } 1275 1276 // Smaller than dword value must be aligned. 1277 if (Size < 32) 1278 return false; 1279 1280 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1281 // byte-address are ignored, thus forcing Dword alignment. 1282 // This applies to private, global, and constant memory. 1283 if (IsFast) 1284 *IsFast = true; 1285 1286 return Size >= 32 && Align >= 4; 1287 } 1288 1289 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1290 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, 1291 bool *IsFast) const { 1292 if (IsFast) 1293 *IsFast = false; 1294 1295 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, 1296 // which isn't a simple VT. 1297 // Until MVT is extended to handle this, simply check for the size and 1298 // rely on the condition below: allow accesses if the size is a multiple of 4. 1299 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && 1300 VT.getStoreSize() > 16)) { 1301 return false; 1302 } 1303 1304 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1305 Align, Flags, IsFast); 1306 } 1307 1308 EVT SITargetLowering::getOptimalMemOpType( 1309 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 1310 bool ZeroMemset, bool MemcpyStrSrc, 1311 const AttributeList &FuncAttributes) const { 1312 // FIXME: Should account for address space here. 1313 1314 // The default fallback uses the private pointer size as a guess for a type to 1315 // use. Make sure we switch these to 64-bit accesses. 1316 1317 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global 1318 return MVT::v4i32; 1319 1320 if (Size >= 8 && DstAlign >= 4) 1321 return MVT::v2i32; 1322 1323 // Use the default. 1324 return MVT::Other; 1325 } 1326 1327 static bool isFlatGlobalAddrSpace(unsigned AS) { 1328 return AS == AMDGPUAS::GLOBAL_ADDRESS || 1329 AS == AMDGPUAS::FLAT_ADDRESS || 1330 AS == AMDGPUAS::CONSTANT_ADDRESS || 1331 AS > AMDGPUAS::MAX_AMDGPU_ADDRESS; 1332 } 1333 1334 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, 1335 unsigned DestAS) const { 1336 return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS); 1337 } 1338 1339 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1340 const MemSDNode *MemNode = cast<MemSDNode>(N); 1341 const Value *Ptr = MemNode->getMemOperand()->getValue(); 1342 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr); 1343 return I && I->getMetadata("amdgpu.noclobber"); 1344 } 1345 1346 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1347 unsigned DestAS) const { 1348 // Flat -> private/local is a simple truncate. 1349 // Flat -> global is no-op 1350 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1351 return true; 1352 1353 return isNoopAddrSpaceCast(SrcAS, DestAS); 1354 } 1355 1356 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1357 const MemSDNode *MemNode = cast<MemSDNode>(N); 1358 1359 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1360 } 1361 1362 TargetLoweringBase::LegalizeTypeAction 1363 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1364 int NumElts = VT.getVectorNumElements(); 1365 if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16)) 1366 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1367 return TargetLoweringBase::getPreferredVectorAction(VT); 1368 } 1369 1370 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1371 Type *Ty) const { 1372 // FIXME: Could be smarter if called for vector constants. 1373 return true; 1374 } 1375 1376 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1377 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1378 switch (Op) { 1379 case ISD::LOAD: 1380 case ISD::STORE: 1381 1382 // These operations are done with 32-bit instructions anyway. 1383 case ISD::AND: 1384 case ISD::OR: 1385 case ISD::XOR: 1386 case ISD::SELECT: 1387 // TODO: Extensions? 1388 return true; 1389 default: 1390 return false; 1391 } 1392 } 1393 1394 // SimplifySetCC uses this function to determine whether or not it should 1395 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1396 if (VT == MVT::i1 && Op == ISD::SETCC) 1397 return false; 1398 1399 return TargetLowering::isTypeDesirableForOp(Op, VT); 1400 } 1401 1402 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1403 const SDLoc &SL, 1404 SDValue Chain, 1405 uint64_t Offset) const { 1406 const DataLayout &DL = DAG.getDataLayout(); 1407 MachineFunction &MF = DAG.getMachineFunction(); 1408 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1409 1410 const ArgDescriptor *InputPtrReg; 1411 const TargetRegisterClass *RC; 1412 1413 std::tie(InputPtrReg, RC) 1414 = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1415 1416 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1417 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1418 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1419 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1420 1421 return DAG.getObjectPtrOffset(SL, BasePtr, Offset); 1422 } 1423 1424 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1425 const SDLoc &SL) const { 1426 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1427 FIRST_IMPLICIT); 1428 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1429 } 1430 1431 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1432 const SDLoc &SL, SDValue Val, 1433 bool Signed, 1434 const ISD::InputArg *Arg) const { 1435 // First, if it is a widened vector, narrow it. 1436 if (VT.isVector() && 1437 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1438 EVT NarrowedVT = 1439 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1440 VT.getVectorNumElements()); 1441 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1442 DAG.getConstant(0, SL, MVT::i32)); 1443 } 1444 1445 // Then convert the vector elements or scalar value. 1446 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1447 VT.bitsLT(MemVT)) { 1448 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1449 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1450 } 1451 1452 if (MemVT.isFloatingPoint()) 1453 Val = getFPExtOrFPTrunc(DAG, Val, SL, VT); 1454 else if (Signed) 1455 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1456 else 1457 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1458 1459 return Val; 1460 } 1461 1462 SDValue SITargetLowering::lowerKernargMemParameter( 1463 SelectionDAG &DAG, EVT VT, EVT MemVT, 1464 const SDLoc &SL, SDValue Chain, 1465 uint64_t Offset, unsigned Align, bool Signed, 1466 const ISD::InputArg *Arg) const { 1467 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 1468 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 1469 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); 1470 1471 // Try to avoid using an extload by loading earlier than the argument address, 1472 // and extracting the relevant bits. The load should hopefully be merged with 1473 // the previous argument. 1474 if (MemVT.getStoreSize() < 4 && Align < 4) { 1475 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1476 int64_t AlignDownOffset = alignDown(Offset, 4); 1477 int64_t OffsetDiff = Offset - AlignDownOffset; 1478 1479 EVT IntVT = MemVT.changeTypeToInteger(); 1480 1481 // TODO: If we passed in the base kernel offset we could have a better 1482 // alignment than 4, but we don't really need it. 1483 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1484 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4, 1485 MachineMemOperand::MODereferenceable | 1486 MachineMemOperand::MOInvariant); 1487 1488 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1489 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1490 1491 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1492 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1493 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1494 1495 1496 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1497 } 1498 1499 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 1500 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align, 1501 MachineMemOperand::MODereferenceable | 1502 MachineMemOperand::MOInvariant); 1503 1504 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 1505 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 1506 } 1507 1508 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 1509 const SDLoc &SL, SDValue Chain, 1510 const ISD::InputArg &Arg) const { 1511 MachineFunction &MF = DAG.getMachineFunction(); 1512 MachineFrameInfo &MFI = MF.getFrameInfo(); 1513 1514 if (Arg.Flags.isByVal()) { 1515 unsigned Size = Arg.Flags.getByValSize(); 1516 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 1517 return DAG.getFrameIndex(FrameIdx, MVT::i32); 1518 } 1519 1520 unsigned ArgOffset = VA.getLocMemOffset(); 1521 unsigned ArgSize = VA.getValVT().getStoreSize(); 1522 1523 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 1524 1525 // Create load nodes to retrieve arguments from the stack. 1526 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1527 SDValue ArgValue; 1528 1529 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 1530 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 1531 MVT MemVT = VA.getValVT(); 1532 1533 switch (VA.getLocInfo()) { 1534 default: 1535 break; 1536 case CCValAssign::BCvt: 1537 MemVT = VA.getLocVT(); 1538 break; 1539 case CCValAssign::SExt: 1540 ExtType = ISD::SEXTLOAD; 1541 break; 1542 case CCValAssign::ZExt: 1543 ExtType = ISD::ZEXTLOAD; 1544 break; 1545 case CCValAssign::AExt: 1546 ExtType = ISD::EXTLOAD; 1547 break; 1548 } 1549 1550 ArgValue = DAG.getExtLoad( 1551 ExtType, SL, VA.getLocVT(), Chain, FIN, 1552 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 1553 MemVT); 1554 return ArgValue; 1555 } 1556 1557 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 1558 const SIMachineFunctionInfo &MFI, 1559 EVT VT, 1560 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 1561 const ArgDescriptor *Reg; 1562 const TargetRegisterClass *RC; 1563 1564 std::tie(Reg, RC) = MFI.getPreloadedValue(PVID); 1565 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); 1566 } 1567 1568 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 1569 CallingConv::ID CallConv, 1570 ArrayRef<ISD::InputArg> Ins, 1571 BitVector &Skipped, 1572 FunctionType *FType, 1573 SIMachineFunctionInfo *Info) { 1574 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 1575 const ISD::InputArg *Arg = &Ins[I]; 1576 1577 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 1578 "vector type argument should have been split"); 1579 1580 // First check if it's a PS input addr. 1581 if (CallConv == CallingConv::AMDGPU_PS && 1582 !Arg->Flags.isInReg() && PSInputNum <= 15) { 1583 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 1584 1585 // Inconveniently only the first part of the split is marked as isSplit, 1586 // so skip to the end. We only want to increment PSInputNum once for the 1587 // entire split argument. 1588 if (Arg->Flags.isSplit()) { 1589 while (!Arg->Flags.isSplitEnd()) { 1590 assert((!Arg->VT.isVector() || 1591 Arg->VT.getScalarSizeInBits() == 16) && 1592 "unexpected vector split in ps argument type"); 1593 if (!SkipArg) 1594 Splits.push_back(*Arg); 1595 Arg = &Ins[++I]; 1596 } 1597 } 1598 1599 if (SkipArg) { 1600 // We can safely skip PS inputs. 1601 Skipped.set(Arg->getOrigArgIndex()); 1602 ++PSInputNum; 1603 continue; 1604 } 1605 1606 Info->markPSInputAllocated(PSInputNum); 1607 if (Arg->Used) 1608 Info->markPSInputEnabled(PSInputNum); 1609 1610 ++PSInputNum; 1611 } 1612 1613 Splits.push_back(*Arg); 1614 } 1615 } 1616 1617 // Allocate special inputs passed in VGPRs. 1618 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 1619 MachineFunction &MF, 1620 const SIRegisterInfo &TRI, 1621 SIMachineFunctionInfo &Info) const { 1622 const LLT S32 = LLT::scalar(32); 1623 MachineRegisterInfo &MRI = MF.getRegInfo(); 1624 1625 if (Info.hasWorkItemIDX()) { 1626 Register Reg = AMDGPU::VGPR0; 1627 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1628 1629 CCInfo.AllocateReg(Reg); 1630 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg)); 1631 } 1632 1633 if (Info.hasWorkItemIDY()) { 1634 Register Reg = AMDGPU::VGPR1; 1635 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1636 1637 CCInfo.AllocateReg(Reg); 1638 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 1639 } 1640 1641 if (Info.hasWorkItemIDZ()) { 1642 Register Reg = AMDGPU::VGPR2; 1643 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1644 1645 CCInfo.AllocateReg(Reg); 1646 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 1647 } 1648 } 1649 1650 // Try to allocate a VGPR at the end of the argument list, or if no argument 1651 // VGPRs are left allocating a stack slot. 1652 // If \p Mask is is given it indicates bitfield position in the register. 1653 // If \p Arg is given use it with new ]p Mask instead of allocating new. 1654 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 1655 ArgDescriptor Arg = ArgDescriptor()) { 1656 if (Arg.isSet()) 1657 return ArgDescriptor::createArg(Arg, Mask); 1658 1659 ArrayRef<MCPhysReg> ArgVGPRs 1660 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 1661 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 1662 if (RegIdx == ArgVGPRs.size()) { 1663 // Spill to stack required. 1664 int64_t Offset = CCInfo.AllocateStack(4, 4); 1665 1666 return ArgDescriptor::createStack(Offset, Mask); 1667 } 1668 1669 unsigned Reg = ArgVGPRs[RegIdx]; 1670 Reg = CCInfo.AllocateReg(Reg); 1671 assert(Reg != AMDGPU::NoRegister); 1672 1673 MachineFunction &MF = CCInfo.getMachineFunction(); 1674 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1675 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 1676 return ArgDescriptor::createRegister(Reg, Mask); 1677 } 1678 1679 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 1680 const TargetRegisterClass *RC, 1681 unsigned NumArgRegs) { 1682 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); 1683 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 1684 if (RegIdx == ArgSGPRs.size()) 1685 report_fatal_error("ran out of SGPRs for arguments"); 1686 1687 unsigned Reg = ArgSGPRs[RegIdx]; 1688 Reg = CCInfo.AllocateReg(Reg); 1689 assert(Reg != AMDGPU::NoRegister); 1690 1691 MachineFunction &MF = CCInfo.getMachineFunction(); 1692 MF.addLiveIn(Reg, RC); 1693 return ArgDescriptor::createRegister(Reg); 1694 } 1695 1696 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) { 1697 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 1698 } 1699 1700 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) { 1701 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 1702 } 1703 1704 void SITargetLowering::allocateSpecialInputVGPRs(CCState &CCInfo, 1705 MachineFunction &MF, 1706 const SIRegisterInfo &TRI, 1707 SIMachineFunctionInfo &Info) const { 1708 const unsigned Mask = 0x3ff; 1709 ArgDescriptor Arg; 1710 1711 if (Info.hasWorkItemIDX()) { 1712 Arg = allocateVGPR32Input(CCInfo, Mask); 1713 Info.setWorkItemIDX(Arg); 1714 } 1715 1716 if (Info.hasWorkItemIDY()) { 1717 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 1718 Info.setWorkItemIDY(Arg); 1719 } 1720 1721 if (Info.hasWorkItemIDZ()) 1722 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 1723 } 1724 1725 void SITargetLowering::allocateSpecialInputSGPRs( 1726 CCState &CCInfo, 1727 MachineFunction &MF, 1728 const SIRegisterInfo &TRI, 1729 SIMachineFunctionInfo &Info) const { 1730 auto &ArgInfo = Info.getArgInfo(); 1731 1732 // TODO: Unify handling with private memory pointers. 1733 1734 if (Info.hasDispatchPtr()) 1735 ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo); 1736 1737 if (Info.hasQueuePtr()) 1738 ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo); 1739 1740 if (Info.hasKernargSegmentPtr()) 1741 ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo); 1742 1743 if (Info.hasDispatchID()) 1744 ArgInfo.DispatchID = allocateSGPR64Input(CCInfo); 1745 1746 // flat_scratch_init is not applicable for non-kernel functions. 1747 1748 if (Info.hasWorkGroupIDX()) 1749 ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo); 1750 1751 if (Info.hasWorkGroupIDY()) 1752 ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo); 1753 1754 if (Info.hasWorkGroupIDZ()) 1755 ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo); 1756 1757 if (Info.hasImplicitArgPtr()) 1758 ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo); 1759 } 1760 1761 // Allocate special inputs passed in user SGPRs. 1762 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 1763 MachineFunction &MF, 1764 const SIRegisterInfo &TRI, 1765 SIMachineFunctionInfo &Info) const { 1766 if (Info.hasImplicitBufferPtr()) { 1767 unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 1768 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 1769 CCInfo.AllocateReg(ImplicitBufferPtrReg); 1770 } 1771 1772 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 1773 if (Info.hasPrivateSegmentBuffer()) { 1774 unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 1775 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 1776 CCInfo.AllocateReg(PrivateSegmentBufferReg); 1777 } 1778 1779 if (Info.hasDispatchPtr()) { 1780 unsigned DispatchPtrReg = Info.addDispatchPtr(TRI); 1781 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 1782 CCInfo.AllocateReg(DispatchPtrReg); 1783 } 1784 1785 if (Info.hasQueuePtr()) { 1786 unsigned QueuePtrReg = Info.addQueuePtr(TRI); 1787 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 1788 CCInfo.AllocateReg(QueuePtrReg); 1789 } 1790 1791 if (Info.hasKernargSegmentPtr()) { 1792 MachineRegisterInfo &MRI = MF.getRegInfo(); 1793 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 1794 CCInfo.AllocateReg(InputPtrReg); 1795 1796 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 1797 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 1798 } 1799 1800 if (Info.hasDispatchID()) { 1801 unsigned DispatchIDReg = Info.addDispatchID(TRI); 1802 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 1803 CCInfo.AllocateReg(DispatchIDReg); 1804 } 1805 1806 if (Info.hasFlatScratchInit()) { 1807 unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI); 1808 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 1809 CCInfo.AllocateReg(FlatScratchInitReg); 1810 } 1811 1812 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 1813 // these from the dispatch pointer. 1814 } 1815 1816 // Allocate special input registers that are initialized per-wave. 1817 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 1818 MachineFunction &MF, 1819 SIMachineFunctionInfo &Info, 1820 CallingConv::ID CallConv, 1821 bool IsShader) const { 1822 if (Info.hasWorkGroupIDX()) { 1823 unsigned Reg = Info.addWorkGroupIDX(); 1824 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); 1825 CCInfo.AllocateReg(Reg); 1826 } 1827 1828 if (Info.hasWorkGroupIDY()) { 1829 unsigned Reg = Info.addWorkGroupIDY(); 1830 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); 1831 CCInfo.AllocateReg(Reg); 1832 } 1833 1834 if (Info.hasWorkGroupIDZ()) { 1835 unsigned Reg = Info.addWorkGroupIDZ(); 1836 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); 1837 CCInfo.AllocateReg(Reg); 1838 } 1839 1840 if (Info.hasWorkGroupInfo()) { 1841 unsigned Reg = Info.addWorkGroupInfo(); 1842 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); 1843 CCInfo.AllocateReg(Reg); 1844 } 1845 1846 if (Info.hasPrivateSegmentWaveByteOffset()) { 1847 // Scratch wave offset passed in system SGPR. 1848 unsigned PrivateSegmentWaveByteOffsetReg; 1849 1850 if (IsShader) { 1851 PrivateSegmentWaveByteOffsetReg = 1852 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 1853 1854 // This is true if the scratch wave byte offset doesn't have a fixed 1855 // location. 1856 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 1857 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 1858 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 1859 } 1860 } else 1861 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 1862 1863 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 1864 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 1865 } 1866 } 1867 1868 static void reservePrivateMemoryRegs(const TargetMachine &TM, 1869 MachineFunction &MF, 1870 const SIRegisterInfo &TRI, 1871 SIMachineFunctionInfo &Info) { 1872 // Now that we've figured out where the scratch register inputs are, see if 1873 // should reserve the arguments and use them directly. 1874 MachineFrameInfo &MFI = MF.getFrameInfo(); 1875 bool HasStackObjects = MFI.hasStackObjects(); 1876 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1877 1878 // Record that we know we have non-spill stack objects so we don't need to 1879 // check all stack objects later. 1880 if (HasStackObjects) 1881 Info.setHasNonSpillStackObjects(true); 1882 1883 // Everything live out of a block is spilled with fast regalloc, so it's 1884 // almost certain that spilling will be required. 1885 if (TM.getOptLevel() == CodeGenOpt::None) 1886 HasStackObjects = true; 1887 1888 // For now assume stack access is needed in any callee functions, so we need 1889 // the scratch registers to pass in. 1890 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 1891 1892 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 1893 // If we have stack objects, we unquestionably need the private buffer 1894 // resource. For the Code Object V2 ABI, this will be the first 4 user 1895 // SGPR inputs. We can reserve those and use them directly. 1896 1897 Register PrivateSegmentBufferReg = 1898 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 1899 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 1900 } else { 1901 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 1902 // We tentatively reserve the last registers (skipping the last registers 1903 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 1904 // we'll replace these with the ones immediately after those which were 1905 // really allocated. In the prologue copies will be inserted from the 1906 // argument to these reserved registers. 1907 1908 // Without HSA, relocations are used for the scratch pointer and the 1909 // buffer resource setup is always inserted in the prologue. Scratch wave 1910 // offset is still in an input SGPR. 1911 Info.setScratchRSrcReg(ReservedBufferReg); 1912 } 1913 1914 // hasFP should be accurate for kernels even before the frame is finalized. 1915 if (ST.getFrameLowering()->hasFP(MF)) { 1916 MachineRegisterInfo &MRI = MF.getRegInfo(); 1917 1918 // Try to use s32 as the SP, but move it if it would interfere with input 1919 // arguments. This won't work with calls though. 1920 // 1921 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 1922 // registers. 1923 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 1924 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 1925 } else { 1926 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 1927 1928 if (MFI.hasCalls()) 1929 report_fatal_error("call in graphics shader with too many input SGPRs"); 1930 1931 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 1932 if (!MRI.isLiveIn(Reg)) { 1933 Info.setStackPtrOffsetReg(Reg); 1934 break; 1935 } 1936 } 1937 1938 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 1939 report_fatal_error("failed to find register for SP"); 1940 } 1941 1942 if (MFI.hasCalls()) { 1943 Info.setScratchWaveOffsetReg(AMDGPU::SGPR33); 1944 Info.setFrameOffsetReg(AMDGPU::SGPR33); 1945 } else { 1946 unsigned ReservedOffsetReg = 1947 TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); 1948 Info.setScratchWaveOffsetReg(ReservedOffsetReg); 1949 Info.setFrameOffsetReg(ReservedOffsetReg); 1950 } 1951 } else if (RequiresStackAccess) { 1952 assert(!MFI.hasCalls()); 1953 // We know there are accesses and they will be done relative to SP, so just 1954 // pin it to the input. 1955 // 1956 // FIXME: Should not do this if inline asm is reading/writing these 1957 // registers. 1958 Register PreloadedSP = Info.getPreloadedReg( 1959 AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); 1960 1961 Info.setStackPtrOffsetReg(PreloadedSP); 1962 Info.setScratchWaveOffsetReg(PreloadedSP); 1963 Info.setFrameOffsetReg(PreloadedSP); 1964 } else { 1965 assert(!MFI.hasCalls()); 1966 1967 // There may not be stack access at all. There may still be spills, or 1968 // access of a constant pointer (in which cases an extra copy will be 1969 // emitted in the prolog). 1970 unsigned ReservedOffsetReg 1971 = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); 1972 Info.setStackPtrOffsetReg(ReservedOffsetReg); 1973 Info.setScratchWaveOffsetReg(ReservedOffsetReg); 1974 Info.setFrameOffsetReg(ReservedOffsetReg); 1975 } 1976 } 1977 1978 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 1979 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 1980 return !Info->isEntryFunction(); 1981 } 1982 1983 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 1984 1985 } 1986 1987 void SITargetLowering::insertCopiesSplitCSR( 1988 MachineBasicBlock *Entry, 1989 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 1990 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 1991 1992 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 1993 if (!IStart) 1994 return; 1995 1996 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 1997 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 1998 MachineBasicBlock::iterator MBBI = Entry->begin(); 1999 for (const MCPhysReg *I = IStart; *I; ++I) { 2000 const TargetRegisterClass *RC = nullptr; 2001 if (AMDGPU::SReg_64RegClass.contains(*I)) 2002 RC = &AMDGPU::SGPR_64RegClass; 2003 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2004 RC = &AMDGPU::SGPR_32RegClass; 2005 else 2006 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2007 2008 Register NewVR = MRI->createVirtualRegister(RC); 2009 // Create copy from CSR to a virtual register. 2010 Entry->addLiveIn(*I); 2011 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2012 .addReg(*I); 2013 2014 // Insert the copy-back instructions right before the terminator. 2015 for (auto *Exit : Exits) 2016 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2017 TII->get(TargetOpcode::COPY), *I) 2018 .addReg(NewVR); 2019 } 2020 } 2021 2022 SDValue SITargetLowering::LowerFormalArguments( 2023 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2024 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2025 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2026 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2027 2028 MachineFunction &MF = DAG.getMachineFunction(); 2029 const Function &Fn = MF.getFunction(); 2030 FunctionType *FType = MF.getFunction().getFunctionType(); 2031 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2032 2033 if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) { 2034 DiagnosticInfoUnsupported NoGraphicsHSA( 2035 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2036 DAG.getContext()->diagnose(NoGraphicsHSA); 2037 return DAG.getEntryNode(); 2038 } 2039 2040 SmallVector<ISD::InputArg, 16> Splits; 2041 SmallVector<CCValAssign, 16> ArgLocs; 2042 BitVector Skipped(Ins.size()); 2043 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2044 *DAG.getContext()); 2045 2046 bool IsShader = AMDGPU::isShader(CallConv); 2047 bool IsKernel = AMDGPU::isKernel(CallConv); 2048 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2049 2050 if (IsShader) { 2051 processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2052 2053 // At least one interpolation mode must be enabled or else the GPU will 2054 // hang. 2055 // 2056 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2057 // set PSInputAddr, the user wants to enable some bits after the compilation 2058 // based on run-time states. Since we can't know what the final PSInputEna 2059 // will look like, so we shouldn't do anything here and the user should take 2060 // responsibility for the correct programming. 2061 // 2062 // Otherwise, the following restrictions apply: 2063 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2064 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2065 // enabled too. 2066 if (CallConv == CallingConv::AMDGPU_PS) { 2067 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2068 ((Info->getPSInputAddr() & 0xF) == 0 && 2069 Info->isPSInputAllocated(11))) { 2070 CCInfo.AllocateReg(AMDGPU::VGPR0); 2071 CCInfo.AllocateReg(AMDGPU::VGPR1); 2072 Info->markPSInputAllocated(0); 2073 Info->markPSInputEnabled(0); 2074 } 2075 if (Subtarget->isAmdPalOS()) { 2076 // For isAmdPalOS, the user does not enable some bits after compilation 2077 // based on run-time states; the register values being generated here are 2078 // the final ones set in hardware. Therefore we need to apply the 2079 // workaround to PSInputAddr and PSInputEnable together. (The case where 2080 // a bit is set in PSInputAddr but not PSInputEnable is where the 2081 // frontend set up an input arg for a particular interpolation mode, but 2082 // nothing uses that input arg. Really we should have an earlier pass 2083 // that removes such an arg.) 2084 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2085 if ((PsInputBits & 0x7F) == 0 || 2086 ((PsInputBits & 0xF) == 0 && 2087 (PsInputBits >> 11 & 1))) 2088 Info->markPSInputEnabled( 2089 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 2090 } 2091 } 2092 2093 assert(!Info->hasDispatchPtr() && 2094 !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && 2095 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2096 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && 2097 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && 2098 !Info->hasWorkItemIDZ()); 2099 } else if (IsKernel) { 2100 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2101 } else { 2102 Splits.append(Ins.begin(), Ins.end()); 2103 } 2104 2105 if (IsEntryFunc) { 2106 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2107 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2108 } 2109 2110 if (IsKernel) { 2111 analyzeFormalArgumentsCompute(CCInfo, Ins); 2112 } else { 2113 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2114 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2115 } 2116 2117 SmallVector<SDValue, 16> Chains; 2118 2119 // FIXME: This is the minimum kernel argument alignment. We should improve 2120 // this to the maximum alignment of the arguments. 2121 // 2122 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2123 // kern arg offset. 2124 const unsigned KernelArgBaseAlign = 16; 2125 2126 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2127 const ISD::InputArg &Arg = Ins[i]; 2128 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2129 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2130 continue; 2131 } 2132 2133 CCValAssign &VA = ArgLocs[ArgIdx++]; 2134 MVT VT = VA.getLocVT(); 2135 2136 if (IsEntryFunc && VA.isMemLoc()) { 2137 VT = Ins[i].VT; 2138 EVT MemVT = VA.getLocVT(); 2139 2140 const uint64_t Offset = VA.getLocMemOffset(); 2141 unsigned Align = MinAlign(KernelArgBaseAlign, Offset); 2142 2143 SDValue Arg = lowerKernargMemParameter( 2144 DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]); 2145 Chains.push_back(Arg.getValue(1)); 2146 2147 auto *ParamTy = 2148 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2149 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2150 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2151 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2152 // On SI local pointers are just offsets into LDS, so they are always 2153 // less than 16-bits. On CI and newer they could potentially be 2154 // real pointers, so we can't guarantee their size. 2155 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 2156 DAG.getValueType(MVT::i16)); 2157 } 2158 2159 InVals.push_back(Arg); 2160 continue; 2161 } else if (!IsEntryFunc && VA.isMemLoc()) { 2162 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2163 InVals.push_back(Val); 2164 if (!Arg.Flags.isByVal()) 2165 Chains.push_back(Val.getValue(1)); 2166 continue; 2167 } 2168 2169 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2170 2171 Register Reg = VA.getLocReg(); 2172 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2173 EVT ValVT = VA.getValVT(); 2174 2175 Reg = MF.addLiveIn(Reg, RC); 2176 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2177 2178 if (Arg.Flags.isSRet()) { 2179 // The return object should be reasonably addressable. 2180 2181 // FIXME: This helps when the return is a real sret. If it is a 2182 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2183 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2184 unsigned NumBits 2185 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 2186 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2187 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 2188 } 2189 2190 // If this is an 8 or 16-bit value, it is really passed promoted 2191 // to 32 bits. Insert an assert[sz]ext to capture this, then 2192 // truncate to the right size. 2193 switch (VA.getLocInfo()) { 2194 case CCValAssign::Full: 2195 break; 2196 case CCValAssign::BCvt: 2197 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2198 break; 2199 case CCValAssign::SExt: 2200 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 2201 DAG.getValueType(ValVT)); 2202 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2203 break; 2204 case CCValAssign::ZExt: 2205 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2206 DAG.getValueType(ValVT)); 2207 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2208 break; 2209 case CCValAssign::AExt: 2210 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2211 break; 2212 default: 2213 llvm_unreachable("Unknown loc info!"); 2214 } 2215 2216 InVals.push_back(Val); 2217 } 2218 2219 if (!IsEntryFunc) { 2220 // Special inputs come after user arguments. 2221 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 2222 } 2223 2224 // Start adding system SGPRs. 2225 if (IsEntryFunc) { 2226 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader); 2227 } else { 2228 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2229 CCInfo.AllocateReg(Info->getScratchWaveOffsetReg()); 2230 CCInfo.AllocateReg(Info->getFrameOffsetReg()); 2231 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2232 } 2233 2234 auto &ArgUsageInfo = 2235 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2236 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 2237 2238 unsigned StackArgSize = CCInfo.getNextStackOffset(); 2239 Info->setBytesInStackArgArea(StackArgSize); 2240 2241 return Chains.empty() ? Chain : 2242 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2243 } 2244 2245 // TODO: If return values can't fit in registers, we should return as many as 2246 // possible in registers before passing on stack. 2247 bool SITargetLowering::CanLowerReturn( 2248 CallingConv::ID CallConv, 2249 MachineFunction &MF, bool IsVarArg, 2250 const SmallVectorImpl<ISD::OutputArg> &Outs, 2251 LLVMContext &Context) const { 2252 // Replacing returns with sret/stack usage doesn't make sense for shaders. 2253 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 2254 // for shaders. Vector types should be explicitly handled by CC. 2255 if (AMDGPU::isEntryFunctionCC(CallConv)) 2256 return true; 2257 2258 SmallVector<CCValAssign, 16> RVLocs; 2259 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2260 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); 2261 } 2262 2263 SDValue 2264 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2265 bool isVarArg, 2266 const SmallVectorImpl<ISD::OutputArg> &Outs, 2267 const SmallVectorImpl<SDValue> &OutVals, 2268 const SDLoc &DL, SelectionDAG &DAG) const { 2269 MachineFunction &MF = DAG.getMachineFunction(); 2270 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2271 2272 if (AMDGPU::isKernel(CallConv)) { 2273 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 2274 OutVals, DL, DAG); 2275 } 2276 2277 bool IsShader = AMDGPU::isShader(CallConv); 2278 2279 Info->setIfReturnsVoid(Outs.empty()); 2280 bool IsWaveEnd = Info->returnsVoid() && IsShader; 2281 2282 // CCValAssign - represent the assignment of the return value to a location. 2283 SmallVector<CCValAssign, 48> RVLocs; 2284 SmallVector<ISD::OutputArg, 48> Splits; 2285 2286 // CCState - Info about the registers and stack slots. 2287 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2288 *DAG.getContext()); 2289 2290 // Analyze outgoing return values. 2291 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 2292 2293 SDValue Flag; 2294 SmallVector<SDValue, 48> RetOps; 2295 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2296 2297 // Add return address for callable functions. 2298 if (!Info->isEntryFunction()) { 2299 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2300 SDValue ReturnAddrReg = CreateLiveInRegister( 2301 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 2302 2303 SDValue ReturnAddrVirtualReg = DAG.getRegister( 2304 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass), 2305 MVT::i64); 2306 Chain = 2307 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag); 2308 Flag = Chain.getValue(1); 2309 RetOps.push_back(ReturnAddrVirtualReg); 2310 } 2311 2312 // Copy the result values into the output registers. 2313 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 2314 ++I, ++RealRVLocIdx) { 2315 CCValAssign &VA = RVLocs[I]; 2316 assert(VA.isRegLoc() && "Can only return in registers!"); 2317 // TODO: Partially return in registers if return values don't fit. 2318 SDValue Arg = OutVals[RealRVLocIdx]; 2319 2320 // Copied from other backends. 2321 switch (VA.getLocInfo()) { 2322 case CCValAssign::Full: 2323 break; 2324 case CCValAssign::BCvt: 2325 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2326 break; 2327 case CCValAssign::SExt: 2328 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2329 break; 2330 case CCValAssign::ZExt: 2331 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2332 break; 2333 case CCValAssign::AExt: 2334 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2335 break; 2336 default: 2337 llvm_unreachable("Unknown loc info!"); 2338 } 2339 2340 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 2341 Flag = Chain.getValue(1); 2342 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2343 } 2344 2345 // FIXME: Does sret work properly? 2346 if (!Info->isEntryFunction()) { 2347 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2348 const MCPhysReg *I = 2349 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 2350 if (I) { 2351 for (; *I; ++I) { 2352 if (AMDGPU::SReg_64RegClass.contains(*I)) 2353 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 2354 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2355 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 2356 else 2357 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2358 } 2359 } 2360 } 2361 2362 // Update chain and glue. 2363 RetOps[0] = Chain; 2364 if (Flag.getNode()) 2365 RetOps.push_back(Flag); 2366 2367 unsigned Opc = AMDGPUISD::ENDPGM; 2368 if (!IsWaveEnd) 2369 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; 2370 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 2371 } 2372 2373 SDValue SITargetLowering::LowerCallResult( 2374 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2375 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2376 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 2377 SDValue ThisVal) const { 2378 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 2379 2380 // Assign locations to each value returned by this call. 2381 SmallVector<CCValAssign, 16> RVLocs; 2382 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2383 *DAG.getContext()); 2384 CCInfo.AnalyzeCallResult(Ins, RetCC); 2385 2386 // Copy all of the result registers out of their specified physreg. 2387 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2388 CCValAssign VA = RVLocs[i]; 2389 SDValue Val; 2390 2391 if (VA.isRegLoc()) { 2392 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 2393 Chain = Val.getValue(1); 2394 InFlag = Val.getValue(2); 2395 } else if (VA.isMemLoc()) { 2396 report_fatal_error("TODO: return values in memory"); 2397 } else 2398 llvm_unreachable("unknown argument location type"); 2399 2400 switch (VA.getLocInfo()) { 2401 case CCValAssign::Full: 2402 break; 2403 case CCValAssign::BCvt: 2404 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2405 break; 2406 case CCValAssign::ZExt: 2407 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2408 DAG.getValueType(VA.getValVT())); 2409 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2410 break; 2411 case CCValAssign::SExt: 2412 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2413 DAG.getValueType(VA.getValVT())); 2414 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2415 break; 2416 case CCValAssign::AExt: 2417 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2418 break; 2419 default: 2420 llvm_unreachable("Unknown loc info!"); 2421 } 2422 2423 InVals.push_back(Val); 2424 } 2425 2426 return Chain; 2427 } 2428 2429 // Add code to pass special inputs required depending on used features separate 2430 // from the explicit user arguments present in the IR. 2431 void SITargetLowering::passSpecialInputs( 2432 CallLoweringInfo &CLI, 2433 CCState &CCInfo, 2434 const SIMachineFunctionInfo &Info, 2435 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 2436 SmallVectorImpl<SDValue> &MemOpChains, 2437 SDValue Chain) const { 2438 // If we don't have a call site, this was a call inserted by 2439 // legalization. These can never use special inputs. 2440 if (!CLI.CS) 2441 return; 2442 2443 const Function *CalleeFunc = CLI.CS.getCalledFunction(); 2444 assert(CalleeFunc); 2445 2446 SelectionDAG &DAG = CLI.DAG; 2447 const SDLoc &DL = CLI.DL; 2448 2449 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2450 2451 auto &ArgUsageInfo = 2452 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2453 const AMDGPUFunctionArgInfo &CalleeArgInfo 2454 = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 2455 2456 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 2457 2458 // TODO: Unify with private memory register handling. This is complicated by 2459 // the fact that at least in kernels, the input argument is not necessarily 2460 // in the same location as the input. 2461 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 2462 AMDGPUFunctionArgInfo::DISPATCH_PTR, 2463 AMDGPUFunctionArgInfo::QUEUE_PTR, 2464 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR, 2465 AMDGPUFunctionArgInfo::DISPATCH_ID, 2466 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 2467 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 2468 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z, 2469 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR 2470 }; 2471 2472 for (auto InputID : InputRegs) { 2473 const ArgDescriptor *OutgoingArg; 2474 const TargetRegisterClass *ArgRC; 2475 2476 std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID); 2477 if (!OutgoingArg) 2478 continue; 2479 2480 const ArgDescriptor *IncomingArg; 2481 const TargetRegisterClass *IncomingArgRC; 2482 std::tie(IncomingArg, IncomingArgRC) 2483 = CallerArgInfo.getPreloadedValue(InputID); 2484 assert(IncomingArgRC == ArgRC); 2485 2486 // All special arguments are ints for now. 2487 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 2488 SDValue InputReg; 2489 2490 if (IncomingArg) { 2491 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 2492 } else { 2493 // The implicit arg ptr is special because it doesn't have a corresponding 2494 // input for kernels, and is computed from the kernarg segment pointer. 2495 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 2496 InputReg = getImplicitArgPtr(DAG, DL); 2497 } 2498 2499 if (OutgoingArg->isRegister()) { 2500 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2501 } else { 2502 unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4); 2503 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2504 SpecialArgOffset); 2505 MemOpChains.push_back(ArgStore); 2506 } 2507 } 2508 2509 // Pack workitem IDs into a single register or pass it as is if already 2510 // packed. 2511 const ArgDescriptor *OutgoingArg; 2512 const TargetRegisterClass *ArgRC; 2513 2514 std::tie(OutgoingArg, ArgRC) = 2515 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 2516 if (!OutgoingArg) 2517 std::tie(OutgoingArg, ArgRC) = 2518 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 2519 if (!OutgoingArg) 2520 std::tie(OutgoingArg, ArgRC) = 2521 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 2522 if (!OutgoingArg) 2523 return; 2524 2525 const ArgDescriptor *IncomingArgX 2526 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first; 2527 const ArgDescriptor *IncomingArgY 2528 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first; 2529 const ArgDescriptor *IncomingArgZ 2530 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first; 2531 2532 SDValue InputReg; 2533 SDLoc SL; 2534 2535 // If incoming ids are not packed we need to pack them. 2536 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo.WorkItemIDX) 2537 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 2538 2539 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo.WorkItemIDY) { 2540 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 2541 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 2542 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 2543 InputReg = InputReg.getNode() ? 2544 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 2545 } 2546 2547 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo.WorkItemIDZ) { 2548 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 2549 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 2550 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 2551 InputReg = InputReg.getNode() ? 2552 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 2553 } 2554 2555 if (!InputReg.getNode()) { 2556 // Workitem ids are already packed, any of present incoming arguments 2557 // will carry all required fields. 2558 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 2559 IncomingArgX ? *IncomingArgX : 2560 IncomingArgY ? *IncomingArgY : 2561 *IncomingArgZ, ~0u); 2562 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 2563 } 2564 2565 if (OutgoingArg->isRegister()) { 2566 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2567 } else { 2568 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4); 2569 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2570 SpecialArgOffset); 2571 MemOpChains.push_back(ArgStore); 2572 } 2573 } 2574 2575 static bool canGuaranteeTCO(CallingConv::ID CC) { 2576 return CC == CallingConv::Fast; 2577 } 2578 2579 /// Return true if we might ever do TCO for calls with this calling convention. 2580 static bool mayTailCallThisCC(CallingConv::ID CC) { 2581 switch (CC) { 2582 case CallingConv::C: 2583 return true; 2584 default: 2585 return canGuaranteeTCO(CC); 2586 } 2587 } 2588 2589 bool SITargetLowering::isEligibleForTailCallOptimization( 2590 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 2591 const SmallVectorImpl<ISD::OutputArg> &Outs, 2592 const SmallVectorImpl<SDValue> &OutVals, 2593 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 2594 if (!mayTailCallThisCC(CalleeCC)) 2595 return false; 2596 2597 MachineFunction &MF = DAG.getMachineFunction(); 2598 const Function &CallerF = MF.getFunction(); 2599 CallingConv::ID CallerCC = CallerF.getCallingConv(); 2600 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2601 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2602 2603 // Kernels aren't callable, and don't have a live in return address so it 2604 // doesn't make sense to do a tail call with entry functions. 2605 if (!CallerPreserved) 2606 return false; 2607 2608 bool CCMatch = CallerCC == CalleeCC; 2609 2610 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 2611 if (canGuaranteeTCO(CalleeCC) && CCMatch) 2612 return true; 2613 return false; 2614 } 2615 2616 // TODO: Can we handle var args? 2617 if (IsVarArg) 2618 return false; 2619 2620 for (const Argument &Arg : CallerF.args()) { 2621 if (Arg.hasByValAttr()) 2622 return false; 2623 } 2624 2625 LLVMContext &Ctx = *DAG.getContext(); 2626 2627 // Check that the call results are passed in the same way. 2628 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 2629 CCAssignFnForCall(CalleeCC, IsVarArg), 2630 CCAssignFnForCall(CallerCC, IsVarArg))) 2631 return false; 2632 2633 // The callee has to preserve all registers the caller needs to preserve. 2634 if (!CCMatch) { 2635 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2636 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2637 return false; 2638 } 2639 2640 // Nothing more to check if the callee is taking no arguments. 2641 if (Outs.empty()) 2642 return true; 2643 2644 SmallVector<CCValAssign, 16> ArgLocs; 2645 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 2646 2647 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 2648 2649 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 2650 // If the stack arguments for this call do not fit into our own save area then 2651 // the call cannot be made tail. 2652 // TODO: Is this really necessary? 2653 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 2654 return false; 2655 2656 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2657 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 2658 } 2659 2660 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 2661 if (!CI->isTailCall()) 2662 return false; 2663 2664 const Function *ParentFn = CI->getParent()->getParent(); 2665 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 2666 return false; 2667 2668 auto Attr = ParentFn->getFnAttribute("disable-tail-calls"); 2669 return (Attr.getValueAsString() != "true"); 2670 } 2671 2672 // The wave scratch offset register is used as the global base pointer. 2673 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 2674 SmallVectorImpl<SDValue> &InVals) const { 2675 SelectionDAG &DAG = CLI.DAG; 2676 const SDLoc &DL = CLI.DL; 2677 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 2678 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 2679 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 2680 SDValue Chain = CLI.Chain; 2681 SDValue Callee = CLI.Callee; 2682 bool &IsTailCall = CLI.IsTailCall; 2683 CallingConv::ID CallConv = CLI.CallConv; 2684 bool IsVarArg = CLI.IsVarArg; 2685 bool IsSibCall = false; 2686 bool IsThisReturn = false; 2687 MachineFunction &MF = DAG.getMachineFunction(); 2688 2689 if (IsVarArg) { 2690 return lowerUnhandledCall(CLI, InVals, 2691 "unsupported call to variadic function "); 2692 } 2693 2694 if (!CLI.CS.getInstruction()) 2695 report_fatal_error("unsupported libcall legalization"); 2696 2697 if (!CLI.CS.getCalledFunction()) { 2698 return lowerUnhandledCall(CLI, InVals, 2699 "unsupported indirect call to function "); 2700 } 2701 2702 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 2703 return lowerUnhandledCall(CLI, InVals, 2704 "unsupported required tail call to function "); 2705 } 2706 2707 if (AMDGPU::isShader(MF.getFunction().getCallingConv())) { 2708 // Note the issue is with the CC of the calling function, not of the call 2709 // itself. 2710 return lowerUnhandledCall(CLI, InVals, 2711 "unsupported call from graphics shader of function "); 2712 } 2713 2714 if (IsTailCall) { 2715 IsTailCall = isEligibleForTailCallOptimization( 2716 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 2717 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) { 2718 report_fatal_error("failed to perform tail call elimination on a call " 2719 "site marked musttail"); 2720 } 2721 2722 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 2723 2724 // A sibling call is one where we're under the usual C ABI and not planning 2725 // to change that but can still do a tail call: 2726 if (!TailCallOpt && IsTailCall) 2727 IsSibCall = true; 2728 2729 if (IsTailCall) 2730 ++NumTailCalls; 2731 } 2732 2733 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2734 2735 // Analyze operands of the call, assigning locations to each operand. 2736 SmallVector<CCValAssign, 16> ArgLocs; 2737 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2738 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 2739 2740 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 2741 2742 // Get a count of how many bytes are to be pushed on the stack. 2743 unsigned NumBytes = CCInfo.getNextStackOffset(); 2744 2745 if (IsSibCall) { 2746 // Since we're not changing the ABI to make this a tail call, the memory 2747 // operands are already available in the caller's incoming argument space. 2748 NumBytes = 0; 2749 } 2750 2751 // FPDiff is the byte offset of the call's argument area from the callee's. 2752 // Stores to callee stack arguments will be placed in FixedStackSlots offset 2753 // by this amount for a tail call. In a sibling call it must be 0 because the 2754 // caller will deallocate the entire stack and the callee still expects its 2755 // arguments to begin at SP+0. Completely unused for non-tail calls. 2756 int32_t FPDiff = 0; 2757 MachineFrameInfo &MFI = MF.getFrameInfo(); 2758 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2759 2760 // Adjust the stack pointer for the new arguments... 2761 // These operations are automatically eliminated by the prolog/epilog pass 2762 if (!IsSibCall) { 2763 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 2764 2765 SmallVector<SDValue, 4> CopyFromChains; 2766 2767 // In the HSA case, this should be an identity copy. 2768 SDValue ScratchRSrcReg 2769 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 2770 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 2771 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 2772 Chain = DAG.getTokenFactor(DL, CopyFromChains); 2773 } 2774 2775 SmallVector<SDValue, 8> MemOpChains; 2776 MVT PtrVT = MVT::i32; 2777 2778 // Walk the register/memloc assignments, inserting copies/loads. 2779 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; 2780 ++i, ++realArgIdx) { 2781 CCValAssign &VA = ArgLocs[i]; 2782 SDValue Arg = OutVals[realArgIdx]; 2783 2784 // Promote the value if needed. 2785 switch (VA.getLocInfo()) { 2786 case CCValAssign::Full: 2787 break; 2788 case CCValAssign::BCvt: 2789 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2790 break; 2791 case CCValAssign::ZExt: 2792 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2793 break; 2794 case CCValAssign::SExt: 2795 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2796 break; 2797 case CCValAssign::AExt: 2798 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2799 break; 2800 case CCValAssign::FPExt: 2801 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 2802 break; 2803 default: 2804 llvm_unreachable("Unknown loc info!"); 2805 } 2806 2807 if (VA.isRegLoc()) { 2808 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 2809 } else { 2810 assert(VA.isMemLoc()); 2811 2812 SDValue DstAddr; 2813 MachinePointerInfo DstInfo; 2814 2815 unsigned LocMemOffset = VA.getLocMemOffset(); 2816 int32_t Offset = LocMemOffset; 2817 2818 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 2819 unsigned Align = 0; 2820 2821 if (IsTailCall) { 2822 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 2823 unsigned OpSize = Flags.isByVal() ? 2824 Flags.getByValSize() : VA.getValVT().getStoreSize(); 2825 2826 // FIXME: We can have better than the minimum byval required alignment. 2827 Align = Flags.isByVal() ? Flags.getByValAlign() : 2828 MinAlign(Subtarget->getStackAlignment(), Offset); 2829 2830 Offset = Offset + FPDiff; 2831 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 2832 2833 DstAddr = DAG.getFrameIndex(FI, PtrVT); 2834 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 2835 2836 // Make sure any stack arguments overlapping with where we're storing 2837 // are loaded before this eventual operation. Otherwise they'll be 2838 // clobbered. 2839 2840 // FIXME: Why is this really necessary? This seems to just result in a 2841 // lot of code to copy the stack and write them back to the same 2842 // locations, which are supposed to be immutable? 2843 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 2844 } else { 2845 DstAddr = PtrOff; 2846 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 2847 Align = MinAlign(Subtarget->getStackAlignment(), LocMemOffset); 2848 } 2849 2850 if (Outs[i].Flags.isByVal()) { 2851 SDValue SizeNode = 2852 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 2853 SDValue Cpy = DAG.getMemcpy( 2854 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), 2855 /*isVol = */ false, /*AlwaysInline = */ true, 2856 /*isTailCall = */ false, DstInfo, 2857 MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy( 2858 *DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS)))); 2859 2860 MemOpChains.push_back(Cpy); 2861 } else { 2862 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Align); 2863 MemOpChains.push_back(Store); 2864 } 2865 } 2866 } 2867 2868 // Copy special input registers after user input arguments. 2869 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 2870 2871 if (!MemOpChains.empty()) 2872 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2873 2874 // Build a sequence of copy-to-reg nodes chained together with token chain 2875 // and flag operands which copy the outgoing args into the appropriate regs. 2876 SDValue InFlag; 2877 for (auto &RegToPass : RegsToPass) { 2878 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 2879 RegToPass.second, InFlag); 2880 InFlag = Chain.getValue(1); 2881 } 2882 2883 2884 SDValue PhysReturnAddrReg; 2885 if (IsTailCall) { 2886 // Since the return is being combined with the call, we need to pass on the 2887 // return address. 2888 2889 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2890 SDValue ReturnAddrReg = CreateLiveInRegister( 2891 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 2892 2893 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), 2894 MVT::i64); 2895 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); 2896 InFlag = Chain.getValue(1); 2897 } 2898 2899 // We don't usually want to end the call-sequence here because we would tidy 2900 // the frame up *after* the call, however in the ABI-changing tail-call case 2901 // we've carefully laid out the parameters so that when sp is reset they'll be 2902 // in the correct location. 2903 if (IsTailCall && !IsSibCall) { 2904 Chain = DAG.getCALLSEQ_END(Chain, 2905 DAG.getTargetConstant(NumBytes, DL, MVT::i32), 2906 DAG.getTargetConstant(0, DL, MVT::i32), 2907 InFlag, DL); 2908 InFlag = Chain.getValue(1); 2909 } 2910 2911 std::vector<SDValue> Ops; 2912 Ops.push_back(Chain); 2913 Ops.push_back(Callee); 2914 // Add a redundant copy of the callee global which will not be legalized, as 2915 // we need direct access to the callee later. 2916 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee); 2917 const GlobalValue *GV = GSD->getGlobal(); 2918 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 2919 2920 if (IsTailCall) { 2921 // Each tail call may have to adjust the stack by a different amount, so 2922 // this information must travel along with the operation for eventual 2923 // consumption by emitEpilogue. 2924 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 2925 2926 Ops.push_back(PhysReturnAddrReg); 2927 } 2928 2929 // Add argument registers to the end of the list so that they are known live 2930 // into the call. 2931 for (auto &RegToPass : RegsToPass) { 2932 Ops.push_back(DAG.getRegister(RegToPass.first, 2933 RegToPass.second.getValueType())); 2934 } 2935 2936 // Add a register mask operand representing the call-preserved registers. 2937 2938 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 2939 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2940 assert(Mask && "Missing call preserved mask for calling convention"); 2941 Ops.push_back(DAG.getRegisterMask(Mask)); 2942 2943 if (InFlag.getNode()) 2944 Ops.push_back(InFlag); 2945 2946 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2947 2948 // If we're doing a tall call, use a TC_RETURN here rather than an 2949 // actual call instruction. 2950 if (IsTailCall) { 2951 MFI.setHasTailCall(); 2952 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); 2953 } 2954 2955 // Returns a chain and a flag for retval copy to use. 2956 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 2957 Chain = Call.getValue(0); 2958 InFlag = Call.getValue(1); 2959 2960 uint64_t CalleePopBytes = NumBytes; 2961 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), 2962 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), 2963 InFlag, DL); 2964 if (!Ins.empty()) 2965 InFlag = Chain.getValue(1); 2966 2967 // Handle result values, copying them out of physregs into vregs that we 2968 // return. 2969 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 2970 InVals, IsThisReturn, 2971 IsThisReturn ? OutVals[0] : SDValue()); 2972 } 2973 2974 unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT, 2975 SelectionDAG &DAG) const { 2976 unsigned Reg = StringSwitch<unsigned>(RegName) 2977 .Case("m0", AMDGPU::M0) 2978 .Case("exec", AMDGPU::EXEC) 2979 .Case("exec_lo", AMDGPU::EXEC_LO) 2980 .Case("exec_hi", AMDGPU::EXEC_HI) 2981 .Case("flat_scratch", AMDGPU::FLAT_SCR) 2982 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 2983 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 2984 .Default(AMDGPU::NoRegister); 2985 2986 if (Reg == AMDGPU::NoRegister) { 2987 report_fatal_error(Twine("invalid register name \"" 2988 + StringRef(RegName) + "\".")); 2989 2990 } 2991 2992 if (!Subtarget->hasFlatScrRegister() && 2993 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 2994 report_fatal_error(Twine("invalid register \"" 2995 + StringRef(RegName) + "\" for subtarget.")); 2996 } 2997 2998 switch (Reg) { 2999 case AMDGPU::M0: 3000 case AMDGPU::EXEC_LO: 3001 case AMDGPU::EXEC_HI: 3002 case AMDGPU::FLAT_SCR_LO: 3003 case AMDGPU::FLAT_SCR_HI: 3004 if (VT.getSizeInBits() == 32) 3005 return Reg; 3006 break; 3007 case AMDGPU::EXEC: 3008 case AMDGPU::FLAT_SCR: 3009 if (VT.getSizeInBits() == 64) 3010 return Reg; 3011 break; 3012 default: 3013 llvm_unreachable("missing register type checking"); 3014 } 3015 3016 report_fatal_error(Twine("invalid type for register \"" 3017 + StringRef(RegName) + "\".")); 3018 } 3019 3020 // If kill is not the last instruction, split the block so kill is always a 3021 // proper terminator. 3022 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI, 3023 MachineBasicBlock *BB) const { 3024 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3025 3026 MachineBasicBlock::iterator SplitPoint(&MI); 3027 ++SplitPoint; 3028 3029 if (SplitPoint == BB->end()) { 3030 // Don't bother with a new block. 3031 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3032 return BB; 3033 } 3034 3035 MachineFunction *MF = BB->getParent(); 3036 MachineBasicBlock *SplitBB 3037 = MF->CreateMachineBasicBlock(BB->getBasicBlock()); 3038 3039 MF->insert(++MachineFunction::iterator(BB), SplitBB); 3040 SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end()); 3041 3042 SplitBB->transferSuccessorsAndUpdatePHIs(BB); 3043 BB->addSuccessor(SplitBB); 3044 3045 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3046 return SplitBB; 3047 } 3048 3049 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 3050 // \p MI will be the only instruction in the loop body block. Otherwise, it will 3051 // be the first instruction in the remainder block. 3052 // 3053 /// \returns { LoopBody, Remainder } 3054 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 3055 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 3056 MachineFunction *MF = MBB.getParent(); 3057 MachineBasicBlock::iterator I(&MI); 3058 3059 // To insert the loop we need to split the block. Move everything after this 3060 // point to a new block, and insert a new empty block between the two. 3061 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 3062 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 3063 MachineFunction::iterator MBBI(MBB); 3064 ++MBBI; 3065 3066 MF->insert(MBBI, LoopBB); 3067 MF->insert(MBBI, RemainderBB); 3068 3069 LoopBB->addSuccessor(LoopBB); 3070 LoopBB->addSuccessor(RemainderBB); 3071 3072 // Move the rest of the block into a new block. 3073 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 3074 3075 if (InstInLoop) { 3076 auto Next = std::next(I); 3077 3078 // Move instruction to loop body. 3079 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 3080 3081 // Move the rest of the block. 3082 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 3083 } else { 3084 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 3085 } 3086 3087 MBB.addSuccessor(LoopBB); 3088 3089 return std::make_pair(LoopBB, RemainderBB); 3090 } 3091 3092 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 3093 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 3094 MachineBasicBlock *MBB = MI.getParent(); 3095 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3096 auto I = MI.getIterator(); 3097 auto E = std::next(I); 3098 3099 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 3100 .addImm(0); 3101 3102 MIBundleBuilder Bundler(*MBB, I, E); 3103 finalizeBundle(*MBB, Bundler.begin()); 3104 } 3105 3106 MachineBasicBlock * 3107 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 3108 MachineBasicBlock *BB) const { 3109 const DebugLoc &DL = MI.getDebugLoc(); 3110 3111 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3112 3113 MachineBasicBlock *LoopBB; 3114 MachineBasicBlock *RemainderBB; 3115 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3116 3117 // Apparently kill flags are only valid if the def is in the same block? 3118 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 3119 Src->setIsKill(false); 3120 3121 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 3122 3123 MachineBasicBlock::iterator I = LoopBB->end(); 3124 3125 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 3126 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 3127 3128 // Clear TRAP_STS.MEM_VIOL 3129 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 3130 .addImm(0) 3131 .addImm(EncodedReg); 3132 3133 bundleInstWithWaitcnt(MI); 3134 3135 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3136 3137 // Load and check TRAP_STS.MEM_VIOL 3138 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 3139 .addImm(EncodedReg); 3140 3141 // FIXME: Do we need to use an isel pseudo that may clobber scc? 3142 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 3143 .addReg(Reg, RegState::Kill) 3144 .addImm(0); 3145 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3146 .addMBB(LoopBB); 3147 3148 return RemainderBB; 3149 } 3150 3151 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 3152 // wavefront. If the value is uniform and just happens to be in a VGPR, this 3153 // will only do one iteration. In the worst case, this will loop 64 times. 3154 // 3155 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 3156 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop( 3157 const SIInstrInfo *TII, 3158 MachineRegisterInfo &MRI, 3159 MachineBasicBlock &OrigBB, 3160 MachineBasicBlock &LoopBB, 3161 const DebugLoc &DL, 3162 const MachineOperand &IdxReg, 3163 unsigned InitReg, 3164 unsigned ResultReg, 3165 unsigned PhiReg, 3166 unsigned InitSaveExecReg, 3167 int Offset, 3168 bool UseGPRIdxMode, 3169 bool IsIndirectSrc) { 3170 MachineFunction *MF = OrigBB.getParent(); 3171 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3172 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3173 MachineBasicBlock::iterator I = LoopBB.begin(); 3174 3175 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3176 Register PhiExec = MRI.createVirtualRegister(BoolRC); 3177 Register NewExec = MRI.createVirtualRegister(BoolRC); 3178 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3179 Register CondReg = MRI.createVirtualRegister(BoolRC); 3180 3181 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 3182 .addReg(InitReg) 3183 .addMBB(&OrigBB) 3184 .addReg(ResultReg) 3185 .addMBB(&LoopBB); 3186 3187 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 3188 .addReg(InitSaveExecReg) 3189 .addMBB(&OrigBB) 3190 .addReg(NewExec) 3191 .addMBB(&LoopBB); 3192 3193 // Read the next variant <- also loop target. 3194 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 3195 .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef())); 3196 3197 // Compare the just read M0 value to all possible Idx values. 3198 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 3199 .addReg(CurrentIdxReg) 3200 .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg()); 3201 3202 // Update EXEC, save the original EXEC value to VCC. 3203 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 3204 : AMDGPU::S_AND_SAVEEXEC_B64), 3205 NewExec) 3206 .addReg(CondReg, RegState::Kill); 3207 3208 MRI.setSimpleHint(NewExec, CondReg); 3209 3210 if (UseGPRIdxMode) { 3211 unsigned IdxReg; 3212 if (Offset == 0) { 3213 IdxReg = CurrentIdxReg; 3214 } else { 3215 IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3216 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg) 3217 .addReg(CurrentIdxReg, RegState::Kill) 3218 .addImm(Offset); 3219 } 3220 unsigned IdxMode = IsIndirectSrc ? 3221 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE; 3222 MachineInstr *SetOn = 3223 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 3224 .addReg(IdxReg, RegState::Kill) 3225 .addImm(IdxMode); 3226 SetOn->getOperand(3).setIsUndef(); 3227 } else { 3228 // Move index from VCC into M0 3229 if (Offset == 0) { 3230 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3231 .addReg(CurrentIdxReg, RegState::Kill); 3232 } else { 3233 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3234 .addReg(CurrentIdxReg, RegState::Kill) 3235 .addImm(Offset); 3236 } 3237 } 3238 3239 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 3240 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3241 MachineInstr *InsertPt = 3242 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 3243 : AMDGPU::S_XOR_B64_term), Exec) 3244 .addReg(Exec) 3245 .addReg(NewExec); 3246 3247 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 3248 // s_cbranch_scc0? 3249 3250 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 3251 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 3252 .addMBB(&LoopBB); 3253 3254 return InsertPt->getIterator(); 3255 } 3256 3257 // This has slightly sub-optimal regalloc when the source vector is killed by 3258 // the read. The register allocator does not understand that the kill is 3259 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 3260 // subregister from it, using 1 more VGPR than necessary. This was saved when 3261 // this was expanded after register allocation. 3262 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, 3263 MachineBasicBlock &MBB, 3264 MachineInstr &MI, 3265 unsigned InitResultReg, 3266 unsigned PhiReg, 3267 int Offset, 3268 bool UseGPRIdxMode, 3269 bool IsIndirectSrc) { 3270 MachineFunction *MF = MBB.getParent(); 3271 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3272 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3273 MachineRegisterInfo &MRI = MF->getRegInfo(); 3274 const DebugLoc &DL = MI.getDebugLoc(); 3275 MachineBasicBlock::iterator I(&MI); 3276 3277 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3278 Register DstReg = MI.getOperand(0).getReg(); 3279 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 3280 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 3281 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3282 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 3283 3284 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 3285 3286 // Save the EXEC mask 3287 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 3288 .addReg(Exec); 3289 3290 MachineBasicBlock *LoopBB; 3291 MachineBasicBlock *RemainderBB; 3292 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 3293 3294 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3295 3296 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 3297 InitResultReg, DstReg, PhiReg, TmpExec, 3298 Offset, UseGPRIdxMode, IsIndirectSrc); 3299 3300 MachineBasicBlock::iterator First = RemainderBB->begin(); 3301 BuildMI(*RemainderBB, First, DL, TII->get(MovExecOpc), Exec) 3302 .addReg(SaveExec); 3303 3304 return InsPt; 3305 } 3306 3307 // Returns subreg index, offset 3308 static std::pair<unsigned, int> 3309 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 3310 const TargetRegisterClass *SuperRC, 3311 unsigned VecReg, 3312 int Offset) { 3313 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 3314 3315 // Skip out of bounds offsets, or else we would end up using an undefined 3316 // register. 3317 if (Offset >= NumElts || Offset < 0) 3318 return std::make_pair(AMDGPU::sub0, Offset); 3319 3320 return std::make_pair(AMDGPU::sub0 + Offset, 0); 3321 } 3322 3323 // Return true if the index is an SGPR and was set. 3324 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII, 3325 MachineRegisterInfo &MRI, 3326 MachineInstr &MI, 3327 int Offset, 3328 bool UseGPRIdxMode, 3329 bool IsIndirectSrc) { 3330 MachineBasicBlock *MBB = MI.getParent(); 3331 const DebugLoc &DL = MI.getDebugLoc(); 3332 MachineBasicBlock::iterator I(&MI); 3333 3334 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3335 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3336 3337 assert(Idx->getReg() != AMDGPU::NoRegister); 3338 3339 if (!TII->getRegisterInfo().isSGPRClass(IdxRC)) 3340 return false; 3341 3342 if (UseGPRIdxMode) { 3343 unsigned IdxMode = IsIndirectSrc ? 3344 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE; 3345 if (Offset == 0) { 3346 MachineInstr *SetOn = 3347 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 3348 .add(*Idx) 3349 .addImm(IdxMode); 3350 3351 SetOn->getOperand(3).setIsUndef(); 3352 } else { 3353 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3354 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 3355 .add(*Idx) 3356 .addImm(Offset); 3357 MachineInstr *SetOn = 3358 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 3359 .addReg(Tmp, RegState::Kill) 3360 .addImm(IdxMode); 3361 3362 SetOn->getOperand(3).setIsUndef(); 3363 } 3364 3365 return true; 3366 } 3367 3368 if (Offset == 0) { 3369 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3370 .add(*Idx); 3371 } else { 3372 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3373 .add(*Idx) 3374 .addImm(Offset); 3375 } 3376 3377 return true; 3378 } 3379 3380 // Control flow needs to be inserted if indexing with a VGPR. 3381 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 3382 MachineBasicBlock &MBB, 3383 const GCNSubtarget &ST) { 3384 const SIInstrInfo *TII = ST.getInstrInfo(); 3385 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3386 MachineFunction *MF = MBB.getParent(); 3387 MachineRegisterInfo &MRI = MF->getRegInfo(); 3388 3389 Register Dst = MI.getOperand(0).getReg(); 3390 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 3391 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3392 3393 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 3394 3395 unsigned SubReg; 3396 std::tie(SubReg, Offset) 3397 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 3398 3399 bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode); 3400 3401 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) { 3402 MachineBasicBlock::iterator I(&MI); 3403 const DebugLoc &DL = MI.getDebugLoc(); 3404 3405 if (UseGPRIdxMode) { 3406 // TODO: Look at the uses to avoid the copy. This may require rescheduling 3407 // to avoid interfering with other uses, so probably requires a new 3408 // optimization pass. 3409 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) 3410 .addReg(SrcReg, RegState::Undef, SubReg) 3411 .addReg(SrcReg, RegState::Implicit) 3412 .addReg(AMDGPU::M0, RegState::Implicit); 3413 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3414 } else { 3415 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3416 .addReg(SrcReg, RegState::Undef, SubReg) 3417 .addReg(SrcReg, RegState::Implicit); 3418 } 3419 3420 MI.eraseFromParent(); 3421 3422 return &MBB; 3423 } 3424 3425 const DebugLoc &DL = MI.getDebugLoc(); 3426 MachineBasicBlock::iterator I(&MI); 3427 3428 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3429 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3430 3431 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 3432 3433 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, 3434 Offset, UseGPRIdxMode, true); 3435 MachineBasicBlock *LoopBB = InsPt->getParent(); 3436 3437 if (UseGPRIdxMode) { 3438 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) 3439 .addReg(SrcReg, RegState::Undef, SubReg) 3440 .addReg(SrcReg, RegState::Implicit) 3441 .addReg(AMDGPU::M0, RegState::Implicit); 3442 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3443 } else { 3444 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3445 .addReg(SrcReg, RegState::Undef, SubReg) 3446 .addReg(SrcReg, RegState::Implicit); 3447 } 3448 3449 MI.eraseFromParent(); 3450 3451 return LoopBB; 3452 } 3453 3454 static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI, 3455 const TargetRegisterClass *VecRC) { 3456 switch (TRI.getRegSizeInBits(*VecRC)) { 3457 case 32: // 4 bytes 3458 return AMDGPU::V_MOVRELD_B32_V1; 3459 case 64: // 8 bytes 3460 return AMDGPU::V_MOVRELD_B32_V2; 3461 case 128: // 16 bytes 3462 return AMDGPU::V_MOVRELD_B32_V4; 3463 case 256: // 32 bytes 3464 return AMDGPU::V_MOVRELD_B32_V8; 3465 case 512: // 64 bytes 3466 return AMDGPU::V_MOVRELD_B32_V16; 3467 default: 3468 llvm_unreachable("unsupported size for MOVRELD pseudos"); 3469 } 3470 } 3471 3472 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 3473 MachineBasicBlock &MBB, 3474 const GCNSubtarget &ST) { 3475 const SIInstrInfo *TII = ST.getInstrInfo(); 3476 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3477 MachineFunction *MF = MBB.getParent(); 3478 MachineRegisterInfo &MRI = MF->getRegInfo(); 3479 3480 Register Dst = MI.getOperand(0).getReg(); 3481 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 3482 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3483 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 3484 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3485 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 3486 3487 // This can be an immediate, but will be folded later. 3488 assert(Val->getReg()); 3489 3490 unsigned SubReg; 3491 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 3492 SrcVec->getReg(), 3493 Offset); 3494 bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode); 3495 3496 if (Idx->getReg() == AMDGPU::NoRegister) { 3497 MachineBasicBlock::iterator I(&MI); 3498 const DebugLoc &DL = MI.getDebugLoc(); 3499 3500 assert(Offset == 0); 3501 3502 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 3503 .add(*SrcVec) 3504 .add(*Val) 3505 .addImm(SubReg); 3506 3507 MI.eraseFromParent(); 3508 return &MBB; 3509 } 3510 3511 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) { 3512 MachineBasicBlock::iterator I(&MI); 3513 const DebugLoc &DL = MI.getDebugLoc(); 3514 3515 if (UseGPRIdxMode) { 3516 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) 3517 .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst 3518 .add(*Val) 3519 .addReg(Dst, RegState::ImplicitDefine) 3520 .addReg(SrcVec->getReg(), RegState::Implicit) 3521 .addReg(AMDGPU::M0, RegState::Implicit); 3522 3523 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3524 } else { 3525 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); 3526 3527 BuildMI(MBB, I, DL, MovRelDesc) 3528 .addReg(Dst, RegState::Define) 3529 .addReg(SrcVec->getReg()) 3530 .add(*Val) 3531 .addImm(SubReg - AMDGPU::sub0); 3532 } 3533 3534 MI.eraseFromParent(); 3535 return &MBB; 3536 } 3537 3538 if (Val->isReg()) 3539 MRI.clearKillFlags(Val->getReg()); 3540 3541 const DebugLoc &DL = MI.getDebugLoc(); 3542 3543 Register PhiReg = MRI.createVirtualRegister(VecRC); 3544 3545 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, 3546 Offset, UseGPRIdxMode, false); 3547 MachineBasicBlock *LoopBB = InsPt->getParent(); 3548 3549 if (UseGPRIdxMode) { 3550 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) 3551 .addReg(PhiReg, RegState::Undef, SubReg) // vdst 3552 .add(*Val) // src0 3553 .addReg(Dst, RegState::ImplicitDefine) 3554 .addReg(PhiReg, RegState::Implicit) 3555 .addReg(AMDGPU::M0, RegState::Implicit); 3556 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3557 } else { 3558 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); 3559 3560 BuildMI(*LoopBB, InsPt, DL, MovRelDesc) 3561 .addReg(Dst, RegState::Define) 3562 .addReg(PhiReg) 3563 .add(*Val) 3564 .addImm(SubReg - AMDGPU::sub0); 3565 } 3566 3567 MI.eraseFromParent(); 3568 3569 return LoopBB; 3570 } 3571 3572 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 3573 MachineInstr &MI, MachineBasicBlock *BB) const { 3574 3575 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3576 MachineFunction *MF = BB->getParent(); 3577 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 3578 3579 if (TII->isMIMG(MI)) { 3580 if (MI.memoperands_empty() && MI.mayLoadOrStore()) { 3581 report_fatal_error("missing mem operand from MIMG instruction"); 3582 } 3583 // Add a memoperand for mimg instructions so that they aren't assumed to 3584 // be ordered memory instuctions. 3585 3586 return BB; 3587 } 3588 3589 switch (MI.getOpcode()) { 3590 case AMDGPU::S_ADD_U64_PSEUDO: 3591 case AMDGPU::S_SUB_U64_PSEUDO: { 3592 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3593 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3594 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3595 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3596 const DebugLoc &DL = MI.getDebugLoc(); 3597 3598 MachineOperand &Dest = MI.getOperand(0); 3599 MachineOperand &Src0 = MI.getOperand(1); 3600 MachineOperand &Src1 = MI.getOperand(2); 3601 3602 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3603 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3604 3605 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, 3606 Src0, BoolRC, AMDGPU::sub0, 3607 &AMDGPU::SReg_32_XM0RegClass); 3608 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, 3609 Src0, BoolRC, AMDGPU::sub1, 3610 &AMDGPU::SReg_32_XM0RegClass); 3611 3612 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, 3613 Src1, BoolRC, AMDGPU::sub0, 3614 &AMDGPU::SReg_32_XM0RegClass); 3615 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, 3616 Src1, BoolRC, AMDGPU::sub1, 3617 &AMDGPU::SReg_32_XM0RegClass); 3618 3619 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 3620 3621 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 3622 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 3623 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 3624 .add(Src0Sub0) 3625 .add(Src1Sub0); 3626 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 3627 .add(Src0Sub1) 3628 .add(Src1Sub1); 3629 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 3630 .addReg(DestSub0) 3631 .addImm(AMDGPU::sub0) 3632 .addReg(DestSub1) 3633 .addImm(AMDGPU::sub1); 3634 MI.eraseFromParent(); 3635 return BB; 3636 } 3637 case AMDGPU::SI_INIT_M0: { 3638 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 3639 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3640 .add(MI.getOperand(0)); 3641 MI.eraseFromParent(); 3642 return BB; 3643 } 3644 case AMDGPU::SI_INIT_EXEC: 3645 // This should be before all vector instructions. 3646 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 3647 AMDGPU::EXEC) 3648 .addImm(MI.getOperand(0).getImm()); 3649 MI.eraseFromParent(); 3650 return BB; 3651 3652 case AMDGPU::SI_INIT_EXEC_LO: 3653 // This should be before all vector instructions. 3654 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), 3655 AMDGPU::EXEC_LO) 3656 .addImm(MI.getOperand(0).getImm()); 3657 MI.eraseFromParent(); 3658 return BB; 3659 3660 case AMDGPU::SI_INIT_EXEC_FROM_INPUT: { 3661 // Extract the thread count from an SGPR input and set EXEC accordingly. 3662 // Since BFM can't shift by 64, handle that case with CMP + CMOV. 3663 // 3664 // S_BFE_U32 count, input, {shift, 7} 3665 // S_BFM_B64 exec, count, 0 3666 // S_CMP_EQ_U32 count, 64 3667 // S_CMOV_B64 exec, -1 3668 MachineInstr *FirstMI = &*BB->begin(); 3669 MachineRegisterInfo &MRI = MF->getRegInfo(); 3670 Register InputReg = MI.getOperand(0).getReg(); 3671 Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3672 bool Found = false; 3673 3674 // Move the COPY of the input reg to the beginning, so that we can use it. 3675 for (auto I = BB->begin(); I != &MI; I++) { 3676 if (I->getOpcode() != TargetOpcode::COPY || 3677 I->getOperand(0).getReg() != InputReg) 3678 continue; 3679 3680 if (I == FirstMI) { 3681 FirstMI = &*++BB->begin(); 3682 } else { 3683 I->removeFromParent(); 3684 BB->insert(FirstMI, &*I); 3685 } 3686 Found = true; 3687 break; 3688 } 3689 assert(Found); 3690 (void)Found; 3691 3692 // This should be before all vector instructions. 3693 unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1; 3694 bool isWave32 = getSubtarget()->isWave32(); 3695 unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3696 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg) 3697 .addReg(InputReg) 3698 .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000); 3699 BuildMI(*BB, FirstMI, DebugLoc(), 3700 TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64), 3701 Exec) 3702 .addReg(CountReg) 3703 .addImm(0); 3704 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32)) 3705 .addReg(CountReg, RegState::Kill) 3706 .addImm(getSubtarget()->getWavefrontSize()); 3707 BuildMI(*BB, FirstMI, DebugLoc(), 3708 TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64), 3709 Exec) 3710 .addImm(-1); 3711 MI.eraseFromParent(); 3712 return BB; 3713 } 3714 3715 case AMDGPU::GET_GROUPSTATICSIZE: { 3716 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 3717 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 3718 DebugLoc DL = MI.getDebugLoc(); 3719 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 3720 .add(MI.getOperand(0)) 3721 .addImm(MFI->getLDSSize()); 3722 MI.eraseFromParent(); 3723 return BB; 3724 } 3725 case AMDGPU::SI_INDIRECT_SRC_V1: 3726 case AMDGPU::SI_INDIRECT_SRC_V2: 3727 case AMDGPU::SI_INDIRECT_SRC_V4: 3728 case AMDGPU::SI_INDIRECT_SRC_V8: 3729 case AMDGPU::SI_INDIRECT_SRC_V16: 3730 return emitIndirectSrc(MI, *BB, *getSubtarget()); 3731 case AMDGPU::SI_INDIRECT_DST_V1: 3732 case AMDGPU::SI_INDIRECT_DST_V2: 3733 case AMDGPU::SI_INDIRECT_DST_V4: 3734 case AMDGPU::SI_INDIRECT_DST_V8: 3735 case AMDGPU::SI_INDIRECT_DST_V16: 3736 return emitIndirectDst(MI, *BB, *getSubtarget()); 3737 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 3738 case AMDGPU::SI_KILL_I1_PSEUDO: 3739 return splitKillBlock(MI, BB); 3740 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 3741 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3742 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3743 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3744 3745 Register Dst = MI.getOperand(0).getReg(); 3746 Register Src0 = MI.getOperand(1).getReg(); 3747 Register Src1 = MI.getOperand(2).getReg(); 3748 const DebugLoc &DL = MI.getDebugLoc(); 3749 Register SrcCond = MI.getOperand(3).getReg(); 3750 3751 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3752 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3753 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3754 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 3755 3756 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 3757 .addReg(SrcCond); 3758 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 3759 .addImm(0) 3760 .addReg(Src0, 0, AMDGPU::sub0) 3761 .addImm(0) 3762 .addReg(Src1, 0, AMDGPU::sub0) 3763 .addReg(SrcCondCopy); 3764 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 3765 .addImm(0) 3766 .addReg(Src0, 0, AMDGPU::sub1) 3767 .addImm(0) 3768 .addReg(Src1, 0, AMDGPU::sub1) 3769 .addReg(SrcCondCopy); 3770 3771 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 3772 .addReg(DstLo) 3773 .addImm(AMDGPU::sub0) 3774 .addReg(DstHi) 3775 .addImm(AMDGPU::sub1); 3776 MI.eraseFromParent(); 3777 return BB; 3778 } 3779 case AMDGPU::SI_BR_UNDEF: { 3780 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3781 const DebugLoc &DL = MI.getDebugLoc(); 3782 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3783 .add(MI.getOperand(0)); 3784 Br->getOperand(1).setIsUndef(true); // read undef SCC 3785 MI.eraseFromParent(); 3786 return BB; 3787 } 3788 case AMDGPU::ADJCALLSTACKUP: 3789 case AMDGPU::ADJCALLSTACKDOWN: { 3790 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 3791 MachineInstrBuilder MIB(*MF, &MI); 3792 3793 // Add an implicit use of the frame offset reg to prevent the restore copy 3794 // inserted after the call from being reorderd after stack operations in the 3795 // the caller's frame. 3796 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 3797 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit) 3798 .addReg(Info->getFrameOffsetReg(), RegState::Implicit); 3799 return BB; 3800 } 3801 case AMDGPU::SI_CALL_ISEL: { 3802 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3803 const DebugLoc &DL = MI.getDebugLoc(); 3804 3805 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 3806 3807 MachineInstrBuilder MIB; 3808 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 3809 3810 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) 3811 MIB.add(MI.getOperand(I)); 3812 3813 MIB.cloneMemRefs(MI); 3814 MI.eraseFromParent(); 3815 return BB; 3816 } 3817 case AMDGPU::V_ADD_I32_e32: 3818 case AMDGPU::V_SUB_I32_e32: 3819 case AMDGPU::V_SUBREV_I32_e32: { 3820 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 3821 const DebugLoc &DL = MI.getDebugLoc(); 3822 unsigned Opc = MI.getOpcode(); 3823 3824 bool NeedClampOperand = false; 3825 if (TII->pseudoToMCOpcode(Opc) == -1) { 3826 Opc = AMDGPU::getVOPe64(Opc); 3827 NeedClampOperand = true; 3828 } 3829 3830 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 3831 if (TII->isVOP3(*I)) { 3832 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3833 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3834 I.addReg(TRI->getVCC(), RegState::Define); 3835 } 3836 I.add(MI.getOperand(1)) 3837 .add(MI.getOperand(2)); 3838 if (NeedClampOperand) 3839 I.addImm(0); // clamp bit for e64 encoding 3840 3841 TII->legalizeOperands(*I); 3842 3843 MI.eraseFromParent(); 3844 return BB; 3845 } 3846 case AMDGPU::DS_GWS_INIT: 3847 case AMDGPU::DS_GWS_SEMA_V: 3848 case AMDGPU::DS_GWS_SEMA_BR: 3849 case AMDGPU::DS_GWS_SEMA_P: 3850 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 3851 case AMDGPU::DS_GWS_BARRIER: 3852 // A s_waitcnt 0 is required to be the instruction immediately following. 3853 if (getSubtarget()->hasGWSAutoReplay()) { 3854 bundleInstWithWaitcnt(MI); 3855 return BB; 3856 } 3857 3858 return emitGWSMemViolTestLoop(MI, BB); 3859 default: 3860 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 3861 } 3862 } 3863 3864 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { 3865 return isTypeLegal(VT.getScalarType()); 3866 } 3867 3868 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 3869 // This currently forces unfolding various combinations of fsub into fma with 3870 // free fneg'd operands. As long as we have fast FMA (controlled by 3871 // isFMAFasterThanFMulAndFAdd), we should perform these. 3872 3873 // When fma is quarter rate, for f64 where add / sub are at best half rate, 3874 // most of these combines appear to be cycle neutral but save on instruction 3875 // count / code size. 3876 return true; 3877 } 3878 3879 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 3880 EVT VT) const { 3881 if (!VT.isVector()) { 3882 return MVT::i1; 3883 } 3884 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 3885 } 3886 3887 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 3888 // TODO: Should i16 be used always if legal? For now it would force VALU 3889 // shifts. 3890 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 3891 } 3892 3893 // Answering this is somewhat tricky and depends on the specific device which 3894 // have different rates for fma or all f64 operations. 3895 // 3896 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 3897 // regardless of which device (although the number of cycles differs between 3898 // devices), so it is always profitable for f64. 3899 // 3900 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 3901 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 3902 // which we can always do even without fused FP ops since it returns the same 3903 // result as the separate operations and since it is always full 3904 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 3905 // however does not support denormals, so we do report fma as faster if we have 3906 // a fast fma device and require denormals. 3907 // 3908 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 3909 VT = VT.getScalarType(); 3910 3911 switch (VT.getSimpleVT().SimpleTy) { 3912 case MVT::f32: { 3913 // This is as fast on some subtargets. However, we always have full rate f32 3914 // mad available which returns the same result as the separate operations 3915 // which we should prefer over fma. We can't use this if we want to support 3916 // denormals, so only report this in these cases. 3917 if (Subtarget->hasFP32Denormals()) 3918 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 3919 3920 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 3921 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 3922 } 3923 case MVT::f64: 3924 return true; 3925 case MVT::f16: 3926 return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals(); 3927 default: 3928 break; 3929 } 3930 3931 return false; 3932 } 3933 3934 //===----------------------------------------------------------------------===// 3935 // Custom DAG Lowering Operations 3936 //===----------------------------------------------------------------------===// 3937 3938 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 3939 // wider vector type is legal. 3940 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 3941 SelectionDAG &DAG) const { 3942 unsigned Opc = Op.getOpcode(); 3943 EVT VT = Op.getValueType(); 3944 assert(VT == MVT::v4f16); 3945 3946 SDValue Lo, Hi; 3947 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 3948 3949 SDLoc SL(Op); 3950 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 3951 Op->getFlags()); 3952 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 3953 Op->getFlags()); 3954 3955 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 3956 } 3957 3958 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 3959 // wider vector type is legal. 3960 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 3961 SelectionDAG &DAG) const { 3962 unsigned Opc = Op.getOpcode(); 3963 EVT VT = Op.getValueType(); 3964 assert(VT == MVT::v4i16 || VT == MVT::v4f16); 3965 3966 SDValue Lo0, Hi0; 3967 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 3968 SDValue Lo1, Hi1; 3969 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 3970 3971 SDLoc SL(Op); 3972 3973 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 3974 Op->getFlags()); 3975 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 3976 Op->getFlags()); 3977 3978 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 3979 } 3980 3981 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 3982 SelectionDAG &DAG) const { 3983 unsigned Opc = Op.getOpcode(); 3984 EVT VT = Op.getValueType(); 3985 assert(VT == MVT::v4i16 || VT == MVT::v4f16); 3986 3987 SDValue Lo0, Hi0; 3988 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 3989 SDValue Lo1, Hi1; 3990 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 3991 SDValue Lo2, Hi2; 3992 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 3993 3994 SDLoc SL(Op); 3995 3996 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2, 3997 Op->getFlags()); 3998 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2, 3999 Op->getFlags()); 4000 4001 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4002 } 4003 4004 4005 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4006 switch (Op.getOpcode()) { 4007 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 4008 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 4009 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4010 case ISD::LOAD: { 4011 SDValue Result = LowerLOAD(Op, DAG); 4012 assert((!Result.getNode() || 4013 Result.getNode()->getNumValues() == 2) && 4014 "Load should return a value and a chain"); 4015 return Result; 4016 } 4017 4018 case ISD::FSIN: 4019 case ISD::FCOS: 4020 return LowerTrig(Op, DAG); 4021 case ISD::SELECT: return LowerSELECT(Op, DAG); 4022 case ISD::FDIV: return LowerFDIV(Op, DAG); 4023 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 4024 case ISD::STORE: return LowerSTORE(Op, DAG); 4025 case ISD::GlobalAddress: { 4026 MachineFunction &MF = DAG.getMachineFunction(); 4027 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 4028 return LowerGlobalAddress(MFI, Op, DAG); 4029 } 4030 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4031 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 4032 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 4033 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 4034 case ISD::INSERT_SUBVECTOR: 4035 return lowerINSERT_SUBVECTOR(Op, DAG); 4036 case ISD::INSERT_VECTOR_ELT: 4037 return lowerINSERT_VECTOR_ELT(Op, DAG); 4038 case ISD::EXTRACT_VECTOR_ELT: 4039 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4040 case ISD::VECTOR_SHUFFLE: 4041 return lowerVECTOR_SHUFFLE(Op, DAG); 4042 case ISD::BUILD_VECTOR: 4043 return lowerBUILD_VECTOR(Op, DAG); 4044 case ISD::FP_ROUND: 4045 return lowerFP_ROUND(Op, DAG); 4046 case ISD::TRAP: 4047 return lowerTRAP(Op, DAG); 4048 case ISD::DEBUGTRAP: 4049 return lowerDEBUGTRAP(Op, DAG); 4050 case ISD::FABS: 4051 case ISD::FNEG: 4052 case ISD::FCANONICALIZE: 4053 return splitUnaryVectorOp(Op, DAG); 4054 case ISD::FMINNUM: 4055 case ISD::FMAXNUM: 4056 return lowerFMINNUM_FMAXNUM(Op, DAG); 4057 case ISD::FMA: 4058 return splitTernaryVectorOp(Op, DAG); 4059 case ISD::SHL: 4060 case ISD::SRA: 4061 case ISD::SRL: 4062 case ISD::ADD: 4063 case ISD::SUB: 4064 case ISD::MUL: 4065 case ISD::SMIN: 4066 case ISD::SMAX: 4067 case ISD::UMIN: 4068 case ISD::UMAX: 4069 case ISD::FADD: 4070 case ISD::FMUL: 4071 case ISD::FMINNUM_IEEE: 4072 case ISD::FMAXNUM_IEEE: 4073 return splitBinaryVectorOp(Op, DAG); 4074 } 4075 return SDValue(); 4076 } 4077 4078 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 4079 const SDLoc &DL, 4080 SelectionDAG &DAG, bool Unpacked) { 4081 if (!LoadVT.isVector()) 4082 return Result; 4083 4084 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 4085 // Truncate to v2i16/v4i16. 4086 EVT IntLoadVT = LoadVT.changeTypeToInteger(); 4087 4088 // Workaround legalizer not scalarizing truncate after vector op 4089 // legalization byt not creating intermediate vector trunc. 4090 SmallVector<SDValue, 4> Elts; 4091 DAG.ExtractVectorElements(Result, Elts); 4092 for (SDValue &Elt : Elts) 4093 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 4094 4095 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 4096 4097 // Bitcast to original type (v2f16/v4f16). 4098 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); 4099 } 4100 4101 // Cast back to the original packed type. 4102 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); 4103 } 4104 4105 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 4106 MemSDNode *M, 4107 SelectionDAG &DAG, 4108 ArrayRef<SDValue> Ops, 4109 bool IsIntrinsic) const { 4110 SDLoc DL(M); 4111 4112 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 4113 EVT LoadVT = M->getValueType(0); 4114 4115 EVT EquivLoadVT = LoadVT; 4116 if (Unpacked && LoadVT.isVector()) { 4117 EquivLoadVT = LoadVT.isVector() ? 4118 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 4119 LoadVT.getVectorNumElements()) : LoadVT; 4120 } 4121 4122 // Change from v4f16/v2f16 to EquivLoadVT. 4123 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 4124 4125 SDValue Load 4126 = DAG.getMemIntrinsicNode( 4127 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 4128 VTList, Ops, M->getMemoryVT(), 4129 M->getMemOperand()); 4130 if (!Unpacked) // Just adjusted the opcode. 4131 return Load; 4132 4133 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 4134 4135 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 4136 } 4137 4138 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 4139 SelectionDAG &DAG, 4140 ArrayRef<SDValue> Ops) const { 4141 SDLoc DL(M); 4142 EVT LoadVT = M->getValueType(0); 4143 EVT EltType = LoadVT.getScalarType(); 4144 EVT IntVT = LoadVT.changeTypeToInteger(); 4145 4146 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 4147 4148 unsigned Opc = 4149 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD; 4150 4151 if (IsD16) { 4152 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 4153 } 4154 4155 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 4156 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 4157 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 4158 4159 if (isTypeLegal(LoadVT)) { 4160 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 4161 M->getMemOperand(), DAG); 4162 } 4163 4164 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 4165 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 4166 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 4167 M->getMemOperand(), DAG); 4168 return DAG.getMergeValues( 4169 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 4170 DL); 4171 } 4172 4173 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 4174 SDNode *N, SelectionDAG &DAG) { 4175 EVT VT = N->getValueType(0); 4176 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4177 int CondCode = CD->getSExtValue(); 4178 if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE || 4179 CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE) 4180 return DAG.getUNDEF(VT); 4181 4182 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 4183 4184 SDValue LHS = N->getOperand(1); 4185 SDValue RHS = N->getOperand(2); 4186 4187 SDLoc DL(N); 4188 4189 EVT CmpVT = LHS.getValueType(); 4190 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 4191 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 4192 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4193 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 4194 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 4195 } 4196 4197 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 4198 4199 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4200 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4201 4202 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 4203 DAG.getCondCode(CCOpcode)); 4204 if (VT.bitsEq(CCVT)) 4205 return SetCC; 4206 return DAG.getZExtOrTrunc(SetCC, DL, VT); 4207 } 4208 4209 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 4210 SDNode *N, SelectionDAG &DAG) { 4211 EVT VT = N->getValueType(0); 4212 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4213 4214 int CondCode = CD->getSExtValue(); 4215 if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE || 4216 CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) { 4217 return DAG.getUNDEF(VT); 4218 } 4219 4220 SDValue Src0 = N->getOperand(1); 4221 SDValue Src1 = N->getOperand(2); 4222 EVT CmpVT = Src0.getValueType(); 4223 SDLoc SL(N); 4224 4225 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 4226 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 4227 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 4228 } 4229 4230 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 4231 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 4232 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4233 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4234 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 4235 Src1, DAG.getCondCode(CCOpcode)); 4236 if (VT.bitsEq(CCVT)) 4237 return SetCC; 4238 return DAG.getZExtOrTrunc(SetCC, SL, VT); 4239 } 4240 4241 void SITargetLowering::ReplaceNodeResults(SDNode *N, 4242 SmallVectorImpl<SDValue> &Results, 4243 SelectionDAG &DAG) const { 4244 switch (N->getOpcode()) { 4245 case ISD::INSERT_VECTOR_ELT: { 4246 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 4247 Results.push_back(Res); 4248 return; 4249 } 4250 case ISD::EXTRACT_VECTOR_ELT: { 4251 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 4252 Results.push_back(Res); 4253 return; 4254 } 4255 case ISD::INTRINSIC_WO_CHAIN: { 4256 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4257 switch (IID) { 4258 case Intrinsic::amdgcn_cvt_pkrtz: { 4259 SDValue Src0 = N->getOperand(1); 4260 SDValue Src1 = N->getOperand(2); 4261 SDLoc SL(N); 4262 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 4263 Src0, Src1); 4264 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 4265 return; 4266 } 4267 case Intrinsic::amdgcn_cvt_pknorm_i16: 4268 case Intrinsic::amdgcn_cvt_pknorm_u16: 4269 case Intrinsic::amdgcn_cvt_pk_i16: 4270 case Intrinsic::amdgcn_cvt_pk_u16: { 4271 SDValue Src0 = N->getOperand(1); 4272 SDValue Src1 = N->getOperand(2); 4273 SDLoc SL(N); 4274 unsigned Opcode; 4275 4276 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 4277 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 4278 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 4279 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 4280 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 4281 Opcode = AMDGPUISD::CVT_PK_I16_I32; 4282 else 4283 Opcode = AMDGPUISD::CVT_PK_U16_U32; 4284 4285 EVT VT = N->getValueType(0); 4286 if (isTypeLegal(VT)) 4287 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 4288 else { 4289 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 4290 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 4291 } 4292 return; 4293 } 4294 } 4295 break; 4296 } 4297 case ISD::INTRINSIC_W_CHAIN: { 4298 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 4299 if (Res.getOpcode() == ISD::MERGE_VALUES) { 4300 // FIXME: Hacky 4301 Results.push_back(Res.getOperand(0)); 4302 Results.push_back(Res.getOperand(1)); 4303 } else { 4304 Results.push_back(Res); 4305 Results.push_back(Res.getValue(1)); 4306 } 4307 return; 4308 } 4309 4310 break; 4311 } 4312 case ISD::SELECT: { 4313 SDLoc SL(N); 4314 EVT VT = N->getValueType(0); 4315 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 4316 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 4317 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 4318 4319 EVT SelectVT = NewVT; 4320 if (NewVT.bitsLT(MVT::i32)) { 4321 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 4322 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 4323 SelectVT = MVT::i32; 4324 } 4325 4326 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 4327 N->getOperand(0), LHS, RHS); 4328 4329 if (NewVT != SelectVT) 4330 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 4331 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 4332 return; 4333 } 4334 case ISD::FNEG: { 4335 if (N->getValueType(0) != MVT::v2f16) 4336 break; 4337 4338 SDLoc SL(N); 4339 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 4340 4341 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 4342 BC, 4343 DAG.getConstant(0x80008000, SL, MVT::i32)); 4344 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 4345 return; 4346 } 4347 case ISD::FABS: { 4348 if (N->getValueType(0) != MVT::v2f16) 4349 break; 4350 4351 SDLoc SL(N); 4352 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 4353 4354 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 4355 BC, 4356 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 4357 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 4358 return; 4359 } 4360 default: 4361 break; 4362 } 4363 } 4364 4365 /// Helper function for LowerBRCOND 4366 static SDNode *findUser(SDValue Value, unsigned Opcode) { 4367 4368 SDNode *Parent = Value.getNode(); 4369 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 4370 I != E; ++I) { 4371 4372 if (I.getUse().get() != Value) 4373 continue; 4374 4375 if (I->getOpcode() == Opcode) 4376 return *I; 4377 } 4378 return nullptr; 4379 } 4380 4381 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 4382 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 4383 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { 4384 case Intrinsic::amdgcn_if: 4385 return AMDGPUISD::IF; 4386 case Intrinsic::amdgcn_else: 4387 return AMDGPUISD::ELSE; 4388 case Intrinsic::amdgcn_loop: 4389 return AMDGPUISD::LOOP; 4390 case Intrinsic::amdgcn_end_cf: 4391 llvm_unreachable("should not occur"); 4392 default: 4393 return 0; 4394 } 4395 } 4396 4397 // break, if_break, else_break are all only used as inputs to loop, not 4398 // directly as branch conditions. 4399 return 0; 4400 } 4401 4402 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 4403 const Triple &TT = getTargetMachine().getTargetTriple(); 4404 return (GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 4405 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 4406 AMDGPU::shouldEmitConstantsToTextSection(TT); 4407 } 4408 4409 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 4410 // FIXME: Either avoid relying on address space here or change the default 4411 // address space for functions to avoid the explicit check. 4412 return (GV->getValueType()->isFunctionTy() || 4413 GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 4414 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 4415 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 4416 !shouldEmitFixup(GV) && 4417 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 4418 } 4419 4420 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 4421 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 4422 } 4423 4424 /// This transforms the control flow intrinsics to get the branch destination as 4425 /// last parameter, also switches branch target with BR if the need arise 4426 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 4427 SelectionDAG &DAG) const { 4428 SDLoc DL(BRCOND); 4429 4430 SDNode *Intr = BRCOND.getOperand(1).getNode(); 4431 SDValue Target = BRCOND.getOperand(2); 4432 SDNode *BR = nullptr; 4433 SDNode *SetCC = nullptr; 4434 4435 if (Intr->getOpcode() == ISD::SETCC) { 4436 // As long as we negate the condition everything is fine 4437 SetCC = Intr; 4438 Intr = SetCC->getOperand(0).getNode(); 4439 4440 } else { 4441 // Get the target from BR if we don't negate the condition 4442 BR = findUser(BRCOND, ISD::BR); 4443 Target = BR->getOperand(1); 4444 } 4445 4446 // FIXME: This changes the types of the intrinsics instead of introducing new 4447 // nodes with the correct types. 4448 // e.g. llvm.amdgcn.loop 4449 4450 // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3 4451 // => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088> 4452 4453 unsigned CFNode = isCFIntrinsic(Intr); 4454 if (CFNode == 0) { 4455 // This is a uniform branch so we don't need to legalize. 4456 return BRCOND; 4457 } 4458 4459 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 4460 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 4461 4462 assert(!SetCC || 4463 (SetCC->getConstantOperandVal(1) == 1 && 4464 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 4465 ISD::SETNE)); 4466 4467 // operands of the new intrinsic call 4468 SmallVector<SDValue, 4> Ops; 4469 if (HaveChain) 4470 Ops.push_back(BRCOND.getOperand(0)); 4471 4472 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 4473 Ops.push_back(Target); 4474 4475 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 4476 4477 // build the new intrinsic call 4478 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 4479 4480 if (!HaveChain) { 4481 SDValue Ops[] = { 4482 SDValue(Result, 0), 4483 BRCOND.getOperand(0) 4484 }; 4485 4486 Result = DAG.getMergeValues(Ops, DL).getNode(); 4487 } 4488 4489 if (BR) { 4490 // Give the branch instruction our target 4491 SDValue Ops[] = { 4492 BR->getOperand(0), 4493 BRCOND.getOperand(2) 4494 }; 4495 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 4496 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 4497 BR = NewBR.getNode(); 4498 } 4499 4500 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 4501 4502 // Copy the intrinsic results to registers 4503 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 4504 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 4505 if (!CopyToReg) 4506 continue; 4507 4508 Chain = DAG.getCopyToReg( 4509 Chain, DL, 4510 CopyToReg->getOperand(1), 4511 SDValue(Result, i - 1), 4512 SDValue()); 4513 4514 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 4515 } 4516 4517 // Remove the old intrinsic from the chain 4518 DAG.ReplaceAllUsesOfValueWith( 4519 SDValue(Intr, Intr->getNumValues() - 1), 4520 Intr->getOperand(0)); 4521 4522 return Chain; 4523 } 4524 4525 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 4526 SelectionDAG &DAG) const { 4527 MVT VT = Op.getSimpleValueType(); 4528 SDLoc DL(Op); 4529 // Checking the depth 4530 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) 4531 return DAG.getConstant(0, DL, VT); 4532 4533 MachineFunction &MF = DAG.getMachineFunction(); 4534 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4535 // Check for kernel and shader functions 4536 if (Info->isEntryFunction()) 4537 return DAG.getConstant(0, DL, VT); 4538 4539 MachineFrameInfo &MFI = MF.getFrameInfo(); 4540 // There is a call to @llvm.returnaddress in this function 4541 MFI.setReturnAddressIsTaken(true); 4542 4543 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 4544 // Get the return address reg and mark it as an implicit live-in 4545 unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 4546 4547 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 4548 } 4549 4550 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG, 4551 SDValue Op, 4552 const SDLoc &DL, 4553 EVT VT) const { 4554 return Op.getValueType().bitsLE(VT) ? 4555 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 4556 DAG.getNode(ISD::FTRUNC, DL, VT, Op); 4557 } 4558 4559 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 4560 assert(Op.getValueType() == MVT::f16 && 4561 "Do not know how to custom lower FP_ROUND for non-f16 type"); 4562 4563 SDValue Src = Op.getOperand(0); 4564 EVT SrcVT = Src.getValueType(); 4565 if (SrcVT != MVT::f64) 4566 return Op; 4567 4568 SDLoc DL(Op); 4569 4570 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 4571 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 4572 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 4573 } 4574 4575 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 4576 SelectionDAG &DAG) const { 4577 EVT VT = Op.getValueType(); 4578 const MachineFunction &MF = DAG.getMachineFunction(); 4579 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4580 bool IsIEEEMode = Info->getMode().IEEE; 4581 4582 // FIXME: Assert during eslection that this is only selected for 4583 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 4584 // mode functions, but this happens to be OK since it's only done in cases 4585 // where there is known no sNaN. 4586 if (IsIEEEMode) 4587 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 4588 4589 if (VT == MVT::v4f16) 4590 return splitBinaryVectorOp(Op, DAG); 4591 return Op; 4592 } 4593 4594 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 4595 SDLoc SL(Op); 4596 SDValue Chain = Op.getOperand(0); 4597 4598 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4599 !Subtarget->isTrapHandlerEnabled()) 4600 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); 4601 4602 MachineFunction &MF = DAG.getMachineFunction(); 4603 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4604 unsigned UserSGPR = Info->getQueuePtrUserSGPR(); 4605 assert(UserSGPR != AMDGPU::NoRegister); 4606 SDValue QueuePtr = CreateLiveInRegister( 4607 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 4608 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 4609 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 4610 QueuePtr, SDValue()); 4611 SDValue Ops[] = { 4612 ToReg, 4613 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16), 4614 SGPR01, 4615 ToReg.getValue(1) 4616 }; 4617 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 4618 } 4619 4620 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 4621 SDLoc SL(Op); 4622 SDValue Chain = Op.getOperand(0); 4623 MachineFunction &MF = DAG.getMachineFunction(); 4624 4625 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4626 !Subtarget->isTrapHandlerEnabled()) { 4627 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 4628 "debugtrap handler not supported", 4629 Op.getDebugLoc(), 4630 DS_Warning); 4631 LLVMContext &Ctx = MF.getFunction().getContext(); 4632 Ctx.diagnose(NoTrap); 4633 return Chain; 4634 } 4635 4636 SDValue Ops[] = { 4637 Chain, 4638 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16) 4639 }; 4640 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 4641 } 4642 4643 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 4644 SelectionDAG &DAG) const { 4645 // FIXME: Use inline constants (src_{shared, private}_base) instead. 4646 if (Subtarget->hasApertureRegs()) { 4647 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 4648 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 4649 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 4650 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 4651 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 4652 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 4653 unsigned Encoding = 4654 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 4655 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 4656 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 4657 4658 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); 4659 SDValue ApertureReg = SDValue( 4660 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); 4661 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); 4662 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); 4663 } 4664 4665 MachineFunction &MF = DAG.getMachineFunction(); 4666 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4667 unsigned UserSGPR = Info->getQueuePtrUserSGPR(); 4668 assert(UserSGPR != AMDGPU::NoRegister); 4669 4670 SDValue QueuePtr = CreateLiveInRegister( 4671 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 4672 4673 // Offset into amd_queue_t for group_segment_aperture_base_hi / 4674 // private_segment_aperture_base_hi. 4675 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 4676 4677 SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset); 4678 4679 // TODO: Use custom target PseudoSourceValue. 4680 // TODO: We should use the value from the IR intrinsic call, but it might not 4681 // be available and how do we get it? 4682 Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()), 4683 AMDGPUAS::CONSTANT_ADDRESS)); 4684 4685 MachinePointerInfo PtrInfo(V, StructOffset); 4686 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 4687 MinAlign(64, StructOffset), 4688 MachineMemOperand::MODereferenceable | 4689 MachineMemOperand::MOInvariant); 4690 } 4691 4692 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 4693 SelectionDAG &DAG) const { 4694 SDLoc SL(Op); 4695 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 4696 4697 SDValue Src = ASC->getOperand(0); 4698 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 4699 4700 const AMDGPUTargetMachine &TM = 4701 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 4702 4703 // flat -> local/private 4704 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 4705 unsigned DestAS = ASC->getDestAddressSpace(); 4706 4707 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 4708 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 4709 unsigned NullVal = TM.getNullPointerValue(DestAS); 4710 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 4711 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 4712 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 4713 4714 return DAG.getNode(ISD::SELECT, SL, MVT::i32, 4715 NonNull, Ptr, SegmentNullPtr); 4716 } 4717 } 4718 4719 // local/private -> flat 4720 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 4721 unsigned SrcAS = ASC->getSrcAddressSpace(); 4722 4723 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 4724 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 4725 unsigned NullVal = TM.getNullPointerValue(SrcAS); 4726 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 4727 4728 SDValue NonNull 4729 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 4730 4731 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 4732 SDValue CvtPtr 4733 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 4734 4735 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, 4736 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), 4737 FlatNullPtr); 4738 } 4739 } 4740 4741 // global <-> flat are no-ops and never emitted. 4742 4743 const MachineFunction &MF = DAG.getMachineFunction(); 4744 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 4745 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 4746 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 4747 4748 return DAG.getUNDEF(ASC->getValueType(0)); 4749 } 4750 4751 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 4752 // the small vector and inserting them into the big vector. That is better than 4753 // the default expansion of doing it via a stack slot. Even though the use of 4754 // the stack slot would be optimized away afterwards, the stack slot itself 4755 // remains. 4756 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4757 SelectionDAG &DAG) const { 4758 SDValue Vec = Op.getOperand(0); 4759 SDValue Ins = Op.getOperand(1); 4760 SDValue Idx = Op.getOperand(2); 4761 EVT VecVT = Vec.getValueType(); 4762 EVT InsVT = Ins.getValueType(); 4763 EVT EltVT = VecVT.getVectorElementType(); 4764 unsigned InsNumElts = InsVT.getVectorNumElements(); 4765 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); 4766 SDLoc SL(Op); 4767 4768 for (unsigned I = 0; I != InsNumElts; ++I) { 4769 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 4770 DAG.getConstant(I, SL, MVT::i32)); 4771 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 4772 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 4773 } 4774 return Vec; 4775 } 4776 4777 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4778 SelectionDAG &DAG) const { 4779 SDValue Vec = Op.getOperand(0); 4780 SDValue InsVal = Op.getOperand(1); 4781 SDValue Idx = Op.getOperand(2); 4782 EVT VecVT = Vec.getValueType(); 4783 EVT EltVT = VecVT.getVectorElementType(); 4784 unsigned VecSize = VecVT.getSizeInBits(); 4785 unsigned EltSize = EltVT.getSizeInBits(); 4786 4787 4788 assert(VecSize <= 64); 4789 4790 unsigned NumElts = VecVT.getVectorNumElements(); 4791 SDLoc SL(Op); 4792 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 4793 4794 if (NumElts == 4 && EltSize == 16 && KIdx) { 4795 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 4796 4797 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 4798 DAG.getConstant(0, SL, MVT::i32)); 4799 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 4800 DAG.getConstant(1, SL, MVT::i32)); 4801 4802 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 4803 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 4804 4805 unsigned Idx = KIdx->getZExtValue(); 4806 bool InsertLo = Idx < 2; 4807 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 4808 InsertLo ? LoVec : HiVec, 4809 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 4810 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 4811 4812 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 4813 4814 SDValue Concat = InsertLo ? 4815 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 4816 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 4817 4818 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 4819 } 4820 4821 if (isa<ConstantSDNode>(Idx)) 4822 return SDValue(); 4823 4824 MVT IntVT = MVT::getIntegerVT(VecSize); 4825 4826 // Avoid stack access for dynamic indexing. 4827 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 4828 4829 // Create a congruent vector with the target value in each element so that 4830 // the required element can be masked and ORed into the target vector. 4831 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 4832 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 4833 4834 assert(isPowerOf2_32(EltSize)); 4835 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 4836 4837 // Convert vector index to bit-index. 4838 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 4839 4840 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 4841 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 4842 DAG.getConstant(0xffff, SL, IntVT), 4843 ScaledIdx); 4844 4845 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 4846 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 4847 DAG.getNOT(SL, BFM, IntVT), BCVec); 4848 4849 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 4850 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 4851 } 4852 4853 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4854 SelectionDAG &DAG) const { 4855 SDLoc SL(Op); 4856 4857 EVT ResultVT = Op.getValueType(); 4858 SDValue Vec = Op.getOperand(0); 4859 SDValue Idx = Op.getOperand(1); 4860 EVT VecVT = Vec.getValueType(); 4861 unsigned VecSize = VecVT.getSizeInBits(); 4862 EVT EltVT = VecVT.getVectorElementType(); 4863 assert(VecSize <= 64); 4864 4865 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 4866 4867 // Make sure we do any optimizations that will make it easier to fold 4868 // source modifiers before obscuring it with bit operations. 4869 4870 // XXX - Why doesn't this get called when vector_shuffle is expanded? 4871 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 4872 return Combined; 4873 4874 unsigned EltSize = EltVT.getSizeInBits(); 4875 assert(isPowerOf2_32(EltSize)); 4876 4877 MVT IntVT = MVT::getIntegerVT(VecSize); 4878 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 4879 4880 // Convert vector index to bit-index (* EltSize) 4881 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 4882 4883 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 4884 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 4885 4886 if (ResultVT == MVT::f16) { 4887 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 4888 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 4889 } 4890 4891 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 4892 } 4893 4894 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 4895 assert(Elt % 2 == 0); 4896 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 4897 } 4898 4899 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4900 SelectionDAG &DAG) const { 4901 SDLoc SL(Op); 4902 EVT ResultVT = Op.getValueType(); 4903 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 4904 4905 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 4906 EVT EltVT = PackVT.getVectorElementType(); 4907 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 4908 4909 // vector_shuffle <0,1,6,7> lhs, rhs 4910 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 4911 // 4912 // vector_shuffle <6,7,2,3> lhs, rhs 4913 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 4914 // 4915 // vector_shuffle <6,7,0,1> lhs, rhs 4916 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 4917 4918 // Avoid scalarizing when both halves are reading from consecutive elements. 4919 SmallVector<SDValue, 4> Pieces; 4920 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 4921 if (elementPairIsContiguous(SVN->getMask(), I)) { 4922 const int Idx = SVN->getMaskElt(I); 4923 int VecIdx = Idx < SrcNumElts ? 0 : 1; 4924 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 4925 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 4926 PackVT, SVN->getOperand(VecIdx), 4927 DAG.getConstant(EltIdx, SL, MVT::i32)); 4928 Pieces.push_back(SubVec); 4929 } else { 4930 const int Idx0 = SVN->getMaskElt(I); 4931 const int Idx1 = SVN->getMaskElt(I + 1); 4932 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 4933 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 4934 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 4935 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 4936 4937 SDValue Vec0 = SVN->getOperand(VecIdx0); 4938 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 4939 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 4940 4941 SDValue Vec1 = SVN->getOperand(VecIdx1); 4942 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 4943 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 4944 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 4945 } 4946 } 4947 4948 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 4949 } 4950 4951 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 4952 SelectionDAG &DAG) const { 4953 SDLoc SL(Op); 4954 EVT VT = Op.getValueType(); 4955 4956 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 4957 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2); 4958 4959 // Turn into pair of packed build_vectors. 4960 // TODO: Special case for constants that can be materialized with s_mov_b64. 4961 SDValue Lo = DAG.getBuildVector(HalfVT, SL, 4962 { Op.getOperand(0), Op.getOperand(1) }); 4963 SDValue Hi = DAG.getBuildVector(HalfVT, SL, 4964 { Op.getOperand(2), Op.getOperand(3) }); 4965 4966 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo); 4967 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi); 4968 4969 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi }); 4970 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 4971 } 4972 4973 assert(VT == MVT::v2f16 || VT == MVT::v2i16); 4974 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 4975 4976 SDValue Lo = Op.getOperand(0); 4977 SDValue Hi = Op.getOperand(1); 4978 4979 // Avoid adding defined bits with the zero_extend. 4980 if (Hi.isUndef()) { 4981 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 4982 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 4983 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 4984 } 4985 4986 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 4987 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 4988 4989 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 4990 DAG.getConstant(16, SL, MVT::i32)); 4991 if (Lo.isUndef()) 4992 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 4993 4994 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 4995 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 4996 4997 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 4998 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 4999 } 5000 5001 bool 5002 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5003 // We can fold offsets for anything that doesn't require a GOT relocation. 5004 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 5005 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5006 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5007 !shouldEmitGOTReloc(GA->getGlobal()); 5008 } 5009 5010 static SDValue 5011 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 5012 const SDLoc &DL, unsigned Offset, EVT PtrVT, 5013 unsigned GAFlags = SIInstrInfo::MO_NONE) { 5014 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 5015 // lowered to the following code sequence: 5016 // 5017 // For constant address space: 5018 // s_getpc_b64 s[0:1] 5019 // s_add_u32 s0, s0, $symbol 5020 // s_addc_u32 s1, s1, 0 5021 // 5022 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5023 // a fixup or relocation is emitted to replace $symbol with a literal 5024 // constant, which is a pc-relative offset from the encoding of the $symbol 5025 // operand to the global variable. 5026 // 5027 // For global address space: 5028 // s_getpc_b64 s[0:1] 5029 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 5030 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 5031 // 5032 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5033 // fixups or relocations are emitted to replace $symbol@*@lo and 5034 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 5035 // which is a 64-bit pc-relative offset from the encoding of the $symbol 5036 // operand to the global variable. 5037 // 5038 // What we want here is an offset from the value returned by s_getpc 5039 // (which is the address of the s_add_u32 instruction) to the global 5040 // variable, but since the encoding of $symbol starts 4 bytes after the start 5041 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 5042 // small. This requires us to add 4 to the global variable offset in order to 5043 // compute the correct address. 5044 SDValue PtrLo = 5045 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); 5046 SDValue PtrHi; 5047 if (GAFlags == SIInstrInfo::MO_NONE) { 5048 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 5049 } else { 5050 PtrHi = 5051 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1); 5052 } 5053 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 5054 } 5055 5056 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 5057 SDValue Op, 5058 SelectionDAG &DAG) const { 5059 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 5060 const GlobalValue *GV = GSD->getGlobal(); 5061 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 5062 (!GV->hasExternalLinkage() || 5063 getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 5064 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)) || 5065 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 5066 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) 5067 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 5068 5069 SDLoc DL(GSD); 5070 EVT PtrVT = Op.getValueType(); 5071 5072 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 5073 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 5074 SIInstrInfo::MO_ABS32_LO); 5075 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 5076 } 5077 5078 if (shouldEmitFixup(GV)) 5079 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 5080 else if (shouldEmitPCReloc(GV)) 5081 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 5082 SIInstrInfo::MO_REL32); 5083 5084 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 5085 SIInstrInfo::MO_GOTPCREL32); 5086 5087 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 5088 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 5089 const DataLayout &DataLayout = DAG.getDataLayout(); 5090 unsigned Align = DataLayout.getABITypeAlignment(PtrTy); 5091 MachinePointerInfo PtrInfo 5092 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 5093 5094 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align, 5095 MachineMemOperand::MODereferenceable | 5096 MachineMemOperand::MOInvariant); 5097 } 5098 5099 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 5100 const SDLoc &DL, SDValue V) const { 5101 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 5102 // the destination register. 5103 // 5104 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 5105 // so we will end up with redundant moves to m0. 5106 // 5107 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 5108 5109 // A Null SDValue creates a glue result. 5110 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 5111 V, Chain); 5112 return SDValue(M0, 0); 5113 } 5114 5115 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 5116 SDValue Op, 5117 MVT VT, 5118 unsigned Offset) const { 5119 SDLoc SL(Op); 5120 SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL, 5121 DAG.getEntryNode(), Offset, 4, false); 5122 // The local size values will have the hi 16-bits as zero. 5123 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 5124 DAG.getValueType(VT)); 5125 } 5126 5127 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 5128 EVT VT) { 5129 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 5130 "non-hsa intrinsic with hsa target", 5131 DL.getDebugLoc()); 5132 DAG.getContext()->diagnose(BadIntrin); 5133 return DAG.getUNDEF(VT); 5134 } 5135 5136 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 5137 EVT VT) { 5138 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 5139 "intrinsic not supported on subtarget", 5140 DL.getDebugLoc()); 5141 DAG.getContext()->diagnose(BadIntrin); 5142 return DAG.getUNDEF(VT); 5143 } 5144 5145 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 5146 ArrayRef<SDValue> Elts) { 5147 assert(!Elts.empty()); 5148 MVT Type; 5149 unsigned NumElts; 5150 5151 if (Elts.size() == 1) { 5152 Type = MVT::f32; 5153 NumElts = 1; 5154 } else if (Elts.size() == 2) { 5155 Type = MVT::v2f32; 5156 NumElts = 2; 5157 } else if (Elts.size() <= 4) { 5158 Type = MVT::v4f32; 5159 NumElts = 4; 5160 } else if (Elts.size() <= 8) { 5161 Type = MVT::v8f32; 5162 NumElts = 8; 5163 } else { 5164 assert(Elts.size() <= 16); 5165 Type = MVT::v16f32; 5166 NumElts = 16; 5167 } 5168 5169 SmallVector<SDValue, 16> VecElts(NumElts); 5170 for (unsigned i = 0; i < Elts.size(); ++i) { 5171 SDValue Elt = Elts[i]; 5172 if (Elt.getValueType() != MVT::f32) 5173 Elt = DAG.getBitcast(MVT::f32, Elt); 5174 VecElts[i] = Elt; 5175 } 5176 for (unsigned i = Elts.size(); i < NumElts; ++i) 5177 VecElts[i] = DAG.getUNDEF(MVT::f32); 5178 5179 if (NumElts == 1) 5180 return VecElts[0]; 5181 return DAG.getBuildVector(Type, DL, VecElts); 5182 } 5183 5184 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG, 5185 SDValue *GLC, SDValue *SLC, SDValue *DLC) { 5186 auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode()); 5187 5188 uint64_t Value = CachePolicyConst->getZExtValue(); 5189 SDLoc DL(CachePolicy); 5190 if (GLC) { 5191 *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 5192 Value &= ~(uint64_t)0x1; 5193 } 5194 if (SLC) { 5195 *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 5196 Value &= ~(uint64_t)0x2; 5197 } 5198 if (DLC) { 5199 *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32); 5200 Value &= ~(uint64_t)0x4; 5201 } 5202 5203 return Value == 0; 5204 } 5205 5206 // Re-construct the required return value for a image load intrinsic. 5207 // This is more complicated due to the optional use TexFailCtrl which means the required 5208 // return type is an aggregate 5209 static SDValue constructRetValue(SelectionDAG &DAG, 5210 MachineSDNode *Result, 5211 ArrayRef<EVT> ResultTypes, 5212 bool IsTexFail, bool Unpacked, bool IsD16, 5213 int DMaskPop, int NumVDataDwords, 5214 const SDLoc &DL, LLVMContext &Context) { 5215 // Determine the required return type. This is the same regardless of IsTexFail flag 5216 EVT ReqRetVT = ResultTypes[0]; 5217 EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT; 5218 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 5219 EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT; 5220 EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts) 5221 : AdjEltVT 5222 : ReqRetVT; 5223 5224 // Extract data part of the result 5225 // Bitcast the result to the same type as the required return type 5226 int NumElts; 5227 if (IsD16 && !Unpacked) 5228 NumElts = NumVDataDwords << 1; 5229 else 5230 NumElts = NumVDataDwords; 5231 5232 EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts) 5233 : AdjEltVT; 5234 5235 // Special case for v6f16. Rather than add support for this, use v3i32 to 5236 // extract the data elements 5237 bool V6F16Special = false; 5238 if (NumElts == 6) { 5239 CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2); 5240 DMaskPop >>= 1; 5241 ReqRetNumElts >>= 1; 5242 V6F16Special = true; 5243 AdjVT = MVT::v2i32; 5244 } 5245 5246 SDValue N = SDValue(Result, 0); 5247 SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N); 5248 5249 // Iterate over the result 5250 SmallVector<SDValue, 4> BVElts; 5251 5252 if (CastVT.isVector()) { 5253 DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop); 5254 } else { 5255 BVElts.push_back(CastRes); 5256 } 5257 int ExtraElts = ReqRetNumElts - DMaskPop; 5258 while(ExtraElts--) 5259 BVElts.push_back(DAG.getUNDEF(AdjEltVT)); 5260 5261 SDValue PreTFCRes; 5262 if (ReqRetNumElts > 1) { 5263 SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts); 5264 if (IsD16 && Unpacked) 5265 PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked); 5266 else 5267 PreTFCRes = NewVec; 5268 } else { 5269 PreTFCRes = BVElts[0]; 5270 } 5271 5272 if (V6F16Special) 5273 PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes); 5274 5275 if (!IsTexFail) { 5276 if (Result->getNumValues() > 1) 5277 return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL); 5278 else 5279 return PreTFCRes; 5280 } 5281 5282 // Extract the TexFail result and insert into aggregate return 5283 SmallVector<SDValue, 1> TFCElt; 5284 DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1); 5285 SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]); 5286 return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL); 5287 } 5288 5289 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 5290 SDValue *LWE, bool &IsTexFail) { 5291 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 5292 5293 uint64_t Value = TexFailCtrlConst->getZExtValue(); 5294 if (Value) { 5295 IsTexFail = true; 5296 } 5297 5298 SDLoc DL(TexFailCtrlConst); 5299 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 5300 Value &= ~(uint64_t)0x1; 5301 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 5302 Value &= ~(uint64_t)0x2; 5303 5304 return Value == 0; 5305 } 5306 5307 SDValue SITargetLowering::lowerImage(SDValue Op, 5308 const AMDGPU::ImageDimIntrinsicInfo *Intr, 5309 SelectionDAG &DAG) const { 5310 SDLoc DL(Op); 5311 MachineFunction &MF = DAG.getMachineFunction(); 5312 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 5313 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 5314 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 5315 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 5316 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = 5317 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode); 5318 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo = 5319 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode); 5320 unsigned IntrOpcode = Intr->BaseOpcode; 5321 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10; 5322 5323 SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end()); 5324 SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end()); 5325 bool IsD16 = false; 5326 bool IsA16 = false; 5327 SDValue VData; 5328 int NumVDataDwords; 5329 bool AdjustRetType = false; 5330 5331 unsigned AddrIdx; // Index of first address argument 5332 unsigned DMask; 5333 unsigned DMaskLanes = 0; 5334 5335 if (BaseOpcode->Atomic) { 5336 VData = Op.getOperand(2); 5337 5338 bool Is64Bit = VData.getValueType() == MVT::i64; 5339 if (BaseOpcode->AtomicX2) { 5340 SDValue VData2 = Op.getOperand(3); 5341 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 5342 {VData, VData2}); 5343 if (Is64Bit) 5344 VData = DAG.getBitcast(MVT::v4i32, VData); 5345 5346 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 5347 DMask = Is64Bit ? 0xf : 0x3; 5348 NumVDataDwords = Is64Bit ? 4 : 2; 5349 AddrIdx = 4; 5350 } else { 5351 DMask = Is64Bit ? 0x3 : 0x1; 5352 NumVDataDwords = Is64Bit ? 2 : 1; 5353 AddrIdx = 3; 5354 } 5355 } else { 5356 unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1; 5357 auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx)); 5358 DMask = DMaskConst->getZExtValue(); 5359 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); 5360 5361 if (BaseOpcode->Store) { 5362 VData = Op.getOperand(2); 5363 5364 MVT StoreVT = VData.getSimpleValueType(); 5365 if (StoreVT.getScalarType() == MVT::f16) { 5366 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 5367 return Op; // D16 is unsupported for this instruction 5368 5369 IsD16 = true; 5370 VData = handleD16VData(VData, DAG); 5371 } 5372 5373 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 5374 } else { 5375 // Work out the num dwords based on the dmask popcount and underlying type 5376 // and whether packing is supported. 5377 MVT LoadVT = ResultTypes[0].getSimpleVT(); 5378 if (LoadVT.getScalarType() == MVT::f16) { 5379 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 5380 return Op; // D16 is unsupported for this instruction 5381 5382 IsD16 = true; 5383 } 5384 5385 // Confirm that the return type is large enough for the dmask specified 5386 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 5387 (!LoadVT.isVector() && DMaskLanes > 1)) 5388 return Op; 5389 5390 if (IsD16 && !Subtarget->hasUnpackedD16VMem()) 5391 NumVDataDwords = (DMaskLanes + 1) / 2; 5392 else 5393 NumVDataDwords = DMaskLanes; 5394 5395 AdjustRetType = true; 5396 } 5397 5398 AddrIdx = DMaskIdx + 1; 5399 } 5400 5401 unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0; 5402 unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0; 5403 unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0; 5404 unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients + 5405 NumCoords + NumLCM; 5406 unsigned NumMIVAddrs = NumVAddrs; 5407 5408 SmallVector<SDValue, 4> VAddrs; 5409 5410 // Optimize _L to _LZ when _L is zero 5411 if (LZMappingInfo) { 5412 if (auto ConstantLod = 5413 dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { 5414 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 5415 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l 5416 NumMIVAddrs--; // remove 'lod' 5417 } 5418 } 5419 } 5420 5421 // Optimize _mip away, when 'lod' is zero 5422 if (MIPMappingInfo) { 5423 if (auto ConstantLod = 5424 dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { 5425 if (ConstantLod->isNullValue()) { 5426 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip 5427 NumMIVAddrs--; // remove 'lod' 5428 } 5429 } 5430 } 5431 5432 // Check for 16 bit addresses and pack if true. 5433 unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs; 5434 MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType(); 5435 const MVT VAddrScalarVT = VAddrVT.getScalarType(); 5436 if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) && 5437 ST->hasFeature(AMDGPU::FeatureR128A16)) { 5438 IsA16 = true; 5439 const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 5440 for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) { 5441 SDValue AddrLo, AddrHi; 5442 // Push back extra arguments. 5443 if (i < DimIdx) { 5444 AddrLo = Op.getOperand(i); 5445 } else { 5446 AddrLo = Op.getOperand(i); 5447 // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, 5448 // in 1D, derivatives dx/dh and dx/dv are packed with undef. 5449 if (((i + 1) >= (AddrIdx + NumMIVAddrs)) || 5450 ((NumGradients / 2) % 2 == 1 && 5451 (i == DimIdx + (NumGradients / 2) - 1 || 5452 i == DimIdx + NumGradients - 1))) { 5453 AddrHi = DAG.getUNDEF(MVT::f16); 5454 } else { 5455 AddrHi = Op.getOperand(i + 1); 5456 i++; 5457 } 5458 AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT, 5459 {AddrLo, AddrHi}); 5460 AddrLo = DAG.getBitcast(MVT::i32, AddrLo); 5461 } 5462 VAddrs.push_back(AddrLo); 5463 } 5464 } else { 5465 for (unsigned i = 0; i < NumMIVAddrs; ++i) 5466 VAddrs.push_back(Op.getOperand(AddrIdx + i)); 5467 } 5468 5469 // If the register allocator cannot place the address registers contiguously 5470 // without introducing moves, then using the non-sequential address encoding 5471 // is always preferable, since it saves VALU instructions and is usually a 5472 // wash in terms of code size or even better. 5473 // 5474 // However, we currently have no way of hinting to the register allocator that 5475 // MIMG addresses should be placed contiguously when it is possible to do so, 5476 // so force non-NSA for the common 2-address case as a heuristic. 5477 // 5478 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 5479 // allocation when possible. 5480 bool UseNSA = 5481 ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3; 5482 SDValue VAddr; 5483 if (!UseNSA) 5484 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 5485 5486 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 5487 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 5488 unsigned CtrlIdx; // Index of texfailctrl argument 5489 SDValue Unorm; 5490 if (!BaseOpcode->Sampler) { 5491 Unorm = True; 5492 CtrlIdx = AddrIdx + NumVAddrs + 1; 5493 } else { 5494 auto UnormConst = 5495 cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2)); 5496 5497 Unorm = UnormConst->getZExtValue() ? True : False; 5498 CtrlIdx = AddrIdx + NumVAddrs + 3; 5499 } 5500 5501 SDValue TFE; 5502 SDValue LWE; 5503 SDValue TexFail = Op.getOperand(CtrlIdx); 5504 bool IsTexFail = false; 5505 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 5506 return Op; 5507 5508 if (IsTexFail) { 5509 if (!DMaskLanes) { 5510 // Expecting to get an error flag since TFC is on - and dmask is 0 5511 // Force dmask to be at least 1 otherwise the instruction will fail 5512 DMask = 0x1; 5513 DMaskLanes = 1; 5514 NumVDataDwords = 1; 5515 } 5516 NumVDataDwords += 1; 5517 AdjustRetType = true; 5518 } 5519 5520 // Has something earlier tagged that the return type needs adjusting 5521 // This happens if the instruction is a load or has set TexFailCtrl flags 5522 if (AdjustRetType) { 5523 // NumVDataDwords reflects the true number of dwords required in the return type 5524 if (DMaskLanes == 0 && !BaseOpcode->Store) { 5525 // This is a no-op load. This can be eliminated 5526 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 5527 if (isa<MemSDNode>(Op)) 5528 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 5529 return Undef; 5530 } 5531 5532 EVT NewVT = NumVDataDwords > 1 ? 5533 EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords) 5534 : MVT::f32; 5535 5536 ResultTypes[0] = NewVT; 5537 if (ResultTypes.size() == 3) { 5538 // Original result was aggregate type used for TexFailCtrl results 5539 // The actual instruction returns as a vector type which has now been 5540 // created. Remove the aggregate result. 5541 ResultTypes.erase(&ResultTypes[1]); 5542 } 5543 } 5544 5545 SDValue GLC; 5546 SDValue SLC; 5547 SDValue DLC; 5548 if (BaseOpcode->Atomic) { 5549 GLC = True; // TODO no-return optimization 5550 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC, 5551 IsGFX10 ? &DLC : nullptr)) 5552 return Op; 5553 } else { 5554 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC, 5555 IsGFX10 ? &DLC : nullptr)) 5556 return Op; 5557 } 5558 5559 SmallVector<SDValue, 26> Ops; 5560 if (BaseOpcode->Store || BaseOpcode->Atomic) 5561 Ops.push_back(VData); // vdata 5562 if (UseNSA) { 5563 for (const SDValue &Addr : VAddrs) 5564 Ops.push_back(Addr); 5565 } else { 5566 Ops.push_back(VAddr); 5567 } 5568 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc 5569 if (BaseOpcode->Sampler) 5570 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler 5571 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 5572 if (IsGFX10) 5573 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 5574 Ops.push_back(Unorm); 5575 if (IsGFX10) 5576 Ops.push_back(DLC); 5577 Ops.push_back(GLC); 5578 Ops.push_back(SLC); 5579 Ops.push_back(IsA16 && // a16 or r128 5580 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 5581 Ops.push_back(TFE); // tfe 5582 Ops.push_back(LWE); // lwe 5583 if (!IsGFX10) 5584 Ops.push_back(DimInfo->DA ? True : False); 5585 if (BaseOpcode->HasD16) 5586 Ops.push_back(IsD16 ? True : False); 5587 if (isa<MemSDNode>(Op)) 5588 Ops.push_back(Op.getOperand(0)); // chain 5589 5590 int NumVAddrDwords = 5591 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 5592 int Opcode = -1; 5593 5594 if (IsGFX10) { 5595 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 5596 UseNSA ? AMDGPU::MIMGEncGfx10NSA 5597 : AMDGPU::MIMGEncGfx10Default, 5598 NumVDataDwords, NumVAddrDwords); 5599 } else { 5600 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 5601 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 5602 NumVDataDwords, NumVAddrDwords); 5603 if (Opcode == -1) 5604 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 5605 NumVDataDwords, NumVAddrDwords); 5606 } 5607 assert(Opcode != -1); 5608 5609 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 5610 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 5611 MachineMemOperand *MemRef = MemOp->getMemOperand(); 5612 DAG.setNodeMemRefs(NewNode, {MemRef}); 5613 } 5614 5615 if (BaseOpcode->AtomicX2) { 5616 SmallVector<SDValue, 1> Elt; 5617 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 5618 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 5619 } else if (!BaseOpcode->Store) { 5620 return constructRetValue(DAG, NewNode, 5621 OrigResultTypes, IsTexFail, 5622 Subtarget->hasUnpackedD16VMem(), IsD16, 5623 DMaskLanes, NumVDataDwords, DL, 5624 *DAG.getContext()); 5625 } 5626 5627 return SDValue(NewNode, 0); 5628 } 5629 5630 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 5631 SDValue Offset, SDValue GLC, SDValue DLC, 5632 SelectionDAG &DAG) const { 5633 MachineFunction &MF = DAG.getMachineFunction(); 5634 MachineMemOperand *MMO = MF.getMachineMemOperand( 5635 MachinePointerInfo(), 5636 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 5637 MachineMemOperand::MOInvariant, 5638 VT.getStoreSize(), VT.getStoreSize()); 5639 5640 if (!Offset->isDivergent()) { 5641 SDValue Ops[] = { 5642 Rsrc, 5643 Offset, // Offset 5644 GLC, 5645 DLC, 5646 }; 5647 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 5648 DAG.getVTList(VT), Ops, VT, MMO); 5649 } 5650 5651 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 5652 // assume that the buffer is unswizzled. 5653 SmallVector<SDValue, 4> Loads; 5654 unsigned NumLoads = 1; 5655 MVT LoadVT = VT.getSimpleVT(); 5656 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 5657 assert((LoadVT.getScalarType() == MVT::i32 || 5658 LoadVT.getScalarType() == MVT::f32) && 5659 isPowerOf2_32(NumElts)); 5660 5661 if (NumElts == 8 || NumElts == 16) { 5662 NumLoads = NumElts == 16 ? 4 : 2; 5663 LoadVT = MVT::v4i32; 5664 } 5665 5666 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 5667 unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue(); 5668 SDValue Ops[] = { 5669 DAG.getEntryNode(), // Chain 5670 Rsrc, // rsrc 5671 DAG.getConstant(0, DL, MVT::i32), // vindex 5672 {}, // voffset 5673 {}, // soffset 5674 {}, // offset 5675 DAG.getTargetConstant(CachePolicy, DL, MVT::i32), // cachepolicy 5676 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 5677 }; 5678 5679 // Use the alignment to ensure that the required offsets will fit into the 5680 // immediate offsets. 5681 setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4); 5682 5683 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); 5684 for (unsigned i = 0; i < NumLoads; ++i) { 5685 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 5686 Loads.push_back(DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, 5687 Ops, LoadVT, MMO)); 5688 } 5689 5690 if (VT == MVT::v8i32 || VT == MVT::v16i32) 5691 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 5692 5693 return Loads[0]; 5694 } 5695 5696 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 5697 SelectionDAG &DAG) const { 5698 MachineFunction &MF = DAG.getMachineFunction(); 5699 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 5700 5701 EVT VT = Op.getValueType(); 5702 SDLoc DL(Op); 5703 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5704 5705 // TODO: Should this propagate fast-math-flags? 5706 5707 switch (IntrinsicID) { 5708 case Intrinsic::amdgcn_implicit_buffer_ptr: { 5709 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 5710 return emitNonHSAIntrinsicError(DAG, DL, VT); 5711 return getPreloadedValue(DAG, *MFI, VT, 5712 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 5713 } 5714 case Intrinsic::amdgcn_dispatch_ptr: 5715 case Intrinsic::amdgcn_queue_ptr: { 5716 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 5717 DiagnosticInfoUnsupported BadIntrin( 5718 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 5719 DL.getDebugLoc()); 5720 DAG.getContext()->diagnose(BadIntrin); 5721 return DAG.getUNDEF(VT); 5722 } 5723 5724 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 5725 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 5726 return getPreloadedValue(DAG, *MFI, VT, RegID); 5727 } 5728 case Intrinsic::amdgcn_implicitarg_ptr: { 5729 if (MFI->isEntryFunction()) 5730 return getImplicitArgPtr(DAG, DL); 5731 return getPreloadedValue(DAG, *MFI, VT, 5732 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 5733 } 5734 case Intrinsic::amdgcn_kernarg_segment_ptr: { 5735 return getPreloadedValue(DAG, *MFI, VT, 5736 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 5737 } 5738 case Intrinsic::amdgcn_dispatch_id: { 5739 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 5740 } 5741 case Intrinsic::amdgcn_rcp: 5742 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 5743 case Intrinsic::amdgcn_rsq: 5744 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 5745 case Intrinsic::amdgcn_rsq_legacy: 5746 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 5747 return emitRemovedIntrinsicError(DAG, DL, VT); 5748 5749 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); 5750 case Intrinsic::amdgcn_rcp_legacy: 5751 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 5752 return emitRemovedIntrinsicError(DAG, DL, VT); 5753 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 5754 case Intrinsic::amdgcn_rsq_clamp: { 5755 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 5756 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 5757 5758 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 5759 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 5760 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 5761 5762 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 5763 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 5764 DAG.getConstantFP(Max, DL, VT)); 5765 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 5766 DAG.getConstantFP(Min, DL, VT)); 5767 } 5768 case Intrinsic::r600_read_ngroups_x: 5769 if (Subtarget->isAmdHsaOS()) 5770 return emitNonHSAIntrinsicError(DAG, DL, VT); 5771 5772 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5773 SI::KernelInputOffsets::NGROUPS_X, 4, false); 5774 case Intrinsic::r600_read_ngroups_y: 5775 if (Subtarget->isAmdHsaOS()) 5776 return emitNonHSAIntrinsicError(DAG, DL, VT); 5777 5778 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5779 SI::KernelInputOffsets::NGROUPS_Y, 4, false); 5780 case Intrinsic::r600_read_ngroups_z: 5781 if (Subtarget->isAmdHsaOS()) 5782 return emitNonHSAIntrinsicError(DAG, DL, VT); 5783 5784 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5785 SI::KernelInputOffsets::NGROUPS_Z, 4, false); 5786 case Intrinsic::r600_read_global_size_x: 5787 if (Subtarget->isAmdHsaOS()) 5788 return emitNonHSAIntrinsicError(DAG, DL, VT); 5789 5790 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5791 SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false); 5792 case Intrinsic::r600_read_global_size_y: 5793 if (Subtarget->isAmdHsaOS()) 5794 return emitNonHSAIntrinsicError(DAG, DL, VT); 5795 5796 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5797 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false); 5798 case Intrinsic::r600_read_global_size_z: 5799 if (Subtarget->isAmdHsaOS()) 5800 return emitNonHSAIntrinsicError(DAG, DL, VT); 5801 5802 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5803 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false); 5804 case Intrinsic::r600_read_local_size_x: 5805 if (Subtarget->isAmdHsaOS()) 5806 return emitNonHSAIntrinsicError(DAG, DL, VT); 5807 5808 return lowerImplicitZextParam(DAG, Op, MVT::i16, 5809 SI::KernelInputOffsets::LOCAL_SIZE_X); 5810 case Intrinsic::r600_read_local_size_y: 5811 if (Subtarget->isAmdHsaOS()) 5812 return emitNonHSAIntrinsicError(DAG, DL, VT); 5813 5814 return lowerImplicitZextParam(DAG, Op, MVT::i16, 5815 SI::KernelInputOffsets::LOCAL_SIZE_Y); 5816 case Intrinsic::r600_read_local_size_z: 5817 if (Subtarget->isAmdHsaOS()) 5818 return emitNonHSAIntrinsicError(DAG, DL, VT); 5819 5820 return lowerImplicitZextParam(DAG, Op, MVT::i16, 5821 SI::KernelInputOffsets::LOCAL_SIZE_Z); 5822 case Intrinsic::amdgcn_workgroup_id_x: 5823 case Intrinsic::r600_read_tgid_x: 5824 return getPreloadedValue(DAG, *MFI, VT, 5825 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 5826 case Intrinsic::amdgcn_workgroup_id_y: 5827 case Intrinsic::r600_read_tgid_y: 5828 return getPreloadedValue(DAG, *MFI, VT, 5829 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 5830 case Intrinsic::amdgcn_workgroup_id_z: 5831 case Intrinsic::r600_read_tgid_z: 5832 return getPreloadedValue(DAG, *MFI, VT, 5833 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 5834 case Intrinsic::amdgcn_workitem_id_x: 5835 case Intrinsic::r600_read_tidig_x: 5836 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 5837 SDLoc(DAG.getEntryNode()), 5838 MFI->getArgInfo().WorkItemIDX); 5839 case Intrinsic::amdgcn_workitem_id_y: 5840 case Intrinsic::r600_read_tidig_y: 5841 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 5842 SDLoc(DAG.getEntryNode()), 5843 MFI->getArgInfo().WorkItemIDY); 5844 case Intrinsic::amdgcn_workitem_id_z: 5845 case Intrinsic::r600_read_tidig_z: 5846 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 5847 SDLoc(DAG.getEntryNode()), 5848 MFI->getArgInfo().WorkItemIDZ); 5849 case Intrinsic::amdgcn_wavefrontsize: 5850 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 5851 SDLoc(Op), MVT::i32); 5852 case Intrinsic::amdgcn_s_buffer_load: { 5853 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10; 5854 SDValue GLC; 5855 SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1); 5856 if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr, 5857 IsGFX10 ? &DLC : nullptr)) 5858 return Op; 5859 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), GLC, DLC, 5860 DAG); 5861 } 5862 case Intrinsic::amdgcn_fdiv_fast: 5863 return lowerFDIV_FAST(Op, DAG); 5864 case Intrinsic::amdgcn_interp_mov: { 5865 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); 5866 SDValue Glue = M0.getValue(1); 5867 return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1), 5868 Op.getOperand(2), Op.getOperand(3), Glue); 5869 } 5870 case Intrinsic::amdgcn_interp_p1: { 5871 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); 5872 SDValue Glue = M0.getValue(1); 5873 return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1), 5874 Op.getOperand(2), Op.getOperand(3), Glue); 5875 } 5876 case Intrinsic::amdgcn_interp_p2: { 5877 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5)); 5878 SDValue Glue = SDValue(M0.getNode(), 1); 5879 return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1), 5880 Op.getOperand(2), Op.getOperand(3), Op.getOperand(4), 5881 Glue); 5882 } 5883 case Intrinsic::amdgcn_interp_p1_f16: { 5884 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5)); 5885 SDValue Glue = M0.getValue(1); 5886 if (getSubtarget()->getLDSBankCount() == 16) { 5887 // 16 bank LDS 5888 SDValue S = DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, 5889 DAG.getConstant(2, DL, MVT::i32), // P0 5890 Op.getOperand(2), // Attrchan 5891 Op.getOperand(3), // Attr 5892 Glue); 5893 SDValue Ops[] = { 5894 Op.getOperand(1), // Src0 5895 Op.getOperand(2), // Attrchan 5896 Op.getOperand(3), // Attr 5897 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 5898 S, // Src2 - holds two f16 values selected by high 5899 DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 5900 Op.getOperand(4), // high 5901 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp 5902 DAG.getTargetConstant(0, DL, MVT::i32) // $omod 5903 }; 5904 return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops); 5905 } else { 5906 // 32 bank LDS 5907 SDValue Ops[] = { 5908 Op.getOperand(1), // Src0 5909 Op.getOperand(2), // Attrchan 5910 Op.getOperand(3), // Attr 5911 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 5912 Op.getOperand(4), // high 5913 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp 5914 DAG.getTargetConstant(0, DL, MVT::i32), // $omod 5915 Glue 5916 }; 5917 return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops); 5918 } 5919 } 5920 case Intrinsic::amdgcn_interp_p2_f16: { 5921 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(6)); 5922 SDValue Glue = SDValue(M0.getNode(), 1); 5923 SDValue Ops[] = { 5924 Op.getOperand(2), // Src0 5925 Op.getOperand(3), // Attrchan 5926 Op.getOperand(4), // Attr 5927 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 5928 Op.getOperand(1), // Src2 5929 DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 5930 Op.getOperand(5), // high 5931 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp 5932 Glue 5933 }; 5934 return DAG.getNode(AMDGPUISD::INTERP_P2_F16, DL, MVT::f16, Ops); 5935 } 5936 case Intrinsic::amdgcn_sin: 5937 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 5938 5939 case Intrinsic::amdgcn_cos: 5940 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 5941 5942 case Intrinsic::amdgcn_mul_u24: 5943 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 5944 case Intrinsic::amdgcn_mul_i24: 5945 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 5946 5947 case Intrinsic::amdgcn_log_clamp: { 5948 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 5949 return SDValue(); 5950 5951 DiagnosticInfoUnsupported BadIntrin( 5952 MF.getFunction(), "intrinsic not supported on subtarget", 5953 DL.getDebugLoc()); 5954 DAG.getContext()->diagnose(BadIntrin); 5955 return DAG.getUNDEF(VT); 5956 } 5957 case Intrinsic::amdgcn_ldexp: 5958 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, 5959 Op.getOperand(1), Op.getOperand(2)); 5960 5961 case Intrinsic::amdgcn_fract: 5962 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 5963 5964 case Intrinsic::amdgcn_class: 5965 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 5966 Op.getOperand(1), Op.getOperand(2)); 5967 case Intrinsic::amdgcn_div_fmas: 5968 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 5969 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 5970 Op.getOperand(4)); 5971 5972 case Intrinsic::amdgcn_div_fixup: 5973 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 5974 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 5975 5976 case Intrinsic::amdgcn_trig_preop: 5977 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, 5978 Op.getOperand(1), Op.getOperand(2)); 5979 case Intrinsic::amdgcn_div_scale: { 5980 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 5981 5982 // Translate to the operands expected by the machine instruction. The 5983 // first parameter must be the same as the first instruction. 5984 SDValue Numerator = Op.getOperand(1); 5985 SDValue Denominator = Op.getOperand(2); 5986 5987 // Note this order is opposite of the machine instruction's operations, 5988 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 5989 // intrinsic has the numerator as the first operand to match a normal 5990 // division operation. 5991 5992 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 5993 5994 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 5995 Denominator, Numerator); 5996 } 5997 case Intrinsic::amdgcn_icmp: { 5998 // There is a Pat that handles this variant, so return it as-is. 5999 if (Op.getOperand(1).getValueType() == MVT::i1 && 6000 Op.getConstantOperandVal(2) == 0 && 6001 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 6002 return Op; 6003 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 6004 } 6005 case Intrinsic::amdgcn_fcmp: { 6006 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 6007 } 6008 case Intrinsic::amdgcn_fmed3: 6009 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 6010 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6011 case Intrinsic::amdgcn_fdot2: 6012 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 6013 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6014 Op.getOperand(4)); 6015 case Intrinsic::amdgcn_fmul_legacy: 6016 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 6017 Op.getOperand(1), Op.getOperand(2)); 6018 case Intrinsic::amdgcn_sffbh: 6019 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 6020 case Intrinsic::amdgcn_sbfe: 6021 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 6022 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6023 case Intrinsic::amdgcn_ubfe: 6024 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 6025 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6026 case Intrinsic::amdgcn_cvt_pkrtz: 6027 case Intrinsic::amdgcn_cvt_pknorm_i16: 6028 case Intrinsic::amdgcn_cvt_pknorm_u16: 6029 case Intrinsic::amdgcn_cvt_pk_i16: 6030 case Intrinsic::amdgcn_cvt_pk_u16: { 6031 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 6032 EVT VT = Op.getValueType(); 6033 unsigned Opcode; 6034 6035 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 6036 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 6037 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 6038 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 6039 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 6040 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 6041 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 6042 Opcode = AMDGPUISD::CVT_PK_I16_I32; 6043 else 6044 Opcode = AMDGPUISD::CVT_PK_U16_U32; 6045 6046 if (isTypeLegal(VT)) 6047 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6048 6049 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 6050 Op.getOperand(1), Op.getOperand(2)); 6051 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 6052 } 6053 case Intrinsic::amdgcn_fmad_ftz: 6054 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 6055 Op.getOperand(2), Op.getOperand(3)); 6056 6057 case Intrinsic::amdgcn_if_break: 6058 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 6059 Op->getOperand(1), Op->getOperand(2)), 0); 6060 6061 case Intrinsic::amdgcn_groupstaticsize: { 6062 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 6063 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 6064 return Op; 6065 6066 const Module *M = MF.getFunction().getParent(); 6067 const GlobalValue *GV = 6068 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 6069 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 6070 SIInstrInfo::MO_ABS32_LO); 6071 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 6072 } 6073 case Intrinsic::amdgcn_is_shared: 6074 case Intrinsic::amdgcn_is_private: { 6075 SDLoc SL(Op); 6076 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 6077 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 6078 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 6079 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 6080 Op.getOperand(1)); 6081 6082 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 6083 DAG.getConstant(1, SL, MVT::i32)); 6084 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 6085 } 6086 default: 6087 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 6088 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 6089 return lowerImage(Op, ImageDimIntr, DAG); 6090 6091 return Op; 6092 } 6093 } 6094 6095 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 6096 SelectionDAG &DAG) const { 6097 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 6098 SDLoc DL(Op); 6099 6100 switch (IntrID) { 6101 case Intrinsic::amdgcn_ds_ordered_add: 6102 case Intrinsic::amdgcn_ds_ordered_swap: { 6103 MemSDNode *M = cast<MemSDNode>(Op); 6104 SDValue Chain = M->getOperand(0); 6105 SDValue M0 = M->getOperand(2); 6106 SDValue Value = M->getOperand(3); 6107 unsigned IndexOperand = M->getConstantOperandVal(7); 6108 unsigned WaveRelease = M->getConstantOperandVal(8); 6109 unsigned WaveDone = M->getConstantOperandVal(9); 6110 unsigned ShaderType; 6111 unsigned Instruction; 6112 6113 unsigned OrderedCountIndex = IndexOperand & 0x3f; 6114 IndexOperand &= ~0x3f; 6115 unsigned CountDw = 0; 6116 6117 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 6118 CountDw = (IndexOperand >> 24) & 0xf; 6119 IndexOperand &= ~(0xf << 24); 6120 6121 if (CountDw < 1 || CountDw > 4) { 6122 report_fatal_error( 6123 "ds_ordered_count: dword count must be between 1 and 4"); 6124 } 6125 } 6126 6127 if (IndexOperand) 6128 report_fatal_error("ds_ordered_count: bad index operand"); 6129 6130 switch (IntrID) { 6131 case Intrinsic::amdgcn_ds_ordered_add: 6132 Instruction = 0; 6133 break; 6134 case Intrinsic::amdgcn_ds_ordered_swap: 6135 Instruction = 1; 6136 break; 6137 } 6138 6139 if (WaveDone && !WaveRelease) 6140 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 6141 6142 switch (DAG.getMachineFunction().getFunction().getCallingConv()) { 6143 case CallingConv::AMDGPU_CS: 6144 case CallingConv::AMDGPU_KERNEL: 6145 ShaderType = 0; 6146 break; 6147 case CallingConv::AMDGPU_PS: 6148 ShaderType = 1; 6149 break; 6150 case CallingConv::AMDGPU_VS: 6151 ShaderType = 2; 6152 break; 6153 case CallingConv::AMDGPU_GS: 6154 ShaderType = 3; 6155 break; 6156 default: 6157 report_fatal_error("ds_ordered_count unsupported for this calling conv"); 6158 } 6159 6160 unsigned Offset0 = OrderedCountIndex << 2; 6161 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) | 6162 (Instruction << 4); 6163 6164 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 6165 Offset1 |= (CountDw - 1) << 6; 6166 6167 unsigned Offset = Offset0 | (Offset1 << 8); 6168 6169 SDValue Ops[] = { 6170 Chain, 6171 Value, 6172 DAG.getTargetConstant(Offset, DL, MVT::i16), 6173 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 6174 }; 6175 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 6176 M->getVTList(), Ops, M->getMemoryVT(), 6177 M->getMemOperand()); 6178 } 6179 case Intrinsic::amdgcn_ds_fadd: { 6180 MemSDNode *M = cast<MemSDNode>(Op); 6181 unsigned Opc; 6182 switch (IntrID) { 6183 case Intrinsic::amdgcn_ds_fadd: 6184 Opc = ISD::ATOMIC_LOAD_FADD; 6185 break; 6186 } 6187 6188 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 6189 M->getOperand(0), M->getOperand(2), M->getOperand(3), 6190 M->getMemOperand()); 6191 } 6192 case Intrinsic::amdgcn_atomic_inc: 6193 case Intrinsic::amdgcn_atomic_dec: 6194 case Intrinsic::amdgcn_ds_fmin: 6195 case Intrinsic::amdgcn_ds_fmax: { 6196 MemSDNode *M = cast<MemSDNode>(Op); 6197 unsigned Opc; 6198 switch (IntrID) { 6199 case Intrinsic::amdgcn_atomic_inc: 6200 Opc = AMDGPUISD::ATOMIC_INC; 6201 break; 6202 case Intrinsic::amdgcn_atomic_dec: 6203 Opc = AMDGPUISD::ATOMIC_DEC; 6204 break; 6205 case Intrinsic::amdgcn_ds_fmin: 6206 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 6207 break; 6208 case Intrinsic::amdgcn_ds_fmax: 6209 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 6210 break; 6211 default: 6212 llvm_unreachable("Unknown intrinsic!"); 6213 } 6214 SDValue Ops[] = { 6215 M->getOperand(0), // Chain 6216 M->getOperand(2), // Ptr 6217 M->getOperand(3) // Value 6218 }; 6219 6220 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 6221 M->getMemoryVT(), M->getMemOperand()); 6222 } 6223 case Intrinsic::amdgcn_buffer_load: 6224 case Intrinsic::amdgcn_buffer_load_format: { 6225 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 6226 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6227 unsigned IdxEn = 1; 6228 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 6229 IdxEn = Idx->getZExtValue() != 0; 6230 SDValue Ops[] = { 6231 Op.getOperand(0), // Chain 6232 Op.getOperand(2), // rsrc 6233 Op.getOperand(3), // vindex 6234 SDValue(), // voffset -- will be set by setBufferOffsets 6235 SDValue(), // soffset -- will be set by setBufferOffsets 6236 SDValue(), // offset -- will be set by setBufferOffsets 6237 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6238 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6239 }; 6240 6241 setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 6242 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 6243 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 6244 6245 EVT VT = Op.getValueType(); 6246 EVT IntVT = VT.changeTypeToInteger(); 6247 auto *M = cast<MemSDNode>(Op); 6248 EVT LoadVT = Op.getValueType(); 6249 6250 if (LoadVT.getScalarType() == MVT::f16) 6251 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 6252 M, DAG, Ops); 6253 6254 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 6255 if (LoadVT.getScalarType() == MVT::i8 || 6256 LoadVT.getScalarType() == MVT::i16) 6257 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 6258 6259 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 6260 M->getMemOperand(), DAG); 6261 } 6262 case Intrinsic::amdgcn_raw_buffer_load: 6263 case Intrinsic::amdgcn_raw_buffer_load_format: { 6264 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; 6265 6266 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 6267 SDValue Ops[] = { 6268 Op.getOperand(0), // Chain 6269 Op.getOperand(2), // rsrc 6270 DAG.getConstant(0, DL, MVT::i32), // vindex 6271 Offsets.first, // voffset 6272 Op.getOperand(4), // soffset 6273 Offsets.second, // offset 6274 Op.getOperand(5), // cachepolicy 6275 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6276 }; 6277 6278 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 6279 } 6280 case Intrinsic::amdgcn_struct_buffer_load: 6281 case Intrinsic::amdgcn_struct_buffer_load_format: { 6282 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; 6283 6284 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6285 SDValue Ops[] = { 6286 Op.getOperand(0), // Chain 6287 Op.getOperand(2), // rsrc 6288 Op.getOperand(3), // vindex 6289 Offsets.first, // voffset 6290 Op.getOperand(5), // soffset 6291 Offsets.second, // offset 6292 Op.getOperand(6), // cachepolicy 6293 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6294 }; 6295 6296 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 6297 } 6298 case Intrinsic::amdgcn_tbuffer_load: { 6299 MemSDNode *M = cast<MemSDNode>(Op); 6300 EVT LoadVT = Op.getValueType(); 6301 6302 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 6303 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 6304 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 6305 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 6306 unsigned IdxEn = 1; 6307 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 6308 IdxEn = Idx->getZExtValue() != 0; 6309 SDValue Ops[] = { 6310 Op.getOperand(0), // Chain 6311 Op.getOperand(2), // rsrc 6312 Op.getOperand(3), // vindex 6313 Op.getOperand(4), // voffset 6314 Op.getOperand(5), // soffset 6315 Op.getOperand(6), // offset 6316 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 6317 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6318 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 6319 }; 6320 6321 if (LoadVT.getScalarType() == MVT::f16) 6322 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6323 M, DAG, Ops); 6324 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6325 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6326 DAG); 6327 } 6328 case Intrinsic::amdgcn_raw_tbuffer_load: { 6329 MemSDNode *M = cast<MemSDNode>(Op); 6330 EVT LoadVT = Op.getValueType(); 6331 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 6332 6333 SDValue Ops[] = { 6334 Op.getOperand(0), // Chain 6335 Op.getOperand(2), // rsrc 6336 DAG.getConstant(0, DL, MVT::i32), // vindex 6337 Offsets.first, // voffset 6338 Op.getOperand(4), // soffset 6339 Offsets.second, // offset 6340 Op.getOperand(5), // format 6341 Op.getOperand(6), // cachepolicy 6342 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6343 }; 6344 6345 if (LoadVT.getScalarType() == MVT::f16) 6346 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6347 M, DAG, Ops); 6348 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6349 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6350 DAG); 6351 } 6352 case Intrinsic::amdgcn_struct_tbuffer_load: { 6353 MemSDNode *M = cast<MemSDNode>(Op); 6354 EVT LoadVT = Op.getValueType(); 6355 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6356 6357 SDValue Ops[] = { 6358 Op.getOperand(0), // Chain 6359 Op.getOperand(2), // rsrc 6360 Op.getOperand(3), // vindex 6361 Offsets.first, // voffset 6362 Op.getOperand(5), // soffset 6363 Offsets.second, // offset 6364 Op.getOperand(6), // format 6365 Op.getOperand(7), // cachepolicy 6366 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6367 }; 6368 6369 if (LoadVT.getScalarType() == MVT::f16) 6370 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 6371 M, DAG, Ops); 6372 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 6373 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 6374 DAG); 6375 } 6376 case Intrinsic::amdgcn_buffer_atomic_swap: 6377 case Intrinsic::amdgcn_buffer_atomic_add: 6378 case Intrinsic::amdgcn_buffer_atomic_sub: 6379 case Intrinsic::amdgcn_buffer_atomic_smin: 6380 case Intrinsic::amdgcn_buffer_atomic_umin: 6381 case Intrinsic::amdgcn_buffer_atomic_smax: 6382 case Intrinsic::amdgcn_buffer_atomic_umax: 6383 case Intrinsic::amdgcn_buffer_atomic_and: 6384 case Intrinsic::amdgcn_buffer_atomic_or: 6385 case Intrinsic::amdgcn_buffer_atomic_xor: { 6386 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6387 unsigned IdxEn = 1; 6388 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 6389 IdxEn = Idx->getZExtValue() != 0; 6390 SDValue Ops[] = { 6391 Op.getOperand(0), // Chain 6392 Op.getOperand(2), // vdata 6393 Op.getOperand(3), // rsrc 6394 Op.getOperand(4), // vindex 6395 SDValue(), // voffset -- will be set by setBufferOffsets 6396 SDValue(), // soffset -- will be set by setBufferOffsets 6397 SDValue(), // offset -- will be set by setBufferOffsets 6398 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 6399 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6400 }; 6401 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 6402 EVT VT = Op.getValueType(); 6403 6404 auto *M = cast<MemSDNode>(Op); 6405 unsigned Opcode = 0; 6406 6407 switch (IntrID) { 6408 case Intrinsic::amdgcn_buffer_atomic_swap: 6409 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 6410 break; 6411 case Intrinsic::amdgcn_buffer_atomic_add: 6412 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 6413 break; 6414 case Intrinsic::amdgcn_buffer_atomic_sub: 6415 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 6416 break; 6417 case Intrinsic::amdgcn_buffer_atomic_smin: 6418 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 6419 break; 6420 case Intrinsic::amdgcn_buffer_atomic_umin: 6421 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 6422 break; 6423 case Intrinsic::amdgcn_buffer_atomic_smax: 6424 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 6425 break; 6426 case Intrinsic::amdgcn_buffer_atomic_umax: 6427 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 6428 break; 6429 case Intrinsic::amdgcn_buffer_atomic_and: 6430 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 6431 break; 6432 case Intrinsic::amdgcn_buffer_atomic_or: 6433 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 6434 break; 6435 case Intrinsic::amdgcn_buffer_atomic_xor: 6436 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 6437 break; 6438 default: 6439 llvm_unreachable("unhandled atomic opcode"); 6440 } 6441 6442 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 6443 M->getMemOperand()); 6444 } 6445 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 6446 case Intrinsic::amdgcn_raw_buffer_atomic_add: 6447 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 6448 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 6449 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 6450 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 6451 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 6452 case Intrinsic::amdgcn_raw_buffer_atomic_and: 6453 case Intrinsic::amdgcn_raw_buffer_atomic_or: 6454 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 6455 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 6456 case Intrinsic::amdgcn_raw_buffer_atomic_dec: { 6457 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6458 SDValue Ops[] = { 6459 Op.getOperand(0), // Chain 6460 Op.getOperand(2), // vdata 6461 Op.getOperand(3), // rsrc 6462 DAG.getConstant(0, DL, MVT::i32), // vindex 6463 Offsets.first, // voffset 6464 Op.getOperand(5), // soffset 6465 Offsets.second, // offset 6466 Op.getOperand(6), // cachepolicy 6467 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6468 }; 6469 EVT VT = Op.getValueType(); 6470 6471 auto *M = cast<MemSDNode>(Op); 6472 unsigned Opcode = 0; 6473 6474 switch (IntrID) { 6475 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 6476 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 6477 break; 6478 case Intrinsic::amdgcn_raw_buffer_atomic_add: 6479 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 6480 break; 6481 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 6482 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 6483 break; 6484 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 6485 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 6486 break; 6487 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 6488 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 6489 break; 6490 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 6491 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 6492 break; 6493 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 6494 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 6495 break; 6496 case Intrinsic::amdgcn_raw_buffer_atomic_and: 6497 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 6498 break; 6499 case Intrinsic::amdgcn_raw_buffer_atomic_or: 6500 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 6501 break; 6502 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 6503 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 6504 break; 6505 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 6506 Opcode = AMDGPUISD::BUFFER_ATOMIC_INC; 6507 break; 6508 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 6509 Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC; 6510 break; 6511 default: 6512 llvm_unreachable("unhandled atomic opcode"); 6513 } 6514 6515 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 6516 M->getMemOperand()); 6517 } 6518 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 6519 case Intrinsic::amdgcn_struct_buffer_atomic_add: 6520 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 6521 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 6522 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 6523 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 6524 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 6525 case Intrinsic::amdgcn_struct_buffer_atomic_and: 6526 case Intrinsic::amdgcn_struct_buffer_atomic_or: 6527 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 6528 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 6529 case Intrinsic::amdgcn_struct_buffer_atomic_dec: { 6530 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 6531 SDValue Ops[] = { 6532 Op.getOperand(0), // Chain 6533 Op.getOperand(2), // vdata 6534 Op.getOperand(3), // rsrc 6535 Op.getOperand(4), // vindex 6536 Offsets.first, // voffset 6537 Op.getOperand(6), // soffset 6538 Offsets.second, // offset 6539 Op.getOperand(7), // cachepolicy 6540 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6541 }; 6542 EVT VT = Op.getValueType(); 6543 6544 auto *M = cast<MemSDNode>(Op); 6545 unsigned Opcode = 0; 6546 6547 switch (IntrID) { 6548 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 6549 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 6550 break; 6551 case Intrinsic::amdgcn_struct_buffer_atomic_add: 6552 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 6553 break; 6554 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 6555 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 6556 break; 6557 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 6558 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 6559 break; 6560 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 6561 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 6562 break; 6563 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 6564 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 6565 break; 6566 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 6567 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 6568 break; 6569 case Intrinsic::amdgcn_struct_buffer_atomic_and: 6570 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 6571 break; 6572 case Intrinsic::amdgcn_struct_buffer_atomic_or: 6573 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 6574 break; 6575 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 6576 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 6577 break; 6578 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 6579 Opcode = AMDGPUISD::BUFFER_ATOMIC_INC; 6580 break; 6581 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 6582 Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC; 6583 break; 6584 default: 6585 llvm_unreachable("unhandled atomic opcode"); 6586 } 6587 6588 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 6589 M->getMemOperand()); 6590 } 6591 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 6592 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 6593 unsigned IdxEn = 1; 6594 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5))) 6595 IdxEn = Idx->getZExtValue() != 0; 6596 SDValue Ops[] = { 6597 Op.getOperand(0), // Chain 6598 Op.getOperand(2), // src 6599 Op.getOperand(3), // cmp 6600 Op.getOperand(4), // rsrc 6601 Op.getOperand(5), // vindex 6602 SDValue(), // voffset -- will be set by setBufferOffsets 6603 SDValue(), // soffset -- will be set by setBufferOffsets 6604 SDValue(), // offset -- will be set by setBufferOffsets 6605 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 6606 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6607 }; 6608 setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 6609 EVT VT = Op.getValueType(); 6610 auto *M = cast<MemSDNode>(Op); 6611 6612 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 6613 Op->getVTList(), Ops, VT, M->getMemOperand()); 6614 } 6615 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { 6616 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 6617 SDValue Ops[] = { 6618 Op.getOperand(0), // Chain 6619 Op.getOperand(2), // src 6620 Op.getOperand(3), // cmp 6621 Op.getOperand(4), // rsrc 6622 DAG.getConstant(0, DL, MVT::i32), // vindex 6623 Offsets.first, // voffset 6624 Op.getOperand(6), // soffset 6625 Offsets.second, // offset 6626 Op.getOperand(7), // cachepolicy 6627 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6628 }; 6629 EVT VT = Op.getValueType(); 6630 auto *M = cast<MemSDNode>(Op); 6631 6632 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 6633 Op->getVTList(), Ops, VT, M->getMemOperand()); 6634 } 6635 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { 6636 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 6637 SDValue Ops[] = { 6638 Op.getOperand(0), // Chain 6639 Op.getOperand(2), // src 6640 Op.getOperand(3), // cmp 6641 Op.getOperand(4), // rsrc 6642 Op.getOperand(5), // vindex 6643 Offsets.first, // voffset 6644 Op.getOperand(7), // soffset 6645 Offsets.second, // offset 6646 Op.getOperand(8), // cachepolicy 6647 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6648 }; 6649 EVT VT = Op.getValueType(); 6650 auto *M = cast<MemSDNode>(Op); 6651 6652 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 6653 Op->getVTList(), Ops, VT, M->getMemOperand()); 6654 } 6655 6656 default: 6657 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 6658 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 6659 return lowerImage(Op, ImageDimIntr, DAG); 6660 6661 return SDValue(); 6662 } 6663 } 6664 6665 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 6666 // dwordx4 if on SI. 6667 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 6668 SDVTList VTList, 6669 ArrayRef<SDValue> Ops, EVT MemVT, 6670 MachineMemOperand *MMO, 6671 SelectionDAG &DAG) const { 6672 EVT VT = VTList.VTs[0]; 6673 EVT WidenedVT = VT; 6674 EVT WidenedMemVT = MemVT; 6675 if (!Subtarget->hasDwordx3LoadStores() && 6676 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { 6677 WidenedVT = EVT::getVectorVT(*DAG.getContext(), 6678 WidenedVT.getVectorElementType(), 4); 6679 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), 6680 WidenedMemVT.getVectorElementType(), 4); 6681 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); 6682 } 6683 6684 assert(VTList.NumVTs == 2); 6685 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 6686 6687 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 6688 WidenedMemVT, MMO); 6689 if (WidenedVT != VT) { 6690 auto Extract = DAG.getNode( 6691 ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, 6692 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); 6693 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); 6694 } 6695 return NewOp; 6696 } 6697 6698 SDValue SITargetLowering::handleD16VData(SDValue VData, 6699 SelectionDAG &DAG) const { 6700 EVT StoreVT = VData.getValueType(); 6701 6702 // No change for f16 and legal vector D16 types. 6703 if (!StoreVT.isVector()) 6704 return VData; 6705 6706 SDLoc DL(VData); 6707 assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16"); 6708 6709 if (Subtarget->hasUnpackedD16VMem()) { 6710 // We need to unpack the packed data to store. 6711 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 6712 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 6713 6714 EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 6715 StoreVT.getVectorNumElements()); 6716 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 6717 return DAG.UnrollVectorOp(ZExt.getNode()); 6718 } 6719 6720 assert(isTypeLegal(StoreVT)); 6721 return VData; 6722 } 6723 6724 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 6725 SelectionDAG &DAG) const { 6726 SDLoc DL(Op); 6727 SDValue Chain = Op.getOperand(0); 6728 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 6729 MachineFunction &MF = DAG.getMachineFunction(); 6730 6731 switch (IntrinsicID) { 6732 case Intrinsic::amdgcn_exp: { 6733 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2)); 6734 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3)); 6735 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8)); 6736 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9)); 6737 6738 const SDValue Ops[] = { 6739 Chain, 6740 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt 6741 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en 6742 Op.getOperand(4), // src0 6743 Op.getOperand(5), // src1 6744 Op.getOperand(6), // src2 6745 Op.getOperand(7), // src3 6746 DAG.getTargetConstant(0, DL, MVT::i1), // compr 6747 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) 6748 }; 6749 6750 unsigned Opc = Done->isNullValue() ? 6751 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; 6752 return DAG.getNode(Opc, DL, Op->getVTList(), Ops); 6753 } 6754 case Intrinsic::amdgcn_exp_compr: { 6755 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2)); 6756 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3)); 6757 SDValue Src0 = Op.getOperand(4); 6758 SDValue Src1 = Op.getOperand(5); 6759 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 6760 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7)); 6761 6762 SDValue Undef = DAG.getUNDEF(MVT::f32); 6763 const SDValue Ops[] = { 6764 Chain, 6765 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt 6766 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en 6767 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), 6768 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), 6769 Undef, // src2 6770 Undef, // src3 6771 DAG.getTargetConstant(1, DL, MVT::i1), // compr 6772 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) 6773 }; 6774 6775 unsigned Opc = Done->isNullValue() ? 6776 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; 6777 return DAG.getNode(Opc, DL, Op->getVTList(), Ops); 6778 } 6779 case Intrinsic::amdgcn_s_barrier: { 6780 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { 6781 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 6782 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 6783 if (WGSize <= ST.getWavefrontSize()) 6784 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 6785 Op.getOperand(0)), 0); 6786 } 6787 return SDValue(); 6788 }; 6789 case Intrinsic::amdgcn_tbuffer_store: { 6790 SDValue VData = Op.getOperand(2); 6791 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 6792 if (IsD16) 6793 VData = handleD16VData(VData, DAG); 6794 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 6795 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 6796 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 6797 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); 6798 unsigned IdxEn = 1; 6799 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 6800 IdxEn = Idx->getZExtValue() != 0; 6801 SDValue Ops[] = { 6802 Chain, 6803 VData, // vdata 6804 Op.getOperand(3), // rsrc 6805 Op.getOperand(4), // vindex 6806 Op.getOperand(5), // voffset 6807 Op.getOperand(6), // soffset 6808 Op.getOperand(7), // offset 6809 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 6810 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6811 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen 6812 }; 6813 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 6814 AMDGPUISD::TBUFFER_STORE_FORMAT; 6815 MemSDNode *M = cast<MemSDNode>(Op); 6816 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 6817 M->getMemoryVT(), M->getMemOperand()); 6818 } 6819 6820 case Intrinsic::amdgcn_struct_tbuffer_store: { 6821 SDValue VData = Op.getOperand(2); 6822 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 6823 if (IsD16) 6824 VData = handleD16VData(VData, DAG); 6825 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 6826 SDValue Ops[] = { 6827 Chain, 6828 VData, // vdata 6829 Op.getOperand(3), // rsrc 6830 Op.getOperand(4), // vindex 6831 Offsets.first, // voffset 6832 Op.getOperand(6), // soffset 6833 Offsets.second, // offset 6834 Op.getOperand(7), // format 6835 Op.getOperand(8), // cachepolicy 6836 DAG.getTargetConstant(1, DL, MVT::i1), // idexen 6837 }; 6838 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 6839 AMDGPUISD::TBUFFER_STORE_FORMAT; 6840 MemSDNode *M = cast<MemSDNode>(Op); 6841 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 6842 M->getMemoryVT(), M->getMemOperand()); 6843 } 6844 6845 case Intrinsic::amdgcn_raw_tbuffer_store: { 6846 SDValue VData = Op.getOperand(2); 6847 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 6848 if (IsD16) 6849 VData = handleD16VData(VData, DAG); 6850 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6851 SDValue Ops[] = { 6852 Chain, 6853 VData, // vdata 6854 Op.getOperand(3), // rsrc 6855 DAG.getConstant(0, DL, MVT::i32), // vindex 6856 Offsets.first, // voffset 6857 Op.getOperand(5), // soffset 6858 Offsets.second, // offset 6859 Op.getOperand(6), // format 6860 Op.getOperand(7), // cachepolicy 6861 DAG.getTargetConstant(0, DL, MVT::i1), // idexen 6862 }; 6863 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 6864 AMDGPUISD::TBUFFER_STORE_FORMAT; 6865 MemSDNode *M = cast<MemSDNode>(Op); 6866 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 6867 M->getMemoryVT(), M->getMemOperand()); 6868 } 6869 6870 case Intrinsic::amdgcn_buffer_store: 6871 case Intrinsic::amdgcn_buffer_store_format: { 6872 SDValue VData = Op.getOperand(2); 6873 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 6874 if (IsD16) 6875 VData = handleD16VData(VData, DAG); 6876 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6877 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 6878 unsigned IdxEn = 1; 6879 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 6880 IdxEn = Idx->getZExtValue() != 0; 6881 SDValue Ops[] = { 6882 Chain, 6883 VData, 6884 Op.getOperand(3), // rsrc 6885 Op.getOperand(4), // vindex 6886 SDValue(), // voffset -- will be set by setBufferOffsets 6887 SDValue(), // soffset -- will be set by setBufferOffsets 6888 SDValue(), // offset -- will be set by setBufferOffsets 6889 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6890 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6891 }; 6892 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 6893 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 6894 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 6895 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 6896 MemSDNode *M = cast<MemSDNode>(Op); 6897 6898 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 6899 EVT VDataType = VData.getValueType().getScalarType(); 6900 if (VDataType == MVT::i8 || VDataType == MVT::i16) 6901 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 6902 6903 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 6904 M->getMemoryVT(), M->getMemOperand()); 6905 } 6906 6907 case Intrinsic::amdgcn_raw_buffer_store: 6908 case Intrinsic::amdgcn_raw_buffer_store_format: { 6909 const bool IsFormat = 6910 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; 6911 6912 SDValue VData = Op.getOperand(2); 6913 EVT VDataVT = VData.getValueType(); 6914 EVT EltType = VDataVT.getScalarType(); 6915 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 6916 if (IsD16) 6917 VData = handleD16VData(VData, DAG); 6918 6919 if (!isTypeLegal(VDataVT)) { 6920 VData = 6921 DAG.getNode(ISD::BITCAST, DL, 6922 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 6923 } 6924 6925 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6926 SDValue Ops[] = { 6927 Chain, 6928 VData, 6929 Op.getOperand(3), // rsrc 6930 DAG.getConstant(0, DL, MVT::i32), // vindex 6931 Offsets.first, // voffset 6932 Op.getOperand(5), // soffset 6933 Offsets.second, // offset 6934 Op.getOperand(6), // cachepolicy 6935 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6936 }; 6937 unsigned Opc = 6938 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 6939 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 6940 MemSDNode *M = cast<MemSDNode>(Op); 6941 6942 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 6943 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 6944 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 6945 6946 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 6947 M->getMemoryVT(), M->getMemOperand()); 6948 } 6949 6950 case Intrinsic::amdgcn_struct_buffer_store: 6951 case Intrinsic::amdgcn_struct_buffer_store_format: { 6952 const bool IsFormat = 6953 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; 6954 6955 SDValue VData = Op.getOperand(2); 6956 EVT VDataVT = VData.getValueType(); 6957 EVT EltType = VDataVT.getScalarType(); 6958 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 6959 6960 if (IsD16) 6961 VData = handleD16VData(VData, DAG); 6962 6963 if (!isTypeLegal(VDataVT)) { 6964 VData = 6965 DAG.getNode(ISD::BITCAST, DL, 6966 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 6967 } 6968 6969 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 6970 SDValue Ops[] = { 6971 Chain, 6972 VData, 6973 Op.getOperand(3), // rsrc 6974 Op.getOperand(4), // vindex 6975 Offsets.first, // voffset 6976 Op.getOperand(6), // soffset 6977 Offsets.second, // offset 6978 Op.getOperand(7), // cachepolicy 6979 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6980 }; 6981 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? 6982 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 6983 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 6984 MemSDNode *M = cast<MemSDNode>(Op); 6985 6986 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 6987 EVT VDataType = VData.getValueType().getScalarType(); 6988 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 6989 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 6990 6991 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 6992 M->getMemoryVT(), M->getMemOperand()); 6993 } 6994 6995 case Intrinsic::amdgcn_buffer_atomic_fadd: { 6996 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6997 unsigned IdxEn = 1; 6998 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 6999 IdxEn = Idx->getZExtValue() != 0; 7000 SDValue Ops[] = { 7001 Chain, 7002 Op.getOperand(2), // vdata 7003 Op.getOperand(3), // rsrc 7004 Op.getOperand(4), // vindex 7005 SDValue(), // voffset -- will be set by setBufferOffsets 7006 SDValue(), // soffset -- will be set by setBufferOffsets 7007 SDValue(), // offset -- will be set by setBufferOffsets 7008 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7009 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7010 }; 7011 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7012 EVT VT = Op.getOperand(2).getValueType(); 7013 7014 auto *M = cast<MemSDNode>(Op); 7015 unsigned Opcode = VT.isVector() ? AMDGPUISD::BUFFER_ATOMIC_PK_FADD 7016 : AMDGPUISD::BUFFER_ATOMIC_FADD; 7017 7018 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7019 M->getMemOperand()); 7020 } 7021 7022 case Intrinsic::amdgcn_global_atomic_fadd: { 7023 SDValue Ops[] = { 7024 Chain, 7025 Op.getOperand(2), // ptr 7026 Op.getOperand(3) // vdata 7027 }; 7028 EVT VT = Op.getOperand(3).getValueType(); 7029 7030 auto *M = cast<MemSDNode>(Op); 7031 unsigned Opcode = VT.isVector() ? AMDGPUISD::ATOMIC_PK_FADD 7032 : AMDGPUISD::ATOMIC_FADD; 7033 7034 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7035 M->getMemOperand()); 7036 } 7037 7038 case Intrinsic::amdgcn_end_cf: 7039 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 7040 Op->getOperand(2), Chain), 0); 7041 7042 default: { 7043 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7044 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 7045 return lowerImage(Op, ImageDimIntr, DAG); 7046 7047 return Op; 7048 } 7049 } 7050 } 7051 7052 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 7053 // offset (the offset that is included in bounds checking and swizzling, to be 7054 // split between the instruction's voffset and immoffset fields) and soffset 7055 // (the offset that is excluded from bounds checking and swizzling, to go in 7056 // the instruction's soffset field). This function takes the first kind of 7057 // offset and figures out how to split it between voffset and immoffset. 7058 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 7059 SDValue Offset, SelectionDAG &DAG) const { 7060 SDLoc DL(Offset); 7061 const unsigned MaxImm = 4095; 7062 SDValue N0 = Offset; 7063 ConstantSDNode *C1 = nullptr; 7064 7065 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 7066 N0 = SDValue(); 7067 else if (DAG.isBaseWithConstantOffset(N0)) { 7068 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 7069 N0 = N0.getOperand(0); 7070 } 7071 7072 if (C1) { 7073 unsigned ImmOffset = C1->getZExtValue(); 7074 // If the immediate value is too big for the immoffset field, put the value 7075 // and -4096 into the immoffset field so that the value that is copied/added 7076 // for the voffset field is a multiple of 4096, and it stands more chance 7077 // of being CSEd with the copy/add for another similar load/store. 7078 // However, do not do that rounding down to a multiple of 4096 if that is a 7079 // negative number, as it appears to be illegal to have a negative offset 7080 // in the vgpr, even if adding the immediate offset makes it positive. 7081 unsigned Overflow = ImmOffset & ~MaxImm; 7082 ImmOffset -= Overflow; 7083 if ((int32_t)Overflow < 0) { 7084 Overflow += ImmOffset; 7085 ImmOffset = 0; 7086 } 7087 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 7088 if (Overflow) { 7089 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 7090 if (!N0) 7091 N0 = OverflowVal; 7092 else { 7093 SDValue Ops[] = { N0, OverflowVal }; 7094 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 7095 } 7096 } 7097 } 7098 if (!N0) 7099 N0 = DAG.getConstant(0, DL, MVT::i32); 7100 if (!C1) 7101 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 7102 return {N0, SDValue(C1, 0)}; 7103 } 7104 7105 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 7106 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 7107 // pointed to by Offsets. 7108 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 7109 SelectionDAG &DAG, SDValue *Offsets, 7110 unsigned Align) const { 7111 SDLoc DL(CombinedOffset); 7112 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 7113 uint32_t Imm = C->getZExtValue(); 7114 uint32_t SOffset, ImmOffset; 7115 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) { 7116 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 7117 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 7118 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 7119 return; 7120 } 7121 } 7122 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 7123 SDValue N0 = CombinedOffset.getOperand(0); 7124 SDValue N1 = CombinedOffset.getOperand(1); 7125 uint32_t SOffset, ImmOffset; 7126 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 7127 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, 7128 Subtarget, Align)) { 7129 Offsets[0] = N0; 7130 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 7131 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 7132 return; 7133 } 7134 } 7135 Offsets[0] = CombinedOffset; 7136 Offsets[1] = DAG.getConstant(0, DL, MVT::i32); 7137 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 7138 } 7139 7140 // Handle 8 bit and 16 bit buffer loads 7141 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, 7142 EVT LoadVT, SDLoc DL, 7143 ArrayRef<SDValue> Ops, 7144 MemSDNode *M) const { 7145 EVT IntVT = LoadVT.changeTypeToInteger(); 7146 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 7147 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 7148 7149 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 7150 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, 7151 Ops, IntVT, 7152 M->getMemOperand()); 7153 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 7154 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 7155 7156 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 7157 } 7158 7159 // Handle 8 bit and 16 bit buffer stores 7160 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 7161 EVT VDataType, SDLoc DL, 7162 SDValue Ops[], 7163 MemSDNode *M) const { 7164 if (VDataType == MVT::f16) 7165 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 7166 7167 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 7168 Ops[1] = BufferStoreExt; 7169 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 7170 AMDGPUISD::BUFFER_STORE_SHORT; 7171 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); 7172 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 7173 M->getMemOperand()); 7174 } 7175 7176 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 7177 ISD::LoadExtType ExtType, SDValue Op, 7178 const SDLoc &SL, EVT VT) { 7179 if (VT.bitsLT(Op.getValueType())) 7180 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 7181 7182 switch (ExtType) { 7183 case ISD::SEXTLOAD: 7184 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 7185 case ISD::ZEXTLOAD: 7186 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 7187 case ISD::EXTLOAD: 7188 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 7189 case ISD::NON_EXTLOAD: 7190 return Op; 7191 } 7192 7193 llvm_unreachable("invalid ext type"); 7194 } 7195 7196 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 7197 SelectionDAG &DAG = DCI.DAG; 7198 if (Ld->getAlignment() < 4 || Ld->isDivergent()) 7199 return SDValue(); 7200 7201 // FIXME: Constant loads should all be marked invariant. 7202 unsigned AS = Ld->getAddressSpace(); 7203 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 7204 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 7205 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 7206 return SDValue(); 7207 7208 // Don't do this early, since it may interfere with adjacent load merging for 7209 // illegal types. We can avoid losing alignment information for exotic types 7210 // pre-legalize. 7211 EVT MemVT = Ld->getMemoryVT(); 7212 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 7213 MemVT.getSizeInBits() >= 32) 7214 return SDValue(); 7215 7216 SDLoc SL(Ld); 7217 7218 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 7219 "unexpected vector extload"); 7220 7221 // TODO: Drop only high part of range. 7222 SDValue Ptr = Ld->getBasePtr(); 7223 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 7224 MVT::i32, SL, Ld->getChain(), Ptr, 7225 Ld->getOffset(), 7226 Ld->getPointerInfo(), MVT::i32, 7227 Ld->getAlignment(), 7228 Ld->getMemOperand()->getFlags(), 7229 Ld->getAAInfo(), 7230 nullptr); // Drop ranges 7231 7232 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 7233 if (MemVT.isFloatingPoint()) { 7234 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 7235 "unexpected fp extload"); 7236 TruncVT = MemVT.changeTypeToInteger(); 7237 } 7238 7239 SDValue Cvt = NewLoad; 7240 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 7241 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 7242 DAG.getValueType(TruncVT)); 7243 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 7244 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 7245 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 7246 } else { 7247 assert(Ld->getExtensionType() == ISD::EXTLOAD); 7248 } 7249 7250 EVT VT = Ld->getValueType(0); 7251 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7252 7253 DCI.AddToWorklist(Cvt.getNode()); 7254 7255 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 7256 // the appropriate extension from the 32-bit load. 7257 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 7258 DCI.AddToWorklist(Cvt.getNode()); 7259 7260 // Handle conversion back to floating point if necessary. 7261 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 7262 7263 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 7264 } 7265 7266 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7267 SDLoc DL(Op); 7268 LoadSDNode *Load = cast<LoadSDNode>(Op); 7269 ISD::LoadExtType ExtType = Load->getExtensionType(); 7270 EVT MemVT = Load->getMemoryVT(); 7271 7272 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 7273 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 7274 return SDValue(); 7275 7276 // FIXME: Copied from PPC 7277 // First, load into 32 bits, then truncate to 1 bit. 7278 7279 SDValue Chain = Load->getChain(); 7280 SDValue BasePtr = Load->getBasePtr(); 7281 MachineMemOperand *MMO = Load->getMemOperand(); 7282 7283 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 7284 7285 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 7286 BasePtr, RealMemVT, MMO); 7287 7288 if (!MemVT.isVector()) { 7289 SDValue Ops[] = { 7290 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 7291 NewLD.getValue(1) 7292 }; 7293 7294 return DAG.getMergeValues(Ops, DL); 7295 } 7296 7297 SmallVector<SDValue, 3> Elts; 7298 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 7299 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 7300 DAG.getConstant(I, DL, MVT::i32)); 7301 7302 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 7303 } 7304 7305 SDValue Ops[] = { 7306 DAG.getBuildVector(MemVT, DL, Elts), 7307 NewLD.getValue(1) 7308 }; 7309 7310 return DAG.getMergeValues(Ops, DL); 7311 } 7312 7313 if (!MemVT.isVector()) 7314 return SDValue(); 7315 7316 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 7317 "Custom lowering for non-i32 vectors hasn't been implemented."); 7318 7319 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 7320 *Load->getMemOperand())) { 7321 SDValue Ops[2]; 7322 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 7323 return DAG.getMergeValues(Ops, DL); 7324 } 7325 7326 unsigned Alignment = Load->getAlignment(); 7327 unsigned AS = Load->getAddressSpace(); 7328 if (Subtarget->hasLDSMisalignedBug() && 7329 AS == AMDGPUAS::FLAT_ADDRESS && 7330 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 7331 return SplitVectorLoad(Op, DAG); 7332 } 7333 7334 MachineFunction &MF = DAG.getMachineFunction(); 7335 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 7336 // If there is a possibilty that flat instruction access scratch memory 7337 // then we need to use the same legalization rules we use for private. 7338 if (AS == AMDGPUAS::FLAT_ADDRESS) 7339 AS = MFI->hasFlatScratchInit() ? 7340 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 7341 7342 unsigned NumElements = MemVT.getVectorNumElements(); 7343 7344 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7345 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 7346 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) { 7347 if (MemVT.isPow2VectorType()) 7348 return SDValue(); 7349 if (NumElements == 3) 7350 return WidenVectorLoad(Op, DAG); 7351 return SplitVectorLoad(Op, DAG); 7352 } 7353 // Non-uniform loads will be selected to MUBUF instructions, so they 7354 // have the same legalization requirements as global and private 7355 // loads. 7356 // 7357 } 7358 7359 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7360 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 7361 AS == AMDGPUAS::GLOBAL_ADDRESS) { 7362 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 7363 !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) && 7364 Alignment >= 4 && NumElements < 32) { 7365 if (MemVT.isPow2VectorType()) 7366 return SDValue(); 7367 if (NumElements == 3) 7368 return WidenVectorLoad(Op, DAG); 7369 return SplitVectorLoad(Op, DAG); 7370 } 7371 // Non-uniform loads will be selected to MUBUF instructions, so they 7372 // have the same legalization requirements as global and private 7373 // loads. 7374 // 7375 } 7376 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 7377 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 7378 AS == AMDGPUAS::GLOBAL_ADDRESS || 7379 AS == AMDGPUAS::FLAT_ADDRESS) { 7380 if (NumElements > 4) 7381 return SplitVectorLoad(Op, DAG); 7382 // v3 loads not supported on SI. 7383 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 7384 return WidenVectorLoad(Op, DAG); 7385 // v3 and v4 loads are supported for private and global memory. 7386 return SDValue(); 7387 } 7388 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 7389 // Depending on the setting of the private_element_size field in the 7390 // resource descriptor, we can only make private accesses up to a certain 7391 // size. 7392 switch (Subtarget->getMaxPrivateElementSize()) { 7393 case 4: 7394 return scalarizeVectorLoad(Load, DAG); 7395 case 8: 7396 if (NumElements > 2) 7397 return SplitVectorLoad(Op, DAG); 7398 return SDValue(); 7399 case 16: 7400 // Same as global/flat 7401 if (NumElements > 4) 7402 return SplitVectorLoad(Op, DAG); 7403 // v3 loads not supported on SI. 7404 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 7405 return WidenVectorLoad(Op, DAG); 7406 return SDValue(); 7407 default: 7408 llvm_unreachable("unsupported private_element_size"); 7409 } 7410 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 7411 // Use ds_read_b128 if possible. 7412 if (Subtarget->useDS128() && Load->getAlignment() >= 16 && 7413 MemVT.getStoreSize() == 16) 7414 return SDValue(); 7415 7416 if (NumElements > 2) 7417 return SplitVectorLoad(Op, DAG); 7418 7419 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 7420 // address is negative, then the instruction is incorrectly treated as 7421 // out-of-bounds even if base + offsets is in bounds. Split vectorized 7422 // loads here to avoid emitting ds_read2_b32. We may re-combine the 7423 // load later in the SILoadStoreOptimizer. 7424 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 7425 NumElements == 2 && MemVT.getStoreSize() == 8 && 7426 Load->getAlignment() < 8) { 7427 return SplitVectorLoad(Op, DAG); 7428 } 7429 } 7430 return SDValue(); 7431 } 7432 7433 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 7434 EVT VT = Op.getValueType(); 7435 assert(VT.getSizeInBits() == 64); 7436 7437 SDLoc DL(Op); 7438 SDValue Cond = Op.getOperand(0); 7439 7440 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 7441 SDValue One = DAG.getConstant(1, DL, MVT::i32); 7442 7443 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 7444 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 7445 7446 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 7447 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 7448 7449 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 7450 7451 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 7452 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 7453 7454 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 7455 7456 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 7457 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 7458 } 7459 7460 // Catch division cases where we can use shortcuts with rcp and rsq 7461 // instructions. 7462 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 7463 SelectionDAG &DAG) const { 7464 SDLoc SL(Op); 7465 SDValue LHS = Op.getOperand(0); 7466 SDValue RHS = Op.getOperand(1); 7467 EVT VT = Op.getValueType(); 7468 const SDNodeFlags Flags = Op->getFlags(); 7469 bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal(); 7470 7471 if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals()) 7472 return SDValue(); 7473 7474 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 7475 if (Unsafe || VT == MVT::f32 || VT == MVT::f16) { 7476 if (CLHS->isExactlyValue(1.0)) { 7477 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 7478 // the CI documentation has a worst case error of 1 ulp. 7479 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 7480 // use it as long as we aren't trying to use denormals. 7481 // 7482 // v_rcp_f16 and v_rsq_f16 DO support denormals. 7483 7484 // 1.0 / sqrt(x) -> rsq(x) 7485 7486 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 7487 // error seems really high at 2^29 ULP. 7488 if (RHS.getOpcode() == ISD::FSQRT) 7489 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 7490 7491 // 1.0 / x -> rcp(x) 7492 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 7493 } 7494 7495 // Same as for 1.0, but expand the sign out of the constant. 7496 if (CLHS->isExactlyValue(-1.0)) { 7497 // -1.0 / x -> rcp (fneg x) 7498 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 7499 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 7500 } 7501 } 7502 } 7503 7504 if (Unsafe) { 7505 // Turn into multiply by the reciprocal. 7506 // x / y -> x * (1.0 / y) 7507 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 7508 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 7509 } 7510 7511 return SDValue(); 7512 } 7513 7514 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 7515 EVT VT, SDValue A, SDValue B, SDValue GlueChain) { 7516 if (GlueChain->getNumValues() <= 1) { 7517 return DAG.getNode(Opcode, SL, VT, A, B); 7518 } 7519 7520 assert(GlueChain->getNumValues() == 3); 7521 7522 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 7523 switch (Opcode) { 7524 default: llvm_unreachable("no chain equivalent for opcode"); 7525 case ISD::FMUL: 7526 Opcode = AMDGPUISD::FMUL_W_CHAIN; 7527 break; 7528 } 7529 7530 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, 7531 GlueChain.getValue(2)); 7532 } 7533 7534 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 7535 EVT VT, SDValue A, SDValue B, SDValue C, 7536 SDValue GlueChain) { 7537 if (GlueChain->getNumValues() <= 1) { 7538 return DAG.getNode(Opcode, SL, VT, A, B, C); 7539 } 7540 7541 assert(GlueChain->getNumValues() == 3); 7542 7543 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 7544 switch (Opcode) { 7545 default: llvm_unreachable("no chain equivalent for opcode"); 7546 case ISD::FMA: 7547 Opcode = AMDGPUISD::FMA_W_CHAIN; 7548 break; 7549 } 7550 7551 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C, 7552 GlueChain.getValue(2)); 7553 } 7554 7555 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 7556 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 7557 return FastLowered; 7558 7559 SDLoc SL(Op); 7560 SDValue Src0 = Op.getOperand(0); 7561 SDValue Src1 = Op.getOperand(1); 7562 7563 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 7564 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 7565 7566 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 7567 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 7568 7569 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 7570 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 7571 7572 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 7573 } 7574 7575 // Faster 2.5 ULP division that does not support denormals. 7576 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 7577 SDLoc SL(Op); 7578 SDValue LHS = Op.getOperand(1); 7579 SDValue RHS = Op.getOperand(2); 7580 7581 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); 7582 7583 const APFloat K0Val(BitsToFloat(0x6f800000)); 7584 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 7585 7586 const APFloat K1Val(BitsToFloat(0x2f800000)); 7587 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 7588 7589 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 7590 7591 EVT SetCCVT = 7592 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 7593 7594 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 7595 7596 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); 7597 7598 // TODO: Should this propagate fast-math-flags? 7599 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); 7600 7601 // rcp does not support denormals. 7602 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); 7603 7604 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); 7605 7606 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); 7607 } 7608 7609 // Returns immediate value for setting the F32 denorm mode when using the 7610 // S_DENORM_MODE instruction. 7611 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, 7612 const SDLoc &SL, const GCNSubtarget *ST) { 7613 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 7614 int DPDenormModeDefault = ST->hasFP64Denormals() 7615 ? FP_DENORM_FLUSH_NONE 7616 : FP_DENORM_FLUSH_IN_FLUSH_OUT; 7617 7618 int Mode = SPDenormMode | (DPDenormModeDefault << 2); 7619 return DAG.getTargetConstant(Mode, SL, MVT::i32); 7620 } 7621 7622 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 7623 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 7624 return FastLowered; 7625 7626 SDLoc SL(Op); 7627 SDValue LHS = Op.getOperand(0); 7628 SDValue RHS = Op.getOperand(1); 7629 7630 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 7631 7632 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 7633 7634 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 7635 RHS, RHS, LHS); 7636 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 7637 LHS, RHS, LHS); 7638 7639 // Denominator is scaled to not be denormal, so using rcp is ok. 7640 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 7641 DenominatorScaled); 7642 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 7643 DenominatorScaled); 7644 7645 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 7646 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 7647 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 7648 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16); 7649 7650 if (!Subtarget->hasFP32Denormals()) { 7651 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 7652 7653 SDValue EnableDenorm; 7654 if (Subtarget->hasDenormModeInst()) { 7655 const SDValue EnableDenormValue = 7656 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget); 7657 7658 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, 7659 DAG.getEntryNode(), EnableDenormValue); 7660 } else { 7661 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 7662 SL, MVT::i32); 7663 EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs, 7664 DAG.getEntryNode(), EnableDenormValue, 7665 BitField); 7666 } 7667 7668 SDValue Ops[3] = { 7669 NegDivScale0, 7670 EnableDenorm.getValue(0), 7671 EnableDenorm.getValue(1) 7672 }; 7673 7674 NegDivScale0 = DAG.getMergeValues(Ops, SL); 7675 } 7676 7677 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 7678 ApproxRcp, One, NegDivScale0); 7679 7680 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 7681 ApproxRcp, Fma0); 7682 7683 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 7684 Fma1, Fma1); 7685 7686 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 7687 NumeratorScaled, Mul); 7688 7689 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul, Fma2); 7690 7691 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 7692 NumeratorScaled, Fma3); 7693 7694 if (!Subtarget->hasFP32Denormals()) { 7695 7696 SDValue DisableDenorm; 7697 if (Subtarget->hasDenormModeInst()) { 7698 const SDValue DisableDenormValue = 7699 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget); 7700 7701 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 7702 Fma4.getValue(1), DisableDenormValue, 7703 Fma4.getValue(2)); 7704 } else { 7705 const SDValue DisableDenormValue = 7706 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 7707 7708 DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other, 7709 Fma4.getValue(1), DisableDenormValue, 7710 BitField, Fma4.getValue(2)); 7711 } 7712 7713 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 7714 DisableDenorm, DAG.getRoot()); 7715 DAG.setRoot(OutputChain); 7716 } 7717 7718 SDValue Scale = NumeratorScaled.getValue(1); 7719 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 7720 Fma4, Fma1, Fma3, Scale); 7721 7722 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS); 7723 } 7724 7725 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 7726 if (DAG.getTarget().Options.UnsafeFPMath) 7727 return lowerFastUnsafeFDIV(Op, DAG); 7728 7729 SDLoc SL(Op); 7730 SDValue X = Op.getOperand(0); 7731 SDValue Y = Op.getOperand(1); 7732 7733 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 7734 7735 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 7736 7737 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 7738 7739 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 7740 7741 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 7742 7743 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 7744 7745 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 7746 7747 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 7748 7749 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 7750 7751 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 7752 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 7753 7754 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 7755 NegDivScale0, Mul, DivScale1); 7756 7757 SDValue Scale; 7758 7759 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 7760 // Workaround a hardware bug on SI where the condition output from div_scale 7761 // is not usable. 7762 7763 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 7764 7765 // Figure out if the scale to use for div_fmas. 7766 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 7767 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 7768 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 7769 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 7770 7771 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 7772 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 7773 7774 SDValue Scale0Hi 7775 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 7776 SDValue Scale1Hi 7777 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 7778 7779 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 7780 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 7781 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 7782 } else { 7783 Scale = DivScale1.getValue(1); 7784 } 7785 7786 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 7787 Fma4, Fma3, Mul, Scale); 7788 7789 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 7790 } 7791 7792 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 7793 EVT VT = Op.getValueType(); 7794 7795 if (VT == MVT::f32) 7796 return LowerFDIV32(Op, DAG); 7797 7798 if (VT == MVT::f64) 7799 return LowerFDIV64(Op, DAG); 7800 7801 if (VT == MVT::f16) 7802 return LowerFDIV16(Op, DAG); 7803 7804 llvm_unreachable("Unexpected type for fdiv"); 7805 } 7806 7807 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7808 SDLoc DL(Op); 7809 StoreSDNode *Store = cast<StoreSDNode>(Op); 7810 EVT VT = Store->getMemoryVT(); 7811 7812 if (VT == MVT::i1) { 7813 return DAG.getTruncStore(Store->getChain(), DL, 7814 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 7815 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 7816 } 7817 7818 assert(VT.isVector() && 7819 Store->getValue().getValueType().getScalarType() == MVT::i32); 7820 7821 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 7822 *Store->getMemOperand())) { 7823 return expandUnalignedStore(Store, DAG); 7824 } 7825 7826 unsigned AS = Store->getAddressSpace(); 7827 if (Subtarget->hasLDSMisalignedBug() && 7828 AS == AMDGPUAS::FLAT_ADDRESS && 7829 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 7830 return SplitVectorStore(Op, DAG); 7831 } 7832 7833 MachineFunction &MF = DAG.getMachineFunction(); 7834 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 7835 // If there is a possibilty that flat instruction access scratch memory 7836 // then we need to use the same legalization rules we use for private. 7837 if (AS == AMDGPUAS::FLAT_ADDRESS) 7838 AS = MFI->hasFlatScratchInit() ? 7839 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 7840 7841 unsigned NumElements = VT.getVectorNumElements(); 7842 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 7843 AS == AMDGPUAS::FLAT_ADDRESS) { 7844 if (NumElements > 4) 7845 return SplitVectorStore(Op, DAG); 7846 // v3 stores not supported on SI. 7847 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 7848 return SplitVectorStore(Op, DAG); 7849 return SDValue(); 7850 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 7851 switch (Subtarget->getMaxPrivateElementSize()) { 7852 case 4: 7853 return scalarizeVectorStore(Store, DAG); 7854 case 8: 7855 if (NumElements > 2) 7856 return SplitVectorStore(Op, DAG); 7857 return SDValue(); 7858 case 16: 7859 if (NumElements > 4 || NumElements == 3) 7860 return SplitVectorStore(Op, DAG); 7861 return SDValue(); 7862 default: 7863 llvm_unreachable("unsupported private_element_size"); 7864 } 7865 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 7866 // Use ds_write_b128 if possible. 7867 if (Subtarget->useDS128() && Store->getAlignment() >= 16 && 7868 VT.getStoreSize() == 16 && NumElements != 3) 7869 return SDValue(); 7870 7871 if (NumElements > 2) 7872 return SplitVectorStore(Op, DAG); 7873 7874 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 7875 // address is negative, then the instruction is incorrectly treated as 7876 // out-of-bounds even if base + offsets is in bounds. Split vectorized 7877 // stores here to avoid emitting ds_write2_b32. We may re-combine the 7878 // store later in the SILoadStoreOptimizer. 7879 if (!Subtarget->hasUsableDSOffset() && 7880 NumElements == 2 && VT.getStoreSize() == 8 && 7881 Store->getAlignment() < 8) { 7882 return SplitVectorStore(Op, DAG); 7883 } 7884 7885 return SDValue(); 7886 } else { 7887 llvm_unreachable("unhandled address space"); 7888 } 7889 } 7890 7891 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 7892 SDLoc DL(Op); 7893 EVT VT = Op.getValueType(); 7894 SDValue Arg = Op.getOperand(0); 7895 SDValue TrigVal; 7896 7897 // TODO: Should this propagate fast-math-flags? 7898 7899 SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT); 7900 7901 if (Subtarget->hasTrigReducedRange()) { 7902 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi); 7903 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal); 7904 } else { 7905 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi); 7906 } 7907 7908 switch (Op.getOpcode()) { 7909 case ISD::FCOS: 7910 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal); 7911 case ISD::FSIN: 7912 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal); 7913 default: 7914 llvm_unreachable("Wrong trig opcode"); 7915 } 7916 } 7917 7918 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 7919 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 7920 assert(AtomicNode->isCompareAndSwap()); 7921 unsigned AS = AtomicNode->getAddressSpace(); 7922 7923 // No custom lowering required for local address space 7924 if (!isFlatGlobalAddrSpace(AS)) 7925 return Op; 7926 7927 // Non-local address space requires custom lowering for atomic compare 7928 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 7929 SDLoc DL(Op); 7930 SDValue ChainIn = Op.getOperand(0); 7931 SDValue Addr = Op.getOperand(1); 7932 SDValue Old = Op.getOperand(2); 7933 SDValue New = Op.getOperand(3); 7934 EVT VT = Op.getValueType(); 7935 MVT SimpleVT = VT.getSimpleVT(); 7936 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 7937 7938 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 7939 SDValue Ops[] = { ChainIn, Addr, NewOld }; 7940 7941 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 7942 Ops, VT, AtomicNode->getMemOperand()); 7943 } 7944 7945 //===----------------------------------------------------------------------===// 7946 // Custom DAG optimizations 7947 //===----------------------------------------------------------------------===// 7948 7949 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 7950 DAGCombinerInfo &DCI) const { 7951 EVT VT = N->getValueType(0); 7952 EVT ScalarVT = VT.getScalarType(); 7953 if (ScalarVT != MVT::f32) 7954 return SDValue(); 7955 7956 SelectionDAG &DAG = DCI.DAG; 7957 SDLoc DL(N); 7958 7959 SDValue Src = N->getOperand(0); 7960 EVT SrcVT = Src.getValueType(); 7961 7962 // TODO: We could try to match extracting the higher bytes, which would be 7963 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 7964 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 7965 // about in practice. 7966 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 7967 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 7968 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); 7969 DCI.AddToWorklist(Cvt.getNode()); 7970 return Cvt; 7971 } 7972 } 7973 7974 return SDValue(); 7975 } 7976 7977 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 7978 7979 // This is a variant of 7980 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 7981 // 7982 // The normal DAG combiner will do this, but only if the add has one use since 7983 // that would increase the number of instructions. 7984 // 7985 // This prevents us from seeing a constant offset that can be folded into a 7986 // memory instruction's addressing mode. If we know the resulting add offset of 7987 // a pointer can be folded into an addressing offset, we can replace the pointer 7988 // operand with the add of new constant offset. This eliminates one of the uses, 7989 // and may allow the remaining use to also be simplified. 7990 // 7991 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 7992 unsigned AddrSpace, 7993 EVT MemVT, 7994 DAGCombinerInfo &DCI) const { 7995 SDValue N0 = N->getOperand(0); 7996 SDValue N1 = N->getOperand(1); 7997 7998 // We only do this to handle cases where it's profitable when there are 7999 // multiple uses of the add, so defer to the standard combine. 8000 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 8001 N0->hasOneUse()) 8002 return SDValue(); 8003 8004 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 8005 if (!CN1) 8006 return SDValue(); 8007 8008 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 8009 if (!CAdd) 8010 return SDValue(); 8011 8012 // If the resulting offset is too large, we can't fold it into the addressing 8013 // mode offset. 8014 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 8015 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 8016 8017 AddrMode AM; 8018 AM.HasBaseReg = true; 8019 AM.BaseOffs = Offset.getSExtValue(); 8020 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 8021 return SDValue(); 8022 8023 SelectionDAG &DAG = DCI.DAG; 8024 SDLoc SL(N); 8025 EVT VT = N->getValueType(0); 8026 8027 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 8028 SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); 8029 8030 SDNodeFlags Flags; 8031 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 8032 (N0.getOpcode() == ISD::OR || 8033 N0->getFlags().hasNoUnsignedWrap())); 8034 8035 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 8036 } 8037 8038 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 8039 DAGCombinerInfo &DCI) const { 8040 SDValue Ptr = N->getBasePtr(); 8041 SelectionDAG &DAG = DCI.DAG; 8042 SDLoc SL(N); 8043 8044 // TODO: We could also do this for multiplies. 8045 if (Ptr.getOpcode() == ISD::SHL) { 8046 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 8047 N->getMemoryVT(), DCI); 8048 if (NewPtr) { 8049 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 8050 8051 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; 8052 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 8053 } 8054 } 8055 8056 return SDValue(); 8057 } 8058 8059 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 8060 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 8061 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 8062 (Opc == ISD::XOR && Val == 0); 8063 } 8064 8065 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 8066 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 8067 // integer combine opportunities since most 64-bit operations are decomposed 8068 // this way. TODO: We won't want this for SALU especially if it is an inline 8069 // immediate. 8070 SDValue SITargetLowering::splitBinaryBitConstantOp( 8071 DAGCombinerInfo &DCI, 8072 const SDLoc &SL, 8073 unsigned Opc, SDValue LHS, 8074 const ConstantSDNode *CRHS) const { 8075 uint64_t Val = CRHS->getZExtValue(); 8076 uint32_t ValLo = Lo_32(Val); 8077 uint32_t ValHi = Hi_32(Val); 8078 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8079 8080 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 8081 bitOpWithConstantIsReducible(Opc, ValHi)) || 8082 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 8083 // If we need to materialize a 64-bit immediate, it will be split up later 8084 // anyway. Avoid creating the harder to understand 64-bit immediate 8085 // materialization. 8086 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 8087 } 8088 8089 return SDValue(); 8090 } 8091 8092 // Returns true if argument is a boolean value which is not serialized into 8093 // memory or argument and does not require v_cmdmask_b32 to be deserialized. 8094 static bool isBoolSGPR(SDValue V) { 8095 if (V.getValueType() != MVT::i1) 8096 return false; 8097 switch (V.getOpcode()) { 8098 default: break; 8099 case ISD::SETCC: 8100 case ISD::AND: 8101 case ISD::OR: 8102 case ISD::XOR: 8103 case AMDGPUISD::FP_CLASS: 8104 return true; 8105 } 8106 return false; 8107 } 8108 8109 // If a constant has all zeroes or all ones within each byte return it. 8110 // Otherwise return 0. 8111 static uint32_t getConstantPermuteMask(uint32_t C) { 8112 // 0xff for any zero byte in the mask 8113 uint32_t ZeroByteMask = 0; 8114 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 8115 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 8116 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 8117 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 8118 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 8119 if ((NonZeroByteMask & C) != NonZeroByteMask) 8120 return 0; // Partial bytes selected. 8121 return C; 8122 } 8123 8124 // Check if a node selects whole bytes from its operand 0 starting at a byte 8125 // boundary while masking the rest. Returns select mask as in the v_perm_b32 8126 // or -1 if not succeeded. 8127 // Note byte select encoding: 8128 // value 0-3 selects corresponding source byte; 8129 // value 0xc selects zero; 8130 // value 0xff selects 0xff. 8131 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { 8132 assert(V.getValueSizeInBits() == 32); 8133 8134 if (V.getNumOperands() != 2) 8135 return ~0; 8136 8137 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 8138 if (!N1) 8139 return ~0; 8140 8141 uint32_t C = N1->getZExtValue(); 8142 8143 switch (V.getOpcode()) { 8144 default: 8145 break; 8146 case ISD::AND: 8147 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 8148 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 8149 } 8150 break; 8151 8152 case ISD::OR: 8153 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 8154 return (0x03020100 & ~ConstMask) | ConstMask; 8155 } 8156 break; 8157 8158 case ISD::SHL: 8159 if (C % 8) 8160 return ~0; 8161 8162 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 8163 8164 case ISD::SRL: 8165 if (C % 8) 8166 return ~0; 8167 8168 return uint32_t(0x0c0c0c0c03020100ull >> C); 8169 } 8170 8171 return ~0; 8172 } 8173 8174 SDValue SITargetLowering::performAndCombine(SDNode *N, 8175 DAGCombinerInfo &DCI) const { 8176 if (DCI.isBeforeLegalize()) 8177 return SDValue(); 8178 8179 SelectionDAG &DAG = DCI.DAG; 8180 EVT VT = N->getValueType(0); 8181 SDValue LHS = N->getOperand(0); 8182 SDValue RHS = N->getOperand(1); 8183 8184 8185 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 8186 if (VT == MVT::i64 && CRHS) { 8187 if (SDValue Split 8188 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 8189 return Split; 8190 } 8191 8192 if (CRHS && VT == MVT::i32) { 8193 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 8194 // nb = number of trailing zeroes in mask 8195 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 8196 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 8197 uint64_t Mask = CRHS->getZExtValue(); 8198 unsigned Bits = countPopulation(Mask); 8199 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 8200 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 8201 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 8202 unsigned Shift = CShift->getZExtValue(); 8203 unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); 8204 unsigned Offset = NB + Shift; 8205 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 8206 SDLoc SL(N); 8207 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 8208 LHS->getOperand(0), 8209 DAG.getConstant(Offset, SL, MVT::i32), 8210 DAG.getConstant(Bits, SL, MVT::i32)); 8211 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8212 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 8213 DAG.getValueType(NarrowVT)); 8214 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 8215 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 8216 return Shl; 8217 } 8218 } 8219 } 8220 8221 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 8222 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 8223 isa<ConstantSDNode>(LHS.getOperand(2))) { 8224 uint32_t Sel = getConstantPermuteMask(Mask); 8225 if (!Sel) 8226 return SDValue(); 8227 8228 // Select 0xc for all zero bytes 8229 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 8230 SDLoc DL(N); 8231 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 8232 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 8233 } 8234 } 8235 8236 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 8237 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 8238 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 8239 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8240 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 8241 8242 SDValue X = LHS.getOperand(0); 8243 SDValue Y = RHS.getOperand(0); 8244 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) 8245 return SDValue(); 8246 8247 if (LCC == ISD::SETO) { 8248 if (X != LHS.getOperand(1)) 8249 return SDValue(); 8250 8251 if (RCC == ISD::SETUNE) { 8252 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 8253 if (!C1 || !C1->isInfinity() || C1->isNegative()) 8254 return SDValue(); 8255 8256 const uint32_t Mask = SIInstrFlags::N_NORMAL | 8257 SIInstrFlags::N_SUBNORMAL | 8258 SIInstrFlags::N_ZERO | 8259 SIInstrFlags::P_ZERO | 8260 SIInstrFlags::P_SUBNORMAL | 8261 SIInstrFlags::P_NORMAL; 8262 8263 static_assert(((~(SIInstrFlags::S_NAN | 8264 SIInstrFlags::Q_NAN | 8265 SIInstrFlags::N_INFINITY | 8266 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 8267 "mask not equal"); 8268 8269 SDLoc DL(N); 8270 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 8271 X, DAG.getConstant(Mask, DL, MVT::i32)); 8272 } 8273 } 8274 } 8275 8276 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 8277 std::swap(LHS, RHS); 8278 8279 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 8280 RHS.hasOneUse()) { 8281 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8282 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 8283 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 8284 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 8285 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 8286 (RHS.getOperand(0) == LHS.getOperand(0) && 8287 LHS.getOperand(0) == LHS.getOperand(1))) { 8288 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 8289 unsigned NewMask = LCC == ISD::SETO ? 8290 Mask->getZExtValue() & ~OrdMask : 8291 Mask->getZExtValue() & OrdMask; 8292 8293 SDLoc DL(N); 8294 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 8295 DAG.getConstant(NewMask, DL, MVT::i32)); 8296 } 8297 } 8298 8299 if (VT == MVT::i32 && 8300 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 8301 // and x, (sext cc from i1) => select cc, x, 0 8302 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 8303 std::swap(LHS, RHS); 8304 if (isBoolSGPR(RHS.getOperand(0))) 8305 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 8306 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 8307 } 8308 8309 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 8310 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8311 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 8312 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { 8313 uint32_t LHSMask = getPermuteMask(DAG, LHS); 8314 uint32_t RHSMask = getPermuteMask(DAG, RHS); 8315 if (LHSMask != ~0u && RHSMask != ~0u) { 8316 // Canonicalize the expression in an attempt to have fewer unique masks 8317 // and therefore fewer registers used to hold the masks. 8318 if (LHSMask > RHSMask) { 8319 std::swap(LHSMask, RHSMask); 8320 std::swap(LHS, RHS); 8321 } 8322 8323 // Select 0xc for each lane used from source operand. Zero has 0xc mask 8324 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 8325 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8326 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8327 8328 // Check of we need to combine values from two sources within a byte. 8329 if (!(LHSUsedLanes & RHSUsedLanes) && 8330 // If we select high and lower word keep it for SDWA. 8331 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 8332 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 8333 // Each byte in each mask is either selector mask 0-3, or has higher 8334 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 8335 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 8336 // mask which is not 0xff wins. By anding both masks we have a correct 8337 // result except that 0x0c shall be corrected to give 0x0c only. 8338 uint32_t Mask = LHSMask & RHSMask; 8339 for (unsigned I = 0; I < 32; I += 8) { 8340 uint32_t ByteSel = 0xff << I; 8341 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 8342 Mask &= (0x0c << I) & 0xffffffff; 8343 } 8344 8345 // Add 4 to each active LHS lane. It will not affect any existing 0xff 8346 // or 0x0c. 8347 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 8348 SDLoc DL(N); 8349 8350 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 8351 LHS.getOperand(0), RHS.getOperand(0), 8352 DAG.getConstant(Sel, DL, MVT::i32)); 8353 } 8354 } 8355 } 8356 8357 return SDValue(); 8358 } 8359 8360 SDValue SITargetLowering::performOrCombine(SDNode *N, 8361 DAGCombinerInfo &DCI) const { 8362 SelectionDAG &DAG = DCI.DAG; 8363 SDValue LHS = N->getOperand(0); 8364 SDValue RHS = N->getOperand(1); 8365 8366 EVT VT = N->getValueType(0); 8367 if (VT == MVT::i1) { 8368 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 8369 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 8370 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 8371 SDValue Src = LHS.getOperand(0); 8372 if (Src != RHS.getOperand(0)) 8373 return SDValue(); 8374 8375 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 8376 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 8377 if (!CLHS || !CRHS) 8378 return SDValue(); 8379 8380 // Only 10 bits are used. 8381 static const uint32_t MaxMask = 0x3ff; 8382 8383 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 8384 SDLoc DL(N); 8385 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 8386 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 8387 } 8388 8389 return SDValue(); 8390 } 8391 8392 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 8393 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 8394 LHS.getOpcode() == AMDGPUISD::PERM && 8395 isa<ConstantSDNode>(LHS.getOperand(2))) { 8396 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 8397 if (!Sel) 8398 return SDValue(); 8399 8400 Sel |= LHS.getConstantOperandVal(2); 8401 SDLoc DL(N); 8402 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 8403 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 8404 } 8405 8406 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 8407 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8408 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 8409 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { 8410 uint32_t LHSMask = getPermuteMask(DAG, LHS); 8411 uint32_t RHSMask = getPermuteMask(DAG, RHS); 8412 if (LHSMask != ~0u && RHSMask != ~0u) { 8413 // Canonicalize the expression in an attempt to have fewer unique masks 8414 // and therefore fewer registers used to hold the masks. 8415 if (LHSMask > RHSMask) { 8416 std::swap(LHSMask, RHSMask); 8417 std::swap(LHS, RHS); 8418 } 8419 8420 // Select 0xc for each lane used from source operand. Zero has 0xc mask 8421 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 8422 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8423 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 8424 8425 // Check of we need to combine values from two sources within a byte. 8426 if (!(LHSUsedLanes & RHSUsedLanes) && 8427 // If we select high and lower word keep it for SDWA. 8428 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 8429 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 8430 // Kill zero bytes selected by other mask. Zero value is 0xc. 8431 LHSMask &= ~RHSUsedLanes; 8432 RHSMask &= ~LHSUsedLanes; 8433 // Add 4 to each active LHS lane 8434 LHSMask |= LHSUsedLanes & 0x04040404; 8435 // Combine masks 8436 uint32_t Sel = LHSMask | RHSMask; 8437 SDLoc DL(N); 8438 8439 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 8440 LHS.getOperand(0), RHS.getOperand(0), 8441 DAG.getConstant(Sel, DL, MVT::i32)); 8442 } 8443 } 8444 } 8445 8446 if (VT != MVT::i64) 8447 return SDValue(); 8448 8449 // TODO: This could be a generic combine with a predicate for extracting the 8450 // high half of an integer being free. 8451 8452 // (or i64:x, (zero_extend i32:y)) -> 8453 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 8454 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 8455 RHS.getOpcode() != ISD::ZERO_EXTEND) 8456 std::swap(LHS, RHS); 8457 8458 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 8459 SDValue ExtSrc = RHS.getOperand(0); 8460 EVT SrcVT = ExtSrc.getValueType(); 8461 if (SrcVT == MVT::i32) { 8462 SDLoc SL(N); 8463 SDValue LowLHS, HiBits; 8464 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 8465 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 8466 8467 DCI.AddToWorklist(LowOr.getNode()); 8468 DCI.AddToWorklist(HiBits.getNode()); 8469 8470 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 8471 LowOr, HiBits); 8472 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 8473 } 8474 } 8475 8476 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8477 if (CRHS) { 8478 if (SDValue Split 8479 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS)) 8480 return Split; 8481 } 8482 8483 return SDValue(); 8484 } 8485 8486 SDValue SITargetLowering::performXorCombine(SDNode *N, 8487 DAGCombinerInfo &DCI) const { 8488 EVT VT = N->getValueType(0); 8489 if (VT != MVT::i64) 8490 return SDValue(); 8491 8492 SDValue LHS = N->getOperand(0); 8493 SDValue RHS = N->getOperand(1); 8494 8495 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 8496 if (CRHS) { 8497 if (SDValue Split 8498 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 8499 return Split; 8500 } 8501 8502 return SDValue(); 8503 } 8504 8505 // Instructions that will be lowered with a final instruction that zeros the 8506 // high result bits. 8507 // XXX - probably only need to list legal operations. 8508 static bool fp16SrcZerosHighBits(unsigned Opc) { 8509 switch (Opc) { 8510 case ISD::FADD: 8511 case ISD::FSUB: 8512 case ISD::FMUL: 8513 case ISD::FDIV: 8514 case ISD::FREM: 8515 case ISD::FMA: 8516 case ISD::FMAD: 8517 case ISD::FCANONICALIZE: 8518 case ISD::FP_ROUND: 8519 case ISD::UINT_TO_FP: 8520 case ISD::SINT_TO_FP: 8521 case ISD::FABS: 8522 // Fabs is lowered to a bit operation, but it's an and which will clear the 8523 // high bits anyway. 8524 case ISD::FSQRT: 8525 case ISD::FSIN: 8526 case ISD::FCOS: 8527 case ISD::FPOWI: 8528 case ISD::FPOW: 8529 case ISD::FLOG: 8530 case ISD::FLOG2: 8531 case ISD::FLOG10: 8532 case ISD::FEXP: 8533 case ISD::FEXP2: 8534 case ISD::FCEIL: 8535 case ISD::FTRUNC: 8536 case ISD::FRINT: 8537 case ISD::FNEARBYINT: 8538 case ISD::FROUND: 8539 case ISD::FFLOOR: 8540 case ISD::FMINNUM: 8541 case ISD::FMAXNUM: 8542 case AMDGPUISD::FRACT: 8543 case AMDGPUISD::CLAMP: 8544 case AMDGPUISD::COS_HW: 8545 case AMDGPUISD::SIN_HW: 8546 case AMDGPUISD::FMIN3: 8547 case AMDGPUISD::FMAX3: 8548 case AMDGPUISD::FMED3: 8549 case AMDGPUISD::FMAD_FTZ: 8550 case AMDGPUISD::RCP: 8551 case AMDGPUISD::RSQ: 8552 case AMDGPUISD::RCP_IFLAG: 8553 case AMDGPUISD::LDEXP: 8554 return true; 8555 default: 8556 // fcopysign, select and others may be lowered to 32-bit bit operations 8557 // which don't zero the high bits. 8558 return false; 8559 } 8560 } 8561 8562 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 8563 DAGCombinerInfo &DCI) const { 8564 if (!Subtarget->has16BitInsts() || 8565 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 8566 return SDValue(); 8567 8568 EVT VT = N->getValueType(0); 8569 if (VT != MVT::i32) 8570 return SDValue(); 8571 8572 SDValue Src = N->getOperand(0); 8573 if (Src.getValueType() != MVT::i16) 8574 return SDValue(); 8575 8576 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src 8577 // FIXME: It is not universally true that the high bits are zeroed on gfx9. 8578 if (Src.getOpcode() == ISD::BITCAST) { 8579 SDValue BCSrc = Src.getOperand(0); 8580 if (BCSrc.getValueType() == MVT::f16 && 8581 fp16SrcZerosHighBits(BCSrc.getOpcode())) 8582 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc); 8583 } 8584 8585 return SDValue(); 8586 } 8587 8588 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, 8589 DAGCombinerInfo &DCI) 8590 const { 8591 SDValue Src = N->getOperand(0); 8592 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 8593 8594 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 8595 VTSign->getVT() == MVT::i8) || 8596 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 8597 VTSign->getVT() == MVT::i16)) && 8598 Src.hasOneUse()) { 8599 auto *M = cast<MemSDNode>(Src); 8600 SDValue Ops[] = { 8601 Src.getOperand(0), // Chain 8602 Src.getOperand(1), // rsrc 8603 Src.getOperand(2), // vindex 8604 Src.getOperand(3), // voffset 8605 Src.getOperand(4), // soffset 8606 Src.getOperand(5), // offset 8607 Src.getOperand(6), 8608 Src.getOperand(7) 8609 }; 8610 // replace with BUFFER_LOAD_BYTE/SHORT 8611 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 8612 Src.getOperand(0).getValueType()); 8613 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 8614 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 8615 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 8616 ResList, 8617 Ops, M->getMemoryVT(), 8618 M->getMemOperand()); 8619 return DCI.DAG.getMergeValues({BufferLoadSignExt, 8620 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 8621 } 8622 return SDValue(); 8623 } 8624 8625 SDValue SITargetLowering::performClassCombine(SDNode *N, 8626 DAGCombinerInfo &DCI) const { 8627 SelectionDAG &DAG = DCI.DAG; 8628 SDValue Mask = N->getOperand(1); 8629 8630 // fp_class x, 0 -> false 8631 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 8632 if (CMask->isNullValue()) 8633 return DAG.getConstant(0, SDLoc(N), MVT::i1); 8634 } 8635 8636 if (N->getOperand(0).isUndef()) 8637 return DAG.getUNDEF(MVT::i1); 8638 8639 return SDValue(); 8640 } 8641 8642 SDValue SITargetLowering::performRcpCombine(SDNode *N, 8643 DAGCombinerInfo &DCI) const { 8644 EVT VT = N->getValueType(0); 8645 SDValue N0 = N->getOperand(0); 8646 8647 if (N0.isUndef()) 8648 return N0; 8649 8650 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 8651 N0.getOpcode() == ISD::SINT_TO_FP)) { 8652 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 8653 N->getFlags()); 8654 } 8655 8656 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 8657 } 8658 8659 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 8660 unsigned MaxDepth) const { 8661 unsigned Opcode = Op.getOpcode(); 8662 if (Opcode == ISD::FCANONICALIZE) 8663 return true; 8664 8665 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 8666 auto F = CFP->getValueAPF(); 8667 if (F.isNaN() && F.isSignaling()) 8668 return false; 8669 return !F.isDenormal() || denormalsEnabledForType(Op.getValueType()); 8670 } 8671 8672 // If source is a result of another standard FP operation it is already in 8673 // canonical form. 8674 if (MaxDepth == 0) 8675 return false; 8676 8677 switch (Opcode) { 8678 // These will flush denorms if required. 8679 case ISD::FADD: 8680 case ISD::FSUB: 8681 case ISD::FMUL: 8682 case ISD::FCEIL: 8683 case ISD::FFLOOR: 8684 case ISD::FMA: 8685 case ISD::FMAD: 8686 case ISD::FSQRT: 8687 case ISD::FDIV: 8688 case ISD::FREM: 8689 case ISD::FP_ROUND: 8690 case ISD::FP_EXTEND: 8691 case AMDGPUISD::FMUL_LEGACY: 8692 case AMDGPUISD::FMAD_FTZ: 8693 case AMDGPUISD::RCP: 8694 case AMDGPUISD::RSQ: 8695 case AMDGPUISD::RSQ_CLAMP: 8696 case AMDGPUISD::RCP_LEGACY: 8697 case AMDGPUISD::RSQ_LEGACY: 8698 case AMDGPUISD::RCP_IFLAG: 8699 case AMDGPUISD::TRIG_PREOP: 8700 case AMDGPUISD::DIV_SCALE: 8701 case AMDGPUISD::DIV_FMAS: 8702 case AMDGPUISD::DIV_FIXUP: 8703 case AMDGPUISD::FRACT: 8704 case AMDGPUISD::LDEXP: 8705 case AMDGPUISD::CVT_PKRTZ_F16_F32: 8706 case AMDGPUISD::CVT_F32_UBYTE0: 8707 case AMDGPUISD::CVT_F32_UBYTE1: 8708 case AMDGPUISD::CVT_F32_UBYTE2: 8709 case AMDGPUISD::CVT_F32_UBYTE3: 8710 return true; 8711 8712 // It can/will be lowered or combined as a bit operation. 8713 // Need to check their input recursively to handle. 8714 case ISD::FNEG: 8715 case ISD::FABS: 8716 case ISD::FCOPYSIGN: 8717 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 8718 8719 case ISD::FSIN: 8720 case ISD::FCOS: 8721 case ISD::FSINCOS: 8722 return Op.getValueType().getScalarType() != MVT::f16; 8723 8724 case ISD::FMINNUM: 8725 case ISD::FMAXNUM: 8726 case ISD::FMINNUM_IEEE: 8727 case ISD::FMAXNUM_IEEE: 8728 case AMDGPUISD::CLAMP: 8729 case AMDGPUISD::FMED3: 8730 case AMDGPUISD::FMAX3: 8731 case AMDGPUISD::FMIN3: { 8732 // FIXME: Shouldn't treat the generic operations different based these. 8733 // However, we aren't really required to flush the result from 8734 // minnum/maxnum.. 8735 8736 // snans will be quieted, so we only need to worry about denormals. 8737 if (Subtarget->supportsMinMaxDenormModes() || 8738 denormalsEnabledForType(Op.getValueType())) 8739 return true; 8740 8741 // Flushing may be required. 8742 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 8743 // targets need to check their input recursively. 8744 8745 // FIXME: Does this apply with clamp? It's implemented with max. 8746 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 8747 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 8748 return false; 8749 } 8750 8751 return true; 8752 } 8753 case ISD::SELECT: { 8754 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 8755 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 8756 } 8757 case ISD::BUILD_VECTOR: { 8758 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 8759 SDValue SrcOp = Op.getOperand(i); 8760 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 8761 return false; 8762 } 8763 8764 return true; 8765 } 8766 case ISD::EXTRACT_VECTOR_ELT: 8767 case ISD::EXTRACT_SUBVECTOR: { 8768 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 8769 } 8770 case ISD::INSERT_VECTOR_ELT: { 8771 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 8772 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 8773 } 8774 case ISD::UNDEF: 8775 // Could be anything. 8776 return false; 8777 8778 case ISD::BITCAST: { 8779 // Hack round the mess we make when legalizing extract_vector_elt 8780 SDValue Src = Op.getOperand(0); 8781 if (Src.getValueType() == MVT::i16 && 8782 Src.getOpcode() == ISD::TRUNCATE) { 8783 SDValue TruncSrc = Src.getOperand(0); 8784 if (TruncSrc.getValueType() == MVT::i32 && 8785 TruncSrc.getOpcode() == ISD::BITCAST && 8786 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 8787 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 8788 } 8789 } 8790 8791 return false; 8792 } 8793 case ISD::INTRINSIC_WO_CHAIN: { 8794 unsigned IntrinsicID 8795 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 8796 // TODO: Handle more intrinsics 8797 switch (IntrinsicID) { 8798 case Intrinsic::amdgcn_cvt_pkrtz: 8799 case Intrinsic::amdgcn_cubeid: 8800 case Intrinsic::amdgcn_frexp_mant: 8801 case Intrinsic::amdgcn_fdot2: 8802 return true; 8803 default: 8804 break; 8805 } 8806 8807 LLVM_FALLTHROUGH; 8808 } 8809 default: 8810 return denormalsEnabledForType(Op.getValueType()) && 8811 DAG.isKnownNeverSNaN(Op); 8812 } 8813 8814 llvm_unreachable("invalid operation"); 8815 } 8816 8817 // Constant fold canonicalize. 8818 SDValue SITargetLowering::getCanonicalConstantFP( 8819 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 8820 // Flush denormals to 0 if not enabled. 8821 if (C.isDenormal() && !denormalsEnabledForType(VT)) 8822 return DAG.getConstantFP(0.0, SL, VT); 8823 8824 if (C.isNaN()) { 8825 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 8826 if (C.isSignaling()) { 8827 // Quiet a signaling NaN. 8828 // FIXME: Is this supposed to preserve payload bits? 8829 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 8830 } 8831 8832 // Make sure it is the canonical NaN bitpattern. 8833 // 8834 // TODO: Can we use -1 as the canonical NaN value since it's an inline 8835 // immediate? 8836 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 8837 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 8838 } 8839 8840 // Already canonical. 8841 return DAG.getConstantFP(C, SL, VT); 8842 } 8843 8844 static bool vectorEltWillFoldAway(SDValue Op) { 8845 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 8846 } 8847 8848 SDValue SITargetLowering::performFCanonicalizeCombine( 8849 SDNode *N, 8850 DAGCombinerInfo &DCI) const { 8851 SelectionDAG &DAG = DCI.DAG; 8852 SDValue N0 = N->getOperand(0); 8853 EVT VT = N->getValueType(0); 8854 8855 // fcanonicalize undef -> qnan 8856 if (N0.isUndef()) { 8857 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 8858 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 8859 } 8860 8861 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 8862 EVT VT = N->getValueType(0); 8863 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 8864 } 8865 8866 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 8867 // (fcanonicalize k) 8868 // 8869 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 8870 8871 // TODO: This could be better with wider vectors that will be split to v2f16, 8872 // and to consider uses since there aren't that many packed operations. 8873 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 8874 isTypeLegal(MVT::v2f16)) { 8875 SDLoc SL(N); 8876 SDValue NewElts[2]; 8877 SDValue Lo = N0.getOperand(0); 8878 SDValue Hi = N0.getOperand(1); 8879 EVT EltVT = Lo.getValueType(); 8880 8881 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 8882 for (unsigned I = 0; I != 2; ++I) { 8883 SDValue Op = N0.getOperand(I); 8884 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 8885 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 8886 CFP->getValueAPF()); 8887 } else if (Op.isUndef()) { 8888 // Handled below based on what the other operand is. 8889 NewElts[I] = Op; 8890 } else { 8891 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 8892 } 8893 } 8894 8895 // If one half is undef, and one is constant, perfer a splat vector rather 8896 // than the normal qNaN. If it's a register, prefer 0.0 since that's 8897 // cheaper to use and may be free with a packed operation. 8898 if (NewElts[0].isUndef()) { 8899 if (isa<ConstantFPSDNode>(NewElts[1])) 8900 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 8901 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 8902 } 8903 8904 if (NewElts[1].isUndef()) { 8905 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 8906 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 8907 } 8908 8909 return DAG.getBuildVector(VT, SL, NewElts); 8910 } 8911 } 8912 8913 unsigned SrcOpc = N0.getOpcode(); 8914 8915 // If it's free to do so, push canonicalizes further up the source, which may 8916 // find a canonical source. 8917 // 8918 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for 8919 // sNaNs. 8920 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 8921 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 8922 if (CRHS && N0.hasOneUse()) { 8923 SDLoc SL(N); 8924 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 8925 N0.getOperand(0)); 8926 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 8927 DCI.AddToWorklist(Canon0.getNode()); 8928 8929 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 8930 } 8931 } 8932 8933 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 8934 } 8935 8936 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 8937 switch (Opc) { 8938 case ISD::FMAXNUM: 8939 case ISD::FMAXNUM_IEEE: 8940 return AMDGPUISD::FMAX3; 8941 case ISD::SMAX: 8942 return AMDGPUISD::SMAX3; 8943 case ISD::UMAX: 8944 return AMDGPUISD::UMAX3; 8945 case ISD::FMINNUM: 8946 case ISD::FMINNUM_IEEE: 8947 return AMDGPUISD::FMIN3; 8948 case ISD::SMIN: 8949 return AMDGPUISD::SMIN3; 8950 case ISD::UMIN: 8951 return AMDGPUISD::UMIN3; 8952 default: 8953 llvm_unreachable("Not a min/max opcode"); 8954 } 8955 } 8956 8957 SDValue SITargetLowering::performIntMed3ImmCombine( 8958 SelectionDAG &DAG, const SDLoc &SL, 8959 SDValue Op0, SDValue Op1, bool Signed) const { 8960 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); 8961 if (!K1) 8962 return SDValue(); 8963 8964 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 8965 if (!K0) 8966 return SDValue(); 8967 8968 if (Signed) { 8969 if (K0->getAPIntValue().sge(K1->getAPIntValue())) 8970 return SDValue(); 8971 } else { 8972 if (K0->getAPIntValue().uge(K1->getAPIntValue())) 8973 return SDValue(); 8974 } 8975 8976 EVT VT = K0->getValueType(0); 8977 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 8978 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { 8979 return DAG.getNode(Med3Opc, SL, VT, 8980 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); 8981 } 8982 8983 // If there isn't a 16-bit med3 operation, convert to 32-bit. 8984 MVT NVT = MVT::i32; 8985 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 8986 8987 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); 8988 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); 8989 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); 8990 8991 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); 8992 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); 8993 } 8994 8995 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 8996 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 8997 return C; 8998 8999 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 9000 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 9001 return C; 9002 } 9003 9004 return nullptr; 9005 } 9006 9007 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 9008 const SDLoc &SL, 9009 SDValue Op0, 9010 SDValue Op1) const { 9011 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 9012 if (!K1) 9013 return SDValue(); 9014 9015 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 9016 if (!K0) 9017 return SDValue(); 9018 9019 // Ordered >= (although NaN inputs should have folded away by now). 9020 APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF()); 9021 if (Cmp == APFloat::cmpGreaterThan) 9022 return SDValue(); 9023 9024 const MachineFunction &MF = DAG.getMachineFunction(); 9025 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9026 9027 // TODO: Check IEEE bit enabled? 9028 EVT VT = Op0.getValueType(); 9029 if (Info->getMode().DX10Clamp) { 9030 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 9031 // hardware fmed3 behavior converting to a min. 9032 // FIXME: Should this be allowing -0.0? 9033 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 9034 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 9035 } 9036 9037 // med3 for f16 is only available on gfx9+, and not available for v2f16. 9038 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 9039 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 9040 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 9041 // then give the other result, which is different from med3 with a NaN 9042 // input. 9043 SDValue Var = Op0.getOperand(0); 9044 if (!DAG.isKnownNeverSNaN(Var)) 9045 return SDValue(); 9046 9047 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9048 9049 if ((!K0->hasOneUse() || 9050 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 9051 (!K1->hasOneUse() || 9052 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 9053 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 9054 Var, SDValue(K0, 0), SDValue(K1, 0)); 9055 } 9056 } 9057 9058 return SDValue(); 9059 } 9060 9061 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 9062 DAGCombinerInfo &DCI) const { 9063 SelectionDAG &DAG = DCI.DAG; 9064 9065 EVT VT = N->getValueType(0); 9066 unsigned Opc = N->getOpcode(); 9067 SDValue Op0 = N->getOperand(0); 9068 SDValue Op1 = N->getOperand(1); 9069 9070 // Only do this if the inner op has one use since this will just increases 9071 // register pressure for no benefit. 9072 9073 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 9074 !VT.isVector() && 9075 (VT == MVT::i32 || VT == MVT::f32 || 9076 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 9077 // max(max(a, b), c) -> max3(a, b, c) 9078 // min(min(a, b), c) -> min3(a, b, c) 9079 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 9080 SDLoc DL(N); 9081 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 9082 DL, 9083 N->getValueType(0), 9084 Op0.getOperand(0), 9085 Op0.getOperand(1), 9086 Op1); 9087 } 9088 9089 // Try commuted. 9090 // max(a, max(b, c)) -> max3(a, b, c) 9091 // min(a, min(b, c)) -> min3(a, b, c) 9092 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 9093 SDLoc DL(N); 9094 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 9095 DL, 9096 N->getValueType(0), 9097 Op0, 9098 Op1.getOperand(0), 9099 Op1.getOperand(1)); 9100 } 9101 } 9102 9103 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 9104 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 9105 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) 9106 return Med3; 9107 } 9108 9109 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 9110 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) 9111 return Med3; 9112 } 9113 9114 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 9115 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 9116 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 9117 (Opc == AMDGPUISD::FMIN_LEGACY && 9118 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 9119 (VT == MVT::f32 || VT == MVT::f64 || 9120 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 9121 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 9122 Op0.hasOneUse()) { 9123 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 9124 return Res; 9125 } 9126 9127 return SDValue(); 9128 } 9129 9130 static bool isClampZeroToOne(SDValue A, SDValue B) { 9131 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 9132 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 9133 // FIXME: Should this be allowing -0.0? 9134 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 9135 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 9136 } 9137 } 9138 9139 return false; 9140 } 9141 9142 // FIXME: Should only worry about snans for version with chain. 9143 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 9144 DAGCombinerInfo &DCI) const { 9145 EVT VT = N->getValueType(0); 9146 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 9147 // NaNs. With a NaN input, the order of the operands may change the result. 9148 9149 SelectionDAG &DAG = DCI.DAG; 9150 SDLoc SL(N); 9151 9152 SDValue Src0 = N->getOperand(0); 9153 SDValue Src1 = N->getOperand(1); 9154 SDValue Src2 = N->getOperand(2); 9155 9156 if (isClampZeroToOne(Src0, Src1)) { 9157 // const_a, const_b, x -> clamp is safe in all cases including signaling 9158 // nans. 9159 // FIXME: Should this be allowing -0.0? 9160 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 9161 } 9162 9163 const MachineFunction &MF = DAG.getMachineFunction(); 9164 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9165 9166 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 9167 // handling no dx10-clamp? 9168 if (Info->getMode().DX10Clamp) { 9169 // If NaNs is clamped to 0, we are free to reorder the inputs. 9170 9171 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 9172 std::swap(Src0, Src1); 9173 9174 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 9175 std::swap(Src1, Src2); 9176 9177 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 9178 std::swap(Src0, Src1); 9179 9180 if (isClampZeroToOne(Src1, Src2)) 9181 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 9182 } 9183 9184 return SDValue(); 9185 } 9186 9187 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 9188 DAGCombinerInfo &DCI) const { 9189 SDValue Src0 = N->getOperand(0); 9190 SDValue Src1 = N->getOperand(1); 9191 if (Src0.isUndef() && Src1.isUndef()) 9192 return DCI.DAG.getUNDEF(N->getValueType(0)); 9193 return SDValue(); 9194 } 9195 9196 SDValue SITargetLowering::performExtractVectorEltCombine( 9197 SDNode *N, DAGCombinerInfo &DCI) const { 9198 SDValue Vec = N->getOperand(0); 9199 SelectionDAG &DAG = DCI.DAG; 9200 9201 EVT VecVT = Vec.getValueType(); 9202 EVT EltVT = VecVT.getVectorElementType(); 9203 9204 if ((Vec.getOpcode() == ISD::FNEG || 9205 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 9206 SDLoc SL(N); 9207 EVT EltVT = N->getValueType(0); 9208 SDValue Idx = N->getOperand(1); 9209 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9210 Vec.getOperand(0), Idx); 9211 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); 9212 } 9213 9214 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 9215 // => 9216 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 9217 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 9218 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 9219 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { 9220 SDLoc SL(N); 9221 EVT EltVT = N->getValueType(0); 9222 SDValue Idx = N->getOperand(1); 9223 unsigned Opc = Vec.getOpcode(); 9224 9225 switch(Opc) { 9226 default: 9227 break; 9228 // TODO: Support other binary operations. 9229 case ISD::FADD: 9230 case ISD::FSUB: 9231 case ISD::FMUL: 9232 case ISD::ADD: 9233 case ISD::UMIN: 9234 case ISD::UMAX: 9235 case ISD::SMIN: 9236 case ISD::SMAX: 9237 case ISD::FMAXNUM: 9238 case ISD::FMINNUM: 9239 case ISD::FMAXNUM_IEEE: 9240 case ISD::FMINNUM_IEEE: { 9241 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9242 Vec.getOperand(0), Idx); 9243 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9244 Vec.getOperand(1), Idx); 9245 9246 DCI.AddToWorklist(Elt0.getNode()); 9247 DCI.AddToWorklist(Elt1.getNode()); 9248 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); 9249 } 9250 } 9251 } 9252 9253 unsigned VecSize = VecVT.getSizeInBits(); 9254 unsigned EltSize = EltVT.getSizeInBits(); 9255 9256 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 9257 // This elminates non-constant index and subsequent movrel or scratch access. 9258 // Sub-dword vectors of size 2 dword or less have better implementation. 9259 // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32 9260 // instructions. 9261 if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) && 9262 !isa<ConstantSDNode>(N->getOperand(1))) { 9263 SDLoc SL(N); 9264 SDValue Idx = N->getOperand(1); 9265 EVT IdxVT = Idx.getValueType(); 9266 SDValue V; 9267 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 9268 SDValue IC = DAG.getConstant(I, SL, IdxVT); 9269 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 9270 if (I == 0) 9271 V = Elt; 9272 else 9273 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 9274 } 9275 return V; 9276 } 9277 9278 if (!DCI.isBeforeLegalize()) 9279 return SDValue(); 9280 9281 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 9282 // elements. This exposes more load reduction opportunities by replacing 9283 // multiple small extract_vector_elements with a single 32-bit extract. 9284 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9285 if (isa<MemSDNode>(Vec) && 9286 EltSize <= 16 && 9287 EltVT.isByteSized() && 9288 VecSize > 32 && 9289 VecSize % 32 == 0 && 9290 Idx) { 9291 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 9292 9293 unsigned BitIndex = Idx->getZExtValue() * EltSize; 9294 unsigned EltIdx = BitIndex / 32; 9295 unsigned LeftoverBitIdx = BitIndex % 32; 9296 SDLoc SL(N); 9297 9298 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 9299 DCI.AddToWorklist(Cast.getNode()); 9300 9301 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 9302 DAG.getConstant(EltIdx, SL, MVT::i32)); 9303 DCI.AddToWorklist(Elt.getNode()); 9304 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 9305 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 9306 DCI.AddToWorklist(Srl.getNode()); 9307 9308 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); 9309 DCI.AddToWorklist(Trunc.getNode()); 9310 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); 9311 } 9312 9313 return SDValue(); 9314 } 9315 9316 SDValue 9317 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 9318 DAGCombinerInfo &DCI) const { 9319 SDValue Vec = N->getOperand(0); 9320 SDValue Idx = N->getOperand(2); 9321 EVT VecVT = Vec.getValueType(); 9322 EVT EltVT = VecVT.getVectorElementType(); 9323 unsigned VecSize = VecVT.getSizeInBits(); 9324 unsigned EltSize = EltVT.getSizeInBits(); 9325 9326 // INSERT_VECTOR_ELT (<n x e>, var-idx) 9327 // => BUILD_VECTOR n x select (e, const-idx) 9328 // This elminates non-constant index and subsequent movrel or scratch access. 9329 // Sub-dword vectors of size 2 dword or less have better implementation. 9330 // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32 9331 // instructions. 9332 if (isa<ConstantSDNode>(Idx) || 9333 VecSize > 256 || (VecSize <= 64 && EltSize < 32)) 9334 return SDValue(); 9335 9336 SelectionDAG &DAG = DCI.DAG; 9337 SDLoc SL(N); 9338 SDValue Ins = N->getOperand(1); 9339 EVT IdxVT = Idx.getValueType(); 9340 9341 SmallVector<SDValue, 16> Ops; 9342 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 9343 SDValue IC = DAG.getConstant(I, SL, IdxVT); 9344 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 9345 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 9346 Ops.push_back(V); 9347 } 9348 9349 return DAG.getBuildVector(VecVT, SL, Ops); 9350 } 9351 9352 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 9353 const SDNode *N0, 9354 const SDNode *N1) const { 9355 EVT VT = N0->getValueType(0); 9356 9357 // Only do this if we are not trying to support denormals. v_mad_f32 does not 9358 // support denormals ever. 9359 if (((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) || 9360 (VT == MVT::f16 && !Subtarget->hasFP16Denormals() && 9361 getSubtarget()->hasMadF16())) && 9362 isOperationLegal(ISD::FMAD, VT)) 9363 return ISD::FMAD; 9364 9365 const TargetOptions &Options = DAG.getTarget().Options; 9366 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 9367 (N0->getFlags().hasAllowContract() && 9368 N1->getFlags().hasAllowContract())) && 9369 isFMAFasterThanFMulAndFAdd(VT)) { 9370 return ISD::FMA; 9371 } 9372 9373 return 0; 9374 } 9375 9376 // For a reassociatable opcode perform: 9377 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 9378 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 9379 SelectionDAG &DAG) const { 9380 EVT VT = N->getValueType(0); 9381 if (VT != MVT::i32 && VT != MVT::i64) 9382 return SDValue(); 9383 9384 unsigned Opc = N->getOpcode(); 9385 SDValue Op0 = N->getOperand(0); 9386 SDValue Op1 = N->getOperand(1); 9387 9388 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 9389 return SDValue(); 9390 9391 if (Op0->isDivergent()) 9392 std::swap(Op0, Op1); 9393 9394 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 9395 return SDValue(); 9396 9397 SDValue Op2 = Op1.getOperand(1); 9398 Op1 = Op1.getOperand(0); 9399 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 9400 return SDValue(); 9401 9402 if (Op1->isDivergent()) 9403 std::swap(Op1, Op2); 9404 9405 // If either operand is constant this will conflict with 9406 // DAGCombiner::ReassociateOps(). 9407 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 9408 DAG.isConstantIntBuildVectorOrConstantInt(Op1)) 9409 return SDValue(); 9410 9411 SDLoc SL(N); 9412 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 9413 return DAG.getNode(Opc, SL, VT, Add1, Op2); 9414 } 9415 9416 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 9417 EVT VT, 9418 SDValue N0, SDValue N1, SDValue N2, 9419 bool Signed) { 9420 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 9421 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 9422 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 9423 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 9424 } 9425 9426 SDValue SITargetLowering::performAddCombine(SDNode *N, 9427 DAGCombinerInfo &DCI) const { 9428 SelectionDAG &DAG = DCI.DAG; 9429 EVT VT = N->getValueType(0); 9430 SDLoc SL(N); 9431 SDValue LHS = N->getOperand(0); 9432 SDValue RHS = N->getOperand(1); 9433 9434 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) 9435 && Subtarget->hasMad64_32() && 9436 !VT.isVector() && VT.getScalarSizeInBits() > 32 && 9437 VT.getScalarSizeInBits() <= 64) { 9438 if (LHS.getOpcode() != ISD::MUL) 9439 std::swap(LHS, RHS); 9440 9441 SDValue MulLHS = LHS.getOperand(0); 9442 SDValue MulRHS = LHS.getOperand(1); 9443 SDValue AddRHS = RHS; 9444 9445 // TODO: Maybe restrict if SGPR inputs. 9446 if (numBitsUnsigned(MulLHS, DAG) <= 32 && 9447 numBitsUnsigned(MulRHS, DAG) <= 32) { 9448 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); 9449 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); 9450 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); 9451 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); 9452 } 9453 9454 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) { 9455 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); 9456 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); 9457 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); 9458 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); 9459 } 9460 9461 return SDValue(); 9462 } 9463 9464 if (SDValue V = reassociateScalarOps(N, DAG)) { 9465 return V; 9466 } 9467 9468 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 9469 return SDValue(); 9470 9471 // add x, zext (setcc) => addcarry x, 0, setcc 9472 // add x, sext (setcc) => subcarry x, 0, setcc 9473 unsigned Opc = LHS.getOpcode(); 9474 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 9475 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) 9476 std::swap(RHS, LHS); 9477 9478 Opc = RHS.getOpcode(); 9479 switch (Opc) { 9480 default: break; 9481 case ISD::ZERO_EXTEND: 9482 case ISD::SIGN_EXTEND: 9483 case ISD::ANY_EXTEND: { 9484 auto Cond = RHS.getOperand(0); 9485 if (!isBoolSGPR(Cond)) 9486 break; 9487 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 9488 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 9489 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; 9490 return DAG.getNode(Opc, SL, VTList, Args); 9491 } 9492 case ISD::ADDCARRY: { 9493 // add x, (addcarry y, 0, cc) => addcarry x, y, cc 9494 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9495 if (!C || C->getZExtValue() != 0) break; 9496 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 9497 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); 9498 } 9499 } 9500 return SDValue(); 9501 } 9502 9503 SDValue SITargetLowering::performSubCombine(SDNode *N, 9504 DAGCombinerInfo &DCI) const { 9505 SelectionDAG &DAG = DCI.DAG; 9506 EVT VT = N->getValueType(0); 9507 9508 if (VT != MVT::i32) 9509 return SDValue(); 9510 9511 SDLoc SL(N); 9512 SDValue LHS = N->getOperand(0); 9513 SDValue RHS = N->getOperand(1); 9514 9515 if (LHS.getOpcode() == ISD::SUBCARRY) { 9516 // sub (subcarry x, 0, cc), y => subcarry x, y, cc 9517 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 9518 if (!C || !C->isNullValue()) 9519 return SDValue(); 9520 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 9521 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); 9522 } 9523 return SDValue(); 9524 } 9525 9526 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 9527 DAGCombinerInfo &DCI) const { 9528 9529 if (N->getValueType(0) != MVT::i32) 9530 return SDValue(); 9531 9532 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9533 if (!C || C->getZExtValue() != 0) 9534 return SDValue(); 9535 9536 SelectionDAG &DAG = DCI.DAG; 9537 SDValue LHS = N->getOperand(0); 9538 9539 // addcarry (add x, y), 0, cc => addcarry x, y, cc 9540 // subcarry (sub x, y), 0, cc => subcarry x, y, cc 9541 unsigned LHSOpc = LHS.getOpcode(); 9542 unsigned Opc = N->getOpcode(); 9543 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || 9544 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { 9545 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 9546 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 9547 } 9548 return SDValue(); 9549 } 9550 9551 SDValue SITargetLowering::performFAddCombine(SDNode *N, 9552 DAGCombinerInfo &DCI) const { 9553 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 9554 return SDValue(); 9555 9556 SelectionDAG &DAG = DCI.DAG; 9557 EVT VT = N->getValueType(0); 9558 9559 SDLoc SL(N); 9560 SDValue LHS = N->getOperand(0); 9561 SDValue RHS = N->getOperand(1); 9562 9563 // These should really be instruction patterns, but writing patterns with 9564 // source modiifiers is a pain. 9565 9566 // fadd (fadd (a, a), b) -> mad 2.0, a, b 9567 if (LHS.getOpcode() == ISD::FADD) { 9568 SDValue A = LHS.getOperand(0); 9569 if (A == LHS.getOperand(1)) { 9570 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 9571 if (FusedOp != 0) { 9572 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 9573 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 9574 } 9575 } 9576 } 9577 9578 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 9579 if (RHS.getOpcode() == ISD::FADD) { 9580 SDValue A = RHS.getOperand(0); 9581 if (A == RHS.getOperand(1)) { 9582 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 9583 if (FusedOp != 0) { 9584 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 9585 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 9586 } 9587 } 9588 } 9589 9590 return SDValue(); 9591 } 9592 9593 SDValue SITargetLowering::performFSubCombine(SDNode *N, 9594 DAGCombinerInfo &DCI) const { 9595 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 9596 return SDValue(); 9597 9598 SelectionDAG &DAG = DCI.DAG; 9599 SDLoc SL(N); 9600 EVT VT = N->getValueType(0); 9601 assert(!VT.isVector()); 9602 9603 // Try to get the fneg to fold into the source modifier. This undoes generic 9604 // DAG combines and folds them into the mad. 9605 // 9606 // Only do this if we are not trying to support denormals. v_mad_f32 does 9607 // not support denormals ever. 9608 SDValue LHS = N->getOperand(0); 9609 SDValue RHS = N->getOperand(1); 9610 if (LHS.getOpcode() == ISD::FADD) { 9611 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 9612 SDValue A = LHS.getOperand(0); 9613 if (A == LHS.getOperand(1)) { 9614 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 9615 if (FusedOp != 0){ 9616 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 9617 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 9618 9619 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 9620 } 9621 } 9622 } 9623 9624 if (RHS.getOpcode() == ISD::FADD) { 9625 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 9626 9627 SDValue A = RHS.getOperand(0); 9628 if (A == RHS.getOperand(1)) { 9629 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 9630 if (FusedOp != 0){ 9631 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 9632 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 9633 } 9634 } 9635 } 9636 9637 return SDValue(); 9638 } 9639 9640 SDValue SITargetLowering::performFMACombine(SDNode *N, 9641 DAGCombinerInfo &DCI) const { 9642 SelectionDAG &DAG = DCI.DAG; 9643 EVT VT = N->getValueType(0); 9644 SDLoc SL(N); 9645 9646 if (!Subtarget->hasDot2Insts() || VT != MVT::f32) 9647 return SDValue(); 9648 9649 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 9650 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 9651 SDValue Op1 = N->getOperand(0); 9652 SDValue Op2 = N->getOperand(1); 9653 SDValue FMA = N->getOperand(2); 9654 9655 if (FMA.getOpcode() != ISD::FMA || 9656 Op1.getOpcode() != ISD::FP_EXTEND || 9657 Op2.getOpcode() != ISD::FP_EXTEND) 9658 return SDValue(); 9659 9660 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 9661 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract 9662 // is sufficient to allow generaing fdot2. 9663 const TargetOptions &Options = DAG.getTarget().Options; 9664 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 9665 (N->getFlags().hasAllowContract() && 9666 FMA->getFlags().hasAllowContract())) { 9667 Op1 = Op1.getOperand(0); 9668 Op2 = Op2.getOperand(0); 9669 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9670 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 9671 return SDValue(); 9672 9673 SDValue Vec1 = Op1.getOperand(0); 9674 SDValue Idx1 = Op1.getOperand(1); 9675 SDValue Vec2 = Op2.getOperand(0); 9676 9677 SDValue FMAOp1 = FMA.getOperand(0); 9678 SDValue FMAOp2 = FMA.getOperand(1); 9679 SDValue FMAAcc = FMA.getOperand(2); 9680 9681 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 9682 FMAOp2.getOpcode() != ISD::FP_EXTEND) 9683 return SDValue(); 9684 9685 FMAOp1 = FMAOp1.getOperand(0); 9686 FMAOp2 = FMAOp2.getOperand(0); 9687 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9688 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 9689 return SDValue(); 9690 9691 SDValue Vec3 = FMAOp1.getOperand(0); 9692 SDValue Vec4 = FMAOp2.getOperand(0); 9693 SDValue Idx2 = FMAOp1.getOperand(1); 9694 9695 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 9696 // Idx1 and Idx2 cannot be the same. 9697 Idx1 == Idx2) 9698 return SDValue(); 9699 9700 if (Vec1 == Vec2 || Vec3 == Vec4) 9701 return SDValue(); 9702 9703 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 9704 return SDValue(); 9705 9706 if ((Vec1 == Vec3 && Vec2 == Vec4) || 9707 (Vec1 == Vec4 && Vec2 == Vec3)) { 9708 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 9709 DAG.getTargetConstant(0, SL, MVT::i1)); 9710 } 9711 } 9712 return SDValue(); 9713 } 9714 9715 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 9716 DAGCombinerInfo &DCI) const { 9717 SelectionDAG &DAG = DCI.DAG; 9718 SDLoc SL(N); 9719 9720 SDValue LHS = N->getOperand(0); 9721 SDValue RHS = N->getOperand(1); 9722 EVT VT = LHS.getValueType(); 9723 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 9724 9725 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 9726 if (!CRHS) { 9727 CRHS = dyn_cast<ConstantSDNode>(LHS); 9728 if (CRHS) { 9729 std::swap(LHS, RHS); 9730 CC = getSetCCSwappedOperands(CC); 9731 } 9732 } 9733 9734 if (CRHS) { 9735 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 9736 isBoolSGPR(LHS.getOperand(0))) { 9737 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 9738 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 9739 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 9740 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 9741 if ((CRHS->isAllOnesValue() && 9742 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 9743 (CRHS->isNullValue() && 9744 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 9745 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 9746 DAG.getConstant(-1, SL, MVT::i1)); 9747 if ((CRHS->isAllOnesValue() && 9748 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 9749 (CRHS->isNullValue() && 9750 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 9751 return LHS.getOperand(0); 9752 } 9753 9754 uint64_t CRHSVal = CRHS->getZExtValue(); 9755 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 9756 LHS.getOpcode() == ISD::SELECT && 9757 isa<ConstantSDNode>(LHS.getOperand(1)) && 9758 isa<ConstantSDNode>(LHS.getOperand(2)) && 9759 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 9760 isBoolSGPR(LHS.getOperand(0))) { 9761 // Given CT != FT: 9762 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 9763 // setcc (select cc, CT, CF), CF, ne => cc 9764 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 9765 // setcc (select cc, CT, CF), CT, eq => cc 9766 uint64_t CT = LHS.getConstantOperandVal(1); 9767 uint64_t CF = LHS.getConstantOperandVal(2); 9768 9769 if ((CF == CRHSVal && CC == ISD::SETEQ) || 9770 (CT == CRHSVal && CC == ISD::SETNE)) 9771 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 9772 DAG.getConstant(-1, SL, MVT::i1)); 9773 if ((CF == CRHSVal && CC == ISD::SETNE) || 9774 (CT == CRHSVal && CC == ISD::SETEQ)) 9775 return LHS.getOperand(0); 9776 } 9777 } 9778 9779 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && 9780 VT != MVT::f16)) 9781 return SDValue(); 9782 9783 // Match isinf/isfinite pattern 9784 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 9785 // (fcmp one (fabs x), inf) -> (fp_class x, 9786 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 9787 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 9788 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 9789 if (!CRHS) 9790 return SDValue(); 9791 9792 const APFloat &APF = CRHS->getValueAPF(); 9793 if (APF.isInfinity() && !APF.isNegative()) { 9794 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 9795 SIInstrFlags::N_INFINITY; 9796 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 9797 SIInstrFlags::P_ZERO | 9798 SIInstrFlags::N_NORMAL | 9799 SIInstrFlags::P_NORMAL | 9800 SIInstrFlags::N_SUBNORMAL | 9801 SIInstrFlags::P_SUBNORMAL; 9802 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 9803 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 9804 DAG.getConstant(Mask, SL, MVT::i32)); 9805 } 9806 } 9807 9808 return SDValue(); 9809 } 9810 9811 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 9812 DAGCombinerInfo &DCI) const { 9813 SelectionDAG &DAG = DCI.DAG; 9814 SDLoc SL(N); 9815 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 9816 9817 SDValue Src = N->getOperand(0); 9818 SDValue Srl = N->getOperand(0); 9819 if (Srl.getOpcode() == ISD::ZERO_EXTEND) 9820 Srl = Srl.getOperand(0); 9821 9822 // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero. 9823 if (Srl.getOpcode() == ISD::SRL) { 9824 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 9825 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 9826 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 9827 9828 if (const ConstantSDNode *C = 9829 dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 9830 Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)), 9831 EVT(MVT::i32)); 9832 9833 unsigned SrcOffset = C->getZExtValue() + 8 * Offset; 9834 if (SrcOffset < 32 && SrcOffset % 8 == 0) { 9835 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL, 9836 MVT::f32, Srl); 9837 } 9838 } 9839 } 9840 9841 APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 9842 9843 KnownBits Known; 9844 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 9845 !DCI.isBeforeLegalizeOps()); 9846 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9847 if (TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) { 9848 DCI.CommitTargetLoweringOpt(TLO); 9849 } 9850 9851 return SDValue(); 9852 } 9853 9854 SDValue SITargetLowering::performClampCombine(SDNode *N, 9855 DAGCombinerInfo &DCI) const { 9856 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 9857 if (!CSrc) 9858 return SDValue(); 9859 9860 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 9861 const APFloat &F = CSrc->getValueAPF(); 9862 APFloat Zero = APFloat::getZero(F.getSemantics()); 9863 APFloat::cmpResult Cmp0 = F.compare(Zero); 9864 if (Cmp0 == APFloat::cmpLessThan || 9865 (Cmp0 == APFloat::cmpUnordered && 9866 MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 9867 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 9868 } 9869 9870 APFloat One(F.getSemantics(), "1.0"); 9871 APFloat::cmpResult Cmp1 = F.compare(One); 9872 if (Cmp1 == APFloat::cmpGreaterThan) 9873 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 9874 9875 return SDValue(CSrc, 0); 9876 } 9877 9878 9879 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 9880 DAGCombinerInfo &DCI) const { 9881 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 9882 return SDValue(); 9883 switch (N->getOpcode()) { 9884 default: 9885 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 9886 case ISD::ADD: 9887 return performAddCombine(N, DCI); 9888 case ISD::SUB: 9889 return performSubCombine(N, DCI); 9890 case ISD::ADDCARRY: 9891 case ISD::SUBCARRY: 9892 return performAddCarrySubCarryCombine(N, DCI); 9893 case ISD::FADD: 9894 return performFAddCombine(N, DCI); 9895 case ISD::FSUB: 9896 return performFSubCombine(N, DCI); 9897 case ISD::SETCC: 9898 return performSetCCCombine(N, DCI); 9899 case ISD::FMAXNUM: 9900 case ISD::FMINNUM: 9901 case ISD::FMAXNUM_IEEE: 9902 case ISD::FMINNUM_IEEE: 9903 case ISD::SMAX: 9904 case ISD::SMIN: 9905 case ISD::UMAX: 9906 case ISD::UMIN: 9907 case AMDGPUISD::FMIN_LEGACY: 9908 case AMDGPUISD::FMAX_LEGACY: 9909 return performMinMaxCombine(N, DCI); 9910 case ISD::FMA: 9911 return performFMACombine(N, DCI); 9912 case ISD::LOAD: { 9913 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 9914 return Widended; 9915 LLVM_FALLTHROUGH; 9916 } 9917 case ISD::STORE: 9918 case ISD::ATOMIC_LOAD: 9919 case ISD::ATOMIC_STORE: 9920 case ISD::ATOMIC_CMP_SWAP: 9921 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 9922 case ISD::ATOMIC_SWAP: 9923 case ISD::ATOMIC_LOAD_ADD: 9924 case ISD::ATOMIC_LOAD_SUB: 9925 case ISD::ATOMIC_LOAD_AND: 9926 case ISD::ATOMIC_LOAD_OR: 9927 case ISD::ATOMIC_LOAD_XOR: 9928 case ISD::ATOMIC_LOAD_NAND: 9929 case ISD::ATOMIC_LOAD_MIN: 9930 case ISD::ATOMIC_LOAD_MAX: 9931 case ISD::ATOMIC_LOAD_UMIN: 9932 case ISD::ATOMIC_LOAD_UMAX: 9933 case ISD::ATOMIC_LOAD_FADD: 9934 case AMDGPUISD::ATOMIC_INC: 9935 case AMDGPUISD::ATOMIC_DEC: 9936 case AMDGPUISD::ATOMIC_LOAD_FMIN: 9937 case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics. 9938 if (DCI.isBeforeLegalize()) 9939 break; 9940 return performMemSDNodeCombine(cast<MemSDNode>(N), DCI); 9941 case ISD::AND: 9942 return performAndCombine(N, DCI); 9943 case ISD::OR: 9944 return performOrCombine(N, DCI); 9945 case ISD::XOR: 9946 return performXorCombine(N, DCI); 9947 case ISD::ZERO_EXTEND: 9948 return performZeroExtendCombine(N, DCI); 9949 case ISD::SIGN_EXTEND_INREG: 9950 return performSignExtendInRegCombine(N , DCI); 9951 case AMDGPUISD::FP_CLASS: 9952 return performClassCombine(N, DCI); 9953 case ISD::FCANONICALIZE: 9954 return performFCanonicalizeCombine(N, DCI); 9955 case AMDGPUISD::RCP: 9956 return performRcpCombine(N, DCI); 9957 case AMDGPUISD::FRACT: 9958 case AMDGPUISD::RSQ: 9959 case AMDGPUISD::RCP_LEGACY: 9960 case AMDGPUISD::RSQ_LEGACY: 9961 case AMDGPUISD::RCP_IFLAG: 9962 case AMDGPUISD::RSQ_CLAMP: 9963 case AMDGPUISD::LDEXP: { 9964 SDValue Src = N->getOperand(0); 9965 if (Src.isUndef()) 9966 return Src; 9967 break; 9968 } 9969 case ISD::SINT_TO_FP: 9970 case ISD::UINT_TO_FP: 9971 return performUCharToFloatCombine(N, DCI); 9972 case AMDGPUISD::CVT_F32_UBYTE0: 9973 case AMDGPUISD::CVT_F32_UBYTE1: 9974 case AMDGPUISD::CVT_F32_UBYTE2: 9975 case AMDGPUISD::CVT_F32_UBYTE3: 9976 return performCvtF32UByteNCombine(N, DCI); 9977 case AMDGPUISD::FMED3: 9978 return performFMed3Combine(N, DCI); 9979 case AMDGPUISD::CVT_PKRTZ_F16_F32: 9980 return performCvtPkRTZCombine(N, DCI); 9981 case AMDGPUISD::CLAMP: 9982 return performClampCombine(N, DCI); 9983 case ISD::SCALAR_TO_VECTOR: { 9984 SelectionDAG &DAG = DCI.DAG; 9985 EVT VT = N->getValueType(0); 9986 9987 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 9988 if (VT == MVT::v2i16 || VT == MVT::v2f16) { 9989 SDLoc SL(N); 9990 SDValue Src = N->getOperand(0); 9991 EVT EltVT = Src.getValueType(); 9992 if (EltVT == MVT::f16) 9993 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 9994 9995 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 9996 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 9997 } 9998 9999 break; 10000 } 10001 case ISD::EXTRACT_VECTOR_ELT: 10002 return performExtractVectorEltCombine(N, DCI); 10003 case ISD::INSERT_VECTOR_ELT: 10004 return performInsertVectorEltCombine(N, DCI); 10005 } 10006 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 10007 } 10008 10009 /// Helper function for adjustWritemask 10010 static unsigned SubIdx2Lane(unsigned Idx) { 10011 switch (Idx) { 10012 default: return 0; 10013 case AMDGPU::sub0: return 0; 10014 case AMDGPU::sub1: return 1; 10015 case AMDGPU::sub2: return 2; 10016 case AMDGPU::sub3: return 3; 10017 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 10018 } 10019 } 10020 10021 /// Adjust the writemask of MIMG instructions 10022 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 10023 SelectionDAG &DAG) const { 10024 unsigned Opcode = Node->getMachineOpcode(); 10025 10026 // Subtract 1 because the vdata output is not a MachineSDNode operand. 10027 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 10028 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 10029 return Node; // not implemented for D16 10030 10031 SDNode *Users[5] = { nullptr }; 10032 unsigned Lane = 0; 10033 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 10034 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 10035 unsigned NewDmask = 0; 10036 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 10037 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 10038 bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) || 10039 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0; 10040 unsigned TFCLane = 0; 10041 bool HasChain = Node->getNumValues() > 1; 10042 10043 if (OldDmask == 0) { 10044 // These are folded out, but on the chance it happens don't assert. 10045 return Node; 10046 } 10047 10048 unsigned OldBitsSet = countPopulation(OldDmask); 10049 // Work out which is the TFE/LWE lane if that is enabled. 10050 if (UsesTFC) { 10051 TFCLane = OldBitsSet; 10052 } 10053 10054 // Try to figure out the used register components 10055 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 10056 I != E; ++I) { 10057 10058 // Don't look at users of the chain. 10059 if (I.getUse().getResNo() != 0) 10060 continue; 10061 10062 // Abort if we can't understand the usage 10063 if (!I->isMachineOpcode() || 10064 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 10065 return Node; 10066 10067 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 10068 // Note that subregs are packed, i.e. Lane==0 is the first bit set 10069 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 10070 // set, etc. 10071 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 10072 10073 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 10074 if (UsesTFC && Lane == TFCLane) { 10075 Users[Lane] = *I; 10076 } else { 10077 // Set which texture component corresponds to the lane. 10078 unsigned Comp; 10079 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 10080 Comp = countTrailingZeros(Dmask); 10081 Dmask &= ~(1 << Comp); 10082 } 10083 10084 // Abort if we have more than one user per component. 10085 if (Users[Lane]) 10086 return Node; 10087 10088 Users[Lane] = *I; 10089 NewDmask |= 1 << Comp; 10090 } 10091 } 10092 10093 // Don't allow 0 dmask, as hardware assumes one channel enabled. 10094 bool NoChannels = !NewDmask; 10095 if (NoChannels) { 10096 if (!UsesTFC) { 10097 // No uses of the result and not using TFC. Then do nothing. 10098 return Node; 10099 } 10100 // If the original dmask has one channel - then nothing to do 10101 if (OldBitsSet == 1) 10102 return Node; 10103 // Use an arbitrary dmask - required for the instruction to work 10104 NewDmask = 1; 10105 } 10106 // Abort if there's no change 10107 if (NewDmask == OldDmask) 10108 return Node; 10109 10110 unsigned BitsSet = countPopulation(NewDmask); 10111 10112 // Check for TFE or LWE - increase the number of channels by one to account 10113 // for the extra return value 10114 // This will need adjustment for D16 if this is also included in 10115 // adjustWriteMask (this function) but at present D16 are excluded. 10116 unsigned NewChannels = BitsSet + UsesTFC; 10117 10118 int NewOpcode = 10119 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 10120 assert(NewOpcode != -1 && 10121 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 10122 "failed to find equivalent MIMG op"); 10123 10124 // Adjust the writemask in the node 10125 SmallVector<SDValue, 12> Ops; 10126 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 10127 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 10128 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 10129 10130 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 10131 10132 MVT ResultVT = NewChannels == 1 ? 10133 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 10134 NewChannels == 5 ? 8 : NewChannels); 10135 SDVTList NewVTList = HasChain ? 10136 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 10137 10138 10139 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 10140 NewVTList, Ops); 10141 10142 if (HasChain) { 10143 // Update chain. 10144 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 10145 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 10146 } 10147 10148 if (NewChannels == 1) { 10149 assert(Node->hasNUsesOfValue(1, 0)); 10150 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 10151 SDLoc(Node), Users[Lane]->getValueType(0), 10152 SDValue(NewNode, 0)); 10153 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 10154 return nullptr; 10155 } 10156 10157 // Update the users of the node with the new indices 10158 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 10159 SDNode *User = Users[i]; 10160 if (!User) { 10161 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 10162 // Users[0] is still nullptr because channel 0 doesn't really have a use. 10163 if (i || !NoChannels) 10164 continue; 10165 } else { 10166 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 10167 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 10168 } 10169 10170 switch (Idx) { 10171 default: break; 10172 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 10173 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 10174 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 10175 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 10176 } 10177 } 10178 10179 DAG.RemoveDeadNode(Node); 10180 return nullptr; 10181 } 10182 10183 static bool isFrameIndexOp(SDValue Op) { 10184 if (Op.getOpcode() == ISD::AssertZext) 10185 Op = Op.getOperand(0); 10186 10187 return isa<FrameIndexSDNode>(Op); 10188 } 10189 10190 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 10191 /// with frame index operands. 10192 /// LLVM assumes that inputs are to these instructions are registers. 10193 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 10194 SelectionDAG &DAG) const { 10195 if (Node->getOpcode() == ISD::CopyToReg) { 10196 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 10197 SDValue SrcVal = Node->getOperand(2); 10198 10199 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 10200 // to try understanding copies to physical registers. 10201 if (SrcVal.getValueType() == MVT::i1 && 10202 Register::isPhysicalRegister(DestReg->getReg())) { 10203 SDLoc SL(Node); 10204 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 10205 SDValue VReg = DAG.getRegister( 10206 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 10207 10208 SDNode *Glued = Node->getGluedNode(); 10209 SDValue ToVReg 10210 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 10211 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 10212 SDValue ToResultReg 10213 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 10214 VReg, ToVReg.getValue(1)); 10215 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 10216 DAG.RemoveDeadNode(Node); 10217 return ToResultReg.getNode(); 10218 } 10219 } 10220 10221 SmallVector<SDValue, 8> Ops; 10222 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 10223 if (!isFrameIndexOp(Node->getOperand(i))) { 10224 Ops.push_back(Node->getOperand(i)); 10225 continue; 10226 } 10227 10228 SDLoc DL(Node); 10229 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 10230 Node->getOperand(i).getValueType(), 10231 Node->getOperand(i)), 0)); 10232 } 10233 10234 return DAG.UpdateNodeOperands(Node, Ops); 10235 } 10236 10237 /// Fold the instructions after selecting them. 10238 /// Returns null if users were already updated. 10239 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 10240 SelectionDAG &DAG) const { 10241 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10242 unsigned Opcode = Node->getMachineOpcode(); 10243 10244 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && 10245 !TII->isGather4(Opcode)) { 10246 return adjustWritemask(Node, DAG); 10247 } 10248 10249 if (Opcode == AMDGPU::INSERT_SUBREG || 10250 Opcode == AMDGPU::REG_SEQUENCE) { 10251 legalizeTargetIndependentNode(Node, DAG); 10252 return Node; 10253 } 10254 10255 switch (Opcode) { 10256 case AMDGPU::V_DIV_SCALE_F32: 10257 case AMDGPU::V_DIV_SCALE_F64: { 10258 // Satisfy the operand register constraint when one of the inputs is 10259 // undefined. Ordinarily each undef value will have its own implicit_def of 10260 // a vreg, so force these to use a single register. 10261 SDValue Src0 = Node->getOperand(0); 10262 SDValue Src1 = Node->getOperand(1); 10263 SDValue Src2 = Node->getOperand(2); 10264 10265 if ((Src0.isMachineOpcode() && 10266 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 10267 (Src0 == Src1 || Src0 == Src2)) 10268 break; 10269 10270 MVT VT = Src0.getValueType().getSimpleVT(); 10271 const TargetRegisterClass *RC = 10272 getRegClassFor(VT, Src0.getNode()->isDivergent()); 10273 10274 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 10275 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 10276 10277 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 10278 UndefReg, Src0, SDValue()); 10279 10280 // src0 must be the same register as src1 or src2, even if the value is 10281 // undefined, so make sure we don't violate this constraint. 10282 if (Src0.isMachineOpcode() && 10283 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 10284 if (Src1.isMachineOpcode() && 10285 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 10286 Src0 = Src1; 10287 else if (Src2.isMachineOpcode() && 10288 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 10289 Src0 = Src2; 10290 else { 10291 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 10292 Src0 = UndefReg; 10293 Src1 = UndefReg; 10294 } 10295 } else 10296 break; 10297 10298 SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 }; 10299 for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I) 10300 Ops.push_back(Node->getOperand(I)); 10301 10302 Ops.push_back(ImpDef.getValue(1)); 10303 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 10304 } 10305 case AMDGPU::V_PERMLANE16_B32: 10306 case AMDGPU::V_PERMLANEX16_B32: { 10307 ConstantSDNode *FI = cast<ConstantSDNode>(Node->getOperand(0)); 10308 ConstantSDNode *BC = cast<ConstantSDNode>(Node->getOperand(2)); 10309 if (!FI->getZExtValue() && !BC->getZExtValue()) 10310 break; 10311 SDValue VDstIn = Node->getOperand(6); 10312 if (VDstIn.isMachineOpcode() 10313 && VDstIn.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) 10314 break; 10315 MachineSDNode *ImpDef = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 10316 SDLoc(Node), MVT::i32); 10317 SmallVector<SDValue, 8> Ops = { SDValue(FI, 0), Node->getOperand(1), 10318 SDValue(BC, 0), Node->getOperand(3), 10319 Node->getOperand(4), Node->getOperand(5), 10320 SDValue(ImpDef, 0), Node->getOperand(7) }; 10321 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 10322 } 10323 default: 10324 break; 10325 } 10326 10327 return Node; 10328 } 10329 10330 /// Assign the register class depending on the number of 10331 /// bits set in the writemask 10332 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 10333 SDNode *Node) const { 10334 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10335 10336 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 10337 10338 if (TII->isVOP3(MI.getOpcode())) { 10339 // Make sure constant bus requirements are respected. 10340 TII->legalizeOperandsVOP3(MRI, MI); 10341 10342 // Prefer VGPRs over AGPRs in mAI instructions where possible. 10343 // This saves a chain-copy of registers and better ballance register 10344 // use between vgpr and agpr as agpr tuples tend to be big. 10345 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) { 10346 unsigned Opc = MI.getOpcode(); 10347 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 10348 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 10349 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { 10350 if (I == -1) 10351 break; 10352 MachineOperand &Op = MI.getOperand(I); 10353 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID && 10354 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) || 10355 !Register::isVirtualRegister(Op.getReg()) || 10356 !TRI->isAGPR(MRI, Op.getReg())) 10357 continue; 10358 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 10359 if (!Src || !Src->isCopy() || 10360 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 10361 continue; 10362 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 10363 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 10364 // All uses of agpr64 and agpr32 can also accept vgpr except for 10365 // v_accvgpr_read, but we do not produce agpr reads during selection, 10366 // so no use checks are needed. 10367 MRI.setRegClass(Op.getReg(), NewRC); 10368 } 10369 } 10370 10371 return; 10372 } 10373 10374 // Replace unused atomics with the no return version. 10375 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); 10376 if (NoRetAtomicOp != -1) { 10377 if (!Node->hasAnyUseOfValue(0)) { 10378 MI.setDesc(TII->get(NoRetAtomicOp)); 10379 MI.RemoveOperand(0); 10380 return; 10381 } 10382 10383 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg 10384 // instruction, because the return type of these instructions is a vec2 of 10385 // the memory type, so it can be tied to the input operand. 10386 // This means these instructions always have a use, so we need to add a 10387 // special case to check if the atomic has only one extract_subreg use, 10388 // which itself has no uses. 10389 if ((Node->hasNUsesOfValue(1, 0) && 10390 Node->use_begin()->isMachineOpcode() && 10391 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && 10392 !Node->use_begin()->hasAnyUseOfValue(0))) { 10393 Register Def = MI.getOperand(0).getReg(); 10394 10395 // Change this into a noret atomic. 10396 MI.setDesc(TII->get(NoRetAtomicOp)); 10397 MI.RemoveOperand(0); 10398 10399 // If we only remove the def operand from the atomic instruction, the 10400 // extract_subreg will be left with a use of a vreg without a def. 10401 // So we need to insert an implicit_def to avoid machine verifier 10402 // errors. 10403 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 10404 TII->get(AMDGPU::IMPLICIT_DEF), Def); 10405 } 10406 return; 10407 } 10408 } 10409 10410 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 10411 uint64_t Val) { 10412 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 10413 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 10414 } 10415 10416 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 10417 const SDLoc &DL, 10418 SDValue Ptr) const { 10419 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10420 10421 // Build the half of the subregister with the constants before building the 10422 // full 128-bit register. If we are building multiple resource descriptors, 10423 // this will allow CSEing of the 2-component register. 10424 const SDValue Ops0[] = { 10425 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 10426 buildSMovImm32(DAG, DL, 0), 10427 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 10428 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 10429 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 10430 }; 10431 10432 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 10433 MVT::v2i32, Ops0), 0); 10434 10435 // Combine the constants and the pointer. 10436 const SDValue Ops1[] = { 10437 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), 10438 Ptr, 10439 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 10440 SubRegHi, 10441 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 10442 }; 10443 10444 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 10445 } 10446 10447 /// Return a resource descriptor with the 'Add TID' bit enabled 10448 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 10449 /// of the resource descriptor) to create an offset, which is added to 10450 /// the resource pointer. 10451 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 10452 SDValue Ptr, uint32_t RsrcDword1, 10453 uint64_t RsrcDword2And3) const { 10454 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 10455 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 10456 if (RsrcDword1) { 10457 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 10458 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 10459 0); 10460 } 10461 10462 SDValue DataLo = buildSMovImm32(DAG, DL, 10463 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 10464 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 10465 10466 const SDValue Ops[] = { 10467 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), 10468 PtrLo, 10469 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 10470 PtrHi, 10471 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 10472 DataLo, 10473 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 10474 DataHi, 10475 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 10476 }; 10477 10478 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 10479 } 10480 10481 //===----------------------------------------------------------------------===// 10482 // SI Inline Assembly Support 10483 //===----------------------------------------------------------------------===// 10484 10485 std::pair<unsigned, const TargetRegisterClass *> 10486 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10487 StringRef Constraint, 10488 MVT VT) const { 10489 const TargetRegisterClass *RC = nullptr; 10490 if (Constraint.size() == 1) { 10491 switch (Constraint[0]) { 10492 default: 10493 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10494 case 's': 10495 case 'r': 10496 switch (VT.getSizeInBits()) { 10497 default: 10498 return std::make_pair(0U, nullptr); 10499 case 32: 10500 case 16: 10501 RC = &AMDGPU::SReg_32_XM0RegClass; 10502 break; 10503 case 64: 10504 RC = &AMDGPU::SGPR_64RegClass; 10505 break; 10506 case 96: 10507 RC = &AMDGPU::SReg_96RegClass; 10508 break; 10509 case 128: 10510 RC = &AMDGPU::SReg_128RegClass; 10511 break; 10512 case 160: 10513 RC = &AMDGPU::SReg_160RegClass; 10514 break; 10515 case 256: 10516 RC = &AMDGPU::SReg_256RegClass; 10517 break; 10518 case 512: 10519 RC = &AMDGPU::SReg_512RegClass; 10520 break; 10521 } 10522 break; 10523 case 'v': 10524 switch (VT.getSizeInBits()) { 10525 default: 10526 return std::make_pair(0U, nullptr); 10527 case 32: 10528 case 16: 10529 RC = &AMDGPU::VGPR_32RegClass; 10530 break; 10531 case 64: 10532 RC = &AMDGPU::VReg_64RegClass; 10533 break; 10534 case 96: 10535 RC = &AMDGPU::VReg_96RegClass; 10536 break; 10537 case 128: 10538 RC = &AMDGPU::VReg_128RegClass; 10539 break; 10540 case 160: 10541 RC = &AMDGPU::VReg_160RegClass; 10542 break; 10543 case 256: 10544 RC = &AMDGPU::VReg_256RegClass; 10545 break; 10546 case 512: 10547 RC = &AMDGPU::VReg_512RegClass; 10548 break; 10549 } 10550 break; 10551 case 'a': 10552 if (!Subtarget->hasMAIInsts()) 10553 break; 10554 switch (VT.getSizeInBits()) { 10555 default: 10556 return std::make_pair(0U, nullptr); 10557 case 32: 10558 case 16: 10559 RC = &AMDGPU::AGPR_32RegClass; 10560 break; 10561 case 64: 10562 RC = &AMDGPU::AReg_64RegClass; 10563 break; 10564 case 128: 10565 RC = &AMDGPU::AReg_128RegClass; 10566 break; 10567 case 512: 10568 RC = &AMDGPU::AReg_512RegClass; 10569 break; 10570 case 1024: 10571 RC = &AMDGPU::AReg_1024RegClass; 10572 // v32 types are not legal but we support them here. 10573 return std::make_pair(0U, RC); 10574 } 10575 break; 10576 } 10577 // We actually support i128, i16 and f16 as inline parameters 10578 // even if they are not reported as legal 10579 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 10580 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 10581 return std::make_pair(0U, RC); 10582 } 10583 10584 if (Constraint.size() > 1) { 10585 if (Constraint[1] == 'v') { 10586 RC = &AMDGPU::VGPR_32RegClass; 10587 } else if (Constraint[1] == 's') { 10588 RC = &AMDGPU::SGPR_32RegClass; 10589 } else if (Constraint[1] == 'a') { 10590 RC = &AMDGPU::AGPR_32RegClass; 10591 } 10592 10593 if (RC) { 10594 uint32_t Idx; 10595 bool Failed = Constraint.substr(2).getAsInteger(10, Idx); 10596 if (!Failed && Idx < RC->getNumRegs()) 10597 return std::make_pair(RC->getRegister(Idx), RC); 10598 } 10599 } 10600 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10601 } 10602 10603 SITargetLowering::ConstraintType 10604 SITargetLowering::getConstraintType(StringRef Constraint) const { 10605 if (Constraint.size() == 1) { 10606 switch (Constraint[0]) { 10607 default: break; 10608 case 's': 10609 case 'v': 10610 case 'a': 10611 return C_RegisterClass; 10612 } 10613 } 10614 return TargetLowering::getConstraintType(Constraint); 10615 } 10616 10617 // Figure out which registers should be reserved for stack access. Only after 10618 // the function is legalized do we know all of the non-spill stack objects or if 10619 // calls are present. 10620 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 10621 MachineRegisterInfo &MRI = MF.getRegInfo(); 10622 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10623 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 10624 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 10625 10626 if (Info->isEntryFunction()) { 10627 // Callable functions have fixed registers used for stack access. 10628 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 10629 } 10630 10631 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 10632 Info->getStackPtrOffsetReg())); 10633 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 10634 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 10635 10636 // We need to worry about replacing the default register with itself in case 10637 // of MIR testcases missing the MFI. 10638 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 10639 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 10640 10641 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 10642 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 10643 10644 if (Info->getScratchWaveOffsetReg() != AMDGPU::SCRATCH_WAVE_OFFSET_REG) { 10645 MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG, 10646 Info->getScratchWaveOffsetReg()); 10647 } 10648 10649 Info->limitOccupancy(MF); 10650 10651 if (ST.isWave32() && !MF.empty()) { 10652 // Add VCC_HI def because many instructions marked as imp-use VCC where 10653 // we may only define VCC_LO. If nothing defines VCC_HI we may end up 10654 // having a use of undef. 10655 10656 const SIInstrInfo *TII = ST.getInstrInfo(); 10657 DebugLoc DL; 10658 10659 MachineBasicBlock &MBB = MF.front(); 10660 MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr(); 10661 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI); 10662 10663 for (auto &MBB : MF) { 10664 for (auto &MI : MBB) { 10665 TII->fixImplicitOperands(MI); 10666 } 10667 } 10668 } 10669 10670 TargetLoweringBase::finalizeLowering(MF); 10671 } 10672 10673 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 10674 KnownBits &Known, 10675 const APInt &DemandedElts, 10676 const SelectionDAG &DAG, 10677 unsigned Depth) const { 10678 TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts, 10679 DAG, Depth); 10680 10681 // Set the high bits to zero based on the maximum allowed scratch size per 10682 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 10683 // calculation won't overflow, so assume the sign bit is never set. 10684 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 10685 } 10686 10687 llvm::Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 10688 const llvm::Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 10689 const llvm::Align CacheLineAlign = llvm::Align(64); 10690 10691 // Pre-GFX10 target did not benefit from loop alignment 10692 if (!ML || DisableLoopAlignment || 10693 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || 10694 getSubtarget()->hasInstFwdPrefetchBug()) 10695 return PrefAlign; 10696 10697 // On GFX10 I$ is 4 x 64 bytes cache lines. 10698 // By default prefetcher keeps one cache line behind and reads two ahead. 10699 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 10700 // behind and one ahead. 10701 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 10702 // If loop fits 64 bytes it always spans no more than two cache lines and 10703 // does not need an alignment. 10704 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 10705 // Else if loop is less or equal 192 bytes we need two lines behind. 10706 10707 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10708 const MachineBasicBlock *Header = ML->getHeader(); 10709 if (Header->getAlignment() != PrefAlign) 10710 return Header->getAlignment(); // Already processed. 10711 10712 unsigned LoopSize = 0; 10713 for (const MachineBasicBlock *MBB : ML->blocks()) { 10714 // If inner loop block is aligned assume in average half of the alignment 10715 // size to be added as nops. 10716 if (MBB != Header) 10717 LoopSize += MBB->getAlignment().value() / 2; 10718 10719 for (const MachineInstr &MI : *MBB) { 10720 LoopSize += TII->getInstSizeInBytes(MI); 10721 if (LoopSize > 192) 10722 return PrefAlign; 10723 } 10724 } 10725 10726 if (LoopSize <= 64) 10727 return PrefAlign; 10728 10729 if (LoopSize <= 128) 10730 return CacheLineAlign; 10731 10732 // If any of parent loops is surrounded by prefetch instructions do not 10733 // insert new for inner loop, which would reset parent's settings. 10734 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 10735 if (MachineBasicBlock *Exit = P->getExitBlock()) { 10736 auto I = Exit->getFirstNonDebugInstr(); 10737 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 10738 return CacheLineAlign; 10739 } 10740 } 10741 10742 MachineBasicBlock *Pre = ML->getLoopPreheader(); 10743 MachineBasicBlock *Exit = ML->getExitBlock(); 10744 10745 if (Pre && Exit) { 10746 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(), 10747 TII->get(AMDGPU::S_INST_PREFETCH)) 10748 .addImm(1); // prefetch 2 lines behind PC 10749 10750 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(), 10751 TII->get(AMDGPU::S_INST_PREFETCH)) 10752 .addImm(2); // prefetch 1 line behind PC 10753 } 10754 10755 return CacheLineAlign; 10756 } 10757 10758 LLVM_ATTRIBUTE_UNUSED 10759 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 10760 assert(N->getOpcode() == ISD::CopyFromReg); 10761 do { 10762 // Follow the chain until we find an INLINEASM node. 10763 N = N->getOperand(0).getNode(); 10764 if (N->getOpcode() == ISD::INLINEASM || 10765 N->getOpcode() == ISD::INLINEASM_BR) 10766 return true; 10767 } while (N->getOpcode() == ISD::CopyFromReg); 10768 return false; 10769 } 10770 10771 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N, 10772 FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const 10773 { 10774 switch (N->getOpcode()) { 10775 case ISD::CopyFromReg: 10776 { 10777 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 10778 const MachineFunction * MF = FLI->MF; 10779 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 10780 const MachineRegisterInfo &MRI = MF->getRegInfo(); 10781 const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo(); 10782 unsigned Reg = R->getReg(); 10783 if (Register::isPhysicalRegister(Reg)) 10784 return !TRI.isSGPRReg(MRI, Reg); 10785 10786 if (MRI.isLiveIn(Reg)) { 10787 // workitem.id.x workitem.id.y workitem.id.z 10788 // Any VGPR formal argument is also considered divergent 10789 if (!TRI.isSGPRReg(MRI, Reg)) 10790 return true; 10791 // Formal arguments of non-entry functions 10792 // are conservatively considered divergent 10793 else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv())) 10794 return true; 10795 return false; 10796 } 10797 const Value *V = FLI->getValueFromVirtualReg(Reg); 10798 if (V) 10799 return KDA->isDivergent(V); 10800 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 10801 return !TRI.isSGPRReg(MRI, Reg); 10802 } 10803 break; 10804 case ISD::LOAD: { 10805 const LoadSDNode *L = cast<LoadSDNode>(N); 10806 unsigned AS = L->getAddressSpace(); 10807 // A flat load may access private memory. 10808 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 10809 } break; 10810 case ISD::CALLSEQ_END: 10811 return true; 10812 break; 10813 case ISD::INTRINSIC_WO_CHAIN: 10814 { 10815 10816 } 10817 return AMDGPU::isIntrinsicSourceOfDivergence( 10818 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 10819 case ISD::INTRINSIC_W_CHAIN: 10820 return AMDGPU::isIntrinsicSourceOfDivergence( 10821 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 10822 // In some cases intrinsics that are a source of divergence have been 10823 // lowered to AMDGPUISD so we also need to check those too. 10824 case AMDGPUISD::INTERP_MOV: 10825 case AMDGPUISD::INTERP_P1: 10826 case AMDGPUISD::INTERP_P2: 10827 return true; 10828 } 10829 return false; 10830 } 10831 10832 bool SITargetLowering::denormalsEnabledForType(EVT VT) const { 10833 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 10834 case MVT::f32: 10835 return Subtarget->hasFP32Denormals(); 10836 case MVT::f64: 10837 return Subtarget->hasFP64Denormals(); 10838 case MVT::f16: 10839 return Subtarget->hasFP16Denormals(); 10840 default: 10841 return false; 10842 } 10843 } 10844 10845 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 10846 const SelectionDAG &DAG, 10847 bool SNaN, 10848 unsigned Depth) const { 10849 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 10850 const MachineFunction &MF = DAG.getMachineFunction(); 10851 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10852 10853 if (Info->getMode().DX10Clamp) 10854 return true; // Clamped to 0. 10855 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 10856 } 10857 10858 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 10859 SNaN, Depth); 10860 } 10861 10862 TargetLowering::AtomicExpansionKind 10863 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 10864 switch (RMW->getOperation()) { 10865 case AtomicRMWInst::FAdd: { 10866 Type *Ty = RMW->getType(); 10867 10868 // We don't have a way to support 16-bit atomics now, so just leave them 10869 // as-is. 10870 if (Ty->isHalfTy()) 10871 return AtomicExpansionKind::None; 10872 10873 if (!Ty->isFloatTy()) 10874 return AtomicExpansionKind::CmpXChg; 10875 10876 // TODO: Do have these for flat. Older targets also had them for buffers. 10877 unsigned AS = RMW->getPointerAddressSpace(); 10878 return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ? 10879 AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg; 10880 } 10881 default: 10882 break; 10883 } 10884 10885 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 10886 } 10887