1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/ADT/FloatingPointMode.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
28 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/IR/DiagnosticInfo.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/IntrinsicsAMDGPU.h"
35 #include "llvm/IR/IntrinsicsR600.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "si-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 static cl::opt<bool> DisableLoopAlignment(
46   "amdgpu-disable-loop-alignment",
47   cl::desc("Do not align and prefetch loops"),
48   cl::init(false));
49 
50 static cl::opt<bool> UseDivergentRegisterIndexing(
51   "amdgpu-use-divergent-register-indexing",
52   cl::Hidden,
53   cl::desc("Use indirect register addressing for divergent indexes"),
54   cl::init(false));
55 
56 static bool hasFP32Denormals(const MachineFunction &MF) {
57   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
58   return Info->getMode().allFP32Denormals();
59 }
60 
61 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
62   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
63   return Info->getMode().allFP64FP16Denormals();
64 }
65 
66 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
67   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
68   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
69     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
70       return AMDGPU::SGPR0 + Reg;
71     }
72   }
73   llvm_unreachable("Cannot allocate sgpr");
74 }
75 
76 SITargetLowering::SITargetLowering(const TargetMachine &TM,
77                                    const GCNSubtarget &STI)
78     : AMDGPUTargetLowering(TM, STI),
79       Subtarget(&STI) {
80   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
81   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
82 
83   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
84   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
85 
86   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
87 
88   const SIRegisterInfo *TRI = STI.getRegisterInfo();
89   const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
90 
91   addRegisterClass(MVT::f64, V64RegClass);
92   addRegisterClass(MVT::v2f32, V64RegClass);
93 
94   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
95   addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
96 
97   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
98   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
99 
100   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
101   addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
102 
103   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
104   addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
105 
106   addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
107   addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
108 
109   addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
110   addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
111 
112   addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
113   addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
114 
115   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
116   addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
117 
118   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
119   addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
120 
121   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
122   addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
123 
124   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
125   addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
126 
127   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
128   addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
129 
130   if (Subtarget->has16BitInsts()) {
131     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
132     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
133 
134     // Unless there are also VOP3P operations, not operations are really legal.
135     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
136     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
137     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
138     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
139     addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass);
140     addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass);
141   }
142 
143   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
144   addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
145 
146   computeRegisterProperties(Subtarget->getRegisterInfo());
147 
148   // The boolean content concept here is too inflexible. Compares only ever
149   // really produce a 1-bit result. Any copy/extend from these will turn into a
150   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
151   // it's what most targets use.
152   setBooleanContents(ZeroOrOneBooleanContent);
153   setBooleanVectorContents(ZeroOrOneBooleanContent);
154 
155   // We need to custom lower vector stores from local memory
156   setOperationAction(ISD::LOAD,
157                      {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
158                       MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32, MVT::i1,
159                       MVT::v32i32},
160                      Custom);
161 
162   setOperationAction(ISD::STORE,
163                      {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
164                       MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32, MVT::i1,
165                       MVT::v32i32},
166                      Custom);
167 
168   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
169   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
170   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
171   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
172   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
173   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
174   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
175   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
176   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
177   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
178   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
179   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
180   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
181   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
182   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
183   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
184 
185   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
186   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
187   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
188   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
189   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
190   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
191   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
192 
193   setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom);
194 
195   setOperationAction(ISD::SELECT, MVT::i1, Promote);
196   setOperationAction(ISD::SELECT, MVT::i64, Custom);
197   setOperationAction(ISD::SELECT, MVT::f64, Promote);
198   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
199 
200   setOperationAction(ISD::SELECT_CC,
201                      {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand);
202 
203   setOperationAction(ISD::SETCC, MVT::i1, Promote);
204   setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand);
205   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
206 
207   setOperationAction(ISD::TRUNCATE,
208                      {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
209                       MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32},
210                      Expand);
211   setOperationAction(ISD::FP_ROUND,
212                      {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32,
213                       MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32},
214                      Expand);
215 
216   setOperationAction(ISD::SIGN_EXTEND_INREG,
217                      {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16,
218                       MVT::v3i16, MVT::v4i16, MVT::Other},
219                      Custom);
220 
221   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
222   setOperationAction(ISD::BR_CC,
223                      {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand);
224 
225   setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal);
226 
227   setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i32, Legal);
228 
229   setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64,
230                      Expand);
231 
232 #if 0
233   setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i64, Legal);
234 #endif
235 
236   // We only support LOAD/STORE and vector manipulation ops for vectors
237   // with > 4 elements.
238   for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
239                   MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
240                   MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32,
241                   MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
242                   MVT::v8i16, MVT::v8f16, MVT::v16i64, MVT::v16f64,
243                   MVT::v32i32, MVT::v32f32 }) {
244     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
245       switch (Op) {
246       case ISD::LOAD:
247       case ISD::STORE:
248       case ISD::BUILD_VECTOR:
249       case ISD::BITCAST:
250       case ISD::EXTRACT_VECTOR_ELT:
251       case ISD::INSERT_VECTOR_ELT:
252       case ISD::EXTRACT_SUBVECTOR:
253       case ISD::SCALAR_TO_VECTOR:
254         break;
255       case ISD::INSERT_SUBVECTOR:
256       case ISD::CONCAT_VECTORS:
257         setOperationAction(Op, VT, Custom);
258         break;
259       default:
260         setOperationAction(Op, VT, Expand);
261         break;
262       }
263     }
264   }
265 
266   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
267 
268   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
269   // is expanded to avoid having two separate loops in case the index is a VGPR.
270 
271   // Most operations are naturally 32-bit vector operations. We only support
272   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
273   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
274     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
275     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
276 
277     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
278     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
279 
280     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
281     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
282 
283     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
284     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
285   }
286 
287   for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
288     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
289     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
290 
291     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
292     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
293 
294     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
295     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
296 
297     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
298     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
299   }
300 
301   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
302     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
303     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
304 
305     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
306     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
307 
308     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
309     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
310 
311     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
312     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
313   }
314 
315   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
316     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
317     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
318 
319     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
320     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
321 
322     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
323     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
324 
325     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
326     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
327   }
328 
329   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
330     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
331     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
332 
333     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
334     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
335 
336     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
337     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
338 
339     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
340     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
341   }
342 
343   setOperationAction(ISD::VECTOR_SHUFFLE,
344                      {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32},
345                      Expand);
346 
347   setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16}, Custom);
348 
349   // Avoid stack access for these.
350   // TODO: Generalize to more vector types.
351   setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT},
352                      {MVT::v2i16, MVT::v2f16, MVT::v2i8, MVT::v4i8, MVT::v8i8,
353                       MVT::v4i16, MVT::v4f16},
354                      Custom);
355 
356   // Deal with vec3 vector operations when widened to vec4.
357   setOperationAction(ISD::INSERT_SUBVECTOR,
358                      {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom);
359 
360   // Deal with vec5/6/7 vector operations when widened to vec8.
361   setOperationAction(ISD::INSERT_SUBVECTOR,
362                      {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32,
363                       MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32},
364                      Custom);
365 
366   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
367   // and output demarshalling
368   setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom);
369 
370   // We can't return success/failure, only the old value,
371   // let LLVM add the comparison
372   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64},
373                      Expand);
374 
375   if (Subtarget->hasFlatAddressSpace())
376     setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
377 
378   setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal);
379 
380   // FIXME: This should be narrowed to i32, but that only happens if i64 is
381   // illegal.
382   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
383   setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal);
384 
385   // On SI this is s_memtime and s_memrealtime on VI.
386   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
387   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom);
388 
389   if (Subtarget->has16BitInsts()) {
390     setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote);
391     setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom);
392   }
393 
394   if (Subtarget->hasMadMacF32Insts())
395     setOperationAction(ISD::FMAD, MVT::f32, Legal);
396 
397   if (!Subtarget->hasBFI())
398     // fcopysign can be done in a single instruction with BFI.
399     setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
400 
401   if (!Subtarget->hasBCNT(32))
402     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
403 
404   if (!Subtarget->hasBCNT(64))
405     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
406 
407   if (Subtarget->hasFFBH())
408     setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom);
409 
410   if (Subtarget->hasFFBL())
411     setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom);
412 
413   // We only really have 32-bit BFE instructions (and 16-bit on VI).
414   //
415   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
416   // effort to match them now. We want this to be false for i64 cases when the
417   // extraction isn't restricted to the upper or lower half. Ideally we would
418   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
419   // span the midpoint are probably relatively rare, so don't worry about them
420   // for now.
421   if (Subtarget->hasBFE())
422     setHasExtractBitsInsn(true);
423 
424   // Clamp modifier on add/sub
425   if (Subtarget->hasIntClamp())
426     setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal);
427 
428   if (Subtarget->hasAddNoCarry())
429     setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32},
430                        Legal);
431 
432   setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64},
433                      Custom);
434 
435   // These are really only legal for ieee_mode functions. We should be avoiding
436   // them for functions that don't have ieee_mode enabled, so just say they are
437   // legal.
438   setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
439                      {MVT::f32, MVT::f64}, Legal);
440 
441   if (Subtarget->haveRoundOpsF64())
442     setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FRINT}, MVT::f64, Legal);
443   else
444     setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR},
445                        MVT::f64, Custom);
446 
447   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
448 
449   setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom);
450   setOperationAction(ISD::FDIV, MVT::f64, Custom);
451 
452   if (Subtarget->has16BitInsts()) {
453     setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN,
454                         ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT},
455                        MVT::i16, Legal);
456 
457     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
458 
459     setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC},
460                        MVT::i16, Expand);
461 
462     setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM,
463                         ISD::UREM, ISD::BITREVERSE, ISD::CTTZ,
464                         ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF,
465                         ISD::CTPOP},
466                        MVT::i16, Promote);
467 
468     setOperationAction(ISD::LOAD, MVT::i16, Custom);
469 
470     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
471 
472     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
473     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
474     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
475     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
476 
477     setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom);
478 
479     // F16 - Constant Actions.
480     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
481 
482     // F16 - Load/Store Actions.
483     setOperationAction(ISD::LOAD, MVT::f16, Promote);
484     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
485     setOperationAction(ISD::STORE, MVT::f16, Promote);
486     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
487 
488     // F16 - VOP1 Actions.
489     setOperationAction(
490         {ISD::FP_ROUND, ISD::FCOS, ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND},
491         MVT::f16, Custom);
492 
493     setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom);
494 
495     setOperationAction(
496         {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP},
497         MVT::f16, Promote);
498 
499     // F16 - VOP2 Actions.
500     setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::f16, Expand);
501 
502     setOperationAction(ISD::FDIV, MVT::f16, Custom);
503 
504     // F16 - VOP3 Actions.
505     setOperationAction(ISD::FMA, MVT::f16, Legal);
506     if (STI.hasMadF16())
507       setOperationAction(ISD::FMAD, MVT::f16, Legal);
508 
509     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16,
510                    MVT::v8f16}) {
511       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
512         switch (Op) {
513         case ISD::LOAD:
514         case ISD::STORE:
515         case ISD::BUILD_VECTOR:
516         case ISD::BITCAST:
517         case ISD::EXTRACT_VECTOR_ELT:
518         case ISD::INSERT_VECTOR_ELT:
519         case ISD::INSERT_SUBVECTOR:
520         case ISD::EXTRACT_SUBVECTOR:
521         case ISD::SCALAR_TO_VECTOR:
522           break;
523         case ISD::CONCAT_VECTORS:
524           setOperationAction(Op, VT, Custom);
525           break;
526         default:
527           setOperationAction(Op, VT, Expand);
528           break;
529         }
530       }
531     }
532 
533     // v_perm_b32 can handle either of these.
534     setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal);
535     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
536 
537     // XXX - Do these do anything? Vector constants turn into build_vector.
538     setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal);
539 
540     setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16}, Legal);
541 
542     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
543     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
544     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
545     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
546 
547     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
548     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
549     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
550     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
551 
552     setOperationAction(ISD::AND, MVT::v2i16, Promote);
553     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
554     setOperationAction(ISD::OR, MVT::v2i16, Promote);
555     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
556     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
557     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
558 
559     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
560     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
561     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
562     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
563 
564     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
565     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
566     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
567     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
568 
569     setOperationAction(ISD::LOAD, MVT::v8i16, Promote);
570     AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32);
571     setOperationAction(ISD::LOAD, MVT::v8f16, Promote);
572     AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32);
573 
574     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
575     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
576     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
577     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
578 
579     setOperationAction(ISD::STORE, MVT::v8i16, Promote);
580     AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32);
581     setOperationAction(ISD::STORE, MVT::v8f16, Promote);
582     AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32);
583 
584     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
585                        MVT::v2i32, Expand);
586     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
587 
588     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
589                        MVT::v4i32, Expand);
590 
591     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
592                        MVT::v8i32, Expand);
593 
594     if (!Subtarget->hasVOP3PInsts())
595       setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16}, Custom);
596 
597     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
598     // This isn't really legal, but this avoids the legalizer unrolling it (and
599     // allows matching fneg (fabs x) patterns)
600     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
601 
602     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom);
603     setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal);
604 
605     setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
606                        {MVT::v4f16, MVT::v8f16}, Custom);
607 
608     setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::v4f16, MVT::v8f16},
609                        Expand);
610 
611     for (MVT Vec16 : { MVT::v8i16, MVT::v8f16 }) {
612       setOperationAction(
613           {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR},
614           Vec16, Custom);
615       setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand);
616     }
617   }
618 
619   if (Subtarget->hasVOP3PInsts()) {
620     setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL,
621                         ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
622                         ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT},
623                        MVT::v2i16, Legal);
624 
625     setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE,
626                         ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE},
627                        MVT::v2f16, Legal);
628 
629     setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16},
630                        Custom);
631 
632     setOperationAction(ISD::VECTOR_SHUFFLE,
633                        {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16},
634                        Custom);
635 
636     for (MVT VT : {MVT::v4i16, MVT::v8i16})
637       // Split vector operations.
638       setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB,
639                           ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX,
640                           ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT,
641                           ISD::SSUBSAT},
642                          VT, Custom);
643 
644     for (MVT VT : {MVT::v4f16, MVT::v8f16})
645       // Split vector operations.
646       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE},
647                          VT, Custom);
648 
649     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16},
650                        Custom);
651 
652     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
653     setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16}, Custom);
654 
655     if (Subtarget->hasPackedFP32Ops()) {
656       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG},
657                          MVT::v2f32, Legal);
658       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA},
659                          {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32},
660                          Custom);
661     }
662   }
663 
664   setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom);
665 
666   if (Subtarget->has16BitInsts()) {
667     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
668     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
669     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
670     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
671   } else {
672     // Legalization hack.
673     setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom);
674 
675     setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom);
676   }
677 
678   setOperationAction(ISD::SELECT,
679                      {MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8,
680                       MVT::v8i16, MVT::v8f16},
681                      Custom);
682 
683   setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom);
684 
685   if (Subtarget->hasMad64_32())
686     setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom);
687 
688   setOperationAction(ISD::INTRINSIC_WO_CHAIN,
689                      {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16,
690                       MVT::v2i16, MVT::v2f16},
691                      Custom);
692 
693   setOperationAction(ISD::INTRINSIC_W_CHAIN,
694                      {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16,
695                       MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16,
696                       MVT::i16, MVT::i8},
697                      Custom);
698 
699   setOperationAction(ISD::INTRINSIC_VOID,
700                      {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16,
701                       MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16,
702                       MVT::i8},
703                      Custom);
704 
705   setTargetDAGCombine({ISD::ADD,
706                        ISD::ADDCARRY,
707                        ISD::SUB,
708                        ISD::SUBCARRY,
709                        ISD::FADD,
710                        ISD::FSUB,
711                        ISD::FMINNUM,
712                        ISD::FMAXNUM,
713                        ISD::FMINNUM_IEEE,
714                        ISD::FMAXNUM_IEEE,
715                        ISD::FMA,
716                        ISD::SMIN,
717                        ISD::SMAX,
718                        ISD::UMIN,
719                        ISD::UMAX,
720                        ISD::SETCC,
721                        ISD::AND,
722                        ISD::OR,
723                        ISD::XOR,
724                        ISD::SINT_TO_FP,
725                        ISD::UINT_TO_FP,
726                        ISD::FCANONICALIZE,
727                        ISD::SCALAR_TO_VECTOR,
728                        ISD::ZERO_EXTEND,
729                        ISD::SIGN_EXTEND_INREG,
730                        ISD::EXTRACT_VECTOR_ELT,
731                        ISD::INSERT_VECTOR_ELT});
732 
733   // All memory operations. Some folding on the pointer operand is done to help
734   // matching the constant offsets in the addressing modes.
735   setTargetDAGCombine({ISD::LOAD,
736                        ISD::STORE,
737                        ISD::ATOMIC_LOAD,
738                        ISD::ATOMIC_STORE,
739                        ISD::ATOMIC_CMP_SWAP,
740                        ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
741                        ISD::ATOMIC_SWAP,
742                        ISD::ATOMIC_LOAD_ADD,
743                        ISD::ATOMIC_LOAD_SUB,
744                        ISD::ATOMIC_LOAD_AND,
745                        ISD::ATOMIC_LOAD_OR,
746                        ISD::ATOMIC_LOAD_XOR,
747                        ISD::ATOMIC_LOAD_NAND,
748                        ISD::ATOMIC_LOAD_MIN,
749                        ISD::ATOMIC_LOAD_MAX,
750                        ISD::ATOMIC_LOAD_UMIN,
751                        ISD::ATOMIC_LOAD_UMAX,
752                        ISD::ATOMIC_LOAD_FADD,
753                        ISD::INTRINSIC_VOID,
754                        ISD::INTRINSIC_W_CHAIN});
755 
756   // FIXME: In other contexts we pretend this is a per-function property.
757   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
758 
759   setSchedulingPreference(Sched::RegPressure);
760 }
761 
762 const GCNSubtarget *SITargetLowering::getSubtarget() const {
763   return Subtarget;
764 }
765 
766 //===----------------------------------------------------------------------===//
767 // TargetLowering queries
768 //===----------------------------------------------------------------------===//
769 
770 // v_mad_mix* support a conversion from f16 to f32.
771 //
772 // There is only one special case when denormals are enabled we don't currently,
773 // where this is OK to use.
774 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
775                                        EVT DestVT, EVT SrcVT) const {
776   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
777           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
778     DestVT.getScalarType() == MVT::f32 &&
779     SrcVT.getScalarType() == MVT::f16 &&
780     // TODO: This probably only requires no input flushing?
781     !hasFP32Denormals(DAG.getMachineFunction());
782 }
783 
784 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
785                                        LLT DestTy, LLT SrcTy) const {
786   return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
787           (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
788          DestTy.getScalarSizeInBits() == 32 &&
789          SrcTy.getScalarSizeInBits() == 16 &&
790          // TODO: This probably only requires no input flushing?
791          !hasFP32Denormals(*MI.getMF());
792 }
793 
794 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
795   // SI has some legal vector types, but no legal vector operations. Say no
796   // shuffles are legal in order to prefer scalarizing some vector operations.
797   return false;
798 }
799 
800 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
801                                                     CallingConv::ID CC,
802                                                     EVT VT) const {
803   if (CC == CallingConv::AMDGPU_KERNEL)
804     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
805 
806   if (VT.isVector()) {
807     EVT ScalarVT = VT.getScalarType();
808     unsigned Size = ScalarVT.getSizeInBits();
809     if (Size == 16) {
810       if (Subtarget->has16BitInsts())
811         return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
812       return VT.isInteger() ? MVT::i32 : MVT::f32;
813     }
814 
815     if (Size < 16)
816       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
817     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
818   }
819 
820   if (VT.getSizeInBits() > 32)
821     return MVT::i32;
822 
823   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
824 }
825 
826 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
827                                                          CallingConv::ID CC,
828                                                          EVT VT) const {
829   if (CC == CallingConv::AMDGPU_KERNEL)
830     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
831 
832   if (VT.isVector()) {
833     unsigned NumElts = VT.getVectorNumElements();
834     EVT ScalarVT = VT.getScalarType();
835     unsigned Size = ScalarVT.getSizeInBits();
836 
837     // FIXME: Should probably promote 8-bit vectors to i16.
838     if (Size == 16 && Subtarget->has16BitInsts())
839       return (NumElts + 1) / 2;
840 
841     if (Size <= 32)
842       return NumElts;
843 
844     if (Size > 32)
845       return NumElts * ((Size + 31) / 32);
846   } else if (VT.getSizeInBits() > 32)
847     return (VT.getSizeInBits() + 31) / 32;
848 
849   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
850 }
851 
852 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
853   LLVMContext &Context, CallingConv::ID CC,
854   EVT VT, EVT &IntermediateVT,
855   unsigned &NumIntermediates, MVT &RegisterVT) const {
856   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
857     unsigned NumElts = VT.getVectorNumElements();
858     EVT ScalarVT = VT.getScalarType();
859     unsigned Size = ScalarVT.getSizeInBits();
860     // FIXME: We should fix the ABI to be the same on targets without 16-bit
861     // support, but unless we can properly handle 3-vectors, it will be still be
862     // inconsistent.
863     if (Size == 16 && Subtarget->has16BitInsts()) {
864       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
865       IntermediateVT = RegisterVT;
866       NumIntermediates = (NumElts + 1) / 2;
867       return NumIntermediates;
868     }
869 
870     if (Size == 32) {
871       RegisterVT = ScalarVT.getSimpleVT();
872       IntermediateVT = RegisterVT;
873       NumIntermediates = NumElts;
874       return NumIntermediates;
875     }
876 
877     if (Size < 16 && Subtarget->has16BitInsts()) {
878       // FIXME: Should probably form v2i16 pieces
879       RegisterVT = MVT::i16;
880       IntermediateVT = ScalarVT;
881       NumIntermediates = NumElts;
882       return NumIntermediates;
883     }
884 
885 
886     if (Size != 16 && Size <= 32) {
887       RegisterVT = MVT::i32;
888       IntermediateVT = ScalarVT;
889       NumIntermediates = NumElts;
890       return NumIntermediates;
891     }
892 
893     if (Size > 32) {
894       RegisterVT = MVT::i32;
895       IntermediateVT = RegisterVT;
896       NumIntermediates = NumElts * ((Size + 31) / 32);
897       return NumIntermediates;
898     }
899   }
900 
901   return TargetLowering::getVectorTypeBreakdownForCallingConv(
902     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
903 }
904 
905 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
906   assert(DMaskLanes != 0);
907 
908   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
909     unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
910     return EVT::getVectorVT(Ty->getContext(),
911                             EVT::getEVT(VT->getElementType()),
912                             NumElts);
913   }
914 
915   return EVT::getEVT(Ty);
916 }
917 
918 // Peek through TFE struct returns to only use the data size.
919 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
920   auto *ST = dyn_cast<StructType>(Ty);
921   if (!ST)
922     return memVTFromImageData(Ty, DMaskLanes);
923 
924   // Some intrinsics return an aggregate type - special case to work out the
925   // correct memVT.
926   //
927   // Only limited forms of aggregate type currently expected.
928   if (ST->getNumContainedTypes() != 2 ||
929       !ST->getContainedType(1)->isIntegerTy(32))
930     return EVT();
931   return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
932 }
933 
934 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
935                                           const CallInst &CI,
936                                           MachineFunction &MF,
937                                           unsigned IntrID) const {
938   Info.flags = MachineMemOperand::MONone;
939   if (CI.hasMetadata(LLVMContext::MD_invariant_load))
940     Info.flags |= MachineMemOperand::MOInvariant;
941 
942   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
943           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
944     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
945                                                   (Intrinsic::ID)IntrID);
946     if (Attr.hasFnAttr(Attribute::ReadNone))
947       return false;
948 
949     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
950 
951     const GCNTargetMachine &TM =
952         static_cast<const GCNTargetMachine &>(getTargetMachine());
953 
954     if (RsrcIntr->IsImage) {
955       Info.ptrVal = MFI->getImagePSV(TM);
956       Info.align.reset();
957     } else {
958       Info.ptrVal = MFI->getBufferPSV(TM);
959     }
960 
961     Info.flags |= MachineMemOperand::MODereferenceable;
962     if (Attr.hasFnAttr(Attribute::ReadOnly)) {
963       unsigned DMaskLanes = 4;
964 
965       if (RsrcIntr->IsImage) {
966         const AMDGPU::ImageDimIntrinsicInfo *Intr
967           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
968         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
969           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
970 
971         if (!BaseOpcode->Gather4) {
972           // If this isn't a gather, we may have excess loaded elements in the
973           // IR type. Check the dmask for the real number of elements loaded.
974           unsigned DMask
975             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
976           DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
977         }
978 
979         Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
980       } else
981         Info.memVT = EVT::getEVT(CI.getType());
982 
983       // FIXME: What does alignment mean for an image?
984       Info.opc = ISD::INTRINSIC_W_CHAIN;
985       Info.flags |= MachineMemOperand::MOLoad;
986     } else if (Attr.hasFnAttr(Attribute::WriteOnly)) {
987       Info.opc = ISD::INTRINSIC_VOID;
988 
989       Type *DataTy = CI.getArgOperand(0)->getType();
990       if (RsrcIntr->IsImage) {
991         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
992         unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
993         Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
994       } else
995         Info.memVT = EVT::getEVT(DataTy);
996 
997       Info.flags |= MachineMemOperand::MOStore;
998     } else {
999       // Atomic
1000       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1001                                             ISD::INTRINSIC_W_CHAIN;
1002       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1003       Info.flags |= MachineMemOperand::MOLoad |
1004                     MachineMemOperand::MOStore |
1005                     MachineMemOperand::MODereferenceable;
1006 
1007       // XXX - Should this be volatile without known ordering?
1008       Info.flags |= MachineMemOperand::MOVolatile;
1009 
1010       switch (IntrID) {
1011       default:
1012         break;
1013       case Intrinsic::amdgcn_raw_buffer_load_lds:
1014       case Intrinsic::amdgcn_struct_buffer_load_lds: {
1015         unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1016         Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1017         return true;
1018       }
1019       }
1020     }
1021     return true;
1022   }
1023 
1024   switch (IntrID) {
1025   case Intrinsic::amdgcn_atomic_inc:
1026   case Intrinsic::amdgcn_atomic_dec:
1027   case Intrinsic::amdgcn_ds_ordered_add:
1028   case Intrinsic::amdgcn_ds_ordered_swap:
1029   case Intrinsic::amdgcn_ds_fadd:
1030   case Intrinsic::amdgcn_ds_fmin:
1031   case Intrinsic::amdgcn_ds_fmax: {
1032     Info.opc = ISD::INTRINSIC_W_CHAIN;
1033     Info.memVT = MVT::getVT(CI.getType());
1034     Info.ptrVal = CI.getOperand(0);
1035     Info.align.reset();
1036     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1037 
1038     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1039     if (!Vol->isZero())
1040       Info.flags |= MachineMemOperand::MOVolatile;
1041 
1042     return true;
1043   }
1044   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1045     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1046 
1047     const GCNTargetMachine &TM =
1048         static_cast<const GCNTargetMachine &>(getTargetMachine());
1049 
1050     Info.opc = ISD::INTRINSIC_W_CHAIN;
1051     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1052     Info.ptrVal = MFI->getBufferPSV(TM);
1053     Info.align.reset();
1054     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1055 
1056     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1057     if (!Vol || !Vol->isZero())
1058       Info.flags |= MachineMemOperand::MOVolatile;
1059 
1060     return true;
1061   }
1062   case Intrinsic::amdgcn_ds_append:
1063   case Intrinsic::amdgcn_ds_consume: {
1064     Info.opc = ISD::INTRINSIC_W_CHAIN;
1065     Info.memVT = MVT::getVT(CI.getType());
1066     Info.ptrVal = CI.getOperand(0);
1067     Info.align.reset();
1068     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1069 
1070     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1071     if (!Vol->isZero())
1072       Info.flags |= MachineMemOperand::MOVolatile;
1073 
1074     return true;
1075   }
1076   case Intrinsic::amdgcn_global_atomic_csub: {
1077     Info.opc = ISD::INTRINSIC_W_CHAIN;
1078     Info.memVT = MVT::getVT(CI.getType());
1079     Info.ptrVal = CI.getOperand(0);
1080     Info.align.reset();
1081     Info.flags |= MachineMemOperand::MOLoad |
1082                   MachineMemOperand::MOStore |
1083                   MachineMemOperand::MOVolatile;
1084     return true;
1085   }
1086   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1087     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1088     Info.opc = ISD::INTRINSIC_W_CHAIN;
1089     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1090 
1091     const GCNTargetMachine &TM =
1092         static_cast<const GCNTargetMachine &>(getTargetMachine());
1093 
1094     Info.ptrVal = MFI->getImagePSV(TM);
1095     Info.align.reset();
1096     Info.flags |= MachineMemOperand::MOLoad |
1097                   MachineMemOperand::MODereferenceable;
1098     return true;
1099   }
1100   case Intrinsic::amdgcn_global_atomic_fadd:
1101   case Intrinsic::amdgcn_global_atomic_fmin:
1102   case Intrinsic::amdgcn_global_atomic_fmax:
1103   case Intrinsic::amdgcn_flat_atomic_fadd:
1104   case Intrinsic::amdgcn_flat_atomic_fmin:
1105   case Intrinsic::amdgcn_flat_atomic_fmax:
1106   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1107   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: {
1108     Info.opc = ISD::INTRINSIC_W_CHAIN;
1109     Info.memVT = MVT::getVT(CI.getType());
1110     Info.ptrVal = CI.getOperand(0);
1111     Info.align.reset();
1112     Info.flags |= MachineMemOperand::MOLoad |
1113                   MachineMemOperand::MOStore |
1114                   MachineMemOperand::MODereferenceable |
1115                   MachineMemOperand::MOVolatile;
1116     return true;
1117   }
1118   case Intrinsic::amdgcn_ds_gws_init:
1119   case Intrinsic::amdgcn_ds_gws_barrier:
1120   case Intrinsic::amdgcn_ds_gws_sema_v:
1121   case Intrinsic::amdgcn_ds_gws_sema_br:
1122   case Intrinsic::amdgcn_ds_gws_sema_p:
1123   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1124     Info.opc = ISD::INTRINSIC_VOID;
1125 
1126     const GCNTargetMachine &TM =
1127         static_cast<const GCNTargetMachine &>(getTargetMachine());
1128 
1129     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1130     Info.ptrVal = MFI->getGWSPSV(TM);
1131 
1132     // This is an abstract access, but we need to specify a type and size.
1133     Info.memVT = MVT::i32;
1134     Info.size = 4;
1135     Info.align = Align(4);
1136 
1137     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1138       Info.flags |= MachineMemOperand::MOLoad;
1139     else
1140       Info.flags |= MachineMemOperand::MOStore;
1141     return true;
1142   }
1143   case Intrinsic::amdgcn_global_load_lds: {
1144     Info.opc = ISD::INTRINSIC_VOID;
1145     unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1146     Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1147     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1148                   MachineMemOperand::MOVolatile;
1149     return true;
1150   }
1151   default:
1152     return false;
1153   }
1154 }
1155 
1156 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1157                                             SmallVectorImpl<Value*> &Ops,
1158                                             Type *&AccessTy) const {
1159   switch (II->getIntrinsicID()) {
1160   case Intrinsic::amdgcn_atomic_inc:
1161   case Intrinsic::amdgcn_atomic_dec:
1162   case Intrinsic::amdgcn_ds_ordered_add:
1163   case Intrinsic::amdgcn_ds_ordered_swap:
1164   case Intrinsic::amdgcn_ds_append:
1165   case Intrinsic::amdgcn_ds_consume:
1166   case Intrinsic::amdgcn_ds_fadd:
1167   case Intrinsic::amdgcn_ds_fmin:
1168   case Intrinsic::amdgcn_ds_fmax:
1169   case Intrinsic::amdgcn_global_atomic_fadd:
1170   case Intrinsic::amdgcn_flat_atomic_fadd:
1171   case Intrinsic::amdgcn_flat_atomic_fmin:
1172   case Intrinsic::amdgcn_flat_atomic_fmax:
1173   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1174   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16:
1175   case Intrinsic::amdgcn_global_atomic_csub: {
1176     Value *Ptr = II->getArgOperand(0);
1177     AccessTy = II->getType();
1178     Ops.push_back(Ptr);
1179     return true;
1180   }
1181   default:
1182     return false;
1183   }
1184 }
1185 
1186 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1187   if (!Subtarget->hasFlatInstOffsets()) {
1188     // Flat instructions do not have offsets, and only have the register
1189     // address.
1190     return AM.BaseOffs == 0 && AM.Scale == 0;
1191   }
1192 
1193   return AM.Scale == 0 &&
1194          (AM.BaseOffs == 0 ||
1195           Subtarget->getInstrInfo()->isLegalFLATOffset(
1196               AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1197 }
1198 
1199 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1200   if (Subtarget->hasFlatGlobalInsts())
1201     return AM.Scale == 0 &&
1202            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1203                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1204                                     SIInstrFlags::FlatGlobal));
1205 
1206   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1207       // Assume the we will use FLAT for all global memory accesses
1208       // on VI.
1209       // FIXME: This assumption is currently wrong.  On VI we still use
1210       // MUBUF instructions for the r + i addressing mode.  As currently
1211       // implemented, the MUBUF instructions only work on buffer < 4GB.
1212       // It may be possible to support > 4GB buffers with MUBUF instructions,
1213       // by setting the stride value in the resource descriptor which would
1214       // increase the size limit to (stride * 4GB).  However, this is risky,
1215       // because it has never been validated.
1216     return isLegalFlatAddressingMode(AM);
1217   }
1218 
1219   return isLegalMUBUFAddressingMode(AM);
1220 }
1221 
1222 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1223   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1224   // additionally can do r + r + i with addr64. 32-bit has more addressing
1225   // mode options. Depending on the resource constant, it can also do
1226   // (i64 r0) + (i32 r1) * (i14 i).
1227   //
1228   // Private arrays end up using a scratch buffer most of the time, so also
1229   // assume those use MUBUF instructions. Scratch loads / stores are currently
1230   // implemented as mubuf instructions with offen bit set, so slightly
1231   // different than the normal addr64.
1232   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1233     return false;
1234 
1235   // FIXME: Since we can split immediate into soffset and immediate offset,
1236   // would it make sense to allow any immediate?
1237 
1238   switch (AM.Scale) {
1239   case 0: // r + i or just i, depending on HasBaseReg.
1240     return true;
1241   case 1:
1242     return true; // We have r + r or r + i.
1243   case 2:
1244     if (AM.HasBaseReg) {
1245       // Reject 2 * r + r.
1246       return false;
1247     }
1248 
1249     // Allow 2 * r as r + r
1250     // Or  2 * r + i is allowed as r + r + i.
1251     return true;
1252   default: // Don't allow n * r
1253     return false;
1254   }
1255 }
1256 
1257 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1258                                              const AddrMode &AM, Type *Ty,
1259                                              unsigned AS, Instruction *I) const {
1260   // No global is ever allowed as a base.
1261   if (AM.BaseGV)
1262     return false;
1263 
1264   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1265     return isLegalGlobalAddressingMode(AM);
1266 
1267   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1268       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1269       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1270     // If the offset isn't a multiple of 4, it probably isn't going to be
1271     // correctly aligned.
1272     // FIXME: Can we get the real alignment here?
1273     if (AM.BaseOffs % 4 != 0)
1274       return isLegalMUBUFAddressingMode(AM);
1275 
1276     // There are no SMRD extloads, so if we have to do a small type access we
1277     // will use a MUBUF load.
1278     // FIXME?: We also need to do this if unaligned, but we don't know the
1279     // alignment here.
1280     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1281       return isLegalGlobalAddressingMode(AM);
1282 
1283     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1284       // SMRD instructions have an 8-bit, dword offset on SI.
1285       if (!isUInt<8>(AM.BaseOffs / 4))
1286         return false;
1287     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1288       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1289       // in 8-bits, it can use a smaller encoding.
1290       if (!isUInt<32>(AM.BaseOffs / 4))
1291         return false;
1292     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1293       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1294       if (!isUInt<20>(AM.BaseOffs))
1295         return false;
1296     } else
1297       llvm_unreachable("unhandled generation");
1298 
1299     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1300       return true;
1301 
1302     if (AM.Scale == 1 && AM.HasBaseReg)
1303       return true;
1304 
1305     return false;
1306 
1307   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1308     return isLegalMUBUFAddressingMode(AM);
1309   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1310              AS == AMDGPUAS::REGION_ADDRESS) {
1311     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1312     // field.
1313     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1314     // an 8-bit dword offset but we don't know the alignment here.
1315     if (!isUInt<16>(AM.BaseOffs))
1316       return false;
1317 
1318     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1319       return true;
1320 
1321     if (AM.Scale == 1 && AM.HasBaseReg)
1322       return true;
1323 
1324     return false;
1325   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1326              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1327     // For an unknown address space, this usually means that this is for some
1328     // reason being used for pure arithmetic, and not based on some addressing
1329     // computation. We don't have instructions that compute pointers with any
1330     // addressing modes, so treat them as having no offset like flat
1331     // instructions.
1332     return isLegalFlatAddressingMode(AM);
1333   }
1334 
1335   // Assume a user alias of global for unknown address spaces.
1336   return isLegalGlobalAddressingMode(AM);
1337 }
1338 
1339 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1340                                         const MachineFunction &MF) const {
1341   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1342     return (MemVT.getSizeInBits() <= 4 * 32);
1343   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1344     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1345     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1346   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1347     return (MemVT.getSizeInBits() <= 2 * 32);
1348   }
1349   return true;
1350 }
1351 
1352 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1353     unsigned Size, unsigned AddrSpace, Align Alignment,
1354     MachineMemOperand::Flags Flags, bool *IsFast) const {
1355   if (IsFast)
1356     *IsFast = false;
1357 
1358   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1359       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1360     // Check if alignment requirements for ds_read/write instructions are
1361     // disabled.
1362     if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4))
1363       return false;
1364 
1365     Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment.
1366     if (Subtarget->hasLDSMisalignedBug() && Size > 32 &&
1367         Alignment < RequiredAlignment)
1368       return false;
1369 
1370     // Either, the alignment requirements are "enabled", or there is an
1371     // unaligned LDS access related hardware bug though alignment requirements
1372     // are "disabled". In either case, we need to check for proper alignment
1373     // requirements.
1374     //
1375     switch (Size) {
1376     case 64:
1377       // SI has a hardware bug in the LDS / GDS bounds checking: if the base
1378       // address is negative, then the instruction is incorrectly treated as
1379       // out-of-bounds even if base + offsets is in bounds. Split vectorized
1380       // loads here to avoid emitting ds_read2_b32. We may re-combine the
1381       // load later in the SILoadStoreOptimizer.
1382       if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8))
1383         return false;
1384 
1385       // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1386       // can do a 4 byte aligned, 8 byte access in a single operation using
1387       // ds_read2/write2_b32 with adjacent offsets.
1388       RequiredAlignment = Align(4);
1389 
1390       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1391         // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/
1392         // ds_write2_b32 depending on the alignment. In either case with either
1393         // alignment there is no faster way of doing this.
1394         if (IsFast)
1395           *IsFast = true;
1396         return true;
1397       }
1398 
1399       break;
1400     case 96:
1401       if (!Subtarget->hasDS96AndDS128())
1402         return false;
1403 
1404       // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1405       // gfx8 and older.
1406 
1407       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1408         // Naturally aligned access is fastest. However, also report it is Fast
1409         // if memory is aligned less than DWORD. A narrow load or store will be
1410         // be equally slow as a single ds_read_b96/ds_write_b96, but there will
1411         // be more of them, so overall we will pay less penalty issuing a single
1412         // instruction.
1413         if (IsFast)
1414           *IsFast = Alignment >= RequiredAlignment || Alignment < Align(4);
1415         return true;
1416       }
1417 
1418       break;
1419     case 128:
1420       if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128())
1421         return false;
1422 
1423       // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1424       // gfx8 and older, but  we can do a 8 byte aligned, 16 byte access in a
1425       // single operation using ds_read2/write2_b64.
1426       RequiredAlignment = Align(8);
1427 
1428       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1429         // Naturally aligned access is fastest. However, also report it is Fast
1430         // if memory is aligned less than DWORD. A narrow load or store will be
1431         // be equally slow as a single ds_read_b128/ds_write_b128, but there
1432         // will be more of them, so overall we will pay less penalty issuing a
1433         // single instruction.
1434         if (IsFast)
1435           *IsFast = Alignment >= RequiredAlignment || Alignment < Align(4);
1436         return true;
1437       }
1438 
1439       break;
1440     default:
1441       if (Size > 32)
1442         return false;
1443 
1444       break;
1445     }
1446 
1447     if (IsFast)
1448       *IsFast = Alignment >= RequiredAlignment;
1449 
1450     return Alignment >= RequiredAlignment ||
1451            Subtarget->hasUnalignedDSAccessEnabled();
1452   }
1453 
1454   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1455     bool AlignedBy4 = Alignment >= Align(4);
1456     if (IsFast)
1457       *IsFast = AlignedBy4;
1458 
1459     return AlignedBy4 ||
1460            Subtarget->enableFlatScratch() ||
1461            Subtarget->hasUnalignedScratchAccess();
1462   }
1463 
1464   // FIXME: We have to be conservative here and assume that flat operations
1465   // will access scratch.  If we had access to the IR function, then we
1466   // could determine if any private memory was used in the function.
1467   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1468       !Subtarget->hasUnalignedScratchAccess()) {
1469     bool AlignedBy4 = Alignment >= Align(4);
1470     if (IsFast)
1471       *IsFast = AlignedBy4;
1472 
1473     return AlignedBy4;
1474   }
1475 
1476   if (Subtarget->hasUnalignedBufferAccessEnabled()) {
1477     // If we have a uniform constant load, it still requires using a slow
1478     // buffer instruction if unaligned.
1479     if (IsFast) {
1480       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1481       // 2-byte alignment is worse than 1 unless doing a 2-byte access.
1482       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1483                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1484         Alignment >= Align(4) : Alignment != Align(2);
1485     }
1486 
1487     return true;
1488   }
1489 
1490   // Smaller than dword value must be aligned.
1491   if (Size < 32)
1492     return false;
1493 
1494   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1495   // byte-address are ignored, thus forcing Dword alignment.
1496   // This applies to private, global, and constant memory.
1497   if (IsFast)
1498     *IsFast = true;
1499 
1500   return Size >= 32 && Alignment >= Align(4);
1501 }
1502 
1503 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1504     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1505     bool *IsFast) const {
1506   bool Allow = allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1507                                                   Alignment, Flags, IsFast);
1508 
1509   if (Allow && IsFast && Subtarget->hasUnalignedDSAccessEnabled() &&
1510       (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1511        AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1512     // Lie it is fast if +unaligned-access-mode is passed so that DS accesses
1513     // get vectorized. We could use ds_read2_b*/ds_write2_b* instructions on a
1514     // misaligned data which is faster than a pair of ds_read_b*/ds_write_b*
1515     // which would be equally misaligned.
1516     // This is only used by the common passes, selection always calls the
1517     // allowsMisalignedMemoryAccessesImpl version.
1518     *IsFast = true;
1519   }
1520 
1521   return Allow;
1522 }
1523 
1524 EVT SITargetLowering::getOptimalMemOpType(
1525     const MemOp &Op, const AttributeList &FuncAttributes) const {
1526   // FIXME: Should account for address space here.
1527 
1528   // The default fallback uses the private pointer size as a guess for a type to
1529   // use. Make sure we switch these to 64-bit accesses.
1530 
1531   if (Op.size() >= 16 &&
1532       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1533     return MVT::v4i32;
1534 
1535   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1536     return MVT::v2i32;
1537 
1538   // Use the default.
1539   return MVT::Other;
1540 }
1541 
1542 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1543   const MemSDNode *MemNode = cast<MemSDNode>(N);
1544   return MemNode->getMemOperand()->getFlags() & MONoClobber;
1545 }
1546 
1547 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1548   return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1549          AS == AMDGPUAS::PRIVATE_ADDRESS;
1550 }
1551 
1552 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1553                                            unsigned DestAS) const {
1554   // Flat -> private/local is a simple truncate.
1555   // Flat -> global is no-op
1556   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1557     return true;
1558 
1559   const GCNTargetMachine &TM =
1560       static_cast<const GCNTargetMachine &>(getTargetMachine());
1561   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1562 }
1563 
1564 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1565   const MemSDNode *MemNode = cast<MemSDNode>(N);
1566 
1567   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1568 }
1569 
1570 TargetLoweringBase::LegalizeTypeAction
1571 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1572   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1573       VT.getScalarType().bitsLE(MVT::i16))
1574     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1575   return TargetLoweringBase::getPreferredVectorAction(VT);
1576 }
1577 
1578 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1579                                                          Type *Ty) const {
1580   // FIXME: Could be smarter if called for vector constants.
1581   return true;
1582 }
1583 
1584 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1585                                                unsigned Index) const {
1586   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
1587     return false;
1588 
1589   // TODO: Add more cases that are cheap.
1590   return Index == 0;
1591 }
1592 
1593 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1594   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1595     switch (Op) {
1596     case ISD::LOAD:
1597     case ISD::STORE:
1598 
1599     // These operations are done with 32-bit instructions anyway.
1600     case ISD::AND:
1601     case ISD::OR:
1602     case ISD::XOR:
1603     case ISD::SELECT:
1604       // TODO: Extensions?
1605       return true;
1606     default:
1607       return false;
1608     }
1609   }
1610 
1611   // SimplifySetCC uses this function to determine whether or not it should
1612   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1613   if (VT == MVT::i1 && Op == ISD::SETCC)
1614     return false;
1615 
1616   return TargetLowering::isTypeDesirableForOp(Op, VT);
1617 }
1618 
1619 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1620                                                    const SDLoc &SL,
1621                                                    SDValue Chain,
1622                                                    uint64_t Offset) const {
1623   const DataLayout &DL = DAG.getDataLayout();
1624   MachineFunction &MF = DAG.getMachineFunction();
1625   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1626 
1627   const ArgDescriptor *InputPtrReg;
1628   const TargetRegisterClass *RC;
1629   LLT ArgTy;
1630   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1631 
1632   std::tie(InputPtrReg, RC, ArgTy) =
1633       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1634 
1635   // We may not have the kernarg segment argument if we have no kernel
1636   // arguments.
1637   if (!InputPtrReg)
1638     return DAG.getConstant(0, SL, PtrVT);
1639 
1640   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1641   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1642     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1643 
1644   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1645 }
1646 
1647 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1648                                             const SDLoc &SL) const {
1649   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1650                                                FIRST_IMPLICIT);
1651   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1652 }
1653 
1654 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1655                                          const SDLoc &SL, SDValue Val,
1656                                          bool Signed,
1657                                          const ISD::InputArg *Arg) const {
1658   // First, if it is a widened vector, narrow it.
1659   if (VT.isVector() &&
1660       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1661     EVT NarrowedVT =
1662         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1663                          VT.getVectorNumElements());
1664     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1665                       DAG.getConstant(0, SL, MVT::i32));
1666   }
1667 
1668   // Then convert the vector elements or scalar value.
1669   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1670       VT.bitsLT(MemVT)) {
1671     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1672     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1673   }
1674 
1675   if (MemVT.isFloatingPoint())
1676     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1677   else if (Signed)
1678     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1679   else
1680     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1681 
1682   return Val;
1683 }
1684 
1685 SDValue SITargetLowering::lowerKernargMemParameter(
1686     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1687     uint64_t Offset, Align Alignment, bool Signed,
1688     const ISD::InputArg *Arg) const {
1689   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1690 
1691   // Try to avoid using an extload by loading earlier than the argument address,
1692   // and extracting the relevant bits. The load should hopefully be merged with
1693   // the previous argument.
1694   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1695     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1696     int64_t AlignDownOffset = alignDown(Offset, 4);
1697     int64_t OffsetDiff = Offset - AlignDownOffset;
1698 
1699     EVT IntVT = MemVT.changeTypeToInteger();
1700 
1701     // TODO: If we passed in the base kernel offset we could have a better
1702     // alignment than 4, but we don't really need it.
1703     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1704     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1705                                MachineMemOperand::MODereferenceable |
1706                                    MachineMemOperand::MOInvariant);
1707 
1708     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1709     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1710 
1711     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1712     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1713     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1714 
1715 
1716     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1717   }
1718 
1719   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1720   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1721                              MachineMemOperand::MODereferenceable |
1722                                  MachineMemOperand::MOInvariant);
1723 
1724   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1725   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1726 }
1727 
1728 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1729                                               const SDLoc &SL, SDValue Chain,
1730                                               const ISD::InputArg &Arg) const {
1731   MachineFunction &MF = DAG.getMachineFunction();
1732   MachineFrameInfo &MFI = MF.getFrameInfo();
1733 
1734   if (Arg.Flags.isByVal()) {
1735     unsigned Size = Arg.Flags.getByValSize();
1736     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1737     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1738   }
1739 
1740   unsigned ArgOffset = VA.getLocMemOffset();
1741   unsigned ArgSize = VA.getValVT().getStoreSize();
1742 
1743   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1744 
1745   // Create load nodes to retrieve arguments from the stack.
1746   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1747   SDValue ArgValue;
1748 
1749   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1750   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1751   MVT MemVT = VA.getValVT();
1752 
1753   switch (VA.getLocInfo()) {
1754   default:
1755     break;
1756   case CCValAssign::BCvt:
1757     MemVT = VA.getLocVT();
1758     break;
1759   case CCValAssign::SExt:
1760     ExtType = ISD::SEXTLOAD;
1761     break;
1762   case CCValAssign::ZExt:
1763     ExtType = ISD::ZEXTLOAD;
1764     break;
1765   case CCValAssign::AExt:
1766     ExtType = ISD::EXTLOAD;
1767     break;
1768   }
1769 
1770   ArgValue = DAG.getExtLoad(
1771     ExtType, SL, VA.getLocVT(), Chain, FIN,
1772     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1773     MemVT);
1774   return ArgValue;
1775 }
1776 
1777 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1778   const SIMachineFunctionInfo &MFI,
1779   EVT VT,
1780   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1781   const ArgDescriptor *Reg;
1782   const TargetRegisterClass *RC;
1783   LLT Ty;
1784 
1785   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1786   if (!Reg) {
1787     if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) {
1788       // It's possible for a kernarg intrinsic call to appear in a kernel with
1789       // no allocated segment, in which case we do not add the user sgpr
1790       // argument, so just return null.
1791       return DAG.getConstant(0, SDLoc(), VT);
1792     }
1793 
1794     // It's undefined behavior if a function marked with the amdgpu-no-*
1795     // attributes uses the corresponding intrinsic.
1796     return DAG.getUNDEF(VT);
1797   }
1798 
1799   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1800 }
1801 
1802 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1803                                CallingConv::ID CallConv,
1804                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1805                                FunctionType *FType,
1806                                SIMachineFunctionInfo *Info) {
1807   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1808     const ISD::InputArg *Arg = &Ins[I];
1809 
1810     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1811            "vector type argument should have been split");
1812 
1813     // First check if it's a PS input addr.
1814     if (CallConv == CallingConv::AMDGPU_PS &&
1815         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1816       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1817 
1818       // Inconveniently only the first part of the split is marked as isSplit,
1819       // so skip to the end. We only want to increment PSInputNum once for the
1820       // entire split argument.
1821       if (Arg->Flags.isSplit()) {
1822         while (!Arg->Flags.isSplitEnd()) {
1823           assert((!Arg->VT.isVector() ||
1824                   Arg->VT.getScalarSizeInBits() == 16) &&
1825                  "unexpected vector split in ps argument type");
1826           if (!SkipArg)
1827             Splits.push_back(*Arg);
1828           Arg = &Ins[++I];
1829         }
1830       }
1831 
1832       if (SkipArg) {
1833         // We can safely skip PS inputs.
1834         Skipped.set(Arg->getOrigArgIndex());
1835         ++PSInputNum;
1836         continue;
1837       }
1838 
1839       Info->markPSInputAllocated(PSInputNum);
1840       if (Arg->Used)
1841         Info->markPSInputEnabled(PSInputNum);
1842 
1843       ++PSInputNum;
1844     }
1845 
1846     Splits.push_back(*Arg);
1847   }
1848 }
1849 
1850 // Allocate special inputs passed in VGPRs.
1851 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1852                                                       MachineFunction &MF,
1853                                                       const SIRegisterInfo &TRI,
1854                                                       SIMachineFunctionInfo &Info) const {
1855   const LLT S32 = LLT::scalar(32);
1856   MachineRegisterInfo &MRI = MF.getRegInfo();
1857 
1858   if (Info.hasWorkItemIDX()) {
1859     Register Reg = AMDGPU::VGPR0;
1860     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1861 
1862     CCInfo.AllocateReg(Reg);
1863     unsigned Mask = (Subtarget->hasPackedTID() &&
1864                      Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1865     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1866   }
1867 
1868   if (Info.hasWorkItemIDY()) {
1869     assert(Info.hasWorkItemIDX());
1870     if (Subtarget->hasPackedTID()) {
1871       Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1872                                                         0x3ff << 10));
1873     } else {
1874       unsigned Reg = AMDGPU::VGPR1;
1875       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1876 
1877       CCInfo.AllocateReg(Reg);
1878       Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1879     }
1880   }
1881 
1882   if (Info.hasWorkItemIDZ()) {
1883     assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
1884     if (Subtarget->hasPackedTID()) {
1885       Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1886                                                         0x3ff << 20));
1887     } else {
1888       unsigned Reg = AMDGPU::VGPR2;
1889       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1890 
1891       CCInfo.AllocateReg(Reg);
1892       Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1893     }
1894   }
1895 }
1896 
1897 // Try to allocate a VGPR at the end of the argument list, or if no argument
1898 // VGPRs are left allocating a stack slot.
1899 // If \p Mask is is given it indicates bitfield position in the register.
1900 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1901 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1902                                          ArgDescriptor Arg = ArgDescriptor()) {
1903   if (Arg.isSet())
1904     return ArgDescriptor::createArg(Arg, Mask);
1905 
1906   ArrayRef<MCPhysReg> ArgVGPRs
1907     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1908   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1909   if (RegIdx == ArgVGPRs.size()) {
1910     // Spill to stack required.
1911     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1912 
1913     return ArgDescriptor::createStack(Offset, Mask);
1914   }
1915 
1916   unsigned Reg = ArgVGPRs[RegIdx];
1917   Reg = CCInfo.AllocateReg(Reg);
1918   assert(Reg != AMDGPU::NoRegister);
1919 
1920   MachineFunction &MF = CCInfo.getMachineFunction();
1921   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1922   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1923   return ArgDescriptor::createRegister(Reg, Mask);
1924 }
1925 
1926 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1927                                              const TargetRegisterClass *RC,
1928                                              unsigned NumArgRegs) {
1929   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1930   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1931   if (RegIdx == ArgSGPRs.size())
1932     report_fatal_error("ran out of SGPRs for arguments");
1933 
1934   unsigned Reg = ArgSGPRs[RegIdx];
1935   Reg = CCInfo.AllocateReg(Reg);
1936   assert(Reg != AMDGPU::NoRegister);
1937 
1938   MachineFunction &MF = CCInfo.getMachineFunction();
1939   MF.addLiveIn(Reg, RC);
1940   return ArgDescriptor::createRegister(Reg);
1941 }
1942 
1943 // If this has a fixed position, we still should allocate the register in the
1944 // CCInfo state. Technically we could get away with this for values passed
1945 // outside of the normal argument range.
1946 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
1947                                        const TargetRegisterClass *RC,
1948                                        MCRegister Reg) {
1949   Reg = CCInfo.AllocateReg(Reg);
1950   assert(Reg != AMDGPU::NoRegister);
1951   MachineFunction &MF = CCInfo.getMachineFunction();
1952   MF.addLiveIn(Reg, RC);
1953 }
1954 
1955 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
1956   if (Arg) {
1957     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
1958                                Arg.getRegister());
1959   } else
1960     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1961 }
1962 
1963 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
1964   if (Arg) {
1965     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
1966                                Arg.getRegister());
1967   } else
1968     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1969 }
1970 
1971 /// Allocate implicit function VGPR arguments at the end of allocated user
1972 /// arguments.
1973 void SITargetLowering::allocateSpecialInputVGPRs(
1974   CCState &CCInfo, MachineFunction &MF,
1975   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1976   const unsigned Mask = 0x3ff;
1977   ArgDescriptor Arg;
1978 
1979   if (Info.hasWorkItemIDX()) {
1980     Arg = allocateVGPR32Input(CCInfo, Mask);
1981     Info.setWorkItemIDX(Arg);
1982   }
1983 
1984   if (Info.hasWorkItemIDY()) {
1985     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1986     Info.setWorkItemIDY(Arg);
1987   }
1988 
1989   if (Info.hasWorkItemIDZ())
1990     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1991 }
1992 
1993 /// Allocate implicit function VGPR arguments in fixed registers.
1994 void SITargetLowering::allocateSpecialInputVGPRsFixed(
1995   CCState &CCInfo, MachineFunction &MF,
1996   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1997   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
1998   if (!Reg)
1999     report_fatal_error("failed to allocated VGPR for implicit arguments");
2000 
2001   const unsigned Mask = 0x3ff;
2002   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2003   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2004   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2005 }
2006 
2007 void SITargetLowering::allocateSpecialInputSGPRs(
2008   CCState &CCInfo,
2009   MachineFunction &MF,
2010   const SIRegisterInfo &TRI,
2011   SIMachineFunctionInfo &Info) const {
2012   auto &ArgInfo = Info.getArgInfo();
2013 
2014   // TODO: Unify handling with private memory pointers.
2015   if (Info.hasDispatchPtr())
2016     allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2017 
2018   if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5)
2019     allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2020 
2021   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2022   // constant offset from the kernarg segment.
2023   if (Info.hasImplicitArgPtr())
2024     allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2025 
2026   if (Info.hasDispatchID())
2027     allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2028 
2029   // flat_scratch_init is not applicable for non-kernel functions.
2030 
2031   if (Info.hasWorkGroupIDX())
2032     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2033 
2034   if (Info.hasWorkGroupIDY())
2035     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2036 
2037   if (Info.hasWorkGroupIDZ())
2038     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2039 }
2040 
2041 // Allocate special inputs passed in user SGPRs.
2042 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2043                                             MachineFunction &MF,
2044                                             const SIRegisterInfo &TRI,
2045                                             SIMachineFunctionInfo &Info) const {
2046   if (Info.hasImplicitBufferPtr()) {
2047     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2048     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2049     CCInfo.AllocateReg(ImplicitBufferPtrReg);
2050   }
2051 
2052   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2053   if (Info.hasPrivateSegmentBuffer()) {
2054     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2055     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2056     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2057   }
2058 
2059   if (Info.hasDispatchPtr()) {
2060     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2061     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2062     CCInfo.AllocateReg(DispatchPtrReg);
2063   }
2064 
2065   if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) {
2066     Register QueuePtrReg = Info.addQueuePtr(TRI);
2067     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2068     CCInfo.AllocateReg(QueuePtrReg);
2069   }
2070 
2071   if (Info.hasKernargSegmentPtr()) {
2072     MachineRegisterInfo &MRI = MF.getRegInfo();
2073     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2074     CCInfo.AllocateReg(InputPtrReg);
2075 
2076     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2077     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2078   }
2079 
2080   if (Info.hasDispatchID()) {
2081     Register DispatchIDReg = Info.addDispatchID(TRI);
2082     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2083     CCInfo.AllocateReg(DispatchIDReg);
2084   }
2085 
2086   if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2087     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2088     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2089     CCInfo.AllocateReg(FlatScratchInitReg);
2090   }
2091 
2092   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2093   // these from the dispatch pointer.
2094 }
2095 
2096 // Allocate special input registers that are initialized per-wave.
2097 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2098                                            MachineFunction &MF,
2099                                            SIMachineFunctionInfo &Info,
2100                                            CallingConv::ID CallConv,
2101                                            bool IsShader) const {
2102   if (Subtarget->hasUserSGPRInit16Bug()) {
2103     // Pad up the used user SGPRs with dead inputs.
2104     unsigned CurrentUserSGPRs = Info.getNumUserSGPRs();
2105 
2106     // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to
2107     // rely on it to reach 16 since if we end up having no stack usage, it will
2108     // not really be added.
2109     unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() +
2110                                       Info.hasWorkGroupIDY() +
2111                                       Info.hasWorkGroupIDZ() +
2112                                       Info.hasWorkGroupInfo();
2113     for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) {
2114       Register Reg = Info.addReservedUserSGPR();
2115       MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2116       CCInfo.AllocateReg(Reg);
2117     }
2118   }
2119 
2120   if (Info.hasWorkGroupIDX()) {
2121     Register Reg = Info.addWorkGroupIDX();
2122     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2123     CCInfo.AllocateReg(Reg);
2124   }
2125 
2126   if (Info.hasWorkGroupIDY()) {
2127     Register Reg = Info.addWorkGroupIDY();
2128     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2129     CCInfo.AllocateReg(Reg);
2130   }
2131 
2132   if (Info.hasWorkGroupIDZ()) {
2133     Register Reg = Info.addWorkGroupIDZ();
2134     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2135     CCInfo.AllocateReg(Reg);
2136   }
2137 
2138   if (Info.hasWorkGroupInfo()) {
2139     Register Reg = Info.addWorkGroupInfo();
2140     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2141     CCInfo.AllocateReg(Reg);
2142   }
2143 
2144   if (Info.hasPrivateSegmentWaveByteOffset()) {
2145     // Scratch wave offset passed in system SGPR.
2146     unsigned PrivateSegmentWaveByteOffsetReg;
2147 
2148     if (IsShader) {
2149       PrivateSegmentWaveByteOffsetReg =
2150         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2151 
2152       // This is true if the scratch wave byte offset doesn't have a fixed
2153       // location.
2154       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2155         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2156         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2157       }
2158     } else
2159       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2160 
2161     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2162     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2163   }
2164 
2165   assert(!Subtarget->hasUserSGPRInit16Bug() || Info.getNumPreloadedSGPRs() >= 16);
2166 }
2167 
2168 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2169                                      MachineFunction &MF,
2170                                      const SIRegisterInfo &TRI,
2171                                      SIMachineFunctionInfo &Info) {
2172   // Now that we've figured out where the scratch register inputs are, see if
2173   // should reserve the arguments and use them directly.
2174   MachineFrameInfo &MFI = MF.getFrameInfo();
2175   bool HasStackObjects = MFI.hasStackObjects();
2176   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2177 
2178   // Record that we know we have non-spill stack objects so we don't need to
2179   // check all stack objects later.
2180   if (HasStackObjects)
2181     Info.setHasNonSpillStackObjects(true);
2182 
2183   // Everything live out of a block is spilled with fast regalloc, so it's
2184   // almost certain that spilling will be required.
2185   if (TM.getOptLevel() == CodeGenOpt::None)
2186     HasStackObjects = true;
2187 
2188   // For now assume stack access is needed in any callee functions, so we need
2189   // the scratch registers to pass in.
2190   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2191 
2192   if (!ST.enableFlatScratch()) {
2193     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2194       // If we have stack objects, we unquestionably need the private buffer
2195       // resource. For the Code Object V2 ABI, this will be the first 4 user
2196       // SGPR inputs. We can reserve those and use them directly.
2197 
2198       Register PrivateSegmentBufferReg =
2199           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2200       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2201     } else {
2202       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2203       // We tentatively reserve the last registers (skipping the last registers
2204       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2205       // we'll replace these with the ones immediately after those which were
2206       // really allocated. In the prologue copies will be inserted from the
2207       // argument to these reserved registers.
2208 
2209       // Without HSA, relocations are used for the scratch pointer and the
2210       // buffer resource setup is always inserted in the prologue. Scratch wave
2211       // offset is still in an input SGPR.
2212       Info.setScratchRSrcReg(ReservedBufferReg);
2213     }
2214   }
2215 
2216   MachineRegisterInfo &MRI = MF.getRegInfo();
2217 
2218   // For entry functions we have to set up the stack pointer if we use it,
2219   // whereas non-entry functions get this "for free". This means there is no
2220   // intrinsic advantage to using S32 over S34 in cases where we do not have
2221   // calls but do need a frame pointer (i.e. if we are requested to have one
2222   // because frame pointer elimination is disabled). To keep things simple we
2223   // only ever use S32 as the call ABI stack pointer, and so using it does not
2224   // imply we need a separate frame pointer.
2225   //
2226   // Try to use s32 as the SP, but move it if it would interfere with input
2227   // arguments. This won't work with calls though.
2228   //
2229   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2230   // registers.
2231   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2232     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2233   } else {
2234     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2235 
2236     if (MFI.hasCalls())
2237       report_fatal_error("call in graphics shader with too many input SGPRs");
2238 
2239     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2240       if (!MRI.isLiveIn(Reg)) {
2241         Info.setStackPtrOffsetReg(Reg);
2242         break;
2243       }
2244     }
2245 
2246     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2247       report_fatal_error("failed to find register for SP");
2248   }
2249 
2250   // hasFP should be accurate for entry functions even before the frame is
2251   // finalized, because it does not rely on the known stack size, only
2252   // properties like whether variable sized objects are present.
2253   if (ST.getFrameLowering()->hasFP(MF)) {
2254     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2255   }
2256 }
2257 
2258 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2259   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2260   return !Info->isEntryFunction();
2261 }
2262 
2263 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2264 
2265 }
2266 
2267 void SITargetLowering::insertCopiesSplitCSR(
2268   MachineBasicBlock *Entry,
2269   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2270   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2271 
2272   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2273   if (!IStart)
2274     return;
2275 
2276   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2277   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2278   MachineBasicBlock::iterator MBBI = Entry->begin();
2279   for (const MCPhysReg *I = IStart; *I; ++I) {
2280     const TargetRegisterClass *RC = nullptr;
2281     if (AMDGPU::SReg_64RegClass.contains(*I))
2282       RC = &AMDGPU::SGPR_64RegClass;
2283     else if (AMDGPU::SReg_32RegClass.contains(*I))
2284       RC = &AMDGPU::SGPR_32RegClass;
2285     else
2286       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2287 
2288     Register NewVR = MRI->createVirtualRegister(RC);
2289     // Create copy from CSR to a virtual register.
2290     Entry->addLiveIn(*I);
2291     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2292       .addReg(*I);
2293 
2294     // Insert the copy-back instructions right before the terminator.
2295     for (auto *Exit : Exits)
2296       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2297               TII->get(TargetOpcode::COPY), *I)
2298         .addReg(NewVR);
2299   }
2300 }
2301 
2302 SDValue SITargetLowering::LowerFormalArguments(
2303     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2304     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2305     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2306   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2307 
2308   MachineFunction &MF = DAG.getMachineFunction();
2309   const Function &Fn = MF.getFunction();
2310   FunctionType *FType = MF.getFunction().getFunctionType();
2311   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2312 
2313   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2314     DiagnosticInfoUnsupported NoGraphicsHSA(
2315         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2316     DAG.getContext()->diagnose(NoGraphicsHSA);
2317     return DAG.getEntryNode();
2318   }
2319 
2320   Info->allocateModuleLDSGlobal(Fn);
2321 
2322   SmallVector<ISD::InputArg, 16> Splits;
2323   SmallVector<CCValAssign, 16> ArgLocs;
2324   BitVector Skipped(Ins.size());
2325   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2326                  *DAG.getContext());
2327 
2328   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2329   bool IsKernel = AMDGPU::isKernel(CallConv);
2330   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2331 
2332   if (IsGraphics) {
2333     assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2334            (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2335            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2336            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2337            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2338            !Info->hasWorkItemIDZ());
2339   }
2340 
2341   if (CallConv == CallingConv::AMDGPU_PS) {
2342     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2343 
2344     // At least one interpolation mode must be enabled or else the GPU will
2345     // hang.
2346     //
2347     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2348     // set PSInputAddr, the user wants to enable some bits after the compilation
2349     // based on run-time states. Since we can't know what the final PSInputEna
2350     // will look like, so we shouldn't do anything here and the user should take
2351     // responsibility for the correct programming.
2352     //
2353     // Otherwise, the following restrictions apply:
2354     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2355     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2356     //   enabled too.
2357     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2358         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2359       CCInfo.AllocateReg(AMDGPU::VGPR0);
2360       CCInfo.AllocateReg(AMDGPU::VGPR1);
2361       Info->markPSInputAllocated(0);
2362       Info->markPSInputEnabled(0);
2363     }
2364     if (Subtarget->isAmdPalOS()) {
2365       // For isAmdPalOS, the user does not enable some bits after compilation
2366       // based on run-time states; the register values being generated here are
2367       // the final ones set in hardware. Therefore we need to apply the
2368       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2369       // a bit is set in PSInputAddr but not PSInputEnable is where the
2370       // frontend set up an input arg for a particular interpolation mode, but
2371       // nothing uses that input arg. Really we should have an earlier pass
2372       // that removes such an arg.)
2373       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2374       if ((PsInputBits & 0x7F) == 0 ||
2375           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2376         Info->markPSInputEnabled(
2377             countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2378     }
2379   } else if (IsKernel) {
2380     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2381   } else {
2382     Splits.append(Ins.begin(), Ins.end());
2383   }
2384 
2385   if (IsEntryFunc) {
2386     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2387     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2388   } else if (!IsGraphics) {
2389     // For the fixed ABI, pass workitem IDs in the last argument register.
2390     allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2391   }
2392 
2393   if (IsKernel) {
2394     analyzeFormalArgumentsCompute(CCInfo, Ins);
2395   } else {
2396     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2397     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2398   }
2399 
2400   SmallVector<SDValue, 16> Chains;
2401 
2402   // FIXME: This is the minimum kernel argument alignment. We should improve
2403   // this to the maximum alignment of the arguments.
2404   //
2405   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2406   // kern arg offset.
2407   const Align KernelArgBaseAlign = Align(16);
2408 
2409   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2410     const ISD::InputArg &Arg = Ins[i];
2411     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2412       InVals.push_back(DAG.getUNDEF(Arg.VT));
2413       continue;
2414     }
2415 
2416     CCValAssign &VA = ArgLocs[ArgIdx++];
2417     MVT VT = VA.getLocVT();
2418 
2419     if (IsEntryFunc && VA.isMemLoc()) {
2420       VT = Ins[i].VT;
2421       EVT MemVT = VA.getLocVT();
2422 
2423       const uint64_t Offset = VA.getLocMemOffset();
2424       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2425 
2426       if (Arg.Flags.isByRef()) {
2427         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2428 
2429         const GCNTargetMachine &TM =
2430             static_cast<const GCNTargetMachine &>(getTargetMachine());
2431         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2432                                     Arg.Flags.getPointerAddrSpace())) {
2433           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2434                                      Arg.Flags.getPointerAddrSpace());
2435         }
2436 
2437         InVals.push_back(Ptr);
2438         continue;
2439       }
2440 
2441       SDValue Arg = lowerKernargMemParameter(
2442         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2443       Chains.push_back(Arg.getValue(1));
2444 
2445       auto *ParamTy =
2446         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2447       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2448           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2449                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2450         // On SI local pointers are just offsets into LDS, so they are always
2451         // less than 16-bits.  On CI and newer they could potentially be
2452         // real pointers, so we can't guarantee their size.
2453         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2454                           DAG.getValueType(MVT::i16));
2455       }
2456 
2457       InVals.push_back(Arg);
2458       continue;
2459     } else if (!IsEntryFunc && VA.isMemLoc()) {
2460       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2461       InVals.push_back(Val);
2462       if (!Arg.Flags.isByVal())
2463         Chains.push_back(Val.getValue(1));
2464       continue;
2465     }
2466 
2467     assert(VA.isRegLoc() && "Parameter must be in a register!");
2468 
2469     Register Reg = VA.getLocReg();
2470     const TargetRegisterClass *RC = nullptr;
2471     if (AMDGPU::VGPR_32RegClass.contains(Reg))
2472       RC = &AMDGPU::VGPR_32RegClass;
2473     else if (AMDGPU::SGPR_32RegClass.contains(Reg))
2474       RC = &AMDGPU::SGPR_32RegClass;
2475     else
2476       llvm_unreachable("Unexpected register class in LowerFormalArguments!");
2477     EVT ValVT = VA.getValVT();
2478 
2479     Reg = MF.addLiveIn(Reg, RC);
2480     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2481 
2482     if (Arg.Flags.isSRet()) {
2483       // The return object should be reasonably addressable.
2484 
2485       // FIXME: This helps when the return is a real sret. If it is a
2486       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2487       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2488       unsigned NumBits
2489         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2490       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2491         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2492     }
2493 
2494     // If this is an 8 or 16-bit value, it is really passed promoted
2495     // to 32 bits. Insert an assert[sz]ext to capture this, then
2496     // truncate to the right size.
2497     switch (VA.getLocInfo()) {
2498     case CCValAssign::Full:
2499       break;
2500     case CCValAssign::BCvt:
2501       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2502       break;
2503     case CCValAssign::SExt:
2504       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2505                         DAG.getValueType(ValVT));
2506       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2507       break;
2508     case CCValAssign::ZExt:
2509       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2510                         DAG.getValueType(ValVT));
2511       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2512       break;
2513     case CCValAssign::AExt:
2514       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2515       break;
2516     default:
2517       llvm_unreachable("Unknown loc info!");
2518     }
2519 
2520     InVals.push_back(Val);
2521   }
2522 
2523   // Start adding system SGPRs.
2524   if (IsEntryFunc) {
2525     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2526   } else {
2527     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2528     if (!IsGraphics)
2529       allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2530   }
2531 
2532   auto &ArgUsageInfo =
2533     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2534   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2535 
2536   unsigned StackArgSize = CCInfo.getNextStackOffset();
2537   Info->setBytesInStackArgArea(StackArgSize);
2538 
2539   return Chains.empty() ? Chain :
2540     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2541 }
2542 
2543 // TODO: If return values can't fit in registers, we should return as many as
2544 // possible in registers before passing on stack.
2545 bool SITargetLowering::CanLowerReturn(
2546   CallingConv::ID CallConv,
2547   MachineFunction &MF, bool IsVarArg,
2548   const SmallVectorImpl<ISD::OutputArg> &Outs,
2549   LLVMContext &Context) const {
2550   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2551   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2552   // for shaders. Vector types should be explicitly handled by CC.
2553   if (AMDGPU::isEntryFunctionCC(CallConv))
2554     return true;
2555 
2556   SmallVector<CCValAssign, 16> RVLocs;
2557   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2558   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2559 }
2560 
2561 SDValue
2562 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2563                               bool isVarArg,
2564                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2565                               const SmallVectorImpl<SDValue> &OutVals,
2566                               const SDLoc &DL, SelectionDAG &DAG) const {
2567   MachineFunction &MF = DAG.getMachineFunction();
2568   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2569 
2570   if (AMDGPU::isKernel(CallConv)) {
2571     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2572                                              OutVals, DL, DAG);
2573   }
2574 
2575   bool IsShader = AMDGPU::isShader(CallConv);
2576 
2577   Info->setIfReturnsVoid(Outs.empty());
2578   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2579 
2580   // CCValAssign - represent the assignment of the return value to a location.
2581   SmallVector<CCValAssign, 48> RVLocs;
2582   SmallVector<ISD::OutputArg, 48> Splits;
2583 
2584   // CCState - Info about the registers and stack slots.
2585   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2586                  *DAG.getContext());
2587 
2588   // Analyze outgoing return values.
2589   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2590 
2591   SDValue Flag;
2592   SmallVector<SDValue, 48> RetOps;
2593   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2594 
2595   // Copy the result values into the output registers.
2596   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2597        ++I, ++RealRVLocIdx) {
2598     CCValAssign &VA = RVLocs[I];
2599     assert(VA.isRegLoc() && "Can only return in registers!");
2600     // TODO: Partially return in registers if return values don't fit.
2601     SDValue Arg = OutVals[RealRVLocIdx];
2602 
2603     // Copied from other backends.
2604     switch (VA.getLocInfo()) {
2605     case CCValAssign::Full:
2606       break;
2607     case CCValAssign::BCvt:
2608       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2609       break;
2610     case CCValAssign::SExt:
2611       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2612       break;
2613     case CCValAssign::ZExt:
2614       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2615       break;
2616     case CCValAssign::AExt:
2617       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2618       break;
2619     default:
2620       llvm_unreachable("Unknown loc info!");
2621     }
2622 
2623     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2624     Flag = Chain.getValue(1);
2625     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2626   }
2627 
2628   // FIXME: Does sret work properly?
2629   if (!Info->isEntryFunction()) {
2630     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2631     const MCPhysReg *I =
2632       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2633     if (I) {
2634       for (; *I; ++I) {
2635         if (AMDGPU::SReg_64RegClass.contains(*I))
2636           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2637         else if (AMDGPU::SReg_32RegClass.contains(*I))
2638           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2639         else
2640           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2641       }
2642     }
2643   }
2644 
2645   // Update chain and glue.
2646   RetOps[0] = Chain;
2647   if (Flag.getNode())
2648     RetOps.push_back(Flag);
2649 
2650   unsigned Opc = AMDGPUISD::ENDPGM;
2651   if (!IsWaveEnd)
2652     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2653   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2654 }
2655 
2656 SDValue SITargetLowering::LowerCallResult(
2657     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2658     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2659     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2660     SDValue ThisVal) const {
2661   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2662 
2663   // Assign locations to each value returned by this call.
2664   SmallVector<CCValAssign, 16> RVLocs;
2665   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2666                  *DAG.getContext());
2667   CCInfo.AnalyzeCallResult(Ins, RetCC);
2668 
2669   // Copy all of the result registers out of their specified physreg.
2670   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2671     CCValAssign VA = RVLocs[i];
2672     SDValue Val;
2673 
2674     if (VA.isRegLoc()) {
2675       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2676       Chain = Val.getValue(1);
2677       InFlag = Val.getValue(2);
2678     } else if (VA.isMemLoc()) {
2679       report_fatal_error("TODO: return values in memory");
2680     } else
2681       llvm_unreachable("unknown argument location type");
2682 
2683     switch (VA.getLocInfo()) {
2684     case CCValAssign::Full:
2685       break;
2686     case CCValAssign::BCvt:
2687       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2688       break;
2689     case CCValAssign::ZExt:
2690       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2691                         DAG.getValueType(VA.getValVT()));
2692       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2693       break;
2694     case CCValAssign::SExt:
2695       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2696                         DAG.getValueType(VA.getValVT()));
2697       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2698       break;
2699     case CCValAssign::AExt:
2700       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2701       break;
2702     default:
2703       llvm_unreachable("Unknown loc info!");
2704     }
2705 
2706     InVals.push_back(Val);
2707   }
2708 
2709   return Chain;
2710 }
2711 
2712 // Add code to pass special inputs required depending on used features separate
2713 // from the explicit user arguments present in the IR.
2714 void SITargetLowering::passSpecialInputs(
2715     CallLoweringInfo &CLI,
2716     CCState &CCInfo,
2717     const SIMachineFunctionInfo &Info,
2718     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2719     SmallVectorImpl<SDValue> &MemOpChains,
2720     SDValue Chain) const {
2721   // If we don't have a call site, this was a call inserted by
2722   // legalization. These can never use special inputs.
2723   if (!CLI.CB)
2724     return;
2725 
2726   SelectionDAG &DAG = CLI.DAG;
2727   const SDLoc &DL = CLI.DL;
2728   const Function &F = DAG.getMachineFunction().getFunction();
2729 
2730   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2731   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2732 
2733   const AMDGPUFunctionArgInfo *CalleeArgInfo
2734     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2735   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2736     auto &ArgUsageInfo =
2737       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2738     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2739   }
2740 
2741   // TODO: Unify with private memory register handling. This is complicated by
2742   // the fact that at least in kernels, the input argument is not necessarily
2743   // in the same location as the input.
2744   static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
2745                              StringLiteral> ImplicitAttrs[] = {
2746     {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"},
2747     {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" },
2748     {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"},
2749     {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"},
2750     {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"},
2751     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"},
2752     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}
2753   };
2754 
2755   for (auto Attr : ImplicitAttrs) {
2756     const ArgDescriptor *OutgoingArg;
2757     const TargetRegisterClass *ArgRC;
2758     LLT ArgTy;
2759 
2760     AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first;
2761 
2762     // If the callee does not use the attribute value, skip copying the value.
2763     if (CLI.CB->hasFnAttr(Attr.second))
2764       continue;
2765 
2766     std::tie(OutgoingArg, ArgRC, ArgTy) =
2767         CalleeArgInfo->getPreloadedValue(InputID);
2768     if (!OutgoingArg)
2769       continue;
2770 
2771     const ArgDescriptor *IncomingArg;
2772     const TargetRegisterClass *IncomingArgRC;
2773     LLT Ty;
2774     std::tie(IncomingArg, IncomingArgRC, Ty) =
2775         CallerArgInfo.getPreloadedValue(InputID);
2776     assert(IncomingArgRC == ArgRC);
2777 
2778     // All special arguments are ints for now.
2779     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2780     SDValue InputReg;
2781 
2782     if (IncomingArg) {
2783       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2784     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
2785       // The implicit arg ptr is special because it doesn't have a corresponding
2786       // input for kernels, and is computed from the kernarg segment pointer.
2787       InputReg = getImplicitArgPtr(DAG, DL);
2788     } else {
2789       // We may have proven the input wasn't needed, although the ABI is
2790       // requiring it. We just need to allocate the register appropriately.
2791       InputReg = DAG.getUNDEF(ArgVT);
2792     }
2793 
2794     if (OutgoingArg->isRegister()) {
2795       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2796       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2797         report_fatal_error("failed to allocate implicit input argument");
2798     } else {
2799       unsigned SpecialArgOffset =
2800           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2801       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2802                                               SpecialArgOffset);
2803       MemOpChains.push_back(ArgStore);
2804     }
2805   }
2806 
2807   // Pack workitem IDs into a single register or pass it as is if already
2808   // packed.
2809   const ArgDescriptor *OutgoingArg;
2810   const TargetRegisterClass *ArgRC;
2811   LLT Ty;
2812 
2813   std::tie(OutgoingArg, ArgRC, Ty) =
2814       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2815   if (!OutgoingArg)
2816     std::tie(OutgoingArg, ArgRC, Ty) =
2817         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2818   if (!OutgoingArg)
2819     std::tie(OutgoingArg, ArgRC, Ty) =
2820         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2821   if (!OutgoingArg)
2822     return;
2823 
2824   const ArgDescriptor *IncomingArgX = std::get<0>(
2825       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2826   const ArgDescriptor *IncomingArgY = std::get<0>(
2827       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2828   const ArgDescriptor *IncomingArgZ = std::get<0>(
2829       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2830 
2831   SDValue InputReg;
2832   SDLoc SL;
2833 
2834   const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
2835   const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
2836   const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
2837 
2838   // If incoming ids are not packed we need to pack them.
2839   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
2840       NeedWorkItemIDX) {
2841     if (Subtarget->getMaxWorkitemID(F, 0) != 0) {
2842       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2843     } else {
2844       InputReg = DAG.getConstant(0, DL, MVT::i32);
2845     }
2846   }
2847 
2848   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
2849       NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) {
2850     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2851     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2852                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2853     InputReg = InputReg.getNode() ?
2854                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2855   }
2856 
2857   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
2858       NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) {
2859     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2860     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2861                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2862     InputReg = InputReg.getNode() ?
2863                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2864   }
2865 
2866   if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
2867     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
2868       // We're in a situation where the outgoing function requires the workitem
2869       // ID, but the calling function does not have it (e.g a graphics function
2870       // calling a C calling convention function). This is illegal, but we need
2871       // to produce something.
2872       InputReg = DAG.getUNDEF(MVT::i32);
2873     } else {
2874       // Workitem ids are already packed, any of present incoming arguments
2875       // will carry all required fields.
2876       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2877         IncomingArgX ? *IncomingArgX :
2878         IncomingArgY ? *IncomingArgY :
2879         *IncomingArgZ, ~0u);
2880       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2881     }
2882   }
2883 
2884   if (OutgoingArg->isRegister()) {
2885     if (InputReg)
2886       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2887 
2888     CCInfo.AllocateReg(OutgoingArg->getRegister());
2889   } else {
2890     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2891     if (InputReg) {
2892       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2893                                               SpecialArgOffset);
2894       MemOpChains.push_back(ArgStore);
2895     }
2896   }
2897 }
2898 
2899 static bool canGuaranteeTCO(CallingConv::ID CC) {
2900   return CC == CallingConv::Fast;
2901 }
2902 
2903 /// Return true if we might ever do TCO for calls with this calling convention.
2904 static bool mayTailCallThisCC(CallingConv::ID CC) {
2905   switch (CC) {
2906   case CallingConv::C:
2907   case CallingConv::AMDGPU_Gfx:
2908     return true;
2909   default:
2910     return canGuaranteeTCO(CC);
2911   }
2912 }
2913 
2914 bool SITargetLowering::isEligibleForTailCallOptimization(
2915     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2916     const SmallVectorImpl<ISD::OutputArg> &Outs,
2917     const SmallVectorImpl<SDValue> &OutVals,
2918     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2919   if (!mayTailCallThisCC(CalleeCC))
2920     return false;
2921 
2922   // For a divergent call target, we need to do a waterfall loop over the
2923   // possible callees which precludes us from using a simple jump.
2924   if (Callee->isDivergent())
2925     return false;
2926 
2927   MachineFunction &MF = DAG.getMachineFunction();
2928   const Function &CallerF = MF.getFunction();
2929   CallingConv::ID CallerCC = CallerF.getCallingConv();
2930   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2931   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2932 
2933   // Kernels aren't callable, and don't have a live in return address so it
2934   // doesn't make sense to do a tail call with entry functions.
2935   if (!CallerPreserved)
2936     return false;
2937 
2938   bool CCMatch = CallerCC == CalleeCC;
2939 
2940   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2941     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2942       return true;
2943     return false;
2944   }
2945 
2946   // TODO: Can we handle var args?
2947   if (IsVarArg)
2948     return false;
2949 
2950   for (const Argument &Arg : CallerF.args()) {
2951     if (Arg.hasByValAttr())
2952       return false;
2953   }
2954 
2955   LLVMContext &Ctx = *DAG.getContext();
2956 
2957   // Check that the call results are passed in the same way.
2958   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2959                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2960                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2961     return false;
2962 
2963   // The callee has to preserve all registers the caller needs to preserve.
2964   if (!CCMatch) {
2965     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2966     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2967       return false;
2968   }
2969 
2970   // Nothing more to check if the callee is taking no arguments.
2971   if (Outs.empty())
2972     return true;
2973 
2974   SmallVector<CCValAssign, 16> ArgLocs;
2975   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2976 
2977   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2978 
2979   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2980   // If the stack arguments for this call do not fit into our own save area then
2981   // the call cannot be made tail.
2982   // TODO: Is this really necessary?
2983   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2984     return false;
2985 
2986   const MachineRegisterInfo &MRI = MF.getRegInfo();
2987   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2988 }
2989 
2990 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2991   if (!CI->isTailCall())
2992     return false;
2993 
2994   const Function *ParentFn = CI->getParent()->getParent();
2995   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2996     return false;
2997   return true;
2998 }
2999 
3000 // The wave scratch offset register is used as the global base pointer.
3001 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
3002                                     SmallVectorImpl<SDValue> &InVals) const {
3003   SelectionDAG &DAG = CLI.DAG;
3004   const SDLoc &DL = CLI.DL;
3005   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3006   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3007   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3008   SDValue Chain = CLI.Chain;
3009   SDValue Callee = CLI.Callee;
3010   bool &IsTailCall = CLI.IsTailCall;
3011   CallingConv::ID CallConv = CLI.CallConv;
3012   bool IsVarArg = CLI.IsVarArg;
3013   bool IsSibCall = false;
3014   bool IsThisReturn = false;
3015   MachineFunction &MF = DAG.getMachineFunction();
3016 
3017   if (Callee.isUndef() || isNullConstant(Callee)) {
3018     if (!CLI.IsTailCall) {
3019       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
3020         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
3021     }
3022 
3023     return Chain;
3024   }
3025 
3026   if (IsVarArg) {
3027     return lowerUnhandledCall(CLI, InVals,
3028                               "unsupported call to variadic function ");
3029   }
3030 
3031   if (!CLI.CB)
3032     report_fatal_error("unsupported libcall legalization");
3033 
3034   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3035     return lowerUnhandledCall(CLI, InVals,
3036                               "unsupported required tail call to function ");
3037   }
3038 
3039   if (AMDGPU::isShader(CallConv)) {
3040     // Note the issue is with the CC of the called function, not of the call
3041     // itself.
3042     return lowerUnhandledCall(CLI, InVals,
3043                               "unsupported call to a shader function ");
3044   }
3045 
3046   if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
3047       CallConv != CallingConv::AMDGPU_Gfx) {
3048     // Only allow calls with specific calling conventions.
3049     return lowerUnhandledCall(CLI, InVals,
3050                               "unsupported calling convention for call from "
3051                               "graphics shader of function ");
3052   }
3053 
3054   if (IsTailCall) {
3055     IsTailCall = isEligibleForTailCallOptimization(
3056       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3057     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
3058       report_fatal_error("failed to perform tail call elimination on a call "
3059                          "site marked musttail");
3060     }
3061 
3062     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3063 
3064     // A sibling call is one where we're under the usual C ABI and not planning
3065     // to change that but can still do a tail call:
3066     if (!TailCallOpt && IsTailCall)
3067       IsSibCall = true;
3068 
3069     if (IsTailCall)
3070       ++NumTailCalls;
3071   }
3072 
3073   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3074   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3075   SmallVector<SDValue, 8> MemOpChains;
3076 
3077   // Analyze operands of the call, assigning locations to each operand.
3078   SmallVector<CCValAssign, 16> ArgLocs;
3079   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3080   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3081 
3082   if (CallConv != CallingConv::AMDGPU_Gfx) {
3083     // With a fixed ABI, allocate fixed registers before user arguments.
3084     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3085   }
3086 
3087   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3088 
3089   // Get a count of how many bytes are to be pushed on the stack.
3090   unsigned NumBytes = CCInfo.getNextStackOffset();
3091 
3092   if (IsSibCall) {
3093     // Since we're not changing the ABI to make this a tail call, the memory
3094     // operands are already available in the caller's incoming argument space.
3095     NumBytes = 0;
3096   }
3097 
3098   // FPDiff is the byte offset of the call's argument area from the callee's.
3099   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3100   // by this amount for a tail call. In a sibling call it must be 0 because the
3101   // caller will deallocate the entire stack and the callee still expects its
3102   // arguments to begin at SP+0. Completely unused for non-tail calls.
3103   int32_t FPDiff = 0;
3104   MachineFrameInfo &MFI = MF.getFrameInfo();
3105 
3106   // Adjust the stack pointer for the new arguments...
3107   // These operations are automatically eliminated by the prolog/epilog pass
3108   if (!IsSibCall) {
3109     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3110 
3111     if (!Subtarget->enableFlatScratch()) {
3112       SmallVector<SDValue, 4> CopyFromChains;
3113 
3114       // In the HSA case, this should be an identity copy.
3115       SDValue ScratchRSrcReg
3116         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3117       RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3118       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3119       Chain = DAG.getTokenFactor(DL, CopyFromChains);
3120     }
3121   }
3122 
3123   MVT PtrVT = MVT::i32;
3124 
3125   // Walk the register/memloc assignments, inserting copies/loads.
3126   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3127     CCValAssign &VA = ArgLocs[i];
3128     SDValue Arg = OutVals[i];
3129 
3130     // Promote the value if needed.
3131     switch (VA.getLocInfo()) {
3132     case CCValAssign::Full:
3133       break;
3134     case CCValAssign::BCvt:
3135       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3136       break;
3137     case CCValAssign::ZExt:
3138       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3139       break;
3140     case CCValAssign::SExt:
3141       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3142       break;
3143     case CCValAssign::AExt:
3144       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3145       break;
3146     case CCValAssign::FPExt:
3147       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3148       break;
3149     default:
3150       llvm_unreachable("Unknown loc info!");
3151     }
3152 
3153     if (VA.isRegLoc()) {
3154       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3155     } else {
3156       assert(VA.isMemLoc());
3157 
3158       SDValue DstAddr;
3159       MachinePointerInfo DstInfo;
3160 
3161       unsigned LocMemOffset = VA.getLocMemOffset();
3162       int32_t Offset = LocMemOffset;
3163 
3164       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3165       MaybeAlign Alignment;
3166 
3167       if (IsTailCall) {
3168         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3169         unsigned OpSize = Flags.isByVal() ?
3170           Flags.getByValSize() : VA.getValVT().getStoreSize();
3171 
3172         // FIXME: We can have better than the minimum byval required alignment.
3173         Alignment =
3174             Flags.isByVal()
3175                 ? Flags.getNonZeroByValAlign()
3176                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3177 
3178         Offset = Offset + FPDiff;
3179         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3180 
3181         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3182         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3183 
3184         // Make sure any stack arguments overlapping with where we're storing
3185         // are loaded before this eventual operation. Otherwise they'll be
3186         // clobbered.
3187 
3188         // FIXME: Why is this really necessary? This seems to just result in a
3189         // lot of code to copy the stack and write them back to the same
3190         // locations, which are supposed to be immutable?
3191         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3192       } else {
3193         // Stores to the argument stack area are relative to the stack pointer.
3194         SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3195                                         MVT::i32);
3196         DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3197         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3198         Alignment =
3199             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3200       }
3201 
3202       if (Outs[i].Flags.isByVal()) {
3203         SDValue SizeNode =
3204             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3205         SDValue Cpy =
3206             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3207                           Outs[i].Flags.getNonZeroByValAlign(),
3208                           /*isVol = */ false, /*AlwaysInline = */ true,
3209                           /*isTailCall = */ false, DstInfo,
3210                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3211 
3212         MemOpChains.push_back(Cpy);
3213       } else {
3214         SDValue Store =
3215             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3216         MemOpChains.push_back(Store);
3217       }
3218     }
3219   }
3220 
3221   if (!MemOpChains.empty())
3222     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3223 
3224   // Build a sequence of copy-to-reg nodes chained together with token chain
3225   // and flag operands which copy the outgoing args into the appropriate regs.
3226   SDValue InFlag;
3227   for (auto &RegToPass : RegsToPass) {
3228     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3229                              RegToPass.second, InFlag);
3230     InFlag = Chain.getValue(1);
3231   }
3232 
3233 
3234   // We don't usually want to end the call-sequence here because we would tidy
3235   // the frame up *after* the call, however in the ABI-changing tail-call case
3236   // we've carefully laid out the parameters so that when sp is reset they'll be
3237   // in the correct location.
3238   if (IsTailCall && !IsSibCall) {
3239     Chain = DAG.getCALLSEQ_END(Chain,
3240                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3241                                DAG.getTargetConstant(0, DL, MVT::i32),
3242                                InFlag, DL);
3243     InFlag = Chain.getValue(1);
3244   }
3245 
3246   std::vector<SDValue> Ops;
3247   Ops.push_back(Chain);
3248   Ops.push_back(Callee);
3249   // Add a redundant copy of the callee global which will not be legalized, as
3250   // we need direct access to the callee later.
3251   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3252     const GlobalValue *GV = GSD->getGlobal();
3253     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3254   } else {
3255     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3256   }
3257 
3258   if (IsTailCall) {
3259     // Each tail call may have to adjust the stack by a different amount, so
3260     // this information must travel along with the operation for eventual
3261     // consumption by emitEpilogue.
3262     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3263   }
3264 
3265   // Add argument registers to the end of the list so that they are known live
3266   // into the call.
3267   for (auto &RegToPass : RegsToPass) {
3268     Ops.push_back(DAG.getRegister(RegToPass.first,
3269                                   RegToPass.second.getValueType()));
3270   }
3271 
3272   // Add a register mask operand representing the call-preserved registers.
3273 
3274   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3275   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3276   assert(Mask && "Missing call preserved mask for calling convention");
3277   Ops.push_back(DAG.getRegisterMask(Mask));
3278 
3279   if (InFlag.getNode())
3280     Ops.push_back(InFlag);
3281 
3282   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3283 
3284   // If we're doing a tall call, use a TC_RETURN here rather than an
3285   // actual call instruction.
3286   if (IsTailCall) {
3287     MFI.setHasTailCall();
3288     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3289   }
3290 
3291   // Returns a chain and a flag for retval copy to use.
3292   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3293   Chain = Call.getValue(0);
3294   InFlag = Call.getValue(1);
3295 
3296   uint64_t CalleePopBytes = NumBytes;
3297   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3298                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3299                              InFlag, DL);
3300   if (!Ins.empty())
3301     InFlag = Chain.getValue(1);
3302 
3303   // Handle result values, copying them out of physregs into vregs that we
3304   // return.
3305   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3306                          InVals, IsThisReturn,
3307                          IsThisReturn ? OutVals[0] : SDValue());
3308 }
3309 
3310 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3311 // except for applying the wave size scale to the increment amount.
3312 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3313     SDValue Op, SelectionDAG &DAG) const {
3314   const MachineFunction &MF = DAG.getMachineFunction();
3315   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3316 
3317   SDLoc dl(Op);
3318   EVT VT = Op.getValueType();
3319   SDValue Tmp1 = Op;
3320   SDValue Tmp2 = Op.getValue(1);
3321   SDValue Tmp3 = Op.getOperand(2);
3322   SDValue Chain = Tmp1.getOperand(0);
3323 
3324   Register SPReg = Info->getStackPtrOffsetReg();
3325 
3326   // Chain the dynamic stack allocation so that it doesn't modify the stack
3327   // pointer when other instructions are using the stack.
3328   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3329 
3330   SDValue Size  = Tmp2.getOperand(1);
3331   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3332   Chain = SP.getValue(1);
3333   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3334   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3335   const TargetFrameLowering *TFL = ST.getFrameLowering();
3336   unsigned Opc =
3337     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3338     ISD::ADD : ISD::SUB;
3339 
3340   SDValue ScaledSize = DAG.getNode(
3341       ISD::SHL, dl, VT, Size,
3342       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3343 
3344   Align StackAlign = TFL->getStackAlign();
3345   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3346   if (Alignment && *Alignment > StackAlign) {
3347     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3348                        DAG.getConstant(-(uint64_t)Alignment->value()
3349                                            << ST.getWavefrontSizeLog2(),
3350                                        dl, VT));
3351   }
3352 
3353   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3354   Tmp2 = DAG.getCALLSEQ_END(
3355       Chain, DAG.getIntPtrConstant(0, dl, true),
3356       DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3357 
3358   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3359 }
3360 
3361 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3362                                                   SelectionDAG &DAG) const {
3363   // We only handle constant sizes here to allow non-entry block, static sized
3364   // allocas. A truly dynamic value is more difficult to support because we
3365   // don't know if the size value is uniform or not. If the size isn't uniform,
3366   // we would need to do a wave reduction to get the maximum size to know how
3367   // much to increment the uniform stack pointer.
3368   SDValue Size = Op.getOperand(1);
3369   if (isa<ConstantSDNode>(Size))
3370       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3371 
3372   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3373 }
3374 
3375 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3376                                              const MachineFunction &MF) const {
3377   Register Reg = StringSwitch<Register>(RegName)
3378     .Case("m0", AMDGPU::M0)
3379     .Case("exec", AMDGPU::EXEC)
3380     .Case("exec_lo", AMDGPU::EXEC_LO)
3381     .Case("exec_hi", AMDGPU::EXEC_HI)
3382     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3383     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3384     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3385     .Default(Register());
3386 
3387   if (Reg == AMDGPU::NoRegister) {
3388     report_fatal_error(Twine("invalid register name \""
3389                              + StringRef(RegName)  + "\"."));
3390 
3391   }
3392 
3393   if (!Subtarget->hasFlatScrRegister() &&
3394        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3395     report_fatal_error(Twine("invalid register \""
3396                              + StringRef(RegName)  + "\" for subtarget."));
3397   }
3398 
3399   switch (Reg) {
3400   case AMDGPU::M0:
3401   case AMDGPU::EXEC_LO:
3402   case AMDGPU::EXEC_HI:
3403   case AMDGPU::FLAT_SCR_LO:
3404   case AMDGPU::FLAT_SCR_HI:
3405     if (VT.getSizeInBits() == 32)
3406       return Reg;
3407     break;
3408   case AMDGPU::EXEC:
3409   case AMDGPU::FLAT_SCR:
3410     if (VT.getSizeInBits() == 64)
3411       return Reg;
3412     break;
3413   default:
3414     llvm_unreachable("missing register type checking");
3415   }
3416 
3417   report_fatal_error(Twine("invalid type for register \""
3418                            + StringRef(RegName) + "\"."));
3419 }
3420 
3421 // If kill is not the last instruction, split the block so kill is always a
3422 // proper terminator.
3423 MachineBasicBlock *
3424 SITargetLowering::splitKillBlock(MachineInstr &MI,
3425                                  MachineBasicBlock *BB) const {
3426   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3427   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3428   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3429   return SplitBB;
3430 }
3431 
3432 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3433 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3434 // be the first instruction in the remainder block.
3435 //
3436 /// \returns { LoopBody, Remainder }
3437 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3438 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3439   MachineFunction *MF = MBB.getParent();
3440   MachineBasicBlock::iterator I(&MI);
3441 
3442   // To insert the loop we need to split the block. Move everything after this
3443   // point to a new block, and insert a new empty block between the two.
3444   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3445   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3446   MachineFunction::iterator MBBI(MBB);
3447   ++MBBI;
3448 
3449   MF->insert(MBBI, LoopBB);
3450   MF->insert(MBBI, RemainderBB);
3451 
3452   LoopBB->addSuccessor(LoopBB);
3453   LoopBB->addSuccessor(RemainderBB);
3454 
3455   // Move the rest of the block into a new block.
3456   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3457 
3458   if (InstInLoop) {
3459     auto Next = std::next(I);
3460 
3461     // Move instruction to loop body.
3462     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3463 
3464     // Move the rest of the block.
3465     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3466   } else {
3467     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3468   }
3469 
3470   MBB.addSuccessor(LoopBB);
3471 
3472   return std::make_pair(LoopBB, RemainderBB);
3473 }
3474 
3475 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3476 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3477   MachineBasicBlock *MBB = MI.getParent();
3478   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3479   auto I = MI.getIterator();
3480   auto E = std::next(I);
3481 
3482   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3483     .addImm(0);
3484 
3485   MIBundleBuilder Bundler(*MBB, I, E);
3486   finalizeBundle(*MBB, Bundler.begin());
3487 }
3488 
3489 MachineBasicBlock *
3490 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3491                                          MachineBasicBlock *BB) const {
3492   const DebugLoc &DL = MI.getDebugLoc();
3493 
3494   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3495 
3496   MachineBasicBlock *LoopBB;
3497   MachineBasicBlock *RemainderBB;
3498   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3499 
3500   // Apparently kill flags are only valid if the def is in the same block?
3501   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3502     Src->setIsKill(false);
3503 
3504   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3505 
3506   MachineBasicBlock::iterator I = LoopBB->end();
3507 
3508   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3509     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3510 
3511   // Clear TRAP_STS.MEM_VIOL
3512   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3513     .addImm(0)
3514     .addImm(EncodedReg);
3515 
3516   bundleInstWithWaitcnt(MI);
3517 
3518   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3519 
3520   // Load and check TRAP_STS.MEM_VIOL
3521   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3522     .addImm(EncodedReg);
3523 
3524   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3525   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3526     .addReg(Reg, RegState::Kill)
3527     .addImm(0);
3528   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3529     .addMBB(LoopBB);
3530 
3531   return RemainderBB;
3532 }
3533 
3534 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3535 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3536 // will only do one iteration. In the worst case, this will loop 64 times.
3537 //
3538 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3539 static MachineBasicBlock::iterator
3540 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3541                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3542                        const DebugLoc &DL, const MachineOperand &Idx,
3543                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3544                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3545                        Register &SGPRIdxReg) {
3546 
3547   MachineFunction *MF = OrigBB.getParent();
3548   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3549   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3550   MachineBasicBlock::iterator I = LoopBB.begin();
3551 
3552   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3553   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3554   Register NewExec = MRI.createVirtualRegister(BoolRC);
3555   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3556   Register CondReg = MRI.createVirtualRegister(BoolRC);
3557 
3558   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3559     .addReg(InitReg)
3560     .addMBB(&OrigBB)
3561     .addReg(ResultReg)
3562     .addMBB(&LoopBB);
3563 
3564   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3565     .addReg(InitSaveExecReg)
3566     .addMBB(&OrigBB)
3567     .addReg(NewExec)
3568     .addMBB(&LoopBB);
3569 
3570   // Read the next variant <- also loop target.
3571   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3572       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3573 
3574   // Compare the just read M0 value to all possible Idx values.
3575   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3576       .addReg(CurrentIdxReg)
3577       .addReg(Idx.getReg(), 0, Idx.getSubReg());
3578 
3579   // Update EXEC, save the original EXEC value to VCC.
3580   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3581                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3582           NewExec)
3583     .addReg(CondReg, RegState::Kill);
3584 
3585   MRI.setSimpleHint(NewExec, CondReg);
3586 
3587   if (UseGPRIdxMode) {
3588     if (Offset == 0) {
3589       SGPRIdxReg = CurrentIdxReg;
3590     } else {
3591       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3592       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3593           .addReg(CurrentIdxReg, RegState::Kill)
3594           .addImm(Offset);
3595     }
3596   } else {
3597     // Move index from VCC into M0
3598     if (Offset == 0) {
3599       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3600         .addReg(CurrentIdxReg, RegState::Kill);
3601     } else {
3602       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3603         .addReg(CurrentIdxReg, RegState::Kill)
3604         .addImm(Offset);
3605     }
3606   }
3607 
3608   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3609   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3610   MachineInstr *InsertPt =
3611     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3612                                                   : AMDGPU::S_XOR_B64_term), Exec)
3613       .addReg(Exec)
3614       .addReg(NewExec);
3615 
3616   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3617   // s_cbranch_scc0?
3618 
3619   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3620   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3621     .addMBB(&LoopBB);
3622 
3623   return InsertPt->getIterator();
3624 }
3625 
3626 // This has slightly sub-optimal regalloc when the source vector is killed by
3627 // the read. The register allocator does not understand that the kill is
3628 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3629 // subregister from it, using 1 more VGPR than necessary. This was saved when
3630 // this was expanded after register allocation.
3631 static MachineBasicBlock::iterator
3632 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3633                unsigned InitResultReg, unsigned PhiReg, int Offset,
3634                bool UseGPRIdxMode, Register &SGPRIdxReg) {
3635   MachineFunction *MF = MBB.getParent();
3636   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3637   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3638   MachineRegisterInfo &MRI = MF->getRegInfo();
3639   const DebugLoc &DL = MI.getDebugLoc();
3640   MachineBasicBlock::iterator I(&MI);
3641 
3642   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3643   Register DstReg = MI.getOperand(0).getReg();
3644   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3645   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3646   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3647   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3648 
3649   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3650 
3651   // Save the EXEC mask
3652   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3653     .addReg(Exec);
3654 
3655   MachineBasicBlock *LoopBB;
3656   MachineBasicBlock *RemainderBB;
3657   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3658 
3659   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3660 
3661   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3662                                       InitResultReg, DstReg, PhiReg, TmpExec,
3663                                       Offset, UseGPRIdxMode, SGPRIdxReg);
3664 
3665   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3666   MachineFunction::iterator MBBI(LoopBB);
3667   ++MBBI;
3668   MF->insert(MBBI, LandingPad);
3669   LoopBB->removeSuccessor(RemainderBB);
3670   LandingPad->addSuccessor(RemainderBB);
3671   LoopBB->addSuccessor(LandingPad);
3672   MachineBasicBlock::iterator First = LandingPad->begin();
3673   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3674     .addReg(SaveExec);
3675 
3676   return InsPt;
3677 }
3678 
3679 // Returns subreg index, offset
3680 static std::pair<unsigned, int>
3681 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3682                             const TargetRegisterClass *SuperRC,
3683                             unsigned VecReg,
3684                             int Offset) {
3685   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3686 
3687   // Skip out of bounds offsets, or else we would end up using an undefined
3688   // register.
3689   if (Offset >= NumElts || Offset < 0)
3690     return std::make_pair(AMDGPU::sub0, Offset);
3691 
3692   return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3693 }
3694 
3695 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3696                                  MachineRegisterInfo &MRI, MachineInstr &MI,
3697                                  int Offset) {
3698   MachineBasicBlock *MBB = MI.getParent();
3699   const DebugLoc &DL = MI.getDebugLoc();
3700   MachineBasicBlock::iterator I(&MI);
3701 
3702   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3703 
3704   assert(Idx->getReg() != AMDGPU::NoRegister);
3705 
3706   if (Offset == 0) {
3707     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3708   } else {
3709     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3710         .add(*Idx)
3711         .addImm(Offset);
3712   }
3713 }
3714 
3715 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3716                                    MachineRegisterInfo &MRI, MachineInstr &MI,
3717                                    int Offset) {
3718   MachineBasicBlock *MBB = MI.getParent();
3719   const DebugLoc &DL = MI.getDebugLoc();
3720   MachineBasicBlock::iterator I(&MI);
3721 
3722   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3723 
3724   if (Offset == 0)
3725     return Idx->getReg();
3726 
3727   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3728   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3729       .add(*Idx)
3730       .addImm(Offset);
3731   return Tmp;
3732 }
3733 
3734 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3735                                           MachineBasicBlock &MBB,
3736                                           const GCNSubtarget &ST) {
3737   const SIInstrInfo *TII = ST.getInstrInfo();
3738   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3739   MachineFunction *MF = MBB.getParent();
3740   MachineRegisterInfo &MRI = MF->getRegInfo();
3741 
3742   Register Dst = MI.getOperand(0).getReg();
3743   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3744   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3745   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3746 
3747   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3748   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3749 
3750   unsigned SubReg;
3751   std::tie(SubReg, Offset)
3752     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3753 
3754   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3755 
3756   // Check for a SGPR index.
3757   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3758     MachineBasicBlock::iterator I(&MI);
3759     const DebugLoc &DL = MI.getDebugLoc();
3760 
3761     if (UseGPRIdxMode) {
3762       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3763       // to avoid interfering with other uses, so probably requires a new
3764       // optimization pass.
3765       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3766 
3767       const MCInstrDesc &GPRIDXDesc =
3768           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3769       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3770           .addReg(SrcReg)
3771           .addReg(Idx)
3772           .addImm(SubReg);
3773     } else {
3774       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3775 
3776       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3777         .addReg(SrcReg, 0, SubReg)
3778         .addReg(SrcReg, RegState::Implicit);
3779     }
3780 
3781     MI.eraseFromParent();
3782 
3783     return &MBB;
3784   }
3785 
3786   // Control flow needs to be inserted if indexing with a VGPR.
3787   const DebugLoc &DL = MI.getDebugLoc();
3788   MachineBasicBlock::iterator I(&MI);
3789 
3790   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3791   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3792 
3793   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3794 
3795   Register SGPRIdxReg;
3796   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3797                               UseGPRIdxMode, SGPRIdxReg);
3798 
3799   MachineBasicBlock *LoopBB = InsPt->getParent();
3800 
3801   if (UseGPRIdxMode) {
3802     const MCInstrDesc &GPRIDXDesc =
3803         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3804 
3805     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3806         .addReg(SrcReg)
3807         .addReg(SGPRIdxReg)
3808         .addImm(SubReg);
3809   } else {
3810     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3811       .addReg(SrcReg, 0, SubReg)
3812       .addReg(SrcReg, RegState::Implicit);
3813   }
3814 
3815   MI.eraseFromParent();
3816 
3817   return LoopBB;
3818 }
3819 
3820 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3821                                           MachineBasicBlock &MBB,
3822                                           const GCNSubtarget &ST) {
3823   const SIInstrInfo *TII = ST.getInstrInfo();
3824   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3825   MachineFunction *MF = MBB.getParent();
3826   MachineRegisterInfo &MRI = MF->getRegInfo();
3827 
3828   Register Dst = MI.getOperand(0).getReg();
3829   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3830   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3831   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3832   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3833   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3834   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3835 
3836   // This can be an immediate, but will be folded later.
3837   assert(Val->getReg());
3838 
3839   unsigned SubReg;
3840   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3841                                                          SrcVec->getReg(),
3842                                                          Offset);
3843   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3844 
3845   if (Idx->getReg() == AMDGPU::NoRegister) {
3846     MachineBasicBlock::iterator I(&MI);
3847     const DebugLoc &DL = MI.getDebugLoc();
3848 
3849     assert(Offset == 0);
3850 
3851     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3852         .add(*SrcVec)
3853         .add(*Val)
3854         .addImm(SubReg);
3855 
3856     MI.eraseFromParent();
3857     return &MBB;
3858   }
3859 
3860   // Check for a SGPR index.
3861   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3862     MachineBasicBlock::iterator I(&MI);
3863     const DebugLoc &DL = MI.getDebugLoc();
3864 
3865     if (UseGPRIdxMode) {
3866       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3867 
3868       const MCInstrDesc &GPRIDXDesc =
3869           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3870       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3871           .addReg(SrcVec->getReg())
3872           .add(*Val)
3873           .addReg(Idx)
3874           .addImm(SubReg);
3875     } else {
3876       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3877 
3878       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3879           TRI.getRegSizeInBits(*VecRC), 32, false);
3880       BuildMI(MBB, I, DL, MovRelDesc, Dst)
3881           .addReg(SrcVec->getReg())
3882           .add(*Val)
3883           .addImm(SubReg);
3884     }
3885     MI.eraseFromParent();
3886     return &MBB;
3887   }
3888 
3889   // Control flow needs to be inserted if indexing with a VGPR.
3890   if (Val->isReg())
3891     MRI.clearKillFlags(Val->getReg());
3892 
3893   const DebugLoc &DL = MI.getDebugLoc();
3894 
3895   Register PhiReg = MRI.createVirtualRegister(VecRC);
3896 
3897   Register SGPRIdxReg;
3898   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3899                               UseGPRIdxMode, SGPRIdxReg);
3900   MachineBasicBlock *LoopBB = InsPt->getParent();
3901 
3902   if (UseGPRIdxMode) {
3903     const MCInstrDesc &GPRIDXDesc =
3904         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3905 
3906     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3907         .addReg(PhiReg)
3908         .add(*Val)
3909         .addReg(SGPRIdxReg)
3910         .addImm(AMDGPU::sub0);
3911   } else {
3912     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3913         TRI.getRegSizeInBits(*VecRC), 32, false);
3914     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3915         .addReg(PhiReg)
3916         .add(*Val)
3917         .addImm(AMDGPU::sub0);
3918   }
3919 
3920   MI.eraseFromParent();
3921   return LoopBB;
3922 }
3923 
3924 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3925   MachineInstr &MI, MachineBasicBlock *BB) const {
3926 
3927   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3928   MachineFunction *MF = BB->getParent();
3929   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3930 
3931   switch (MI.getOpcode()) {
3932   case AMDGPU::S_UADDO_PSEUDO:
3933   case AMDGPU::S_USUBO_PSEUDO: {
3934     const DebugLoc &DL = MI.getDebugLoc();
3935     MachineOperand &Dest0 = MI.getOperand(0);
3936     MachineOperand &Dest1 = MI.getOperand(1);
3937     MachineOperand &Src0 = MI.getOperand(2);
3938     MachineOperand &Src1 = MI.getOperand(3);
3939 
3940     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3941                        ? AMDGPU::S_ADD_I32
3942                        : AMDGPU::S_SUB_I32;
3943     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3944 
3945     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3946         .addImm(1)
3947         .addImm(0);
3948 
3949     MI.eraseFromParent();
3950     return BB;
3951   }
3952   case AMDGPU::S_ADD_U64_PSEUDO:
3953   case AMDGPU::S_SUB_U64_PSEUDO: {
3954     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3955     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3956     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3957     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3958     const DebugLoc &DL = MI.getDebugLoc();
3959 
3960     MachineOperand &Dest = MI.getOperand(0);
3961     MachineOperand &Src0 = MI.getOperand(1);
3962     MachineOperand &Src1 = MI.getOperand(2);
3963 
3964     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3965     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3966 
3967     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
3968         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3969     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
3970         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3971 
3972     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
3973         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3974     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
3975         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3976 
3977     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3978 
3979     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3980     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3981     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
3982     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
3983     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3984         .addReg(DestSub0)
3985         .addImm(AMDGPU::sub0)
3986         .addReg(DestSub1)
3987         .addImm(AMDGPU::sub1);
3988     MI.eraseFromParent();
3989     return BB;
3990   }
3991   case AMDGPU::V_ADD_U64_PSEUDO:
3992   case AMDGPU::V_SUB_U64_PSEUDO: {
3993     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3994     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3995     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3996     const DebugLoc &DL = MI.getDebugLoc();
3997 
3998     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
3999 
4000     MachineOperand &Dest = MI.getOperand(0);
4001     MachineOperand &Src0 = MI.getOperand(1);
4002     MachineOperand &Src1 = MI.getOperand(2);
4003 
4004     if (IsAdd && ST.hasLshlAddB64()) {
4005       auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64),
4006                          Dest.getReg())
4007                      .add(Src0)
4008                      .addImm(0)
4009                      .add(Src1);
4010       TII->legalizeOperands(*Add);
4011       MI.eraseFromParent();
4012       return BB;
4013     }
4014 
4015     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4016 
4017     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4018     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4019 
4020     Register CarryReg = MRI.createVirtualRegister(CarryRC);
4021     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4022 
4023     const TargetRegisterClass *Src0RC = Src0.isReg()
4024                                             ? MRI.getRegClass(Src0.getReg())
4025                                             : &AMDGPU::VReg_64RegClass;
4026     const TargetRegisterClass *Src1RC = Src1.isReg()
4027                                             ? MRI.getRegClass(Src1.getReg())
4028                                             : &AMDGPU::VReg_64RegClass;
4029 
4030     const TargetRegisterClass *Src0SubRC =
4031         TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
4032     const TargetRegisterClass *Src1SubRC =
4033         TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
4034 
4035     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4036         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4037     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4038         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4039 
4040     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4041         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4042     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4043         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4044 
4045     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4046     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4047                                .addReg(CarryReg, RegState::Define)
4048                                .add(SrcReg0Sub0)
4049                                .add(SrcReg1Sub0)
4050                                .addImm(0); // clamp bit
4051 
4052     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4053     MachineInstr *HiHalf =
4054         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4055             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4056             .add(SrcReg0Sub1)
4057             .add(SrcReg1Sub1)
4058             .addReg(CarryReg, RegState::Kill)
4059             .addImm(0); // clamp bit
4060 
4061     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4062         .addReg(DestSub0)
4063         .addImm(AMDGPU::sub0)
4064         .addReg(DestSub1)
4065         .addImm(AMDGPU::sub1);
4066     TII->legalizeOperands(*LoHalf);
4067     TII->legalizeOperands(*HiHalf);
4068     MI.eraseFromParent();
4069     return BB;
4070   }
4071   case AMDGPU::S_ADD_CO_PSEUDO:
4072   case AMDGPU::S_SUB_CO_PSEUDO: {
4073     // This pseudo has a chance to be selected
4074     // only from uniform add/subcarry node. All the VGPR operands
4075     // therefore assumed to be splat vectors.
4076     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4077     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4078     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4079     MachineBasicBlock::iterator MII = MI;
4080     const DebugLoc &DL = MI.getDebugLoc();
4081     MachineOperand &Dest = MI.getOperand(0);
4082     MachineOperand &CarryDest = MI.getOperand(1);
4083     MachineOperand &Src0 = MI.getOperand(2);
4084     MachineOperand &Src1 = MI.getOperand(3);
4085     MachineOperand &Src2 = MI.getOperand(4);
4086     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4087                        ? AMDGPU::S_ADDC_U32
4088                        : AMDGPU::S_SUBB_U32;
4089     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4090       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4091       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4092           .addReg(Src0.getReg());
4093       Src0.setReg(RegOp0);
4094     }
4095     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4096       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4097       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4098           .addReg(Src1.getReg());
4099       Src1.setReg(RegOp1);
4100     }
4101     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4102     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4103       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4104           .addReg(Src2.getReg());
4105       Src2.setReg(RegOp2);
4106     }
4107 
4108     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4109     unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
4110     assert(WaveSize == 64 || WaveSize == 32);
4111 
4112     if (WaveSize == 64) {
4113       if (ST.hasScalarCompareEq64()) {
4114         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4115             .addReg(Src2.getReg())
4116             .addImm(0);
4117       } else {
4118         const TargetRegisterClass *SubRC =
4119             TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4120         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4121             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4122         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4123             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4124         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4125 
4126         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4127             .add(Src2Sub0)
4128             .add(Src2Sub1);
4129 
4130         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4131             .addReg(Src2_32, RegState::Kill)
4132             .addImm(0);
4133       }
4134     } else {
4135       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4136           .addReg(Src2.getReg())
4137           .addImm(0);
4138     }
4139 
4140     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4141 
4142     unsigned SelOpc =
4143         (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
4144 
4145     BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
4146         .addImm(-1)
4147         .addImm(0);
4148 
4149     MI.eraseFromParent();
4150     return BB;
4151   }
4152   case AMDGPU::SI_INIT_M0: {
4153     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4154             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4155         .add(MI.getOperand(0));
4156     MI.eraseFromParent();
4157     return BB;
4158   }
4159   case AMDGPU::GET_GROUPSTATICSIZE: {
4160     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4161            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4162     DebugLoc DL = MI.getDebugLoc();
4163     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4164         .add(MI.getOperand(0))
4165         .addImm(MFI->getLDSSize());
4166     MI.eraseFromParent();
4167     return BB;
4168   }
4169   case AMDGPU::SI_INDIRECT_SRC_V1:
4170   case AMDGPU::SI_INDIRECT_SRC_V2:
4171   case AMDGPU::SI_INDIRECT_SRC_V4:
4172   case AMDGPU::SI_INDIRECT_SRC_V8:
4173   case AMDGPU::SI_INDIRECT_SRC_V16:
4174   case AMDGPU::SI_INDIRECT_SRC_V32:
4175     return emitIndirectSrc(MI, *BB, *getSubtarget());
4176   case AMDGPU::SI_INDIRECT_DST_V1:
4177   case AMDGPU::SI_INDIRECT_DST_V2:
4178   case AMDGPU::SI_INDIRECT_DST_V4:
4179   case AMDGPU::SI_INDIRECT_DST_V8:
4180   case AMDGPU::SI_INDIRECT_DST_V16:
4181   case AMDGPU::SI_INDIRECT_DST_V32:
4182     return emitIndirectDst(MI, *BB, *getSubtarget());
4183   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4184   case AMDGPU::SI_KILL_I1_PSEUDO:
4185     return splitKillBlock(MI, BB);
4186   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4187     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4188     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4189     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4190 
4191     Register Dst = MI.getOperand(0).getReg();
4192     Register Src0 = MI.getOperand(1).getReg();
4193     Register Src1 = MI.getOperand(2).getReg();
4194     const DebugLoc &DL = MI.getDebugLoc();
4195     Register SrcCond = MI.getOperand(3).getReg();
4196 
4197     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4198     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4199     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4200     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4201 
4202     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4203       .addReg(SrcCond);
4204     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4205       .addImm(0)
4206       .addReg(Src0, 0, AMDGPU::sub0)
4207       .addImm(0)
4208       .addReg(Src1, 0, AMDGPU::sub0)
4209       .addReg(SrcCondCopy);
4210     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4211       .addImm(0)
4212       .addReg(Src0, 0, AMDGPU::sub1)
4213       .addImm(0)
4214       .addReg(Src1, 0, AMDGPU::sub1)
4215       .addReg(SrcCondCopy);
4216 
4217     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4218       .addReg(DstLo)
4219       .addImm(AMDGPU::sub0)
4220       .addReg(DstHi)
4221       .addImm(AMDGPU::sub1);
4222     MI.eraseFromParent();
4223     return BB;
4224   }
4225   case AMDGPU::SI_BR_UNDEF: {
4226     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4227     const DebugLoc &DL = MI.getDebugLoc();
4228     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4229                            .add(MI.getOperand(0));
4230     Br->getOperand(1).setIsUndef(true); // read undef SCC
4231     MI.eraseFromParent();
4232     return BB;
4233   }
4234   case AMDGPU::ADJCALLSTACKUP:
4235   case AMDGPU::ADJCALLSTACKDOWN: {
4236     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4237     MachineInstrBuilder MIB(*MF, &MI);
4238     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4239        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4240     return BB;
4241   }
4242   case AMDGPU::SI_CALL_ISEL: {
4243     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4244     const DebugLoc &DL = MI.getDebugLoc();
4245 
4246     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4247 
4248     MachineInstrBuilder MIB;
4249     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4250 
4251     for (const MachineOperand &MO : MI.operands())
4252       MIB.add(MO);
4253 
4254     MIB.cloneMemRefs(MI);
4255     MI.eraseFromParent();
4256     return BB;
4257   }
4258   case AMDGPU::V_ADD_CO_U32_e32:
4259   case AMDGPU::V_SUB_CO_U32_e32:
4260   case AMDGPU::V_SUBREV_CO_U32_e32: {
4261     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4262     const DebugLoc &DL = MI.getDebugLoc();
4263     unsigned Opc = MI.getOpcode();
4264 
4265     bool NeedClampOperand = false;
4266     if (TII->pseudoToMCOpcode(Opc) == -1) {
4267       Opc = AMDGPU::getVOPe64(Opc);
4268       NeedClampOperand = true;
4269     }
4270 
4271     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4272     if (TII->isVOP3(*I)) {
4273       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4274       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4275       I.addReg(TRI->getVCC(), RegState::Define);
4276     }
4277     I.add(MI.getOperand(1))
4278      .add(MI.getOperand(2));
4279     if (NeedClampOperand)
4280       I.addImm(0); // clamp bit for e64 encoding
4281 
4282     TII->legalizeOperands(*I);
4283 
4284     MI.eraseFromParent();
4285     return BB;
4286   }
4287   case AMDGPU::V_ADDC_U32_e32:
4288   case AMDGPU::V_SUBB_U32_e32:
4289   case AMDGPU::V_SUBBREV_U32_e32:
4290     // These instructions have an implicit use of vcc which counts towards the
4291     // constant bus limit.
4292     TII->legalizeOperands(MI);
4293     return BB;
4294   case AMDGPU::DS_GWS_INIT:
4295   case AMDGPU::DS_GWS_SEMA_BR:
4296   case AMDGPU::DS_GWS_BARRIER:
4297     TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0);
4298     LLVM_FALLTHROUGH;
4299   case AMDGPU::DS_GWS_SEMA_V:
4300   case AMDGPU::DS_GWS_SEMA_P:
4301   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4302     // A s_waitcnt 0 is required to be the instruction immediately following.
4303     if (getSubtarget()->hasGWSAutoReplay()) {
4304       bundleInstWithWaitcnt(MI);
4305       return BB;
4306     }
4307 
4308     return emitGWSMemViolTestLoop(MI, BB);
4309   case AMDGPU::S_SETREG_B32: {
4310     // Try to optimize cases that only set the denormal mode or rounding mode.
4311     //
4312     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4313     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4314     // instead.
4315     //
4316     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4317     // allow you to have a no side effect instruction in the output of a
4318     // sideeffecting pattern.
4319     unsigned ID, Offset, Width;
4320     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4321     if (ID != AMDGPU::Hwreg::ID_MODE)
4322       return BB;
4323 
4324     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4325     const unsigned SetMask = WidthMask << Offset;
4326 
4327     if (getSubtarget()->hasDenormModeInst()) {
4328       unsigned SetDenormOp = 0;
4329       unsigned SetRoundOp = 0;
4330 
4331       // The dedicated instructions can only set the whole denorm or round mode
4332       // at once, not a subset of bits in either.
4333       if (SetMask ==
4334           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4335         // If this fully sets both the round and denorm mode, emit the two
4336         // dedicated instructions for these.
4337         SetRoundOp = AMDGPU::S_ROUND_MODE;
4338         SetDenormOp = AMDGPU::S_DENORM_MODE;
4339       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4340         SetRoundOp = AMDGPU::S_ROUND_MODE;
4341       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4342         SetDenormOp = AMDGPU::S_DENORM_MODE;
4343       }
4344 
4345       if (SetRoundOp || SetDenormOp) {
4346         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4347         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4348         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4349           unsigned ImmVal = Def->getOperand(1).getImm();
4350           if (SetRoundOp) {
4351             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4352                 .addImm(ImmVal & 0xf);
4353 
4354             // If we also have the denorm mode, get just the denorm mode bits.
4355             ImmVal >>= 4;
4356           }
4357 
4358           if (SetDenormOp) {
4359             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4360                 .addImm(ImmVal & 0xf);
4361           }
4362 
4363           MI.eraseFromParent();
4364           return BB;
4365         }
4366       }
4367     }
4368 
4369     // If only FP bits are touched, used the no side effects pseudo.
4370     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4371                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4372       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4373 
4374     return BB;
4375   }
4376   default:
4377     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4378   }
4379 }
4380 
4381 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4382   return isTypeLegal(VT.getScalarType());
4383 }
4384 
4385 bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const {
4386   switch (Op.getValue(0).getSimpleValueType().SimpleTy) {
4387   case MVT::f32:
4388     return Subtarget->hasAtomicFaddRtnInsts();
4389   case MVT::v2f16:
4390   case MVT::f64:
4391     return Subtarget->hasGFX90AInsts();
4392   default:
4393     return false;
4394   }
4395 }
4396 
4397 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4398   // This currently forces unfolding various combinations of fsub into fma with
4399   // free fneg'd operands. As long as we have fast FMA (controlled by
4400   // isFMAFasterThanFMulAndFAdd), we should perform these.
4401 
4402   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4403   // most of these combines appear to be cycle neutral but save on instruction
4404   // count / code size.
4405   return true;
4406 }
4407 
4408 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; }
4409 
4410 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4411                                          EVT VT) const {
4412   if (!VT.isVector()) {
4413     return MVT::i1;
4414   }
4415   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4416 }
4417 
4418 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4419   // TODO: Should i16 be used always if legal? For now it would force VALU
4420   // shifts.
4421   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4422 }
4423 
4424 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4425   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4426              ? Ty.changeElementSize(16)
4427              : Ty.changeElementSize(32);
4428 }
4429 
4430 // Answering this is somewhat tricky and depends on the specific device which
4431 // have different rates for fma or all f64 operations.
4432 //
4433 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4434 // regardless of which device (although the number of cycles differs between
4435 // devices), so it is always profitable for f64.
4436 //
4437 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4438 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4439 // which we can always do even without fused FP ops since it returns the same
4440 // result as the separate operations and since it is always full
4441 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4442 // however does not support denormals, so we do report fma as faster if we have
4443 // a fast fma device and require denormals.
4444 //
4445 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4446                                                   EVT VT) const {
4447   VT = VT.getScalarType();
4448 
4449   switch (VT.getSimpleVT().SimpleTy) {
4450   case MVT::f32: {
4451     // If mad is not available this depends only on if f32 fma is full rate.
4452     if (!Subtarget->hasMadMacF32Insts())
4453       return Subtarget->hasFastFMAF32();
4454 
4455     // Otherwise f32 mad is always full rate and returns the same result as
4456     // the separate operations so should be preferred over fma.
4457     // However does not support denormals.
4458     if (hasFP32Denormals(MF))
4459       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4460 
4461     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4462     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4463   }
4464   case MVT::f64:
4465     return true;
4466   case MVT::f16:
4467     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4468   default:
4469     break;
4470   }
4471 
4472   return false;
4473 }
4474 
4475 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4476                                                   LLT Ty) const {
4477   switch (Ty.getScalarSizeInBits()) {
4478   case 16:
4479     return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
4480   case 32:
4481     return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
4482   case 64:
4483     return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
4484   default:
4485     break;
4486   }
4487 
4488   return false;
4489 }
4490 
4491 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const {
4492   if (!Ty.isScalar())
4493     return false;
4494 
4495   if (Ty.getScalarSizeInBits() == 16)
4496     return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF());
4497   if (Ty.getScalarSizeInBits() == 32)
4498     return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF());
4499 
4500   return false;
4501 }
4502 
4503 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4504                                    const SDNode *N) const {
4505   // TODO: Check future ftz flag
4506   // v_mad_f32/v_mac_f32 do not support denormals.
4507   EVT VT = N->getValueType(0);
4508   if (VT == MVT::f32)
4509     return Subtarget->hasMadMacF32Insts() &&
4510            !hasFP32Denormals(DAG.getMachineFunction());
4511   if (VT == MVT::f16) {
4512     return Subtarget->hasMadF16() &&
4513            !hasFP64FP16Denormals(DAG.getMachineFunction());
4514   }
4515 
4516   return false;
4517 }
4518 
4519 //===----------------------------------------------------------------------===//
4520 // Custom DAG Lowering Operations
4521 //===----------------------------------------------------------------------===//
4522 
4523 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4524 // wider vector type is legal.
4525 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4526                                              SelectionDAG &DAG) const {
4527   unsigned Opc = Op.getOpcode();
4528   EVT VT = Op.getValueType();
4529   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4530 
4531   SDValue Lo, Hi;
4532   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4533 
4534   SDLoc SL(Op);
4535   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4536                              Op->getFlags());
4537   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4538                              Op->getFlags());
4539 
4540   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4541 }
4542 
4543 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4544 // wider vector type is legal.
4545 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4546                                               SelectionDAG &DAG) const {
4547   unsigned Opc = Op.getOpcode();
4548   EVT VT = Op.getValueType();
4549   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4550          VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8f32 ||
4551          VT == MVT::v16f32 || VT == MVT::v32f32);
4552 
4553   SDValue Lo0, Hi0;
4554   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4555   SDValue Lo1, Hi1;
4556   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4557 
4558   SDLoc SL(Op);
4559 
4560   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4561                              Op->getFlags());
4562   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4563                              Op->getFlags());
4564 
4565   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4566 }
4567 
4568 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4569                                               SelectionDAG &DAG) const {
4570   unsigned Opc = Op.getOpcode();
4571   EVT VT = Op.getValueType();
4572   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
4573          VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v8f32 ||
4574          VT == MVT::v16f32 || VT == MVT::v32f32);
4575 
4576   SDValue Lo0, Hi0;
4577   SDValue Op0 = Op.getOperand(0);
4578   std::tie(Lo0, Hi0) = Op0.getValueType().isVector()
4579                          ? DAG.SplitVectorOperand(Op.getNode(), 0)
4580                          : std::make_pair(Op0, Op0);
4581   SDValue Lo1, Hi1;
4582   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4583   SDValue Lo2, Hi2;
4584   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4585 
4586   SDLoc SL(Op);
4587   auto ResVT = DAG.GetSplitDestVTs(VT);
4588 
4589   SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2,
4590                              Op->getFlags());
4591   SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2,
4592                              Op->getFlags());
4593 
4594   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4595 }
4596 
4597 
4598 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4599   switch (Op.getOpcode()) {
4600   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4601   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4602   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4603   case ISD::LOAD: {
4604     SDValue Result = LowerLOAD(Op, DAG);
4605     assert((!Result.getNode() ||
4606             Result.getNode()->getNumValues() == 2) &&
4607            "Load should return a value and a chain");
4608     return Result;
4609   }
4610 
4611   case ISD::FSIN:
4612   case ISD::FCOS:
4613     return LowerTrig(Op, DAG);
4614   case ISD::SELECT: return LowerSELECT(Op, DAG);
4615   case ISD::FDIV: return LowerFDIV(Op, DAG);
4616   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4617   case ISD::STORE: return LowerSTORE(Op, DAG);
4618   case ISD::GlobalAddress: {
4619     MachineFunction &MF = DAG.getMachineFunction();
4620     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4621     return LowerGlobalAddress(MFI, Op, DAG);
4622   }
4623   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4624   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4625   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4626   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4627   case ISD::INSERT_SUBVECTOR:
4628     return lowerINSERT_SUBVECTOR(Op, DAG);
4629   case ISD::INSERT_VECTOR_ELT:
4630     return lowerINSERT_VECTOR_ELT(Op, DAG);
4631   case ISD::EXTRACT_VECTOR_ELT:
4632     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4633   case ISD::VECTOR_SHUFFLE:
4634     return lowerVECTOR_SHUFFLE(Op, DAG);
4635   case ISD::SCALAR_TO_VECTOR:
4636     return lowerSCALAR_TO_VECTOR(Op, DAG);
4637   case ISD::BUILD_VECTOR:
4638     return lowerBUILD_VECTOR(Op, DAG);
4639   case ISD::FP_ROUND:
4640     return lowerFP_ROUND(Op, DAG);
4641   case ISD::FPTRUNC_ROUND: {
4642     unsigned Opc;
4643     SDLoc DL(Op);
4644 
4645     if (Op.getOperand(0)->getValueType(0) != MVT::f32)
4646       return SDValue();
4647 
4648     // Get the rounding mode from the last operand
4649     int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4650     if (RoundMode == (int)RoundingMode::TowardPositive)
4651       Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD;
4652     else if (RoundMode == (int)RoundingMode::TowardNegative)
4653       Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD;
4654     else
4655       return SDValue();
4656 
4657     return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0));
4658   }
4659   case ISD::TRAP:
4660     return lowerTRAP(Op, DAG);
4661   case ISD::DEBUGTRAP:
4662     return lowerDEBUGTRAP(Op, DAG);
4663   case ISD::FABS:
4664   case ISD::FNEG:
4665   case ISD::FCANONICALIZE:
4666   case ISD::BSWAP:
4667     return splitUnaryVectorOp(Op, DAG);
4668   case ISD::FMINNUM:
4669   case ISD::FMAXNUM:
4670     return lowerFMINNUM_FMAXNUM(Op, DAG);
4671   case ISD::FMA:
4672     return splitTernaryVectorOp(Op, DAG);
4673   case ISD::FP_TO_SINT:
4674   case ISD::FP_TO_UINT:
4675     return LowerFP_TO_INT(Op, DAG);
4676   case ISD::SHL:
4677   case ISD::SRA:
4678   case ISD::SRL:
4679   case ISD::ADD:
4680   case ISD::SUB:
4681   case ISD::MUL:
4682   case ISD::SMIN:
4683   case ISD::SMAX:
4684   case ISD::UMIN:
4685   case ISD::UMAX:
4686   case ISD::FADD:
4687   case ISD::FMUL:
4688   case ISD::FMINNUM_IEEE:
4689   case ISD::FMAXNUM_IEEE:
4690   case ISD::UADDSAT:
4691   case ISD::USUBSAT:
4692   case ISD::SADDSAT:
4693   case ISD::SSUBSAT:
4694     return splitBinaryVectorOp(Op, DAG);
4695   case ISD::SMULO:
4696   case ISD::UMULO:
4697     return lowerXMULO(Op, DAG);
4698   case ISD::SMUL_LOHI:
4699   case ISD::UMUL_LOHI:
4700     return lowerXMUL_LOHI(Op, DAG);
4701   case ISD::DYNAMIC_STACKALLOC:
4702     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4703   }
4704   return SDValue();
4705 }
4706 
4707 // Used for D16: Casts the result of an instruction into the right vector,
4708 // packs values if loads return unpacked values.
4709 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4710                                        const SDLoc &DL,
4711                                        SelectionDAG &DAG, bool Unpacked) {
4712   if (!LoadVT.isVector())
4713     return Result;
4714 
4715   // Cast back to the original packed type or to a larger type that is a
4716   // multiple of 32 bit for D16. Widening the return type is a required for
4717   // legalization.
4718   EVT FittingLoadVT = LoadVT;
4719   if ((LoadVT.getVectorNumElements() % 2) == 1) {
4720     FittingLoadVT =
4721         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4722                          LoadVT.getVectorNumElements() + 1);
4723   }
4724 
4725   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4726     // Truncate to v2i16/v4i16.
4727     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4728 
4729     // Workaround legalizer not scalarizing truncate after vector op
4730     // legalization but not creating intermediate vector trunc.
4731     SmallVector<SDValue, 4> Elts;
4732     DAG.ExtractVectorElements(Result, Elts);
4733     for (SDValue &Elt : Elts)
4734       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4735 
4736     // Pad illegal v1i16/v3fi6 to v4i16
4737     if ((LoadVT.getVectorNumElements() % 2) == 1)
4738       Elts.push_back(DAG.getUNDEF(MVT::i16));
4739 
4740     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4741 
4742     // Bitcast to original type (v2f16/v4f16).
4743     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4744   }
4745 
4746   // Cast back to the original packed type.
4747   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4748 }
4749 
4750 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4751                                               MemSDNode *M,
4752                                               SelectionDAG &DAG,
4753                                               ArrayRef<SDValue> Ops,
4754                                               bool IsIntrinsic) const {
4755   SDLoc DL(M);
4756 
4757   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4758   EVT LoadVT = M->getValueType(0);
4759 
4760   EVT EquivLoadVT = LoadVT;
4761   if (LoadVT.isVector()) {
4762     if (Unpacked) {
4763       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4764                                      LoadVT.getVectorNumElements());
4765     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4766       // Widen v3f16 to legal type
4767       EquivLoadVT =
4768           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4769                            LoadVT.getVectorNumElements() + 1);
4770     }
4771   }
4772 
4773   // Change from v4f16/v2f16 to EquivLoadVT.
4774   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4775 
4776   SDValue Load
4777     = DAG.getMemIntrinsicNode(
4778       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4779       VTList, Ops, M->getMemoryVT(),
4780       M->getMemOperand());
4781 
4782   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4783 
4784   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4785 }
4786 
4787 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4788                                              SelectionDAG &DAG,
4789                                              ArrayRef<SDValue> Ops) const {
4790   SDLoc DL(M);
4791   EVT LoadVT = M->getValueType(0);
4792   EVT EltType = LoadVT.getScalarType();
4793   EVT IntVT = LoadVT.changeTypeToInteger();
4794 
4795   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4796 
4797   unsigned Opc =
4798       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4799 
4800   if (IsD16) {
4801     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4802   }
4803 
4804   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4805   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4806     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4807 
4808   if (isTypeLegal(LoadVT)) {
4809     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4810                                M->getMemOperand(), DAG);
4811   }
4812 
4813   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4814   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4815   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4816                                         M->getMemOperand(), DAG);
4817   return DAG.getMergeValues(
4818       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4819       DL);
4820 }
4821 
4822 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4823                                   SDNode *N, SelectionDAG &DAG) {
4824   EVT VT = N->getValueType(0);
4825   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4826   unsigned CondCode = CD->getZExtValue();
4827   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4828     return DAG.getUNDEF(VT);
4829 
4830   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4831 
4832   SDValue LHS = N->getOperand(1);
4833   SDValue RHS = N->getOperand(2);
4834 
4835   SDLoc DL(N);
4836 
4837   EVT CmpVT = LHS.getValueType();
4838   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4839     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4840       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4841     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4842     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4843   }
4844 
4845   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4846 
4847   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4848   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4849 
4850   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4851                               DAG.getCondCode(CCOpcode));
4852   if (VT.bitsEq(CCVT))
4853     return SetCC;
4854   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4855 }
4856 
4857 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4858                                   SDNode *N, SelectionDAG &DAG) {
4859   EVT VT = N->getValueType(0);
4860   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4861 
4862   unsigned CondCode = CD->getZExtValue();
4863   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4864     return DAG.getUNDEF(VT);
4865 
4866   SDValue Src0 = N->getOperand(1);
4867   SDValue Src1 = N->getOperand(2);
4868   EVT CmpVT = Src0.getValueType();
4869   SDLoc SL(N);
4870 
4871   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4872     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4873     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4874   }
4875 
4876   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4877   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4878   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4879   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4880   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4881                               Src1, DAG.getCondCode(CCOpcode));
4882   if (VT.bitsEq(CCVT))
4883     return SetCC;
4884   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4885 }
4886 
4887 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4888                                     SelectionDAG &DAG) {
4889   EVT VT = N->getValueType(0);
4890   SDValue Src = N->getOperand(1);
4891   SDLoc SL(N);
4892 
4893   if (Src.getOpcode() == ISD::SETCC) {
4894     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4895     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4896                        Src.getOperand(1), Src.getOperand(2));
4897   }
4898   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4899     // (ballot 0) -> 0
4900     if (Arg->isZero())
4901       return DAG.getConstant(0, SL, VT);
4902 
4903     // (ballot 1) -> EXEC/EXEC_LO
4904     if (Arg->isOne()) {
4905       Register Exec;
4906       if (VT.getScalarSizeInBits() == 32)
4907         Exec = AMDGPU::EXEC_LO;
4908       else if (VT.getScalarSizeInBits() == 64)
4909         Exec = AMDGPU::EXEC;
4910       else
4911         return SDValue();
4912 
4913       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4914     }
4915   }
4916 
4917   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4918   // ISD::SETNE)
4919   return DAG.getNode(
4920       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4921       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4922 }
4923 
4924 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4925                                           SmallVectorImpl<SDValue> &Results,
4926                                           SelectionDAG &DAG) const {
4927   switch (N->getOpcode()) {
4928   case ISD::INSERT_VECTOR_ELT: {
4929     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4930       Results.push_back(Res);
4931     return;
4932   }
4933   case ISD::EXTRACT_VECTOR_ELT: {
4934     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4935       Results.push_back(Res);
4936     return;
4937   }
4938   case ISD::INTRINSIC_WO_CHAIN: {
4939     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4940     switch (IID) {
4941     case Intrinsic::amdgcn_cvt_pkrtz: {
4942       SDValue Src0 = N->getOperand(1);
4943       SDValue Src1 = N->getOperand(2);
4944       SDLoc SL(N);
4945       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4946                                 Src0, Src1);
4947       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4948       return;
4949     }
4950     case Intrinsic::amdgcn_cvt_pknorm_i16:
4951     case Intrinsic::amdgcn_cvt_pknorm_u16:
4952     case Intrinsic::amdgcn_cvt_pk_i16:
4953     case Intrinsic::amdgcn_cvt_pk_u16: {
4954       SDValue Src0 = N->getOperand(1);
4955       SDValue Src1 = N->getOperand(2);
4956       SDLoc SL(N);
4957       unsigned Opcode;
4958 
4959       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4960         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4961       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4962         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4963       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4964         Opcode = AMDGPUISD::CVT_PK_I16_I32;
4965       else
4966         Opcode = AMDGPUISD::CVT_PK_U16_U32;
4967 
4968       EVT VT = N->getValueType(0);
4969       if (isTypeLegal(VT))
4970         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4971       else {
4972         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4973         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4974       }
4975       return;
4976     }
4977     }
4978     break;
4979   }
4980   case ISD::INTRINSIC_W_CHAIN: {
4981     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4982       if (Res.getOpcode() == ISD::MERGE_VALUES) {
4983         // FIXME: Hacky
4984         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
4985           Results.push_back(Res.getOperand(I));
4986         }
4987       } else {
4988         Results.push_back(Res);
4989         Results.push_back(Res.getValue(1));
4990       }
4991       return;
4992     }
4993 
4994     break;
4995   }
4996   case ISD::SELECT: {
4997     SDLoc SL(N);
4998     EVT VT = N->getValueType(0);
4999     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
5000     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
5001     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
5002 
5003     EVT SelectVT = NewVT;
5004     if (NewVT.bitsLT(MVT::i32)) {
5005       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
5006       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
5007       SelectVT = MVT::i32;
5008     }
5009 
5010     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
5011                                     N->getOperand(0), LHS, RHS);
5012 
5013     if (NewVT != SelectVT)
5014       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
5015     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
5016     return;
5017   }
5018   case ISD::FNEG: {
5019     if (N->getValueType(0) != MVT::v2f16)
5020       break;
5021 
5022     SDLoc SL(N);
5023     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5024 
5025     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
5026                              BC,
5027                              DAG.getConstant(0x80008000, SL, MVT::i32));
5028     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5029     return;
5030   }
5031   case ISD::FABS: {
5032     if (N->getValueType(0) != MVT::v2f16)
5033       break;
5034 
5035     SDLoc SL(N);
5036     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5037 
5038     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
5039                              BC,
5040                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
5041     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5042     return;
5043   }
5044   default:
5045     break;
5046   }
5047 }
5048 
5049 /// Helper function for LowerBRCOND
5050 static SDNode *findUser(SDValue Value, unsigned Opcode) {
5051 
5052   SDNode *Parent = Value.getNode();
5053   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
5054        I != E; ++I) {
5055 
5056     if (I.getUse().get() != Value)
5057       continue;
5058 
5059     if (I->getOpcode() == Opcode)
5060       return *I;
5061   }
5062   return nullptr;
5063 }
5064 
5065 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
5066   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
5067     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
5068     case Intrinsic::amdgcn_if:
5069       return AMDGPUISD::IF;
5070     case Intrinsic::amdgcn_else:
5071       return AMDGPUISD::ELSE;
5072     case Intrinsic::amdgcn_loop:
5073       return AMDGPUISD::LOOP;
5074     case Intrinsic::amdgcn_end_cf:
5075       llvm_unreachable("should not occur");
5076     default:
5077       return 0;
5078     }
5079   }
5080 
5081   // break, if_break, else_break are all only used as inputs to loop, not
5082   // directly as branch conditions.
5083   return 0;
5084 }
5085 
5086 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
5087   const Triple &TT = getTargetMachine().getTargetTriple();
5088   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5089           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5090          AMDGPU::shouldEmitConstantsToTextSection(TT);
5091 }
5092 
5093 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
5094   // FIXME: Either avoid relying on address space here or change the default
5095   // address space for functions to avoid the explicit check.
5096   return (GV->getValueType()->isFunctionTy() ||
5097           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
5098          !shouldEmitFixup(GV) &&
5099          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5100 }
5101 
5102 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5103   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5104 }
5105 
5106 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5107   if (!GV->hasExternalLinkage())
5108     return true;
5109 
5110   const auto OS = getTargetMachine().getTargetTriple().getOS();
5111   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5112 }
5113 
5114 /// This transforms the control flow intrinsics to get the branch destination as
5115 /// last parameter, also switches branch target with BR if the need arise
5116 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5117                                       SelectionDAG &DAG) const {
5118   SDLoc DL(BRCOND);
5119 
5120   SDNode *Intr = BRCOND.getOperand(1).getNode();
5121   SDValue Target = BRCOND.getOperand(2);
5122   SDNode *BR = nullptr;
5123   SDNode *SetCC = nullptr;
5124 
5125   if (Intr->getOpcode() == ISD::SETCC) {
5126     // As long as we negate the condition everything is fine
5127     SetCC = Intr;
5128     Intr = SetCC->getOperand(0).getNode();
5129 
5130   } else {
5131     // Get the target from BR if we don't negate the condition
5132     BR = findUser(BRCOND, ISD::BR);
5133     assert(BR && "brcond missing unconditional branch user");
5134     Target = BR->getOperand(1);
5135   }
5136 
5137   unsigned CFNode = isCFIntrinsic(Intr);
5138   if (CFNode == 0) {
5139     // This is a uniform branch so we don't need to legalize.
5140     return BRCOND;
5141   }
5142 
5143   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5144                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5145 
5146   assert(!SetCC ||
5147         (SetCC->getConstantOperandVal(1) == 1 &&
5148          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5149                                                              ISD::SETNE));
5150 
5151   // operands of the new intrinsic call
5152   SmallVector<SDValue, 4> Ops;
5153   if (HaveChain)
5154     Ops.push_back(BRCOND.getOperand(0));
5155 
5156   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
5157   Ops.push_back(Target);
5158 
5159   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5160 
5161   // build the new intrinsic call
5162   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5163 
5164   if (!HaveChain) {
5165     SDValue Ops[] =  {
5166       SDValue(Result, 0),
5167       BRCOND.getOperand(0)
5168     };
5169 
5170     Result = DAG.getMergeValues(Ops, DL).getNode();
5171   }
5172 
5173   if (BR) {
5174     // Give the branch instruction our target
5175     SDValue Ops[] = {
5176       BR->getOperand(0),
5177       BRCOND.getOperand(2)
5178     };
5179     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5180     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5181   }
5182 
5183   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5184 
5185   // Copy the intrinsic results to registers
5186   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5187     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5188     if (!CopyToReg)
5189       continue;
5190 
5191     Chain = DAG.getCopyToReg(
5192       Chain, DL,
5193       CopyToReg->getOperand(1),
5194       SDValue(Result, i - 1),
5195       SDValue());
5196 
5197     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5198   }
5199 
5200   // Remove the old intrinsic from the chain
5201   DAG.ReplaceAllUsesOfValueWith(
5202     SDValue(Intr, Intr->getNumValues() - 1),
5203     Intr->getOperand(0));
5204 
5205   return Chain;
5206 }
5207 
5208 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5209                                           SelectionDAG &DAG) const {
5210   MVT VT = Op.getSimpleValueType();
5211   SDLoc DL(Op);
5212   // Checking the depth
5213   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5214     return DAG.getConstant(0, DL, VT);
5215 
5216   MachineFunction &MF = DAG.getMachineFunction();
5217   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5218   // Check for kernel and shader functions
5219   if (Info->isEntryFunction())
5220     return DAG.getConstant(0, DL, VT);
5221 
5222   MachineFrameInfo &MFI = MF.getFrameInfo();
5223   // There is a call to @llvm.returnaddress in this function
5224   MFI.setReturnAddressIsTaken(true);
5225 
5226   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5227   // Get the return address reg and mark it as an implicit live-in
5228   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5229 
5230   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5231 }
5232 
5233 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5234                                             SDValue Op,
5235                                             const SDLoc &DL,
5236                                             EVT VT) const {
5237   return Op.getValueType().bitsLE(VT) ?
5238       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5239     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5240                 DAG.getTargetConstant(0, DL, MVT::i32));
5241 }
5242 
5243 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5244   assert(Op.getValueType() == MVT::f16 &&
5245          "Do not know how to custom lower FP_ROUND for non-f16 type");
5246 
5247   SDValue Src = Op.getOperand(0);
5248   EVT SrcVT = Src.getValueType();
5249   if (SrcVT != MVT::f64)
5250     return Op;
5251 
5252   SDLoc DL(Op);
5253 
5254   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5255   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5256   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5257 }
5258 
5259 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5260                                                SelectionDAG &DAG) const {
5261   EVT VT = Op.getValueType();
5262   const MachineFunction &MF = DAG.getMachineFunction();
5263   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5264   bool IsIEEEMode = Info->getMode().IEEE;
5265 
5266   // FIXME: Assert during selection that this is only selected for
5267   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5268   // mode functions, but this happens to be OK since it's only done in cases
5269   // where there is known no sNaN.
5270   if (IsIEEEMode)
5271     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5272 
5273   if (VT == MVT::v4f16 || VT == MVT::v8f16)
5274     return splitBinaryVectorOp(Op, DAG);
5275   return Op;
5276 }
5277 
5278 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5279   EVT VT = Op.getValueType();
5280   SDLoc SL(Op);
5281   SDValue LHS = Op.getOperand(0);
5282   SDValue RHS = Op.getOperand(1);
5283   bool isSigned = Op.getOpcode() == ISD::SMULO;
5284 
5285   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5286     const APInt &C = RHSC->getAPIntValue();
5287     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5288     if (C.isPowerOf2()) {
5289       // smulo(x, signed_min) is same as umulo(x, signed_min).
5290       bool UseArithShift = isSigned && !C.isMinSignedValue();
5291       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5292       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5293       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5294           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5295                       SL, VT, Result, ShiftAmt),
5296           LHS, ISD::SETNE);
5297       return DAG.getMergeValues({ Result, Overflow }, SL);
5298     }
5299   }
5300 
5301   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5302   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5303                             SL, VT, LHS, RHS);
5304 
5305   SDValue Sign = isSigned
5306     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5307                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5308     : DAG.getConstant(0, SL, VT);
5309   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5310 
5311   return DAG.getMergeValues({ Result, Overflow }, SL);
5312 }
5313 
5314 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
5315   if (Op->isDivergent()) {
5316     // Select to V_MAD_[IU]64_[IU]32.
5317     return Op;
5318   }
5319   if (Subtarget->hasSMulHi()) {
5320     // Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
5321     return SDValue();
5322   }
5323   // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
5324   // calculate the high part, so we might as well do the whole thing with
5325   // V_MAD_[IU]64_[IU]32.
5326   return Op;
5327 }
5328 
5329 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5330   if (!Subtarget->isTrapHandlerEnabled() ||
5331       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5332     return lowerTrapEndpgm(Op, DAG);
5333 
5334   if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) {
5335     switch (*HsaAbiVer) {
5336     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
5337     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
5338       return lowerTrapHsaQueuePtr(Op, DAG);
5339     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
5340     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
5341       return Subtarget->supportsGetDoorbellID() ?
5342           lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG);
5343     }
5344   }
5345 
5346   llvm_unreachable("Unknown trap handler");
5347 }
5348 
5349 SDValue SITargetLowering::lowerTrapEndpgm(
5350     SDValue Op, SelectionDAG &DAG) const {
5351   SDLoc SL(Op);
5352   SDValue Chain = Op.getOperand(0);
5353   return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5354 }
5355 
5356 SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT,
5357     const SDLoc &DL, Align Alignment, ImplicitParameter Param) const {
5358   MachineFunction &MF = DAG.getMachineFunction();
5359   uint64_t Offset = getImplicitParameterOffset(MF, Param);
5360   SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset);
5361   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5362   return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment,
5363                      MachineMemOperand::MODereferenceable |
5364                          MachineMemOperand::MOInvariant);
5365 }
5366 
5367 SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5368     SDValue Op, SelectionDAG &DAG) const {
5369   SDLoc SL(Op);
5370   SDValue Chain = Op.getOperand(0);
5371 
5372   SDValue QueuePtr;
5373   // For code object version 5, QueuePtr is passed through implicit kernarg.
5374   if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) {
5375     QueuePtr =
5376         loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR);
5377   } else {
5378     MachineFunction &MF = DAG.getMachineFunction();
5379     SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5380     Register UserSGPR = Info->getQueuePtrUserSGPR();
5381 
5382     if (UserSGPR == AMDGPU::NoRegister) {
5383       // We probably are in a function incorrectly marked with
5384       // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the
5385       // trap, so just use a null pointer.
5386       QueuePtr = DAG.getConstant(0, SL, MVT::i64);
5387     } else {
5388       QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR,
5389                                       MVT::i64);
5390     }
5391   }
5392 
5393   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5394   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5395                                    QueuePtr, SDValue());
5396 
5397   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5398   SDValue Ops[] = {
5399     ToReg,
5400     DAG.getTargetConstant(TrapID, SL, MVT::i16),
5401     SGPR01,
5402     ToReg.getValue(1)
5403   };
5404   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5405 }
5406 
5407 SDValue SITargetLowering::lowerTrapHsa(
5408     SDValue Op, SelectionDAG &DAG) const {
5409   SDLoc SL(Op);
5410   SDValue Chain = Op.getOperand(0);
5411 
5412   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5413   SDValue Ops[] = {
5414     Chain,
5415     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5416   };
5417   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5418 }
5419 
5420 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5421   SDLoc SL(Op);
5422   SDValue Chain = Op.getOperand(0);
5423   MachineFunction &MF = DAG.getMachineFunction();
5424 
5425   if (!Subtarget->isTrapHandlerEnabled() ||
5426       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5427     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5428                                      "debugtrap handler not supported",
5429                                      Op.getDebugLoc(),
5430                                      DS_Warning);
5431     LLVMContext &Ctx = MF.getFunction().getContext();
5432     Ctx.diagnose(NoTrap);
5433     return Chain;
5434   }
5435 
5436   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5437   SDValue Ops[] = {
5438     Chain,
5439     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5440   };
5441   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5442 }
5443 
5444 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5445                                              SelectionDAG &DAG) const {
5446   // FIXME: Use inline constants (src_{shared, private}_base) instead.
5447   if (Subtarget->hasApertureRegs()) {
5448     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5449         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5450         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5451     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5452         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5453         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5454     unsigned Encoding =
5455         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5456         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5457         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5458 
5459     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5460     SDValue ApertureReg = SDValue(
5461         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5462     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5463     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5464   }
5465 
5466   // For code object version 5, private_base and shared_base are passed through
5467   // implicit kernargs.
5468   if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) {
5469     ImplicitParameter Param =
5470         (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE;
5471     return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param);
5472   }
5473 
5474   MachineFunction &MF = DAG.getMachineFunction();
5475   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5476   Register UserSGPR = Info->getQueuePtrUserSGPR();
5477   if (UserSGPR == AMDGPU::NoRegister) {
5478     // We probably are in a function incorrectly marked with
5479     // amdgpu-no-queue-ptr. This is undefined.
5480     return DAG.getUNDEF(MVT::i32);
5481   }
5482 
5483   SDValue QueuePtr = CreateLiveInRegister(
5484     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5485 
5486   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5487   // private_segment_aperture_base_hi.
5488   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5489 
5490   SDValue Ptr =
5491       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5492 
5493   // TODO: Use custom target PseudoSourceValue.
5494   // TODO: We should use the value from the IR intrinsic call, but it might not
5495   // be available and how do we get it?
5496   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5497   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5498                      commonAlignment(Align(64), StructOffset),
5499                      MachineMemOperand::MODereferenceable |
5500                          MachineMemOperand::MOInvariant);
5501 }
5502 
5503 /// Return true if the value is a known valid address, such that a null check is
5504 /// not necessary.
5505 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG,
5506                            const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
5507   if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) ||
5508       isa<BasicBlockSDNode>(Val))
5509     return true;
5510 
5511   if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
5512     return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
5513 
5514   // TODO: Search through arithmetic, handle arguments and loads
5515   // marked nonnull.
5516   return false;
5517 }
5518 
5519 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5520                                              SelectionDAG &DAG) const {
5521   SDLoc SL(Op);
5522   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5523 
5524   SDValue Src = ASC->getOperand(0);
5525   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5526   unsigned SrcAS = ASC->getSrcAddressSpace();
5527 
5528   const AMDGPUTargetMachine &TM =
5529     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5530 
5531   // flat -> local/private
5532   if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
5533     unsigned DestAS = ASC->getDestAddressSpace();
5534 
5535     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5536         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5537       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5538 
5539       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5540         return Ptr;
5541 
5542       unsigned NullVal = TM.getNullPointerValue(DestAS);
5543       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5544       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5545 
5546       return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr,
5547                          SegmentNullPtr);
5548     }
5549   }
5550 
5551   // local/private -> flat
5552   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5553     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5554         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5555 
5556       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5557       SDValue CvtPtr =
5558           DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5559       CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
5560 
5561       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5562         return CvtPtr;
5563 
5564       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5565       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5566 
5567       SDValue NonNull
5568         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5569 
5570       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr,
5571                          FlatNullPtr);
5572     }
5573   }
5574 
5575   if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5576       Op.getValueType() == MVT::i64) {
5577     const SIMachineFunctionInfo *Info =
5578         DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
5579     SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32);
5580     SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi);
5581     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
5582   }
5583 
5584   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5585       Src.getValueType() == MVT::i64)
5586     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5587 
5588   // global <-> flat are no-ops and never emitted.
5589 
5590   const MachineFunction &MF = DAG.getMachineFunction();
5591   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5592     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5593   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5594 
5595   return DAG.getUNDEF(ASC->getValueType(0));
5596 }
5597 
5598 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5599 // the small vector and inserting them into the big vector. That is better than
5600 // the default expansion of doing it via a stack slot. Even though the use of
5601 // the stack slot would be optimized away afterwards, the stack slot itself
5602 // remains.
5603 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5604                                                 SelectionDAG &DAG) const {
5605   SDValue Vec = Op.getOperand(0);
5606   SDValue Ins = Op.getOperand(1);
5607   SDValue Idx = Op.getOperand(2);
5608   EVT VecVT = Vec.getValueType();
5609   EVT InsVT = Ins.getValueType();
5610   EVT EltVT = VecVT.getVectorElementType();
5611   unsigned InsNumElts = InsVT.getVectorNumElements();
5612   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5613   SDLoc SL(Op);
5614 
5615   for (unsigned I = 0; I != InsNumElts; ++I) {
5616     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5617                               DAG.getConstant(I, SL, MVT::i32));
5618     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5619                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5620   }
5621   return Vec;
5622 }
5623 
5624 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5625                                                  SelectionDAG &DAG) const {
5626   SDValue Vec = Op.getOperand(0);
5627   SDValue InsVal = Op.getOperand(1);
5628   SDValue Idx = Op.getOperand(2);
5629   EVT VecVT = Vec.getValueType();
5630   EVT EltVT = VecVT.getVectorElementType();
5631   unsigned VecSize = VecVT.getSizeInBits();
5632   unsigned EltSize = EltVT.getSizeInBits();
5633   SDLoc SL(Op);
5634 
5635   // Specially handle the case of v4i16 with static indexing.
5636   unsigned NumElts = VecVT.getVectorNumElements();
5637   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5638   if (NumElts == 4 && EltSize == 16 && KIdx) {
5639     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5640 
5641     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5642                                  DAG.getConstant(0, SL, MVT::i32));
5643     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5644                                  DAG.getConstant(1, SL, MVT::i32));
5645 
5646     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5647     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5648 
5649     unsigned Idx = KIdx->getZExtValue();
5650     bool InsertLo = Idx < 2;
5651     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5652       InsertLo ? LoVec : HiVec,
5653       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5654       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5655 
5656     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5657 
5658     SDValue Concat = InsertLo ?
5659       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5660       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5661 
5662     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5663   }
5664 
5665   // Static indexing does not lower to stack access, and hence there is no need
5666   // for special custom lowering to avoid stack access.
5667   if (isa<ConstantSDNode>(Idx))
5668     return SDValue();
5669 
5670   // Avoid stack access for dynamic indexing by custom lowering to
5671   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5672 
5673   assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits");
5674 
5675   MVT IntVT = MVT::getIntegerVT(VecSize);
5676 
5677   // Convert vector index to bit-index and get the required bit mask.
5678   assert(isPowerOf2_32(EltSize));
5679   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5680   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5681   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5682                             DAG.getConstant(0xffff, SL, IntVT),
5683                             ScaledIdx);
5684 
5685   // 1. Create a congruent vector with the target value in each element.
5686   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5687                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5688 
5689   // 2. Mask off all other indicies except the required index within (1).
5690   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5691 
5692   // 3. Mask off the required index within the target vector.
5693   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5694   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5695                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5696 
5697   // 4. Get (2) and (3) ORed into the target vector.
5698   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5699 
5700   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5701 }
5702 
5703 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5704                                                   SelectionDAG &DAG) const {
5705   SDLoc SL(Op);
5706 
5707   EVT ResultVT = Op.getValueType();
5708   SDValue Vec = Op.getOperand(0);
5709   SDValue Idx = Op.getOperand(1);
5710   EVT VecVT = Vec.getValueType();
5711   unsigned VecSize = VecVT.getSizeInBits();
5712   EVT EltVT = VecVT.getVectorElementType();
5713 
5714   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5715 
5716   // Make sure we do any optimizations that will make it easier to fold
5717   // source modifiers before obscuring it with bit operations.
5718 
5719   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5720   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5721     return Combined;
5722 
5723   if (VecSize == 128) {
5724     SDValue Lo, Hi;
5725     EVT LoVT, HiVT;
5726     SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec);
5727     std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5728     Lo =
5729         DAG.getBitcast(LoVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64,
5730                                          V2, DAG.getConstant(0, SL, MVT::i32)));
5731     Hi =
5732         DAG.getBitcast(HiVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64,
5733                                          V2, DAG.getConstant(1, SL, MVT::i32)));
5734     EVT IdxVT = Idx.getValueType();
5735     unsigned NElem = VecVT.getVectorNumElements();
5736     assert(isPowerOf2_32(NElem));
5737     SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT);
5738     SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask);
5739     SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT);
5740     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx);
5741   }
5742 
5743   assert(VecSize <= 64);
5744 
5745   MVT IntVT = MVT::getIntegerVT(VecSize);
5746 
5747   // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly.
5748   SDValue VecBC = peekThroughBitcasts(Vec);
5749   if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5750     SDValue Src = VecBC.getOperand(0);
5751     Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src);
5752     Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT);
5753   }
5754 
5755   unsigned EltSize = EltVT.getSizeInBits();
5756   assert(isPowerOf2_32(EltSize));
5757 
5758   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5759 
5760   // Convert vector index to bit-index (* EltSize)
5761   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5762 
5763   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5764   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5765 
5766   if (ResultVT == MVT::f16) {
5767     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5768     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5769   }
5770 
5771   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5772 }
5773 
5774 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5775   assert(Elt % 2 == 0);
5776   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5777 }
5778 
5779 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5780                                               SelectionDAG &DAG) const {
5781   SDLoc SL(Op);
5782   EVT ResultVT = Op.getValueType();
5783   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5784 
5785   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5786   EVT EltVT = PackVT.getVectorElementType();
5787   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5788 
5789   // vector_shuffle <0,1,6,7> lhs, rhs
5790   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5791   //
5792   // vector_shuffle <6,7,2,3> lhs, rhs
5793   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5794   //
5795   // vector_shuffle <6,7,0,1> lhs, rhs
5796   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5797 
5798   // Avoid scalarizing when both halves are reading from consecutive elements.
5799   SmallVector<SDValue, 4> Pieces;
5800   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5801     if (elementPairIsContiguous(SVN->getMask(), I)) {
5802       const int Idx = SVN->getMaskElt(I);
5803       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5804       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5805       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5806                                     PackVT, SVN->getOperand(VecIdx),
5807                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5808       Pieces.push_back(SubVec);
5809     } else {
5810       const int Idx0 = SVN->getMaskElt(I);
5811       const int Idx1 = SVN->getMaskElt(I + 1);
5812       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5813       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5814       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5815       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5816 
5817       SDValue Vec0 = SVN->getOperand(VecIdx0);
5818       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5819                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5820 
5821       SDValue Vec1 = SVN->getOperand(VecIdx1);
5822       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5823                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5824       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5825     }
5826   }
5827 
5828   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5829 }
5830 
5831 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5832                                                 SelectionDAG &DAG) const {
5833   SDValue SVal = Op.getOperand(0);
5834   EVT ResultVT = Op.getValueType();
5835   EVT SValVT = SVal.getValueType();
5836   SDValue UndefVal = DAG.getUNDEF(SValVT);
5837   SDLoc SL(Op);
5838 
5839   SmallVector<SDValue, 8> VElts;
5840   VElts.push_back(SVal);
5841   for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I)
5842     VElts.push_back(UndefVal);
5843 
5844   return DAG.getBuildVector(ResultVT, SL, VElts);
5845 }
5846 
5847 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5848                                             SelectionDAG &DAG) const {
5849   SDLoc SL(Op);
5850   EVT VT = Op.getValueType();
5851 
5852   if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5853       VT == MVT::v8i16 || VT == MVT::v8f16) {
5854     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
5855                                   VT.getVectorNumElements() / 2);
5856     MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits());
5857 
5858     // Turn into pair of packed build_vectors.
5859     // TODO: Special case for constants that can be materialized with s_mov_b64.
5860     SmallVector<SDValue, 4> LoOps, HiOps;
5861     for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) {
5862       LoOps.push_back(Op.getOperand(I));
5863       HiOps.push_back(Op.getOperand(I + E));
5864     }
5865     SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps);
5866     SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps);
5867 
5868     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo);
5869     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi);
5870 
5871     SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL,
5872                                        { CastLo, CastHi });
5873     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5874   }
5875 
5876   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5877   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5878 
5879   SDValue Lo = Op.getOperand(0);
5880   SDValue Hi = Op.getOperand(1);
5881 
5882   // Avoid adding defined bits with the zero_extend.
5883   if (Hi.isUndef()) {
5884     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5885     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5886     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5887   }
5888 
5889   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5890   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5891 
5892   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5893                               DAG.getConstant(16, SL, MVT::i32));
5894   if (Lo.isUndef())
5895     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5896 
5897   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5898   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5899 
5900   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5901   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5902 }
5903 
5904 bool
5905 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5906   // We can fold offsets for anything that doesn't require a GOT relocation.
5907   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5908           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5909           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5910          !shouldEmitGOTReloc(GA->getGlobal());
5911 }
5912 
5913 static SDValue
5914 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5915                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
5916                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5917   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5918   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5919   // lowered to the following code sequence:
5920   //
5921   // For constant address space:
5922   //   s_getpc_b64 s[0:1]
5923   //   s_add_u32 s0, s0, $symbol
5924   //   s_addc_u32 s1, s1, 0
5925   //
5926   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5927   //   a fixup or relocation is emitted to replace $symbol with a literal
5928   //   constant, which is a pc-relative offset from the encoding of the $symbol
5929   //   operand to the global variable.
5930   //
5931   // For global address space:
5932   //   s_getpc_b64 s[0:1]
5933   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5934   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5935   //
5936   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5937   //   fixups or relocations are emitted to replace $symbol@*@lo and
5938   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5939   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5940   //   operand to the global variable.
5941   //
5942   // What we want here is an offset from the value returned by s_getpc
5943   // (which is the address of the s_add_u32 instruction) to the global
5944   // variable, but since the encoding of $symbol starts 4 bytes after the start
5945   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5946   // small. This requires us to add 4 to the global variable offset in order to
5947   // compute the correct address. Similarly for the s_addc_u32 instruction, the
5948   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5949   // instruction.
5950   SDValue PtrLo =
5951       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5952   SDValue PtrHi;
5953   if (GAFlags == SIInstrInfo::MO_NONE) {
5954     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5955   } else {
5956     PtrHi =
5957         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5958   }
5959   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5960 }
5961 
5962 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5963                                              SDValue Op,
5964                                              SelectionDAG &DAG) const {
5965   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5966   SDLoc DL(GSD);
5967   EVT PtrVT = Op.getValueType();
5968 
5969   const GlobalValue *GV = GSD->getGlobal();
5970   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5971        shouldUseLDSConstAddress(GV)) ||
5972       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5973       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
5974     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5975         GV->hasExternalLinkage()) {
5976       Type *Ty = GV->getValueType();
5977       // HIP uses an unsized array `extern __shared__ T s[]` or similar
5978       // zero-sized type in other languages to declare the dynamic shared
5979       // memory which size is not known at the compile time. They will be
5980       // allocated by the runtime and placed directly after the static
5981       // allocated ones. They all share the same offset.
5982       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
5983         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
5984         // Adjust alignment for that dynamic shared memory array.
5985         MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
5986         return SDValue(
5987             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
5988       }
5989     }
5990     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5991   }
5992 
5993   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5994     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5995                                             SIInstrInfo::MO_ABS32_LO);
5996     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5997   }
5998 
5999   if (shouldEmitFixup(GV))
6000     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
6001   else if (shouldEmitPCReloc(GV))
6002     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
6003                                    SIInstrInfo::MO_REL32);
6004 
6005   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
6006                                             SIInstrInfo::MO_GOTPCREL32);
6007 
6008   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
6009   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
6010   const DataLayout &DataLayout = DAG.getDataLayout();
6011   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
6012   MachinePointerInfo PtrInfo
6013     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
6014 
6015   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
6016                      MachineMemOperand::MODereferenceable |
6017                          MachineMemOperand::MOInvariant);
6018 }
6019 
6020 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
6021                                    const SDLoc &DL, SDValue V) const {
6022   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
6023   // the destination register.
6024   //
6025   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
6026   // so we will end up with redundant moves to m0.
6027   //
6028   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
6029 
6030   // A Null SDValue creates a glue result.
6031   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
6032                                   V, Chain);
6033   return SDValue(M0, 0);
6034 }
6035 
6036 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
6037                                                  SDValue Op,
6038                                                  MVT VT,
6039                                                  unsigned Offset) const {
6040   SDLoc SL(Op);
6041   SDValue Param = lowerKernargMemParameter(
6042       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
6043   // The local size values will have the hi 16-bits as zero.
6044   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
6045                      DAG.getValueType(VT));
6046 }
6047 
6048 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6049                                         EVT VT) {
6050   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6051                                       "non-hsa intrinsic with hsa target",
6052                                       DL.getDebugLoc());
6053   DAG.getContext()->diagnose(BadIntrin);
6054   return DAG.getUNDEF(VT);
6055 }
6056 
6057 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6058                                          EVT VT) {
6059   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6060                                       "intrinsic not supported on subtarget",
6061                                       DL.getDebugLoc());
6062   DAG.getContext()->diagnose(BadIntrin);
6063   return DAG.getUNDEF(VT);
6064 }
6065 
6066 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
6067                                     ArrayRef<SDValue> Elts) {
6068   assert(!Elts.empty());
6069   MVT Type;
6070   unsigned NumElts = Elts.size();
6071 
6072   if (NumElts <= 8) {
6073     Type = MVT::getVectorVT(MVT::f32, NumElts);
6074   } else {
6075     assert(Elts.size() <= 16);
6076     Type = MVT::v16f32;
6077     NumElts = 16;
6078   }
6079 
6080   SmallVector<SDValue, 16> VecElts(NumElts);
6081   for (unsigned i = 0; i < Elts.size(); ++i) {
6082     SDValue Elt = Elts[i];
6083     if (Elt.getValueType() != MVT::f32)
6084       Elt = DAG.getBitcast(MVT::f32, Elt);
6085     VecElts[i] = Elt;
6086   }
6087   for (unsigned i = Elts.size(); i < NumElts; ++i)
6088     VecElts[i] = DAG.getUNDEF(MVT::f32);
6089 
6090   if (NumElts == 1)
6091     return VecElts[0];
6092   return DAG.getBuildVector(Type, DL, VecElts);
6093 }
6094 
6095 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
6096                               SDValue Src, int ExtraElts) {
6097   EVT SrcVT = Src.getValueType();
6098 
6099   SmallVector<SDValue, 8> Elts;
6100 
6101   if (SrcVT.isVector())
6102     DAG.ExtractVectorElements(Src, Elts);
6103   else
6104     Elts.push_back(Src);
6105 
6106   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
6107   while (ExtraElts--)
6108     Elts.push_back(Undef);
6109 
6110   return DAG.getBuildVector(CastVT, DL, Elts);
6111 }
6112 
6113 // Re-construct the required return value for a image load intrinsic.
6114 // This is more complicated due to the optional use TexFailCtrl which means the required
6115 // return type is an aggregate
6116 static SDValue constructRetValue(SelectionDAG &DAG,
6117                                  MachineSDNode *Result,
6118                                  ArrayRef<EVT> ResultTypes,
6119                                  bool IsTexFail, bool Unpacked, bool IsD16,
6120                                  int DMaskPop, int NumVDataDwords,
6121                                  const SDLoc &DL) {
6122   // Determine the required return type. This is the same regardless of IsTexFail flag
6123   EVT ReqRetVT = ResultTypes[0];
6124   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
6125   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6126     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
6127 
6128   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6129     DMaskPop : (DMaskPop + 1) / 2;
6130 
6131   MVT DataDwordVT = NumDataDwords == 1 ?
6132     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
6133 
6134   MVT MaskPopVT = MaskPopDwords == 1 ?
6135     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
6136 
6137   SDValue Data(Result, 0);
6138   SDValue TexFail;
6139 
6140   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
6141     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
6142     if (MaskPopVT.isVector()) {
6143       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
6144                          SDValue(Result, 0), ZeroIdx);
6145     } else {
6146       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
6147                          SDValue(Result, 0), ZeroIdx);
6148     }
6149   }
6150 
6151   if (DataDwordVT.isVector())
6152     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
6153                           NumDataDwords - MaskPopDwords);
6154 
6155   if (IsD16)
6156     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
6157 
6158   EVT LegalReqRetVT = ReqRetVT;
6159   if (!ReqRetVT.isVector()) {
6160     if (!Data.getValueType().isInteger())
6161       Data = DAG.getNode(ISD::BITCAST, DL,
6162                          Data.getValueType().changeTypeToInteger(), Data);
6163     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
6164   } else {
6165     // We need to widen the return vector to a legal type
6166     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
6167         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
6168       LegalReqRetVT =
6169           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
6170                            ReqRetVT.getVectorNumElements() + 1);
6171     }
6172   }
6173   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
6174 
6175   if (IsTexFail) {
6176     TexFail =
6177         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
6178                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
6179 
6180     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
6181   }
6182 
6183   if (Result->getNumValues() == 1)
6184     return Data;
6185 
6186   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
6187 }
6188 
6189 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
6190                          SDValue *LWE, bool &IsTexFail) {
6191   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
6192 
6193   uint64_t Value = TexFailCtrlConst->getZExtValue();
6194   if (Value) {
6195     IsTexFail = true;
6196   }
6197 
6198   SDLoc DL(TexFailCtrlConst);
6199   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
6200   Value &= ~(uint64_t)0x1;
6201   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
6202   Value &= ~(uint64_t)0x2;
6203 
6204   return Value == 0;
6205 }
6206 
6207 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
6208                                       MVT PackVectorVT,
6209                                       SmallVectorImpl<SDValue> &PackedAddrs,
6210                                       unsigned DimIdx, unsigned EndIdx,
6211                                       unsigned NumGradients) {
6212   SDLoc DL(Op);
6213   for (unsigned I = DimIdx; I < EndIdx; I++) {
6214     SDValue Addr = Op.getOperand(I);
6215 
6216     // Gradients are packed with undef for each coordinate.
6217     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
6218     // 1D: undef,dx/dh; undef,dx/dv
6219     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
6220     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
6221     if (((I + 1) >= EndIdx) ||
6222         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
6223                                          I == DimIdx + NumGradients - 1))) {
6224       if (Addr.getValueType() != MVT::i16)
6225         Addr = DAG.getBitcast(MVT::i16, Addr);
6226       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
6227     } else {
6228       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
6229       I++;
6230     }
6231     Addr = DAG.getBitcast(MVT::f32, Addr);
6232     PackedAddrs.push_back(Addr);
6233   }
6234 }
6235 
6236 SDValue SITargetLowering::lowerImage(SDValue Op,
6237                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
6238                                      SelectionDAG &DAG, bool WithChain) const {
6239   SDLoc DL(Op);
6240   MachineFunction &MF = DAG.getMachineFunction();
6241   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
6242   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
6243       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
6244   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
6245   unsigned IntrOpcode = Intr->BaseOpcode;
6246   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6247   bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
6248 
6249   SmallVector<EVT, 3> ResultTypes(Op->values());
6250   SmallVector<EVT, 3> OrigResultTypes(Op->values());
6251   bool IsD16 = false;
6252   bool IsG16 = false;
6253   bool IsA16 = false;
6254   SDValue VData;
6255   int NumVDataDwords;
6256   bool AdjustRetType = false;
6257 
6258   // Offset of intrinsic arguments
6259   const unsigned ArgOffset = WithChain ? 2 : 1;
6260 
6261   unsigned DMask;
6262   unsigned DMaskLanes = 0;
6263 
6264   if (BaseOpcode->Atomic) {
6265     VData = Op.getOperand(2);
6266 
6267     bool Is64Bit = VData.getValueType() == MVT::i64;
6268     if (BaseOpcode->AtomicX2) {
6269       SDValue VData2 = Op.getOperand(3);
6270       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6271                                  {VData, VData2});
6272       if (Is64Bit)
6273         VData = DAG.getBitcast(MVT::v4i32, VData);
6274 
6275       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6276       DMask = Is64Bit ? 0xf : 0x3;
6277       NumVDataDwords = Is64Bit ? 4 : 2;
6278     } else {
6279       DMask = Is64Bit ? 0x3 : 0x1;
6280       NumVDataDwords = Is64Bit ? 2 : 1;
6281     }
6282   } else {
6283     auto *DMaskConst =
6284         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6285     DMask = DMaskConst->getZExtValue();
6286     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6287 
6288     if (BaseOpcode->Store) {
6289       VData = Op.getOperand(2);
6290 
6291       MVT StoreVT = VData.getSimpleValueType();
6292       if (StoreVT.getScalarType() == MVT::f16) {
6293         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6294           return Op; // D16 is unsupported for this instruction
6295 
6296         IsD16 = true;
6297         VData = handleD16VData(VData, DAG, true);
6298       }
6299 
6300       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6301     } else {
6302       // Work out the num dwords based on the dmask popcount and underlying type
6303       // and whether packing is supported.
6304       MVT LoadVT = ResultTypes[0].getSimpleVT();
6305       if (LoadVT.getScalarType() == MVT::f16) {
6306         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6307           return Op; // D16 is unsupported for this instruction
6308 
6309         IsD16 = true;
6310       }
6311 
6312       // Confirm that the return type is large enough for the dmask specified
6313       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6314           (!LoadVT.isVector() && DMaskLanes > 1))
6315           return Op;
6316 
6317       // The sq block of gfx8 and gfx9 do not estimate register use correctly
6318       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6319       // instructions.
6320       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6321           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6322         NumVDataDwords = (DMaskLanes + 1) / 2;
6323       else
6324         NumVDataDwords = DMaskLanes;
6325 
6326       AdjustRetType = true;
6327     }
6328   }
6329 
6330   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6331   SmallVector<SDValue, 4> VAddrs;
6332 
6333   // Check for 16 bit addresses or derivatives and pack if true.
6334   MVT VAddrVT =
6335       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6336   MVT VAddrScalarVT = VAddrVT.getScalarType();
6337   MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6338   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6339 
6340   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6341   VAddrScalarVT = VAddrVT.getScalarType();
6342   MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6343   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6344 
6345   // Push back extra arguments.
6346   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) {
6347     if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) {
6348       assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
6349       // Special handling of bias when A16 is on. Bias is of type half but
6350       // occupies full 32-bit.
6351       SDValue Bias = DAG.getBuildVector(
6352           MVT::v2f16, DL,
6353           {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)});
6354       VAddrs.push_back(Bias);
6355     } else {
6356       assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
6357              "Bias needs to be converted to 16 bit in A16 mode");
6358       VAddrs.push_back(Op.getOperand(ArgOffset + I));
6359     }
6360   }
6361 
6362   if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6363     // 16 bit gradients are supported, but are tied to the A16 control
6364     // so both gradients and addresses must be 16 bit
6365     LLVM_DEBUG(
6366         dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6367                   "require 16 bit args for both gradients and addresses");
6368     return Op;
6369   }
6370 
6371   if (IsA16) {
6372     if (!ST->hasA16()) {
6373       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6374                            "support 16 bit addresses\n");
6375       return Op;
6376     }
6377   }
6378 
6379   // We've dealt with incorrect input so we know that if IsA16, IsG16
6380   // are set then we have to compress/pack operands (either address,
6381   // gradient or both)
6382   // In the case where a16 and gradients are tied (no G16 support) then we
6383   // have already verified that both IsA16 and IsG16 are true
6384   if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6385     // Activate g16
6386     const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6387         AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6388     IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6389   }
6390 
6391   // Add gradients (packed or unpacked)
6392   if (IsG16) {
6393     // Pack the gradients
6394     // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6395     packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6396                               ArgOffset + Intr->GradientStart,
6397                               ArgOffset + Intr->CoordStart, Intr->NumGradients);
6398   } else {
6399     for (unsigned I = ArgOffset + Intr->GradientStart;
6400          I < ArgOffset + Intr->CoordStart; I++)
6401       VAddrs.push_back(Op.getOperand(I));
6402   }
6403 
6404   // Add addresses (packed or unpacked)
6405   if (IsA16) {
6406     packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6407                               ArgOffset + Intr->CoordStart, VAddrEnd,
6408                               0 /* No gradients */);
6409   } else {
6410     // Add uncompressed address
6411     for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6412       VAddrs.push_back(Op.getOperand(I));
6413   }
6414 
6415   // If the register allocator cannot place the address registers contiguously
6416   // without introducing moves, then using the non-sequential address encoding
6417   // is always preferable, since it saves VALU instructions and is usually a
6418   // wash in terms of code size or even better.
6419   //
6420   // However, we currently have no way of hinting to the register allocator that
6421   // MIMG addresses should be placed contiguously when it is possible to do so,
6422   // so force non-NSA for the common 2-address case as a heuristic.
6423   //
6424   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6425   // allocation when possible.
6426   //
6427   // TODO: we can actually allow partial NSA where the final register is a
6428   // contiguous set of the remaining addresses.
6429   // This could help where there are more addresses than supported.
6430   bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) &&
6431                 VAddrs.size() >= 3 &&
6432                 VAddrs.size() <= (unsigned)ST->getNSAMaxSize();
6433   SDValue VAddr;
6434   if (!UseNSA)
6435     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6436 
6437   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6438   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6439   SDValue Unorm;
6440   if (!BaseOpcode->Sampler) {
6441     Unorm = True;
6442   } else {
6443     auto UnormConst =
6444         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6445 
6446     Unorm = UnormConst->getZExtValue() ? True : False;
6447   }
6448 
6449   SDValue TFE;
6450   SDValue LWE;
6451   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6452   bool IsTexFail = false;
6453   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6454     return Op;
6455 
6456   if (IsTexFail) {
6457     if (!DMaskLanes) {
6458       // Expecting to get an error flag since TFC is on - and dmask is 0
6459       // Force dmask to be at least 1 otherwise the instruction will fail
6460       DMask = 0x1;
6461       DMaskLanes = 1;
6462       NumVDataDwords = 1;
6463     }
6464     NumVDataDwords += 1;
6465     AdjustRetType = true;
6466   }
6467 
6468   // Has something earlier tagged that the return type needs adjusting
6469   // This happens if the instruction is a load or has set TexFailCtrl flags
6470   if (AdjustRetType) {
6471     // NumVDataDwords reflects the true number of dwords required in the return type
6472     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6473       // This is a no-op load. This can be eliminated
6474       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6475       if (isa<MemSDNode>(Op))
6476         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6477       return Undef;
6478     }
6479 
6480     EVT NewVT = NumVDataDwords > 1 ?
6481                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6482                 : MVT::i32;
6483 
6484     ResultTypes[0] = NewVT;
6485     if (ResultTypes.size() == 3) {
6486       // Original result was aggregate type used for TexFailCtrl results
6487       // The actual instruction returns as a vector type which has now been
6488       // created. Remove the aggregate result.
6489       ResultTypes.erase(&ResultTypes[1]);
6490     }
6491   }
6492 
6493   unsigned CPol = cast<ConstantSDNode>(
6494       Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6495   if (BaseOpcode->Atomic)
6496     CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6497   if (CPol & ~AMDGPU::CPol::ALL)
6498     return Op;
6499 
6500   SmallVector<SDValue, 26> Ops;
6501   if (BaseOpcode->Store || BaseOpcode->Atomic)
6502     Ops.push_back(VData); // vdata
6503   if (UseNSA)
6504     append_range(Ops, VAddrs);
6505   else
6506     Ops.push_back(VAddr);
6507   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6508   if (BaseOpcode->Sampler)
6509     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6510   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6511   if (IsGFX10Plus)
6512     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6513   Ops.push_back(Unorm);
6514   Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6515   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6516                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6517   if (IsGFX10Plus)
6518     Ops.push_back(IsA16 ? True : False);
6519   if (!Subtarget->hasGFX90AInsts()) {
6520     Ops.push_back(TFE); //tfe
6521   } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6522     report_fatal_error("TFE is not supported on this GPU");
6523   }
6524   Ops.push_back(LWE); // lwe
6525   if (!IsGFX10Plus)
6526     Ops.push_back(DimInfo->DA ? True : False);
6527   if (BaseOpcode->HasD16)
6528     Ops.push_back(IsD16 ? True : False);
6529   if (isa<MemSDNode>(Op))
6530     Ops.push_back(Op.getOperand(0)); // chain
6531 
6532   int NumVAddrDwords =
6533       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6534   int Opcode = -1;
6535 
6536   if (IsGFX11Plus) {
6537     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6538                                    UseNSA ? AMDGPU::MIMGEncGfx11NSA
6539                                           : AMDGPU::MIMGEncGfx11Default,
6540                                    NumVDataDwords, NumVAddrDwords);
6541   } else if (IsGFX10Plus) {
6542     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6543                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6544                                           : AMDGPU::MIMGEncGfx10Default,
6545                                    NumVDataDwords, NumVAddrDwords);
6546   } else {
6547     if (Subtarget->hasGFX90AInsts()) {
6548       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
6549                                      NumVDataDwords, NumVAddrDwords);
6550       if (Opcode == -1)
6551         report_fatal_error(
6552             "requested image instruction is not supported on this GPU");
6553     }
6554     if (Opcode == -1 &&
6555         Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6556       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6557                                      NumVDataDwords, NumVAddrDwords);
6558     if (Opcode == -1)
6559       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6560                                      NumVDataDwords, NumVAddrDwords);
6561   }
6562   assert(Opcode != -1);
6563 
6564   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6565   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6566     MachineMemOperand *MemRef = MemOp->getMemOperand();
6567     DAG.setNodeMemRefs(NewNode, {MemRef});
6568   }
6569 
6570   if (BaseOpcode->AtomicX2) {
6571     SmallVector<SDValue, 1> Elt;
6572     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6573     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6574   }
6575   if (BaseOpcode->Store)
6576     return SDValue(NewNode, 0);
6577   return constructRetValue(DAG, NewNode,
6578                            OrigResultTypes, IsTexFail,
6579                            Subtarget->hasUnpackedD16VMem(), IsD16,
6580                            DMaskLanes, NumVDataDwords, DL);
6581 }
6582 
6583 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6584                                        SDValue Offset, SDValue CachePolicy,
6585                                        SelectionDAG &DAG) const {
6586   MachineFunction &MF = DAG.getMachineFunction();
6587 
6588   const DataLayout &DataLayout = DAG.getDataLayout();
6589   Align Alignment =
6590       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6591 
6592   MachineMemOperand *MMO = MF.getMachineMemOperand(
6593       MachinePointerInfo(),
6594       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6595           MachineMemOperand::MOInvariant,
6596       VT.getStoreSize(), Alignment);
6597 
6598   if (!Offset->isDivergent()) {
6599     SDValue Ops[] = {
6600         Rsrc,
6601         Offset, // Offset
6602         CachePolicy
6603     };
6604 
6605     // Widen vec3 load to vec4.
6606     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6607       EVT WidenedVT =
6608           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6609       auto WidenedOp = DAG.getMemIntrinsicNode(
6610           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6611           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6612       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6613                                    DAG.getVectorIdxConstant(0, DL));
6614       return Subvector;
6615     }
6616 
6617     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6618                                    DAG.getVTList(VT), Ops, VT, MMO);
6619   }
6620 
6621   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6622   // assume that the buffer is unswizzled.
6623   SmallVector<SDValue, 4> Loads;
6624   unsigned NumLoads = 1;
6625   MVT LoadVT = VT.getSimpleVT();
6626   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6627   assert((LoadVT.getScalarType() == MVT::i32 ||
6628           LoadVT.getScalarType() == MVT::f32));
6629 
6630   if (NumElts == 8 || NumElts == 16) {
6631     NumLoads = NumElts / 4;
6632     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6633   }
6634 
6635   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6636   SDValue Ops[] = {
6637       DAG.getEntryNode(),                               // Chain
6638       Rsrc,                                             // rsrc
6639       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6640       {},                                               // voffset
6641       {},                                               // soffset
6642       {},                                               // offset
6643       CachePolicy,                                      // cachepolicy
6644       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6645   };
6646 
6647   // Use the alignment to ensure that the required offsets will fit into the
6648   // immediate offsets.
6649   setBufferOffsets(Offset, DAG, &Ops[3],
6650                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6651 
6652   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6653   for (unsigned i = 0; i < NumLoads; ++i) {
6654     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6655     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6656                                         LoadVT, MMO, DAG));
6657   }
6658 
6659   if (NumElts == 8 || NumElts == 16)
6660     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6661 
6662   return Loads[0];
6663 }
6664 
6665 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op,
6666                                           unsigned Dim,
6667                                           const ArgDescriptor &Arg) const {
6668   SDLoc SL(Op);
6669   MachineFunction &MF = DAG.getMachineFunction();
6670   unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim);
6671   if (MaxID == 0)
6672     return DAG.getConstant(0, SL, MVT::i32);
6673 
6674   SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6675                                SDLoc(DAG.getEntryNode()), Arg);
6676 
6677   // Don't bother inserting AssertZext for packed IDs since we're emitting the
6678   // masking operations anyway.
6679   //
6680   // TODO: We could assert the top bit is 0 for the source copy.
6681   if (Arg.isMasked())
6682     return Val;
6683 
6684   // Preserve the known bits after expansion to a copy.
6685   EVT SmallVT =
6686       EVT::getIntegerVT(*DAG.getContext(), 32 - countLeadingZeros(MaxID));
6687   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val,
6688                      DAG.getValueType(SmallVT));
6689 }
6690 
6691 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6692                                                   SelectionDAG &DAG) const {
6693   MachineFunction &MF = DAG.getMachineFunction();
6694   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6695 
6696   EVT VT = Op.getValueType();
6697   SDLoc DL(Op);
6698   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6699 
6700   // TODO: Should this propagate fast-math-flags?
6701 
6702   switch (IntrinsicID) {
6703   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6704     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6705       return emitNonHSAIntrinsicError(DAG, DL, VT);
6706     return getPreloadedValue(DAG, *MFI, VT,
6707                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6708   }
6709   case Intrinsic::amdgcn_dispatch_ptr:
6710   case Intrinsic::amdgcn_queue_ptr: {
6711     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6712       DiagnosticInfoUnsupported BadIntrin(
6713           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6714           DL.getDebugLoc());
6715       DAG.getContext()->diagnose(BadIntrin);
6716       return DAG.getUNDEF(VT);
6717     }
6718 
6719     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6720       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6721     return getPreloadedValue(DAG, *MFI, VT, RegID);
6722   }
6723   case Intrinsic::amdgcn_implicitarg_ptr: {
6724     if (MFI->isEntryFunction())
6725       return getImplicitArgPtr(DAG, DL);
6726     return getPreloadedValue(DAG, *MFI, VT,
6727                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6728   }
6729   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6730     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6731       // This only makes sense to call in a kernel, so just lower to null.
6732       return DAG.getConstant(0, DL, VT);
6733     }
6734 
6735     return getPreloadedValue(DAG, *MFI, VT,
6736                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6737   }
6738   case Intrinsic::amdgcn_dispatch_id: {
6739     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6740   }
6741   case Intrinsic::amdgcn_rcp:
6742     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6743   case Intrinsic::amdgcn_rsq:
6744     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6745   case Intrinsic::amdgcn_rsq_legacy:
6746     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6747       return emitRemovedIntrinsicError(DAG, DL, VT);
6748     return SDValue();
6749   case Intrinsic::amdgcn_rcp_legacy:
6750     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6751       return emitRemovedIntrinsicError(DAG, DL, VT);
6752     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6753   case Intrinsic::amdgcn_rsq_clamp: {
6754     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6755       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6756 
6757     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6758     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6759     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6760 
6761     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6762     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6763                               DAG.getConstantFP(Max, DL, VT));
6764     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6765                        DAG.getConstantFP(Min, DL, VT));
6766   }
6767   case Intrinsic::r600_read_ngroups_x:
6768     if (Subtarget->isAmdHsaOS())
6769       return emitNonHSAIntrinsicError(DAG, DL, VT);
6770 
6771     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6772                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6773                                     false);
6774   case Intrinsic::r600_read_ngroups_y:
6775     if (Subtarget->isAmdHsaOS())
6776       return emitNonHSAIntrinsicError(DAG, DL, VT);
6777 
6778     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6779                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6780                                     false);
6781   case Intrinsic::r600_read_ngroups_z:
6782     if (Subtarget->isAmdHsaOS())
6783       return emitNonHSAIntrinsicError(DAG, DL, VT);
6784 
6785     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6786                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6787                                     false);
6788   case Intrinsic::r600_read_global_size_x:
6789     if (Subtarget->isAmdHsaOS())
6790       return emitNonHSAIntrinsicError(DAG, DL, VT);
6791 
6792     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6793                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6794                                     Align(4), false);
6795   case Intrinsic::r600_read_global_size_y:
6796     if (Subtarget->isAmdHsaOS())
6797       return emitNonHSAIntrinsicError(DAG, DL, VT);
6798 
6799     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6800                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6801                                     Align(4), false);
6802   case Intrinsic::r600_read_global_size_z:
6803     if (Subtarget->isAmdHsaOS())
6804       return emitNonHSAIntrinsicError(DAG, DL, VT);
6805 
6806     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6807                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6808                                     Align(4), false);
6809   case Intrinsic::r600_read_local_size_x:
6810     if (Subtarget->isAmdHsaOS())
6811       return emitNonHSAIntrinsicError(DAG, DL, VT);
6812 
6813     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6814                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6815   case Intrinsic::r600_read_local_size_y:
6816     if (Subtarget->isAmdHsaOS())
6817       return emitNonHSAIntrinsicError(DAG, DL, VT);
6818 
6819     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6820                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6821   case Intrinsic::r600_read_local_size_z:
6822     if (Subtarget->isAmdHsaOS())
6823       return emitNonHSAIntrinsicError(DAG, DL, VT);
6824 
6825     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6826                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6827   case Intrinsic::amdgcn_workgroup_id_x:
6828     return getPreloadedValue(DAG, *MFI, VT,
6829                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6830   case Intrinsic::amdgcn_workgroup_id_y:
6831     return getPreloadedValue(DAG, *MFI, VT,
6832                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6833   case Intrinsic::amdgcn_workgroup_id_z:
6834     return getPreloadedValue(DAG, *MFI, VT,
6835                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6836   case Intrinsic::amdgcn_workitem_id_x:
6837     return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX);
6838   case Intrinsic::amdgcn_workitem_id_y:
6839     return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY);
6840   case Intrinsic::amdgcn_workitem_id_z:
6841     return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ);
6842   case Intrinsic::amdgcn_wavefrontsize:
6843     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6844                            SDLoc(Op), MVT::i32);
6845   case Intrinsic::amdgcn_s_buffer_load: {
6846     unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6847     if (CPol & ~AMDGPU::CPol::ALL)
6848       return Op;
6849     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6850                         DAG);
6851   }
6852   case Intrinsic::amdgcn_fdiv_fast:
6853     return lowerFDIV_FAST(Op, DAG);
6854   case Intrinsic::amdgcn_sin:
6855     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6856 
6857   case Intrinsic::amdgcn_cos:
6858     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6859 
6860   case Intrinsic::amdgcn_mul_u24:
6861     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6862   case Intrinsic::amdgcn_mul_i24:
6863     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6864 
6865   case Intrinsic::amdgcn_log_clamp: {
6866     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6867       return SDValue();
6868 
6869     return emitRemovedIntrinsicError(DAG, DL, VT);
6870   }
6871   case Intrinsic::amdgcn_ldexp:
6872     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6873                        Op.getOperand(1), Op.getOperand(2));
6874 
6875   case Intrinsic::amdgcn_fract:
6876     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6877 
6878   case Intrinsic::amdgcn_class:
6879     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6880                        Op.getOperand(1), Op.getOperand(2));
6881   case Intrinsic::amdgcn_div_fmas:
6882     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6883                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6884                        Op.getOperand(4));
6885 
6886   case Intrinsic::amdgcn_div_fixup:
6887     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6888                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6889 
6890   case Intrinsic::amdgcn_div_scale: {
6891     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6892 
6893     // Translate to the operands expected by the machine instruction. The
6894     // first parameter must be the same as the first instruction.
6895     SDValue Numerator = Op.getOperand(1);
6896     SDValue Denominator = Op.getOperand(2);
6897 
6898     // Note this order is opposite of the machine instruction's operations,
6899     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6900     // intrinsic has the numerator as the first operand to match a normal
6901     // division operation.
6902 
6903     SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
6904 
6905     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6906                        Denominator, Numerator);
6907   }
6908   case Intrinsic::amdgcn_icmp: {
6909     // There is a Pat that handles this variant, so return it as-is.
6910     if (Op.getOperand(1).getValueType() == MVT::i1 &&
6911         Op.getConstantOperandVal(2) == 0 &&
6912         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6913       return Op;
6914     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6915   }
6916   case Intrinsic::amdgcn_fcmp: {
6917     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6918   }
6919   case Intrinsic::amdgcn_ballot:
6920     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6921   case Intrinsic::amdgcn_fmed3:
6922     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6923                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6924   case Intrinsic::amdgcn_fdot2:
6925     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6926                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6927                        Op.getOperand(4));
6928   case Intrinsic::amdgcn_fmul_legacy:
6929     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6930                        Op.getOperand(1), Op.getOperand(2));
6931   case Intrinsic::amdgcn_sffbh:
6932     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6933   case Intrinsic::amdgcn_sbfe:
6934     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6935                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6936   case Intrinsic::amdgcn_ubfe:
6937     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6938                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6939   case Intrinsic::amdgcn_cvt_pkrtz:
6940   case Intrinsic::amdgcn_cvt_pknorm_i16:
6941   case Intrinsic::amdgcn_cvt_pknorm_u16:
6942   case Intrinsic::amdgcn_cvt_pk_i16:
6943   case Intrinsic::amdgcn_cvt_pk_u16: {
6944     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6945     EVT VT = Op.getValueType();
6946     unsigned Opcode;
6947 
6948     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6949       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6950     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6951       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6952     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6953       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6954     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6955       Opcode = AMDGPUISD::CVT_PK_I16_I32;
6956     else
6957       Opcode = AMDGPUISD::CVT_PK_U16_U32;
6958 
6959     if (isTypeLegal(VT))
6960       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6961 
6962     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6963                                Op.getOperand(1), Op.getOperand(2));
6964     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6965   }
6966   case Intrinsic::amdgcn_fmad_ftz:
6967     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6968                        Op.getOperand(2), Op.getOperand(3));
6969 
6970   case Intrinsic::amdgcn_if_break:
6971     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6972                                       Op->getOperand(1), Op->getOperand(2)), 0);
6973 
6974   case Intrinsic::amdgcn_groupstaticsize: {
6975     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6976     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6977       return Op;
6978 
6979     const Module *M = MF.getFunction().getParent();
6980     const GlobalValue *GV =
6981         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6982     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6983                                             SIInstrInfo::MO_ABS32_LO);
6984     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6985   }
6986   case Intrinsic::amdgcn_is_shared:
6987   case Intrinsic::amdgcn_is_private: {
6988     SDLoc SL(Op);
6989     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6990       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6991     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6992     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6993                                  Op.getOperand(1));
6994 
6995     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6996                                 DAG.getConstant(1, SL, MVT::i32));
6997     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6998   }
6999   case Intrinsic::amdgcn_perm:
7000     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
7001                        Op.getOperand(2), Op.getOperand(3));
7002   case Intrinsic::amdgcn_reloc_constant: {
7003     Module *M = const_cast<Module *>(MF.getFunction().getParent());
7004     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
7005     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
7006     auto RelocSymbol = cast<GlobalVariable>(
7007         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
7008     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
7009                                             SIInstrInfo::MO_ABS32_LO);
7010     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
7011   }
7012   default:
7013     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7014             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7015       return lowerImage(Op, ImageDimIntr, DAG, false);
7016 
7017     return Op;
7018   }
7019 }
7020 
7021 /// Update \p MMO based on the offset inputs to an intrinsic.
7022 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset,
7023                             SDValue SOffset, SDValue Offset,
7024                             SDValue VIndex = SDValue()) {
7025   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
7026       !isa<ConstantSDNode>(Offset)) {
7027     // The combined offset is not known to be constant, so we cannot represent
7028     // it in the MMO. Give up.
7029     MMO->setValue((Value *)nullptr);
7030     return;
7031   }
7032 
7033   if (VIndex && (!isa<ConstantSDNode>(VIndex) ||
7034                  !cast<ConstantSDNode>(VIndex)->isZero())) {
7035     // The strided index component of the address is not known to be zero, so we
7036     // cannot represent it in the MMO. Give up.
7037     MMO->setValue((Value *)nullptr);
7038     return;
7039   }
7040 
7041   MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() +
7042                  cast<ConstantSDNode>(SOffset)->getSExtValue() +
7043                  cast<ConstantSDNode>(Offset)->getSExtValue());
7044 }
7045 
7046 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
7047                                                      SelectionDAG &DAG,
7048                                                      unsigned NewOpcode) const {
7049   SDLoc DL(Op);
7050 
7051   SDValue VData = Op.getOperand(2);
7052   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7053   SDValue Ops[] = {
7054     Op.getOperand(0), // Chain
7055     VData,            // vdata
7056     Op.getOperand(3), // rsrc
7057     DAG.getConstant(0, DL, MVT::i32), // vindex
7058     Offsets.first,    // voffset
7059     Op.getOperand(5), // soffset
7060     Offsets.second,   // offset
7061     Op.getOperand(6), // cachepolicy
7062     DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7063   };
7064 
7065   auto *M = cast<MemSDNode>(Op);
7066   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
7067 
7068   EVT MemVT = VData.getValueType();
7069   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7070                                  M->getMemOperand());
7071 }
7072 
7073 // Return a value to use for the idxen operand by examining the vindex operand.
7074 static unsigned getIdxEn(SDValue VIndex) {
7075   if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex))
7076     // No need to set idxen if vindex is known to be zero.
7077     return VIndexC->getZExtValue() != 0;
7078   return 1;
7079 }
7080 
7081 SDValue
7082 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
7083                                                 unsigned NewOpcode) const {
7084   SDLoc DL(Op);
7085 
7086   SDValue VData = Op.getOperand(2);
7087   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7088   SDValue Ops[] = {
7089     Op.getOperand(0), // Chain
7090     VData,            // vdata
7091     Op.getOperand(3), // rsrc
7092     Op.getOperand(4), // vindex
7093     Offsets.first,    // voffset
7094     Op.getOperand(6), // soffset
7095     Offsets.second,   // offset
7096     Op.getOperand(7), // cachepolicy
7097     DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7098   };
7099 
7100   auto *M = cast<MemSDNode>(Op);
7101   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7102 
7103   EVT MemVT = VData.getValueType();
7104   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7105                                  M->getMemOperand());
7106 }
7107 
7108 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
7109                                                  SelectionDAG &DAG) const {
7110   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7111   SDLoc DL(Op);
7112 
7113   switch (IntrID) {
7114   case Intrinsic::amdgcn_ds_ordered_add:
7115   case Intrinsic::amdgcn_ds_ordered_swap: {
7116     MemSDNode *M = cast<MemSDNode>(Op);
7117     SDValue Chain = M->getOperand(0);
7118     SDValue M0 = M->getOperand(2);
7119     SDValue Value = M->getOperand(3);
7120     unsigned IndexOperand = M->getConstantOperandVal(7);
7121     unsigned WaveRelease = M->getConstantOperandVal(8);
7122     unsigned WaveDone = M->getConstantOperandVal(9);
7123 
7124     unsigned OrderedCountIndex = IndexOperand & 0x3f;
7125     IndexOperand &= ~0x3f;
7126     unsigned CountDw = 0;
7127 
7128     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
7129       CountDw = (IndexOperand >> 24) & 0xf;
7130       IndexOperand &= ~(0xf << 24);
7131 
7132       if (CountDw < 1 || CountDw > 4) {
7133         report_fatal_error(
7134             "ds_ordered_count: dword count must be between 1 and 4");
7135       }
7136     }
7137 
7138     if (IndexOperand)
7139       report_fatal_error("ds_ordered_count: bad index operand");
7140 
7141     if (WaveDone && !WaveRelease)
7142       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
7143 
7144     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
7145     unsigned ShaderType =
7146         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
7147     unsigned Offset0 = OrderedCountIndex << 2;
7148     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4);
7149 
7150     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
7151       Offset1 |= (CountDw - 1) << 6;
7152 
7153     if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11)
7154       Offset1 |= ShaderType << 2;
7155 
7156     unsigned Offset = Offset0 | (Offset1 << 8);
7157 
7158     SDValue Ops[] = {
7159       Chain,
7160       Value,
7161       DAG.getTargetConstant(Offset, DL, MVT::i16),
7162       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
7163     };
7164     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
7165                                    M->getVTList(), Ops, M->getMemoryVT(),
7166                                    M->getMemOperand());
7167   }
7168   case Intrinsic::amdgcn_ds_fadd: {
7169     MemSDNode *M = cast<MemSDNode>(Op);
7170     unsigned Opc;
7171     switch (IntrID) {
7172     case Intrinsic::amdgcn_ds_fadd:
7173       Opc = ISD::ATOMIC_LOAD_FADD;
7174       break;
7175     }
7176 
7177     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
7178                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
7179                          M->getMemOperand());
7180   }
7181   case Intrinsic::amdgcn_atomic_inc:
7182   case Intrinsic::amdgcn_atomic_dec:
7183   case Intrinsic::amdgcn_ds_fmin:
7184   case Intrinsic::amdgcn_ds_fmax: {
7185     MemSDNode *M = cast<MemSDNode>(Op);
7186     unsigned Opc;
7187     switch (IntrID) {
7188     case Intrinsic::amdgcn_atomic_inc:
7189       Opc = AMDGPUISD::ATOMIC_INC;
7190       break;
7191     case Intrinsic::amdgcn_atomic_dec:
7192       Opc = AMDGPUISD::ATOMIC_DEC;
7193       break;
7194     case Intrinsic::amdgcn_ds_fmin:
7195       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
7196       break;
7197     case Intrinsic::amdgcn_ds_fmax:
7198       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
7199       break;
7200     default:
7201       llvm_unreachable("Unknown intrinsic!");
7202     }
7203     SDValue Ops[] = {
7204       M->getOperand(0), // Chain
7205       M->getOperand(2), // Ptr
7206       M->getOperand(3)  // Value
7207     };
7208 
7209     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
7210                                    M->getMemoryVT(), M->getMemOperand());
7211   }
7212   case Intrinsic::amdgcn_buffer_load:
7213   case Intrinsic::amdgcn_buffer_load_format: {
7214     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7215     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7216     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7217     SDValue Ops[] = {
7218       Op.getOperand(0), // Chain
7219       Op.getOperand(2), // rsrc
7220       Op.getOperand(3), // vindex
7221       SDValue(),        // voffset -- will be set by setBufferOffsets
7222       SDValue(),        // soffset -- will be set by setBufferOffsets
7223       SDValue(),        // offset -- will be set by setBufferOffsets
7224       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7225       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7226     };
7227     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
7228 
7229     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
7230         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
7231 
7232     EVT VT = Op.getValueType();
7233     EVT IntVT = VT.changeTypeToInteger();
7234     auto *M = cast<MemSDNode>(Op);
7235     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7236     EVT LoadVT = Op.getValueType();
7237 
7238     if (LoadVT.getScalarType() == MVT::f16)
7239       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
7240                                  M, DAG, Ops);
7241 
7242     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
7243     if (LoadVT.getScalarType() == MVT::i8 ||
7244         LoadVT.getScalarType() == MVT::i16)
7245       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
7246 
7247     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
7248                                M->getMemOperand(), DAG);
7249   }
7250   case Intrinsic::amdgcn_raw_buffer_load:
7251   case Intrinsic::amdgcn_raw_buffer_load_format: {
7252     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
7253 
7254     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7255     SDValue Ops[] = {
7256       Op.getOperand(0), // Chain
7257       Op.getOperand(2), // rsrc
7258       DAG.getConstant(0, DL, MVT::i32), // vindex
7259       Offsets.first,    // voffset
7260       Op.getOperand(4), // soffset
7261       Offsets.second,   // offset
7262       Op.getOperand(5), // cachepolicy, swizzled buffer
7263       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7264     };
7265 
7266     auto *M = cast<MemSDNode>(Op);
7267     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]);
7268     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
7269   }
7270   case Intrinsic::amdgcn_struct_buffer_load:
7271   case Intrinsic::amdgcn_struct_buffer_load_format: {
7272     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7273 
7274     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7275     SDValue Ops[] = {
7276       Op.getOperand(0), // Chain
7277       Op.getOperand(2), // rsrc
7278       Op.getOperand(3), // vindex
7279       Offsets.first,    // voffset
7280       Op.getOperand(5), // soffset
7281       Offsets.second,   // offset
7282       Op.getOperand(6), // cachepolicy, swizzled buffer
7283       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7284     };
7285 
7286     auto *M = cast<MemSDNode>(Op);
7287     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7288     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7289   }
7290   case Intrinsic::amdgcn_tbuffer_load: {
7291     MemSDNode *M = cast<MemSDNode>(Op);
7292     EVT LoadVT = Op.getValueType();
7293 
7294     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7295     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7296     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7297     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7298     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7299     SDValue Ops[] = {
7300       Op.getOperand(0),  // Chain
7301       Op.getOperand(2),  // rsrc
7302       Op.getOperand(3),  // vindex
7303       Op.getOperand(4),  // voffset
7304       Op.getOperand(5),  // soffset
7305       Op.getOperand(6),  // offset
7306       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7307       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7308       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7309     };
7310 
7311     if (LoadVT.getScalarType() == MVT::f16)
7312       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7313                                  M, DAG, Ops);
7314     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7315                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7316                                DAG);
7317   }
7318   case Intrinsic::amdgcn_raw_tbuffer_load: {
7319     MemSDNode *M = cast<MemSDNode>(Op);
7320     EVT LoadVT = Op.getValueType();
7321     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7322 
7323     SDValue Ops[] = {
7324       Op.getOperand(0),  // Chain
7325       Op.getOperand(2),  // rsrc
7326       DAG.getConstant(0, DL, MVT::i32), // vindex
7327       Offsets.first,     // voffset
7328       Op.getOperand(4),  // soffset
7329       Offsets.second,    // offset
7330       Op.getOperand(5),  // format
7331       Op.getOperand(6),  // cachepolicy, swizzled buffer
7332       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7333     };
7334 
7335     if (LoadVT.getScalarType() == MVT::f16)
7336       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7337                                  M, DAG, Ops);
7338     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7339                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7340                                DAG);
7341   }
7342   case Intrinsic::amdgcn_struct_tbuffer_load: {
7343     MemSDNode *M = cast<MemSDNode>(Op);
7344     EVT LoadVT = Op.getValueType();
7345     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7346 
7347     SDValue Ops[] = {
7348       Op.getOperand(0),  // Chain
7349       Op.getOperand(2),  // rsrc
7350       Op.getOperand(3),  // vindex
7351       Offsets.first,     // voffset
7352       Op.getOperand(5),  // soffset
7353       Offsets.second,    // offset
7354       Op.getOperand(6),  // format
7355       Op.getOperand(7),  // cachepolicy, swizzled buffer
7356       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7357     };
7358 
7359     if (LoadVT.getScalarType() == MVT::f16)
7360       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7361                                  M, DAG, Ops);
7362     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7363                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7364                                DAG);
7365   }
7366   case Intrinsic::amdgcn_buffer_atomic_swap:
7367   case Intrinsic::amdgcn_buffer_atomic_add:
7368   case Intrinsic::amdgcn_buffer_atomic_sub:
7369   case Intrinsic::amdgcn_buffer_atomic_csub:
7370   case Intrinsic::amdgcn_buffer_atomic_smin:
7371   case Intrinsic::amdgcn_buffer_atomic_umin:
7372   case Intrinsic::amdgcn_buffer_atomic_smax:
7373   case Intrinsic::amdgcn_buffer_atomic_umax:
7374   case Intrinsic::amdgcn_buffer_atomic_and:
7375   case Intrinsic::amdgcn_buffer_atomic_or:
7376   case Intrinsic::amdgcn_buffer_atomic_xor:
7377   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7378     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7379     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7380     SDValue Ops[] = {
7381       Op.getOperand(0), // Chain
7382       Op.getOperand(2), // vdata
7383       Op.getOperand(3), // rsrc
7384       Op.getOperand(4), // vindex
7385       SDValue(),        // voffset -- will be set by setBufferOffsets
7386       SDValue(),        // soffset -- will be set by setBufferOffsets
7387       SDValue(),        // offset -- will be set by setBufferOffsets
7388       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7389       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7390     };
7391     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7392 
7393     EVT VT = Op.getValueType();
7394 
7395     auto *M = cast<MemSDNode>(Op);
7396     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7397     unsigned Opcode = 0;
7398 
7399     switch (IntrID) {
7400     case Intrinsic::amdgcn_buffer_atomic_swap:
7401       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7402       break;
7403     case Intrinsic::amdgcn_buffer_atomic_add:
7404       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7405       break;
7406     case Intrinsic::amdgcn_buffer_atomic_sub:
7407       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7408       break;
7409     case Intrinsic::amdgcn_buffer_atomic_csub:
7410       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7411       break;
7412     case Intrinsic::amdgcn_buffer_atomic_smin:
7413       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7414       break;
7415     case Intrinsic::amdgcn_buffer_atomic_umin:
7416       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7417       break;
7418     case Intrinsic::amdgcn_buffer_atomic_smax:
7419       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7420       break;
7421     case Intrinsic::amdgcn_buffer_atomic_umax:
7422       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7423       break;
7424     case Intrinsic::amdgcn_buffer_atomic_and:
7425       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7426       break;
7427     case Intrinsic::amdgcn_buffer_atomic_or:
7428       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7429       break;
7430     case Intrinsic::amdgcn_buffer_atomic_xor:
7431       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7432       break;
7433     case Intrinsic::amdgcn_buffer_atomic_fadd:
7434       if (!Op.getValue(0).use_empty() && !hasAtomicFaddRtnForTy(Op)) {
7435         DiagnosticInfoUnsupported
7436           NoFpRet(DAG.getMachineFunction().getFunction(),
7437                   "return versions of fp atomics not supported",
7438                   DL.getDebugLoc(), DS_Error);
7439         DAG.getContext()->diagnose(NoFpRet);
7440         return SDValue();
7441       }
7442       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7443       break;
7444     default:
7445       llvm_unreachable("unhandled atomic opcode");
7446     }
7447 
7448     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7449                                    M->getMemOperand());
7450   }
7451   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7452     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7453   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7454     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7455   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7456     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7457   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7458     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7459   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7460     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7461   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7462     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7463   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7464     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7465   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7466     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7467   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7468     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7469   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7470     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7471   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7472     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7473   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7474     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7475   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7476     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7477   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7478     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7479   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7480     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7481   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7482     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7483   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7484     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7485   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7486     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7487   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7488     return lowerStructBufferAtomicIntrin(Op, DAG,
7489                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7490   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7491     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7492   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7493     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7494   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7495     return lowerStructBufferAtomicIntrin(Op, DAG,
7496                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7497   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7498     return lowerStructBufferAtomicIntrin(Op, DAG,
7499                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7500   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7501     return lowerStructBufferAtomicIntrin(Op, DAG,
7502                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7503   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7504     return lowerStructBufferAtomicIntrin(Op, DAG,
7505                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7506   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7507     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7508   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7509     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7510   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7511     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7512   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7513     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7514   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7515     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7516 
7517   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7518     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7519     unsigned IdxEn = getIdxEn(Op.getOperand(5));
7520     SDValue Ops[] = {
7521       Op.getOperand(0), // Chain
7522       Op.getOperand(2), // src
7523       Op.getOperand(3), // cmp
7524       Op.getOperand(4), // rsrc
7525       Op.getOperand(5), // vindex
7526       SDValue(),        // voffset -- will be set by setBufferOffsets
7527       SDValue(),        // soffset -- will be set by setBufferOffsets
7528       SDValue(),        // offset -- will be set by setBufferOffsets
7529       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7530       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7531     };
7532     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7533 
7534     EVT VT = Op.getValueType();
7535     auto *M = cast<MemSDNode>(Op);
7536     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7537 
7538     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7539                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7540   }
7541   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7542     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7543     SDValue Ops[] = {
7544       Op.getOperand(0), // Chain
7545       Op.getOperand(2), // src
7546       Op.getOperand(3), // cmp
7547       Op.getOperand(4), // rsrc
7548       DAG.getConstant(0, DL, MVT::i32), // vindex
7549       Offsets.first,    // voffset
7550       Op.getOperand(6), // soffset
7551       Offsets.second,   // offset
7552       Op.getOperand(7), // cachepolicy
7553       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7554     };
7555     EVT VT = Op.getValueType();
7556     auto *M = cast<MemSDNode>(Op);
7557     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]);
7558 
7559     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7560                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7561   }
7562   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7563     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7564     SDValue Ops[] = {
7565       Op.getOperand(0), // Chain
7566       Op.getOperand(2), // src
7567       Op.getOperand(3), // cmp
7568       Op.getOperand(4), // rsrc
7569       Op.getOperand(5), // vindex
7570       Offsets.first,    // voffset
7571       Op.getOperand(7), // soffset
7572       Offsets.second,   // offset
7573       Op.getOperand(8), // cachepolicy
7574       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7575     };
7576     EVT VT = Op.getValueType();
7577     auto *M = cast<MemSDNode>(Op);
7578     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7579 
7580     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7581                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7582   }
7583   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7584     MemSDNode *M = cast<MemSDNode>(Op);
7585     SDValue NodePtr = M->getOperand(2);
7586     SDValue RayExtent = M->getOperand(3);
7587     SDValue RayOrigin = M->getOperand(4);
7588     SDValue RayDir = M->getOperand(5);
7589     SDValue RayInvDir = M->getOperand(6);
7590     SDValue TDescr = M->getOperand(7);
7591 
7592     assert(NodePtr.getValueType() == MVT::i32 ||
7593            NodePtr.getValueType() == MVT::i64);
7594     assert(RayDir.getValueType() == MVT::v3f16 ||
7595            RayDir.getValueType() == MVT::v3f32);
7596 
7597     if (!Subtarget->hasGFX10_AEncoding()) {
7598       emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
7599       return SDValue();
7600     }
7601 
7602     const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
7603     const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7604     const bool Is64 = NodePtr.getValueType() == MVT::i64;
7605     const unsigned NumVDataDwords = 4;
7606     const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7607     const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
7608     const bool UseNSA =
7609         Subtarget->hasNSAEncoding() && NumVAddrs <= Subtarget->getNSAMaxSize();
7610     const unsigned BaseOpcodes[2][2] = {
7611         {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7612         {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7613          AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7614     int Opcode;
7615     if (UseNSA) {
7616       Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7617                                      IsGFX11Plus ? AMDGPU::MIMGEncGfx11NSA
7618                                                  : AMDGPU::MIMGEncGfx10NSA,
7619                                      NumVDataDwords, NumVAddrDwords);
7620     } else {
7621       Opcode =
7622           AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7623                                 IsGFX11Plus ? AMDGPU::MIMGEncGfx11Default
7624                                             : AMDGPU::MIMGEncGfx10Default,
7625                                 NumVDataDwords, PowerOf2Ceil(NumVAddrDwords));
7626     }
7627     assert(Opcode != -1);
7628 
7629     SmallVector<SDValue, 16> Ops;
7630 
7631     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7632       SmallVector<SDValue, 3> Lanes;
7633       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7634       if (Lanes[0].getValueSizeInBits() == 32) {
7635         for (unsigned I = 0; I < 3; ++I)
7636           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7637       } else {
7638         if (IsAligned) {
7639           Ops.push_back(
7640             DAG.getBitcast(MVT::i32,
7641                            DAG.getBuildVector(MVT::v2f16, DL,
7642                                               { Lanes[0], Lanes[1] })));
7643           Ops.push_back(Lanes[2]);
7644         } else {
7645           SDValue Elt0 = Ops.pop_back_val();
7646           Ops.push_back(
7647             DAG.getBitcast(MVT::i32,
7648                            DAG.getBuildVector(MVT::v2f16, DL,
7649                                               { Elt0, Lanes[0] })));
7650           Ops.push_back(
7651             DAG.getBitcast(MVT::i32,
7652                            DAG.getBuildVector(MVT::v2f16, DL,
7653                                               { Lanes[1], Lanes[2] })));
7654         }
7655       }
7656     };
7657 
7658     if (UseNSA && IsGFX11Plus) {
7659       Ops.push_back(NodePtr);
7660       Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7661       Ops.push_back(RayOrigin);
7662       if (IsA16) {
7663         SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes;
7664         DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3);
7665         DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3);
7666         for (unsigned I = 0; I < 3; ++I) {
7667           MergedLanes.push_back(DAG.getBitcast(
7668               MVT::i32, DAG.getBuildVector(MVT::v2f16, DL,
7669                                            {DirLanes[I], InvDirLanes[I]})));
7670         }
7671         Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes));
7672       } else {
7673         Ops.push_back(RayDir);
7674         Ops.push_back(RayInvDir);
7675       }
7676     } else {
7677       if (Is64)
7678         DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0,
7679                                   2);
7680       else
7681         Ops.push_back(NodePtr);
7682 
7683       Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7684       packLanes(RayOrigin, true);
7685       packLanes(RayDir, true);
7686       packLanes(RayInvDir, false);
7687     }
7688 
7689     if (!UseNSA) {
7690       // Build a single vector containing all the operands so far prepared.
7691       if (NumVAddrDwords > 8) {
7692         SDValue Undef = DAG.getUNDEF(MVT::i32);
7693         Ops.append(16 - Ops.size(), Undef);
7694       }
7695       assert(Ops.size() == 8 || Ops.size() == 16);
7696       SDValue MergedOps = DAG.getBuildVector(
7697           Ops.size() == 16 ? MVT::v16i32 : MVT::v8i32, DL, Ops);
7698       Ops.clear();
7699       Ops.push_back(MergedOps);
7700     }
7701 
7702     Ops.push_back(TDescr);
7703     if (IsA16)
7704       Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7705     Ops.push_back(M->getChain());
7706 
7707     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7708     MachineMemOperand *MemRef = M->getMemOperand();
7709     DAG.setNodeMemRefs(NewNode, {MemRef});
7710     return SDValue(NewNode, 0);
7711   }
7712   case Intrinsic::amdgcn_global_atomic_fadd:
7713     if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7714       DiagnosticInfoUnsupported
7715         NoFpRet(DAG.getMachineFunction().getFunction(),
7716                 "return versions of fp atomics not supported",
7717                 DL.getDebugLoc(), DS_Error);
7718       DAG.getContext()->diagnose(NoFpRet);
7719       return SDValue();
7720     }
7721     LLVM_FALLTHROUGH;
7722   case Intrinsic::amdgcn_global_atomic_fmin:
7723   case Intrinsic::amdgcn_global_atomic_fmax:
7724   case Intrinsic::amdgcn_flat_atomic_fadd:
7725   case Intrinsic::amdgcn_flat_atomic_fmin:
7726   case Intrinsic::amdgcn_flat_atomic_fmax: {
7727     MemSDNode *M = cast<MemSDNode>(Op);
7728     SDValue Ops[] = {
7729       M->getOperand(0), // Chain
7730       M->getOperand(2), // Ptr
7731       M->getOperand(3)  // Value
7732     };
7733     unsigned Opcode = 0;
7734     switch (IntrID) {
7735     case Intrinsic::amdgcn_global_atomic_fadd:
7736     case Intrinsic::amdgcn_flat_atomic_fadd: {
7737       EVT VT = Op.getOperand(3).getValueType();
7738       return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7739                            DAG.getVTList(VT, MVT::Other), Ops,
7740                            M->getMemOperand());
7741     }
7742     case Intrinsic::amdgcn_global_atomic_fmin:
7743     case Intrinsic::amdgcn_flat_atomic_fmin: {
7744       Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
7745       break;
7746     }
7747     case Intrinsic::amdgcn_global_atomic_fmax:
7748     case Intrinsic::amdgcn_flat_atomic_fmax: {
7749       Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
7750       break;
7751     }
7752     default:
7753       llvm_unreachable("unhandled atomic opcode");
7754     }
7755     return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
7756                                    M->getVTList(), Ops, M->getMemoryVT(),
7757                                    M->getMemOperand());
7758   }
7759   default:
7760 
7761     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7762             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7763       return lowerImage(Op, ImageDimIntr, DAG, true);
7764 
7765     return SDValue();
7766   }
7767 }
7768 
7769 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7770 // dwordx4 if on SI.
7771 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7772                                               SDVTList VTList,
7773                                               ArrayRef<SDValue> Ops, EVT MemVT,
7774                                               MachineMemOperand *MMO,
7775                                               SelectionDAG &DAG) const {
7776   EVT VT = VTList.VTs[0];
7777   EVT WidenedVT = VT;
7778   EVT WidenedMemVT = MemVT;
7779   if (!Subtarget->hasDwordx3LoadStores() &&
7780       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7781     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7782                                  WidenedVT.getVectorElementType(), 4);
7783     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7784                                     WidenedMemVT.getVectorElementType(), 4);
7785     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7786   }
7787 
7788   assert(VTList.NumVTs == 2);
7789   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7790 
7791   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7792                                        WidenedMemVT, MMO);
7793   if (WidenedVT != VT) {
7794     auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7795                                DAG.getVectorIdxConstant(0, DL));
7796     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7797   }
7798   return NewOp;
7799 }
7800 
7801 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7802                                          bool ImageStore) const {
7803   EVT StoreVT = VData.getValueType();
7804 
7805   // No change for f16 and legal vector D16 types.
7806   if (!StoreVT.isVector())
7807     return VData;
7808 
7809   SDLoc DL(VData);
7810   unsigned NumElements = StoreVT.getVectorNumElements();
7811 
7812   if (Subtarget->hasUnpackedD16VMem()) {
7813     // We need to unpack the packed data to store.
7814     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7815     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7816 
7817     EVT EquivStoreVT =
7818         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7819     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7820     return DAG.UnrollVectorOp(ZExt.getNode());
7821   }
7822 
7823   // The sq block of gfx8.1 does not estimate register use correctly for d16
7824   // image store instructions. The data operand is computed as if it were not a
7825   // d16 image instruction.
7826   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7827     // Bitcast to i16
7828     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7829     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7830 
7831     // Decompose into scalars
7832     SmallVector<SDValue, 4> Elts;
7833     DAG.ExtractVectorElements(IntVData, Elts);
7834 
7835     // Group pairs of i16 into v2i16 and bitcast to i32
7836     SmallVector<SDValue, 4> PackedElts;
7837     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7838       SDValue Pair =
7839           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7840       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7841       PackedElts.push_back(IntPair);
7842     }
7843     if ((NumElements % 2) == 1) {
7844       // Handle v3i16
7845       unsigned I = Elts.size() / 2;
7846       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7847                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7848       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7849       PackedElts.push_back(IntPair);
7850     }
7851 
7852     // Pad using UNDEF
7853     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7854 
7855     // Build final vector
7856     EVT VecVT =
7857         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7858     return DAG.getBuildVector(VecVT, DL, PackedElts);
7859   }
7860 
7861   if (NumElements == 3) {
7862     EVT IntStoreVT =
7863         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7864     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7865 
7866     EVT WidenedStoreVT = EVT::getVectorVT(
7867         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7868     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7869                                          WidenedStoreVT.getStoreSizeInBits());
7870     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7871     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7872   }
7873 
7874   assert(isTypeLegal(StoreVT));
7875   return VData;
7876 }
7877 
7878 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7879                                               SelectionDAG &DAG) const {
7880   SDLoc DL(Op);
7881   SDValue Chain = Op.getOperand(0);
7882   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7883   MachineFunction &MF = DAG.getMachineFunction();
7884 
7885   switch (IntrinsicID) {
7886   case Intrinsic::amdgcn_exp_compr: {
7887     if (!Subtarget->hasCompressedExport()) {
7888       DiagnosticInfoUnsupported BadIntrin(
7889           DAG.getMachineFunction().getFunction(),
7890           "intrinsic not supported on subtarget", DL.getDebugLoc());
7891       DAG.getContext()->diagnose(BadIntrin);
7892     }
7893     SDValue Src0 = Op.getOperand(4);
7894     SDValue Src1 = Op.getOperand(5);
7895     // Hack around illegal type on SI by directly selecting it.
7896     if (isTypeLegal(Src0.getValueType()))
7897       return SDValue();
7898 
7899     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7900     SDValue Undef = DAG.getUNDEF(MVT::f32);
7901     const SDValue Ops[] = {
7902       Op.getOperand(2), // tgt
7903       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7904       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7905       Undef, // src2
7906       Undef, // src3
7907       Op.getOperand(7), // vm
7908       DAG.getTargetConstant(1, DL, MVT::i1), // compr
7909       Op.getOperand(3), // en
7910       Op.getOperand(0) // Chain
7911     };
7912 
7913     unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7914     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7915   }
7916   case Intrinsic::amdgcn_s_barrier: {
7917     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7918       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7919       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7920       if (WGSize <= ST.getWavefrontSize())
7921         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7922                                           Op.getOperand(0)), 0);
7923     }
7924     return SDValue();
7925   };
7926   case Intrinsic::amdgcn_tbuffer_store: {
7927     SDValue VData = Op.getOperand(2);
7928     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7929     if (IsD16)
7930       VData = handleD16VData(VData, DAG);
7931     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7932     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7933     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7934     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7935     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7936     SDValue Ops[] = {
7937       Chain,
7938       VData,             // vdata
7939       Op.getOperand(3),  // rsrc
7940       Op.getOperand(4),  // vindex
7941       Op.getOperand(5),  // voffset
7942       Op.getOperand(6),  // soffset
7943       Op.getOperand(7),  // offset
7944       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7945       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7946       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7947     };
7948     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7949                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7950     MemSDNode *M = cast<MemSDNode>(Op);
7951     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7952                                    M->getMemoryVT(), M->getMemOperand());
7953   }
7954 
7955   case Intrinsic::amdgcn_struct_tbuffer_store: {
7956     SDValue VData = Op.getOperand(2);
7957     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7958     if (IsD16)
7959       VData = handleD16VData(VData, DAG);
7960     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7961     SDValue Ops[] = {
7962       Chain,
7963       VData,             // vdata
7964       Op.getOperand(3),  // rsrc
7965       Op.getOperand(4),  // vindex
7966       Offsets.first,     // voffset
7967       Op.getOperand(6),  // soffset
7968       Offsets.second,    // offset
7969       Op.getOperand(7),  // format
7970       Op.getOperand(8),  // cachepolicy, swizzled buffer
7971       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7972     };
7973     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7974                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7975     MemSDNode *M = cast<MemSDNode>(Op);
7976     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7977                                    M->getMemoryVT(), M->getMemOperand());
7978   }
7979 
7980   case Intrinsic::amdgcn_raw_tbuffer_store: {
7981     SDValue VData = Op.getOperand(2);
7982     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7983     if (IsD16)
7984       VData = handleD16VData(VData, DAG);
7985     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7986     SDValue Ops[] = {
7987       Chain,
7988       VData,             // vdata
7989       Op.getOperand(3),  // rsrc
7990       DAG.getConstant(0, DL, MVT::i32), // vindex
7991       Offsets.first,     // voffset
7992       Op.getOperand(5),  // soffset
7993       Offsets.second,    // offset
7994       Op.getOperand(6),  // format
7995       Op.getOperand(7),  // cachepolicy, swizzled buffer
7996       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7997     };
7998     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7999                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8000     MemSDNode *M = cast<MemSDNode>(Op);
8001     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8002                                    M->getMemoryVT(), M->getMemOperand());
8003   }
8004 
8005   case Intrinsic::amdgcn_buffer_store:
8006   case Intrinsic::amdgcn_buffer_store_format: {
8007     SDValue VData = Op.getOperand(2);
8008     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8009     if (IsD16)
8010       VData = handleD16VData(VData, DAG);
8011     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
8012     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
8013     unsigned IdxEn = getIdxEn(Op.getOperand(4));
8014     SDValue Ops[] = {
8015       Chain,
8016       VData,
8017       Op.getOperand(3), // rsrc
8018       Op.getOperand(4), // vindex
8019       SDValue(), // voffset -- will be set by setBufferOffsets
8020       SDValue(), // soffset -- will be set by setBufferOffsets
8021       SDValue(), // offset -- will be set by setBufferOffsets
8022       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
8023       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8024     };
8025     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
8026 
8027     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
8028                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8029     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8030     MemSDNode *M = cast<MemSDNode>(Op);
8031     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8032 
8033     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8034     EVT VDataType = VData.getValueType().getScalarType();
8035     if (VDataType == MVT::i8 || VDataType == MVT::i16)
8036       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8037 
8038     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8039                                    M->getMemoryVT(), M->getMemOperand());
8040   }
8041 
8042   case Intrinsic::amdgcn_raw_buffer_store:
8043   case Intrinsic::amdgcn_raw_buffer_store_format: {
8044     const bool IsFormat =
8045         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
8046 
8047     SDValue VData = Op.getOperand(2);
8048     EVT VDataVT = VData.getValueType();
8049     EVT EltType = VDataVT.getScalarType();
8050     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8051     if (IsD16) {
8052       VData = handleD16VData(VData, DAG);
8053       VDataVT = VData.getValueType();
8054     }
8055 
8056     if (!isTypeLegal(VDataVT)) {
8057       VData =
8058           DAG.getNode(ISD::BITCAST, DL,
8059                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8060     }
8061 
8062     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8063     SDValue Ops[] = {
8064       Chain,
8065       VData,
8066       Op.getOperand(3), // rsrc
8067       DAG.getConstant(0, DL, MVT::i32), // vindex
8068       Offsets.first,    // voffset
8069       Op.getOperand(5), // soffset
8070       Offsets.second,   // offset
8071       Op.getOperand(6), // cachepolicy, swizzled buffer
8072       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8073     };
8074     unsigned Opc =
8075         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
8076     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8077     MemSDNode *M = cast<MemSDNode>(Op);
8078     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
8079 
8080     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8081     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8082       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
8083 
8084     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8085                                    M->getMemoryVT(), M->getMemOperand());
8086   }
8087 
8088   case Intrinsic::amdgcn_struct_buffer_store:
8089   case Intrinsic::amdgcn_struct_buffer_store_format: {
8090     const bool IsFormat =
8091         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
8092 
8093     SDValue VData = Op.getOperand(2);
8094     EVT VDataVT = VData.getValueType();
8095     EVT EltType = VDataVT.getScalarType();
8096     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8097 
8098     if (IsD16) {
8099       VData = handleD16VData(VData, DAG);
8100       VDataVT = VData.getValueType();
8101     }
8102 
8103     if (!isTypeLegal(VDataVT)) {
8104       VData =
8105           DAG.getNode(ISD::BITCAST, DL,
8106                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8107     }
8108 
8109     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8110     SDValue Ops[] = {
8111       Chain,
8112       VData,
8113       Op.getOperand(3), // rsrc
8114       Op.getOperand(4), // vindex
8115       Offsets.first,    // voffset
8116       Op.getOperand(6), // soffset
8117       Offsets.second,   // offset
8118       Op.getOperand(7), // cachepolicy, swizzled buffer
8119       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8120     };
8121     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
8122                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8123     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8124     MemSDNode *M = cast<MemSDNode>(Op);
8125     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8126 
8127     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8128     EVT VDataType = VData.getValueType().getScalarType();
8129     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8130       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8131 
8132     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8133                                    M->getMemoryVT(), M->getMemOperand());
8134   }
8135   case Intrinsic::amdgcn_raw_buffer_load_lds:
8136   case Intrinsic::amdgcn_struct_buffer_load_lds: {
8137     unsigned Opc;
8138     bool HasVIndex = IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds;
8139     unsigned OpOffset = HasVIndex ? 1 : 0;
8140     SDValue VOffset = Op.getOperand(5 + OpOffset);
8141     auto CVOffset = dyn_cast<ConstantSDNode>(VOffset);
8142     bool HasVOffset = !CVOffset || !CVOffset->isZero();
8143     unsigned Size = Op->getConstantOperandVal(4);
8144 
8145     switch (Size) {
8146     default:
8147       return SDValue();
8148     case 1:
8149       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN
8150                                    : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN
8151                       : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN
8152                                    : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET;
8153       break;
8154     case 2:
8155       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN
8156                                    : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN
8157                       : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN
8158                                    : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET;
8159       break;
8160     case 4:
8161       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN
8162                                    : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN
8163                       : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN
8164                                    : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET;
8165       break;
8166     }
8167 
8168     SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
8169 
8170     SmallVector<SDValue, 8> Ops;
8171 
8172     if (HasVIndex && HasVOffset)
8173       Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL,
8174                                        { Op.getOperand(5), // VIndex
8175                                          VOffset }));
8176     else if (HasVIndex)
8177       Ops.push_back(Op.getOperand(5));
8178     else if (HasVOffset)
8179       Ops.push_back(VOffset);
8180 
8181     Ops.push_back(Op.getOperand(2));           // rsrc
8182     Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset
8183     Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset
8184     unsigned Aux = Op.getConstantOperandVal(8 + OpOffset);
8185     Ops.push_back(
8186       DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol
8187     Ops.push_back(
8188       DAG.getTargetConstant((Aux >> 3) & 1, DL, MVT::i8));          // swz
8189     Ops.push_back(M0Val.getValue(0)); // Chain
8190     Ops.push_back(M0Val.getValue(1)); // Glue
8191 
8192     auto *M = cast<MemSDNode>(Op);
8193     MachineMemOperand *LoadMMO = M->getMemOperand();
8194     MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
8195     LoadPtrI.Offset = Op->getConstantOperandVal(7 + OpOffset);
8196     MachinePointerInfo StorePtrI = LoadPtrI;
8197     StorePtrI.V = nullptr;
8198     StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
8199 
8200     auto F = LoadMMO->getFlags() &
8201              ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
8202     LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad,
8203                                       Size, LoadMMO->getBaseAlign());
8204 
8205     MachineMemOperand *StoreMMO =
8206         MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore,
8207                                 sizeof(int32_t), LoadMMO->getBaseAlign());
8208 
8209     auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops);
8210     DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
8211 
8212     return SDValue(Load, 0);
8213   }
8214   case Intrinsic::amdgcn_global_load_lds: {
8215     unsigned Opc;
8216     unsigned Size = Op->getConstantOperandVal(4);
8217     switch (Size) {
8218     default:
8219       return SDValue();
8220     case 1:
8221       Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE;
8222       break;
8223     case 2:
8224       Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT;
8225       break;
8226     case 4:
8227       Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD;
8228       break;
8229     }
8230 
8231     auto *M = cast<MemSDNode>(Op);
8232     SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
8233 
8234     SmallVector<SDValue, 6> Ops;
8235 
8236     SDValue Addr = Op.getOperand(2); // Global ptr
8237     SDValue VOffset;
8238     // Try to split SAddr and VOffset. Global and LDS pointers share the same
8239     // immediate offset, so we cannot use a regular SelectGlobalSAddr().
8240     if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) {
8241       SDValue LHS = Addr.getOperand(0);
8242       SDValue RHS = Addr.getOperand(1);
8243 
8244       if (LHS->isDivergent())
8245         std::swap(LHS, RHS);
8246 
8247       if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND &&
8248           RHS.getOperand(0).getValueType() == MVT::i32) {
8249         // add (i64 sgpr), (zero_extend (i32 vgpr))
8250         Addr = LHS;
8251         VOffset = RHS.getOperand(0);
8252       }
8253     }
8254 
8255     Ops.push_back(Addr);
8256     if (!Addr->isDivergent()) {
8257       Opc = AMDGPU::getGlobalSaddrOp(Opc);
8258       if (!VOffset)
8259         VOffset = SDValue(
8260             DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32,
8261                                DAG.getTargetConstant(0, DL, MVT::i32)), 0);
8262       Ops.push_back(VOffset);
8263     }
8264 
8265     Ops.push_back(Op.getOperand(5));  // Offset
8266     Ops.push_back(Op.getOperand(6));  // CPol
8267     Ops.push_back(M0Val.getValue(0)); // Chain
8268     Ops.push_back(M0Val.getValue(1)); // Glue
8269 
8270     MachineMemOperand *LoadMMO = M->getMemOperand();
8271     MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
8272     LoadPtrI.Offset = Op->getConstantOperandVal(5);
8273     MachinePointerInfo StorePtrI = LoadPtrI;
8274     LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS;
8275     StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
8276     auto F = LoadMMO->getFlags() &
8277              ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
8278     LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad,
8279                                       Size, LoadMMO->getBaseAlign());
8280     MachineMemOperand *StoreMMO =
8281         MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore,
8282                                 sizeof(int32_t), Align(4));
8283 
8284     auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
8285     DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
8286 
8287     return SDValue(Load, 0);
8288   }
8289   case Intrinsic::amdgcn_end_cf:
8290     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
8291                                       Op->getOperand(2), Chain), 0);
8292 
8293   default: {
8294     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
8295             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
8296       return lowerImage(Op, ImageDimIntr, DAG, true);
8297 
8298     return Op;
8299   }
8300   }
8301 }
8302 
8303 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
8304 // offset (the offset that is included in bounds checking and swizzling, to be
8305 // split between the instruction's voffset and immoffset fields) and soffset
8306 // (the offset that is excluded from bounds checking and swizzling, to go in
8307 // the instruction's soffset field).  This function takes the first kind of
8308 // offset and figures out how to split it between voffset and immoffset.
8309 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
8310     SDValue Offset, SelectionDAG &DAG) const {
8311   SDLoc DL(Offset);
8312   const unsigned MaxImm = 4095;
8313   SDValue N0 = Offset;
8314   ConstantSDNode *C1 = nullptr;
8315 
8316   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
8317     N0 = SDValue();
8318   else if (DAG.isBaseWithConstantOffset(N0)) {
8319     C1 = cast<ConstantSDNode>(N0.getOperand(1));
8320     N0 = N0.getOperand(0);
8321   }
8322 
8323   if (C1) {
8324     unsigned ImmOffset = C1->getZExtValue();
8325     // If the immediate value is too big for the immoffset field, put the value
8326     // and -4096 into the immoffset field so that the value that is copied/added
8327     // for the voffset field is a multiple of 4096, and it stands more chance
8328     // of being CSEd with the copy/add for another similar load/store.
8329     // However, do not do that rounding down to a multiple of 4096 if that is a
8330     // negative number, as it appears to be illegal to have a negative offset
8331     // in the vgpr, even if adding the immediate offset makes it positive.
8332     unsigned Overflow = ImmOffset & ~MaxImm;
8333     ImmOffset -= Overflow;
8334     if ((int32_t)Overflow < 0) {
8335       Overflow += ImmOffset;
8336       ImmOffset = 0;
8337     }
8338     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
8339     if (Overflow) {
8340       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
8341       if (!N0)
8342         N0 = OverflowVal;
8343       else {
8344         SDValue Ops[] = { N0, OverflowVal };
8345         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
8346       }
8347     }
8348   }
8349   if (!N0)
8350     N0 = DAG.getConstant(0, DL, MVT::i32);
8351   if (!C1)
8352     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
8353   return {N0, SDValue(C1, 0)};
8354 }
8355 
8356 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
8357 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
8358 // pointed to by Offsets.
8359 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
8360                                         SelectionDAG &DAG, SDValue *Offsets,
8361                                         Align Alignment) const {
8362   SDLoc DL(CombinedOffset);
8363   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
8364     uint32_t Imm = C->getZExtValue();
8365     uint32_t SOffset, ImmOffset;
8366     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
8367                                  Alignment)) {
8368       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
8369       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8370       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8371       return;
8372     }
8373   }
8374   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
8375     SDValue N0 = CombinedOffset.getOperand(0);
8376     SDValue N1 = CombinedOffset.getOperand(1);
8377     uint32_t SOffset, ImmOffset;
8378     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
8379     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
8380                                                 Subtarget, Alignment)) {
8381       Offsets[0] = N0;
8382       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8383       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8384       return;
8385     }
8386   }
8387   Offsets[0] = CombinedOffset;
8388   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
8389   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
8390 }
8391 
8392 // Handle 8 bit and 16 bit buffer loads
8393 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
8394                                                      EVT LoadVT, SDLoc DL,
8395                                                      ArrayRef<SDValue> Ops,
8396                                                      MemSDNode *M) const {
8397   EVT IntVT = LoadVT.changeTypeToInteger();
8398   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
8399          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
8400 
8401   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
8402   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
8403                                                Ops, IntVT,
8404                                                M->getMemOperand());
8405   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
8406   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
8407 
8408   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
8409 }
8410 
8411 // Handle 8 bit and 16 bit buffer stores
8412 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
8413                                                       EVT VDataType, SDLoc DL,
8414                                                       SDValue Ops[],
8415                                                       MemSDNode *M) const {
8416   if (VDataType == MVT::f16)
8417     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
8418 
8419   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
8420   Ops[1] = BufferStoreExt;
8421   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
8422                                  AMDGPUISD::BUFFER_STORE_SHORT;
8423   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
8424   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
8425                                      M->getMemOperand());
8426 }
8427 
8428 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
8429                                  ISD::LoadExtType ExtType, SDValue Op,
8430                                  const SDLoc &SL, EVT VT) {
8431   if (VT.bitsLT(Op.getValueType()))
8432     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
8433 
8434   switch (ExtType) {
8435   case ISD::SEXTLOAD:
8436     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
8437   case ISD::ZEXTLOAD:
8438     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
8439   case ISD::EXTLOAD:
8440     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
8441   case ISD::NON_EXTLOAD:
8442     return Op;
8443   }
8444 
8445   llvm_unreachable("invalid ext type");
8446 }
8447 
8448 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
8449   SelectionDAG &DAG = DCI.DAG;
8450   if (Ld->getAlign() < Align(4) || Ld->isDivergent())
8451     return SDValue();
8452 
8453   // FIXME: Constant loads should all be marked invariant.
8454   unsigned AS = Ld->getAddressSpace();
8455   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
8456       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8457       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
8458     return SDValue();
8459 
8460   // Don't do this early, since it may interfere with adjacent load merging for
8461   // illegal types. We can avoid losing alignment information for exotic types
8462   // pre-legalize.
8463   EVT MemVT = Ld->getMemoryVT();
8464   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
8465       MemVT.getSizeInBits() >= 32)
8466     return SDValue();
8467 
8468   SDLoc SL(Ld);
8469 
8470   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
8471          "unexpected vector extload");
8472 
8473   // TODO: Drop only high part of range.
8474   SDValue Ptr = Ld->getBasePtr();
8475   SDValue NewLoad = DAG.getLoad(
8476       ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr,
8477       Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(),
8478       Ld->getMemOperand()->getFlags(), Ld->getAAInfo(),
8479       nullptr); // Drop ranges
8480 
8481   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
8482   if (MemVT.isFloatingPoint()) {
8483     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
8484            "unexpected fp extload");
8485     TruncVT = MemVT.changeTypeToInteger();
8486   }
8487 
8488   SDValue Cvt = NewLoad;
8489   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
8490     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
8491                       DAG.getValueType(TruncVT));
8492   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
8493              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
8494     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
8495   } else {
8496     assert(Ld->getExtensionType() == ISD::EXTLOAD);
8497   }
8498 
8499   EVT VT = Ld->getValueType(0);
8500   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8501 
8502   DCI.AddToWorklist(Cvt.getNode());
8503 
8504   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8505   // the appropriate extension from the 32-bit load.
8506   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8507   DCI.AddToWorklist(Cvt.getNode());
8508 
8509   // Handle conversion back to floating point if necessary.
8510   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8511 
8512   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8513 }
8514 
8515 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8516   SDLoc DL(Op);
8517   LoadSDNode *Load = cast<LoadSDNode>(Op);
8518   ISD::LoadExtType ExtType = Load->getExtensionType();
8519   EVT MemVT = Load->getMemoryVT();
8520 
8521   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8522     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8523       return SDValue();
8524 
8525     // FIXME: Copied from PPC
8526     // First, load into 32 bits, then truncate to 1 bit.
8527 
8528     SDValue Chain = Load->getChain();
8529     SDValue BasePtr = Load->getBasePtr();
8530     MachineMemOperand *MMO = Load->getMemOperand();
8531 
8532     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8533 
8534     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8535                                    BasePtr, RealMemVT, MMO);
8536 
8537     if (!MemVT.isVector()) {
8538       SDValue Ops[] = {
8539         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8540         NewLD.getValue(1)
8541       };
8542 
8543       return DAG.getMergeValues(Ops, DL);
8544     }
8545 
8546     SmallVector<SDValue, 3> Elts;
8547     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8548       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8549                                 DAG.getConstant(I, DL, MVT::i32));
8550 
8551       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8552     }
8553 
8554     SDValue Ops[] = {
8555       DAG.getBuildVector(MemVT, DL, Elts),
8556       NewLD.getValue(1)
8557     };
8558 
8559     return DAG.getMergeValues(Ops, DL);
8560   }
8561 
8562   if (!MemVT.isVector())
8563     return SDValue();
8564 
8565   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8566          "Custom lowering for non-i32 vectors hasn't been implemented.");
8567 
8568   Align Alignment = Load->getAlign();
8569   unsigned AS = Load->getAddressSpace();
8570   if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS &&
8571       Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8572     return SplitVectorLoad(Op, DAG);
8573   }
8574 
8575   MachineFunction &MF = DAG.getMachineFunction();
8576   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8577   // If there is a possibility that flat instruction access scratch memory
8578   // then we need to use the same legalization rules we use for private.
8579   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8580       !Subtarget->hasMultiDwordFlatScratchAddressing())
8581     AS = MFI->hasFlatScratchInit() ?
8582          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8583 
8584   unsigned NumElements = MemVT.getVectorNumElements();
8585 
8586   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8587       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8588     if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) {
8589       if (MemVT.isPow2VectorType())
8590         return SDValue();
8591       return WidenOrSplitVectorLoad(Op, DAG);
8592     }
8593     // Non-uniform loads will be selected to MUBUF instructions, so they
8594     // have the same legalization requirements as global and private
8595     // loads.
8596     //
8597   }
8598 
8599   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8600       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8601       AS == AMDGPUAS::GLOBAL_ADDRESS) {
8602     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8603         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8604         Alignment >= Align(4) && NumElements < 32) {
8605       if (MemVT.isPow2VectorType())
8606         return SDValue();
8607       return WidenOrSplitVectorLoad(Op, DAG);
8608     }
8609     // Non-uniform loads will be selected to MUBUF instructions, so they
8610     // have the same legalization requirements as global and private
8611     // loads.
8612     //
8613   }
8614   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8615       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8616       AS == AMDGPUAS::GLOBAL_ADDRESS ||
8617       AS == AMDGPUAS::FLAT_ADDRESS) {
8618     if (NumElements > 4)
8619       return SplitVectorLoad(Op, DAG);
8620     // v3 loads not supported on SI.
8621     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8622       return WidenOrSplitVectorLoad(Op, DAG);
8623 
8624     // v3 and v4 loads are supported for private and global memory.
8625     return SDValue();
8626   }
8627   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8628     // Depending on the setting of the private_element_size field in the
8629     // resource descriptor, we can only make private accesses up to a certain
8630     // size.
8631     switch (Subtarget->getMaxPrivateElementSize()) {
8632     case 4: {
8633       SDValue Ops[2];
8634       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8635       return DAG.getMergeValues(Ops, DL);
8636     }
8637     case 8:
8638       if (NumElements > 2)
8639         return SplitVectorLoad(Op, DAG);
8640       return SDValue();
8641     case 16:
8642       // Same as global/flat
8643       if (NumElements > 4)
8644         return SplitVectorLoad(Op, DAG);
8645       // v3 loads not supported on SI.
8646       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8647         return WidenOrSplitVectorLoad(Op, DAG);
8648 
8649       return SDValue();
8650     default:
8651       llvm_unreachable("unsupported private_element_size");
8652     }
8653   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8654     bool Fast = false;
8655     auto Flags = Load->getMemOperand()->getFlags();
8656     if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8657                                            Load->getAlign(), Flags, &Fast) &&
8658         Fast)
8659       return SDValue();
8660 
8661     if (MemVT.isVector())
8662       return SplitVectorLoad(Op, DAG);
8663   }
8664 
8665   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8666                                       MemVT, *Load->getMemOperand())) {
8667     SDValue Ops[2];
8668     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8669     return DAG.getMergeValues(Ops, DL);
8670   }
8671 
8672   return SDValue();
8673 }
8674 
8675 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8676   EVT VT = Op.getValueType();
8677   if (VT.getSizeInBits() == 128)
8678     return splitTernaryVectorOp(Op, DAG);
8679 
8680   assert(VT.getSizeInBits() == 64);
8681 
8682   SDLoc DL(Op);
8683   SDValue Cond = Op.getOperand(0);
8684 
8685   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8686   SDValue One = DAG.getConstant(1, DL, MVT::i32);
8687 
8688   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8689   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8690 
8691   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8692   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8693 
8694   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8695 
8696   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8697   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8698 
8699   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8700 
8701   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8702   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8703 }
8704 
8705 // Catch division cases where we can use shortcuts with rcp and rsq
8706 // instructions.
8707 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8708                                               SelectionDAG &DAG) const {
8709   SDLoc SL(Op);
8710   SDValue LHS = Op.getOperand(0);
8711   SDValue RHS = Op.getOperand(1);
8712   EVT VT = Op.getValueType();
8713   const SDNodeFlags Flags = Op->getFlags();
8714 
8715   bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8716 
8717   // Without !fpmath accuracy information, we can't do more because we don't
8718   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8719   if (!AllowInaccurateRcp)
8720     return SDValue();
8721 
8722   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8723     if (CLHS->isExactlyValue(1.0)) {
8724       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8725       // the CI documentation has a worst case error of 1 ulp.
8726       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8727       // use it as long as we aren't trying to use denormals.
8728       //
8729       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8730 
8731       // 1.0 / sqrt(x) -> rsq(x)
8732 
8733       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8734       // error seems really high at 2^29 ULP.
8735       if (RHS.getOpcode() == ISD::FSQRT)
8736         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8737 
8738       // 1.0 / x -> rcp(x)
8739       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8740     }
8741 
8742     // Same as for 1.0, but expand the sign out of the constant.
8743     if (CLHS->isExactlyValue(-1.0)) {
8744       // -1.0 / x -> rcp (fneg x)
8745       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8746       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8747     }
8748   }
8749 
8750   // Turn into multiply by the reciprocal.
8751   // x / y -> x * (1.0 / y)
8752   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8753   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8754 }
8755 
8756 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8757                                                 SelectionDAG &DAG) const {
8758   SDLoc SL(Op);
8759   SDValue X = Op.getOperand(0);
8760   SDValue Y = Op.getOperand(1);
8761   EVT VT = Op.getValueType();
8762   const SDNodeFlags Flags = Op->getFlags();
8763 
8764   bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8765                             DAG.getTarget().Options.UnsafeFPMath;
8766   if (!AllowInaccurateDiv)
8767     return SDValue();
8768 
8769   SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8770   SDValue One = DAG.getConstantFP(1.0, SL, VT);
8771 
8772   SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8773   SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8774 
8775   R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8776   SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8777   R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8778   SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8779   SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8780   return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8781 }
8782 
8783 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8784                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8785                           SDNodeFlags Flags) {
8786   if (GlueChain->getNumValues() <= 1) {
8787     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8788   }
8789 
8790   assert(GlueChain->getNumValues() == 3);
8791 
8792   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8793   switch (Opcode) {
8794   default: llvm_unreachable("no chain equivalent for opcode");
8795   case ISD::FMUL:
8796     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8797     break;
8798   }
8799 
8800   return DAG.getNode(Opcode, SL, VTList,
8801                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8802                      Flags);
8803 }
8804 
8805 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8806                            EVT VT, SDValue A, SDValue B, SDValue C,
8807                            SDValue GlueChain, SDNodeFlags Flags) {
8808   if (GlueChain->getNumValues() <= 1) {
8809     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8810   }
8811 
8812   assert(GlueChain->getNumValues() == 3);
8813 
8814   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8815   switch (Opcode) {
8816   default: llvm_unreachable("no chain equivalent for opcode");
8817   case ISD::FMA:
8818     Opcode = AMDGPUISD::FMA_W_CHAIN;
8819     break;
8820   }
8821 
8822   return DAG.getNode(Opcode, SL, VTList,
8823                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8824                      Flags);
8825 }
8826 
8827 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8828   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8829     return FastLowered;
8830 
8831   SDLoc SL(Op);
8832   SDValue Src0 = Op.getOperand(0);
8833   SDValue Src1 = Op.getOperand(1);
8834 
8835   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8836   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8837 
8838   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8839   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8840 
8841   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8842   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8843 
8844   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8845 }
8846 
8847 // Faster 2.5 ULP division that does not support denormals.
8848 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8849   SDLoc SL(Op);
8850   SDValue LHS = Op.getOperand(1);
8851   SDValue RHS = Op.getOperand(2);
8852 
8853   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8854 
8855   const APFloat K0Val(BitsToFloat(0x6f800000));
8856   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8857 
8858   const APFloat K1Val(BitsToFloat(0x2f800000));
8859   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8860 
8861   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8862 
8863   EVT SetCCVT =
8864     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8865 
8866   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8867 
8868   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8869 
8870   // TODO: Should this propagate fast-math-flags?
8871   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8872 
8873   // rcp does not support denormals.
8874   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8875 
8876   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8877 
8878   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8879 }
8880 
8881 // Returns immediate value for setting the F32 denorm mode when using the
8882 // S_DENORM_MODE instruction.
8883 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8884                                     const SDLoc &SL, const GCNSubtarget *ST) {
8885   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8886   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8887                                 ? FP_DENORM_FLUSH_NONE
8888                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8889 
8890   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8891   return DAG.getTargetConstant(Mode, SL, MVT::i32);
8892 }
8893 
8894 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8895   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8896     return FastLowered;
8897 
8898   // The selection matcher assumes anything with a chain selecting to a
8899   // mayRaiseFPException machine instruction. Since we're introducing a chain
8900   // here, we need to explicitly report nofpexcept for the regular fdiv
8901   // lowering.
8902   SDNodeFlags Flags = Op->getFlags();
8903   Flags.setNoFPExcept(true);
8904 
8905   SDLoc SL(Op);
8906   SDValue LHS = Op.getOperand(0);
8907   SDValue RHS = Op.getOperand(1);
8908 
8909   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8910 
8911   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8912 
8913   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8914                                           {RHS, RHS, LHS}, Flags);
8915   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8916                                         {LHS, RHS, LHS}, Flags);
8917 
8918   // Denominator is scaled to not be denormal, so using rcp is ok.
8919   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8920                                   DenominatorScaled, Flags);
8921   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8922                                      DenominatorScaled, Flags);
8923 
8924   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8925                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8926                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8927   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8928 
8929   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8930 
8931   if (!HasFP32Denormals) {
8932     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8933     // lowering. The chain dependence is insufficient, and we need glue. We do
8934     // not need the glue variants in a strictfp function.
8935 
8936     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8937 
8938     SDNode *EnableDenorm;
8939     if (Subtarget->hasDenormModeInst()) {
8940       const SDValue EnableDenormValue =
8941           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8942 
8943       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8944                                  DAG.getEntryNode(), EnableDenormValue).getNode();
8945     } else {
8946       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
8947                                                         SL, MVT::i32);
8948       EnableDenorm =
8949           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8950                              {EnableDenormValue, BitField, DAG.getEntryNode()});
8951     }
8952 
8953     SDValue Ops[3] = {
8954       NegDivScale0,
8955       SDValue(EnableDenorm, 0),
8956       SDValue(EnableDenorm, 1)
8957     };
8958 
8959     NegDivScale0 = DAG.getMergeValues(Ops, SL);
8960   }
8961 
8962   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8963                              ApproxRcp, One, NegDivScale0, Flags);
8964 
8965   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8966                              ApproxRcp, Fma0, Flags);
8967 
8968   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8969                            Fma1, Fma1, Flags);
8970 
8971   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8972                              NumeratorScaled, Mul, Flags);
8973 
8974   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8975                              Fma2, Fma1, Mul, Fma2, Flags);
8976 
8977   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8978                              NumeratorScaled, Fma3, Flags);
8979 
8980   if (!HasFP32Denormals) {
8981     SDNode *DisableDenorm;
8982     if (Subtarget->hasDenormModeInst()) {
8983       const SDValue DisableDenormValue =
8984           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
8985 
8986       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8987                                   Fma4.getValue(1), DisableDenormValue,
8988                                   Fma4.getValue(2)).getNode();
8989     } else {
8990       const SDValue DisableDenormValue =
8991           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
8992 
8993       DisableDenorm = DAG.getMachineNode(
8994           AMDGPU::S_SETREG_B32, SL, MVT::Other,
8995           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8996     }
8997 
8998     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8999                                       SDValue(DisableDenorm, 0), DAG.getRoot());
9000     DAG.setRoot(OutputChain);
9001   }
9002 
9003   SDValue Scale = NumeratorScaled.getValue(1);
9004   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
9005                              {Fma4, Fma1, Fma3, Scale}, Flags);
9006 
9007   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
9008 }
9009 
9010 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
9011   if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
9012     return FastLowered;
9013 
9014   SDLoc SL(Op);
9015   SDValue X = Op.getOperand(0);
9016   SDValue Y = Op.getOperand(1);
9017 
9018   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
9019 
9020   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
9021 
9022   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
9023 
9024   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
9025 
9026   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
9027 
9028   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
9029 
9030   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
9031 
9032   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
9033 
9034   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
9035 
9036   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
9037   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
9038 
9039   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
9040                              NegDivScale0, Mul, DivScale1);
9041 
9042   SDValue Scale;
9043 
9044   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
9045     // Workaround a hardware bug on SI where the condition output from div_scale
9046     // is not usable.
9047 
9048     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
9049 
9050     // Figure out if the scale to use for div_fmas.
9051     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
9052     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
9053     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
9054     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
9055 
9056     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
9057     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
9058 
9059     SDValue Scale0Hi
9060       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
9061     SDValue Scale1Hi
9062       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
9063 
9064     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
9065     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
9066     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
9067   } else {
9068     Scale = DivScale1.getValue(1);
9069   }
9070 
9071   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
9072                              Fma4, Fma3, Mul, Scale);
9073 
9074   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
9075 }
9076 
9077 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
9078   EVT VT = Op.getValueType();
9079 
9080   if (VT == MVT::f32)
9081     return LowerFDIV32(Op, DAG);
9082 
9083   if (VT == MVT::f64)
9084     return LowerFDIV64(Op, DAG);
9085 
9086   if (VT == MVT::f16)
9087     return LowerFDIV16(Op, DAG);
9088 
9089   llvm_unreachable("Unexpected type for fdiv");
9090 }
9091 
9092 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
9093   SDLoc DL(Op);
9094   StoreSDNode *Store = cast<StoreSDNode>(Op);
9095   EVT VT = Store->getMemoryVT();
9096 
9097   if (VT == MVT::i1) {
9098     return DAG.getTruncStore(Store->getChain(), DL,
9099        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
9100        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
9101   }
9102 
9103   assert(VT.isVector() &&
9104          Store->getValue().getValueType().getScalarType() == MVT::i32);
9105 
9106   unsigned AS = Store->getAddressSpace();
9107   if (Subtarget->hasLDSMisalignedBug() &&
9108       AS == AMDGPUAS::FLAT_ADDRESS &&
9109       Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
9110     return SplitVectorStore(Op, DAG);
9111   }
9112 
9113   MachineFunction &MF = DAG.getMachineFunction();
9114   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
9115   // If there is a possibility that flat instruction access scratch memory
9116   // then we need to use the same legalization rules we use for private.
9117   if (AS == AMDGPUAS::FLAT_ADDRESS &&
9118       !Subtarget->hasMultiDwordFlatScratchAddressing())
9119     AS = MFI->hasFlatScratchInit() ?
9120          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
9121 
9122   unsigned NumElements = VT.getVectorNumElements();
9123   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
9124       AS == AMDGPUAS::FLAT_ADDRESS) {
9125     if (NumElements > 4)
9126       return SplitVectorStore(Op, DAG);
9127     // v3 stores not supported on SI.
9128     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
9129       return SplitVectorStore(Op, DAG);
9130 
9131     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
9132                                         VT, *Store->getMemOperand()))
9133       return expandUnalignedStore(Store, DAG);
9134 
9135     return SDValue();
9136   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
9137     switch (Subtarget->getMaxPrivateElementSize()) {
9138     case 4:
9139       return scalarizeVectorStore(Store, DAG);
9140     case 8:
9141       if (NumElements > 2)
9142         return SplitVectorStore(Op, DAG);
9143       return SDValue();
9144     case 16:
9145       if (NumElements > 4 ||
9146           (NumElements == 3 && !Subtarget->enableFlatScratch()))
9147         return SplitVectorStore(Op, DAG);
9148       return SDValue();
9149     default:
9150       llvm_unreachable("unsupported private_element_size");
9151     }
9152   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
9153     bool Fast = false;
9154     auto Flags = Store->getMemOperand()->getFlags();
9155     if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
9156                                            Store->getAlign(), Flags, &Fast) &&
9157         Fast)
9158       return SDValue();
9159 
9160     if (VT.isVector())
9161       return SplitVectorStore(Op, DAG);
9162 
9163     return expandUnalignedStore(Store, DAG);
9164   }
9165 
9166   // Probably an invalid store. If so we'll end up emitting a selection error.
9167   return SDValue();
9168 }
9169 
9170 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
9171   SDLoc DL(Op);
9172   EVT VT = Op.getValueType();
9173   SDValue Arg = Op.getOperand(0);
9174   SDValue TrigVal;
9175 
9176   // Propagate fast-math flags so that the multiply we introduce can be folded
9177   // if Arg is already the result of a multiply by constant.
9178   auto Flags = Op->getFlags();
9179 
9180   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
9181 
9182   if (Subtarget->hasTrigReducedRange()) {
9183     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9184     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
9185   } else {
9186     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9187   }
9188 
9189   switch (Op.getOpcode()) {
9190   case ISD::FCOS:
9191     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
9192   case ISD::FSIN:
9193     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
9194   default:
9195     llvm_unreachable("Wrong trig opcode");
9196   }
9197 }
9198 
9199 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9200   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
9201   assert(AtomicNode->isCompareAndSwap());
9202   unsigned AS = AtomicNode->getAddressSpace();
9203 
9204   // No custom lowering required for local address space
9205   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
9206     return Op;
9207 
9208   // Non-local address space requires custom lowering for atomic compare
9209   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
9210   SDLoc DL(Op);
9211   SDValue ChainIn = Op.getOperand(0);
9212   SDValue Addr = Op.getOperand(1);
9213   SDValue Old = Op.getOperand(2);
9214   SDValue New = Op.getOperand(3);
9215   EVT VT = Op.getValueType();
9216   MVT SimpleVT = VT.getSimpleVT();
9217   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
9218 
9219   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
9220   SDValue Ops[] = { ChainIn, Addr, NewOld };
9221 
9222   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
9223                                  Ops, VT, AtomicNode->getMemOperand());
9224 }
9225 
9226 //===----------------------------------------------------------------------===//
9227 // Custom DAG optimizations
9228 //===----------------------------------------------------------------------===//
9229 
9230 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
9231                                                      DAGCombinerInfo &DCI) const {
9232   EVT VT = N->getValueType(0);
9233   EVT ScalarVT = VT.getScalarType();
9234   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
9235     return SDValue();
9236 
9237   SelectionDAG &DAG = DCI.DAG;
9238   SDLoc DL(N);
9239 
9240   SDValue Src = N->getOperand(0);
9241   EVT SrcVT = Src.getValueType();
9242 
9243   // TODO: We could try to match extracting the higher bytes, which would be
9244   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
9245   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
9246   // about in practice.
9247   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
9248     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
9249       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
9250       DCI.AddToWorklist(Cvt.getNode());
9251 
9252       // For the f16 case, fold to a cast to f32 and then cast back to f16.
9253       if (ScalarVT != MVT::f32) {
9254         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
9255                           DAG.getTargetConstant(0, DL, MVT::i32));
9256       }
9257       return Cvt;
9258     }
9259   }
9260 
9261   return SDValue();
9262 }
9263 
9264 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
9265 
9266 // This is a variant of
9267 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
9268 //
9269 // The normal DAG combiner will do this, but only if the add has one use since
9270 // that would increase the number of instructions.
9271 //
9272 // This prevents us from seeing a constant offset that can be folded into a
9273 // memory instruction's addressing mode. If we know the resulting add offset of
9274 // a pointer can be folded into an addressing offset, we can replace the pointer
9275 // operand with the add of new constant offset. This eliminates one of the uses,
9276 // and may allow the remaining use to also be simplified.
9277 //
9278 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
9279                                                unsigned AddrSpace,
9280                                                EVT MemVT,
9281                                                DAGCombinerInfo &DCI) const {
9282   SDValue N0 = N->getOperand(0);
9283   SDValue N1 = N->getOperand(1);
9284 
9285   // We only do this to handle cases where it's profitable when there are
9286   // multiple uses of the add, so defer to the standard combine.
9287   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
9288       N0->hasOneUse())
9289     return SDValue();
9290 
9291   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
9292   if (!CN1)
9293     return SDValue();
9294 
9295   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9296   if (!CAdd)
9297     return SDValue();
9298 
9299   // If the resulting offset is too large, we can't fold it into the addressing
9300   // mode offset.
9301   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
9302   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
9303 
9304   AddrMode AM;
9305   AM.HasBaseReg = true;
9306   AM.BaseOffs = Offset.getSExtValue();
9307   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
9308     return SDValue();
9309 
9310   SelectionDAG &DAG = DCI.DAG;
9311   SDLoc SL(N);
9312   EVT VT = N->getValueType(0);
9313 
9314   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
9315   SDValue COffset = DAG.getConstant(Offset, SL, VT);
9316 
9317   SDNodeFlags Flags;
9318   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
9319                           (N0.getOpcode() == ISD::OR ||
9320                            N0->getFlags().hasNoUnsignedWrap()));
9321 
9322   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
9323 }
9324 
9325 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
9326 /// by the chain and intrinsic ID. Theoretically we would also need to check the
9327 /// specific intrinsic, but they all place the pointer operand first.
9328 static unsigned getBasePtrIndex(const MemSDNode *N) {
9329   switch (N->getOpcode()) {
9330   case ISD::STORE:
9331   case ISD::INTRINSIC_W_CHAIN:
9332   case ISD::INTRINSIC_VOID:
9333     return 2;
9334   default:
9335     return 1;
9336   }
9337 }
9338 
9339 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
9340                                                   DAGCombinerInfo &DCI) const {
9341   SelectionDAG &DAG = DCI.DAG;
9342   SDLoc SL(N);
9343 
9344   unsigned PtrIdx = getBasePtrIndex(N);
9345   SDValue Ptr = N->getOperand(PtrIdx);
9346 
9347   // TODO: We could also do this for multiplies.
9348   if (Ptr.getOpcode() == ISD::SHL) {
9349     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
9350                                           N->getMemoryVT(), DCI);
9351     if (NewPtr) {
9352       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
9353 
9354       NewOps[PtrIdx] = NewPtr;
9355       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
9356     }
9357   }
9358 
9359   return SDValue();
9360 }
9361 
9362 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
9363   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
9364          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
9365          (Opc == ISD::XOR && Val == 0);
9366 }
9367 
9368 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
9369 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
9370 // integer combine opportunities since most 64-bit operations are decomposed
9371 // this way.  TODO: We won't want this for SALU especially if it is an inline
9372 // immediate.
9373 SDValue SITargetLowering::splitBinaryBitConstantOp(
9374   DAGCombinerInfo &DCI,
9375   const SDLoc &SL,
9376   unsigned Opc, SDValue LHS,
9377   const ConstantSDNode *CRHS) const {
9378   uint64_t Val = CRHS->getZExtValue();
9379   uint32_t ValLo = Lo_32(Val);
9380   uint32_t ValHi = Hi_32(Val);
9381   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9382 
9383     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
9384          bitOpWithConstantIsReducible(Opc, ValHi)) ||
9385         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
9386     // If we need to materialize a 64-bit immediate, it will be split up later
9387     // anyway. Avoid creating the harder to understand 64-bit immediate
9388     // materialization.
9389     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
9390   }
9391 
9392   return SDValue();
9393 }
9394 
9395 // Returns true if argument is a boolean value which is not serialized into
9396 // memory or argument and does not require v_cndmask_b32 to be deserialized.
9397 static bool isBoolSGPR(SDValue V) {
9398   if (V.getValueType() != MVT::i1)
9399     return false;
9400   switch (V.getOpcode()) {
9401   default:
9402     break;
9403   case ISD::SETCC:
9404   case AMDGPUISD::FP_CLASS:
9405     return true;
9406   case ISD::AND:
9407   case ISD::OR:
9408   case ISD::XOR:
9409     return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
9410   }
9411   return false;
9412 }
9413 
9414 // If a constant has all zeroes or all ones within each byte return it.
9415 // Otherwise return 0.
9416 static uint32_t getConstantPermuteMask(uint32_t C) {
9417   // 0xff for any zero byte in the mask
9418   uint32_t ZeroByteMask = 0;
9419   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
9420   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
9421   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
9422   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
9423   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
9424   if ((NonZeroByteMask & C) != NonZeroByteMask)
9425     return 0; // Partial bytes selected.
9426   return C;
9427 }
9428 
9429 // Check if a node selects whole bytes from its operand 0 starting at a byte
9430 // boundary while masking the rest. Returns select mask as in the v_perm_b32
9431 // or -1 if not succeeded.
9432 // Note byte select encoding:
9433 // value 0-3 selects corresponding source byte;
9434 // value 0xc selects zero;
9435 // value 0xff selects 0xff.
9436 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
9437   assert(V.getValueSizeInBits() == 32);
9438 
9439   if (V.getNumOperands() != 2)
9440     return ~0;
9441 
9442   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
9443   if (!N1)
9444     return ~0;
9445 
9446   uint32_t C = N1->getZExtValue();
9447 
9448   switch (V.getOpcode()) {
9449   default:
9450     break;
9451   case ISD::AND:
9452     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9453       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
9454     }
9455     break;
9456 
9457   case ISD::OR:
9458     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9459       return (0x03020100 & ~ConstMask) | ConstMask;
9460     }
9461     break;
9462 
9463   case ISD::SHL:
9464     if (C % 8)
9465       return ~0;
9466 
9467     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
9468 
9469   case ISD::SRL:
9470     if (C % 8)
9471       return ~0;
9472 
9473     return uint32_t(0x0c0c0c0c03020100ull >> C);
9474   }
9475 
9476   return ~0;
9477 }
9478 
9479 SDValue SITargetLowering::performAndCombine(SDNode *N,
9480                                             DAGCombinerInfo &DCI) const {
9481   if (DCI.isBeforeLegalize())
9482     return SDValue();
9483 
9484   SelectionDAG &DAG = DCI.DAG;
9485   EVT VT = N->getValueType(0);
9486   SDValue LHS = N->getOperand(0);
9487   SDValue RHS = N->getOperand(1);
9488 
9489 
9490   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9491   if (VT == MVT::i64 && CRHS) {
9492     if (SDValue Split
9493         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
9494       return Split;
9495   }
9496 
9497   if (CRHS && VT == MVT::i32) {
9498     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
9499     // nb = number of trailing zeroes in mask
9500     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
9501     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
9502     uint64_t Mask = CRHS->getZExtValue();
9503     unsigned Bits = countPopulation(Mask);
9504     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9505         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9506       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9507         unsigned Shift = CShift->getZExtValue();
9508         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9509         unsigned Offset = NB + Shift;
9510         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9511           SDLoc SL(N);
9512           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9513                                     LHS->getOperand(0),
9514                                     DAG.getConstant(Offset, SL, MVT::i32),
9515                                     DAG.getConstant(Bits, SL, MVT::i32));
9516           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9517           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9518                                     DAG.getValueType(NarrowVT));
9519           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9520                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9521           return Shl;
9522         }
9523       }
9524     }
9525 
9526     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9527     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9528         isa<ConstantSDNode>(LHS.getOperand(2))) {
9529       uint32_t Sel = getConstantPermuteMask(Mask);
9530       if (!Sel)
9531         return SDValue();
9532 
9533       // Select 0xc for all zero bytes
9534       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9535       SDLoc DL(N);
9536       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9537                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9538     }
9539   }
9540 
9541   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9542   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9543   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9544     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9545     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9546 
9547     SDValue X = LHS.getOperand(0);
9548     SDValue Y = RHS.getOperand(0);
9549     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9550       return SDValue();
9551 
9552     if (LCC == ISD::SETO) {
9553       if (X != LHS.getOperand(1))
9554         return SDValue();
9555 
9556       if (RCC == ISD::SETUNE) {
9557         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9558         if (!C1 || !C1->isInfinity() || C1->isNegative())
9559           return SDValue();
9560 
9561         const uint32_t Mask = SIInstrFlags::N_NORMAL |
9562                               SIInstrFlags::N_SUBNORMAL |
9563                               SIInstrFlags::N_ZERO |
9564                               SIInstrFlags::P_ZERO |
9565                               SIInstrFlags::P_SUBNORMAL |
9566                               SIInstrFlags::P_NORMAL;
9567 
9568         static_assert(((~(SIInstrFlags::S_NAN |
9569                           SIInstrFlags::Q_NAN |
9570                           SIInstrFlags::N_INFINITY |
9571                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9572                       "mask not equal");
9573 
9574         SDLoc DL(N);
9575         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9576                            X, DAG.getConstant(Mask, DL, MVT::i32));
9577       }
9578     }
9579   }
9580 
9581   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9582     std::swap(LHS, RHS);
9583 
9584   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9585       RHS.hasOneUse()) {
9586     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9587     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9588     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9589     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9590     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9591         (RHS.getOperand(0) == LHS.getOperand(0) &&
9592          LHS.getOperand(0) == LHS.getOperand(1))) {
9593       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9594       unsigned NewMask = LCC == ISD::SETO ?
9595         Mask->getZExtValue() & ~OrdMask :
9596         Mask->getZExtValue() & OrdMask;
9597 
9598       SDLoc DL(N);
9599       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9600                          DAG.getConstant(NewMask, DL, MVT::i32));
9601     }
9602   }
9603 
9604   if (VT == MVT::i32 &&
9605       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9606     // and x, (sext cc from i1) => select cc, x, 0
9607     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9608       std::swap(LHS, RHS);
9609     if (isBoolSGPR(RHS.getOperand(0)))
9610       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9611                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9612   }
9613 
9614   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9615   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9616   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9617       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9618     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9619     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9620     if (LHSMask != ~0u && RHSMask != ~0u) {
9621       // Canonicalize the expression in an attempt to have fewer unique masks
9622       // and therefore fewer registers used to hold the masks.
9623       if (LHSMask > RHSMask) {
9624         std::swap(LHSMask, RHSMask);
9625         std::swap(LHS, RHS);
9626       }
9627 
9628       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9629       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9630       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9631       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9632 
9633       // Check of we need to combine values from two sources within a byte.
9634       if (!(LHSUsedLanes & RHSUsedLanes) &&
9635           // If we select high and lower word keep it for SDWA.
9636           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9637           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9638         // Each byte in each mask is either selector mask 0-3, or has higher
9639         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9640         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9641         // mask which is not 0xff wins. By anding both masks we have a correct
9642         // result except that 0x0c shall be corrected to give 0x0c only.
9643         uint32_t Mask = LHSMask & RHSMask;
9644         for (unsigned I = 0; I < 32; I += 8) {
9645           uint32_t ByteSel = 0xff << I;
9646           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9647             Mask &= (0x0c << I) & 0xffffffff;
9648         }
9649 
9650         // Add 4 to each active LHS lane. It will not affect any existing 0xff
9651         // or 0x0c.
9652         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9653         SDLoc DL(N);
9654 
9655         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9656                            LHS.getOperand(0), RHS.getOperand(0),
9657                            DAG.getConstant(Sel, DL, MVT::i32));
9658       }
9659     }
9660   }
9661 
9662   return SDValue();
9663 }
9664 
9665 SDValue SITargetLowering::performOrCombine(SDNode *N,
9666                                            DAGCombinerInfo &DCI) const {
9667   SelectionDAG &DAG = DCI.DAG;
9668   SDValue LHS = N->getOperand(0);
9669   SDValue RHS = N->getOperand(1);
9670 
9671   EVT VT = N->getValueType(0);
9672   if (VT == MVT::i1) {
9673     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9674     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9675         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9676       SDValue Src = LHS.getOperand(0);
9677       if (Src != RHS.getOperand(0))
9678         return SDValue();
9679 
9680       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9681       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9682       if (!CLHS || !CRHS)
9683         return SDValue();
9684 
9685       // Only 10 bits are used.
9686       static const uint32_t MaxMask = 0x3ff;
9687 
9688       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9689       SDLoc DL(N);
9690       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9691                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
9692     }
9693 
9694     return SDValue();
9695   }
9696 
9697   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9698   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9699       LHS.getOpcode() == AMDGPUISD::PERM &&
9700       isa<ConstantSDNode>(LHS.getOperand(2))) {
9701     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9702     if (!Sel)
9703       return SDValue();
9704 
9705     Sel |= LHS.getConstantOperandVal(2);
9706     SDLoc DL(N);
9707     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9708                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9709   }
9710 
9711   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9712   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9713   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9714       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9715     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9716     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9717     if (LHSMask != ~0u && RHSMask != ~0u) {
9718       // Canonicalize the expression in an attempt to have fewer unique masks
9719       // and therefore fewer registers used to hold the masks.
9720       if (LHSMask > RHSMask) {
9721         std::swap(LHSMask, RHSMask);
9722         std::swap(LHS, RHS);
9723       }
9724 
9725       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9726       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9727       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9728       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9729 
9730       // Check of we need to combine values from two sources within a byte.
9731       if (!(LHSUsedLanes & RHSUsedLanes) &&
9732           // If we select high and lower word keep it for SDWA.
9733           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9734           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9735         // Kill zero bytes selected by other mask. Zero value is 0xc.
9736         LHSMask &= ~RHSUsedLanes;
9737         RHSMask &= ~LHSUsedLanes;
9738         // Add 4 to each active LHS lane
9739         LHSMask |= LHSUsedLanes & 0x04040404;
9740         // Combine masks
9741         uint32_t Sel = LHSMask | RHSMask;
9742         SDLoc DL(N);
9743 
9744         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9745                            LHS.getOperand(0), RHS.getOperand(0),
9746                            DAG.getConstant(Sel, DL, MVT::i32));
9747       }
9748     }
9749   }
9750 
9751   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9752     return SDValue();
9753 
9754   // TODO: This could be a generic combine with a predicate for extracting the
9755   // high half of an integer being free.
9756 
9757   // (or i64:x, (zero_extend i32:y)) ->
9758   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9759   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9760       RHS.getOpcode() != ISD::ZERO_EXTEND)
9761     std::swap(LHS, RHS);
9762 
9763   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9764     SDValue ExtSrc = RHS.getOperand(0);
9765     EVT SrcVT = ExtSrc.getValueType();
9766     if (SrcVT == MVT::i32) {
9767       SDLoc SL(N);
9768       SDValue LowLHS, HiBits;
9769       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9770       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9771 
9772       DCI.AddToWorklist(LowOr.getNode());
9773       DCI.AddToWorklist(HiBits.getNode());
9774 
9775       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9776                                 LowOr, HiBits);
9777       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9778     }
9779   }
9780 
9781   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9782   if (CRHS) {
9783     if (SDValue Split
9784           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
9785                                      N->getOperand(0), CRHS))
9786       return Split;
9787   }
9788 
9789   return SDValue();
9790 }
9791 
9792 SDValue SITargetLowering::performXorCombine(SDNode *N,
9793                                             DAGCombinerInfo &DCI) const {
9794   if (SDValue RV = reassociateScalarOps(N, DCI.DAG))
9795     return RV;
9796 
9797   EVT VT = N->getValueType(0);
9798   if (VT != MVT::i64)
9799     return SDValue();
9800 
9801   SDValue LHS = N->getOperand(0);
9802   SDValue RHS = N->getOperand(1);
9803 
9804   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9805   if (CRHS) {
9806     if (SDValue Split
9807           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9808       return Split;
9809   }
9810 
9811   return SDValue();
9812 }
9813 
9814 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9815                                                    DAGCombinerInfo &DCI) const {
9816   if (!Subtarget->has16BitInsts() ||
9817       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9818     return SDValue();
9819 
9820   EVT VT = N->getValueType(0);
9821   if (VT != MVT::i32)
9822     return SDValue();
9823 
9824   SDValue Src = N->getOperand(0);
9825   if (Src.getValueType() != MVT::i16)
9826     return SDValue();
9827 
9828   return SDValue();
9829 }
9830 
9831 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9832                                                         DAGCombinerInfo &DCI)
9833                                                         const {
9834   SDValue Src = N->getOperand(0);
9835   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9836 
9837   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9838       VTSign->getVT() == MVT::i8) ||
9839       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9840       VTSign->getVT() == MVT::i16)) &&
9841       Src.hasOneUse()) {
9842     auto *M = cast<MemSDNode>(Src);
9843     SDValue Ops[] = {
9844       Src.getOperand(0), // Chain
9845       Src.getOperand(1), // rsrc
9846       Src.getOperand(2), // vindex
9847       Src.getOperand(3), // voffset
9848       Src.getOperand(4), // soffset
9849       Src.getOperand(5), // offset
9850       Src.getOperand(6),
9851       Src.getOperand(7)
9852     };
9853     // replace with BUFFER_LOAD_BYTE/SHORT
9854     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9855                                          Src.getOperand(0).getValueType());
9856     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9857                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9858     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9859                                                           ResList,
9860                                                           Ops, M->getMemoryVT(),
9861                                                           M->getMemOperand());
9862     return DCI.DAG.getMergeValues({BufferLoadSignExt,
9863                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
9864   }
9865   return SDValue();
9866 }
9867 
9868 SDValue SITargetLowering::performClassCombine(SDNode *N,
9869                                               DAGCombinerInfo &DCI) const {
9870   SelectionDAG &DAG = DCI.DAG;
9871   SDValue Mask = N->getOperand(1);
9872 
9873   // fp_class x, 0 -> false
9874   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9875     if (CMask->isZero())
9876       return DAG.getConstant(0, SDLoc(N), MVT::i1);
9877   }
9878 
9879   if (N->getOperand(0).isUndef())
9880     return DAG.getUNDEF(MVT::i1);
9881 
9882   return SDValue();
9883 }
9884 
9885 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9886                                             DAGCombinerInfo &DCI) const {
9887   EVT VT = N->getValueType(0);
9888   SDValue N0 = N->getOperand(0);
9889 
9890   if (N0.isUndef())
9891     return N0;
9892 
9893   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9894                          N0.getOpcode() == ISD::SINT_TO_FP)) {
9895     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9896                            N->getFlags());
9897   }
9898 
9899   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9900     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9901                            N0.getOperand(0), N->getFlags());
9902   }
9903 
9904   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9905 }
9906 
9907 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9908                                        unsigned MaxDepth) const {
9909   unsigned Opcode = Op.getOpcode();
9910   if (Opcode == ISD::FCANONICALIZE)
9911     return true;
9912 
9913   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9914     auto F = CFP->getValueAPF();
9915     if (F.isNaN() && F.isSignaling())
9916       return false;
9917     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9918   }
9919 
9920   // If source is a result of another standard FP operation it is already in
9921   // canonical form.
9922   if (MaxDepth == 0)
9923     return false;
9924 
9925   switch (Opcode) {
9926   // These will flush denorms if required.
9927   case ISD::FADD:
9928   case ISD::FSUB:
9929   case ISD::FMUL:
9930   case ISD::FCEIL:
9931   case ISD::FFLOOR:
9932   case ISD::FMA:
9933   case ISD::FMAD:
9934   case ISD::FSQRT:
9935   case ISD::FDIV:
9936   case ISD::FREM:
9937   case ISD::FP_ROUND:
9938   case ISD::FP_EXTEND:
9939   case AMDGPUISD::FMUL_LEGACY:
9940   case AMDGPUISD::FMAD_FTZ:
9941   case AMDGPUISD::RCP:
9942   case AMDGPUISD::RSQ:
9943   case AMDGPUISD::RSQ_CLAMP:
9944   case AMDGPUISD::RCP_LEGACY:
9945   case AMDGPUISD::RCP_IFLAG:
9946   case AMDGPUISD::DIV_SCALE:
9947   case AMDGPUISD::DIV_FMAS:
9948   case AMDGPUISD::DIV_FIXUP:
9949   case AMDGPUISD::FRACT:
9950   case AMDGPUISD::LDEXP:
9951   case AMDGPUISD::CVT_PKRTZ_F16_F32:
9952   case AMDGPUISD::CVT_F32_UBYTE0:
9953   case AMDGPUISD::CVT_F32_UBYTE1:
9954   case AMDGPUISD::CVT_F32_UBYTE2:
9955   case AMDGPUISD::CVT_F32_UBYTE3:
9956     return true;
9957 
9958   // It can/will be lowered or combined as a bit operation.
9959   // Need to check their input recursively to handle.
9960   case ISD::FNEG:
9961   case ISD::FABS:
9962   case ISD::FCOPYSIGN:
9963     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9964 
9965   case ISD::FSIN:
9966   case ISD::FCOS:
9967   case ISD::FSINCOS:
9968     return Op.getValueType().getScalarType() != MVT::f16;
9969 
9970   case ISD::FMINNUM:
9971   case ISD::FMAXNUM:
9972   case ISD::FMINNUM_IEEE:
9973   case ISD::FMAXNUM_IEEE:
9974   case AMDGPUISD::CLAMP:
9975   case AMDGPUISD::FMED3:
9976   case AMDGPUISD::FMAX3:
9977   case AMDGPUISD::FMIN3: {
9978     // FIXME: Shouldn't treat the generic operations different based these.
9979     // However, we aren't really required to flush the result from
9980     // minnum/maxnum..
9981 
9982     // snans will be quieted, so we only need to worry about denormals.
9983     if (Subtarget->supportsMinMaxDenormModes() ||
9984         denormalsEnabledForType(DAG, Op.getValueType()))
9985       return true;
9986 
9987     // Flushing may be required.
9988     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9989     // targets need to check their input recursively.
9990 
9991     // FIXME: Does this apply with clamp? It's implemented with max.
9992     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9993       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9994         return false;
9995     }
9996 
9997     return true;
9998   }
9999   case ISD::SELECT: {
10000     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
10001            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
10002   }
10003   case ISD::BUILD_VECTOR: {
10004     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
10005       SDValue SrcOp = Op.getOperand(i);
10006       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
10007         return false;
10008     }
10009 
10010     return true;
10011   }
10012   case ISD::EXTRACT_VECTOR_ELT:
10013   case ISD::EXTRACT_SUBVECTOR: {
10014     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
10015   }
10016   case ISD::INSERT_VECTOR_ELT: {
10017     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
10018            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
10019   }
10020   case ISD::UNDEF:
10021     // Could be anything.
10022     return false;
10023 
10024   case ISD::BITCAST:
10025     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
10026   case ISD::TRUNCATE: {
10027     // Hack round the mess we make when legalizing extract_vector_elt
10028     if (Op.getValueType() == MVT::i16) {
10029       SDValue TruncSrc = Op.getOperand(0);
10030       if (TruncSrc.getValueType() == MVT::i32 &&
10031           TruncSrc.getOpcode() == ISD::BITCAST &&
10032           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
10033         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
10034       }
10035     }
10036     return false;
10037   }
10038   case ISD::INTRINSIC_WO_CHAIN: {
10039     unsigned IntrinsicID
10040       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10041     // TODO: Handle more intrinsics
10042     switch (IntrinsicID) {
10043     case Intrinsic::amdgcn_cvt_pkrtz:
10044     case Intrinsic::amdgcn_cubeid:
10045     case Intrinsic::amdgcn_frexp_mant:
10046     case Intrinsic::amdgcn_fdot2:
10047     case Intrinsic::amdgcn_rcp:
10048     case Intrinsic::amdgcn_rsq:
10049     case Intrinsic::amdgcn_rsq_clamp:
10050     case Intrinsic::amdgcn_rcp_legacy:
10051     case Intrinsic::amdgcn_rsq_legacy:
10052     case Intrinsic::amdgcn_trig_preop:
10053       return true;
10054     default:
10055       break;
10056     }
10057 
10058     LLVM_FALLTHROUGH;
10059   }
10060   default:
10061     return denormalsEnabledForType(DAG, Op.getValueType()) &&
10062            DAG.isKnownNeverSNaN(Op);
10063   }
10064 
10065   llvm_unreachable("invalid operation");
10066 }
10067 
10068 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
10069                                        unsigned MaxDepth) const {
10070   MachineRegisterInfo &MRI = MF.getRegInfo();
10071   MachineInstr *MI = MRI.getVRegDef(Reg);
10072   unsigned Opcode = MI->getOpcode();
10073 
10074   if (Opcode == AMDGPU::G_FCANONICALIZE)
10075     return true;
10076 
10077   Optional<FPValueAndVReg> FCR;
10078   // Constant splat (can be padded with undef) or scalar constant.
10079   if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) {
10080     if (FCR->Value.isSignaling())
10081       return false;
10082     return !FCR->Value.isDenormal() ||
10083            denormalsEnabledForType(MRI.getType(FCR->VReg), MF);
10084   }
10085 
10086   if (MaxDepth == 0)
10087     return false;
10088 
10089   switch (Opcode) {
10090   case AMDGPU::G_FMINNUM_IEEE:
10091   case AMDGPU::G_FMAXNUM_IEEE: {
10092     if (Subtarget->supportsMinMaxDenormModes() ||
10093         denormalsEnabledForType(MRI.getType(Reg), MF))
10094       return true;
10095     for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
10096       if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
10097         return false;
10098     return true;
10099   }
10100   default:
10101     return denormalsEnabledForType(MRI.getType(Reg), MF) &&
10102            isKnownNeverSNaN(Reg, MRI);
10103   }
10104 
10105   llvm_unreachable("invalid operation");
10106 }
10107 
10108 // Constant fold canonicalize.
10109 SDValue SITargetLowering::getCanonicalConstantFP(
10110   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
10111   // Flush denormals to 0 if not enabled.
10112   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
10113     return DAG.getConstantFP(0.0, SL, VT);
10114 
10115   if (C.isNaN()) {
10116     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
10117     if (C.isSignaling()) {
10118       // Quiet a signaling NaN.
10119       // FIXME: Is this supposed to preserve payload bits?
10120       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
10121     }
10122 
10123     // Make sure it is the canonical NaN bitpattern.
10124     //
10125     // TODO: Can we use -1 as the canonical NaN value since it's an inline
10126     // immediate?
10127     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
10128       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
10129   }
10130 
10131   // Already canonical.
10132   return DAG.getConstantFP(C, SL, VT);
10133 }
10134 
10135 static bool vectorEltWillFoldAway(SDValue Op) {
10136   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
10137 }
10138 
10139 SDValue SITargetLowering::performFCanonicalizeCombine(
10140   SDNode *N,
10141   DAGCombinerInfo &DCI) const {
10142   SelectionDAG &DAG = DCI.DAG;
10143   SDValue N0 = N->getOperand(0);
10144   EVT VT = N->getValueType(0);
10145 
10146   // fcanonicalize undef -> qnan
10147   if (N0.isUndef()) {
10148     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
10149     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
10150   }
10151 
10152   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
10153     EVT VT = N->getValueType(0);
10154     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
10155   }
10156 
10157   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
10158   //                                                   (fcanonicalize k)
10159   //
10160   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
10161 
10162   // TODO: This could be better with wider vectors that will be split to v2f16,
10163   // and to consider uses since there aren't that many packed operations.
10164   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
10165       isTypeLegal(MVT::v2f16)) {
10166     SDLoc SL(N);
10167     SDValue NewElts[2];
10168     SDValue Lo = N0.getOperand(0);
10169     SDValue Hi = N0.getOperand(1);
10170     EVT EltVT = Lo.getValueType();
10171 
10172     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
10173       for (unsigned I = 0; I != 2; ++I) {
10174         SDValue Op = N0.getOperand(I);
10175         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
10176           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
10177                                               CFP->getValueAPF());
10178         } else if (Op.isUndef()) {
10179           // Handled below based on what the other operand is.
10180           NewElts[I] = Op;
10181         } else {
10182           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
10183         }
10184       }
10185 
10186       // If one half is undef, and one is constant, prefer a splat vector rather
10187       // than the normal qNaN. If it's a register, prefer 0.0 since that's
10188       // cheaper to use and may be free with a packed operation.
10189       if (NewElts[0].isUndef()) {
10190         if (isa<ConstantFPSDNode>(NewElts[1]))
10191           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
10192             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
10193       }
10194 
10195       if (NewElts[1].isUndef()) {
10196         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
10197           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
10198       }
10199 
10200       return DAG.getBuildVector(VT, SL, NewElts);
10201     }
10202   }
10203 
10204   unsigned SrcOpc = N0.getOpcode();
10205 
10206   // If it's free to do so, push canonicalizes further up the source, which may
10207   // find a canonical source.
10208   //
10209   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
10210   // sNaNs.
10211   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
10212     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
10213     if (CRHS && N0.hasOneUse()) {
10214       SDLoc SL(N);
10215       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
10216                                    N0.getOperand(0));
10217       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
10218       DCI.AddToWorklist(Canon0.getNode());
10219 
10220       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
10221     }
10222   }
10223 
10224   return isCanonicalized(DAG, N0) ? N0 : SDValue();
10225 }
10226 
10227 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
10228   switch (Opc) {
10229   case ISD::FMAXNUM:
10230   case ISD::FMAXNUM_IEEE:
10231     return AMDGPUISD::FMAX3;
10232   case ISD::SMAX:
10233     return AMDGPUISD::SMAX3;
10234   case ISD::UMAX:
10235     return AMDGPUISD::UMAX3;
10236   case ISD::FMINNUM:
10237   case ISD::FMINNUM_IEEE:
10238     return AMDGPUISD::FMIN3;
10239   case ISD::SMIN:
10240     return AMDGPUISD::SMIN3;
10241   case ISD::UMIN:
10242     return AMDGPUISD::UMIN3;
10243   default:
10244     llvm_unreachable("Not a min/max opcode");
10245   }
10246 }
10247 
10248 SDValue SITargetLowering::performIntMed3ImmCombine(
10249   SelectionDAG &DAG, const SDLoc &SL,
10250   SDValue Op0, SDValue Op1, bool Signed) const {
10251   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
10252   if (!K1)
10253     return SDValue();
10254 
10255   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
10256   if (!K0)
10257     return SDValue();
10258 
10259   if (Signed) {
10260     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
10261       return SDValue();
10262   } else {
10263     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
10264       return SDValue();
10265   }
10266 
10267   EVT VT = K0->getValueType(0);
10268   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
10269   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
10270     return DAG.getNode(Med3Opc, SL, VT,
10271                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
10272   }
10273 
10274   // If there isn't a 16-bit med3 operation, convert to 32-bit.
10275   if (VT == MVT::i16) {
10276     MVT NVT = MVT::i32;
10277     unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10278 
10279     SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
10280     SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
10281     SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
10282 
10283     SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
10284     return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
10285   }
10286 
10287   return SDValue();
10288 }
10289 
10290 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
10291   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
10292     return C;
10293 
10294   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
10295     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
10296       return C;
10297   }
10298 
10299   return nullptr;
10300 }
10301 
10302 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
10303                                                   const SDLoc &SL,
10304                                                   SDValue Op0,
10305                                                   SDValue Op1) const {
10306   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
10307   if (!K1)
10308     return SDValue();
10309 
10310   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
10311   if (!K0)
10312     return SDValue();
10313 
10314   // Ordered >= (although NaN inputs should have folded away by now).
10315   if (K0->getValueAPF() > K1->getValueAPF())
10316     return SDValue();
10317 
10318   const MachineFunction &MF = DAG.getMachineFunction();
10319   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10320 
10321   // TODO: Check IEEE bit enabled?
10322   EVT VT = Op0.getValueType();
10323   if (Info->getMode().DX10Clamp) {
10324     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
10325     // hardware fmed3 behavior converting to a min.
10326     // FIXME: Should this be allowing -0.0?
10327     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
10328       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
10329   }
10330 
10331   // med3 for f16 is only available on gfx9+, and not available for v2f16.
10332   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
10333     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
10334     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
10335     // then give the other result, which is different from med3 with a NaN
10336     // input.
10337     SDValue Var = Op0.getOperand(0);
10338     if (!DAG.isKnownNeverSNaN(Var))
10339       return SDValue();
10340 
10341     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10342 
10343     if ((!K0->hasOneUse() ||
10344          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
10345         (!K1->hasOneUse() ||
10346          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
10347       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
10348                          Var, SDValue(K0, 0), SDValue(K1, 0));
10349     }
10350   }
10351 
10352   return SDValue();
10353 }
10354 
10355 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
10356                                                DAGCombinerInfo &DCI) const {
10357   SelectionDAG &DAG = DCI.DAG;
10358 
10359   EVT VT = N->getValueType(0);
10360   unsigned Opc = N->getOpcode();
10361   SDValue Op0 = N->getOperand(0);
10362   SDValue Op1 = N->getOperand(1);
10363 
10364   // Only do this if the inner op has one use since this will just increases
10365   // register pressure for no benefit.
10366 
10367   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
10368       !VT.isVector() &&
10369       (VT == MVT::i32 || VT == MVT::f32 ||
10370        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
10371     // max(max(a, b), c) -> max3(a, b, c)
10372     // min(min(a, b), c) -> min3(a, b, c)
10373     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
10374       SDLoc DL(N);
10375       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10376                          DL,
10377                          N->getValueType(0),
10378                          Op0.getOperand(0),
10379                          Op0.getOperand(1),
10380                          Op1);
10381     }
10382 
10383     // Try commuted.
10384     // max(a, max(b, c)) -> max3(a, b, c)
10385     // min(a, min(b, c)) -> min3(a, b, c)
10386     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
10387       SDLoc DL(N);
10388       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10389                          DL,
10390                          N->getValueType(0),
10391                          Op0,
10392                          Op1.getOperand(0),
10393                          Op1.getOperand(1));
10394     }
10395   }
10396 
10397   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
10398   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
10399     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
10400       return Med3;
10401   }
10402 
10403   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
10404     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
10405       return Med3;
10406   }
10407 
10408   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
10409   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
10410        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
10411        (Opc == AMDGPUISD::FMIN_LEGACY &&
10412         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
10413       (VT == MVT::f32 || VT == MVT::f64 ||
10414        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
10415        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
10416       Op0.hasOneUse()) {
10417     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
10418       return Res;
10419   }
10420 
10421   return SDValue();
10422 }
10423 
10424 static bool isClampZeroToOne(SDValue A, SDValue B) {
10425   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
10426     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
10427       // FIXME: Should this be allowing -0.0?
10428       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
10429              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
10430     }
10431   }
10432 
10433   return false;
10434 }
10435 
10436 // FIXME: Should only worry about snans for version with chain.
10437 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
10438                                               DAGCombinerInfo &DCI) const {
10439   EVT VT = N->getValueType(0);
10440   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
10441   // NaNs. With a NaN input, the order of the operands may change the result.
10442 
10443   SelectionDAG &DAG = DCI.DAG;
10444   SDLoc SL(N);
10445 
10446   SDValue Src0 = N->getOperand(0);
10447   SDValue Src1 = N->getOperand(1);
10448   SDValue Src2 = N->getOperand(2);
10449 
10450   if (isClampZeroToOne(Src0, Src1)) {
10451     // const_a, const_b, x -> clamp is safe in all cases including signaling
10452     // nans.
10453     // FIXME: Should this be allowing -0.0?
10454     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
10455   }
10456 
10457   const MachineFunction &MF = DAG.getMachineFunction();
10458   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10459 
10460   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
10461   // handling no dx10-clamp?
10462   if (Info->getMode().DX10Clamp) {
10463     // If NaNs is clamped to 0, we are free to reorder the inputs.
10464 
10465     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10466       std::swap(Src0, Src1);
10467 
10468     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
10469       std::swap(Src1, Src2);
10470 
10471     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10472       std::swap(Src0, Src1);
10473 
10474     if (isClampZeroToOne(Src1, Src2))
10475       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
10476   }
10477 
10478   return SDValue();
10479 }
10480 
10481 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
10482                                                  DAGCombinerInfo &DCI) const {
10483   SDValue Src0 = N->getOperand(0);
10484   SDValue Src1 = N->getOperand(1);
10485   if (Src0.isUndef() && Src1.isUndef())
10486     return DCI.DAG.getUNDEF(N->getValueType(0));
10487   return SDValue();
10488 }
10489 
10490 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10491 // expanded into a set of cmp/select instructions.
10492 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10493                                                 unsigned NumElem,
10494                                                 bool IsDivergentIdx,
10495                                                 const GCNSubtarget *Subtarget) {
10496   if (UseDivergentRegisterIndexing)
10497     return false;
10498 
10499   unsigned VecSize = EltSize * NumElem;
10500 
10501   // Sub-dword vectors of size 2 dword or less have better implementation.
10502   if (VecSize <= 64 && EltSize < 32)
10503     return false;
10504 
10505   // Always expand the rest of sub-dword instructions, otherwise it will be
10506   // lowered via memory.
10507   if (EltSize < 32)
10508     return true;
10509 
10510   // Always do this if var-idx is divergent, otherwise it will become a loop.
10511   if (IsDivergentIdx)
10512     return true;
10513 
10514   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10515   unsigned NumInsts = NumElem /* Number of compares */ +
10516                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10517 
10518   // On some architectures (GFX9) movrel is not available and it's better
10519   // to expand.
10520   if (!Subtarget->hasMovrel())
10521     return NumInsts <= 16;
10522 
10523   // If movrel is available, use it instead of expanding for vector of 8
10524   // elements.
10525   return NumInsts <= 15;
10526 }
10527 
10528 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const {
10529   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10530   if (isa<ConstantSDNode>(Idx))
10531     return false;
10532 
10533   SDValue Vec = N->getOperand(0);
10534   EVT VecVT = Vec.getValueType();
10535   EVT EltVT = VecVT.getVectorElementType();
10536   unsigned EltSize = EltVT.getSizeInBits();
10537   unsigned NumElem = VecVT.getVectorNumElements();
10538 
10539   return SITargetLowering::shouldExpandVectorDynExt(
10540       EltSize, NumElem, Idx->isDivergent(), getSubtarget());
10541 }
10542 
10543 SDValue SITargetLowering::performExtractVectorEltCombine(
10544   SDNode *N, DAGCombinerInfo &DCI) const {
10545   SDValue Vec = N->getOperand(0);
10546   SelectionDAG &DAG = DCI.DAG;
10547 
10548   EVT VecVT = Vec.getValueType();
10549   EVT EltVT = VecVT.getVectorElementType();
10550 
10551   if ((Vec.getOpcode() == ISD::FNEG ||
10552        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10553     SDLoc SL(N);
10554     EVT EltVT = N->getValueType(0);
10555     SDValue Idx = N->getOperand(1);
10556     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10557                               Vec.getOperand(0), Idx);
10558     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10559   }
10560 
10561   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10562   //    =>
10563   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10564   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10565   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10566   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10567     SDLoc SL(N);
10568     EVT EltVT = N->getValueType(0);
10569     SDValue Idx = N->getOperand(1);
10570     unsigned Opc = Vec.getOpcode();
10571 
10572     switch(Opc) {
10573     default:
10574       break;
10575       // TODO: Support other binary operations.
10576     case ISD::FADD:
10577     case ISD::FSUB:
10578     case ISD::FMUL:
10579     case ISD::ADD:
10580     case ISD::UMIN:
10581     case ISD::UMAX:
10582     case ISD::SMIN:
10583     case ISD::SMAX:
10584     case ISD::FMAXNUM:
10585     case ISD::FMINNUM:
10586     case ISD::FMAXNUM_IEEE:
10587     case ISD::FMINNUM_IEEE: {
10588       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10589                                  Vec.getOperand(0), Idx);
10590       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10591                                  Vec.getOperand(1), Idx);
10592 
10593       DCI.AddToWorklist(Elt0.getNode());
10594       DCI.AddToWorklist(Elt1.getNode());
10595       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10596     }
10597     }
10598   }
10599 
10600   unsigned VecSize = VecVT.getSizeInBits();
10601   unsigned EltSize = EltVT.getSizeInBits();
10602 
10603   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10604   if (shouldExpandVectorDynExt(N)) {
10605     SDLoc SL(N);
10606     SDValue Idx = N->getOperand(1);
10607     SDValue V;
10608     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10609       SDValue IC = DAG.getVectorIdxConstant(I, SL);
10610       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10611       if (I == 0)
10612         V = Elt;
10613       else
10614         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10615     }
10616     return V;
10617   }
10618 
10619   if (!DCI.isBeforeLegalize())
10620     return SDValue();
10621 
10622   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10623   // elements. This exposes more load reduction opportunities by replacing
10624   // multiple small extract_vector_elements with a single 32-bit extract.
10625   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10626   if (isa<MemSDNode>(Vec) &&
10627       EltSize <= 16 &&
10628       EltVT.isByteSized() &&
10629       VecSize > 32 &&
10630       VecSize % 32 == 0 &&
10631       Idx) {
10632     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10633 
10634     unsigned BitIndex = Idx->getZExtValue() * EltSize;
10635     unsigned EltIdx = BitIndex / 32;
10636     unsigned LeftoverBitIdx = BitIndex % 32;
10637     SDLoc SL(N);
10638 
10639     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10640     DCI.AddToWorklist(Cast.getNode());
10641 
10642     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10643                               DAG.getConstant(EltIdx, SL, MVT::i32));
10644     DCI.AddToWorklist(Elt.getNode());
10645     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10646                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10647     DCI.AddToWorklist(Srl.getNode());
10648 
10649     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10650     DCI.AddToWorklist(Trunc.getNode());
10651     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10652   }
10653 
10654   return SDValue();
10655 }
10656 
10657 SDValue
10658 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10659                                                 DAGCombinerInfo &DCI) const {
10660   SDValue Vec = N->getOperand(0);
10661   SDValue Idx = N->getOperand(2);
10662   EVT VecVT = Vec.getValueType();
10663   EVT EltVT = VecVT.getVectorElementType();
10664 
10665   // INSERT_VECTOR_ELT (<n x e>, var-idx)
10666   // => BUILD_VECTOR n x select (e, const-idx)
10667   if (!shouldExpandVectorDynExt(N))
10668     return SDValue();
10669 
10670   SelectionDAG &DAG = DCI.DAG;
10671   SDLoc SL(N);
10672   SDValue Ins = N->getOperand(1);
10673   EVT IdxVT = Idx.getValueType();
10674 
10675   SmallVector<SDValue, 16> Ops;
10676   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10677     SDValue IC = DAG.getConstant(I, SL, IdxVT);
10678     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10679     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10680     Ops.push_back(V);
10681   }
10682 
10683   return DAG.getBuildVector(VecVT, SL, Ops);
10684 }
10685 
10686 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10687                                           const SDNode *N0,
10688                                           const SDNode *N1) const {
10689   EVT VT = N0->getValueType(0);
10690 
10691   // Only do this if we are not trying to support denormals. v_mad_f32 does not
10692   // support denormals ever.
10693   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10694        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10695         getSubtarget()->hasMadF16())) &&
10696        isOperationLegal(ISD::FMAD, VT))
10697     return ISD::FMAD;
10698 
10699   const TargetOptions &Options = DAG.getTarget().Options;
10700   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10701        (N0->getFlags().hasAllowContract() &&
10702         N1->getFlags().hasAllowContract())) &&
10703       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10704     return ISD::FMA;
10705   }
10706 
10707   return 0;
10708 }
10709 
10710 // For a reassociatable opcode perform:
10711 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10712 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10713                                                SelectionDAG &DAG) const {
10714   EVT VT = N->getValueType(0);
10715   if (VT != MVT::i32 && VT != MVT::i64)
10716     return SDValue();
10717 
10718   if (DAG.isBaseWithConstantOffset(SDValue(N, 0)))
10719     return SDValue();
10720 
10721   unsigned Opc = N->getOpcode();
10722   SDValue Op0 = N->getOperand(0);
10723   SDValue Op1 = N->getOperand(1);
10724 
10725   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10726     return SDValue();
10727 
10728   if (Op0->isDivergent())
10729     std::swap(Op0, Op1);
10730 
10731   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10732     return SDValue();
10733 
10734   SDValue Op2 = Op1.getOperand(1);
10735   Op1 = Op1.getOperand(0);
10736   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10737     return SDValue();
10738 
10739   if (Op1->isDivergent())
10740     std::swap(Op1, Op2);
10741 
10742   SDLoc SL(N);
10743   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10744   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10745 }
10746 
10747 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10748                            EVT VT,
10749                            SDValue N0, SDValue N1, SDValue N2,
10750                            bool Signed) {
10751   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10752   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10753   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10754   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10755 }
10756 
10757 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high
10758 // multiplies, if any.
10759 //
10760 // Full 64-bit multiplies that feed into an addition are lowered here instead
10761 // of using the generic expansion. The generic expansion ends up with
10762 // a tree of ADD nodes that prevents us from using the "add" part of the
10763 // MAD instruction. The expansion produced here results in a chain of ADDs
10764 // instead of a tree.
10765 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N,
10766                                             DAGCombinerInfo &DCI) const {
10767   assert(N->getOpcode() == ISD::ADD);
10768 
10769   SelectionDAG &DAG = DCI.DAG;
10770   EVT VT = N->getValueType(0);
10771   SDLoc SL(N);
10772   SDValue LHS = N->getOperand(0);
10773   SDValue RHS = N->getOperand(1);
10774 
10775   if (VT.isVector())
10776     return SDValue();
10777 
10778   // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall
10779   // result in scalar registers for uniform values.
10780   if (!N->isDivergent() && Subtarget->hasSMulHi())
10781     return SDValue();
10782 
10783   unsigned NumBits = VT.getScalarSizeInBits();
10784   if (NumBits <= 32 || NumBits > 64)
10785     return SDValue();
10786 
10787   if (LHS.getOpcode() != ISD::MUL) {
10788     assert(RHS.getOpcode() == ISD::MUL);
10789     std::swap(LHS, RHS);
10790   }
10791 
10792   // Avoid the fold if it would unduly increase the number of multiplies due to
10793   // multiple uses, except on hardware with full-rate multiply-add (which is
10794   // part of full-rate 64-bit ops).
10795   if (!Subtarget->hasFullRate64Ops()) {
10796     unsigned NumUsers = 0;
10797     for (SDNode *Use : LHS->uses()) {
10798       // There is a use that does not feed into addition, so the multiply can't
10799       // be removed. We prefer MUL + ADD + ADDC over MAD + MUL.
10800       if (Use->getOpcode() != ISD::ADD)
10801         return SDValue();
10802 
10803       // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer
10804       // MUL + 3xADD + 3xADDC over 3xMAD.
10805       ++NumUsers;
10806       if (NumUsers >= 3)
10807         return SDValue();
10808     }
10809   }
10810 
10811   SDValue MulLHS = LHS.getOperand(0);
10812   SDValue MulRHS = LHS.getOperand(1);
10813   SDValue AddRHS = RHS;
10814 
10815   // Always check whether operands are small unsigned values, since that
10816   // knowledge is useful in more cases. Check for small signed values only if
10817   // doing so can unlock a shorter code sequence.
10818   bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32;
10819   bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32;
10820 
10821   bool MulSignedLo = false;
10822   if (!MulLHSUnsigned32 || !MulRHSUnsigned32) {
10823     MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 &&
10824                   numBitsSigned(MulRHS, DAG) <= 32;
10825   }
10826 
10827   // The operands and final result all have the same number of bits. If
10828   // operands need to be extended, they can be extended with garbage. The
10829   // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is
10830   // truncated away in the end.
10831   if (VT != MVT::i64) {
10832     MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS);
10833     MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS);
10834     AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS);
10835   }
10836 
10837   // The basic code generated is conceptually straightforward. Pseudo code:
10838   //
10839   //   accum = mad_64_32 lhs.lo, rhs.lo, accum
10840   //   accum.hi = add (mul lhs.hi, rhs.lo), accum.hi
10841   //   accum.hi = add (mul lhs.lo, rhs.hi), accum.hi
10842   //
10843   // The second and third lines are optional, depending on whether the factors
10844   // are {sign,zero}-extended or not.
10845   //
10846   // The actual DAG is noisier than the pseudo code, but only due to
10847   // instructions that disassemble values into low and high parts, and
10848   // assemble the final result.
10849   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
10850   SDValue One = DAG.getConstant(1, SL, MVT::i32);
10851 
10852   auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS);
10853   auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS);
10854   SDValue Accum =
10855       getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo);
10856 
10857   if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) {
10858     auto AccumLo = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, Zero);
10859     auto AccumHi = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, One);
10860 
10861     if (!MulLHSUnsigned32) {
10862       auto MulLHSHi =
10863           DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One);
10864       SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo);
10865       AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
10866     }
10867 
10868     if (!MulRHSUnsigned32) {
10869       auto MulRHSHi =
10870           DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One);
10871       SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi);
10872       AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
10873     }
10874 
10875     Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi});
10876     Accum = DAG.getBitcast(MVT::i64, Accum);
10877   }
10878 
10879   if (VT != MVT::i64)
10880     Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum);
10881   return Accum;
10882 }
10883 
10884 SDValue SITargetLowering::performAddCombine(SDNode *N,
10885                                             DAGCombinerInfo &DCI) const {
10886   SelectionDAG &DAG = DCI.DAG;
10887   EVT VT = N->getValueType(0);
10888   SDLoc SL(N);
10889   SDValue LHS = N->getOperand(0);
10890   SDValue RHS = N->getOperand(1);
10891 
10892   if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) {
10893     if (Subtarget->hasMad64_32()) {
10894       if (SDValue Folded = tryFoldToMad64_32(N, DCI))
10895         return Folded;
10896     }
10897 
10898     return SDValue();
10899   }
10900 
10901   if (SDValue V = reassociateScalarOps(N, DAG)) {
10902     return V;
10903   }
10904 
10905   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10906     return SDValue();
10907 
10908   // add x, zext (setcc) => addcarry x, 0, setcc
10909   // add x, sext (setcc) => subcarry x, 0, setcc
10910   unsigned Opc = LHS.getOpcode();
10911   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10912       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10913     std::swap(RHS, LHS);
10914 
10915   Opc = RHS.getOpcode();
10916   switch (Opc) {
10917   default: break;
10918   case ISD::ZERO_EXTEND:
10919   case ISD::SIGN_EXTEND:
10920   case ISD::ANY_EXTEND: {
10921     auto Cond = RHS.getOperand(0);
10922     // If this won't be a real VOPC output, we would still need to insert an
10923     // extra instruction anyway.
10924     if (!isBoolSGPR(Cond))
10925       break;
10926     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10927     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10928     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10929     return DAG.getNode(Opc, SL, VTList, Args);
10930   }
10931   case ISD::ADDCARRY: {
10932     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10933     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10934     if (!C || C->getZExtValue() != 0) break;
10935     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10936     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10937   }
10938   }
10939   return SDValue();
10940 }
10941 
10942 SDValue SITargetLowering::performSubCombine(SDNode *N,
10943                                             DAGCombinerInfo &DCI) const {
10944   SelectionDAG &DAG = DCI.DAG;
10945   EVT VT = N->getValueType(0);
10946 
10947   if (VT != MVT::i32)
10948     return SDValue();
10949 
10950   SDLoc SL(N);
10951   SDValue LHS = N->getOperand(0);
10952   SDValue RHS = N->getOperand(1);
10953 
10954   // sub x, zext (setcc) => subcarry x, 0, setcc
10955   // sub x, sext (setcc) => addcarry x, 0, setcc
10956   unsigned Opc = RHS.getOpcode();
10957   switch (Opc) {
10958   default: break;
10959   case ISD::ZERO_EXTEND:
10960   case ISD::SIGN_EXTEND:
10961   case ISD::ANY_EXTEND: {
10962     auto Cond = RHS.getOperand(0);
10963     // If this won't be a real VOPC output, we would still need to insert an
10964     // extra instruction anyway.
10965     if (!isBoolSGPR(Cond))
10966       break;
10967     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10968     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10969     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10970     return DAG.getNode(Opc, SL, VTList, Args);
10971   }
10972   }
10973 
10974   if (LHS.getOpcode() == ISD::SUBCARRY) {
10975     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10976     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10977     if (!C || !C->isZero())
10978       return SDValue();
10979     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10980     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10981   }
10982   return SDValue();
10983 }
10984 
10985 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10986   DAGCombinerInfo &DCI) const {
10987 
10988   if (N->getValueType(0) != MVT::i32)
10989     return SDValue();
10990 
10991   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10992   if (!C || C->getZExtValue() != 0)
10993     return SDValue();
10994 
10995   SelectionDAG &DAG = DCI.DAG;
10996   SDValue LHS = N->getOperand(0);
10997 
10998   // addcarry (add x, y), 0, cc => addcarry x, y, cc
10999   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
11000   unsigned LHSOpc = LHS.getOpcode();
11001   unsigned Opc = N->getOpcode();
11002   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
11003       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
11004     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
11005     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
11006   }
11007   return SDValue();
11008 }
11009 
11010 SDValue SITargetLowering::performFAddCombine(SDNode *N,
11011                                              DAGCombinerInfo &DCI) const {
11012   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
11013     return SDValue();
11014 
11015   SelectionDAG &DAG = DCI.DAG;
11016   EVT VT = N->getValueType(0);
11017 
11018   SDLoc SL(N);
11019   SDValue LHS = N->getOperand(0);
11020   SDValue RHS = N->getOperand(1);
11021 
11022   // These should really be instruction patterns, but writing patterns with
11023   // source modifiers is a pain.
11024 
11025   // fadd (fadd (a, a), b) -> mad 2.0, a, b
11026   if (LHS.getOpcode() == ISD::FADD) {
11027     SDValue A = LHS.getOperand(0);
11028     if (A == LHS.getOperand(1)) {
11029       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
11030       if (FusedOp != 0) {
11031         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
11032         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
11033       }
11034     }
11035   }
11036 
11037   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
11038   if (RHS.getOpcode() == ISD::FADD) {
11039     SDValue A = RHS.getOperand(0);
11040     if (A == RHS.getOperand(1)) {
11041       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
11042       if (FusedOp != 0) {
11043         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
11044         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
11045       }
11046     }
11047   }
11048 
11049   return SDValue();
11050 }
11051 
11052 SDValue SITargetLowering::performFSubCombine(SDNode *N,
11053                                              DAGCombinerInfo &DCI) const {
11054   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
11055     return SDValue();
11056 
11057   SelectionDAG &DAG = DCI.DAG;
11058   SDLoc SL(N);
11059   EVT VT = N->getValueType(0);
11060   assert(!VT.isVector());
11061 
11062   // Try to get the fneg to fold into the source modifier. This undoes generic
11063   // DAG combines and folds them into the mad.
11064   //
11065   // Only do this if we are not trying to support denormals. v_mad_f32 does
11066   // not support denormals ever.
11067   SDValue LHS = N->getOperand(0);
11068   SDValue RHS = N->getOperand(1);
11069   if (LHS.getOpcode() == ISD::FADD) {
11070     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
11071     SDValue A = LHS.getOperand(0);
11072     if (A == LHS.getOperand(1)) {
11073       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
11074       if (FusedOp != 0){
11075         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
11076         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
11077 
11078         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
11079       }
11080     }
11081   }
11082 
11083   if (RHS.getOpcode() == ISD::FADD) {
11084     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
11085 
11086     SDValue A = RHS.getOperand(0);
11087     if (A == RHS.getOperand(1)) {
11088       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
11089       if (FusedOp != 0){
11090         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
11091         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
11092       }
11093     }
11094   }
11095 
11096   return SDValue();
11097 }
11098 
11099 SDValue SITargetLowering::performFMACombine(SDNode *N,
11100                                             DAGCombinerInfo &DCI) const {
11101   SelectionDAG &DAG = DCI.DAG;
11102   EVT VT = N->getValueType(0);
11103   SDLoc SL(N);
11104 
11105   if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
11106     return SDValue();
11107 
11108   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
11109   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
11110   SDValue Op1 = N->getOperand(0);
11111   SDValue Op2 = N->getOperand(1);
11112   SDValue FMA = N->getOperand(2);
11113 
11114   if (FMA.getOpcode() != ISD::FMA ||
11115       Op1.getOpcode() != ISD::FP_EXTEND ||
11116       Op2.getOpcode() != ISD::FP_EXTEND)
11117     return SDValue();
11118 
11119   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
11120   // regardless of the denorm mode setting. Therefore,
11121   // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2.
11122   const TargetOptions &Options = DAG.getTarget().Options;
11123   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
11124       (N->getFlags().hasAllowContract() &&
11125        FMA->getFlags().hasAllowContract())) {
11126     Op1 = Op1.getOperand(0);
11127     Op2 = Op2.getOperand(0);
11128     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11129         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11130       return SDValue();
11131 
11132     SDValue Vec1 = Op1.getOperand(0);
11133     SDValue Idx1 = Op1.getOperand(1);
11134     SDValue Vec2 = Op2.getOperand(0);
11135 
11136     SDValue FMAOp1 = FMA.getOperand(0);
11137     SDValue FMAOp2 = FMA.getOperand(1);
11138     SDValue FMAAcc = FMA.getOperand(2);
11139 
11140     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
11141         FMAOp2.getOpcode() != ISD::FP_EXTEND)
11142       return SDValue();
11143 
11144     FMAOp1 = FMAOp1.getOperand(0);
11145     FMAOp2 = FMAOp2.getOperand(0);
11146     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11147         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11148       return SDValue();
11149 
11150     SDValue Vec3 = FMAOp1.getOperand(0);
11151     SDValue Vec4 = FMAOp2.getOperand(0);
11152     SDValue Idx2 = FMAOp1.getOperand(1);
11153 
11154     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
11155         // Idx1 and Idx2 cannot be the same.
11156         Idx1 == Idx2)
11157       return SDValue();
11158 
11159     if (Vec1 == Vec2 || Vec3 == Vec4)
11160       return SDValue();
11161 
11162     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
11163       return SDValue();
11164 
11165     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
11166         (Vec1 == Vec4 && Vec2 == Vec3)) {
11167       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
11168                          DAG.getTargetConstant(0, SL, MVT::i1));
11169     }
11170   }
11171   return SDValue();
11172 }
11173 
11174 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
11175                                               DAGCombinerInfo &DCI) const {
11176   SelectionDAG &DAG = DCI.DAG;
11177   SDLoc SL(N);
11178 
11179   SDValue LHS = N->getOperand(0);
11180   SDValue RHS = N->getOperand(1);
11181   EVT VT = LHS.getValueType();
11182   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11183 
11184   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
11185   if (!CRHS) {
11186     CRHS = dyn_cast<ConstantSDNode>(LHS);
11187     if (CRHS) {
11188       std::swap(LHS, RHS);
11189       CC = getSetCCSwappedOperands(CC);
11190     }
11191   }
11192 
11193   if (CRHS) {
11194     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
11195         isBoolSGPR(LHS.getOperand(0))) {
11196       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
11197       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
11198       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
11199       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
11200       if ((CRHS->isAllOnes() &&
11201            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
11202           (CRHS->isZero() &&
11203            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
11204         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
11205                            DAG.getConstant(-1, SL, MVT::i1));
11206       if ((CRHS->isAllOnes() &&
11207            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
11208           (CRHS->isZero() &&
11209            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
11210         return LHS.getOperand(0);
11211     }
11212 
11213     const APInt &CRHSVal = CRHS->getAPIntValue();
11214     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
11215         LHS.getOpcode() == ISD::SELECT &&
11216         isa<ConstantSDNode>(LHS.getOperand(1)) &&
11217         isa<ConstantSDNode>(LHS.getOperand(2)) &&
11218         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
11219         isBoolSGPR(LHS.getOperand(0))) {
11220       // Given CT != FT:
11221       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
11222       // setcc (select cc, CT, CF), CF, ne => cc
11223       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
11224       // setcc (select cc, CT, CF), CT, eq => cc
11225       const APInt &CT = LHS.getConstantOperandAPInt(1);
11226       const APInt &CF = LHS.getConstantOperandAPInt(2);
11227 
11228       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
11229           (CT == CRHSVal && CC == ISD::SETNE))
11230         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
11231                            DAG.getConstant(-1, SL, MVT::i1));
11232       if ((CF == CRHSVal && CC == ISD::SETNE) ||
11233           (CT == CRHSVal && CC == ISD::SETEQ))
11234         return LHS.getOperand(0);
11235     }
11236   }
11237 
11238   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
11239                                            VT != MVT::f16))
11240     return SDValue();
11241 
11242   // Match isinf/isfinite pattern
11243   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
11244   // (fcmp one (fabs x), inf) -> (fp_class x,
11245   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
11246   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
11247     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
11248     if (!CRHS)
11249       return SDValue();
11250 
11251     const APFloat &APF = CRHS->getValueAPF();
11252     if (APF.isInfinity() && !APF.isNegative()) {
11253       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
11254                                  SIInstrFlags::N_INFINITY;
11255       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
11256                                     SIInstrFlags::P_ZERO |
11257                                     SIInstrFlags::N_NORMAL |
11258                                     SIInstrFlags::P_NORMAL |
11259                                     SIInstrFlags::N_SUBNORMAL |
11260                                     SIInstrFlags::P_SUBNORMAL;
11261       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
11262       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
11263                          DAG.getConstant(Mask, SL, MVT::i32));
11264     }
11265   }
11266 
11267   return SDValue();
11268 }
11269 
11270 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
11271                                                      DAGCombinerInfo &DCI) const {
11272   SelectionDAG &DAG = DCI.DAG;
11273   SDLoc SL(N);
11274   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
11275 
11276   SDValue Src = N->getOperand(0);
11277   SDValue Shift = N->getOperand(0);
11278 
11279   // TODO: Extend type shouldn't matter (assuming legal types).
11280   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
11281     Shift = Shift.getOperand(0);
11282 
11283   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
11284     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
11285     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
11286     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
11287     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
11288     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
11289     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
11290       SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0),
11291                                  SDLoc(Shift.getOperand(0)), MVT::i32);
11292 
11293       unsigned ShiftOffset = 8 * Offset;
11294       if (Shift.getOpcode() == ISD::SHL)
11295         ShiftOffset -= C->getZExtValue();
11296       else
11297         ShiftOffset += C->getZExtValue();
11298 
11299       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
11300         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
11301                            MVT::f32, Shifted);
11302       }
11303     }
11304   }
11305 
11306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11307   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
11308   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
11309     // We simplified Src. If this node is not dead, visit it again so it is
11310     // folded properly.
11311     if (N->getOpcode() != ISD::DELETED_NODE)
11312       DCI.AddToWorklist(N);
11313     return SDValue(N, 0);
11314   }
11315 
11316   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
11317   if (SDValue DemandedSrc =
11318           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
11319     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
11320 
11321   return SDValue();
11322 }
11323 
11324 SDValue SITargetLowering::performClampCombine(SDNode *N,
11325                                               DAGCombinerInfo &DCI) const {
11326   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
11327   if (!CSrc)
11328     return SDValue();
11329 
11330   const MachineFunction &MF = DCI.DAG.getMachineFunction();
11331   const APFloat &F = CSrc->getValueAPF();
11332   APFloat Zero = APFloat::getZero(F.getSemantics());
11333   if (F < Zero ||
11334       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
11335     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
11336   }
11337 
11338   APFloat One(F.getSemantics(), "1.0");
11339   if (F > One)
11340     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
11341 
11342   return SDValue(CSrc, 0);
11343 }
11344 
11345 
11346 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
11347                                             DAGCombinerInfo &DCI) const {
11348   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
11349     return SDValue();
11350   switch (N->getOpcode()) {
11351   case ISD::ADD:
11352     return performAddCombine(N, DCI);
11353   case ISD::SUB:
11354     return performSubCombine(N, DCI);
11355   case ISD::ADDCARRY:
11356   case ISD::SUBCARRY:
11357     return performAddCarrySubCarryCombine(N, DCI);
11358   case ISD::FADD:
11359     return performFAddCombine(N, DCI);
11360   case ISD::FSUB:
11361     return performFSubCombine(N, DCI);
11362   case ISD::SETCC:
11363     return performSetCCCombine(N, DCI);
11364   case ISD::FMAXNUM:
11365   case ISD::FMINNUM:
11366   case ISD::FMAXNUM_IEEE:
11367   case ISD::FMINNUM_IEEE:
11368   case ISD::SMAX:
11369   case ISD::SMIN:
11370   case ISD::UMAX:
11371   case ISD::UMIN:
11372   case AMDGPUISD::FMIN_LEGACY:
11373   case AMDGPUISD::FMAX_LEGACY:
11374     return performMinMaxCombine(N, DCI);
11375   case ISD::FMA:
11376     return performFMACombine(N, DCI);
11377   case ISD::AND:
11378     return performAndCombine(N, DCI);
11379   case ISD::OR:
11380     return performOrCombine(N, DCI);
11381   case ISD::XOR:
11382     return performXorCombine(N, DCI);
11383   case ISD::ZERO_EXTEND:
11384     return performZeroExtendCombine(N, DCI);
11385   case ISD::SIGN_EXTEND_INREG:
11386     return performSignExtendInRegCombine(N , DCI);
11387   case AMDGPUISD::FP_CLASS:
11388     return performClassCombine(N, DCI);
11389   case ISD::FCANONICALIZE:
11390     return performFCanonicalizeCombine(N, DCI);
11391   case AMDGPUISD::RCP:
11392     return performRcpCombine(N, DCI);
11393   case AMDGPUISD::FRACT:
11394   case AMDGPUISD::RSQ:
11395   case AMDGPUISD::RCP_LEGACY:
11396   case AMDGPUISD::RCP_IFLAG:
11397   case AMDGPUISD::RSQ_CLAMP:
11398   case AMDGPUISD::LDEXP: {
11399     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
11400     SDValue Src = N->getOperand(0);
11401     if (Src.isUndef())
11402       return Src;
11403     break;
11404   }
11405   case ISD::SINT_TO_FP:
11406   case ISD::UINT_TO_FP:
11407     return performUCharToFloatCombine(N, DCI);
11408   case AMDGPUISD::CVT_F32_UBYTE0:
11409   case AMDGPUISD::CVT_F32_UBYTE1:
11410   case AMDGPUISD::CVT_F32_UBYTE2:
11411   case AMDGPUISD::CVT_F32_UBYTE3:
11412     return performCvtF32UByteNCombine(N, DCI);
11413   case AMDGPUISD::FMED3:
11414     return performFMed3Combine(N, DCI);
11415   case AMDGPUISD::CVT_PKRTZ_F16_F32:
11416     return performCvtPkRTZCombine(N, DCI);
11417   case AMDGPUISD::CLAMP:
11418     return performClampCombine(N, DCI);
11419   case ISD::SCALAR_TO_VECTOR: {
11420     SelectionDAG &DAG = DCI.DAG;
11421     EVT VT = N->getValueType(0);
11422 
11423     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
11424     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
11425       SDLoc SL(N);
11426       SDValue Src = N->getOperand(0);
11427       EVT EltVT = Src.getValueType();
11428       if (EltVT == MVT::f16)
11429         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
11430 
11431       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
11432       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
11433     }
11434 
11435     break;
11436   }
11437   case ISD::EXTRACT_VECTOR_ELT:
11438     return performExtractVectorEltCombine(N, DCI);
11439   case ISD::INSERT_VECTOR_ELT:
11440     return performInsertVectorEltCombine(N, DCI);
11441   case ISD::LOAD: {
11442     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
11443       return Widended;
11444     LLVM_FALLTHROUGH;
11445   }
11446   default: {
11447     if (!DCI.isBeforeLegalize()) {
11448       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
11449         return performMemSDNodeCombine(MemNode, DCI);
11450     }
11451 
11452     break;
11453   }
11454   }
11455 
11456   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
11457 }
11458 
11459 /// Helper function for adjustWritemask
11460 static unsigned SubIdx2Lane(unsigned Idx) {
11461   switch (Idx) {
11462   default: return ~0u;
11463   case AMDGPU::sub0: return 0;
11464   case AMDGPU::sub1: return 1;
11465   case AMDGPU::sub2: return 2;
11466   case AMDGPU::sub3: return 3;
11467   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
11468   }
11469 }
11470 
11471 /// Adjust the writemask of MIMG instructions
11472 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
11473                                           SelectionDAG &DAG) const {
11474   unsigned Opcode = Node->getMachineOpcode();
11475 
11476   // Subtract 1 because the vdata output is not a MachineSDNode operand.
11477   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
11478   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
11479     return Node; // not implemented for D16
11480 
11481   SDNode *Users[5] = { nullptr };
11482   unsigned Lane = 0;
11483   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
11484   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
11485   unsigned NewDmask = 0;
11486   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
11487   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
11488   bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
11489                   Node->getConstantOperandVal(LWEIdx))
11490                      ? true
11491                      : false;
11492   unsigned TFCLane = 0;
11493   bool HasChain = Node->getNumValues() > 1;
11494 
11495   if (OldDmask == 0) {
11496     // These are folded out, but on the chance it happens don't assert.
11497     return Node;
11498   }
11499 
11500   unsigned OldBitsSet = countPopulation(OldDmask);
11501   // Work out which is the TFE/LWE lane if that is enabled.
11502   if (UsesTFC) {
11503     TFCLane = OldBitsSet;
11504   }
11505 
11506   // Try to figure out the used register components
11507   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
11508        I != E; ++I) {
11509 
11510     // Don't look at users of the chain.
11511     if (I.getUse().getResNo() != 0)
11512       continue;
11513 
11514     // Abort if we can't understand the usage
11515     if (!I->isMachineOpcode() ||
11516         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
11517       return Node;
11518 
11519     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
11520     // Note that subregs are packed, i.e. Lane==0 is the first bit set
11521     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
11522     // set, etc.
11523     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
11524     if (Lane == ~0u)
11525       return Node;
11526 
11527     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
11528     if (UsesTFC && Lane == TFCLane) {
11529       Users[Lane] = *I;
11530     } else {
11531       // Set which texture component corresponds to the lane.
11532       unsigned Comp;
11533       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
11534         Comp = countTrailingZeros(Dmask);
11535         Dmask &= ~(1 << Comp);
11536       }
11537 
11538       // Abort if we have more than one user per component.
11539       if (Users[Lane])
11540         return Node;
11541 
11542       Users[Lane] = *I;
11543       NewDmask |= 1 << Comp;
11544     }
11545   }
11546 
11547   // Don't allow 0 dmask, as hardware assumes one channel enabled.
11548   bool NoChannels = !NewDmask;
11549   if (NoChannels) {
11550     if (!UsesTFC) {
11551       // No uses of the result and not using TFC. Then do nothing.
11552       return Node;
11553     }
11554     // If the original dmask has one channel - then nothing to do
11555     if (OldBitsSet == 1)
11556       return Node;
11557     // Use an arbitrary dmask - required for the instruction to work
11558     NewDmask = 1;
11559   }
11560   // Abort if there's no change
11561   if (NewDmask == OldDmask)
11562     return Node;
11563 
11564   unsigned BitsSet = countPopulation(NewDmask);
11565 
11566   // Check for TFE or LWE - increase the number of channels by one to account
11567   // for the extra return value
11568   // This will need adjustment for D16 if this is also included in
11569   // adjustWriteMask (this function) but at present D16 are excluded.
11570   unsigned NewChannels = BitsSet + UsesTFC;
11571 
11572   int NewOpcode =
11573       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
11574   assert(NewOpcode != -1 &&
11575          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
11576          "failed to find equivalent MIMG op");
11577 
11578   // Adjust the writemask in the node
11579   SmallVector<SDValue, 12> Ops;
11580   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
11581   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
11582   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
11583 
11584   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
11585 
11586   MVT ResultVT = NewChannels == 1 ?
11587     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
11588                            NewChannels == 5 ? 8 : NewChannels);
11589   SDVTList NewVTList = HasChain ?
11590     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
11591 
11592 
11593   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
11594                                               NewVTList, Ops);
11595 
11596   if (HasChain) {
11597     // Update chain.
11598     DAG.setNodeMemRefs(NewNode, Node->memoperands());
11599     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11600   }
11601 
11602   if (NewChannels == 1) {
11603     assert(Node->hasNUsesOfValue(1, 0));
11604     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11605                                       SDLoc(Node), Users[Lane]->getValueType(0),
11606                                       SDValue(NewNode, 0));
11607     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11608     return nullptr;
11609   }
11610 
11611   // Update the users of the node with the new indices
11612   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11613     SDNode *User = Users[i];
11614     if (!User) {
11615       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11616       // Users[0] is still nullptr because channel 0 doesn't really have a use.
11617       if (i || !NoChannels)
11618         continue;
11619     } else {
11620       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11621       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11622     }
11623 
11624     switch (Idx) {
11625     default: break;
11626     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11627     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11628     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11629     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11630     }
11631   }
11632 
11633   DAG.RemoveDeadNode(Node);
11634   return nullptr;
11635 }
11636 
11637 static bool isFrameIndexOp(SDValue Op) {
11638   if (Op.getOpcode() == ISD::AssertZext)
11639     Op = Op.getOperand(0);
11640 
11641   return isa<FrameIndexSDNode>(Op);
11642 }
11643 
11644 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11645 /// with frame index operands.
11646 /// LLVM assumes that inputs are to these instructions are registers.
11647 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11648                                                         SelectionDAG &DAG) const {
11649   if (Node->getOpcode() == ISD::CopyToReg) {
11650     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11651     SDValue SrcVal = Node->getOperand(2);
11652 
11653     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11654     // to try understanding copies to physical registers.
11655     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11656       SDLoc SL(Node);
11657       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11658       SDValue VReg = DAG.getRegister(
11659         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11660 
11661       SDNode *Glued = Node->getGluedNode();
11662       SDValue ToVReg
11663         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11664                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11665       SDValue ToResultReg
11666         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11667                            VReg, ToVReg.getValue(1));
11668       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11669       DAG.RemoveDeadNode(Node);
11670       return ToResultReg.getNode();
11671     }
11672   }
11673 
11674   SmallVector<SDValue, 8> Ops;
11675   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11676     if (!isFrameIndexOp(Node->getOperand(i))) {
11677       Ops.push_back(Node->getOperand(i));
11678       continue;
11679     }
11680 
11681     SDLoc DL(Node);
11682     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11683                                      Node->getOperand(i).getValueType(),
11684                                      Node->getOperand(i)), 0));
11685   }
11686 
11687   return DAG.UpdateNodeOperands(Node, Ops);
11688 }
11689 
11690 /// Fold the instructions after selecting them.
11691 /// Returns null if users were already updated.
11692 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11693                                           SelectionDAG &DAG) const {
11694   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11695   unsigned Opcode = Node->getMachineOpcode();
11696 
11697   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11698       !TII->isGather4(Opcode) &&
11699       AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11700     return adjustWritemask(Node, DAG);
11701   }
11702 
11703   if (Opcode == AMDGPU::INSERT_SUBREG ||
11704       Opcode == AMDGPU::REG_SEQUENCE) {
11705     legalizeTargetIndependentNode(Node, DAG);
11706     return Node;
11707   }
11708 
11709   switch (Opcode) {
11710   case AMDGPU::V_DIV_SCALE_F32_e64:
11711   case AMDGPU::V_DIV_SCALE_F64_e64: {
11712     // Satisfy the operand register constraint when one of the inputs is
11713     // undefined. Ordinarily each undef value will have its own implicit_def of
11714     // a vreg, so force these to use a single register.
11715     SDValue Src0 = Node->getOperand(1);
11716     SDValue Src1 = Node->getOperand(3);
11717     SDValue Src2 = Node->getOperand(5);
11718 
11719     if ((Src0.isMachineOpcode() &&
11720          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11721         (Src0 == Src1 || Src0 == Src2))
11722       break;
11723 
11724     MVT VT = Src0.getValueType().getSimpleVT();
11725     const TargetRegisterClass *RC =
11726         getRegClassFor(VT, Src0.getNode()->isDivergent());
11727 
11728     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11729     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11730 
11731     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11732                                       UndefReg, Src0, SDValue());
11733 
11734     // src0 must be the same register as src1 or src2, even if the value is
11735     // undefined, so make sure we don't violate this constraint.
11736     if (Src0.isMachineOpcode() &&
11737         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11738       if (Src1.isMachineOpcode() &&
11739           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11740         Src0 = Src1;
11741       else if (Src2.isMachineOpcode() &&
11742                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11743         Src0 = Src2;
11744       else {
11745         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11746         Src0 = UndefReg;
11747         Src1 = UndefReg;
11748       }
11749     } else
11750       break;
11751 
11752     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11753     Ops[1] = Src0;
11754     Ops[3] = Src1;
11755     Ops[5] = Src2;
11756     Ops.push_back(ImpDef.getValue(1));
11757     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11758   }
11759   default:
11760     break;
11761   }
11762 
11763   return Node;
11764 }
11765 
11766 // Any MIMG instructions that use tfe or lwe require an initialization of the
11767 // result register that will be written in the case of a memory access failure.
11768 // The required code is also added to tie this init code to the result of the
11769 // img instruction.
11770 void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
11771   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11772   const SIRegisterInfo &TRI = TII->getRegisterInfo();
11773   MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
11774   MachineBasicBlock &MBB = *MI.getParent();
11775 
11776   MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
11777   MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
11778   MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
11779 
11780   if (!TFE && !LWE) // intersect_ray
11781     return;
11782 
11783   unsigned TFEVal = TFE ? TFE->getImm() : 0;
11784   unsigned LWEVal = LWE->getImm();
11785   unsigned D16Val = D16 ? D16->getImm() : 0;
11786 
11787   if (!TFEVal && !LWEVal)
11788     return;
11789 
11790   // At least one of TFE or LWE are non-zero
11791   // We have to insert a suitable initialization of the result value and
11792   // tie this to the dest of the image instruction.
11793 
11794   const DebugLoc &DL = MI.getDebugLoc();
11795 
11796   int DstIdx =
11797       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
11798 
11799   // Calculate which dword we have to initialize to 0.
11800   MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
11801 
11802   // check that dmask operand is found.
11803   assert(MO_Dmask && "Expected dmask operand in instruction");
11804 
11805   unsigned dmask = MO_Dmask->getImm();
11806   // Determine the number of active lanes taking into account the
11807   // Gather4 special case
11808   unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask);
11809 
11810   bool Packed = !Subtarget->hasUnpackedD16VMem();
11811 
11812   unsigned InitIdx =
11813       D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
11814 
11815   // Abandon attempt if the dst size isn't large enough
11816   // - this is in fact an error but this is picked up elsewhere and
11817   // reported correctly.
11818   uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
11819   if (DstSize < InitIdx)
11820     return;
11821 
11822   // Create a register for the initialization value.
11823   Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11824   unsigned NewDst = 0; // Final initialized value will be in here
11825 
11826   // If PRTStrictNull feature is enabled (the default) then initialize
11827   // all the result registers to 0, otherwise just the error indication
11828   // register (VGPRn+1)
11829   unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
11830   unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
11831 
11832   BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
11833   for (; SizeLeft; SizeLeft--, CurrIdx++) {
11834     NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11835     // Initialize dword
11836     Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
11837     BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
11838       .addImm(0);
11839     // Insert into the super-reg
11840     BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
11841       .addReg(PrevDst)
11842       .addReg(SubReg)
11843       .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
11844 
11845     PrevDst = NewDst;
11846   }
11847 
11848   // Add as an implicit operand
11849   MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
11850 
11851   // Tie the just added implicit operand to the dst
11852   MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
11853 }
11854 
11855 /// Assign the register class depending on the number of
11856 /// bits set in the writemask
11857 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11858                                                      SDNode *Node) const {
11859   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11860 
11861   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11862 
11863   if (TII->isVOP3(MI.getOpcode())) {
11864     // Make sure constant bus requirements are respected.
11865     TII->legalizeOperandsVOP3(MRI, MI);
11866 
11867     // Prefer VGPRs over AGPRs in mAI instructions where possible.
11868     // This saves a chain-copy of registers and better balance register
11869     // use between vgpr and agpr as agpr tuples tend to be big.
11870     if (MI.getDesc().OpInfo) {
11871       unsigned Opc = MI.getOpcode();
11872       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11873       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11874                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11875         if (I == -1)
11876           break;
11877         MachineOperand &Op = MI.getOperand(I);
11878         if (!Op.isReg() || !Op.getReg().isVirtual())
11879           continue;
11880         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11881         if (!TRI->hasAGPRs(RC))
11882           continue;
11883         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11884         if (!Src || !Src->isCopy() ||
11885             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11886           continue;
11887         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11888         // All uses of agpr64 and agpr32 can also accept vgpr except for
11889         // v_accvgpr_read, but we do not produce agpr reads during selection,
11890         // so no use checks are needed.
11891         MRI.setRegClass(Op.getReg(), NewRC);
11892       }
11893 
11894       // Resolve the rest of AV operands to AGPRs.
11895       if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) {
11896         if (Src2->isReg() && Src2->getReg().isVirtual()) {
11897           auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg());
11898           if (TRI->isVectorSuperClass(RC)) {
11899             auto *NewRC = TRI->getEquivalentAGPRClass(RC);
11900             MRI.setRegClass(Src2->getReg(), NewRC);
11901             if (Src2->isTied())
11902               MRI.setRegClass(MI.getOperand(0).getReg(), NewRC);
11903           }
11904         }
11905       }
11906     }
11907 
11908     return;
11909   }
11910 
11911   if (TII->isMIMG(MI)) {
11912     if (!MI.mayStore())
11913       AddIMGInit(MI);
11914     TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr);
11915   }
11916 }
11917 
11918 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11919                               uint64_t Val) {
11920   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11921   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11922 }
11923 
11924 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11925                                                 const SDLoc &DL,
11926                                                 SDValue Ptr) const {
11927   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11928 
11929   // Build the half of the subregister with the constants before building the
11930   // full 128-bit register. If we are building multiple resource descriptors,
11931   // this will allow CSEing of the 2-component register.
11932   const SDValue Ops0[] = {
11933     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11934     buildSMovImm32(DAG, DL, 0),
11935     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11936     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11937     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11938   };
11939 
11940   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11941                                                 MVT::v2i32, Ops0), 0);
11942 
11943   // Combine the constants and the pointer.
11944   const SDValue Ops1[] = {
11945     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11946     Ptr,
11947     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11948     SubRegHi,
11949     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11950   };
11951 
11952   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11953 }
11954 
11955 /// Return a resource descriptor with the 'Add TID' bit enabled
11956 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11957 ///        of the resource descriptor) to create an offset, which is added to
11958 ///        the resource pointer.
11959 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11960                                            SDValue Ptr, uint32_t RsrcDword1,
11961                                            uint64_t RsrcDword2And3) const {
11962   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11963   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11964   if (RsrcDword1) {
11965     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11966                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11967                     0);
11968   }
11969 
11970   SDValue DataLo = buildSMovImm32(DAG, DL,
11971                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
11972   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11973 
11974   const SDValue Ops[] = {
11975     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11976     PtrLo,
11977     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11978     PtrHi,
11979     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11980     DataLo,
11981     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11982     DataHi,
11983     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11984   };
11985 
11986   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11987 }
11988 
11989 //===----------------------------------------------------------------------===//
11990 //                         SI Inline Assembly Support
11991 //===----------------------------------------------------------------------===//
11992 
11993 std::pair<unsigned, const TargetRegisterClass *>
11994 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
11995                                                StringRef Constraint,
11996                                                MVT VT) const {
11997   const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
11998 
11999   const TargetRegisterClass *RC = nullptr;
12000   if (Constraint.size() == 1) {
12001     const unsigned BitWidth = VT.getSizeInBits();
12002     switch (Constraint[0]) {
12003     default:
12004       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12005     case 's':
12006     case 'r':
12007       switch (BitWidth) {
12008       case 16:
12009         RC = &AMDGPU::SReg_32RegClass;
12010         break;
12011       case 64:
12012         RC = &AMDGPU::SGPR_64RegClass;
12013         break;
12014       default:
12015         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
12016         if (!RC)
12017           return std::make_pair(0U, nullptr);
12018         break;
12019       }
12020       break;
12021     case 'v':
12022       switch (BitWidth) {
12023       case 16:
12024         RC = &AMDGPU::VGPR_32RegClass;
12025         break;
12026       default:
12027         RC = TRI->getVGPRClassForBitWidth(BitWidth);
12028         if (!RC)
12029           return std::make_pair(0U, nullptr);
12030         break;
12031       }
12032       break;
12033     case 'a':
12034       if (!Subtarget->hasMAIInsts())
12035         break;
12036       switch (BitWidth) {
12037       case 16:
12038         RC = &AMDGPU::AGPR_32RegClass;
12039         break;
12040       default:
12041         RC = TRI->getAGPRClassForBitWidth(BitWidth);
12042         if (!RC)
12043           return std::make_pair(0U, nullptr);
12044         break;
12045       }
12046       break;
12047     }
12048     // We actually support i128, i16 and f16 as inline parameters
12049     // even if they are not reported as legal
12050     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
12051                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
12052       return std::make_pair(0U, RC);
12053   }
12054 
12055   if (Constraint.startswith("{") && Constraint.endswith("}")) {
12056     StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
12057     if (RegName.consume_front("v")) {
12058       RC = &AMDGPU::VGPR_32RegClass;
12059     } else if (RegName.consume_front("s")) {
12060       RC = &AMDGPU::SGPR_32RegClass;
12061     } else if (RegName.consume_front("a")) {
12062       RC = &AMDGPU::AGPR_32RegClass;
12063     }
12064 
12065     if (RC) {
12066       uint32_t Idx;
12067       if (RegName.consume_front("[")) {
12068         uint32_t End;
12069         bool Failed = RegName.consumeInteger(10, Idx);
12070         Failed |= !RegName.consume_front(":");
12071         Failed |= RegName.consumeInteger(10, End);
12072         Failed |= !RegName.consume_back("]");
12073         if (!Failed) {
12074           uint32_t Width = (End - Idx + 1) * 32;
12075           MCRegister Reg = RC->getRegister(Idx);
12076           if (SIRegisterInfo::isVGPRClass(RC))
12077             RC = TRI->getVGPRClassForBitWidth(Width);
12078           else if (SIRegisterInfo::isSGPRClass(RC))
12079             RC = TRI->getSGPRClassForBitWidth(Width);
12080           else if (SIRegisterInfo::isAGPRClass(RC))
12081             RC = TRI->getAGPRClassForBitWidth(Width);
12082           if (RC) {
12083             Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
12084             return std::make_pair(Reg, RC);
12085           }
12086         }
12087       } else {
12088         bool Failed = RegName.getAsInteger(10, Idx);
12089         if (!Failed && Idx < RC->getNumRegs())
12090           return std::make_pair(RC->getRegister(Idx), RC);
12091       }
12092     }
12093   }
12094 
12095   auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12096   if (Ret.first)
12097     Ret.second = TRI->getPhysRegClass(Ret.first);
12098 
12099   return Ret;
12100 }
12101 
12102 static bool isImmConstraint(StringRef Constraint) {
12103   if (Constraint.size() == 1) {
12104     switch (Constraint[0]) {
12105     default: break;
12106     case 'I':
12107     case 'J':
12108     case 'A':
12109     case 'B':
12110     case 'C':
12111       return true;
12112     }
12113   } else if (Constraint == "DA" ||
12114              Constraint == "DB") {
12115     return true;
12116   }
12117   return false;
12118 }
12119 
12120 SITargetLowering::ConstraintType
12121 SITargetLowering::getConstraintType(StringRef Constraint) const {
12122   if (Constraint.size() == 1) {
12123     switch (Constraint[0]) {
12124     default: break;
12125     case 's':
12126     case 'v':
12127     case 'a':
12128       return C_RegisterClass;
12129     }
12130   }
12131   if (isImmConstraint(Constraint)) {
12132     return C_Other;
12133   }
12134   return TargetLowering::getConstraintType(Constraint);
12135 }
12136 
12137 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
12138   if (!AMDGPU::isInlinableIntLiteral(Val)) {
12139     Val = Val & maskTrailingOnes<uint64_t>(Size);
12140   }
12141   return Val;
12142 }
12143 
12144 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12145                                                     std::string &Constraint,
12146                                                     std::vector<SDValue> &Ops,
12147                                                     SelectionDAG &DAG) const {
12148   if (isImmConstraint(Constraint)) {
12149     uint64_t Val;
12150     if (getAsmOperandConstVal(Op, Val) &&
12151         checkAsmConstraintVal(Op, Constraint, Val)) {
12152       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
12153       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
12154     }
12155   } else {
12156     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12157   }
12158 }
12159 
12160 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
12161   unsigned Size = Op.getScalarValueSizeInBits();
12162   if (Size > 64)
12163     return false;
12164 
12165   if (Size == 16 && !Subtarget->has16BitInsts())
12166     return false;
12167 
12168   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12169     Val = C->getSExtValue();
12170     return true;
12171   }
12172   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
12173     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
12174     return true;
12175   }
12176   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
12177     if (Size != 16 || Op.getNumOperands() != 2)
12178       return false;
12179     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
12180       return false;
12181     if (ConstantSDNode *C = V->getConstantSplatNode()) {
12182       Val = C->getSExtValue();
12183       return true;
12184     }
12185     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
12186       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
12187       return true;
12188     }
12189   }
12190 
12191   return false;
12192 }
12193 
12194 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
12195                                              const std::string &Constraint,
12196                                              uint64_t Val) const {
12197   if (Constraint.size() == 1) {
12198     switch (Constraint[0]) {
12199     case 'I':
12200       return AMDGPU::isInlinableIntLiteral(Val);
12201     case 'J':
12202       return isInt<16>(Val);
12203     case 'A':
12204       return checkAsmConstraintValA(Op, Val);
12205     case 'B':
12206       return isInt<32>(Val);
12207     case 'C':
12208       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
12209              AMDGPU::isInlinableIntLiteral(Val);
12210     default:
12211       break;
12212     }
12213   } else if (Constraint.size() == 2) {
12214     if (Constraint == "DA") {
12215       int64_t HiBits = static_cast<int32_t>(Val >> 32);
12216       int64_t LoBits = static_cast<int32_t>(Val);
12217       return checkAsmConstraintValA(Op, HiBits, 32) &&
12218              checkAsmConstraintValA(Op, LoBits, 32);
12219     }
12220     if (Constraint == "DB") {
12221       return true;
12222     }
12223   }
12224   llvm_unreachable("Invalid asm constraint");
12225 }
12226 
12227 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
12228                                               uint64_t Val,
12229                                               unsigned MaxSize) const {
12230   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
12231   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
12232   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
12233       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
12234       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
12235     return true;
12236   }
12237   return false;
12238 }
12239 
12240 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
12241   switch (UnalignedClassID) {
12242   case AMDGPU::VReg_64RegClassID:
12243     return AMDGPU::VReg_64_Align2RegClassID;
12244   case AMDGPU::VReg_96RegClassID:
12245     return AMDGPU::VReg_96_Align2RegClassID;
12246   case AMDGPU::VReg_128RegClassID:
12247     return AMDGPU::VReg_128_Align2RegClassID;
12248   case AMDGPU::VReg_160RegClassID:
12249     return AMDGPU::VReg_160_Align2RegClassID;
12250   case AMDGPU::VReg_192RegClassID:
12251     return AMDGPU::VReg_192_Align2RegClassID;
12252   case AMDGPU::VReg_224RegClassID:
12253     return AMDGPU::VReg_224_Align2RegClassID;
12254   case AMDGPU::VReg_256RegClassID:
12255     return AMDGPU::VReg_256_Align2RegClassID;
12256   case AMDGPU::VReg_512RegClassID:
12257     return AMDGPU::VReg_512_Align2RegClassID;
12258   case AMDGPU::VReg_1024RegClassID:
12259     return AMDGPU::VReg_1024_Align2RegClassID;
12260   case AMDGPU::AReg_64RegClassID:
12261     return AMDGPU::AReg_64_Align2RegClassID;
12262   case AMDGPU::AReg_96RegClassID:
12263     return AMDGPU::AReg_96_Align2RegClassID;
12264   case AMDGPU::AReg_128RegClassID:
12265     return AMDGPU::AReg_128_Align2RegClassID;
12266   case AMDGPU::AReg_160RegClassID:
12267     return AMDGPU::AReg_160_Align2RegClassID;
12268   case AMDGPU::AReg_192RegClassID:
12269     return AMDGPU::AReg_192_Align2RegClassID;
12270   case AMDGPU::AReg_256RegClassID:
12271     return AMDGPU::AReg_256_Align2RegClassID;
12272   case AMDGPU::AReg_512RegClassID:
12273     return AMDGPU::AReg_512_Align2RegClassID;
12274   case AMDGPU::AReg_1024RegClassID:
12275     return AMDGPU::AReg_1024_Align2RegClassID;
12276   default:
12277     return -1;
12278   }
12279 }
12280 
12281 // Figure out which registers should be reserved for stack access. Only after
12282 // the function is legalized do we know all of the non-spill stack objects or if
12283 // calls are present.
12284 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
12285   MachineRegisterInfo &MRI = MF.getRegInfo();
12286   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12287   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
12288   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12289   const SIInstrInfo *TII = ST.getInstrInfo();
12290 
12291   if (Info->isEntryFunction()) {
12292     // Callable functions have fixed registers used for stack access.
12293     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
12294   }
12295 
12296   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
12297                              Info->getStackPtrOffsetReg()));
12298   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
12299     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
12300 
12301   // We need to worry about replacing the default register with itself in case
12302   // of MIR testcases missing the MFI.
12303   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
12304     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
12305 
12306   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
12307     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
12308 
12309   Info->limitOccupancy(MF);
12310 
12311   if (ST.isWave32() && !MF.empty()) {
12312     for (auto &MBB : MF) {
12313       for (auto &MI : MBB) {
12314         TII->fixImplicitOperands(MI);
12315       }
12316     }
12317   }
12318 
12319   // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
12320   // classes if required. Ideally the register class constraints would differ
12321   // per-subtarget, but there's no easy way to achieve that right now. This is
12322   // not a problem for VGPRs because the correctly aligned VGPR class is implied
12323   // from using them as the register class for legal types.
12324   if (ST.needsAlignedVGPRs()) {
12325     for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
12326       const Register Reg = Register::index2VirtReg(I);
12327       const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
12328       if (!RC)
12329         continue;
12330       int NewClassID = getAlignedAGPRClassID(RC->getID());
12331       if (NewClassID != -1)
12332         MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
12333     }
12334   }
12335 
12336   TargetLoweringBase::finalizeLowering(MF);
12337 }
12338 
12339 void SITargetLowering::computeKnownBitsForFrameIndex(
12340   const int FI, KnownBits &Known, const MachineFunction &MF) const {
12341   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
12342 
12343   // Set the high bits to zero based on the maximum allowed scratch size per
12344   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
12345   // calculation won't overflow, so assume the sign bit is never set.
12346   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
12347 }
12348 
12349 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
12350                                    KnownBits &Known, unsigned Dim) {
12351   unsigned MaxValue =
12352       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
12353   Known.Zero.setHighBits(countLeadingZeros(MaxValue));
12354 }
12355 
12356 void SITargetLowering::computeKnownBitsForTargetInstr(
12357     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
12358     const MachineRegisterInfo &MRI, unsigned Depth) const {
12359   const MachineInstr *MI = MRI.getVRegDef(R);
12360   switch (MI->getOpcode()) {
12361   case AMDGPU::G_INTRINSIC: {
12362     switch (MI->getIntrinsicID()) {
12363     case Intrinsic::amdgcn_workitem_id_x:
12364       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
12365       break;
12366     case Intrinsic::amdgcn_workitem_id_y:
12367       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
12368       break;
12369     case Intrinsic::amdgcn_workitem_id_z:
12370       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
12371       break;
12372     case Intrinsic::amdgcn_mbcnt_lo:
12373     case Intrinsic::amdgcn_mbcnt_hi: {
12374       // These return at most the wavefront size - 1.
12375       unsigned Size = MRI.getType(R).getSizeInBits();
12376       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
12377       break;
12378     }
12379     case Intrinsic::amdgcn_groupstaticsize: {
12380       // We can report everything over the maximum size as 0. We can't report
12381       // based on the actual size because we don't know if it's accurate or not
12382       // at any given point.
12383       Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
12384       break;
12385     }
12386     }
12387     break;
12388   }
12389   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
12390     Known.Zero.setHighBits(24);
12391     break;
12392   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
12393     Known.Zero.setHighBits(16);
12394     break;
12395   }
12396 }
12397 
12398 Align SITargetLowering::computeKnownAlignForTargetInstr(
12399   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
12400   unsigned Depth) const {
12401   const MachineInstr *MI = MRI.getVRegDef(R);
12402   switch (MI->getOpcode()) {
12403   case AMDGPU::G_INTRINSIC:
12404   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
12405     // FIXME: Can this move to generic code? What about the case where the call
12406     // site specifies a lower alignment?
12407     Intrinsic::ID IID = MI->getIntrinsicID();
12408     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
12409     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
12410     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
12411       return *RetAlign;
12412     return Align(1);
12413   }
12414   default:
12415     return Align(1);
12416   }
12417 }
12418 
12419 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
12420   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
12421   const Align CacheLineAlign = Align(64);
12422 
12423   // Pre-GFX10 target did not benefit from loop alignment
12424   if (!ML || DisableLoopAlignment ||
12425       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
12426       getSubtarget()->hasInstFwdPrefetchBug())
12427     return PrefAlign;
12428 
12429   // On GFX10 I$ is 4 x 64 bytes cache lines.
12430   // By default prefetcher keeps one cache line behind and reads two ahead.
12431   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
12432   // behind and one ahead.
12433   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
12434   // If loop fits 64 bytes it always spans no more than two cache lines and
12435   // does not need an alignment.
12436   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
12437   // Else if loop is less or equal 192 bytes we need two lines behind.
12438 
12439   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12440   const MachineBasicBlock *Header = ML->getHeader();
12441   if (Header->getAlignment() != PrefAlign)
12442     return Header->getAlignment(); // Already processed.
12443 
12444   unsigned LoopSize = 0;
12445   for (const MachineBasicBlock *MBB : ML->blocks()) {
12446     // If inner loop block is aligned assume in average half of the alignment
12447     // size to be added as nops.
12448     if (MBB != Header)
12449       LoopSize += MBB->getAlignment().value() / 2;
12450 
12451     for (const MachineInstr &MI : *MBB) {
12452       LoopSize += TII->getInstSizeInBytes(MI);
12453       if (LoopSize > 192)
12454         return PrefAlign;
12455     }
12456   }
12457 
12458   if (LoopSize <= 64)
12459     return PrefAlign;
12460 
12461   if (LoopSize <= 128)
12462     return CacheLineAlign;
12463 
12464   // If any of parent loops is surrounded by prefetch instructions do not
12465   // insert new for inner loop, which would reset parent's settings.
12466   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
12467     if (MachineBasicBlock *Exit = P->getExitBlock()) {
12468       auto I = Exit->getFirstNonDebugInstr();
12469       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
12470         return CacheLineAlign;
12471     }
12472   }
12473 
12474   MachineBasicBlock *Pre = ML->getLoopPreheader();
12475   MachineBasicBlock *Exit = ML->getExitBlock();
12476 
12477   if (Pre && Exit) {
12478     auto PreTerm = Pre->getFirstTerminator();
12479     if (PreTerm == Pre->begin() ||
12480         std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH)
12481       BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
12482           .addImm(1); // prefetch 2 lines behind PC
12483 
12484     auto ExitHead = Exit->getFirstNonDebugInstr();
12485     if (ExitHead == Exit->end() ||
12486         ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH)
12487       BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
12488           .addImm(2); // prefetch 1 line behind PC
12489   }
12490 
12491   return CacheLineAlign;
12492 }
12493 
12494 LLVM_ATTRIBUTE_UNUSED
12495 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
12496   assert(N->getOpcode() == ISD::CopyFromReg);
12497   do {
12498     // Follow the chain until we find an INLINEASM node.
12499     N = N->getOperand(0).getNode();
12500     if (N->getOpcode() == ISD::INLINEASM ||
12501         N->getOpcode() == ISD::INLINEASM_BR)
12502       return true;
12503   } while (N->getOpcode() == ISD::CopyFromReg);
12504   return false;
12505 }
12506 
12507 bool SITargetLowering::isSDNodeSourceOfDivergence(
12508     const SDNode *N, FunctionLoweringInfo *FLI,
12509     LegacyDivergenceAnalysis *KDA) const {
12510   switch (N->getOpcode()) {
12511   case ISD::CopyFromReg: {
12512     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
12513     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
12514     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12515     Register Reg = R->getReg();
12516 
12517     // FIXME: Why does this need to consider isLiveIn?
12518     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
12519       return !TRI->isSGPRReg(MRI, Reg);
12520 
12521     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
12522       return KDA->isDivergent(V);
12523 
12524     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
12525     return !TRI->isSGPRReg(MRI, Reg);
12526   }
12527   case ISD::LOAD: {
12528     const LoadSDNode *L = cast<LoadSDNode>(N);
12529     unsigned AS = L->getAddressSpace();
12530     // A flat load may access private memory.
12531     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
12532   }
12533   case ISD::CALLSEQ_END:
12534     return true;
12535   case ISD::INTRINSIC_WO_CHAIN:
12536     return AMDGPU::isIntrinsicSourceOfDivergence(
12537         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
12538   case ISD::INTRINSIC_W_CHAIN:
12539     return AMDGPU::isIntrinsicSourceOfDivergence(
12540         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
12541   case AMDGPUISD::ATOMIC_CMP_SWAP:
12542   case AMDGPUISD::ATOMIC_INC:
12543   case AMDGPUISD::ATOMIC_DEC:
12544   case AMDGPUISD::ATOMIC_LOAD_FMIN:
12545   case AMDGPUISD::ATOMIC_LOAD_FMAX:
12546   case AMDGPUISD::BUFFER_ATOMIC_SWAP:
12547   case AMDGPUISD::BUFFER_ATOMIC_ADD:
12548   case AMDGPUISD::BUFFER_ATOMIC_SUB:
12549   case AMDGPUISD::BUFFER_ATOMIC_SMIN:
12550   case AMDGPUISD::BUFFER_ATOMIC_UMIN:
12551   case AMDGPUISD::BUFFER_ATOMIC_SMAX:
12552   case AMDGPUISD::BUFFER_ATOMIC_UMAX:
12553   case AMDGPUISD::BUFFER_ATOMIC_AND:
12554   case AMDGPUISD::BUFFER_ATOMIC_OR:
12555   case AMDGPUISD::BUFFER_ATOMIC_XOR:
12556   case AMDGPUISD::BUFFER_ATOMIC_INC:
12557   case AMDGPUISD::BUFFER_ATOMIC_DEC:
12558   case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
12559   case AMDGPUISD::BUFFER_ATOMIC_CSUB:
12560   case AMDGPUISD::BUFFER_ATOMIC_FADD:
12561   case AMDGPUISD::BUFFER_ATOMIC_FMIN:
12562   case AMDGPUISD::BUFFER_ATOMIC_FMAX:
12563     // Target-specific read-modify-write atomics are sources of divergence.
12564     return true;
12565   default:
12566     if (auto *A = dyn_cast<AtomicSDNode>(N)) {
12567       // Generic read-modify-write atomics are sources of divergence.
12568       return A->readMem() && A->writeMem();
12569     }
12570     return false;
12571   }
12572 }
12573 
12574 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
12575                                                EVT VT) const {
12576   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
12577   case MVT::f32:
12578     return hasFP32Denormals(DAG.getMachineFunction());
12579   case MVT::f64:
12580   case MVT::f16:
12581     return hasFP64FP16Denormals(DAG.getMachineFunction());
12582   default:
12583     return false;
12584   }
12585 }
12586 
12587 bool SITargetLowering::denormalsEnabledForType(LLT Ty,
12588                                                MachineFunction &MF) const {
12589   switch (Ty.getScalarSizeInBits()) {
12590   case 32:
12591     return hasFP32Denormals(MF);
12592   case 64:
12593   case 16:
12594     return hasFP64FP16Denormals(MF);
12595   default:
12596     return false;
12597   }
12598 }
12599 
12600 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
12601                                                     const SelectionDAG &DAG,
12602                                                     bool SNaN,
12603                                                     unsigned Depth) const {
12604   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
12605     const MachineFunction &MF = DAG.getMachineFunction();
12606     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12607 
12608     if (Info->getMode().DX10Clamp)
12609       return true; // Clamped to 0.
12610     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
12611   }
12612 
12613   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
12614                                                             SNaN, Depth);
12615 }
12616 
12617 // Global FP atomic instructions have a hardcoded FP mode and do not support
12618 // FP32 denormals, and only support v2f16 denormals.
12619 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
12620   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
12621   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
12622   if (&Flt == &APFloat::IEEEsingle())
12623     return DenormMode == DenormalMode::getPreserveSign();
12624   return DenormMode == DenormalMode::getIEEE();
12625 }
12626 
12627 TargetLowering::AtomicExpansionKind
12628 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
12629   unsigned AS = RMW->getPointerAddressSpace();
12630   if (AS == AMDGPUAS::PRIVATE_ADDRESS)
12631     return AtomicExpansionKind::NotAtomic;
12632 
12633   auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) {
12634     OptimizationRemarkEmitter ORE(RMW->getFunction());
12635     LLVMContext &Ctx = RMW->getFunction()->getContext();
12636     SmallVector<StringRef> SSNs;
12637     Ctx.getSyncScopeNames(SSNs);
12638     auto MemScope = SSNs[RMW->getSyncScopeID()].empty()
12639                         ? "system"
12640                         : SSNs[RMW->getSyncScopeID()];
12641     ORE.emit([&]() {
12642       return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
12643              << "Hardware instruction generated for atomic "
12644              << RMW->getOperationName(RMW->getOperation())
12645              << " operation at memory scope " << MemScope
12646              << " due to an unsafe request.";
12647     });
12648     return Kind;
12649   };
12650 
12651   switch (RMW->getOperation()) {
12652   case AtomicRMWInst::FAdd: {
12653     Type *Ty = RMW->getType();
12654 
12655     // We don't have a way to support 16-bit atomics now, so just leave them
12656     // as-is.
12657     if (Ty->isHalfTy())
12658       return AtomicExpansionKind::None;
12659 
12660     if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
12661       return AtomicExpansionKind::CmpXChg;
12662 
12663     if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) &&
12664         Subtarget->hasAtomicFaddNoRtnInsts()) {
12665       if (Subtarget->hasGFX940Insts())
12666         return AtomicExpansionKind::None;
12667 
12668       // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
12669       // floating point atomic instructions. May generate more efficient code,
12670       // but may not respect rounding and denormal modes, and may give incorrect
12671       // results for certain memory destinations.
12672       if (RMW->getFunction()
12673               ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12674               .getValueAsString() != "true")
12675         return AtomicExpansionKind::CmpXChg;
12676 
12677       if (Subtarget->hasGFX90AInsts()) {
12678         if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS)
12679           return AtomicExpansionKind::CmpXChg;
12680 
12681         auto SSID = RMW->getSyncScopeID();
12682         if (SSID == SyncScope::System ||
12683             SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"))
12684           return AtomicExpansionKind::CmpXChg;
12685 
12686         return ReportUnsafeHWInst(AtomicExpansionKind::None);
12687       }
12688 
12689       if (AS == AMDGPUAS::FLAT_ADDRESS)
12690         return AtomicExpansionKind::CmpXChg;
12691 
12692       return RMW->use_empty() ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12693                               : AtomicExpansionKind::CmpXChg;
12694     }
12695 
12696     // DS FP atomics do respect the denormal mode, but the rounding mode is
12697     // fixed to round-to-nearest-even.
12698     // The only exception is DS_ADD_F64 which never flushes regardless of mode.
12699     if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) {
12700       if (!Ty->isDoubleTy())
12701         return AtomicExpansionKind::None;
12702 
12703       if (fpModeMatchesGlobalFPAtomicMode(RMW))
12704         return AtomicExpansionKind::None;
12705 
12706       return RMW->getFunction()
12707                          ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12708                          .getValueAsString() == "true"
12709                  ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12710                  : AtomicExpansionKind::CmpXChg;
12711     }
12712 
12713     return AtomicExpansionKind::CmpXChg;
12714   }
12715   default:
12716     break;
12717   }
12718 
12719   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
12720 }
12721 
12722 TargetLowering::AtomicExpansionKind
12723 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
12724   return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
12725              ? AtomicExpansionKind::NotAtomic
12726              : AtomicExpansionKind::None;
12727 }
12728 
12729 TargetLowering::AtomicExpansionKind
12730 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
12731   return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
12732              ? AtomicExpansionKind::NotAtomic
12733              : AtomicExpansionKind::None;
12734 }
12735 
12736 TargetLowering::AtomicExpansionKind
12737 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const {
12738   return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
12739              ? AtomicExpansionKind::NotAtomic
12740              : AtomicExpansionKind::None;
12741 }
12742 
12743 const TargetRegisterClass *
12744 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
12745   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
12746   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12747   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
12748     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
12749                                                : &AMDGPU::SReg_32RegClass;
12750   if (!TRI->isSGPRClass(RC) && !isDivergent)
12751     return TRI->getEquivalentSGPRClass(RC);
12752   else if (TRI->isSGPRClass(RC) && isDivergent)
12753     return TRI->getEquivalentVGPRClass(RC);
12754 
12755   return RC;
12756 }
12757 
12758 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
12759 // uniform values (as produced by the mask results of control flow intrinsics)
12760 // used outside of divergent blocks. The phi users need to also be treated as
12761 // always uniform.
12762 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
12763                       unsigned WaveSize) {
12764   // FIXME: We assume we never cast the mask results of a control flow
12765   // intrinsic.
12766   // Early exit if the type won't be consistent as a compile time hack.
12767   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
12768   if (!IT || IT->getBitWidth() != WaveSize)
12769     return false;
12770 
12771   if (!isa<Instruction>(V))
12772     return false;
12773   if (!Visited.insert(V).second)
12774     return false;
12775   bool Result = false;
12776   for (auto U : V->users()) {
12777     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
12778       if (V == U->getOperand(1)) {
12779         switch (Intrinsic->getIntrinsicID()) {
12780         default:
12781           Result = false;
12782           break;
12783         case Intrinsic::amdgcn_if_break:
12784         case Intrinsic::amdgcn_if:
12785         case Intrinsic::amdgcn_else:
12786           Result = true;
12787           break;
12788         }
12789       }
12790       if (V == U->getOperand(0)) {
12791         switch (Intrinsic->getIntrinsicID()) {
12792         default:
12793           Result = false;
12794           break;
12795         case Intrinsic::amdgcn_end_cf:
12796         case Intrinsic::amdgcn_loop:
12797           Result = true;
12798           break;
12799         }
12800       }
12801     } else {
12802       Result = hasCFUser(U, Visited, WaveSize);
12803     }
12804     if (Result)
12805       break;
12806   }
12807   return Result;
12808 }
12809 
12810 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
12811                                                const Value *V) const {
12812   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
12813     if (CI->isInlineAsm()) {
12814       // FIXME: This cannot give a correct answer. This should only trigger in
12815       // the case where inline asm returns mixed SGPR and VGPR results, used
12816       // outside the defining block. We don't have a specific result to
12817       // consider, so this assumes if any value is SGPR, the overall register
12818       // also needs to be SGPR.
12819       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
12820       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
12821           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
12822       for (auto &TC : TargetConstraints) {
12823         if (TC.Type == InlineAsm::isOutput) {
12824           ComputeConstraintToUse(TC, SDValue());
12825           const TargetRegisterClass *RC = getRegForInlineAsmConstraint(
12826               SIRI, TC.ConstraintCode, TC.ConstraintVT).second;
12827           if (RC && SIRI->isSGPRClass(RC))
12828             return true;
12829         }
12830       }
12831     }
12832   }
12833   SmallPtrSet<const Value *, 16> Visited;
12834   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
12835 }
12836 
12837 std::pair<InstructionCost, MVT>
12838 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
12839                                           Type *Ty) const {
12840   std::pair<InstructionCost, MVT> Cost =
12841       TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
12842   auto Size = DL.getTypeSizeInBits(Ty);
12843   // Maximum load or store can handle 8 dwords for scalar and 4 for
12844   // vector ALU. Let's assume anything above 8 dwords is expensive
12845   // even if legal.
12846   if (Size <= 256)
12847     return Cost;
12848 
12849   Cost.first += (Size + 255) / 256;
12850   return Cost;
12851 }
12852 
12853 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const {
12854   SDNode::use_iterator I = N->use_begin(), E = N->use_end();
12855   for (; I != E; ++I) {
12856     if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) {
12857       if (getBasePtrIndex(M) == I.getOperandNo())
12858         return true;
12859     }
12860   }
12861   return false;
12862 }
12863 
12864 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0,
12865                                            SDValue N1) const {
12866   if (!N0.hasOneUse())
12867     return false;
12868   // Take care of the opportunity to keep N0 uniform
12869   if (N0->isDivergent() || !N1->isDivergent())
12870     return true;
12871   // Check if we have a good chance to form the memory access pattern with the
12872   // base and offset
12873   return (DAG.isBaseWithConstantOffset(N0) &&
12874           hasMemSDNodeUser(*N0->use_begin()));
12875 }
12876 
12877 MachineMemOperand::Flags
12878 SITargetLowering::getTargetMMOFlags(const Instruction &I) const {
12879   // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load.
12880   if (I.getMetadata("amdgpu.noclobber"))
12881     return MONoClobber;
12882   return MachineMemOperand::MONone;
12883 }
12884