1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// Custom DAG lowering for SI
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #if defined(_MSC_VER) || defined(__MINGW32__)
16 // Provide M_PI.
17 #define _USE_MATH_DEFINES
18 #endif
19 
20 #include "SIISelLowering.h"
21 #include "AMDGPU.h"
22 #include "AMDGPUIntrinsicInfo.h"
23 #include "AMDGPUSubtarget.h"
24 #include "AMDGPUTargetMachine.h"
25 #include "SIDefines.h"
26 #include "SIInstrInfo.h"
27 #include "SIMachineFunctionInfo.h"
28 #include "SIRegisterInfo.h"
29 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
30 #include "Utils/AMDGPUBaseInfo.h"
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Twine.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/CallingConvLower.h"
42 #include "llvm/CodeGen/DAGCombine.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/TargetCallingConv.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugLoc.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/DiagnosticInfo.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/GlobalValue.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instruction.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/IntrinsicInst.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CodeGen.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/KnownBits.h"
76 #include "llvm/Support/MachineValueType.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Target/TargetOptions.h"
79 #include <cassert>
80 #include <cmath>
81 #include <cstdint>
82 #include <iterator>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "si-lower"
90 
91 STATISTIC(NumTailCalls, "Number of tail calls");
92 
93 static cl::opt<bool> EnableVGPRIndexMode(
94   "amdgpu-vgpr-index-mode",
95   cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
96   cl::init(false));
97 
98 static cl::opt<unsigned> AssumeFrameIndexHighZeroBits(
99   "amdgpu-frame-index-zero-bits",
100   cl::desc("High bits of frame index assumed to be zero"),
101   cl::init(5),
102   cl::ReallyHidden);
103 
104 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
105   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
106   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
107     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
108       return AMDGPU::SGPR0 + Reg;
109     }
110   }
111   llvm_unreachable("Cannot allocate sgpr");
112 }
113 
114 SITargetLowering::SITargetLowering(const TargetMachine &TM,
115                                    const GCNSubtarget &STI)
116     : AMDGPUTargetLowering(TM, STI),
117       Subtarget(&STI) {
118   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
119   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
120 
121   addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
122   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
123 
124   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
125   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
126   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
127 
128   addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
129   addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
130 
131   addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
132   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
133 
134   addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
135   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
136 
137   addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
138   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
139 
140   if (Subtarget->has16BitInsts()) {
141     addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
142     addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
143 
144     // Unless there are also VOP3P operations, not operations are really legal.
145     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass);
146     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass);
147     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
148     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
149   }
150 
151   computeRegisterProperties(Subtarget->getRegisterInfo());
152 
153   // We need to custom lower vector stores from local memory
154   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
155   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
156   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
157   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
158   setOperationAction(ISD::LOAD, MVT::i1, Custom);
159   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
160 
161   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
162   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
163   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
164   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
165   setOperationAction(ISD::STORE, MVT::i1, Custom);
166   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
167 
168   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
169   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
170   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
171   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
172   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
173   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
174   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
175   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
176   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
177   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
178 
179   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
181 
182   setOperationAction(ISD::SELECT, MVT::i1, Promote);
183   setOperationAction(ISD::SELECT, MVT::i64, Custom);
184   setOperationAction(ISD::SELECT, MVT::f64, Promote);
185   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
186 
187   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
188   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
189   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
190   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
191   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
192 
193   setOperationAction(ISD::SETCC, MVT::i1, Promote);
194   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
195   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
196   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
197 
198   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
199   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
200 
201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
202   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
203   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
204   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
205   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
206   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
207   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
208 
209   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
210   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
211   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
212   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
213   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
214   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
215   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
216 
217   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
218   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
219   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
220 
221   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
222   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
223   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
224   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
225 
226   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
227   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
228   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
229   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
230   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
231   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
232 
233   setOperationAction(ISD::UADDO, MVT::i32, Legal);
234   setOperationAction(ISD::USUBO, MVT::i32, Legal);
235 
236   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
237   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
238 
239   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
240   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
241   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
242 
243 #if 0
244   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
245   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
246 #endif
247 
248   // We only support LOAD/STORE and vector manipulation ops for vectors
249   // with > 4 elements.
250   for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
251         MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, MVT::v32i32 }) {
252     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
253       switch (Op) {
254       case ISD::LOAD:
255       case ISD::STORE:
256       case ISD::BUILD_VECTOR:
257       case ISD::BITCAST:
258       case ISD::EXTRACT_VECTOR_ELT:
259       case ISD::INSERT_VECTOR_ELT:
260       case ISD::INSERT_SUBVECTOR:
261       case ISD::EXTRACT_SUBVECTOR:
262       case ISD::SCALAR_TO_VECTOR:
263         break;
264       case ISD::CONCAT_VECTORS:
265         setOperationAction(Op, VT, Custom);
266         break;
267       default:
268         setOperationAction(Op, VT, Expand);
269         break;
270       }
271     }
272   }
273 
274   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
275 
276   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
277   // is expanded to avoid having two separate loops in case the index is a VGPR.
278 
279   // Most operations are naturally 32-bit vector operations. We only support
280   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
281   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
282     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
283     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
284 
285     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
286     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
287 
288     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
289     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
290 
291     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
292     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
293   }
294 
295   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
296   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
297   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
298   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
299 
300   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
301   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
302 
303   // Avoid stack access for these.
304   // TODO: Generalize to more vector types.
305   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
306   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
307   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
308   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
309 
310   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
311   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
312   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
313   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
314   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
315 
316   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
317   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
318   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
319 
320   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
321   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
322   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
323   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
324 
325   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
326   // and output demarshalling
327   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
328   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
329 
330   // We can't return success/failure, only the old value,
331   // let LLVM add the comparison
332   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
333   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
334 
335   if (Subtarget->hasFlatAddressSpace()) {
336     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
337     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
338   }
339 
340   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
341   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
342 
343   // On SI this is s_memtime and s_memrealtime on VI.
344   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
345   setOperationAction(ISD::TRAP, MVT::Other, Custom);
346   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
347 
348   if (Subtarget->has16BitInsts()) {
349     setOperationAction(ISD::FLOG, MVT::f16, Custom);
350     setOperationAction(ISD::FEXP, MVT::f16, Custom);
351     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
352   }
353 
354   // v_mad_f32 does not support denormals according to some sources.
355   if (!Subtarget->hasFP32Denormals())
356     setOperationAction(ISD::FMAD, MVT::f32, Legal);
357 
358   if (!Subtarget->hasBFI()) {
359     // fcopysign can be done in a single instruction with BFI.
360     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
361     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
362   }
363 
364   if (!Subtarget->hasBCNT(32))
365     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
366 
367   if (!Subtarget->hasBCNT(64))
368     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
369 
370   if (Subtarget->hasFFBH())
371     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
372 
373   if (Subtarget->hasFFBL())
374     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
375 
376   // We only really have 32-bit BFE instructions (and 16-bit on VI).
377   //
378   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
379   // effort to match them now. We want this to be false for i64 cases when the
380   // extraction isn't restricted to the upper or lower half. Ideally we would
381   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
382   // span the midpoint are probably relatively rare, so don't worry about them
383   // for now.
384   if (Subtarget->hasBFE())
385     setHasExtractBitsInsn(true);
386 
387   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
388   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
389   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
390   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
391 
392 
393   // These are really only legal for ieee_mode functions. We should be avoiding
394   // them for functions that don't have ieee_mode enabled, so just say they are
395   // legal.
396   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
397   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
398   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
399   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
400 
401 
402   if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
403     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
404     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
405     setOperationAction(ISD::FRINT, MVT::f64, Legal);
406   } else {
407     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
408     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
409     setOperationAction(ISD::FRINT, MVT::f64, Custom);
410     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
411   }
412 
413   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
414 
415   setOperationAction(ISD::FSIN, MVT::f32, Custom);
416   setOperationAction(ISD::FCOS, MVT::f32, Custom);
417   setOperationAction(ISD::FDIV, MVT::f32, Custom);
418   setOperationAction(ISD::FDIV, MVT::f64, Custom);
419 
420   if (Subtarget->has16BitInsts()) {
421     setOperationAction(ISD::Constant, MVT::i16, Legal);
422 
423     setOperationAction(ISD::SMIN, MVT::i16, Legal);
424     setOperationAction(ISD::SMAX, MVT::i16, Legal);
425 
426     setOperationAction(ISD::UMIN, MVT::i16, Legal);
427     setOperationAction(ISD::UMAX, MVT::i16, Legal);
428 
429     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
430     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
431 
432     setOperationAction(ISD::ROTR, MVT::i16, Promote);
433     setOperationAction(ISD::ROTL, MVT::i16, Promote);
434 
435     setOperationAction(ISD::SDIV, MVT::i16, Promote);
436     setOperationAction(ISD::UDIV, MVT::i16, Promote);
437     setOperationAction(ISD::SREM, MVT::i16, Promote);
438     setOperationAction(ISD::UREM, MVT::i16, Promote);
439 
440     setOperationAction(ISD::BSWAP, MVT::i16, Promote);
441     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
442 
443     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
444     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
445     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
446     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
447     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
448 
449     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
450 
451     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
452 
453     setOperationAction(ISD::LOAD, MVT::i16, Custom);
454 
455     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
456 
457     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
458     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
459     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
460     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
461 
462     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
463     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
464     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
465     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
466 
467     // F16 - Constant Actions.
468     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
469 
470     // F16 - Load/Store Actions.
471     setOperationAction(ISD::LOAD, MVT::f16, Promote);
472     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
473     setOperationAction(ISD::STORE, MVT::f16, Promote);
474     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
475 
476     // F16 - VOP1 Actions.
477     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
478     setOperationAction(ISD::FCOS, MVT::f16, Promote);
479     setOperationAction(ISD::FSIN, MVT::f16, Promote);
480     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
481     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
482     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
483     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
484     setOperationAction(ISD::FROUND, MVT::f16, Custom);
485 
486     // F16 - VOP2 Actions.
487     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
488     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
489 
490     setOperationAction(ISD::FDIV, MVT::f16, Custom);
491 
492     // F16 - VOP3 Actions.
493     setOperationAction(ISD::FMA, MVT::f16, Legal);
494     if (!Subtarget->hasFP16Denormals())
495       setOperationAction(ISD::FMAD, MVT::f16, Legal);
496 
497     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
498       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
499         switch (Op) {
500         case ISD::LOAD:
501         case ISD::STORE:
502         case ISD::BUILD_VECTOR:
503         case ISD::BITCAST:
504         case ISD::EXTRACT_VECTOR_ELT:
505         case ISD::INSERT_VECTOR_ELT:
506         case ISD::INSERT_SUBVECTOR:
507         case ISD::EXTRACT_SUBVECTOR:
508         case ISD::SCALAR_TO_VECTOR:
509           break;
510         case ISD::CONCAT_VECTORS:
511           setOperationAction(Op, VT, Custom);
512           break;
513         default:
514           setOperationAction(Op, VT, Expand);
515           break;
516         }
517       }
518     }
519 
520     // XXX - Do these do anything? Vector constants turn into build_vector.
521     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
522     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
523 
524     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
525     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
526 
527     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
528     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
529     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
530     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
531 
532     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
533     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
534     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
535     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
536 
537     setOperationAction(ISD::AND, MVT::v2i16, Promote);
538     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
539     setOperationAction(ISD::OR, MVT::v2i16, Promote);
540     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
541     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
542     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
543 
544     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
545     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
546     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
547     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
548 
549     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
550     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
551     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
552     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
553 
554     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
555     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
556     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
557     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
558 
559     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
560     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
561     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
562 
563     if (!Subtarget->hasVOP3PInsts()) {
564       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
565       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
566     }
567 
568     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
569     // This isn't really legal, but this avoids the legalizer unrolling it (and
570     // allows matching fneg (fabs x) patterns)
571     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
572 
573     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
574     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
575     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
576     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
577 
578     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
579     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
580 
581     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
582     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
583   }
584 
585   if (Subtarget->hasVOP3PInsts()) {
586     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
587     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
588     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
589     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
590     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
591     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
592     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
593     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
594     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
595     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
596 
597     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
598     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
599     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
600 
601     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
602     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
603 
604     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
605 
606     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
607     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
608 
609     setOperationAction(ISD::SHL, MVT::v4i16, Custom);
610     setOperationAction(ISD::SRA, MVT::v4i16, Custom);
611     setOperationAction(ISD::SRL, MVT::v4i16, Custom);
612     setOperationAction(ISD::ADD, MVT::v4i16, Custom);
613     setOperationAction(ISD::SUB, MVT::v4i16, Custom);
614     setOperationAction(ISD::MUL, MVT::v4i16, Custom);
615 
616     setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
617     setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
618     setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
619     setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
620 
621     setOperationAction(ISD::FADD, MVT::v4f16, Custom);
622     setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
623 
624     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
625     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
626 
627     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
628     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
629     setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
630 
631     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
632     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
633     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
634   }
635 
636   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
637   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
638 
639   if (Subtarget->has16BitInsts()) {
640     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
641     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
642     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
643     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
644   } else {
645     // Legalization hack.
646     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
647     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
648 
649     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
650     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
651   }
652 
653   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
654     setOperationAction(ISD::SELECT, VT, Custom);
655   }
656 
657   setTargetDAGCombine(ISD::ADD);
658   setTargetDAGCombine(ISD::ADDCARRY);
659   setTargetDAGCombine(ISD::SUB);
660   setTargetDAGCombine(ISD::SUBCARRY);
661   setTargetDAGCombine(ISD::FADD);
662   setTargetDAGCombine(ISD::FSUB);
663   setTargetDAGCombine(ISD::FMINNUM);
664   setTargetDAGCombine(ISD::FMAXNUM);
665   setTargetDAGCombine(ISD::FMINNUM_IEEE);
666   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
667   setTargetDAGCombine(ISD::FMA);
668   setTargetDAGCombine(ISD::SMIN);
669   setTargetDAGCombine(ISD::SMAX);
670   setTargetDAGCombine(ISD::UMIN);
671   setTargetDAGCombine(ISD::UMAX);
672   setTargetDAGCombine(ISD::SETCC);
673   setTargetDAGCombine(ISD::AND);
674   setTargetDAGCombine(ISD::OR);
675   setTargetDAGCombine(ISD::XOR);
676   setTargetDAGCombine(ISD::SINT_TO_FP);
677   setTargetDAGCombine(ISD::UINT_TO_FP);
678   setTargetDAGCombine(ISD::FCANONICALIZE);
679   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
680   setTargetDAGCombine(ISD::ZERO_EXTEND);
681   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
682   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
683 
684   // All memory operations. Some folding on the pointer operand is done to help
685   // matching the constant offsets in the addressing modes.
686   setTargetDAGCombine(ISD::LOAD);
687   setTargetDAGCombine(ISD::STORE);
688   setTargetDAGCombine(ISD::ATOMIC_LOAD);
689   setTargetDAGCombine(ISD::ATOMIC_STORE);
690   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
691   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
692   setTargetDAGCombine(ISD::ATOMIC_SWAP);
693   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
694   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
695   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
696   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
697   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
698   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
699   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
700   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
701   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
702   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
703 
704   setSchedulingPreference(Sched::RegPressure);
705 
706   // SI at least has hardware support for floating point exceptions, but no way
707   // of using or handling them is implemented. They are also optional in OpenCL
708   // (Section 7.3)
709   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
710 }
711 
712 const GCNSubtarget *SITargetLowering::getSubtarget() const {
713   return Subtarget;
714 }
715 
716 //===----------------------------------------------------------------------===//
717 // TargetLowering queries
718 //===----------------------------------------------------------------------===//
719 
720 // v_mad_mix* support a conversion from f16 to f32.
721 //
722 // There is only one special case when denormals are enabled we don't currently,
723 // where this is OK to use.
724 bool SITargetLowering::isFPExtFoldable(unsigned Opcode,
725                                            EVT DestVT, EVT SrcVT) const {
726   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
727           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
728          DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
729          SrcVT.getScalarType() == MVT::f16;
730 }
731 
732 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
733   // SI has some legal vector types, but no legal vector operations. Say no
734   // shuffles are legal in order to prefer scalarizing some vector operations.
735   return false;
736 }
737 
738 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
739                                                     CallingConv::ID CC,
740                                                     EVT VT) const {
741   // TODO: Consider splitting all arguments into 32-bit pieces.
742   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
743     EVT ScalarVT = VT.getScalarType();
744     unsigned Size = ScalarVT.getSizeInBits();
745     if (Size == 32)
746       return ScalarVT.getSimpleVT();
747 
748     if (Size == 64)
749       return MVT::i32;
750 
751     if (Size == 16 && Subtarget->has16BitInsts())
752       return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
753   }
754 
755   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
756 }
757 
758 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
759                                                          CallingConv::ID CC,
760                                                          EVT VT) const {
761   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
762     unsigned NumElts = VT.getVectorNumElements();
763     EVT ScalarVT = VT.getScalarType();
764     unsigned Size = ScalarVT.getSizeInBits();
765 
766     if (Size == 32)
767       return NumElts;
768 
769     if (Size == 64)
770       return 2 * NumElts;
771 
772     if (Size == 16 && Subtarget->has16BitInsts())
773       return (VT.getVectorNumElements() + 1) / 2;
774   }
775 
776   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
777 }
778 
779 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
780   LLVMContext &Context, CallingConv::ID CC,
781   EVT VT, EVT &IntermediateVT,
782   unsigned &NumIntermediates, MVT &RegisterVT) const {
783   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
784     unsigned NumElts = VT.getVectorNumElements();
785     EVT ScalarVT = VT.getScalarType();
786     unsigned Size = ScalarVT.getSizeInBits();
787     if (Size == 32) {
788       RegisterVT = ScalarVT.getSimpleVT();
789       IntermediateVT = RegisterVT;
790       NumIntermediates = NumElts;
791       return NumIntermediates;
792     }
793 
794     if (Size == 64) {
795       RegisterVT = MVT::i32;
796       IntermediateVT = RegisterVT;
797       NumIntermediates = 2 * NumElts;
798       return NumIntermediates;
799     }
800 
801     // FIXME: We should fix the ABI to be the same on targets without 16-bit
802     // support, but unless we can properly handle 3-vectors, it will be still be
803     // inconsistent.
804     if (Size == 16 && Subtarget->has16BitInsts()) {
805       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
806       IntermediateVT = RegisterVT;
807       NumIntermediates = (NumElts + 1) / 2;
808       return NumIntermediates;
809     }
810   }
811 
812   return TargetLowering::getVectorTypeBreakdownForCallingConv(
813     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
814 }
815 
816 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
817                                           const CallInst &CI,
818                                           MachineFunction &MF,
819                                           unsigned IntrID) const {
820   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
821           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
822     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
823                                                   (Intrinsic::ID)IntrID);
824     if (Attr.hasFnAttribute(Attribute::ReadNone))
825       return false;
826 
827     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
828 
829     if (RsrcIntr->IsImage) {
830       Info.ptrVal = MFI->getImagePSV(
831         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
832         CI.getArgOperand(RsrcIntr->RsrcArg));
833       Info.align = 0;
834     } else {
835       Info.ptrVal = MFI->getBufferPSV(
836         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
837         CI.getArgOperand(RsrcIntr->RsrcArg));
838     }
839 
840     Info.flags = MachineMemOperand::MODereferenceable;
841     if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
842       Info.opc = ISD::INTRINSIC_W_CHAIN;
843       Info.memVT = MVT::getVT(CI.getType());
844       Info.flags |= MachineMemOperand::MOLoad;
845     } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
846       Info.opc = ISD::INTRINSIC_VOID;
847       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
848       Info.flags |= MachineMemOperand::MOStore;
849     } else {
850       // Atomic
851       Info.opc = ISD::INTRINSIC_W_CHAIN;
852       Info.memVT = MVT::getVT(CI.getType());
853       Info.flags = MachineMemOperand::MOLoad |
854                    MachineMemOperand::MOStore |
855                    MachineMemOperand::MODereferenceable;
856 
857       // XXX - Should this be volatile without known ordering?
858       Info.flags |= MachineMemOperand::MOVolatile;
859     }
860     return true;
861   }
862 
863   switch (IntrID) {
864   case Intrinsic::amdgcn_atomic_inc:
865   case Intrinsic::amdgcn_atomic_dec:
866   case Intrinsic::amdgcn_ds_fadd:
867   case Intrinsic::amdgcn_ds_fmin:
868   case Intrinsic::amdgcn_ds_fmax: {
869     Info.opc = ISD::INTRINSIC_W_CHAIN;
870     Info.memVT = MVT::getVT(CI.getType());
871     Info.ptrVal = CI.getOperand(0);
872     Info.align = 0;
873     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
874 
875     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
876     if (!Vol || !Vol->isZero())
877       Info.flags |= MachineMemOperand::MOVolatile;
878 
879     return true;
880   }
881 
882   default:
883     return false;
884   }
885 }
886 
887 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
888                                             SmallVectorImpl<Value*> &Ops,
889                                             Type *&AccessTy) const {
890   switch (II->getIntrinsicID()) {
891   case Intrinsic::amdgcn_atomic_inc:
892   case Intrinsic::amdgcn_atomic_dec:
893   case Intrinsic::amdgcn_ds_fadd:
894   case Intrinsic::amdgcn_ds_fmin:
895   case Intrinsic::amdgcn_ds_fmax: {
896     Value *Ptr = II->getArgOperand(0);
897     AccessTy = II->getType();
898     Ops.push_back(Ptr);
899     return true;
900   }
901   default:
902     return false;
903   }
904 }
905 
906 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
907   if (!Subtarget->hasFlatInstOffsets()) {
908     // Flat instructions do not have offsets, and only have the register
909     // address.
910     return AM.BaseOffs == 0 && AM.Scale == 0;
911   }
912 
913   // GFX9 added a 13-bit signed offset. When using regular flat instructions,
914   // the sign bit is ignored and is treated as a 12-bit unsigned offset.
915 
916   // Just r + i
917   return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
918 }
919 
920 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
921   if (Subtarget->hasFlatGlobalInsts())
922     return isInt<13>(AM.BaseOffs) && AM.Scale == 0;
923 
924   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
925       // Assume the we will use FLAT for all global memory accesses
926       // on VI.
927       // FIXME: This assumption is currently wrong.  On VI we still use
928       // MUBUF instructions for the r + i addressing mode.  As currently
929       // implemented, the MUBUF instructions only work on buffer < 4GB.
930       // It may be possible to support > 4GB buffers with MUBUF instructions,
931       // by setting the stride value in the resource descriptor which would
932       // increase the size limit to (stride * 4GB).  However, this is risky,
933       // because it has never been validated.
934     return isLegalFlatAddressingMode(AM);
935   }
936 
937   return isLegalMUBUFAddressingMode(AM);
938 }
939 
940 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
941   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
942   // additionally can do r + r + i with addr64. 32-bit has more addressing
943   // mode options. Depending on the resource constant, it can also do
944   // (i64 r0) + (i32 r1) * (i14 i).
945   //
946   // Private arrays end up using a scratch buffer most of the time, so also
947   // assume those use MUBUF instructions. Scratch loads / stores are currently
948   // implemented as mubuf instructions with offen bit set, so slightly
949   // different than the normal addr64.
950   if (!isUInt<12>(AM.BaseOffs))
951     return false;
952 
953   // FIXME: Since we can split immediate into soffset and immediate offset,
954   // would it make sense to allow any immediate?
955 
956   switch (AM.Scale) {
957   case 0: // r + i or just i, depending on HasBaseReg.
958     return true;
959   case 1:
960     return true; // We have r + r or r + i.
961   case 2:
962     if (AM.HasBaseReg) {
963       // Reject 2 * r + r.
964       return false;
965     }
966 
967     // Allow 2 * r as r + r
968     // Or  2 * r + i is allowed as r + r + i.
969     return true;
970   default: // Don't allow n * r
971     return false;
972   }
973 }
974 
975 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
976                                              const AddrMode &AM, Type *Ty,
977                                              unsigned AS, Instruction *I) const {
978   // No global is ever allowed as a base.
979   if (AM.BaseGV)
980     return false;
981 
982   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
983     return isLegalGlobalAddressingMode(AM);
984 
985   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
986       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
987     // If the offset isn't a multiple of 4, it probably isn't going to be
988     // correctly aligned.
989     // FIXME: Can we get the real alignment here?
990     if (AM.BaseOffs % 4 != 0)
991       return isLegalMUBUFAddressingMode(AM);
992 
993     // There are no SMRD extloads, so if we have to do a small type access we
994     // will use a MUBUF load.
995     // FIXME?: We also need to do this if unaligned, but we don't know the
996     // alignment here.
997     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
998       return isLegalGlobalAddressingMode(AM);
999 
1000     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1001       // SMRD instructions have an 8-bit, dword offset on SI.
1002       if (!isUInt<8>(AM.BaseOffs / 4))
1003         return false;
1004     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1005       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1006       // in 8-bits, it can use a smaller encoding.
1007       if (!isUInt<32>(AM.BaseOffs / 4))
1008         return false;
1009     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1010       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1011       if (!isUInt<20>(AM.BaseOffs))
1012         return false;
1013     } else
1014       llvm_unreachable("unhandled generation");
1015 
1016     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1017       return true;
1018 
1019     if (AM.Scale == 1 && AM.HasBaseReg)
1020       return true;
1021 
1022     return false;
1023 
1024   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1025     return isLegalMUBUFAddressingMode(AM);
1026   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1027              AS == AMDGPUAS::REGION_ADDRESS) {
1028     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1029     // field.
1030     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1031     // an 8-bit dword offset but we don't know the alignment here.
1032     if (!isUInt<16>(AM.BaseOffs))
1033       return false;
1034 
1035     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1036       return true;
1037 
1038     if (AM.Scale == 1 && AM.HasBaseReg)
1039       return true;
1040 
1041     return false;
1042   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1043              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1044     // For an unknown address space, this usually means that this is for some
1045     // reason being used for pure arithmetic, and not based on some addressing
1046     // computation. We don't have instructions that compute pointers with any
1047     // addressing modes, so treat them as having no offset like flat
1048     // instructions.
1049     return isLegalFlatAddressingMode(AM);
1050   } else {
1051     llvm_unreachable("unhandled address space");
1052   }
1053 }
1054 
1055 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1056                                         const SelectionDAG &DAG) const {
1057   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1058     return (MemVT.getSizeInBits() <= 4 * 32);
1059   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1060     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1061     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1062   } else if (AS == AMDGPUAS::LOCAL_ADDRESS) {
1063     return (MemVT.getSizeInBits() <= 2 * 32);
1064   }
1065   return true;
1066 }
1067 
1068 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
1069                                                       unsigned AddrSpace,
1070                                                       unsigned Align,
1071                                                       bool *IsFast) const {
1072   if (IsFast)
1073     *IsFast = false;
1074 
1075   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1076   // which isn't a simple VT.
1077   // Until MVT is extended to handle this, simply check for the size and
1078   // rely on the condition below: allow accesses if the size is a multiple of 4.
1079   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1080                            VT.getStoreSize() > 16)) {
1081     return false;
1082   }
1083 
1084   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1085       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1086     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1087     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1088     // with adjacent offsets.
1089     bool AlignedBy4 = (Align % 4 == 0);
1090     if (IsFast)
1091       *IsFast = AlignedBy4;
1092 
1093     return AlignedBy4;
1094   }
1095 
1096   // FIXME: We have to be conservative here and assume that flat operations
1097   // will access scratch.  If we had access to the IR function, then we
1098   // could determine if any private memory was used in the function.
1099   if (!Subtarget->hasUnalignedScratchAccess() &&
1100       (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
1101        AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
1102     bool AlignedBy4 = Align >= 4;
1103     if (IsFast)
1104       *IsFast = AlignedBy4;
1105 
1106     return AlignedBy4;
1107   }
1108 
1109   if (Subtarget->hasUnalignedBufferAccess()) {
1110     // If we have an uniform constant load, it still requires using a slow
1111     // buffer instruction if unaligned.
1112     if (IsFast) {
1113       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1114                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1115         (Align % 4 == 0) : true;
1116     }
1117 
1118     return true;
1119   }
1120 
1121   // Smaller than dword value must be aligned.
1122   if (VT.bitsLT(MVT::i32))
1123     return false;
1124 
1125   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1126   // byte-address are ignored, thus forcing Dword alignment.
1127   // This applies to private, global, and constant memory.
1128   if (IsFast)
1129     *IsFast = true;
1130 
1131   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
1132 }
1133 
1134 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
1135                                           unsigned SrcAlign, bool IsMemset,
1136                                           bool ZeroMemset,
1137                                           bool MemcpyStrSrc,
1138                                           MachineFunction &MF) const {
1139   // FIXME: Should account for address space here.
1140 
1141   // The default fallback uses the private pointer size as a guess for a type to
1142   // use. Make sure we switch these to 64-bit accesses.
1143 
1144   if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
1145     return MVT::v4i32;
1146 
1147   if (Size >= 8 && DstAlign >= 4)
1148     return MVT::v2i32;
1149 
1150   // Use the default.
1151   return MVT::Other;
1152 }
1153 
1154 static bool isFlatGlobalAddrSpace(unsigned AS) {
1155   return AS == AMDGPUAS::GLOBAL_ADDRESS ||
1156          AS == AMDGPUAS::FLAT_ADDRESS ||
1157          AS == AMDGPUAS::CONSTANT_ADDRESS;
1158 }
1159 
1160 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1161                                            unsigned DestAS) const {
1162   return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
1163 }
1164 
1165 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1166   const MemSDNode *MemNode = cast<MemSDNode>(N);
1167   const Value *Ptr = MemNode->getMemOperand()->getValue();
1168   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1169   return I && I->getMetadata("amdgpu.noclobber");
1170 }
1171 
1172 bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS,
1173                                             unsigned DestAS) const {
1174   // Flat -> private/local is a simple truncate.
1175   // Flat -> global is no-op
1176   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1177     return true;
1178 
1179   return isNoopAddrSpaceCast(SrcAS, DestAS);
1180 }
1181 
1182 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1183   const MemSDNode *MemNode = cast<MemSDNode>(N);
1184 
1185   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1186 }
1187 
1188 TargetLoweringBase::LegalizeTypeAction
1189 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1190   if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
1191     return TypeSplitVector;
1192 
1193   return TargetLoweringBase::getPreferredVectorAction(VT);
1194 }
1195 
1196 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1197                                                          Type *Ty) const {
1198   // FIXME: Could be smarter if called for vector constants.
1199   return true;
1200 }
1201 
1202 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1203   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1204     switch (Op) {
1205     case ISD::LOAD:
1206     case ISD::STORE:
1207 
1208     // These operations are done with 32-bit instructions anyway.
1209     case ISD::AND:
1210     case ISD::OR:
1211     case ISD::XOR:
1212     case ISD::SELECT:
1213       // TODO: Extensions?
1214       return true;
1215     default:
1216       return false;
1217     }
1218   }
1219 
1220   // SimplifySetCC uses this function to determine whether or not it should
1221   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1222   if (VT == MVT::i1 && Op == ISD::SETCC)
1223     return false;
1224 
1225   return TargetLowering::isTypeDesirableForOp(Op, VT);
1226 }
1227 
1228 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1229                                                    const SDLoc &SL,
1230                                                    SDValue Chain,
1231                                                    uint64_t Offset) const {
1232   const DataLayout &DL = DAG.getDataLayout();
1233   MachineFunction &MF = DAG.getMachineFunction();
1234   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1235 
1236   const ArgDescriptor *InputPtrReg;
1237   const TargetRegisterClass *RC;
1238 
1239   std::tie(InputPtrReg, RC)
1240     = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1241 
1242   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1243   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1244   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1245     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1246 
1247   return DAG.getObjectPtrOffset(SL, BasePtr, Offset);
1248 }
1249 
1250 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1251                                             const SDLoc &SL) const {
1252   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1253                                                FIRST_IMPLICIT);
1254   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1255 }
1256 
1257 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1258                                          const SDLoc &SL, SDValue Val,
1259                                          bool Signed,
1260                                          const ISD::InputArg *Arg) const {
1261   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1262       VT.bitsLT(MemVT)) {
1263     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1264     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1265   }
1266 
1267   if (MemVT.isFloatingPoint())
1268     Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
1269   else if (Signed)
1270     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1271   else
1272     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1273 
1274   return Val;
1275 }
1276 
1277 SDValue SITargetLowering::lowerKernargMemParameter(
1278   SelectionDAG &DAG, EVT VT, EVT MemVT,
1279   const SDLoc &SL, SDValue Chain,
1280   uint64_t Offset, unsigned Align, bool Signed,
1281   const ISD::InputArg *Arg) const {
1282   Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
1283   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
1284   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
1285 
1286   // Try to avoid using an extload by loading earlier than the argument address,
1287   // and extracting the relevant bits. The load should hopefully be merged with
1288   // the previous argument.
1289   if (MemVT.getStoreSize() < 4 && Align < 4) {
1290     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1291     int64_t AlignDownOffset = alignDown(Offset, 4);
1292     int64_t OffsetDiff = Offset - AlignDownOffset;
1293 
1294     EVT IntVT = MemVT.changeTypeToInteger();
1295 
1296     // TODO: If we passed in the base kernel offset we could have a better
1297     // alignment than 4, but we don't really need it.
1298     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1299     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4,
1300                                MachineMemOperand::MODereferenceable |
1301                                MachineMemOperand::MOInvariant);
1302 
1303     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1304     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1305 
1306     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1307     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1308     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1309 
1310 
1311     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1312   }
1313 
1314   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1315   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
1316                              MachineMemOperand::MODereferenceable |
1317                              MachineMemOperand::MOInvariant);
1318 
1319   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1320   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1321 }
1322 
1323 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1324                                               const SDLoc &SL, SDValue Chain,
1325                                               const ISD::InputArg &Arg) const {
1326   MachineFunction &MF = DAG.getMachineFunction();
1327   MachineFrameInfo &MFI = MF.getFrameInfo();
1328 
1329   if (Arg.Flags.isByVal()) {
1330     unsigned Size = Arg.Flags.getByValSize();
1331     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1332     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1333   }
1334 
1335   unsigned ArgOffset = VA.getLocMemOffset();
1336   unsigned ArgSize = VA.getValVT().getStoreSize();
1337 
1338   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1339 
1340   // Create load nodes to retrieve arguments from the stack.
1341   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1342   SDValue ArgValue;
1343 
1344   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1345   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1346   MVT MemVT = VA.getValVT();
1347 
1348   switch (VA.getLocInfo()) {
1349   default:
1350     break;
1351   case CCValAssign::BCvt:
1352     MemVT = VA.getLocVT();
1353     break;
1354   case CCValAssign::SExt:
1355     ExtType = ISD::SEXTLOAD;
1356     break;
1357   case CCValAssign::ZExt:
1358     ExtType = ISD::ZEXTLOAD;
1359     break;
1360   case CCValAssign::AExt:
1361     ExtType = ISD::EXTLOAD;
1362     break;
1363   }
1364 
1365   ArgValue = DAG.getExtLoad(
1366     ExtType, SL, VA.getLocVT(), Chain, FIN,
1367     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1368     MemVT);
1369   return ArgValue;
1370 }
1371 
1372 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1373   const SIMachineFunctionInfo &MFI,
1374   EVT VT,
1375   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1376   const ArgDescriptor *Reg;
1377   const TargetRegisterClass *RC;
1378 
1379   std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
1380   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1381 }
1382 
1383 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1384                                    CallingConv::ID CallConv,
1385                                    ArrayRef<ISD::InputArg> Ins,
1386                                    BitVector &Skipped,
1387                                    FunctionType *FType,
1388                                    SIMachineFunctionInfo *Info) {
1389   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1390     const ISD::InputArg *Arg = &Ins[I];
1391 
1392     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1393            "vector type argument should have been split");
1394 
1395     // First check if it's a PS input addr.
1396     if (CallConv == CallingConv::AMDGPU_PS &&
1397         !Arg->Flags.isInReg() && !Arg->Flags.isByVal() && PSInputNum <= 15) {
1398 
1399       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1400 
1401       // Inconveniently only the first part of the split is marked as isSplit,
1402       // so skip to the end. We only want to increment PSInputNum once for the
1403       // entire split argument.
1404       if (Arg->Flags.isSplit()) {
1405         while (!Arg->Flags.isSplitEnd()) {
1406           assert(!Arg->VT.isVector() &&
1407                  "unexpected vector split in ps argument type");
1408           if (!SkipArg)
1409             Splits.push_back(*Arg);
1410           Arg = &Ins[++I];
1411         }
1412       }
1413 
1414       if (SkipArg) {
1415         // We can safely skip PS inputs.
1416         Skipped.set(Arg->getOrigArgIndex());
1417         ++PSInputNum;
1418         continue;
1419       }
1420 
1421       Info->markPSInputAllocated(PSInputNum);
1422       if (Arg->Used)
1423         Info->markPSInputEnabled(PSInputNum);
1424 
1425       ++PSInputNum;
1426     }
1427 
1428     Splits.push_back(*Arg);
1429   }
1430 }
1431 
1432 // Allocate special inputs passed in VGPRs.
1433 static void allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1434                                            MachineFunction &MF,
1435                                            const SIRegisterInfo &TRI,
1436                                            SIMachineFunctionInfo &Info) {
1437   if (Info.hasWorkItemIDX()) {
1438     unsigned Reg = AMDGPU::VGPR0;
1439     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1440 
1441     CCInfo.AllocateReg(Reg);
1442     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1443   }
1444 
1445   if (Info.hasWorkItemIDY()) {
1446     unsigned Reg = AMDGPU::VGPR1;
1447     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1448 
1449     CCInfo.AllocateReg(Reg);
1450     Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1451   }
1452 
1453   if (Info.hasWorkItemIDZ()) {
1454     unsigned Reg = AMDGPU::VGPR2;
1455     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1456 
1457     CCInfo.AllocateReg(Reg);
1458     Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1459   }
1460 }
1461 
1462 // Try to allocate a VGPR at the end of the argument list, or if no argument
1463 // VGPRs are left allocating a stack slot.
1464 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo) {
1465   ArrayRef<MCPhysReg> ArgVGPRs
1466     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1467   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1468   if (RegIdx == ArgVGPRs.size()) {
1469     // Spill to stack required.
1470     int64_t Offset = CCInfo.AllocateStack(4, 4);
1471 
1472     return ArgDescriptor::createStack(Offset);
1473   }
1474 
1475   unsigned Reg = ArgVGPRs[RegIdx];
1476   Reg = CCInfo.AllocateReg(Reg);
1477   assert(Reg != AMDGPU::NoRegister);
1478 
1479   MachineFunction &MF = CCInfo.getMachineFunction();
1480   MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1481   return ArgDescriptor::createRegister(Reg);
1482 }
1483 
1484 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1485                                              const TargetRegisterClass *RC,
1486                                              unsigned NumArgRegs) {
1487   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1488   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1489   if (RegIdx == ArgSGPRs.size())
1490     report_fatal_error("ran out of SGPRs for arguments");
1491 
1492   unsigned Reg = ArgSGPRs[RegIdx];
1493   Reg = CCInfo.AllocateReg(Reg);
1494   assert(Reg != AMDGPU::NoRegister);
1495 
1496   MachineFunction &MF = CCInfo.getMachineFunction();
1497   MF.addLiveIn(Reg, RC);
1498   return ArgDescriptor::createRegister(Reg);
1499 }
1500 
1501 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1502   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1503 }
1504 
1505 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1506   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1507 }
1508 
1509 static void allocateSpecialInputVGPRs(CCState &CCInfo,
1510                                       MachineFunction &MF,
1511                                       const SIRegisterInfo &TRI,
1512                                       SIMachineFunctionInfo &Info) {
1513   if (Info.hasWorkItemIDX())
1514     Info.setWorkItemIDX(allocateVGPR32Input(CCInfo));
1515 
1516   if (Info.hasWorkItemIDY())
1517     Info.setWorkItemIDY(allocateVGPR32Input(CCInfo));
1518 
1519   if (Info.hasWorkItemIDZ())
1520     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo));
1521 }
1522 
1523 static void allocateSpecialInputSGPRs(CCState &CCInfo,
1524                                       MachineFunction &MF,
1525                                       const SIRegisterInfo &TRI,
1526                                       SIMachineFunctionInfo &Info) {
1527   auto &ArgInfo = Info.getArgInfo();
1528 
1529   // TODO: Unify handling with private memory pointers.
1530 
1531   if (Info.hasDispatchPtr())
1532     ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1533 
1534   if (Info.hasQueuePtr())
1535     ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1536 
1537   if (Info.hasKernargSegmentPtr())
1538     ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
1539 
1540   if (Info.hasDispatchID())
1541     ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1542 
1543   // flat_scratch_init is not applicable for non-kernel functions.
1544 
1545   if (Info.hasWorkGroupIDX())
1546     ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1547 
1548   if (Info.hasWorkGroupIDY())
1549     ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1550 
1551   if (Info.hasWorkGroupIDZ())
1552     ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1553 
1554   if (Info.hasImplicitArgPtr())
1555     ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1556 }
1557 
1558 // Allocate special inputs passed in user SGPRs.
1559 static void allocateHSAUserSGPRs(CCState &CCInfo,
1560                                  MachineFunction &MF,
1561                                  const SIRegisterInfo &TRI,
1562                                  SIMachineFunctionInfo &Info) {
1563   if (Info.hasImplicitBufferPtr()) {
1564     unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1565     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1566     CCInfo.AllocateReg(ImplicitBufferPtrReg);
1567   }
1568 
1569   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1570   if (Info.hasPrivateSegmentBuffer()) {
1571     unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1572     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1573     CCInfo.AllocateReg(PrivateSegmentBufferReg);
1574   }
1575 
1576   if (Info.hasDispatchPtr()) {
1577     unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
1578     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1579     CCInfo.AllocateReg(DispatchPtrReg);
1580   }
1581 
1582   if (Info.hasQueuePtr()) {
1583     unsigned QueuePtrReg = Info.addQueuePtr(TRI);
1584     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1585     CCInfo.AllocateReg(QueuePtrReg);
1586   }
1587 
1588   if (Info.hasKernargSegmentPtr()) {
1589     unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI);
1590     MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1591     CCInfo.AllocateReg(InputPtrReg);
1592   }
1593 
1594   if (Info.hasDispatchID()) {
1595     unsigned DispatchIDReg = Info.addDispatchID(TRI);
1596     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1597     CCInfo.AllocateReg(DispatchIDReg);
1598   }
1599 
1600   if (Info.hasFlatScratchInit()) {
1601     unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1602     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1603     CCInfo.AllocateReg(FlatScratchInitReg);
1604   }
1605 
1606   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1607   // these from the dispatch pointer.
1608 }
1609 
1610 // Allocate special input registers that are initialized per-wave.
1611 static void allocateSystemSGPRs(CCState &CCInfo,
1612                                 MachineFunction &MF,
1613                                 SIMachineFunctionInfo &Info,
1614                                 CallingConv::ID CallConv,
1615                                 bool IsShader) {
1616   if (Info.hasWorkGroupIDX()) {
1617     unsigned Reg = Info.addWorkGroupIDX();
1618     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1619     CCInfo.AllocateReg(Reg);
1620   }
1621 
1622   if (Info.hasWorkGroupIDY()) {
1623     unsigned Reg = Info.addWorkGroupIDY();
1624     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1625     CCInfo.AllocateReg(Reg);
1626   }
1627 
1628   if (Info.hasWorkGroupIDZ()) {
1629     unsigned Reg = Info.addWorkGroupIDZ();
1630     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1631     CCInfo.AllocateReg(Reg);
1632   }
1633 
1634   if (Info.hasWorkGroupInfo()) {
1635     unsigned Reg = Info.addWorkGroupInfo();
1636     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1637     CCInfo.AllocateReg(Reg);
1638   }
1639 
1640   if (Info.hasPrivateSegmentWaveByteOffset()) {
1641     // Scratch wave offset passed in system SGPR.
1642     unsigned PrivateSegmentWaveByteOffsetReg;
1643 
1644     if (IsShader) {
1645       PrivateSegmentWaveByteOffsetReg =
1646         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
1647 
1648       // This is true if the scratch wave byte offset doesn't have a fixed
1649       // location.
1650       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
1651         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1652         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1653       }
1654     } else
1655       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
1656 
1657     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1658     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1659   }
1660 }
1661 
1662 static void reservePrivateMemoryRegs(const TargetMachine &TM,
1663                                      MachineFunction &MF,
1664                                      const SIRegisterInfo &TRI,
1665                                      SIMachineFunctionInfo &Info) {
1666   // Now that we've figured out where the scratch register inputs are, see if
1667   // should reserve the arguments and use them directly.
1668   MachineFrameInfo &MFI = MF.getFrameInfo();
1669   bool HasStackObjects = MFI.hasStackObjects();
1670 
1671   // Record that we know we have non-spill stack objects so we don't need to
1672   // check all stack objects later.
1673   if (HasStackObjects)
1674     Info.setHasNonSpillStackObjects(true);
1675 
1676   // Everything live out of a block is spilled with fast regalloc, so it's
1677   // almost certain that spilling will be required.
1678   if (TM.getOptLevel() == CodeGenOpt::None)
1679     HasStackObjects = true;
1680 
1681   // For now assume stack access is needed in any callee functions, so we need
1682   // the scratch registers to pass in.
1683   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
1684 
1685   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1686   if (ST.isAmdHsaOrMesa(MF.getFunction())) {
1687     if (RequiresStackAccess) {
1688       // If we have stack objects, we unquestionably need the private buffer
1689       // resource. For the Code Object V2 ABI, this will be the first 4 user
1690       // SGPR inputs. We can reserve those and use them directly.
1691 
1692       unsigned PrivateSegmentBufferReg = Info.getPreloadedReg(
1693         AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
1694       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
1695 
1696       if (MFI.hasCalls()) {
1697         // If we have calls, we need to keep the frame register in a register
1698         // that won't be clobbered by a call, so ensure it is copied somewhere.
1699 
1700         // This is not a problem for the scratch wave offset, because the same
1701         // registers are reserved in all functions.
1702 
1703         // FIXME: Nothing is really ensuring this is a call preserved register,
1704         // it's just selected from the end so it happens to be.
1705         unsigned ReservedOffsetReg
1706           = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1707         Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1708       } else {
1709         unsigned PrivateSegmentWaveByteOffsetReg = Info.getPreloadedReg(
1710           AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1711         Info.setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
1712       }
1713     } else {
1714       unsigned ReservedBufferReg
1715         = TRI.reservedPrivateSegmentBufferReg(MF);
1716       unsigned ReservedOffsetReg
1717         = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1718 
1719       // We tentatively reserve the last registers (skipping the last two
1720       // which may contain VCC). After register allocation, we'll replace
1721       // these with the ones immediately after those which were really
1722       // allocated. In the prologue copies will be inserted from the argument
1723       // to these reserved registers.
1724       Info.setScratchRSrcReg(ReservedBufferReg);
1725       Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1726     }
1727   } else {
1728     unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
1729 
1730     // Without HSA, relocations are used for the scratch pointer and the
1731     // buffer resource setup is always inserted in the prologue. Scratch wave
1732     // offset is still in an input SGPR.
1733     Info.setScratchRSrcReg(ReservedBufferReg);
1734 
1735     if (HasStackObjects && !MFI.hasCalls()) {
1736       unsigned ScratchWaveOffsetReg = Info.getPreloadedReg(
1737         AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1738       Info.setScratchWaveOffsetReg(ScratchWaveOffsetReg);
1739     } else {
1740       unsigned ReservedOffsetReg
1741         = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1742       Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1743     }
1744   }
1745 }
1746 
1747 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
1748   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
1749   return !Info->isEntryFunction();
1750 }
1751 
1752 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
1753 
1754 }
1755 
1756 void SITargetLowering::insertCopiesSplitCSR(
1757   MachineBasicBlock *Entry,
1758   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
1759   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1760 
1761   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
1762   if (!IStart)
1763     return;
1764 
1765   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1766   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
1767   MachineBasicBlock::iterator MBBI = Entry->begin();
1768   for (const MCPhysReg *I = IStart; *I; ++I) {
1769     const TargetRegisterClass *RC = nullptr;
1770     if (AMDGPU::SReg_64RegClass.contains(*I))
1771       RC = &AMDGPU::SGPR_64RegClass;
1772     else if (AMDGPU::SReg_32RegClass.contains(*I))
1773       RC = &AMDGPU::SGPR_32RegClass;
1774     else
1775       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
1776 
1777     unsigned NewVR = MRI->createVirtualRegister(RC);
1778     // Create copy from CSR to a virtual register.
1779     Entry->addLiveIn(*I);
1780     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
1781       .addReg(*I);
1782 
1783     // Insert the copy-back instructions right before the terminator.
1784     for (auto *Exit : Exits)
1785       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
1786               TII->get(TargetOpcode::COPY), *I)
1787         .addReg(NewVR);
1788   }
1789 }
1790 
1791 SDValue SITargetLowering::LowerFormalArguments(
1792     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1793     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1794     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1795   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1796 
1797   MachineFunction &MF = DAG.getMachineFunction();
1798   const Function &Fn = MF.getFunction();
1799   FunctionType *FType = MF.getFunction().getFunctionType();
1800   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1801   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1802 
1803   if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
1804     DiagnosticInfoUnsupported NoGraphicsHSA(
1805         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
1806     DAG.getContext()->diagnose(NoGraphicsHSA);
1807     return DAG.getEntryNode();
1808   }
1809 
1810   // Create stack objects that are used for emitting debugger prologue if
1811   // "amdgpu-debugger-emit-prologue" attribute was specified.
1812   if (ST.debuggerEmitPrologue())
1813     createDebuggerPrologueStackObjects(MF);
1814 
1815   SmallVector<ISD::InputArg, 16> Splits;
1816   SmallVector<CCValAssign, 16> ArgLocs;
1817   BitVector Skipped(Ins.size());
1818   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1819                  *DAG.getContext());
1820 
1821   bool IsShader = AMDGPU::isShader(CallConv);
1822   bool IsKernel = AMDGPU::isKernel(CallConv);
1823   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
1824 
1825   if (!IsEntryFunc) {
1826     // 4 bytes are reserved at offset 0 for the emergency stack slot. Skip over
1827     // this when allocating argument fixed offsets.
1828     CCInfo.AllocateStack(4, 4);
1829   }
1830 
1831   if (IsShader) {
1832     processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
1833 
1834     // At least one interpolation mode must be enabled or else the GPU will
1835     // hang.
1836     //
1837     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
1838     // set PSInputAddr, the user wants to enable some bits after the compilation
1839     // based on run-time states. Since we can't know what the final PSInputEna
1840     // will look like, so we shouldn't do anything here and the user should take
1841     // responsibility for the correct programming.
1842     //
1843     // Otherwise, the following restrictions apply:
1844     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
1845     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
1846     //   enabled too.
1847     if (CallConv == CallingConv::AMDGPU_PS) {
1848       if ((Info->getPSInputAddr() & 0x7F) == 0 ||
1849            ((Info->getPSInputAddr() & 0xF) == 0 &&
1850             Info->isPSInputAllocated(11))) {
1851         CCInfo.AllocateReg(AMDGPU::VGPR0);
1852         CCInfo.AllocateReg(AMDGPU::VGPR1);
1853         Info->markPSInputAllocated(0);
1854         Info->markPSInputEnabled(0);
1855       }
1856       if (Subtarget->isAmdPalOS()) {
1857         // For isAmdPalOS, the user does not enable some bits after compilation
1858         // based on run-time states; the register values being generated here are
1859         // the final ones set in hardware. Therefore we need to apply the
1860         // workaround to PSInputAddr and PSInputEnable together.  (The case where
1861         // a bit is set in PSInputAddr but not PSInputEnable is where the
1862         // frontend set up an input arg for a particular interpolation mode, but
1863         // nothing uses that input arg. Really we should have an earlier pass
1864         // that removes such an arg.)
1865         unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
1866         if ((PsInputBits & 0x7F) == 0 ||
1867             ((PsInputBits & 0xF) == 0 &&
1868              (PsInputBits >> 11 & 1)))
1869           Info->markPSInputEnabled(
1870               countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
1871       }
1872     }
1873 
1874     assert(!Info->hasDispatchPtr() &&
1875            !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
1876            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
1877            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
1878            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
1879            !Info->hasWorkItemIDZ());
1880   } else if (IsKernel) {
1881     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
1882   } else {
1883     Splits.append(Ins.begin(), Ins.end());
1884   }
1885 
1886   if (IsEntryFunc) {
1887     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
1888     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
1889   }
1890 
1891   if (IsKernel) {
1892     analyzeFormalArgumentsCompute(CCInfo, Ins);
1893   } else {
1894     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
1895     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
1896   }
1897 
1898   SmallVector<SDValue, 16> Chains;
1899 
1900   // FIXME: This is the minimum kernel argument alignment. We should improve
1901   // this to the maximum alignment of the arguments.
1902   //
1903   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
1904   // kern arg offset.
1905   const unsigned KernelArgBaseAlign = 16;
1906 
1907    for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
1908     const ISD::InputArg &Arg = Ins[i];
1909     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
1910       InVals.push_back(DAG.getUNDEF(Arg.VT));
1911       continue;
1912     }
1913 
1914     CCValAssign &VA = ArgLocs[ArgIdx++];
1915     MVT VT = VA.getLocVT();
1916 
1917     if (IsEntryFunc && VA.isMemLoc()) {
1918       VT = Ins[i].VT;
1919       EVT MemVT = VA.getLocVT();
1920 
1921       const uint64_t Offset = VA.getLocMemOffset();
1922       unsigned Align = MinAlign(KernelArgBaseAlign, Offset);
1923 
1924       SDValue Arg = lowerKernargMemParameter(
1925         DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]);
1926       Chains.push_back(Arg.getValue(1));
1927 
1928       auto *ParamTy =
1929         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
1930       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
1931           ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
1932         // On SI local pointers are just offsets into LDS, so they are always
1933         // less than 16-bits.  On CI and newer they could potentially be
1934         // real pointers, so we can't guarantee their size.
1935         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
1936                           DAG.getValueType(MVT::i16));
1937       }
1938 
1939       InVals.push_back(Arg);
1940       continue;
1941     } else if (!IsEntryFunc && VA.isMemLoc()) {
1942       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
1943       InVals.push_back(Val);
1944       if (!Arg.Flags.isByVal())
1945         Chains.push_back(Val.getValue(1));
1946       continue;
1947     }
1948 
1949     assert(VA.isRegLoc() && "Parameter must be in a register!");
1950 
1951     unsigned Reg = VA.getLocReg();
1952     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
1953     EVT ValVT = VA.getValVT();
1954 
1955     Reg = MF.addLiveIn(Reg, RC);
1956     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1957 
1958     if (Arg.Flags.isSRet() && !getSubtarget()->enableHugePrivateBuffer()) {
1959       // The return object should be reasonably addressable.
1960 
1961       // FIXME: This helps when the return is a real sret. If it is a
1962       // automatically inserted sret (i.e. CanLowerReturn returns false), an
1963       // extra copy is inserted in SelectionDAGBuilder which obscures this.
1964       unsigned NumBits = 32 - AssumeFrameIndexHighZeroBits;
1965       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
1966         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
1967     }
1968 
1969     // If this is an 8 or 16-bit value, it is really passed promoted
1970     // to 32 bits. Insert an assert[sz]ext to capture this, then
1971     // truncate to the right size.
1972     switch (VA.getLocInfo()) {
1973     case CCValAssign::Full:
1974       break;
1975     case CCValAssign::BCvt:
1976       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
1977       break;
1978     case CCValAssign::SExt:
1979       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
1980                         DAG.getValueType(ValVT));
1981       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
1982       break;
1983     case CCValAssign::ZExt:
1984       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
1985                         DAG.getValueType(ValVT));
1986       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
1987       break;
1988     case CCValAssign::AExt:
1989       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
1990       break;
1991     default:
1992       llvm_unreachable("Unknown loc info!");
1993     }
1994 
1995     InVals.push_back(Val);
1996   }
1997 
1998   if (!IsEntryFunc) {
1999     // Special inputs come after user arguments.
2000     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2001   }
2002 
2003   // Start adding system SGPRs.
2004   if (IsEntryFunc) {
2005     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
2006   } else {
2007     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2008     CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
2009     CCInfo.AllocateReg(Info->getFrameOffsetReg());
2010     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2011   }
2012 
2013   auto &ArgUsageInfo =
2014     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2015   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2016 
2017   unsigned StackArgSize = CCInfo.getNextStackOffset();
2018   Info->setBytesInStackArgArea(StackArgSize);
2019 
2020   return Chains.empty() ? Chain :
2021     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2022 }
2023 
2024 // TODO: If return values can't fit in registers, we should return as many as
2025 // possible in registers before passing on stack.
2026 bool SITargetLowering::CanLowerReturn(
2027   CallingConv::ID CallConv,
2028   MachineFunction &MF, bool IsVarArg,
2029   const SmallVectorImpl<ISD::OutputArg> &Outs,
2030   LLVMContext &Context) const {
2031   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2032   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2033   // for shaders. Vector types should be explicitly handled by CC.
2034   if (AMDGPU::isEntryFunctionCC(CallConv))
2035     return true;
2036 
2037   SmallVector<CCValAssign, 16> RVLocs;
2038   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2039   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2040 }
2041 
2042 SDValue
2043 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2044                               bool isVarArg,
2045                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2046                               const SmallVectorImpl<SDValue> &OutVals,
2047                               const SDLoc &DL, SelectionDAG &DAG) const {
2048   MachineFunction &MF = DAG.getMachineFunction();
2049   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2050 
2051   if (AMDGPU::isKernel(CallConv)) {
2052     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2053                                              OutVals, DL, DAG);
2054   }
2055 
2056   bool IsShader = AMDGPU::isShader(CallConv);
2057 
2058   Info->setIfReturnsVoid(Outs.empty());
2059   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2060 
2061   // CCValAssign - represent the assignment of the return value to a location.
2062   SmallVector<CCValAssign, 48> RVLocs;
2063   SmallVector<ISD::OutputArg, 48> Splits;
2064 
2065   // CCState - Info about the registers and stack slots.
2066   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2067                  *DAG.getContext());
2068 
2069   // Analyze outgoing return values.
2070   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2071 
2072   SDValue Flag;
2073   SmallVector<SDValue, 48> RetOps;
2074   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2075 
2076   // Add return address for callable functions.
2077   if (!Info->isEntryFunction()) {
2078     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2079     SDValue ReturnAddrReg = CreateLiveInRegister(
2080       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2081 
2082     // FIXME: Should be able to use a vreg here, but need a way to prevent it
2083     // from being allcoated to a CSR.
2084 
2085     SDValue PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2086                                                 MVT::i64);
2087 
2088     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, Flag);
2089     Flag = Chain.getValue(1);
2090 
2091     RetOps.push_back(PhysReturnAddrReg);
2092   }
2093 
2094   // Copy the result values into the output registers.
2095   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2096        ++I, ++RealRVLocIdx) {
2097     CCValAssign &VA = RVLocs[I];
2098     assert(VA.isRegLoc() && "Can only return in registers!");
2099     // TODO: Partially return in registers if return values don't fit.
2100     SDValue Arg = OutVals[RealRVLocIdx];
2101 
2102     // Copied from other backends.
2103     switch (VA.getLocInfo()) {
2104     case CCValAssign::Full:
2105       break;
2106     case CCValAssign::BCvt:
2107       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2108       break;
2109     case CCValAssign::SExt:
2110       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2111       break;
2112     case CCValAssign::ZExt:
2113       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2114       break;
2115     case CCValAssign::AExt:
2116       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2117       break;
2118     default:
2119       llvm_unreachable("Unknown loc info!");
2120     }
2121 
2122     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2123     Flag = Chain.getValue(1);
2124     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2125   }
2126 
2127   // FIXME: Does sret work properly?
2128   if (!Info->isEntryFunction()) {
2129     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2130     const MCPhysReg *I =
2131       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2132     if (I) {
2133       for (; *I; ++I) {
2134         if (AMDGPU::SReg_64RegClass.contains(*I))
2135           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2136         else if (AMDGPU::SReg_32RegClass.contains(*I))
2137           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2138         else
2139           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2140       }
2141     }
2142   }
2143 
2144   // Update chain and glue.
2145   RetOps[0] = Chain;
2146   if (Flag.getNode())
2147     RetOps.push_back(Flag);
2148 
2149   unsigned Opc = AMDGPUISD::ENDPGM;
2150   if (!IsWaveEnd)
2151     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2152   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2153 }
2154 
2155 SDValue SITargetLowering::LowerCallResult(
2156     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2157     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2158     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2159     SDValue ThisVal) const {
2160   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2161 
2162   // Assign locations to each value returned by this call.
2163   SmallVector<CCValAssign, 16> RVLocs;
2164   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2165                  *DAG.getContext());
2166   CCInfo.AnalyzeCallResult(Ins, RetCC);
2167 
2168   // Copy all of the result registers out of their specified physreg.
2169   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2170     CCValAssign VA = RVLocs[i];
2171     SDValue Val;
2172 
2173     if (VA.isRegLoc()) {
2174       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2175       Chain = Val.getValue(1);
2176       InFlag = Val.getValue(2);
2177     } else if (VA.isMemLoc()) {
2178       report_fatal_error("TODO: return values in memory");
2179     } else
2180       llvm_unreachable("unknown argument location type");
2181 
2182     switch (VA.getLocInfo()) {
2183     case CCValAssign::Full:
2184       break;
2185     case CCValAssign::BCvt:
2186       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2187       break;
2188     case CCValAssign::ZExt:
2189       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2190                         DAG.getValueType(VA.getValVT()));
2191       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2192       break;
2193     case CCValAssign::SExt:
2194       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2195                         DAG.getValueType(VA.getValVT()));
2196       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2197       break;
2198     case CCValAssign::AExt:
2199       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2200       break;
2201     default:
2202       llvm_unreachable("Unknown loc info!");
2203     }
2204 
2205     InVals.push_back(Val);
2206   }
2207 
2208   return Chain;
2209 }
2210 
2211 // Add code to pass special inputs required depending on used features separate
2212 // from the explicit user arguments present in the IR.
2213 void SITargetLowering::passSpecialInputs(
2214     CallLoweringInfo &CLI,
2215     CCState &CCInfo,
2216     const SIMachineFunctionInfo &Info,
2217     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2218     SmallVectorImpl<SDValue> &MemOpChains,
2219     SDValue Chain) const {
2220   // If we don't have a call site, this was a call inserted by
2221   // legalization. These can never use special inputs.
2222   if (!CLI.CS)
2223     return;
2224 
2225   const Function *CalleeFunc = CLI.CS.getCalledFunction();
2226   assert(CalleeFunc);
2227 
2228   SelectionDAG &DAG = CLI.DAG;
2229   const SDLoc &DL = CLI.DL;
2230 
2231   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2232 
2233   auto &ArgUsageInfo =
2234     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2235   const AMDGPUFunctionArgInfo &CalleeArgInfo
2236     = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2237 
2238   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2239 
2240   // TODO: Unify with private memory register handling. This is complicated by
2241   // the fact that at least in kernels, the input argument is not necessarily
2242   // in the same location as the input.
2243   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2244     AMDGPUFunctionArgInfo::DISPATCH_PTR,
2245     AMDGPUFunctionArgInfo::QUEUE_PTR,
2246     AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
2247     AMDGPUFunctionArgInfo::DISPATCH_ID,
2248     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2249     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2250     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
2251     AMDGPUFunctionArgInfo::WORKITEM_ID_X,
2252     AMDGPUFunctionArgInfo::WORKITEM_ID_Y,
2253     AMDGPUFunctionArgInfo::WORKITEM_ID_Z,
2254     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
2255   };
2256 
2257   for (auto InputID : InputRegs) {
2258     const ArgDescriptor *OutgoingArg;
2259     const TargetRegisterClass *ArgRC;
2260 
2261     std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
2262     if (!OutgoingArg)
2263       continue;
2264 
2265     const ArgDescriptor *IncomingArg;
2266     const TargetRegisterClass *IncomingArgRC;
2267     std::tie(IncomingArg, IncomingArgRC)
2268       = CallerArgInfo.getPreloadedValue(InputID);
2269     assert(IncomingArgRC == ArgRC);
2270 
2271     // All special arguments are ints for now.
2272     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2273     SDValue InputReg;
2274 
2275     if (IncomingArg) {
2276       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2277     } else {
2278       // The implicit arg ptr is special because it doesn't have a corresponding
2279       // input for kernels, and is computed from the kernarg segment pointer.
2280       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2281       InputReg = getImplicitArgPtr(DAG, DL);
2282     }
2283 
2284     if (OutgoingArg->isRegister()) {
2285       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2286     } else {
2287       unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4);
2288       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2289                                               SpecialArgOffset);
2290       MemOpChains.push_back(ArgStore);
2291     }
2292   }
2293 }
2294 
2295 static bool canGuaranteeTCO(CallingConv::ID CC) {
2296   return CC == CallingConv::Fast;
2297 }
2298 
2299 /// Return true if we might ever do TCO for calls with this calling convention.
2300 static bool mayTailCallThisCC(CallingConv::ID CC) {
2301   switch (CC) {
2302   case CallingConv::C:
2303     return true;
2304   default:
2305     return canGuaranteeTCO(CC);
2306   }
2307 }
2308 
2309 bool SITargetLowering::isEligibleForTailCallOptimization(
2310     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2311     const SmallVectorImpl<ISD::OutputArg> &Outs,
2312     const SmallVectorImpl<SDValue> &OutVals,
2313     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2314   if (!mayTailCallThisCC(CalleeCC))
2315     return false;
2316 
2317   MachineFunction &MF = DAG.getMachineFunction();
2318   const Function &CallerF = MF.getFunction();
2319   CallingConv::ID CallerCC = CallerF.getCallingConv();
2320   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2321   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2322 
2323   // Kernels aren't callable, and don't have a live in return address so it
2324   // doesn't make sense to do a tail call with entry functions.
2325   if (!CallerPreserved)
2326     return false;
2327 
2328   bool CCMatch = CallerCC == CalleeCC;
2329 
2330   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2331     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2332       return true;
2333     return false;
2334   }
2335 
2336   // TODO: Can we handle var args?
2337   if (IsVarArg)
2338     return false;
2339 
2340   for (const Argument &Arg : CallerF.args()) {
2341     if (Arg.hasByValAttr())
2342       return false;
2343   }
2344 
2345   LLVMContext &Ctx = *DAG.getContext();
2346 
2347   // Check that the call results are passed in the same way.
2348   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2349                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2350                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2351     return false;
2352 
2353   // The callee has to preserve all registers the caller needs to preserve.
2354   if (!CCMatch) {
2355     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2356     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2357       return false;
2358   }
2359 
2360   // Nothing more to check if the callee is taking no arguments.
2361   if (Outs.empty())
2362     return true;
2363 
2364   SmallVector<CCValAssign, 16> ArgLocs;
2365   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2366 
2367   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2368 
2369   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2370   // If the stack arguments for this call do not fit into our own save area then
2371   // the call cannot be made tail.
2372   // TODO: Is this really necessary?
2373   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2374     return false;
2375 
2376   const MachineRegisterInfo &MRI = MF.getRegInfo();
2377   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2378 }
2379 
2380 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2381   if (!CI->isTailCall())
2382     return false;
2383 
2384   const Function *ParentFn = CI->getParent()->getParent();
2385   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2386     return false;
2387 
2388   auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
2389   return (Attr.getValueAsString() != "true");
2390 }
2391 
2392 // The wave scratch offset register is used as the global base pointer.
2393 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2394                                     SmallVectorImpl<SDValue> &InVals) const {
2395   SelectionDAG &DAG = CLI.DAG;
2396   const SDLoc &DL = CLI.DL;
2397   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2398   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2399   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2400   SDValue Chain = CLI.Chain;
2401   SDValue Callee = CLI.Callee;
2402   bool &IsTailCall = CLI.IsTailCall;
2403   CallingConv::ID CallConv = CLI.CallConv;
2404   bool IsVarArg = CLI.IsVarArg;
2405   bool IsSibCall = false;
2406   bool IsThisReturn = false;
2407   MachineFunction &MF = DAG.getMachineFunction();
2408 
2409   if (IsVarArg) {
2410     return lowerUnhandledCall(CLI, InVals,
2411                               "unsupported call to variadic function ");
2412   }
2413 
2414   if (!CLI.CS.getInstruction())
2415     report_fatal_error("unsupported libcall legalization");
2416 
2417   if (!CLI.CS.getCalledFunction()) {
2418     return lowerUnhandledCall(CLI, InVals,
2419                               "unsupported indirect call to function ");
2420   }
2421 
2422   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2423     return lowerUnhandledCall(CLI, InVals,
2424                               "unsupported required tail call to function ");
2425   }
2426 
2427   if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
2428     // Note the issue is with the CC of the calling function, not of the call
2429     // itself.
2430     return lowerUnhandledCall(CLI, InVals,
2431                           "unsupported call from graphics shader of function ");
2432   }
2433 
2434   // The first 4 bytes are reserved for the callee's emergency stack slot.
2435   if (IsTailCall) {
2436     IsTailCall = isEligibleForTailCallOptimization(
2437       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2438     if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
2439       report_fatal_error("failed to perform tail call elimination on a call "
2440                          "site marked musttail");
2441     }
2442 
2443     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2444 
2445     // A sibling call is one where we're under the usual C ABI and not planning
2446     // to change that but can still do a tail call:
2447     if (!TailCallOpt && IsTailCall)
2448       IsSibCall = true;
2449 
2450     if (IsTailCall)
2451       ++NumTailCalls;
2452   }
2453 
2454   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2455 
2456   // Analyze operands of the call, assigning locations to each operand.
2457   SmallVector<CCValAssign, 16> ArgLocs;
2458   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2459   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2460 
2461   // The first 4 bytes are reserved for the callee's emergency stack slot.
2462   CCInfo.AllocateStack(4, 4);
2463 
2464   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2465 
2466   // Get a count of how many bytes are to be pushed on the stack.
2467   unsigned NumBytes = CCInfo.getNextStackOffset();
2468 
2469   if (IsSibCall) {
2470     // Since we're not changing the ABI to make this a tail call, the memory
2471     // operands are already available in the caller's incoming argument space.
2472     NumBytes = 0;
2473   }
2474 
2475   // FPDiff is the byte offset of the call's argument area from the callee's.
2476   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2477   // by this amount for a tail call. In a sibling call it must be 0 because the
2478   // caller will deallocate the entire stack and the callee still expects its
2479   // arguments to begin at SP+0. Completely unused for non-tail calls.
2480   int32_t FPDiff = 0;
2481   MachineFrameInfo &MFI = MF.getFrameInfo();
2482   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2483 
2484   SDValue CallerSavedFP;
2485 
2486   // Adjust the stack pointer for the new arguments...
2487   // These operations are automatically eliminated by the prolog/epilog pass
2488   if (!IsSibCall) {
2489     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2490 
2491     unsigned OffsetReg = Info->getScratchWaveOffsetReg();
2492 
2493     // In the HSA case, this should be an identity copy.
2494     SDValue ScratchRSrcReg
2495       = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2496     RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2497 
2498     // TODO: Don't hardcode these registers and get from the callee function.
2499     SDValue ScratchWaveOffsetReg
2500       = DAG.getCopyFromReg(Chain, DL, OffsetReg, MVT::i32);
2501     RegsToPass.emplace_back(AMDGPU::SGPR4, ScratchWaveOffsetReg);
2502 
2503     if (!Info->isEntryFunction()) {
2504       // Avoid clobbering this function's FP value. In the current convention
2505       // callee will overwrite this, so do save/restore around the call site.
2506       CallerSavedFP = DAG.getCopyFromReg(Chain, DL,
2507                                          Info->getFrameOffsetReg(), MVT::i32);
2508     }
2509   }
2510 
2511   SmallVector<SDValue, 8> MemOpChains;
2512   MVT PtrVT = MVT::i32;
2513 
2514   // Walk the register/memloc assignments, inserting copies/loads.
2515   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2516        ++i, ++realArgIdx) {
2517     CCValAssign &VA = ArgLocs[i];
2518     SDValue Arg = OutVals[realArgIdx];
2519 
2520     // Promote the value if needed.
2521     switch (VA.getLocInfo()) {
2522     case CCValAssign::Full:
2523       break;
2524     case CCValAssign::BCvt:
2525       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2526       break;
2527     case CCValAssign::ZExt:
2528       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2529       break;
2530     case CCValAssign::SExt:
2531       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2532       break;
2533     case CCValAssign::AExt:
2534       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2535       break;
2536     case CCValAssign::FPExt:
2537       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2538       break;
2539     default:
2540       llvm_unreachable("Unknown loc info!");
2541     }
2542 
2543     if (VA.isRegLoc()) {
2544       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2545     } else {
2546       assert(VA.isMemLoc());
2547 
2548       SDValue DstAddr;
2549       MachinePointerInfo DstInfo;
2550 
2551       unsigned LocMemOffset = VA.getLocMemOffset();
2552       int32_t Offset = LocMemOffset;
2553 
2554       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
2555       unsigned Align = 0;
2556 
2557       if (IsTailCall) {
2558         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2559         unsigned OpSize = Flags.isByVal() ?
2560           Flags.getByValSize() : VA.getValVT().getStoreSize();
2561 
2562         // FIXME: We can have better than the minimum byval required alignment.
2563         Align = Flags.isByVal() ? Flags.getByValAlign() :
2564           MinAlign(Subtarget->getStackAlignment(), Offset);
2565 
2566         Offset = Offset + FPDiff;
2567         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
2568 
2569         DstAddr = DAG.getFrameIndex(FI, PtrVT);
2570         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
2571 
2572         // Make sure any stack arguments overlapping with where we're storing
2573         // are loaded before this eventual operation. Otherwise they'll be
2574         // clobbered.
2575 
2576         // FIXME: Why is this really necessary? This seems to just result in a
2577         // lot of code to copy the stack and write them back to the same
2578         // locations, which are supposed to be immutable?
2579         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
2580       } else {
2581         DstAddr = PtrOff;
2582         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
2583         Align = MinAlign(Subtarget->getStackAlignment(), LocMemOffset);
2584       }
2585 
2586       if (Outs[i].Flags.isByVal()) {
2587         SDValue SizeNode =
2588             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
2589         SDValue Cpy = DAG.getMemcpy(
2590             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2591             /*isVol = */ false, /*AlwaysInline = */ true,
2592             /*isTailCall = */ false, DstInfo,
2593             MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
2594                 *DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS))));
2595 
2596         MemOpChains.push_back(Cpy);
2597       } else {
2598         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Align);
2599         MemOpChains.push_back(Store);
2600       }
2601     }
2602   }
2603 
2604   // Copy special input registers after user input arguments.
2605   passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2606 
2607   if (!MemOpChains.empty())
2608     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2609 
2610   // Build a sequence of copy-to-reg nodes chained together with token chain
2611   // and flag operands which copy the outgoing args into the appropriate regs.
2612   SDValue InFlag;
2613   for (auto &RegToPass : RegsToPass) {
2614     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
2615                              RegToPass.second, InFlag);
2616     InFlag = Chain.getValue(1);
2617   }
2618 
2619 
2620   SDValue PhysReturnAddrReg;
2621   if (IsTailCall) {
2622     // Since the return is being combined with the call, we need to pass on the
2623     // return address.
2624 
2625     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2626     SDValue ReturnAddrReg = CreateLiveInRegister(
2627       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2628 
2629     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2630                                         MVT::i64);
2631     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
2632     InFlag = Chain.getValue(1);
2633   }
2634 
2635   // We don't usually want to end the call-sequence here because we would tidy
2636   // the frame up *after* the call, however in the ABI-changing tail-call case
2637   // we've carefully laid out the parameters so that when sp is reset they'll be
2638   // in the correct location.
2639   if (IsTailCall && !IsSibCall) {
2640     Chain = DAG.getCALLSEQ_END(Chain,
2641                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
2642                                DAG.getTargetConstant(0, DL, MVT::i32),
2643                                InFlag, DL);
2644     InFlag = Chain.getValue(1);
2645   }
2646 
2647   std::vector<SDValue> Ops;
2648   Ops.push_back(Chain);
2649   Ops.push_back(Callee);
2650 
2651   if (IsTailCall) {
2652     // Each tail call may have to adjust the stack by a different amount, so
2653     // this information must travel along with the operation for eventual
2654     // consumption by emitEpilogue.
2655     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
2656 
2657     Ops.push_back(PhysReturnAddrReg);
2658   }
2659 
2660   // Add argument registers to the end of the list so that they are known live
2661   // into the call.
2662   for (auto &RegToPass : RegsToPass) {
2663     Ops.push_back(DAG.getRegister(RegToPass.first,
2664                                   RegToPass.second.getValueType()));
2665   }
2666 
2667   // Add a register mask operand representing the call-preserved registers.
2668 
2669   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
2670   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2671   assert(Mask && "Missing call preserved mask for calling convention");
2672   Ops.push_back(DAG.getRegisterMask(Mask));
2673 
2674   if (InFlag.getNode())
2675     Ops.push_back(InFlag);
2676 
2677   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2678 
2679   // If we're doing a tall call, use a TC_RETURN here rather than an
2680   // actual call instruction.
2681   if (IsTailCall) {
2682     MFI.setHasTailCall();
2683     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
2684   }
2685 
2686   // Returns a chain and a flag for retval copy to use.
2687   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
2688   Chain = Call.getValue(0);
2689   InFlag = Call.getValue(1);
2690 
2691   if (CallerSavedFP) {
2692     SDValue FPReg = DAG.getRegister(Info->getFrameOffsetReg(), MVT::i32);
2693     Chain = DAG.getCopyToReg(Chain, DL, FPReg, CallerSavedFP, InFlag);
2694     InFlag = Chain.getValue(1);
2695   }
2696 
2697   uint64_t CalleePopBytes = NumBytes;
2698   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
2699                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
2700                              InFlag, DL);
2701   if (!Ins.empty())
2702     InFlag = Chain.getValue(1);
2703 
2704   // Handle result values, copying them out of physregs into vregs that we
2705   // return.
2706   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2707                          InVals, IsThisReturn,
2708                          IsThisReturn ? OutVals[0] : SDValue());
2709 }
2710 
2711 unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
2712                                              SelectionDAG &DAG) const {
2713   unsigned Reg = StringSwitch<unsigned>(RegName)
2714     .Case("m0", AMDGPU::M0)
2715     .Case("exec", AMDGPU::EXEC)
2716     .Case("exec_lo", AMDGPU::EXEC_LO)
2717     .Case("exec_hi", AMDGPU::EXEC_HI)
2718     .Case("flat_scratch", AMDGPU::FLAT_SCR)
2719     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
2720     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
2721     .Default(AMDGPU::NoRegister);
2722 
2723   if (Reg == AMDGPU::NoRegister) {
2724     report_fatal_error(Twine("invalid register name \""
2725                              + StringRef(RegName)  + "\"."));
2726 
2727   }
2728 
2729   if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2730       Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
2731     report_fatal_error(Twine("invalid register \""
2732                              + StringRef(RegName)  + "\" for subtarget."));
2733   }
2734 
2735   switch (Reg) {
2736   case AMDGPU::M0:
2737   case AMDGPU::EXEC_LO:
2738   case AMDGPU::EXEC_HI:
2739   case AMDGPU::FLAT_SCR_LO:
2740   case AMDGPU::FLAT_SCR_HI:
2741     if (VT.getSizeInBits() == 32)
2742       return Reg;
2743     break;
2744   case AMDGPU::EXEC:
2745   case AMDGPU::FLAT_SCR:
2746     if (VT.getSizeInBits() == 64)
2747       return Reg;
2748     break;
2749   default:
2750     llvm_unreachable("missing register type checking");
2751   }
2752 
2753   report_fatal_error(Twine("invalid type for register \""
2754                            + StringRef(RegName) + "\"."));
2755 }
2756 
2757 // If kill is not the last instruction, split the block so kill is always a
2758 // proper terminator.
2759 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
2760                                                     MachineBasicBlock *BB) const {
2761   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
2762 
2763   MachineBasicBlock::iterator SplitPoint(&MI);
2764   ++SplitPoint;
2765 
2766   if (SplitPoint == BB->end()) {
2767     // Don't bother with a new block.
2768     MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
2769     return BB;
2770   }
2771 
2772   MachineFunction *MF = BB->getParent();
2773   MachineBasicBlock *SplitBB
2774     = MF->CreateMachineBasicBlock(BB->getBasicBlock());
2775 
2776   MF->insert(++MachineFunction::iterator(BB), SplitBB);
2777   SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
2778 
2779   SplitBB->transferSuccessorsAndUpdatePHIs(BB);
2780   BB->addSuccessor(SplitBB);
2781 
2782   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
2783   return SplitBB;
2784 }
2785 
2786 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
2787 // wavefront. If the value is uniform and just happens to be in a VGPR, this
2788 // will only do one iteration. In the worst case, this will loop 64 times.
2789 //
2790 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
2791 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
2792   const SIInstrInfo *TII,
2793   MachineRegisterInfo &MRI,
2794   MachineBasicBlock &OrigBB,
2795   MachineBasicBlock &LoopBB,
2796   const DebugLoc &DL,
2797   const MachineOperand &IdxReg,
2798   unsigned InitReg,
2799   unsigned ResultReg,
2800   unsigned PhiReg,
2801   unsigned InitSaveExecReg,
2802   int Offset,
2803   bool UseGPRIdxMode,
2804   bool IsIndirectSrc) {
2805   MachineBasicBlock::iterator I = LoopBB.begin();
2806 
2807   unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2808   unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2809   unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2810   unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2811 
2812   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
2813     .addReg(InitReg)
2814     .addMBB(&OrigBB)
2815     .addReg(ResultReg)
2816     .addMBB(&LoopBB);
2817 
2818   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
2819     .addReg(InitSaveExecReg)
2820     .addMBB(&OrigBB)
2821     .addReg(NewExec)
2822     .addMBB(&LoopBB);
2823 
2824   // Read the next variant <- also loop target.
2825   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
2826     .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
2827 
2828   // Compare the just read M0 value to all possible Idx values.
2829   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
2830     .addReg(CurrentIdxReg)
2831     .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
2832 
2833   // Update EXEC, save the original EXEC value to VCC.
2834   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec)
2835     .addReg(CondReg, RegState::Kill);
2836 
2837   MRI.setSimpleHint(NewExec, CondReg);
2838 
2839   if (UseGPRIdxMode) {
2840     unsigned IdxReg;
2841     if (Offset == 0) {
2842       IdxReg = CurrentIdxReg;
2843     } else {
2844       IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2845       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
2846         .addReg(CurrentIdxReg, RegState::Kill)
2847         .addImm(Offset);
2848     }
2849     unsigned IdxMode = IsIndirectSrc ?
2850       VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
2851     MachineInstr *SetOn =
2852       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
2853       .addReg(IdxReg, RegState::Kill)
2854       .addImm(IdxMode);
2855     SetOn->getOperand(3).setIsUndef();
2856   } else {
2857     // Move index from VCC into M0
2858     if (Offset == 0) {
2859       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
2860         .addReg(CurrentIdxReg, RegState::Kill);
2861     } else {
2862       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
2863         .addReg(CurrentIdxReg, RegState::Kill)
2864         .addImm(Offset);
2865     }
2866   }
2867 
2868   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
2869   MachineInstr *InsertPt =
2870     BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
2871     .addReg(AMDGPU::EXEC)
2872     .addReg(NewExec);
2873 
2874   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
2875   // s_cbranch_scc0?
2876 
2877   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
2878   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
2879     .addMBB(&LoopBB);
2880 
2881   return InsertPt->getIterator();
2882 }
2883 
2884 // This has slightly sub-optimal regalloc when the source vector is killed by
2885 // the read. The register allocator does not understand that the kill is
2886 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
2887 // subregister from it, using 1 more VGPR than necessary. This was saved when
2888 // this was expanded after register allocation.
2889 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
2890                                                   MachineBasicBlock &MBB,
2891                                                   MachineInstr &MI,
2892                                                   unsigned InitResultReg,
2893                                                   unsigned PhiReg,
2894                                                   int Offset,
2895                                                   bool UseGPRIdxMode,
2896                                                   bool IsIndirectSrc) {
2897   MachineFunction *MF = MBB.getParent();
2898   MachineRegisterInfo &MRI = MF->getRegInfo();
2899   const DebugLoc &DL = MI.getDebugLoc();
2900   MachineBasicBlock::iterator I(&MI);
2901 
2902   unsigned DstReg = MI.getOperand(0).getReg();
2903   unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
2904   unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
2905 
2906   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
2907 
2908   // Save the EXEC mask
2909   BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec)
2910     .addReg(AMDGPU::EXEC);
2911 
2912   // To insert the loop we need to split the block. Move everything after this
2913   // point to a new block, and insert a new empty block between the two.
2914   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
2915   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
2916   MachineFunction::iterator MBBI(MBB);
2917   ++MBBI;
2918 
2919   MF->insert(MBBI, LoopBB);
2920   MF->insert(MBBI, RemainderBB);
2921 
2922   LoopBB->addSuccessor(LoopBB);
2923   LoopBB->addSuccessor(RemainderBB);
2924 
2925   // Move the rest of the block into a new block.
2926   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
2927   RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
2928 
2929   MBB.addSuccessor(LoopBB);
2930 
2931   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
2932 
2933   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
2934                                       InitResultReg, DstReg, PhiReg, TmpExec,
2935                                       Offset, UseGPRIdxMode, IsIndirectSrc);
2936 
2937   MachineBasicBlock::iterator First = RemainderBB->begin();
2938   BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
2939     .addReg(SaveExec);
2940 
2941   return InsPt;
2942 }
2943 
2944 // Returns subreg index, offset
2945 static std::pair<unsigned, int>
2946 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
2947                             const TargetRegisterClass *SuperRC,
2948                             unsigned VecReg,
2949                             int Offset) {
2950   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
2951 
2952   // Skip out of bounds offsets, or else we would end up using an undefined
2953   // register.
2954   if (Offset >= NumElts || Offset < 0)
2955     return std::make_pair(AMDGPU::sub0, Offset);
2956 
2957   return std::make_pair(AMDGPU::sub0 + Offset, 0);
2958 }
2959 
2960 // Return true if the index is an SGPR and was set.
2961 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
2962                                  MachineRegisterInfo &MRI,
2963                                  MachineInstr &MI,
2964                                  int Offset,
2965                                  bool UseGPRIdxMode,
2966                                  bool IsIndirectSrc) {
2967   MachineBasicBlock *MBB = MI.getParent();
2968   const DebugLoc &DL = MI.getDebugLoc();
2969   MachineBasicBlock::iterator I(&MI);
2970 
2971   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
2972   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
2973 
2974   assert(Idx->getReg() != AMDGPU::NoRegister);
2975 
2976   if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
2977     return false;
2978 
2979   if (UseGPRIdxMode) {
2980     unsigned IdxMode = IsIndirectSrc ?
2981       VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
2982     if (Offset == 0) {
2983       MachineInstr *SetOn =
2984           BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
2985               .add(*Idx)
2986               .addImm(IdxMode);
2987 
2988       SetOn->getOperand(3).setIsUndef();
2989     } else {
2990       unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
2991       BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
2992           .add(*Idx)
2993           .addImm(Offset);
2994       MachineInstr *SetOn =
2995         BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
2996         .addReg(Tmp, RegState::Kill)
2997         .addImm(IdxMode);
2998 
2999       SetOn->getOperand(3).setIsUndef();
3000     }
3001 
3002     return true;
3003   }
3004 
3005   if (Offset == 0) {
3006     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3007       .add(*Idx);
3008   } else {
3009     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3010       .add(*Idx)
3011       .addImm(Offset);
3012   }
3013 
3014   return true;
3015 }
3016 
3017 // Control flow needs to be inserted if indexing with a VGPR.
3018 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3019                                           MachineBasicBlock &MBB,
3020                                           const GCNSubtarget &ST) {
3021   const SIInstrInfo *TII = ST.getInstrInfo();
3022   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3023   MachineFunction *MF = MBB.getParent();
3024   MachineRegisterInfo &MRI = MF->getRegInfo();
3025 
3026   unsigned Dst = MI.getOperand(0).getReg();
3027   unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3028   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3029 
3030   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3031 
3032   unsigned SubReg;
3033   std::tie(SubReg, Offset)
3034     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3035 
3036   bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
3037 
3038   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
3039     MachineBasicBlock::iterator I(&MI);
3040     const DebugLoc &DL = MI.getDebugLoc();
3041 
3042     if (UseGPRIdxMode) {
3043       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3044       // to avoid interfering with other uses, so probably requires a new
3045       // optimization pass.
3046       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3047         .addReg(SrcReg, RegState::Undef, SubReg)
3048         .addReg(SrcReg, RegState::Implicit)
3049         .addReg(AMDGPU::M0, RegState::Implicit);
3050       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3051     } else {
3052       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3053         .addReg(SrcReg, RegState::Undef, SubReg)
3054         .addReg(SrcReg, RegState::Implicit);
3055     }
3056 
3057     MI.eraseFromParent();
3058 
3059     return &MBB;
3060   }
3061 
3062   const DebugLoc &DL = MI.getDebugLoc();
3063   MachineBasicBlock::iterator I(&MI);
3064 
3065   unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3066   unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3067 
3068   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3069 
3070   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
3071                               Offset, UseGPRIdxMode, true);
3072   MachineBasicBlock *LoopBB = InsPt->getParent();
3073 
3074   if (UseGPRIdxMode) {
3075     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3076       .addReg(SrcReg, RegState::Undef, SubReg)
3077       .addReg(SrcReg, RegState::Implicit)
3078       .addReg(AMDGPU::M0, RegState::Implicit);
3079     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3080   } else {
3081     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3082       .addReg(SrcReg, RegState::Undef, SubReg)
3083       .addReg(SrcReg, RegState::Implicit);
3084   }
3085 
3086   MI.eraseFromParent();
3087 
3088   return LoopBB;
3089 }
3090 
3091 static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
3092                                  const TargetRegisterClass *VecRC) {
3093   switch (TRI.getRegSizeInBits(*VecRC)) {
3094   case 32: // 4 bytes
3095     return AMDGPU::V_MOVRELD_B32_V1;
3096   case 64: // 8 bytes
3097     return AMDGPU::V_MOVRELD_B32_V2;
3098   case 128: // 16 bytes
3099     return AMDGPU::V_MOVRELD_B32_V4;
3100   case 256: // 32 bytes
3101     return AMDGPU::V_MOVRELD_B32_V8;
3102   case 512: // 64 bytes
3103     return AMDGPU::V_MOVRELD_B32_V16;
3104   default:
3105     llvm_unreachable("unsupported size for MOVRELD pseudos");
3106   }
3107 }
3108 
3109 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3110                                           MachineBasicBlock &MBB,
3111                                           const GCNSubtarget &ST) {
3112   const SIInstrInfo *TII = ST.getInstrInfo();
3113   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3114   MachineFunction *MF = MBB.getParent();
3115   MachineRegisterInfo &MRI = MF->getRegInfo();
3116 
3117   unsigned Dst = MI.getOperand(0).getReg();
3118   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3119   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3120   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3121   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3122   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3123 
3124   // This can be an immediate, but will be folded later.
3125   assert(Val->getReg());
3126 
3127   unsigned SubReg;
3128   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3129                                                          SrcVec->getReg(),
3130                                                          Offset);
3131   bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
3132 
3133   if (Idx->getReg() == AMDGPU::NoRegister) {
3134     MachineBasicBlock::iterator I(&MI);
3135     const DebugLoc &DL = MI.getDebugLoc();
3136 
3137     assert(Offset == 0);
3138 
3139     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3140         .add(*SrcVec)
3141         .add(*Val)
3142         .addImm(SubReg);
3143 
3144     MI.eraseFromParent();
3145     return &MBB;
3146   }
3147 
3148   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
3149     MachineBasicBlock::iterator I(&MI);
3150     const DebugLoc &DL = MI.getDebugLoc();
3151 
3152     if (UseGPRIdxMode) {
3153       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3154           .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
3155           .add(*Val)
3156           .addReg(Dst, RegState::ImplicitDefine)
3157           .addReg(SrcVec->getReg(), RegState::Implicit)
3158           .addReg(AMDGPU::M0, RegState::Implicit);
3159 
3160       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3161     } else {
3162       const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3163 
3164       BuildMI(MBB, I, DL, MovRelDesc)
3165           .addReg(Dst, RegState::Define)
3166           .addReg(SrcVec->getReg())
3167           .add(*Val)
3168           .addImm(SubReg - AMDGPU::sub0);
3169     }
3170 
3171     MI.eraseFromParent();
3172     return &MBB;
3173   }
3174 
3175   if (Val->isReg())
3176     MRI.clearKillFlags(Val->getReg());
3177 
3178   const DebugLoc &DL = MI.getDebugLoc();
3179 
3180   unsigned PhiReg = MRI.createVirtualRegister(VecRC);
3181 
3182   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
3183                               Offset, UseGPRIdxMode, false);
3184   MachineBasicBlock *LoopBB = InsPt->getParent();
3185 
3186   if (UseGPRIdxMode) {
3187     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3188         .addReg(PhiReg, RegState::Undef, SubReg) // vdst
3189         .add(*Val)                               // src0
3190         .addReg(Dst, RegState::ImplicitDefine)
3191         .addReg(PhiReg, RegState::Implicit)
3192         .addReg(AMDGPU::M0, RegState::Implicit);
3193     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3194   } else {
3195     const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3196 
3197     BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
3198         .addReg(Dst, RegState::Define)
3199         .addReg(PhiReg)
3200         .add(*Val)
3201         .addImm(SubReg - AMDGPU::sub0);
3202   }
3203 
3204   MI.eraseFromParent();
3205 
3206   return LoopBB;
3207 }
3208 
3209 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3210   MachineInstr &MI, MachineBasicBlock *BB) const {
3211 
3212   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3213   MachineFunction *MF = BB->getParent();
3214   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3215 
3216   if (TII->isMIMG(MI)) {
3217     if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
3218       report_fatal_error("missing mem operand from MIMG instruction");
3219     }
3220     // Add a memoperand for mimg instructions so that they aren't assumed to
3221     // be ordered memory instuctions.
3222 
3223     return BB;
3224   }
3225 
3226   switch (MI.getOpcode()) {
3227   case AMDGPU::S_ADD_U64_PSEUDO:
3228   case AMDGPU::S_SUB_U64_PSEUDO: {
3229     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3230     const DebugLoc &DL = MI.getDebugLoc();
3231 
3232     MachineOperand &Dest = MI.getOperand(0);
3233     MachineOperand &Src0 = MI.getOperand(1);
3234     MachineOperand &Src1 = MI.getOperand(2);
3235 
3236     unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3237     unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3238 
3239     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3240      Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
3241      &AMDGPU::SReg_32_XM0RegClass);
3242     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3243       Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
3244       &AMDGPU::SReg_32_XM0RegClass);
3245 
3246     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3247       Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
3248       &AMDGPU::SReg_32_XM0RegClass);
3249     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3250       Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
3251       &AMDGPU::SReg_32_XM0RegClass);
3252 
3253     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3254 
3255     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3256     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3257     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3258       .add(Src0Sub0)
3259       .add(Src1Sub0);
3260     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3261       .add(Src0Sub1)
3262       .add(Src1Sub1);
3263     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3264       .addReg(DestSub0)
3265       .addImm(AMDGPU::sub0)
3266       .addReg(DestSub1)
3267       .addImm(AMDGPU::sub1);
3268     MI.eraseFromParent();
3269     return BB;
3270   }
3271   case AMDGPU::SI_INIT_M0: {
3272     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
3273             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3274         .add(MI.getOperand(0));
3275     MI.eraseFromParent();
3276     return BB;
3277   }
3278   case AMDGPU::SI_INIT_EXEC:
3279     // This should be before all vector instructions.
3280     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
3281             AMDGPU::EXEC)
3282         .addImm(MI.getOperand(0).getImm());
3283     MI.eraseFromParent();
3284     return BB;
3285 
3286   case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
3287     // Extract the thread count from an SGPR input and set EXEC accordingly.
3288     // Since BFM can't shift by 64, handle that case with CMP + CMOV.
3289     //
3290     // S_BFE_U32 count, input, {shift, 7}
3291     // S_BFM_B64 exec, count, 0
3292     // S_CMP_EQ_U32 count, 64
3293     // S_CMOV_B64 exec, -1
3294     MachineInstr *FirstMI = &*BB->begin();
3295     MachineRegisterInfo &MRI = MF->getRegInfo();
3296     unsigned InputReg = MI.getOperand(0).getReg();
3297     unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3298     bool Found = false;
3299 
3300     // Move the COPY of the input reg to the beginning, so that we can use it.
3301     for (auto I = BB->begin(); I != &MI; I++) {
3302       if (I->getOpcode() != TargetOpcode::COPY ||
3303           I->getOperand(0).getReg() != InputReg)
3304         continue;
3305 
3306       if (I == FirstMI) {
3307         FirstMI = &*++BB->begin();
3308       } else {
3309         I->removeFromParent();
3310         BB->insert(FirstMI, &*I);
3311       }
3312       Found = true;
3313       break;
3314     }
3315     assert(Found);
3316     (void)Found;
3317 
3318     // This should be before all vector instructions.
3319     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
3320         .addReg(InputReg)
3321         .addImm((MI.getOperand(1).getImm() & 0x7f) | 0x70000);
3322     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFM_B64),
3323             AMDGPU::EXEC)
3324         .addReg(CountReg)
3325         .addImm(0);
3326     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
3327         .addReg(CountReg, RegState::Kill)
3328         .addImm(64);
3329     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMOV_B64),
3330             AMDGPU::EXEC)
3331         .addImm(-1);
3332     MI.eraseFromParent();
3333     return BB;
3334   }
3335 
3336   case AMDGPU::GET_GROUPSTATICSIZE: {
3337     DebugLoc DL = MI.getDebugLoc();
3338     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
3339         .add(MI.getOperand(0))
3340         .addImm(MFI->getLDSSize());
3341     MI.eraseFromParent();
3342     return BB;
3343   }
3344   case AMDGPU::SI_INDIRECT_SRC_V1:
3345   case AMDGPU::SI_INDIRECT_SRC_V2:
3346   case AMDGPU::SI_INDIRECT_SRC_V4:
3347   case AMDGPU::SI_INDIRECT_SRC_V8:
3348   case AMDGPU::SI_INDIRECT_SRC_V16:
3349     return emitIndirectSrc(MI, *BB, *getSubtarget());
3350   case AMDGPU::SI_INDIRECT_DST_V1:
3351   case AMDGPU::SI_INDIRECT_DST_V2:
3352   case AMDGPU::SI_INDIRECT_DST_V4:
3353   case AMDGPU::SI_INDIRECT_DST_V8:
3354   case AMDGPU::SI_INDIRECT_DST_V16:
3355     return emitIndirectDst(MI, *BB, *getSubtarget());
3356   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
3357   case AMDGPU::SI_KILL_I1_PSEUDO:
3358     return splitKillBlock(MI, BB);
3359   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
3360     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3361 
3362     unsigned Dst = MI.getOperand(0).getReg();
3363     unsigned Src0 = MI.getOperand(1).getReg();
3364     unsigned Src1 = MI.getOperand(2).getReg();
3365     const DebugLoc &DL = MI.getDebugLoc();
3366     unsigned SrcCond = MI.getOperand(3).getReg();
3367 
3368     unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3369     unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3370     unsigned SrcCondCopy = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
3371 
3372     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
3373       .addReg(SrcCond);
3374     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
3375       .addReg(Src0, 0, AMDGPU::sub0)
3376       .addReg(Src1, 0, AMDGPU::sub0)
3377       .addReg(SrcCondCopy);
3378     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
3379       .addReg(Src0, 0, AMDGPU::sub1)
3380       .addReg(Src1, 0, AMDGPU::sub1)
3381       .addReg(SrcCondCopy);
3382 
3383     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
3384       .addReg(DstLo)
3385       .addImm(AMDGPU::sub0)
3386       .addReg(DstHi)
3387       .addImm(AMDGPU::sub1);
3388     MI.eraseFromParent();
3389     return BB;
3390   }
3391   case AMDGPU::SI_BR_UNDEF: {
3392     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3393     const DebugLoc &DL = MI.getDebugLoc();
3394     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3395                            .add(MI.getOperand(0));
3396     Br->getOperand(1).setIsUndef(true); // read undef SCC
3397     MI.eraseFromParent();
3398     return BB;
3399   }
3400   case AMDGPU::ADJCALLSTACKUP:
3401   case AMDGPU::ADJCALLSTACKDOWN: {
3402     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
3403     MachineInstrBuilder MIB(*MF, &MI);
3404 
3405     // Add an implicit use of the frame offset reg to prevent the restore copy
3406     // inserted after the call from being reorderd after stack operations in the
3407     // the caller's frame.
3408     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
3409         .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
3410         .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
3411     return BB;
3412   }
3413   case AMDGPU::SI_CALL_ISEL:
3414   case AMDGPU::SI_TCRETURN_ISEL: {
3415     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3416     const DebugLoc &DL = MI.getDebugLoc();
3417     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
3418 
3419     MachineRegisterInfo &MRI = MF->getRegInfo();
3420     unsigned GlobalAddrReg = MI.getOperand(0).getReg();
3421     MachineInstr *PCRel = MRI.getVRegDef(GlobalAddrReg);
3422     assert(PCRel->getOpcode() == AMDGPU::SI_PC_ADD_REL_OFFSET);
3423 
3424     const GlobalValue *G = PCRel->getOperand(1).getGlobal();
3425 
3426     MachineInstrBuilder MIB;
3427     if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) {
3428       MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg)
3429         .add(MI.getOperand(0))
3430         .addGlobalAddress(G);
3431     } else {
3432       MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_TCRETURN))
3433         .add(MI.getOperand(0))
3434         .addGlobalAddress(G);
3435 
3436       // There is an additional imm operand for tcreturn, but it should be in the
3437       // right place already.
3438     }
3439 
3440     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3441       MIB.add(MI.getOperand(I));
3442 
3443     MIB.cloneMemRefs(MI);
3444     MI.eraseFromParent();
3445     return BB;
3446   }
3447   default:
3448     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
3449   }
3450 }
3451 
3452 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
3453   return isTypeLegal(VT.getScalarType());
3454 }
3455 
3456 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
3457   // This currently forces unfolding various combinations of fsub into fma with
3458   // free fneg'd operands. As long as we have fast FMA (controlled by
3459   // isFMAFasterThanFMulAndFAdd), we should perform these.
3460 
3461   // When fma is quarter rate, for f64 where add / sub are at best half rate,
3462   // most of these combines appear to be cycle neutral but save on instruction
3463   // count / code size.
3464   return true;
3465 }
3466 
3467 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
3468                                          EVT VT) const {
3469   if (!VT.isVector()) {
3470     return MVT::i1;
3471   }
3472   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
3473 }
3474 
3475 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
3476   // TODO: Should i16 be used always if legal? For now it would force VALU
3477   // shifts.
3478   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
3479 }
3480 
3481 // Answering this is somewhat tricky and depends on the specific device which
3482 // have different rates for fma or all f64 operations.
3483 //
3484 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
3485 // regardless of which device (although the number of cycles differs between
3486 // devices), so it is always profitable for f64.
3487 //
3488 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
3489 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
3490 // which we can always do even without fused FP ops since it returns the same
3491 // result as the separate operations and since it is always full
3492 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
3493 // however does not support denormals, so we do report fma as faster if we have
3494 // a fast fma device and require denormals.
3495 //
3496 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3497   VT = VT.getScalarType();
3498 
3499   switch (VT.getSimpleVT().SimpleTy) {
3500   case MVT::f32: {
3501     // This is as fast on some subtargets. However, we always have full rate f32
3502     // mad available which returns the same result as the separate operations
3503     // which we should prefer over fma. We can't use this if we want to support
3504     // denormals, so only report this in these cases.
3505     if (Subtarget->hasFP32Denormals())
3506       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
3507 
3508     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
3509     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
3510   }
3511   case MVT::f64:
3512     return true;
3513   case MVT::f16:
3514     return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
3515   default:
3516     break;
3517   }
3518 
3519   return false;
3520 }
3521 
3522 //===----------------------------------------------------------------------===//
3523 // Custom DAG Lowering Operations
3524 //===----------------------------------------------------------------------===//
3525 
3526 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3527 // wider vector type is legal.
3528 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
3529                                              SelectionDAG &DAG) const {
3530   unsigned Opc = Op.getOpcode();
3531   EVT VT = Op.getValueType();
3532   assert(VT == MVT::v4f16);
3533 
3534   SDValue Lo, Hi;
3535   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3536 
3537   SDLoc SL(Op);
3538   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
3539                              Op->getFlags());
3540   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
3541                              Op->getFlags());
3542 
3543   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3544 }
3545 
3546 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3547 // wider vector type is legal.
3548 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
3549                                               SelectionDAG &DAG) const {
3550   unsigned Opc = Op.getOpcode();
3551   EVT VT = Op.getValueType();
3552   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
3553 
3554   SDValue Lo0, Hi0;
3555   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
3556   SDValue Lo1, Hi1;
3557   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
3558 
3559   SDLoc SL(Op);
3560 
3561   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
3562                              Op->getFlags());
3563   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
3564                              Op->getFlags());
3565 
3566   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3567 }
3568 
3569 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3570   switch (Op.getOpcode()) {
3571   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
3572   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
3573   case ISD::LOAD: {
3574     SDValue Result = LowerLOAD(Op, DAG);
3575     assert((!Result.getNode() ||
3576             Result.getNode()->getNumValues() == 2) &&
3577            "Load should return a value and a chain");
3578     return Result;
3579   }
3580 
3581   case ISD::FSIN:
3582   case ISD::FCOS:
3583     return LowerTrig(Op, DAG);
3584   case ISD::SELECT: return LowerSELECT(Op, DAG);
3585   case ISD::FDIV: return LowerFDIV(Op, DAG);
3586   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
3587   case ISD::STORE: return LowerSTORE(Op, DAG);
3588   case ISD::GlobalAddress: {
3589     MachineFunction &MF = DAG.getMachineFunction();
3590     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
3591     return LowerGlobalAddress(MFI, Op, DAG);
3592   }
3593   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3594   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
3595   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
3596   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
3597   case ISD::INSERT_VECTOR_ELT:
3598     return lowerINSERT_VECTOR_ELT(Op, DAG);
3599   case ISD::EXTRACT_VECTOR_ELT:
3600     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3601   case ISD::BUILD_VECTOR:
3602     return lowerBUILD_VECTOR(Op, DAG);
3603   case ISD::FP_ROUND:
3604     return lowerFP_ROUND(Op, DAG);
3605   case ISD::TRAP:
3606     return lowerTRAP(Op, DAG);
3607   case ISD::DEBUGTRAP:
3608     return lowerDEBUGTRAP(Op, DAG);
3609   case ISD::FABS:
3610   case ISD::FNEG:
3611   case ISD::FCANONICALIZE:
3612     return splitUnaryVectorOp(Op, DAG);
3613   case ISD::FMINNUM:
3614   case ISD::FMAXNUM:
3615     return lowerFMINNUM_FMAXNUM(Op, DAG);
3616   case ISD::SHL:
3617   case ISD::SRA:
3618   case ISD::SRL:
3619   case ISD::ADD:
3620   case ISD::SUB:
3621   case ISD::MUL:
3622   case ISD::SMIN:
3623   case ISD::SMAX:
3624   case ISD::UMIN:
3625   case ISD::UMAX:
3626   case ISD::FADD:
3627   case ISD::FMUL:
3628   case ISD::FMINNUM_IEEE:
3629   case ISD::FMAXNUM_IEEE:
3630     return splitBinaryVectorOp(Op, DAG);
3631   }
3632   return SDValue();
3633 }
3634 
3635 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
3636                                        const SDLoc &DL,
3637                                        SelectionDAG &DAG, bool Unpacked) {
3638   if (!LoadVT.isVector())
3639     return Result;
3640 
3641   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
3642     // Truncate to v2i16/v4i16.
3643     EVT IntLoadVT = LoadVT.changeTypeToInteger();
3644 
3645     // Workaround legalizer not scalarizing truncate after vector op
3646     // legalization byt not creating intermediate vector trunc.
3647     SmallVector<SDValue, 4> Elts;
3648     DAG.ExtractVectorElements(Result, Elts);
3649     for (SDValue &Elt : Elts)
3650       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
3651 
3652     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
3653 
3654     // Bitcast to original type (v2f16/v4f16).
3655     return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
3656   }
3657 
3658   // Cast back to the original packed type.
3659   return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
3660 }
3661 
3662 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
3663                                               MemSDNode *M,
3664                                               SelectionDAG &DAG,
3665                                               ArrayRef<SDValue> Ops,
3666                                               bool IsIntrinsic) const {
3667   SDLoc DL(M);
3668 
3669   bool Unpacked = Subtarget->hasUnpackedD16VMem();
3670   EVT LoadVT = M->getValueType(0);
3671 
3672   EVT EquivLoadVT = LoadVT;
3673   if (Unpacked && LoadVT.isVector()) {
3674     EquivLoadVT = LoadVT.isVector() ?
3675       EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3676                        LoadVT.getVectorNumElements()) : LoadVT;
3677   }
3678 
3679   // Change from v4f16/v2f16 to EquivLoadVT.
3680   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
3681 
3682   SDValue Load
3683     = DAG.getMemIntrinsicNode(
3684       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
3685       VTList, Ops, M->getMemoryVT(),
3686       M->getMemOperand());
3687   if (!Unpacked) // Just adjusted the opcode.
3688     return Load;
3689 
3690   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
3691 
3692   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
3693 }
3694 
3695 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
3696                                   SDNode *N, SelectionDAG &DAG) {
3697   EVT VT = N->getValueType(0);
3698   const auto *CD = dyn_cast<ConstantSDNode>(N->getOperand(3));
3699   if (!CD)
3700     return DAG.getUNDEF(VT);
3701 
3702   int CondCode = CD->getSExtValue();
3703   if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
3704       CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
3705     return DAG.getUNDEF(VT);
3706 
3707   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
3708 
3709 
3710   SDValue LHS = N->getOperand(1);
3711   SDValue RHS = N->getOperand(2);
3712 
3713   SDLoc DL(N);
3714 
3715   EVT CmpVT = LHS.getValueType();
3716   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
3717     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
3718       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3719     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
3720     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
3721   }
3722 
3723   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
3724 
3725   return DAG.getNode(AMDGPUISD::SETCC, DL, VT, LHS, RHS,
3726                      DAG.getCondCode(CCOpcode));
3727 }
3728 
3729 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
3730                                   SDNode *N, SelectionDAG &DAG) {
3731   EVT VT = N->getValueType(0);
3732   const auto *CD = dyn_cast<ConstantSDNode>(N->getOperand(3));
3733   if (!CD)
3734     return DAG.getUNDEF(VT);
3735 
3736   int CondCode = CD->getSExtValue();
3737   if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
3738       CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) {
3739     return DAG.getUNDEF(VT);
3740   }
3741 
3742   SDValue Src0 = N->getOperand(1);
3743   SDValue Src1 = N->getOperand(2);
3744   EVT CmpVT = Src0.getValueType();
3745   SDLoc SL(N);
3746 
3747   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
3748     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
3749     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
3750   }
3751 
3752   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
3753   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
3754   return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src0,
3755                      Src1, DAG.getCondCode(CCOpcode));
3756 }
3757 
3758 void SITargetLowering::ReplaceNodeResults(SDNode *N,
3759                                           SmallVectorImpl<SDValue> &Results,
3760                                           SelectionDAG &DAG) const {
3761   switch (N->getOpcode()) {
3762   case ISD::INSERT_VECTOR_ELT: {
3763     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
3764       Results.push_back(Res);
3765     return;
3766   }
3767   case ISD::EXTRACT_VECTOR_ELT: {
3768     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
3769       Results.push_back(Res);
3770     return;
3771   }
3772   case ISD::INTRINSIC_WO_CHAIN: {
3773     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3774     switch (IID) {
3775     case Intrinsic::amdgcn_cvt_pkrtz: {
3776       SDValue Src0 = N->getOperand(1);
3777       SDValue Src1 = N->getOperand(2);
3778       SDLoc SL(N);
3779       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
3780                                 Src0, Src1);
3781       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
3782       return;
3783     }
3784     case Intrinsic::amdgcn_cvt_pknorm_i16:
3785     case Intrinsic::amdgcn_cvt_pknorm_u16:
3786     case Intrinsic::amdgcn_cvt_pk_i16:
3787     case Intrinsic::amdgcn_cvt_pk_u16: {
3788       SDValue Src0 = N->getOperand(1);
3789       SDValue Src1 = N->getOperand(2);
3790       SDLoc SL(N);
3791       unsigned Opcode;
3792 
3793       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
3794         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
3795       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
3796         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
3797       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
3798         Opcode = AMDGPUISD::CVT_PK_I16_I32;
3799       else
3800         Opcode = AMDGPUISD::CVT_PK_U16_U32;
3801 
3802       EVT VT = N->getValueType(0);
3803       if (isTypeLegal(VT))
3804         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
3805       else {
3806         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
3807         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
3808       }
3809       return;
3810     }
3811     }
3812     break;
3813   }
3814   case ISD::INTRINSIC_W_CHAIN: {
3815     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
3816       Results.push_back(Res);
3817       Results.push_back(Res.getValue(1));
3818       return;
3819     }
3820 
3821     break;
3822   }
3823   case ISD::SELECT: {
3824     SDLoc SL(N);
3825     EVT VT = N->getValueType(0);
3826     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3827     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
3828     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
3829 
3830     EVT SelectVT = NewVT;
3831     if (NewVT.bitsLT(MVT::i32)) {
3832       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
3833       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
3834       SelectVT = MVT::i32;
3835     }
3836 
3837     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
3838                                     N->getOperand(0), LHS, RHS);
3839 
3840     if (NewVT != SelectVT)
3841       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
3842     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
3843     return;
3844   }
3845   case ISD::FNEG: {
3846     if (N->getValueType(0) != MVT::v2f16)
3847       break;
3848 
3849     SDLoc SL(N);
3850     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
3851 
3852     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
3853                              BC,
3854                              DAG.getConstant(0x80008000, SL, MVT::i32));
3855     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
3856     return;
3857   }
3858   case ISD::FABS: {
3859     if (N->getValueType(0) != MVT::v2f16)
3860       break;
3861 
3862     SDLoc SL(N);
3863     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
3864 
3865     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
3866                              BC,
3867                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
3868     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
3869     return;
3870   }
3871   default:
3872     break;
3873   }
3874 }
3875 
3876 /// Helper function for LowerBRCOND
3877 static SDNode *findUser(SDValue Value, unsigned Opcode) {
3878 
3879   SDNode *Parent = Value.getNode();
3880   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
3881        I != E; ++I) {
3882 
3883     if (I.getUse().get() != Value)
3884       continue;
3885 
3886     if (I->getOpcode() == Opcode)
3887       return *I;
3888   }
3889   return nullptr;
3890 }
3891 
3892 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
3893   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
3894     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
3895     case Intrinsic::amdgcn_if:
3896       return AMDGPUISD::IF;
3897     case Intrinsic::amdgcn_else:
3898       return AMDGPUISD::ELSE;
3899     case Intrinsic::amdgcn_loop:
3900       return AMDGPUISD::LOOP;
3901     case Intrinsic::amdgcn_end_cf:
3902       llvm_unreachable("should not occur");
3903     default:
3904       return 0;
3905     }
3906   }
3907 
3908   // break, if_break, else_break are all only used as inputs to loop, not
3909   // directly as branch conditions.
3910   return 0;
3911 }
3912 
3913 void SITargetLowering::createDebuggerPrologueStackObjects(
3914     MachineFunction &MF) const {
3915   // Create stack objects that are used for emitting debugger prologue.
3916   //
3917   // Debugger prologue writes work group IDs and work item IDs to scratch memory
3918   // at fixed location in the following format:
3919   //   offset 0:  work group ID x
3920   //   offset 4:  work group ID y
3921   //   offset 8:  work group ID z
3922   //   offset 16: work item ID x
3923   //   offset 20: work item ID y
3924   //   offset 24: work item ID z
3925   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3926   int ObjectIdx = 0;
3927 
3928   // For each dimension:
3929   for (unsigned i = 0; i < 3; ++i) {
3930     // Create fixed stack object for work group ID.
3931     ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true);
3932     Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx);
3933     // Create fixed stack object for work item ID.
3934     ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true);
3935     Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx);
3936   }
3937 }
3938 
3939 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
3940   const Triple &TT = getTargetMachine().getTargetTriple();
3941   return (GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
3942           GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
3943          AMDGPU::shouldEmitConstantsToTextSection(TT);
3944 }
3945 
3946 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
3947   return (GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
3948           GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
3949           GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
3950          !shouldEmitFixup(GV) &&
3951          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3952 }
3953 
3954 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
3955   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
3956 }
3957 
3958 /// This transforms the control flow intrinsics to get the branch destination as
3959 /// last parameter, also switches branch target with BR if the need arise
3960 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
3961                                       SelectionDAG &DAG) const {
3962   SDLoc DL(BRCOND);
3963 
3964   SDNode *Intr = BRCOND.getOperand(1).getNode();
3965   SDValue Target = BRCOND.getOperand(2);
3966   SDNode *BR = nullptr;
3967   SDNode *SetCC = nullptr;
3968 
3969   if (Intr->getOpcode() == ISD::SETCC) {
3970     // As long as we negate the condition everything is fine
3971     SetCC = Intr;
3972     Intr = SetCC->getOperand(0).getNode();
3973 
3974   } else {
3975     // Get the target from BR if we don't negate the condition
3976     BR = findUser(BRCOND, ISD::BR);
3977     Target = BR->getOperand(1);
3978   }
3979 
3980   // FIXME: This changes the types of the intrinsics instead of introducing new
3981   // nodes with the correct types.
3982   // e.g. llvm.amdgcn.loop
3983 
3984   // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
3985   // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
3986 
3987   unsigned CFNode = isCFIntrinsic(Intr);
3988   if (CFNode == 0) {
3989     // This is a uniform branch so we don't need to legalize.
3990     return BRCOND;
3991   }
3992 
3993   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
3994                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
3995 
3996   assert(!SetCC ||
3997         (SetCC->getConstantOperandVal(1) == 1 &&
3998          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
3999                                                              ISD::SETNE));
4000 
4001   // operands of the new intrinsic call
4002   SmallVector<SDValue, 4> Ops;
4003   if (HaveChain)
4004     Ops.push_back(BRCOND.getOperand(0));
4005 
4006   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
4007   Ops.push_back(Target);
4008 
4009   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
4010 
4011   // build the new intrinsic call
4012   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
4013 
4014   if (!HaveChain) {
4015     SDValue Ops[] =  {
4016       SDValue(Result, 0),
4017       BRCOND.getOperand(0)
4018     };
4019 
4020     Result = DAG.getMergeValues(Ops, DL).getNode();
4021   }
4022 
4023   if (BR) {
4024     // Give the branch instruction our target
4025     SDValue Ops[] = {
4026       BR->getOperand(0),
4027       BRCOND.getOperand(2)
4028     };
4029     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
4030     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
4031     BR = NewBR.getNode();
4032   }
4033 
4034   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
4035 
4036   // Copy the intrinsic results to registers
4037   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
4038     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
4039     if (!CopyToReg)
4040       continue;
4041 
4042     Chain = DAG.getCopyToReg(
4043       Chain, DL,
4044       CopyToReg->getOperand(1),
4045       SDValue(Result, i - 1),
4046       SDValue());
4047 
4048     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
4049   }
4050 
4051   // Remove the old intrinsic from the chain
4052   DAG.ReplaceAllUsesOfValueWith(
4053     SDValue(Intr, Intr->getNumValues() - 1),
4054     Intr->getOperand(0));
4055 
4056   return Chain;
4057 }
4058 
4059 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
4060                                             SDValue Op,
4061                                             const SDLoc &DL,
4062                                             EVT VT) const {
4063   return Op.getValueType().bitsLE(VT) ?
4064       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
4065       DAG.getNode(ISD::FTRUNC, DL, VT, Op);
4066 }
4067 
4068 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
4069   assert(Op.getValueType() == MVT::f16 &&
4070          "Do not know how to custom lower FP_ROUND for non-f16 type");
4071 
4072   SDValue Src = Op.getOperand(0);
4073   EVT SrcVT = Src.getValueType();
4074   if (SrcVT != MVT::f64)
4075     return Op;
4076 
4077   SDLoc DL(Op);
4078 
4079   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
4080   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
4081   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
4082 }
4083 
4084 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
4085                                                SelectionDAG &DAG) const {
4086   EVT VT = Op.getValueType();
4087   bool IsIEEEMode = Subtarget->enableIEEEBit(DAG.getMachineFunction());
4088 
4089   // FIXME: Assert during eslection that this is only selected for
4090   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
4091   // mode functions, but this happens to be OK since it's only done in cases
4092   // where there is known no sNaN.
4093   if (IsIEEEMode)
4094     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
4095 
4096   if (VT == MVT::v4f16)
4097     return splitBinaryVectorOp(Op, DAG);
4098   return Op;
4099 }
4100 
4101 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
4102   SDLoc SL(Op);
4103   SDValue Chain = Op.getOperand(0);
4104 
4105   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4106       !Subtarget->isTrapHandlerEnabled())
4107     return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
4108 
4109   MachineFunction &MF = DAG.getMachineFunction();
4110   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4111   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4112   assert(UserSGPR != AMDGPU::NoRegister);
4113   SDValue QueuePtr = CreateLiveInRegister(
4114     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4115   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
4116   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
4117                                    QueuePtr, SDValue());
4118   SDValue Ops[] = {
4119     ToReg,
4120     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
4121     SGPR01,
4122     ToReg.getValue(1)
4123   };
4124   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4125 }
4126 
4127 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
4128   SDLoc SL(Op);
4129   SDValue Chain = Op.getOperand(0);
4130   MachineFunction &MF = DAG.getMachineFunction();
4131 
4132   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4133       !Subtarget->isTrapHandlerEnabled()) {
4134     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
4135                                      "debugtrap handler not supported",
4136                                      Op.getDebugLoc(),
4137                                      DS_Warning);
4138     LLVMContext &Ctx = MF.getFunction().getContext();
4139     Ctx.diagnose(NoTrap);
4140     return Chain;
4141   }
4142 
4143   SDValue Ops[] = {
4144     Chain,
4145     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
4146   };
4147   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4148 }
4149 
4150 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
4151                                              SelectionDAG &DAG) const {
4152   // FIXME: Use inline constants (src_{shared, private}_base) instead.
4153   if (Subtarget->hasApertureRegs()) {
4154     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
4155         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
4156         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
4157     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
4158         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
4159         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
4160     unsigned Encoding =
4161         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
4162         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
4163         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
4164 
4165     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
4166     SDValue ApertureReg = SDValue(
4167         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
4168     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
4169     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
4170   }
4171 
4172   MachineFunction &MF = DAG.getMachineFunction();
4173   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4174   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4175   assert(UserSGPR != AMDGPU::NoRegister);
4176 
4177   SDValue QueuePtr = CreateLiveInRegister(
4178     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4179 
4180   // Offset into amd_queue_t for group_segment_aperture_base_hi /
4181   // private_segment_aperture_base_hi.
4182   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
4183 
4184   SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
4185 
4186   // TODO: Use custom target PseudoSourceValue.
4187   // TODO: We should use the value from the IR intrinsic call, but it might not
4188   // be available and how do we get it?
4189   Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
4190                                               AMDGPUAS::CONSTANT_ADDRESS));
4191 
4192   MachinePointerInfo PtrInfo(V, StructOffset);
4193   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
4194                      MinAlign(64, StructOffset),
4195                      MachineMemOperand::MODereferenceable |
4196                          MachineMemOperand::MOInvariant);
4197 }
4198 
4199 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
4200                                              SelectionDAG &DAG) const {
4201   SDLoc SL(Op);
4202   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
4203 
4204   SDValue Src = ASC->getOperand(0);
4205   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
4206 
4207   const AMDGPUTargetMachine &TM =
4208     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
4209 
4210   // flat -> local/private
4211   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4212     unsigned DestAS = ASC->getDestAddressSpace();
4213 
4214     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
4215         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
4216       unsigned NullVal = TM.getNullPointerValue(DestAS);
4217       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4218       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
4219       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
4220 
4221       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
4222                          NonNull, Ptr, SegmentNullPtr);
4223     }
4224   }
4225 
4226   // local/private -> flat
4227   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4228     unsigned SrcAS = ASC->getSrcAddressSpace();
4229 
4230     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
4231         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
4232       unsigned NullVal = TM.getNullPointerValue(SrcAS);
4233       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4234 
4235       SDValue NonNull
4236         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
4237 
4238       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
4239       SDValue CvtPtr
4240         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
4241 
4242       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
4243                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
4244                          FlatNullPtr);
4245     }
4246   }
4247 
4248   // global <-> flat are no-ops and never emitted.
4249 
4250   const MachineFunction &MF = DAG.getMachineFunction();
4251   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
4252     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
4253   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
4254 
4255   return DAG.getUNDEF(ASC->getValueType(0));
4256 }
4257 
4258 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4259                                                  SelectionDAG &DAG) const {
4260   SDValue Vec = Op.getOperand(0);
4261   SDValue InsVal = Op.getOperand(1);
4262   SDValue Idx = Op.getOperand(2);
4263   EVT VecVT = Vec.getValueType();
4264   EVT EltVT = VecVT.getVectorElementType();
4265   unsigned VecSize = VecVT.getSizeInBits();
4266   unsigned EltSize = EltVT.getSizeInBits();
4267 
4268 
4269   assert(VecSize <= 64);
4270 
4271   unsigned NumElts = VecVT.getVectorNumElements();
4272   SDLoc SL(Op);
4273   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
4274 
4275   if (NumElts == 4 && EltSize == 16 && KIdx) {
4276     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
4277 
4278     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4279                                  DAG.getConstant(0, SL, MVT::i32));
4280     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4281                                  DAG.getConstant(1, SL, MVT::i32));
4282 
4283     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
4284     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
4285 
4286     unsigned Idx = KIdx->getZExtValue();
4287     bool InsertLo = Idx < 2;
4288     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
4289       InsertLo ? LoVec : HiVec,
4290       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
4291       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
4292 
4293     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
4294 
4295     SDValue Concat = InsertLo ?
4296       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
4297       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
4298 
4299     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
4300   }
4301 
4302   if (isa<ConstantSDNode>(Idx))
4303     return SDValue();
4304 
4305   MVT IntVT = MVT::getIntegerVT(VecSize);
4306 
4307   // Avoid stack access for dynamic indexing.
4308   SDValue Val = InsVal;
4309   if (InsVal.getValueType() == MVT::f16)
4310       Val = DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal);
4311 
4312   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
4313   SDValue ExtVal = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Val);
4314 
4315   assert(isPowerOf2_32(EltSize));
4316   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4317 
4318   // Convert vector index to bit-index.
4319   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4320 
4321   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4322   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
4323                             DAG.getConstant(0xffff, SL, IntVT),
4324                             ScaledIdx);
4325 
4326   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
4327   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
4328                             DAG.getNOT(SL, BFM, IntVT), BCVec);
4329 
4330   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
4331   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
4332 }
4333 
4334 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4335                                                   SelectionDAG &DAG) const {
4336   SDLoc SL(Op);
4337 
4338   EVT ResultVT = Op.getValueType();
4339   SDValue Vec = Op.getOperand(0);
4340   SDValue Idx = Op.getOperand(1);
4341   EVT VecVT = Vec.getValueType();
4342   unsigned VecSize = VecVT.getSizeInBits();
4343   EVT EltVT = VecVT.getVectorElementType();
4344   assert(VecSize <= 64);
4345 
4346   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
4347 
4348   // Make sure we do any optimizations that will make it easier to fold
4349   // source modifiers before obscuring it with bit operations.
4350 
4351   // XXX - Why doesn't this get called when vector_shuffle is expanded?
4352   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
4353     return Combined;
4354 
4355   unsigned EltSize = EltVT.getSizeInBits();
4356   assert(isPowerOf2_32(EltSize));
4357 
4358   MVT IntVT = MVT::getIntegerVT(VecSize);
4359   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4360 
4361   // Convert vector index to bit-index (* EltSize)
4362   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4363 
4364   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4365   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
4366 
4367   if (ResultVT == MVT::f16) {
4368     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
4369     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4370   }
4371 
4372   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
4373 }
4374 
4375 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
4376                                             SelectionDAG &DAG) const {
4377   SDLoc SL(Op);
4378   EVT VT = Op.getValueType();
4379 
4380   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4381     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
4382 
4383     // Turn into pair of packed build_vectors.
4384     // TODO: Special case for constants that can be materialized with s_mov_b64.
4385     SDValue Lo = DAG.getBuildVector(HalfVT, SL,
4386                                     { Op.getOperand(0), Op.getOperand(1) });
4387     SDValue Hi = DAG.getBuildVector(HalfVT, SL,
4388                                     { Op.getOperand(2), Op.getOperand(3) });
4389 
4390     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
4391     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
4392 
4393     SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
4394     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
4395   }
4396 
4397   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
4398   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
4399 
4400   SDValue Lo = Op.getOperand(0);
4401   SDValue Hi = Op.getOperand(1);
4402 
4403   // Avoid adding defined bits with the zero_extend.
4404   if (Hi.isUndef()) {
4405     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
4406     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
4407     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
4408   }
4409 
4410   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
4411   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
4412 
4413   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
4414                               DAG.getConstant(16, SL, MVT::i32));
4415   if (Lo.isUndef())
4416     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
4417 
4418   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
4419   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
4420 
4421   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
4422   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
4423 }
4424 
4425 bool
4426 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4427   // We can fold offsets for anything that doesn't require a GOT relocation.
4428   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
4429           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4430           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4431          !shouldEmitGOTReloc(GA->getGlobal());
4432 }
4433 
4434 static SDValue
4435 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
4436                         const SDLoc &DL, unsigned Offset, EVT PtrVT,
4437                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
4438   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
4439   // lowered to the following code sequence:
4440   //
4441   // For constant address space:
4442   //   s_getpc_b64 s[0:1]
4443   //   s_add_u32 s0, s0, $symbol
4444   //   s_addc_u32 s1, s1, 0
4445   //
4446   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
4447   //   a fixup or relocation is emitted to replace $symbol with a literal
4448   //   constant, which is a pc-relative offset from the encoding of the $symbol
4449   //   operand to the global variable.
4450   //
4451   // For global address space:
4452   //   s_getpc_b64 s[0:1]
4453   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
4454   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
4455   //
4456   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
4457   //   fixups or relocations are emitted to replace $symbol@*@lo and
4458   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
4459   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
4460   //   operand to the global variable.
4461   //
4462   // What we want here is an offset from the value returned by s_getpc
4463   // (which is the address of the s_add_u32 instruction) to the global
4464   // variable, but since the encoding of $symbol starts 4 bytes after the start
4465   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
4466   // small. This requires us to add 4 to the global variable offset in order to
4467   // compute the correct address.
4468   SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
4469                                              GAFlags);
4470   SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
4471                                              GAFlags == SIInstrInfo::MO_NONE ?
4472                                              GAFlags : GAFlags + 1);
4473   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
4474 }
4475 
4476 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
4477                                              SDValue Op,
4478                                              SelectionDAG &DAG) const {
4479   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
4480   const GlobalValue *GV = GSD->getGlobal();
4481   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
4482       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
4483       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS)
4484     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
4485 
4486   SDLoc DL(GSD);
4487   EVT PtrVT = Op.getValueType();
4488 
4489   // FIXME: Should not make address space based decisions here.
4490   if (shouldEmitFixup(GV))
4491     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
4492   else if (shouldEmitPCReloc(GV))
4493     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
4494                                    SIInstrInfo::MO_REL32);
4495 
4496   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
4497                                             SIInstrInfo::MO_GOTPCREL32);
4498 
4499   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
4500   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
4501   const DataLayout &DataLayout = DAG.getDataLayout();
4502   unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
4503   MachinePointerInfo PtrInfo
4504     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
4505 
4506   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
4507                      MachineMemOperand::MODereferenceable |
4508                          MachineMemOperand::MOInvariant);
4509 }
4510 
4511 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
4512                                    const SDLoc &DL, SDValue V) const {
4513   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
4514   // the destination register.
4515   //
4516   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
4517   // so we will end up with redundant moves to m0.
4518   //
4519   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
4520 
4521   // A Null SDValue creates a glue result.
4522   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
4523                                   V, Chain);
4524   return SDValue(M0, 0);
4525 }
4526 
4527 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
4528                                                  SDValue Op,
4529                                                  MVT VT,
4530                                                  unsigned Offset) const {
4531   SDLoc SL(Op);
4532   SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
4533                                            DAG.getEntryNode(), Offset, 4, false);
4534   // The local size values will have the hi 16-bits as zero.
4535   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
4536                      DAG.getValueType(VT));
4537 }
4538 
4539 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
4540                                         EVT VT) {
4541   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
4542                                       "non-hsa intrinsic with hsa target",
4543                                       DL.getDebugLoc());
4544   DAG.getContext()->diagnose(BadIntrin);
4545   return DAG.getUNDEF(VT);
4546 }
4547 
4548 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
4549                                          EVT VT) {
4550   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
4551                                       "intrinsic not supported on subtarget",
4552                                       DL.getDebugLoc());
4553   DAG.getContext()->diagnose(BadIntrin);
4554   return DAG.getUNDEF(VT);
4555 }
4556 
4557 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
4558                                     ArrayRef<SDValue> Elts) {
4559   assert(!Elts.empty());
4560   MVT Type;
4561   unsigned NumElts;
4562 
4563   if (Elts.size() == 1) {
4564     Type = MVT::f32;
4565     NumElts = 1;
4566   } else if (Elts.size() == 2) {
4567     Type = MVT::v2f32;
4568     NumElts = 2;
4569   } else if (Elts.size() <= 4) {
4570     Type = MVT::v4f32;
4571     NumElts = 4;
4572   } else if (Elts.size() <= 8) {
4573     Type = MVT::v8f32;
4574     NumElts = 8;
4575   } else {
4576     assert(Elts.size() <= 16);
4577     Type = MVT::v16f32;
4578     NumElts = 16;
4579   }
4580 
4581   SmallVector<SDValue, 16> VecElts(NumElts);
4582   for (unsigned i = 0; i < Elts.size(); ++i) {
4583     SDValue Elt = Elts[i];
4584     if (Elt.getValueType() != MVT::f32)
4585       Elt = DAG.getBitcast(MVT::f32, Elt);
4586     VecElts[i] = Elt;
4587   }
4588   for (unsigned i = Elts.size(); i < NumElts; ++i)
4589     VecElts[i] = DAG.getUNDEF(MVT::f32);
4590 
4591   if (NumElts == 1)
4592     return VecElts[0];
4593   return DAG.getBuildVector(Type, DL, VecElts);
4594 }
4595 
4596 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
4597                              SDValue *GLC, SDValue *SLC) {
4598   auto CachePolicyConst = dyn_cast<ConstantSDNode>(CachePolicy.getNode());
4599   if (!CachePolicyConst)
4600     return false;
4601 
4602   uint64_t Value = CachePolicyConst->getZExtValue();
4603   SDLoc DL(CachePolicy);
4604   if (GLC) {
4605     *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
4606     Value &= ~(uint64_t)0x1;
4607   }
4608   if (SLC) {
4609     *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
4610     Value &= ~(uint64_t)0x2;
4611   }
4612 
4613   return Value == 0;
4614 }
4615 
4616 SDValue SITargetLowering::lowerImage(SDValue Op,
4617                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
4618                                      SelectionDAG &DAG) const {
4619   SDLoc DL(Op);
4620   MachineFunction &MF = DAG.getMachineFunction();
4621   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
4622   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
4623       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
4624   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
4625   const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
4626       AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
4627   unsigned IntrOpcode = Intr->BaseOpcode;
4628 
4629   SmallVector<EVT, 2> ResultTypes(Op->value_begin(), Op->value_end());
4630   bool IsD16 = false;
4631   bool IsA16 = false;
4632   SDValue VData;
4633   int NumVDataDwords;
4634   unsigned AddrIdx; // Index of first address argument
4635   unsigned DMask;
4636 
4637   if (BaseOpcode->Atomic) {
4638     VData = Op.getOperand(2);
4639 
4640     bool Is64Bit = VData.getValueType() == MVT::i64;
4641     if (BaseOpcode->AtomicX2) {
4642       SDValue VData2 = Op.getOperand(3);
4643       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
4644                                  {VData, VData2});
4645       if (Is64Bit)
4646         VData = DAG.getBitcast(MVT::v4i32, VData);
4647 
4648       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
4649       DMask = Is64Bit ? 0xf : 0x3;
4650       NumVDataDwords = Is64Bit ? 4 : 2;
4651       AddrIdx = 4;
4652     } else {
4653       DMask = Is64Bit ? 0x3 : 0x1;
4654       NumVDataDwords = Is64Bit ? 2 : 1;
4655       AddrIdx = 3;
4656     }
4657   } else {
4658     unsigned DMaskIdx;
4659 
4660     if (BaseOpcode->Store) {
4661       VData = Op.getOperand(2);
4662 
4663       MVT StoreVT = VData.getSimpleValueType();
4664       if (StoreVT.getScalarType() == MVT::f16) {
4665         if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS ||
4666             !BaseOpcode->HasD16)
4667           return Op; // D16 is unsupported for this instruction
4668 
4669         IsD16 = true;
4670         VData = handleD16VData(VData, DAG);
4671       }
4672 
4673       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
4674       DMaskIdx = 3;
4675     } else {
4676       MVT LoadVT = Op.getSimpleValueType();
4677       if (LoadVT.getScalarType() == MVT::f16) {
4678         if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS ||
4679             !BaseOpcode->HasD16)
4680           return Op; // D16 is unsupported for this instruction
4681 
4682         IsD16 = true;
4683         if (LoadVT.isVector() && Subtarget->hasUnpackedD16VMem())
4684           ResultTypes[0] = (LoadVT == MVT::v2f16) ? MVT::v2i32 : MVT::v4i32;
4685       }
4686 
4687       NumVDataDwords = (ResultTypes[0].getSizeInBits() + 31) / 32;
4688       DMaskIdx = isa<MemSDNode>(Op) ? 2 : 1;
4689     }
4690 
4691     auto DMaskConst = dyn_cast<ConstantSDNode>(Op.getOperand(DMaskIdx));
4692     if (!DMaskConst)
4693       return Op;
4694 
4695     AddrIdx = DMaskIdx + 1;
4696     DMask = DMaskConst->getZExtValue();
4697     if (!DMask && !BaseOpcode->Store) {
4698       // Eliminate no-op loads. Stores with dmask == 0 are *not* no-op: they
4699       // store the channels' default values.
4700       SDValue Undef = DAG.getUNDEF(Op.getValueType());
4701       if (isa<MemSDNode>(Op))
4702         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
4703       return Undef;
4704     }
4705   }
4706 
4707   unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0;
4708   unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0;
4709   unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0;
4710   unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients +
4711                        NumCoords + NumLCM;
4712   unsigned NumMIVAddrs = NumVAddrs;
4713 
4714   SmallVector<SDValue, 4> VAddrs;
4715 
4716   // Optimize _L to _LZ when _L is zero
4717   if (LZMappingInfo) {
4718     if (auto ConstantLod =
4719          dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
4720       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
4721         IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
4722         NumMIVAddrs--;               // remove 'lod'
4723       }
4724     }
4725   }
4726 
4727   // Check for 16 bit addresses and pack if true.
4728   unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs;
4729   MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType();
4730   const MVT VAddrScalarVT = VAddrVT.getScalarType();
4731   if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) &&
4732       ST->hasFeature(AMDGPU::FeatureR128A16)) {
4733     IsA16 = true;
4734     const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
4735     for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) {
4736       SDValue AddrLo, AddrHi;
4737       // Push back extra arguments.
4738       if (i < DimIdx) {
4739         AddrLo = Op.getOperand(i);
4740       } else {
4741         AddrLo = Op.getOperand(i);
4742         // Dz/dh, dz/dv and the last odd coord are packed with undef. Also,
4743         // in 1D, derivatives dx/dh and dx/dv are packed with undef.
4744         if (((i + 1) >= (AddrIdx + NumMIVAddrs)) ||
4745             ((NumGradients / 2) % 2 == 1 &&
4746             (i == DimIdx + (NumGradients / 2) - 1 ||
4747              i == DimIdx + NumGradients - 1))) {
4748           AddrHi = DAG.getUNDEF(MVT::f16);
4749         } else {
4750           AddrHi = Op.getOperand(i + 1);
4751           i++;
4752         }
4753         AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT,
4754                              {AddrLo, AddrHi});
4755         AddrLo = DAG.getBitcast(MVT::i32, AddrLo);
4756       }
4757       VAddrs.push_back(AddrLo);
4758     }
4759   } else {
4760     for (unsigned i = 0; i < NumMIVAddrs; ++i)
4761       VAddrs.push_back(Op.getOperand(AddrIdx + i));
4762   }
4763 
4764   SDValue VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
4765 
4766   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
4767   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
4768   unsigned CtrlIdx; // Index of texfailctrl argument
4769   SDValue Unorm;
4770   if (!BaseOpcode->Sampler) {
4771     Unorm = True;
4772     CtrlIdx = AddrIdx + NumVAddrs + 1;
4773   } else {
4774     auto UnormConst =
4775         dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2));
4776     if (!UnormConst)
4777       return Op;
4778 
4779     Unorm = UnormConst->getZExtValue() ? True : False;
4780     CtrlIdx = AddrIdx + NumVAddrs + 3;
4781   }
4782 
4783   SDValue TexFail = Op.getOperand(CtrlIdx);
4784   auto TexFailConst = dyn_cast<ConstantSDNode>(TexFail.getNode());
4785   if (!TexFailConst || TexFailConst->getZExtValue() != 0)
4786     return Op;
4787 
4788   SDValue GLC;
4789   SDValue SLC;
4790   if (BaseOpcode->Atomic) {
4791     GLC = True; // TODO no-return optimization
4792     if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC))
4793       return Op;
4794   } else {
4795     if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC))
4796       return Op;
4797   }
4798 
4799   SmallVector<SDValue, 14> Ops;
4800   if (BaseOpcode->Store || BaseOpcode->Atomic)
4801     Ops.push_back(VData); // vdata
4802   Ops.push_back(VAddr);
4803   Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc
4804   if (BaseOpcode->Sampler)
4805     Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler
4806   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
4807   Ops.push_back(Unorm);
4808   Ops.push_back(GLC);
4809   Ops.push_back(SLC);
4810   Ops.push_back(IsA16 &&  // a16 or r128
4811                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
4812   Ops.push_back(False); // tfe
4813   Ops.push_back(False); // lwe
4814   Ops.push_back(DimInfo->DA ? True : False);
4815   if (BaseOpcode->HasD16)
4816     Ops.push_back(IsD16 ? True : False);
4817   if (isa<MemSDNode>(Op))
4818     Ops.push_back(Op.getOperand(0)); // chain
4819 
4820   int NumVAddrDwords = VAddr.getValueType().getSizeInBits() / 32;
4821   int Opcode = -1;
4822 
4823   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
4824     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
4825                                    NumVDataDwords, NumVAddrDwords);
4826   if (Opcode == -1)
4827     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
4828                                    NumVDataDwords, NumVAddrDwords);
4829   assert(Opcode != -1);
4830 
4831   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
4832   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
4833     MachineMemOperand *MemRef = MemOp->getMemOperand();
4834     DAG.setNodeMemRefs(NewNode, {MemRef});
4835   }
4836 
4837   if (BaseOpcode->AtomicX2) {
4838     SmallVector<SDValue, 1> Elt;
4839     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
4840     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
4841   } else if (IsD16 && !BaseOpcode->Store) {
4842     MVT LoadVT = Op.getSimpleValueType();
4843     SDValue Adjusted = adjustLoadValueTypeImpl(
4844         SDValue(NewNode, 0), LoadVT, DL, DAG, Subtarget->hasUnpackedD16VMem());
4845     return DAG.getMergeValues({Adjusted, SDValue(NewNode, 1)}, DL);
4846   }
4847 
4848   return SDValue(NewNode, 0);
4849 }
4850 
4851 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
4852                                        SDValue Offset, SDValue GLC,
4853                                        SelectionDAG &DAG) const {
4854   MachineFunction &MF = DAG.getMachineFunction();
4855   MachineMemOperand *MMO = MF.getMachineMemOperand(
4856       MachinePointerInfo(),
4857       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
4858           MachineMemOperand::MOInvariant,
4859       VT.getStoreSize(), VT.getStoreSize());
4860 
4861   if (!Offset->isDivergent()) {
4862     SDValue Ops[] = {
4863         Rsrc,
4864         Offset, // Offset
4865         GLC     // glc
4866     };
4867     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
4868                                    DAG.getVTList(VT), Ops, VT, MMO);
4869   }
4870 
4871   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
4872   // assume that the buffer is unswizzled.
4873   SmallVector<SDValue, 4> Loads;
4874   unsigned NumLoads = 1;
4875   MVT LoadVT = VT.getSimpleVT();
4876   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
4877   assert((LoadVT.getScalarType() == MVT::i32 ||
4878           LoadVT.getScalarType() == MVT::f32) &&
4879          isPowerOf2_32(NumElts));
4880 
4881   if (NumElts == 8 || NumElts == 16) {
4882     NumLoads = NumElts == 16 ? 4 : 2;
4883     LoadVT = MVT::v4i32;
4884   }
4885 
4886   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
4887   unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue();
4888   SDValue Ops[] = {
4889       DAG.getEntryNode(),                         // Chain
4890       Rsrc,                                       // rsrc
4891       DAG.getConstant(0, DL, MVT::i32),           // vindex
4892       {},                                         // voffset
4893       {},                                         // soffset
4894       {},                                         // offset
4895       DAG.getConstant(CachePolicy, DL, MVT::i32), // cachepolicy
4896       DAG.getConstant(0, DL, MVT::i1),            // idxen
4897   };
4898 
4899   // Use the alignment to ensure that the required offsets will fit into the
4900   // immediate offsets.
4901   setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4);
4902 
4903   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
4904   for (unsigned i = 0; i < NumLoads; ++i) {
4905     Ops[5] = DAG.getConstant(InstOffset + 16 * i, DL, MVT::i32);
4906     Loads.push_back(DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList,
4907                                             Ops, LoadVT, MMO));
4908   }
4909 
4910   if (VT == MVT::v8i32 || VT == MVT::v16i32)
4911     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
4912 
4913   return Loads[0];
4914 }
4915 
4916 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4917                                                   SelectionDAG &DAG) const {
4918   MachineFunction &MF = DAG.getMachineFunction();
4919   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
4920 
4921   EVT VT = Op.getValueType();
4922   SDLoc DL(Op);
4923   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4924 
4925   // TODO: Should this propagate fast-math-flags?
4926 
4927   switch (IntrinsicID) {
4928   case Intrinsic::amdgcn_implicit_buffer_ptr: {
4929     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
4930       return emitNonHSAIntrinsicError(DAG, DL, VT);
4931     return getPreloadedValue(DAG, *MFI, VT,
4932                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
4933   }
4934   case Intrinsic::amdgcn_dispatch_ptr:
4935   case Intrinsic::amdgcn_queue_ptr: {
4936     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
4937       DiagnosticInfoUnsupported BadIntrin(
4938           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
4939           DL.getDebugLoc());
4940       DAG.getContext()->diagnose(BadIntrin);
4941       return DAG.getUNDEF(VT);
4942     }
4943 
4944     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
4945       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
4946     return getPreloadedValue(DAG, *MFI, VT, RegID);
4947   }
4948   case Intrinsic::amdgcn_implicitarg_ptr: {
4949     if (MFI->isEntryFunction())
4950       return getImplicitArgPtr(DAG, DL);
4951     return getPreloadedValue(DAG, *MFI, VT,
4952                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
4953   }
4954   case Intrinsic::amdgcn_kernarg_segment_ptr: {
4955     return getPreloadedValue(DAG, *MFI, VT,
4956                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
4957   }
4958   case Intrinsic::amdgcn_dispatch_id: {
4959     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
4960   }
4961   case Intrinsic::amdgcn_rcp:
4962     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
4963   case Intrinsic::amdgcn_rsq:
4964     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
4965   case Intrinsic::amdgcn_rsq_legacy:
4966     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
4967       return emitRemovedIntrinsicError(DAG, DL, VT);
4968 
4969     return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
4970   case Intrinsic::amdgcn_rcp_legacy:
4971     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
4972       return emitRemovedIntrinsicError(DAG, DL, VT);
4973     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
4974   case Intrinsic::amdgcn_rsq_clamp: {
4975     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
4976       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
4977 
4978     Type *Type = VT.getTypeForEVT(*DAG.getContext());
4979     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
4980     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
4981 
4982     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
4983     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
4984                               DAG.getConstantFP(Max, DL, VT));
4985     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
4986                        DAG.getConstantFP(Min, DL, VT));
4987   }
4988   case Intrinsic::r600_read_ngroups_x:
4989     if (Subtarget->isAmdHsaOS())
4990       return emitNonHSAIntrinsicError(DAG, DL, VT);
4991 
4992     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4993                                     SI::KernelInputOffsets::NGROUPS_X, 4, false);
4994   case Intrinsic::r600_read_ngroups_y:
4995     if (Subtarget->isAmdHsaOS())
4996       return emitNonHSAIntrinsicError(DAG, DL, VT);
4997 
4998     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4999                                     SI::KernelInputOffsets::NGROUPS_Y, 4, false);
5000   case Intrinsic::r600_read_ngroups_z:
5001     if (Subtarget->isAmdHsaOS())
5002       return emitNonHSAIntrinsicError(DAG, DL, VT);
5003 
5004     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5005                                     SI::KernelInputOffsets::NGROUPS_Z, 4, false);
5006   case Intrinsic::r600_read_global_size_x:
5007     if (Subtarget->isAmdHsaOS())
5008       return emitNonHSAIntrinsicError(DAG, DL, VT);
5009 
5010     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5011                                     SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false);
5012   case Intrinsic::r600_read_global_size_y:
5013     if (Subtarget->isAmdHsaOS())
5014       return emitNonHSAIntrinsicError(DAG, DL, VT);
5015 
5016     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5017                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false);
5018   case Intrinsic::r600_read_global_size_z:
5019     if (Subtarget->isAmdHsaOS())
5020       return emitNonHSAIntrinsicError(DAG, DL, VT);
5021 
5022     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5023                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false);
5024   case Intrinsic::r600_read_local_size_x:
5025     if (Subtarget->isAmdHsaOS())
5026       return emitNonHSAIntrinsicError(DAG, DL, VT);
5027 
5028     return lowerImplicitZextParam(DAG, Op, MVT::i16,
5029                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
5030   case Intrinsic::r600_read_local_size_y:
5031     if (Subtarget->isAmdHsaOS())
5032       return emitNonHSAIntrinsicError(DAG, DL, VT);
5033 
5034     return lowerImplicitZextParam(DAG, Op, MVT::i16,
5035                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
5036   case Intrinsic::r600_read_local_size_z:
5037     if (Subtarget->isAmdHsaOS())
5038       return emitNonHSAIntrinsicError(DAG, DL, VT);
5039 
5040     return lowerImplicitZextParam(DAG, Op, MVT::i16,
5041                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
5042   case Intrinsic::amdgcn_workgroup_id_x:
5043   case Intrinsic::r600_read_tgid_x:
5044     return getPreloadedValue(DAG, *MFI, VT,
5045                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
5046   case Intrinsic::amdgcn_workgroup_id_y:
5047   case Intrinsic::r600_read_tgid_y:
5048     return getPreloadedValue(DAG, *MFI, VT,
5049                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
5050   case Intrinsic::amdgcn_workgroup_id_z:
5051   case Intrinsic::r600_read_tgid_z:
5052     return getPreloadedValue(DAG, *MFI, VT,
5053                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
5054   case Intrinsic::amdgcn_workitem_id_x:
5055   case Intrinsic::r600_read_tidig_x:
5056     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5057                           SDLoc(DAG.getEntryNode()),
5058                           MFI->getArgInfo().WorkItemIDX);
5059   case Intrinsic::amdgcn_workitem_id_y:
5060   case Intrinsic::r600_read_tidig_y:
5061     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5062                           SDLoc(DAG.getEntryNode()),
5063                           MFI->getArgInfo().WorkItemIDY);
5064   case Intrinsic::amdgcn_workitem_id_z:
5065   case Intrinsic::r600_read_tidig_z:
5066     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5067                           SDLoc(DAG.getEntryNode()),
5068                           MFI->getArgInfo().WorkItemIDZ);
5069   case SIIntrinsic::SI_load_const: {
5070     SDValue Load =
5071         lowerSBuffer(MVT::i32, DL, Op.getOperand(1), Op.getOperand(2),
5072                      DAG.getTargetConstant(0, DL, MVT::i1), DAG);
5073     return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Load);
5074   }
5075   case Intrinsic::amdgcn_s_buffer_load: {
5076     unsigned Cache = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5077     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2),
5078                         DAG.getTargetConstant(Cache & 1, DL, MVT::i1), DAG);
5079   }
5080   case Intrinsic::amdgcn_fdiv_fast:
5081     return lowerFDIV_FAST(Op, DAG);
5082   case Intrinsic::amdgcn_interp_mov: {
5083     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
5084     SDValue Glue = M0.getValue(1);
5085     return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
5086                        Op.getOperand(2), Op.getOperand(3), Glue);
5087   }
5088   case Intrinsic::amdgcn_interp_p1: {
5089     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
5090     SDValue Glue = M0.getValue(1);
5091     return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
5092                        Op.getOperand(2), Op.getOperand(3), Glue);
5093   }
5094   case Intrinsic::amdgcn_interp_p2: {
5095     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
5096     SDValue Glue = SDValue(M0.getNode(), 1);
5097     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
5098                        Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
5099                        Glue);
5100   }
5101   case Intrinsic::amdgcn_sin:
5102     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
5103 
5104   case Intrinsic::amdgcn_cos:
5105     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
5106 
5107   case Intrinsic::amdgcn_log_clamp: {
5108     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5109       return SDValue();
5110 
5111     DiagnosticInfoUnsupported BadIntrin(
5112       MF.getFunction(), "intrinsic not supported on subtarget",
5113       DL.getDebugLoc());
5114       DAG.getContext()->diagnose(BadIntrin);
5115       return DAG.getUNDEF(VT);
5116   }
5117   case Intrinsic::amdgcn_ldexp:
5118     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
5119                        Op.getOperand(1), Op.getOperand(2));
5120 
5121   case Intrinsic::amdgcn_fract:
5122     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
5123 
5124   case Intrinsic::amdgcn_class:
5125     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
5126                        Op.getOperand(1), Op.getOperand(2));
5127   case Intrinsic::amdgcn_div_fmas:
5128     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
5129                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
5130                        Op.getOperand(4));
5131 
5132   case Intrinsic::amdgcn_div_fixup:
5133     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
5134                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5135 
5136   case Intrinsic::amdgcn_trig_preop:
5137     return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
5138                        Op.getOperand(1), Op.getOperand(2));
5139   case Intrinsic::amdgcn_div_scale: {
5140     // 3rd parameter required to be a constant.
5141     const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
5142     if (!Param)
5143       return DAG.getMergeValues({ DAG.getUNDEF(VT), DAG.getUNDEF(MVT::i1) }, DL);
5144 
5145     // Translate to the operands expected by the machine instruction. The
5146     // first parameter must be the same as the first instruction.
5147     SDValue Numerator = Op.getOperand(1);
5148     SDValue Denominator = Op.getOperand(2);
5149 
5150     // Note this order is opposite of the machine instruction's operations,
5151     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
5152     // intrinsic has the numerator as the first operand to match a normal
5153     // division operation.
5154 
5155     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
5156 
5157     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
5158                        Denominator, Numerator);
5159   }
5160   case Intrinsic::amdgcn_icmp: {
5161     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
5162   }
5163   case Intrinsic::amdgcn_fcmp: {
5164     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
5165   }
5166   case Intrinsic::amdgcn_fmed3:
5167     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
5168                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5169   case Intrinsic::amdgcn_fdot2:
5170     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
5171                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
5172                        Op.getOperand(4));
5173   case Intrinsic::amdgcn_fmul_legacy:
5174     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
5175                        Op.getOperand(1), Op.getOperand(2));
5176   case Intrinsic::amdgcn_sffbh:
5177     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
5178   case Intrinsic::amdgcn_sbfe:
5179     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
5180                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5181   case Intrinsic::amdgcn_ubfe:
5182     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
5183                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5184   case Intrinsic::amdgcn_cvt_pkrtz:
5185   case Intrinsic::amdgcn_cvt_pknorm_i16:
5186   case Intrinsic::amdgcn_cvt_pknorm_u16:
5187   case Intrinsic::amdgcn_cvt_pk_i16:
5188   case Intrinsic::amdgcn_cvt_pk_u16: {
5189     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
5190     EVT VT = Op.getValueType();
5191     unsigned Opcode;
5192 
5193     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
5194       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
5195     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
5196       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
5197     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
5198       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
5199     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
5200       Opcode = AMDGPUISD::CVT_PK_I16_I32;
5201     else
5202       Opcode = AMDGPUISD::CVT_PK_U16_U32;
5203 
5204     if (isTypeLegal(VT))
5205       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
5206 
5207     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
5208                                Op.getOperand(1), Op.getOperand(2));
5209     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
5210   }
5211   case Intrinsic::amdgcn_wqm: {
5212     SDValue Src = Op.getOperand(1);
5213     return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src),
5214                    0);
5215   }
5216   case Intrinsic::amdgcn_wwm: {
5217     SDValue Src = Op.getOperand(1);
5218     return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src),
5219                    0);
5220   }
5221   case Intrinsic::amdgcn_fmad_ftz:
5222     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
5223                        Op.getOperand(2), Op.getOperand(3));
5224   default:
5225     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
5226             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
5227       return lowerImage(Op, ImageDimIntr, DAG);
5228 
5229     return Op;
5230   }
5231 }
5232 
5233 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
5234                                                  SelectionDAG &DAG) const {
5235   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5236   SDLoc DL(Op);
5237 
5238   switch (IntrID) {
5239   case Intrinsic::amdgcn_atomic_inc:
5240   case Intrinsic::amdgcn_atomic_dec:
5241   case Intrinsic::amdgcn_ds_fadd:
5242   case Intrinsic::amdgcn_ds_fmin:
5243   case Intrinsic::amdgcn_ds_fmax: {
5244     MemSDNode *M = cast<MemSDNode>(Op);
5245     unsigned Opc;
5246     switch (IntrID) {
5247     case Intrinsic::amdgcn_atomic_inc:
5248       Opc = AMDGPUISD::ATOMIC_INC;
5249       break;
5250     case Intrinsic::amdgcn_atomic_dec:
5251       Opc = AMDGPUISD::ATOMIC_DEC;
5252       break;
5253     case Intrinsic::amdgcn_ds_fadd:
5254       Opc = AMDGPUISD::ATOMIC_LOAD_FADD;
5255       break;
5256     case Intrinsic::amdgcn_ds_fmin:
5257       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
5258       break;
5259     case Intrinsic::amdgcn_ds_fmax:
5260       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
5261       break;
5262     default:
5263       llvm_unreachable("Unknown intrinsic!");
5264     }
5265     SDValue Ops[] = {
5266       M->getOperand(0), // Chain
5267       M->getOperand(2), // Ptr
5268       M->getOperand(3)  // Value
5269     };
5270 
5271     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
5272                                    M->getMemoryVT(), M->getMemOperand());
5273   }
5274   case Intrinsic::amdgcn_buffer_load:
5275   case Intrinsic::amdgcn_buffer_load_format: {
5276     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
5277     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
5278     unsigned IdxEn = 1;
5279     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
5280       IdxEn = Idx->getZExtValue() != 0;
5281     SDValue Ops[] = {
5282       Op.getOperand(0), // Chain
5283       Op.getOperand(2), // rsrc
5284       Op.getOperand(3), // vindex
5285       SDValue(),        // voffset -- will be set by setBufferOffsets
5286       SDValue(),        // soffset -- will be set by setBufferOffsets
5287       SDValue(),        // offset -- will be set by setBufferOffsets
5288       DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
5289       DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
5290     };
5291 
5292     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
5293     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
5294         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
5295 
5296     EVT VT = Op.getValueType();
5297     EVT IntVT = VT.changeTypeToInteger();
5298     auto *M = cast<MemSDNode>(Op);
5299     EVT LoadVT = Op.getValueType();
5300 
5301     if (LoadVT.getScalarType() == MVT::f16)
5302       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
5303                                  M, DAG, Ops);
5304     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
5305                                    M->getMemOperand());
5306   }
5307   case Intrinsic::amdgcn_raw_buffer_load:
5308   case Intrinsic::amdgcn_raw_buffer_load_format: {
5309     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
5310     SDValue Ops[] = {
5311       Op.getOperand(0), // Chain
5312       Op.getOperand(2), // rsrc
5313       DAG.getConstant(0, DL, MVT::i32), // vindex
5314       Offsets.first,    // voffset
5315       Op.getOperand(4), // soffset
5316       Offsets.second,   // offset
5317       Op.getOperand(5), // cachepolicy
5318       DAG.getConstant(0, DL, MVT::i1), // idxen
5319     };
5320 
5321     unsigned Opc = (IntrID == Intrinsic::amdgcn_raw_buffer_load) ?
5322         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
5323 
5324     EVT VT = Op.getValueType();
5325     EVT IntVT = VT.changeTypeToInteger();
5326     auto *M = cast<MemSDNode>(Op);
5327     EVT LoadVT = Op.getValueType();
5328 
5329     if (LoadVT.getScalarType() == MVT::f16)
5330       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
5331                                  M, DAG, Ops);
5332     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
5333                                    M->getMemOperand());
5334   }
5335   case Intrinsic::amdgcn_struct_buffer_load:
5336   case Intrinsic::amdgcn_struct_buffer_load_format: {
5337     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
5338     SDValue Ops[] = {
5339       Op.getOperand(0), // Chain
5340       Op.getOperand(2), // rsrc
5341       Op.getOperand(3), // vindex
5342       Offsets.first,    // voffset
5343       Op.getOperand(5), // soffset
5344       Offsets.second,   // offset
5345       Op.getOperand(6), // cachepolicy
5346       DAG.getConstant(1, DL, MVT::i1), // idxen
5347     };
5348 
5349     unsigned Opc = (IntrID == Intrinsic::amdgcn_struct_buffer_load) ?
5350         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
5351 
5352     EVT VT = Op.getValueType();
5353     EVT IntVT = VT.changeTypeToInteger();
5354     auto *M = cast<MemSDNode>(Op);
5355     EVT LoadVT = Op.getValueType();
5356 
5357     if (LoadVT.getScalarType() == MVT::f16)
5358       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
5359                                  M, DAG, Ops);
5360     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
5361                                    M->getMemOperand());
5362   }
5363   case Intrinsic::amdgcn_tbuffer_load: {
5364     MemSDNode *M = cast<MemSDNode>(Op);
5365     EVT LoadVT = Op.getValueType();
5366 
5367     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
5368     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
5369     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
5370     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
5371     unsigned IdxEn = 1;
5372     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
5373       IdxEn = Idx->getZExtValue() != 0;
5374     SDValue Ops[] = {
5375       Op.getOperand(0),  // Chain
5376       Op.getOperand(2),  // rsrc
5377       Op.getOperand(3),  // vindex
5378       Op.getOperand(4),  // voffset
5379       Op.getOperand(5),  // soffset
5380       Op.getOperand(6),  // offset
5381       DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
5382       DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
5383       DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
5384     };
5385 
5386     if (LoadVT.getScalarType() == MVT::f16)
5387       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
5388                                  M, DAG, Ops);
5389     return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
5390                                    Op->getVTList(), Ops, LoadVT,
5391                                    M->getMemOperand());
5392   }
5393   case Intrinsic::amdgcn_raw_tbuffer_load: {
5394     MemSDNode *M = cast<MemSDNode>(Op);
5395     EVT LoadVT = Op.getValueType();
5396     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
5397 
5398     SDValue Ops[] = {
5399       Op.getOperand(0),  // Chain
5400       Op.getOperand(2),  // rsrc
5401       DAG.getConstant(0, DL, MVT::i32), // vindex
5402       Offsets.first,     // voffset
5403       Op.getOperand(4),  // soffset
5404       Offsets.second,    // offset
5405       Op.getOperand(5),  // format
5406       Op.getOperand(6),  // cachepolicy
5407       DAG.getConstant(0, DL, MVT::i1), // idxen
5408     };
5409 
5410     if (LoadVT.getScalarType() == MVT::f16)
5411       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
5412                                  M, DAG, Ops);
5413     return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
5414                                    Op->getVTList(), Ops, LoadVT,
5415                                    M->getMemOperand());
5416   }
5417   case Intrinsic::amdgcn_struct_tbuffer_load: {
5418     MemSDNode *M = cast<MemSDNode>(Op);
5419     EVT LoadVT = Op.getValueType();
5420     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
5421 
5422     SDValue Ops[] = {
5423       Op.getOperand(0),  // Chain
5424       Op.getOperand(2),  // rsrc
5425       Op.getOperand(3),  // vindex
5426       Offsets.first,     // voffset
5427       Op.getOperand(5),  // soffset
5428       Offsets.second,    // offset
5429       Op.getOperand(6),  // format
5430       Op.getOperand(7),  // cachepolicy
5431       DAG.getConstant(1, DL, MVT::i1), // idxen
5432     };
5433 
5434     if (LoadVT.getScalarType() == MVT::f16)
5435       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
5436                                  M, DAG, Ops);
5437     return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
5438                                    Op->getVTList(), Ops, LoadVT,
5439                                    M->getMemOperand());
5440   }
5441   case Intrinsic::amdgcn_buffer_atomic_swap:
5442   case Intrinsic::amdgcn_buffer_atomic_add:
5443   case Intrinsic::amdgcn_buffer_atomic_sub:
5444   case Intrinsic::amdgcn_buffer_atomic_smin:
5445   case Intrinsic::amdgcn_buffer_atomic_umin:
5446   case Intrinsic::amdgcn_buffer_atomic_smax:
5447   case Intrinsic::amdgcn_buffer_atomic_umax:
5448   case Intrinsic::amdgcn_buffer_atomic_and:
5449   case Intrinsic::amdgcn_buffer_atomic_or:
5450   case Intrinsic::amdgcn_buffer_atomic_xor: {
5451     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
5452     unsigned IdxEn = 1;
5453     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
5454       IdxEn = Idx->getZExtValue() != 0;
5455     SDValue Ops[] = {
5456       Op.getOperand(0), // Chain
5457       Op.getOperand(2), // vdata
5458       Op.getOperand(3), // rsrc
5459       Op.getOperand(4), // vindex
5460       SDValue(),        // voffset -- will be set by setBufferOffsets
5461       SDValue(),        // soffset -- will be set by setBufferOffsets
5462       SDValue(),        // offset -- will be set by setBufferOffsets
5463       DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy
5464       DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
5465     };
5466     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
5467     EVT VT = Op.getValueType();
5468 
5469     auto *M = cast<MemSDNode>(Op);
5470     unsigned Opcode = 0;
5471 
5472     switch (IntrID) {
5473     case Intrinsic::amdgcn_buffer_atomic_swap:
5474       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
5475       break;
5476     case Intrinsic::amdgcn_buffer_atomic_add:
5477       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
5478       break;
5479     case Intrinsic::amdgcn_buffer_atomic_sub:
5480       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
5481       break;
5482     case Intrinsic::amdgcn_buffer_atomic_smin:
5483       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
5484       break;
5485     case Intrinsic::amdgcn_buffer_atomic_umin:
5486       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
5487       break;
5488     case Intrinsic::amdgcn_buffer_atomic_smax:
5489       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
5490       break;
5491     case Intrinsic::amdgcn_buffer_atomic_umax:
5492       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
5493       break;
5494     case Intrinsic::amdgcn_buffer_atomic_and:
5495       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
5496       break;
5497     case Intrinsic::amdgcn_buffer_atomic_or:
5498       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
5499       break;
5500     case Intrinsic::amdgcn_buffer_atomic_xor:
5501       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
5502       break;
5503     default:
5504       llvm_unreachable("unhandled atomic opcode");
5505     }
5506 
5507     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
5508                                    M->getMemOperand());
5509   }
5510   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
5511   case Intrinsic::amdgcn_raw_buffer_atomic_add:
5512   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
5513   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
5514   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
5515   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
5516   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
5517   case Intrinsic::amdgcn_raw_buffer_atomic_and:
5518   case Intrinsic::amdgcn_raw_buffer_atomic_or:
5519   case Intrinsic::amdgcn_raw_buffer_atomic_xor: {
5520     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
5521     SDValue Ops[] = {
5522       Op.getOperand(0), // Chain
5523       Op.getOperand(2), // vdata
5524       Op.getOperand(3), // rsrc
5525       DAG.getConstant(0, DL, MVT::i32), // vindex
5526       Offsets.first,    // voffset
5527       Op.getOperand(5), // soffset
5528       Offsets.second,   // offset
5529       Op.getOperand(6), // cachepolicy
5530       DAG.getConstant(0, DL, MVT::i1), // idxen
5531     };
5532     EVT VT = Op.getValueType();
5533 
5534     auto *M = cast<MemSDNode>(Op);
5535     unsigned Opcode = 0;
5536 
5537     switch (IntrID) {
5538     case Intrinsic::amdgcn_raw_buffer_atomic_swap:
5539       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
5540       break;
5541     case Intrinsic::amdgcn_raw_buffer_atomic_add:
5542       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
5543       break;
5544     case Intrinsic::amdgcn_raw_buffer_atomic_sub:
5545       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
5546       break;
5547     case Intrinsic::amdgcn_raw_buffer_atomic_smin:
5548       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
5549       break;
5550     case Intrinsic::amdgcn_raw_buffer_atomic_umin:
5551       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
5552       break;
5553     case Intrinsic::amdgcn_raw_buffer_atomic_smax:
5554       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
5555       break;
5556     case Intrinsic::amdgcn_raw_buffer_atomic_umax:
5557       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
5558       break;
5559     case Intrinsic::amdgcn_raw_buffer_atomic_and:
5560       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
5561       break;
5562     case Intrinsic::amdgcn_raw_buffer_atomic_or:
5563       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
5564       break;
5565     case Intrinsic::amdgcn_raw_buffer_atomic_xor:
5566       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
5567       break;
5568     default:
5569       llvm_unreachable("unhandled atomic opcode");
5570     }
5571 
5572     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
5573                                    M->getMemOperand());
5574   }
5575   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
5576   case Intrinsic::amdgcn_struct_buffer_atomic_add:
5577   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
5578   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
5579   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
5580   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
5581   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
5582   case Intrinsic::amdgcn_struct_buffer_atomic_and:
5583   case Intrinsic::amdgcn_struct_buffer_atomic_or:
5584   case Intrinsic::amdgcn_struct_buffer_atomic_xor: {
5585     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
5586     SDValue Ops[] = {
5587       Op.getOperand(0), // Chain
5588       Op.getOperand(2), // vdata
5589       Op.getOperand(3), // rsrc
5590       Op.getOperand(4), // vindex
5591       Offsets.first,    // voffset
5592       Op.getOperand(6), // soffset
5593       Offsets.second,   // offset
5594       Op.getOperand(7), // cachepolicy
5595       DAG.getConstant(1, DL, MVT::i1), // idxen
5596     };
5597     EVT VT = Op.getValueType();
5598 
5599     auto *M = cast<MemSDNode>(Op);
5600     unsigned Opcode = 0;
5601 
5602     switch (IntrID) {
5603     case Intrinsic::amdgcn_struct_buffer_atomic_swap:
5604       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
5605       break;
5606     case Intrinsic::amdgcn_struct_buffer_atomic_add:
5607       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
5608       break;
5609     case Intrinsic::amdgcn_struct_buffer_atomic_sub:
5610       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
5611       break;
5612     case Intrinsic::amdgcn_struct_buffer_atomic_smin:
5613       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
5614       break;
5615     case Intrinsic::amdgcn_struct_buffer_atomic_umin:
5616       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
5617       break;
5618     case Intrinsic::amdgcn_struct_buffer_atomic_smax:
5619       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
5620       break;
5621     case Intrinsic::amdgcn_struct_buffer_atomic_umax:
5622       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
5623       break;
5624     case Intrinsic::amdgcn_struct_buffer_atomic_and:
5625       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
5626       break;
5627     case Intrinsic::amdgcn_struct_buffer_atomic_or:
5628       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
5629       break;
5630     case Intrinsic::amdgcn_struct_buffer_atomic_xor:
5631       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
5632       break;
5633     default:
5634       llvm_unreachable("unhandled atomic opcode");
5635     }
5636 
5637     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
5638                                    M->getMemOperand());
5639   }
5640   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
5641     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
5642     unsigned IdxEn = 1;
5643     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
5644       IdxEn = Idx->getZExtValue() != 0;
5645     SDValue Ops[] = {
5646       Op.getOperand(0), // Chain
5647       Op.getOperand(2), // src
5648       Op.getOperand(3), // cmp
5649       Op.getOperand(4), // rsrc
5650       Op.getOperand(5), // vindex
5651       SDValue(),        // voffset -- will be set by setBufferOffsets
5652       SDValue(),        // soffset -- will be set by setBufferOffsets
5653       SDValue(),        // offset -- will be set by setBufferOffsets
5654       DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy
5655       DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
5656     };
5657     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
5658     EVT VT = Op.getValueType();
5659     auto *M = cast<MemSDNode>(Op);
5660 
5661     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
5662                                    Op->getVTList(), Ops, VT, M->getMemOperand());
5663   }
5664   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
5665     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
5666     SDValue Ops[] = {
5667       Op.getOperand(0), // Chain
5668       Op.getOperand(2), // src
5669       Op.getOperand(3), // cmp
5670       Op.getOperand(4), // rsrc
5671       DAG.getConstant(0, DL, MVT::i32), // vindex
5672       Offsets.first,    // voffset
5673       Op.getOperand(6), // soffset
5674       Offsets.second,   // offset
5675       Op.getOperand(7), // cachepolicy
5676       DAG.getConstant(0, DL, MVT::i1), // idxen
5677     };
5678     EVT VT = Op.getValueType();
5679     auto *M = cast<MemSDNode>(Op);
5680 
5681     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
5682                                    Op->getVTList(), Ops, VT, M->getMemOperand());
5683   }
5684   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
5685     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
5686     SDValue Ops[] = {
5687       Op.getOperand(0), // Chain
5688       Op.getOperand(2), // src
5689       Op.getOperand(3), // cmp
5690       Op.getOperand(4), // rsrc
5691       Op.getOperand(5), // vindex
5692       Offsets.first,    // voffset
5693       Op.getOperand(7), // soffset
5694       Offsets.second,   // offset
5695       Op.getOperand(8), // cachepolicy
5696       DAG.getConstant(1, DL, MVT::i1), // idxen
5697     };
5698     EVT VT = Op.getValueType();
5699     auto *M = cast<MemSDNode>(Op);
5700 
5701     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
5702                                    Op->getVTList(), Ops, VT, M->getMemOperand());
5703   }
5704 
5705   default:
5706     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
5707             AMDGPU::getImageDimIntrinsicInfo(IntrID))
5708       return lowerImage(Op, ImageDimIntr, DAG);
5709 
5710     return SDValue();
5711   }
5712 }
5713 
5714 SDValue SITargetLowering::handleD16VData(SDValue VData,
5715                                          SelectionDAG &DAG) const {
5716   EVT StoreVT = VData.getValueType();
5717 
5718   // No change for f16 and legal vector D16 types.
5719   if (!StoreVT.isVector())
5720     return VData;
5721 
5722   SDLoc DL(VData);
5723   assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
5724 
5725   if (Subtarget->hasUnpackedD16VMem()) {
5726     // We need to unpack the packed data to store.
5727     EVT IntStoreVT = StoreVT.changeTypeToInteger();
5728     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
5729 
5730     EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
5731                                         StoreVT.getVectorNumElements());
5732     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
5733     return DAG.UnrollVectorOp(ZExt.getNode());
5734   }
5735 
5736   assert(isTypeLegal(StoreVT));
5737   return VData;
5738 }
5739 
5740 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
5741                                               SelectionDAG &DAG) const {
5742   SDLoc DL(Op);
5743   SDValue Chain = Op.getOperand(0);
5744   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5745   MachineFunction &MF = DAG.getMachineFunction();
5746 
5747   switch (IntrinsicID) {
5748   case Intrinsic::amdgcn_exp: {
5749     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
5750     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
5751     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
5752     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
5753 
5754     const SDValue Ops[] = {
5755       Chain,
5756       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
5757       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
5758       Op.getOperand(4), // src0
5759       Op.getOperand(5), // src1
5760       Op.getOperand(6), // src2
5761       Op.getOperand(7), // src3
5762       DAG.getTargetConstant(0, DL, MVT::i1), // compr
5763       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
5764     };
5765 
5766     unsigned Opc = Done->isNullValue() ?
5767       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
5768     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
5769   }
5770   case Intrinsic::amdgcn_exp_compr: {
5771     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
5772     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
5773     SDValue Src0 = Op.getOperand(4);
5774     SDValue Src1 = Op.getOperand(5);
5775     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
5776     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
5777 
5778     SDValue Undef = DAG.getUNDEF(MVT::f32);
5779     const SDValue Ops[] = {
5780       Chain,
5781       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
5782       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
5783       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
5784       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
5785       Undef, // src2
5786       Undef, // src3
5787       DAG.getTargetConstant(1, DL, MVT::i1), // compr
5788       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
5789     };
5790 
5791     unsigned Opc = Done->isNullValue() ?
5792       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
5793     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
5794   }
5795   case Intrinsic::amdgcn_s_sendmsg:
5796   case Intrinsic::amdgcn_s_sendmsghalt: {
5797     unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ?
5798       AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT;
5799     Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
5800     SDValue Glue = Chain.getValue(1);
5801     return DAG.getNode(NodeOp, DL, MVT::Other, Chain,
5802                        Op.getOperand(2), Glue);
5803   }
5804   case Intrinsic::amdgcn_init_exec: {
5805     return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain,
5806                        Op.getOperand(2));
5807   }
5808   case Intrinsic::amdgcn_init_exec_from_input: {
5809     return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain,
5810                        Op.getOperand(2), Op.getOperand(3));
5811   }
5812   case Intrinsic::amdgcn_s_barrier: {
5813     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
5814       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
5815       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
5816       if (WGSize <= ST.getWavefrontSize())
5817         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
5818                                           Op.getOperand(0)), 0);
5819     }
5820     return SDValue();
5821   };
5822   case Intrinsic::amdgcn_tbuffer_store: {
5823     SDValue VData = Op.getOperand(2);
5824     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5825     if (IsD16)
5826       VData = handleD16VData(VData, DAG);
5827     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
5828     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
5829     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
5830     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
5831     unsigned IdxEn = 1;
5832     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
5833       IdxEn = Idx->getZExtValue() != 0;
5834     SDValue Ops[] = {
5835       Chain,
5836       VData,             // vdata
5837       Op.getOperand(3),  // rsrc
5838       Op.getOperand(4),  // vindex
5839       Op.getOperand(5),  // voffset
5840       Op.getOperand(6),  // soffset
5841       Op.getOperand(7),  // offset
5842       DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
5843       DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
5844       DAG.getConstant(IdxEn, DL, MVT::i1), // idexen
5845     };
5846     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
5847                            AMDGPUISD::TBUFFER_STORE_FORMAT;
5848     MemSDNode *M = cast<MemSDNode>(Op);
5849     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5850                                    M->getMemoryVT(), M->getMemOperand());
5851   }
5852 
5853   case Intrinsic::amdgcn_struct_tbuffer_store: {
5854     SDValue VData = Op.getOperand(2);
5855     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5856     if (IsD16)
5857       VData = handleD16VData(VData, DAG);
5858     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
5859     SDValue Ops[] = {
5860       Chain,
5861       VData,             // vdata
5862       Op.getOperand(3),  // rsrc
5863       Op.getOperand(4),  // vindex
5864       Offsets.first,     // voffset
5865       Op.getOperand(6),  // soffset
5866       Offsets.second,    // offset
5867       Op.getOperand(7),  // format
5868       Op.getOperand(8),  // cachepolicy
5869       DAG.getConstant(1, DL, MVT::i1), // idexen
5870     };
5871     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
5872                            AMDGPUISD::TBUFFER_STORE_FORMAT;
5873     MemSDNode *M = cast<MemSDNode>(Op);
5874     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5875                                    M->getMemoryVT(), M->getMemOperand());
5876   }
5877 
5878   case Intrinsic::amdgcn_raw_tbuffer_store: {
5879     SDValue VData = Op.getOperand(2);
5880     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5881     if (IsD16)
5882       VData = handleD16VData(VData, DAG);
5883     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
5884     SDValue Ops[] = {
5885       Chain,
5886       VData,             // vdata
5887       Op.getOperand(3),  // rsrc
5888       DAG.getConstant(0, DL, MVT::i32), // vindex
5889       Offsets.first,     // voffset
5890       Op.getOperand(5),  // soffset
5891       Offsets.second,    // offset
5892       Op.getOperand(6),  // format
5893       Op.getOperand(7),  // cachepolicy
5894       DAG.getConstant(0, DL, MVT::i1), // idexen
5895     };
5896     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
5897                            AMDGPUISD::TBUFFER_STORE_FORMAT;
5898     MemSDNode *M = cast<MemSDNode>(Op);
5899     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5900                                    M->getMemoryVT(), M->getMemOperand());
5901   }
5902 
5903   case Intrinsic::amdgcn_buffer_store:
5904   case Intrinsic::amdgcn_buffer_store_format: {
5905     SDValue VData = Op.getOperand(2);
5906     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5907     if (IsD16)
5908       VData = handleD16VData(VData, DAG);
5909     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
5910     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
5911     unsigned IdxEn = 1;
5912     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
5913       IdxEn = Idx->getZExtValue() != 0;
5914     SDValue Ops[] = {
5915       Chain,
5916       VData,
5917       Op.getOperand(3), // rsrc
5918       Op.getOperand(4), // vindex
5919       SDValue(), // voffset -- will be set by setBufferOffsets
5920       SDValue(), // soffset -- will be set by setBufferOffsets
5921       SDValue(), // offset -- will be set by setBufferOffsets
5922       DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
5923       DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
5924     };
5925     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
5926     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
5927                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
5928     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
5929     MemSDNode *M = cast<MemSDNode>(Op);
5930     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5931                                    M->getMemoryVT(), M->getMemOperand());
5932   }
5933 
5934   case Intrinsic::amdgcn_raw_buffer_store:
5935   case Intrinsic::amdgcn_raw_buffer_store_format: {
5936     SDValue VData = Op.getOperand(2);
5937     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5938     if (IsD16)
5939       VData = handleD16VData(VData, DAG);
5940     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
5941     SDValue Ops[] = {
5942       Chain,
5943       VData,
5944       Op.getOperand(3), // rsrc
5945       DAG.getConstant(0, DL, MVT::i32), // vindex
5946       Offsets.first,    // voffset
5947       Op.getOperand(5), // soffset
5948       Offsets.second,   // offset
5949       Op.getOperand(6), // cachepolicy
5950       DAG.getConstant(0, DL, MVT::i1), // idxen
5951     };
5952     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_raw_buffer_store ?
5953                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
5954     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
5955     MemSDNode *M = cast<MemSDNode>(Op);
5956     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5957                                    M->getMemoryVT(), M->getMemOperand());
5958   }
5959 
5960   case Intrinsic::amdgcn_struct_buffer_store:
5961   case Intrinsic::amdgcn_struct_buffer_store_format: {
5962     SDValue VData = Op.getOperand(2);
5963     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5964     if (IsD16)
5965       VData = handleD16VData(VData, DAG);
5966     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
5967     SDValue Ops[] = {
5968       Chain,
5969       VData,
5970       Op.getOperand(3), // rsrc
5971       Op.getOperand(4), // vindex
5972       Offsets.first,    // voffset
5973       Op.getOperand(6), // soffset
5974       Offsets.second,   // offset
5975       Op.getOperand(7), // cachepolicy
5976       DAG.getConstant(1, DL, MVT::i1), // idxen
5977     };
5978     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
5979                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
5980     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
5981     MemSDNode *M = cast<MemSDNode>(Op);
5982     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5983                                    M->getMemoryVT(), M->getMemOperand());
5984   }
5985 
5986   default: {
5987     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
5988             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
5989       return lowerImage(Op, ImageDimIntr, DAG);
5990 
5991     return Op;
5992   }
5993   }
5994 }
5995 
5996 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
5997 // offset (the offset that is included in bounds checking and swizzling, to be
5998 // split between the instruction's voffset and immoffset fields) and soffset
5999 // (the offset that is excluded from bounds checking and swizzling, to go in
6000 // the instruction's soffset field).  This function takes the first kind of
6001 // offset and figures out how to split it between voffset and immoffset.
6002 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
6003     SDValue Offset, SelectionDAG &DAG) const {
6004   SDLoc DL(Offset);
6005   const unsigned MaxImm = 4095;
6006   SDValue N0 = Offset;
6007   ConstantSDNode *C1 = nullptr;
6008   if (N0.getOpcode() == ISD::ADD) {
6009     if ((C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))))
6010       N0 = N0.getOperand(0);
6011   } else if ((C1 = dyn_cast<ConstantSDNode>(N0)))
6012     N0 = SDValue();
6013 
6014   if (C1) {
6015     unsigned ImmOffset = C1->getZExtValue();
6016     // If the immediate value is too big for the immoffset field, put the value
6017     // and -4096 into the immoffset field so that the value that is copied/added
6018     // for the voffset field is a multiple of 4096, and it stands more chance
6019     // of being CSEd with the copy/add for another similar load/store.
6020     // However, do not do that rounding down to a multiple of 4096 if that is a
6021     // negative number, as it appears to be illegal to have a negative offset
6022     // in the vgpr, even if adding the immediate offset makes it positive.
6023     unsigned Overflow = ImmOffset & ~MaxImm;
6024     ImmOffset -= Overflow;
6025     if ((int32_t)Overflow < 0) {
6026       Overflow += ImmOffset;
6027       ImmOffset = 0;
6028     }
6029     C1 = cast<ConstantSDNode>(DAG.getConstant(ImmOffset, DL, MVT::i32));
6030     if (Overflow) {
6031       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
6032       if (!N0)
6033         N0 = OverflowVal;
6034       else {
6035         SDValue Ops[] = { N0, OverflowVal };
6036         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
6037       }
6038     }
6039   }
6040   if (!N0)
6041     N0 = DAG.getConstant(0, DL, MVT::i32);
6042   if (!C1)
6043     C1 = cast<ConstantSDNode>(DAG.getConstant(0, DL, MVT::i32));
6044   return {N0, SDValue(C1, 0)};
6045 }
6046 
6047 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
6048 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
6049 // pointed to by Offsets.
6050 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
6051                                         SelectionDAG &DAG, SDValue *Offsets,
6052                                         unsigned Align) const {
6053   SDLoc DL(CombinedOffset);
6054   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
6055     uint32_t Imm = C->getZExtValue();
6056     uint32_t SOffset, ImmOffset;
6057     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) {
6058       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
6059       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
6060       Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32);
6061       return;
6062     }
6063   }
6064   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
6065     SDValue N0 = CombinedOffset.getOperand(0);
6066     SDValue N1 = CombinedOffset.getOperand(1);
6067     uint32_t SOffset, ImmOffset;
6068     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
6069     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
6070                                                 Subtarget, Align)) {
6071       Offsets[0] = N0;
6072       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
6073       Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32);
6074       return;
6075     }
6076   }
6077   Offsets[0] = CombinedOffset;
6078   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
6079   Offsets[2] = DAG.getConstant(0, DL, MVT::i32);
6080 }
6081 
6082 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
6083                                  ISD::LoadExtType ExtType, SDValue Op,
6084                                  const SDLoc &SL, EVT VT) {
6085   if (VT.bitsLT(Op.getValueType()))
6086     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
6087 
6088   switch (ExtType) {
6089   case ISD::SEXTLOAD:
6090     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
6091   case ISD::ZEXTLOAD:
6092     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
6093   case ISD::EXTLOAD:
6094     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
6095   case ISD::NON_EXTLOAD:
6096     return Op;
6097   }
6098 
6099   llvm_unreachable("invalid ext type");
6100 }
6101 
6102 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
6103   SelectionDAG &DAG = DCI.DAG;
6104   if (Ld->getAlignment() < 4 || Ld->isDivergent())
6105     return SDValue();
6106 
6107   // FIXME: Constant loads should all be marked invariant.
6108   unsigned AS = Ld->getAddressSpace();
6109   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
6110       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
6111       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
6112     return SDValue();
6113 
6114   // Don't do this early, since it may interfere with adjacent load merging for
6115   // illegal types. We can avoid losing alignment information for exotic types
6116   // pre-legalize.
6117   EVT MemVT = Ld->getMemoryVT();
6118   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
6119       MemVT.getSizeInBits() >= 32)
6120     return SDValue();
6121 
6122   SDLoc SL(Ld);
6123 
6124   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
6125          "unexpected vector extload");
6126 
6127   // TODO: Drop only high part of range.
6128   SDValue Ptr = Ld->getBasePtr();
6129   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
6130                                 MVT::i32, SL, Ld->getChain(), Ptr,
6131                                 Ld->getOffset(),
6132                                 Ld->getPointerInfo(), MVT::i32,
6133                                 Ld->getAlignment(),
6134                                 Ld->getMemOperand()->getFlags(),
6135                                 Ld->getAAInfo(),
6136                                 nullptr); // Drop ranges
6137 
6138   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
6139   if (MemVT.isFloatingPoint()) {
6140     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
6141            "unexpected fp extload");
6142     TruncVT = MemVT.changeTypeToInteger();
6143   }
6144 
6145   SDValue Cvt = NewLoad;
6146   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
6147     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
6148                       DAG.getValueType(TruncVT));
6149   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
6150              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
6151     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
6152   } else {
6153     assert(Ld->getExtensionType() == ISD::EXTLOAD);
6154   }
6155 
6156   EVT VT = Ld->getValueType(0);
6157   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6158 
6159   DCI.AddToWorklist(Cvt.getNode());
6160 
6161   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
6162   // the appropriate extension from the 32-bit load.
6163   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
6164   DCI.AddToWorklist(Cvt.getNode());
6165 
6166   // Handle conversion back to floating point if necessary.
6167   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
6168 
6169   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
6170 }
6171 
6172 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6173   SDLoc DL(Op);
6174   LoadSDNode *Load = cast<LoadSDNode>(Op);
6175   ISD::LoadExtType ExtType = Load->getExtensionType();
6176   EVT MemVT = Load->getMemoryVT();
6177 
6178   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
6179     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
6180       return SDValue();
6181 
6182     // FIXME: Copied from PPC
6183     // First, load into 32 bits, then truncate to 1 bit.
6184 
6185     SDValue Chain = Load->getChain();
6186     SDValue BasePtr = Load->getBasePtr();
6187     MachineMemOperand *MMO = Load->getMemOperand();
6188 
6189     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
6190 
6191     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
6192                                    BasePtr, RealMemVT, MMO);
6193 
6194     SDValue Ops[] = {
6195       DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
6196       NewLD.getValue(1)
6197     };
6198 
6199     return DAG.getMergeValues(Ops, DL);
6200   }
6201 
6202   if (!MemVT.isVector())
6203     return SDValue();
6204 
6205   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
6206          "Custom lowering for non-i32 vectors hasn't been implemented.");
6207 
6208   unsigned Alignment = Load->getAlignment();
6209   unsigned AS = Load->getAddressSpace();
6210   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
6211                           AS, Alignment)) {
6212     SDValue Ops[2];
6213     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
6214     return DAG.getMergeValues(Ops, DL);
6215   }
6216 
6217   MachineFunction &MF = DAG.getMachineFunction();
6218   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
6219   // If there is a possibilty that flat instruction access scratch memory
6220   // then we need to use the same legalization rules we use for private.
6221   if (AS == AMDGPUAS::FLAT_ADDRESS)
6222     AS = MFI->hasFlatScratchInit() ?
6223          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
6224 
6225   unsigned NumElements = MemVT.getVectorNumElements();
6226 
6227   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
6228       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
6229     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32)
6230       return SDValue();
6231     // Non-uniform loads will be selected to MUBUF instructions, so they
6232     // have the same legalization requirements as global and private
6233     // loads.
6234     //
6235   }
6236 
6237   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
6238       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
6239       AS == AMDGPUAS::GLOBAL_ADDRESS) {
6240     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
6241         !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
6242         Alignment >= 4 && NumElements < 32)
6243       return SDValue();
6244     // Non-uniform loads will be selected to MUBUF instructions, so they
6245     // have the same legalization requirements as global and private
6246     // loads.
6247     //
6248   }
6249   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
6250       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
6251       AS == AMDGPUAS::GLOBAL_ADDRESS ||
6252       AS == AMDGPUAS::FLAT_ADDRESS) {
6253     if (NumElements > 4)
6254       return SplitVectorLoad(Op, DAG);
6255     // v4 loads are supported for private and global memory.
6256     return SDValue();
6257   }
6258   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
6259     // Depending on the setting of the private_element_size field in the
6260     // resource descriptor, we can only make private accesses up to a certain
6261     // size.
6262     switch (Subtarget->getMaxPrivateElementSize()) {
6263     case 4:
6264       return scalarizeVectorLoad(Load, DAG);
6265     case 8:
6266       if (NumElements > 2)
6267         return SplitVectorLoad(Op, DAG);
6268       return SDValue();
6269     case 16:
6270       // Same as global/flat
6271       if (NumElements > 4)
6272         return SplitVectorLoad(Op, DAG);
6273       return SDValue();
6274     default:
6275       llvm_unreachable("unsupported private_element_size");
6276     }
6277   } else if (AS == AMDGPUAS::LOCAL_ADDRESS) {
6278     // Use ds_read_b128 if possible.
6279     if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
6280         MemVT.getStoreSize() == 16)
6281       return SDValue();
6282 
6283     if (NumElements > 2)
6284       return SplitVectorLoad(Op, DAG);
6285 
6286     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
6287     // address is negative, then the instruction is incorrectly treated as
6288     // out-of-bounds even if base + offsets is in bounds. Split vectorized
6289     // loads here to avoid emitting ds_read2_b32. We may re-combine the
6290     // load later in the SILoadStoreOptimizer.
6291     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
6292         NumElements == 2 && MemVT.getStoreSize() == 8 &&
6293         Load->getAlignment() < 8) {
6294       return SplitVectorLoad(Op, DAG);
6295     }
6296   }
6297   return SDValue();
6298 }
6299 
6300 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6301   EVT VT = Op.getValueType();
6302   assert(VT.getSizeInBits() == 64);
6303 
6304   SDLoc DL(Op);
6305   SDValue Cond = Op.getOperand(0);
6306 
6307   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
6308   SDValue One = DAG.getConstant(1, DL, MVT::i32);
6309 
6310   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
6311   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
6312 
6313   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
6314   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
6315 
6316   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
6317 
6318   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
6319   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
6320 
6321   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
6322 
6323   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
6324   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
6325 }
6326 
6327 // Catch division cases where we can use shortcuts with rcp and rsq
6328 // instructions.
6329 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
6330                                               SelectionDAG &DAG) const {
6331   SDLoc SL(Op);
6332   SDValue LHS = Op.getOperand(0);
6333   SDValue RHS = Op.getOperand(1);
6334   EVT VT = Op.getValueType();
6335   const SDNodeFlags Flags = Op->getFlags();
6336   bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal();
6337 
6338   if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
6339     return SDValue();
6340 
6341   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
6342     if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
6343       if (CLHS->isExactlyValue(1.0)) {
6344         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
6345         // the CI documentation has a worst case error of 1 ulp.
6346         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
6347         // use it as long as we aren't trying to use denormals.
6348         //
6349         // v_rcp_f16 and v_rsq_f16 DO support denormals.
6350 
6351         // 1.0 / sqrt(x) -> rsq(x)
6352 
6353         // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
6354         // error seems really high at 2^29 ULP.
6355         if (RHS.getOpcode() == ISD::FSQRT)
6356           return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
6357 
6358         // 1.0 / x -> rcp(x)
6359         return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
6360       }
6361 
6362       // Same as for 1.0, but expand the sign out of the constant.
6363       if (CLHS->isExactlyValue(-1.0)) {
6364         // -1.0 / x -> rcp (fneg x)
6365         SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
6366         return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
6367       }
6368     }
6369   }
6370 
6371   if (Unsafe) {
6372     // Turn into multiply by the reciprocal.
6373     // x / y -> x * (1.0 / y)
6374     SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
6375     return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
6376   }
6377 
6378   return SDValue();
6379 }
6380 
6381 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
6382                           EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
6383   if (GlueChain->getNumValues() <= 1) {
6384     return DAG.getNode(Opcode, SL, VT, A, B);
6385   }
6386 
6387   assert(GlueChain->getNumValues() == 3);
6388 
6389   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
6390   switch (Opcode) {
6391   default: llvm_unreachable("no chain equivalent for opcode");
6392   case ISD::FMUL:
6393     Opcode = AMDGPUISD::FMUL_W_CHAIN;
6394     break;
6395   }
6396 
6397   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
6398                      GlueChain.getValue(2));
6399 }
6400 
6401 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
6402                            EVT VT, SDValue A, SDValue B, SDValue C,
6403                            SDValue GlueChain) {
6404   if (GlueChain->getNumValues() <= 1) {
6405     return DAG.getNode(Opcode, SL, VT, A, B, C);
6406   }
6407 
6408   assert(GlueChain->getNumValues() == 3);
6409 
6410   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
6411   switch (Opcode) {
6412   default: llvm_unreachable("no chain equivalent for opcode");
6413   case ISD::FMA:
6414     Opcode = AMDGPUISD::FMA_W_CHAIN;
6415     break;
6416   }
6417 
6418   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
6419                      GlueChain.getValue(2));
6420 }
6421 
6422 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
6423   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
6424     return FastLowered;
6425 
6426   SDLoc SL(Op);
6427   SDValue Src0 = Op.getOperand(0);
6428   SDValue Src1 = Op.getOperand(1);
6429 
6430   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
6431   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
6432 
6433   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
6434   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
6435 
6436   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
6437   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
6438 
6439   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
6440 }
6441 
6442 // Faster 2.5 ULP division that does not support denormals.
6443 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
6444   SDLoc SL(Op);
6445   SDValue LHS = Op.getOperand(1);
6446   SDValue RHS = Op.getOperand(2);
6447 
6448   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
6449 
6450   const APFloat K0Val(BitsToFloat(0x6f800000));
6451   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
6452 
6453   const APFloat K1Val(BitsToFloat(0x2f800000));
6454   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
6455 
6456   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
6457 
6458   EVT SetCCVT =
6459     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
6460 
6461   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
6462 
6463   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
6464 
6465   // TODO: Should this propagate fast-math-flags?
6466   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
6467 
6468   // rcp does not support denormals.
6469   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
6470 
6471   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
6472 
6473   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
6474 }
6475 
6476 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
6477   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
6478     return FastLowered;
6479 
6480   SDLoc SL(Op);
6481   SDValue LHS = Op.getOperand(0);
6482   SDValue RHS = Op.getOperand(1);
6483 
6484   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
6485 
6486   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
6487 
6488   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
6489                                           RHS, RHS, LHS);
6490   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
6491                                         LHS, RHS, LHS);
6492 
6493   // Denominator is scaled to not be denormal, so using rcp is ok.
6494   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
6495                                   DenominatorScaled);
6496   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
6497                                      DenominatorScaled);
6498 
6499   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
6500                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
6501                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
6502 
6503   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
6504 
6505   if (!Subtarget->hasFP32Denormals()) {
6506     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
6507     const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
6508                                                       SL, MVT::i32);
6509     SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
6510                                        DAG.getEntryNode(),
6511                                        EnableDenormValue, BitField);
6512     SDValue Ops[3] = {
6513       NegDivScale0,
6514       EnableDenorm.getValue(0),
6515       EnableDenorm.getValue(1)
6516     };
6517 
6518     NegDivScale0 = DAG.getMergeValues(Ops, SL);
6519   }
6520 
6521   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
6522                              ApproxRcp, One, NegDivScale0);
6523 
6524   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
6525                              ApproxRcp, Fma0);
6526 
6527   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
6528                            Fma1, Fma1);
6529 
6530   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
6531                              NumeratorScaled, Mul);
6532 
6533   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
6534 
6535   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
6536                              NumeratorScaled, Fma3);
6537 
6538   if (!Subtarget->hasFP32Denormals()) {
6539     const SDValue DisableDenormValue =
6540         DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
6541     SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
6542                                         Fma4.getValue(1),
6543                                         DisableDenormValue,
6544                                         BitField,
6545                                         Fma4.getValue(2));
6546 
6547     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
6548                                       DisableDenorm, DAG.getRoot());
6549     DAG.setRoot(OutputChain);
6550   }
6551 
6552   SDValue Scale = NumeratorScaled.getValue(1);
6553   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
6554                              Fma4, Fma1, Fma3, Scale);
6555 
6556   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
6557 }
6558 
6559 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
6560   if (DAG.getTarget().Options.UnsafeFPMath)
6561     return lowerFastUnsafeFDIV(Op, DAG);
6562 
6563   SDLoc SL(Op);
6564   SDValue X = Op.getOperand(0);
6565   SDValue Y = Op.getOperand(1);
6566 
6567   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
6568 
6569   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
6570 
6571   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
6572 
6573   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
6574 
6575   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
6576 
6577   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
6578 
6579   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
6580 
6581   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
6582 
6583   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
6584 
6585   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
6586   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
6587 
6588   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
6589                              NegDivScale0, Mul, DivScale1);
6590 
6591   SDValue Scale;
6592 
6593   if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
6594     // Workaround a hardware bug on SI where the condition output from div_scale
6595     // is not usable.
6596 
6597     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
6598 
6599     // Figure out if the scale to use for div_fmas.
6600     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
6601     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
6602     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
6603     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
6604 
6605     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
6606     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
6607 
6608     SDValue Scale0Hi
6609       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
6610     SDValue Scale1Hi
6611       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
6612 
6613     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
6614     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
6615     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
6616   } else {
6617     Scale = DivScale1.getValue(1);
6618   }
6619 
6620   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
6621                              Fma4, Fma3, Mul, Scale);
6622 
6623   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
6624 }
6625 
6626 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
6627   EVT VT = Op.getValueType();
6628 
6629   if (VT == MVT::f32)
6630     return LowerFDIV32(Op, DAG);
6631 
6632   if (VT == MVT::f64)
6633     return LowerFDIV64(Op, DAG);
6634 
6635   if (VT == MVT::f16)
6636     return LowerFDIV16(Op, DAG);
6637 
6638   llvm_unreachable("Unexpected type for fdiv");
6639 }
6640 
6641 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6642   SDLoc DL(Op);
6643   StoreSDNode *Store = cast<StoreSDNode>(Op);
6644   EVT VT = Store->getMemoryVT();
6645 
6646   if (VT == MVT::i1) {
6647     return DAG.getTruncStore(Store->getChain(), DL,
6648        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
6649        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
6650   }
6651 
6652   assert(VT.isVector() &&
6653          Store->getValue().getValueType().getScalarType() == MVT::i32);
6654 
6655   unsigned AS = Store->getAddressSpace();
6656   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
6657                           AS, Store->getAlignment())) {
6658     return expandUnalignedStore(Store, DAG);
6659   }
6660 
6661   MachineFunction &MF = DAG.getMachineFunction();
6662   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
6663   // If there is a possibilty that flat instruction access scratch memory
6664   // then we need to use the same legalization rules we use for private.
6665   if (AS == AMDGPUAS::FLAT_ADDRESS)
6666     AS = MFI->hasFlatScratchInit() ?
6667          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
6668 
6669   unsigned NumElements = VT.getVectorNumElements();
6670   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
6671       AS == AMDGPUAS::FLAT_ADDRESS) {
6672     if (NumElements > 4)
6673       return SplitVectorStore(Op, DAG);
6674     return SDValue();
6675   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
6676     switch (Subtarget->getMaxPrivateElementSize()) {
6677     case 4:
6678       return scalarizeVectorStore(Store, DAG);
6679     case 8:
6680       if (NumElements > 2)
6681         return SplitVectorStore(Op, DAG);
6682       return SDValue();
6683     case 16:
6684       if (NumElements > 4)
6685         return SplitVectorStore(Op, DAG);
6686       return SDValue();
6687     default:
6688       llvm_unreachable("unsupported private_element_size");
6689     }
6690   } else if (AS == AMDGPUAS::LOCAL_ADDRESS) {
6691     // Use ds_write_b128 if possible.
6692     if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
6693         VT.getStoreSize() == 16)
6694       return SDValue();
6695 
6696     if (NumElements > 2)
6697       return SplitVectorStore(Op, DAG);
6698 
6699     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
6700     // address is negative, then the instruction is incorrectly treated as
6701     // out-of-bounds even if base + offsets is in bounds. Split vectorized
6702     // stores here to avoid emitting ds_write2_b32. We may re-combine the
6703     // store later in the SILoadStoreOptimizer.
6704     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
6705         NumElements == 2 && VT.getStoreSize() == 8 &&
6706         Store->getAlignment() < 8) {
6707       return SplitVectorStore(Op, DAG);
6708     }
6709 
6710     return SDValue();
6711   } else {
6712     llvm_unreachable("unhandled address space");
6713   }
6714 }
6715 
6716 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
6717   SDLoc DL(Op);
6718   EVT VT = Op.getValueType();
6719   SDValue Arg = Op.getOperand(0);
6720   SDValue TrigVal;
6721 
6722   // TODO: Should this propagate fast-math-flags?
6723 
6724   SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT);
6725 
6726   if (Subtarget->hasTrigReducedRange()) {
6727     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
6728     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal);
6729   } else {
6730     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
6731   }
6732 
6733   switch (Op.getOpcode()) {
6734   case ISD::FCOS:
6735     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal);
6736   case ISD::FSIN:
6737     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal);
6738   default:
6739     llvm_unreachable("Wrong trig opcode");
6740   }
6741 }
6742 
6743 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
6744   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
6745   assert(AtomicNode->isCompareAndSwap());
6746   unsigned AS = AtomicNode->getAddressSpace();
6747 
6748   // No custom lowering required for local address space
6749   if (!isFlatGlobalAddrSpace(AS))
6750     return Op;
6751 
6752   // Non-local address space requires custom lowering for atomic compare
6753   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
6754   SDLoc DL(Op);
6755   SDValue ChainIn = Op.getOperand(0);
6756   SDValue Addr = Op.getOperand(1);
6757   SDValue Old = Op.getOperand(2);
6758   SDValue New = Op.getOperand(3);
6759   EVT VT = Op.getValueType();
6760   MVT SimpleVT = VT.getSimpleVT();
6761   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
6762 
6763   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
6764   SDValue Ops[] = { ChainIn, Addr, NewOld };
6765 
6766   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
6767                                  Ops, VT, AtomicNode->getMemOperand());
6768 }
6769 
6770 //===----------------------------------------------------------------------===//
6771 // Custom DAG optimizations
6772 //===----------------------------------------------------------------------===//
6773 
6774 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
6775                                                      DAGCombinerInfo &DCI) const {
6776   EVT VT = N->getValueType(0);
6777   EVT ScalarVT = VT.getScalarType();
6778   if (ScalarVT != MVT::f32)
6779     return SDValue();
6780 
6781   SelectionDAG &DAG = DCI.DAG;
6782   SDLoc DL(N);
6783 
6784   SDValue Src = N->getOperand(0);
6785   EVT SrcVT = Src.getValueType();
6786 
6787   // TODO: We could try to match extracting the higher bytes, which would be
6788   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
6789   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
6790   // about in practice.
6791   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
6792     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
6793       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
6794       DCI.AddToWorklist(Cvt.getNode());
6795       return Cvt;
6796     }
6797   }
6798 
6799   return SDValue();
6800 }
6801 
6802 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
6803 
6804 // This is a variant of
6805 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
6806 //
6807 // The normal DAG combiner will do this, but only if the add has one use since
6808 // that would increase the number of instructions.
6809 //
6810 // This prevents us from seeing a constant offset that can be folded into a
6811 // memory instruction's addressing mode. If we know the resulting add offset of
6812 // a pointer can be folded into an addressing offset, we can replace the pointer
6813 // operand with the add of new constant offset. This eliminates one of the uses,
6814 // and may allow the remaining use to also be simplified.
6815 //
6816 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
6817                                                unsigned AddrSpace,
6818                                                EVT MemVT,
6819                                                DAGCombinerInfo &DCI) const {
6820   SDValue N0 = N->getOperand(0);
6821   SDValue N1 = N->getOperand(1);
6822 
6823   // We only do this to handle cases where it's profitable when there are
6824   // multiple uses of the add, so defer to the standard combine.
6825   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
6826       N0->hasOneUse())
6827     return SDValue();
6828 
6829   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
6830   if (!CN1)
6831     return SDValue();
6832 
6833   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6834   if (!CAdd)
6835     return SDValue();
6836 
6837   // If the resulting offset is too large, we can't fold it into the addressing
6838   // mode offset.
6839   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
6840   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
6841 
6842   AddrMode AM;
6843   AM.HasBaseReg = true;
6844   AM.BaseOffs = Offset.getSExtValue();
6845   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
6846     return SDValue();
6847 
6848   SelectionDAG &DAG = DCI.DAG;
6849   SDLoc SL(N);
6850   EVT VT = N->getValueType(0);
6851 
6852   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
6853   SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
6854 
6855   SDNodeFlags Flags;
6856   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
6857                           (N0.getOpcode() == ISD::OR ||
6858                            N0->getFlags().hasNoUnsignedWrap()));
6859 
6860   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
6861 }
6862 
6863 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
6864                                                   DAGCombinerInfo &DCI) const {
6865   SDValue Ptr = N->getBasePtr();
6866   SelectionDAG &DAG = DCI.DAG;
6867   SDLoc SL(N);
6868 
6869   // TODO: We could also do this for multiplies.
6870   if (Ptr.getOpcode() == ISD::SHL) {
6871     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
6872                                           N->getMemoryVT(), DCI);
6873     if (NewPtr) {
6874       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
6875 
6876       NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
6877       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
6878     }
6879   }
6880 
6881   return SDValue();
6882 }
6883 
6884 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
6885   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
6886          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
6887          (Opc == ISD::XOR && Val == 0);
6888 }
6889 
6890 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
6891 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
6892 // integer combine opportunities since most 64-bit operations are decomposed
6893 // this way.  TODO: We won't want this for SALU especially if it is an inline
6894 // immediate.
6895 SDValue SITargetLowering::splitBinaryBitConstantOp(
6896   DAGCombinerInfo &DCI,
6897   const SDLoc &SL,
6898   unsigned Opc, SDValue LHS,
6899   const ConstantSDNode *CRHS) const {
6900   uint64_t Val = CRHS->getZExtValue();
6901   uint32_t ValLo = Lo_32(Val);
6902   uint32_t ValHi = Hi_32(Val);
6903   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
6904 
6905     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
6906          bitOpWithConstantIsReducible(Opc, ValHi)) ||
6907         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
6908     // If we need to materialize a 64-bit immediate, it will be split up later
6909     // anyway. Avoid creating the harder to understand 64-bit immediate
6910     // materialization.
6911     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
6912   }
6913 
6914   return SDValue();
6915 }
6916 
6917 // Returns true if argument is a boolean value which is not serialized into
6918 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
6919 static bool isBoolSGPR(SDValue V) {
6920   if (V.getValueType() != MVT::i1)
6921     return false;
6922   switch (V.getOpcode()) {
6923   default: break;
6924   case ISD::SETCC:
6925   case ISD::AND:
6926   case ISD::OR:
6927   case ISD::XOR:
6928   case AMDGPUISD::FP_CLASS:
6929     return true;
6930   }
6931   return false;
6932 }
6933 
6934 // If a constant has all zeroes or all ones within each byte return it.
6935 // Otherwise return 0.
6936 static uint32_t getConstantPermuteMask(uint32_t C) {
6937   // 0xff for any zero byte in the mask
6938   uint32_t ZeroByteMask = 0;
6939   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
6940   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
6941   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
6942   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
6943   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
6944   if ((NonZeroByteMask & C) != NonZeroByteMask)
6945     return 0; // Partial bytes selected.
6946   return C;
6947 }
6948 
6949 // Check if a node selects whole bytes from its operand 0 starting at a byte
6950 // boundary while masking the rest. Returns select mask as in the v_perm_b32
6951 // or -1 if not succeeded.
6952 // Note byte select encoding:
6953 // value 0-3 selects corresponding source byte;
6954 // value 0xc selects zero;
6955 // value 0xff selects 0xff.
6956 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
6957   assert(V.getValueSizeInBits() == 32);
6958 
6959   if (V.getNumOperands() != 2)
6960     return ~0;
6961 
6962   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
6963   if (!N1)
6964     return ~0;
6965 
6966   uint32_t C = N1->getZExtValue();
6967 
6968   switch (V.getOpcode()) {
6969   default:
6970     break;
6971   case ISD::AND:
6972     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
6973       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
6974     }
6975     break;
6976 
6977   case ISD::OR:
6978     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
6979       return (0x03020100 & ~ConstMask) | ConstMask;
6980     }
6981     break;
6982 
6983   case ISD::SHL:
6984     if (C % 8)
6985       return ~0;
6986 
6987     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
6988 
6989   case ISD::SRL:
6990     if (C % 8)
6991       return ~0;
6992 
6993     return uint32_t(0x0c0c0c0c03020100ull >> C);
6994   }
6995 
6996   return ~0;
6997 }
6998 
6999 SDValue SITargetLowering::performAndCombine(SDNode *N,
7000                                             DAGCombinerInfo &DCI) const {
7001   if (DCI.isBeforeLegalize())
7002     return SDValue();
7003 
7004   SelectionDAG &DAG = DCI.DAG;
7005   EVT VT = N->getValueType(0);
7006   SDValue LHS = N->getOperand(0);
7007   SDValue RHS = N->getOperand(1);
7008 
7009 
7010   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
7011   if (VT == MVT::i64 && CRHS) {
7012     if (SDValue Split
7013         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
7014       return Split;
7015   }
7016 
7017   if (CRHS && VT == MVT::i32) {
7018     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
7019     // nb = number of trailing zeroes in mask
7020     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
7021     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
7022     uint64_t Mask = CRHS->getZExtValue();
7023     unsigned Bits = countPopulation(Mask);
7024     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
7025         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
7026       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
7027         unsigned Shift = CShift->getZExtValue();
7028         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
7029         unsigned Offset = NB + Shift;
7030         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
7031           SDLoc SL(N);
7032           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
7033                                     LHS->getOperand(0),
7034                                     DAG.getConstant(Offset, SL, MVT::i32),
7035                                     DAG.getConstant(Bits, SL, MVT::i32));
7036           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7037           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
7038                                     DAG.getValueType(NarrowVT));
7039           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
7040                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
7041           return Shl;
7042         }
7043       }
7044     }
7045 
7046     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
7047     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
7048         isa<ConstantSDNode>(LHS.getOperand(2))) {
7049       uint32_t Sel = getConstantPermuteMask(Mask);
7050       if (!Sel)
7051         return SDValue();
7052 
7053       // Select 0xc for all zero bytes
7054       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
7055       SDLoc DL(N);
7056       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
7057                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
7058     }
7059   }
7060 
7061   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
7062   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
7063   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
7064     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7065     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
7066 
7067     SDValue X = LHS.getOperand(0);
7068     SDValue Y = RHS.getOperand(0);
7069     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
7070       return SDValue();
7071 
7072     if (LCC == ISD::SETO) {
7073       if (X != LHS.getOperand(1))
7074         return SDValue();
7075 
7076       if (RCC == ISD::SETUNE) {
7077         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
7078         if (!C1 || !C1->isInfinity() || C1->isNegative())
7079           return SDValue();
7080 
7081         const uint32_t Mask = SIInstrFlags::N_NORMAL |
7082                               SIInstrFlags::N_SUBNORMAL |
7083                               SIInstrFlags::N_ZERO |
7084                               SIInstrFlags::P_ZERO |
7085                               SIInstrFlags::P_SUBNORMAL |
7086                               SIInstrFlags::P_NORMAL;
7087 
7088         static_assert(((~(SIInstrFlags::S_NAN |
7089                           SIInstrFlags::Q_NAN |
7090                           SIInstrFlags::N_INFINITY |
7091                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
7092                       "mask not equal");
7093 
7094         SDLoc DL(N);
7095         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
7096                            X, DAG.getConstant(Mask, DL, MVT::i32));
7097       }
7098     }
7099   }
7100 
7101   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
7102     std::swap(LHS, RHS);
7103 
7104   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
7105       RHS.hasOneUse()) {
7106     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7107     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
7108     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
7109     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
7110     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
7111         (RHS.getOperand(0) == LHS.getOperand(0) &&
7112          LHS.getOperand(0) == LHS.getOperand(1))) {
7113       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
7114       unsigned NewMask = LCC == ISD::SETO ?
7115         Mask->getZExtValue() & ~OrdMask :
7116         Mask->getZExtValue() & OrdMask;
7117 
7118       SDLoc DL(N);
7119       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
7120                          DAG.getConstant(NewMask, DL, MVT::i32));
7121     }
7122   }
7123 
7124   if (VT == MVT::i32 &&
7125       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
7126     // and x, (sext cc from i1) => select cc, x, 0
7127     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
7128       std::swap(LHS, RHS);
7129     if (isBoolSGPR(RHS.getOperand(0)))
7130       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
7131                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
7132   }
7133 
7134   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
7135   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7136   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
7137       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
7138     uint32_t LHSMask = getPermuteMask(DAG, LHS);
7139     uint32_t RHSMask = getPermuteMask(DAG, RHS);
7140     if (LHSMask != ~0u && RHSMask != ~0u) {
7141       // Canonicalize the expression in an attempt to have fewer unique masks
7142       // and therefore fewer registers used to hold the masks.
7143       if (LHSMask > RHSMask) {
7144         std::swap(LHSMask, RHSMask);
7145         std::swap(LHS, RHS);
7146       }
7147 
7148       // Select 0xc for each lane used from source operand. Zero has 0xc mask
7149       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
7150       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
7151       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
7152 
7153       // Check of we need to combine values from two sources within a byte.
7154       if (!(LHSUsedLanes & RHSUsedLanes) &&
7155           // If we select high and lower word keep it for SDWA.
7156           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
7157           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
7158         // Each byte in each mask is either selector mask 0-3, or has higher
7159         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
7160         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
7161         // mask which is not 0xff wins. By anding both masks we have a correct
7162         // result except that 0x0c shall be corrected to give 0x0c only.
7163         uint32_t Mask = LHSMask & RHSMask;
7164         for (unsigned I = 0; I < 32; I += 8) {
7165           uint32_t ByteSel = 0xff << I;
7166           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
7167             Mask &= (0x0c << I) & 0xffffffff;
7168         }
7169 
7170         // Add 4 to each active LHS lane. It will not affect any existing 0xff
7171         // or 0x0c.
7172         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
7173         SDLoc DL(N);
7174 
7175         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
7176                            LHS.getOperand(0), RHS.getOperand(0),
7177                            DAG.getConstant(Sel, DL, MVT::i32));
7178       }
7179     }
7180   }
7181 
7182   return SDValue();
7183 }
7184 
7185 SDValue SITargetLowering::performOrCombine(SDNode *N,
7186                                            DAGCombinerInfo &DCI) const {
7187   SelectionDAG &DAG = DCI.DAG;
7188   SDValue LHS = N->getOperand(0);
7189   SDValue RHS = N->getOperand(1);
7190 
7191   EVT VT = N->getValueType(0);
7192   if (VT == MVT::i1) {
7193     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
7194     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
7195         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
7196       SDValue Src = LHS.getOperand(0);
7197       if (Src != RHS.getOperand(0))
7198         return SDValue();
7199 
7200       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
7201       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
7202       if (!CLHS || !CRHS)
7203         return SDValue();
7204 
7205       // Only 10 bits are used.
7206       static const uint32_t MaxMask = 0x3ff;
7207 
7208       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
7209       SDLoc DL(N);
7210       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
7211                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
7212     }
7213 
7214     return SDValue();
7215   }
7216 
7217   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
7218   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
7219       LHS.getOpcode() == AMDGPUISD::PERM &&
7220       isa<ConstantSDNode>(LHS.getOperand(2))) {
7221     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
7222     if (!Sel)
7223       return SDValue();
7224 
7225     Sel |= LHS.getConstantOperandVal(2);
7226     SDLoc DL(N);
7227     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
7228                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
7229   }
7230 
7231   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
7232   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7233   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
7234       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
7235     uint32_t LHSMask = getPermuteMask(DAG, LHS);
7236     uint32_t RHSMask = getPermuteMask(DAG, RHS);
7237     if (LHSMask != ~0u && RHSMask != ~0u) {
7238       // Canonicalize the expression in an attempt to have fewer unique masks
7239       // and therefore fewer registers used to hold the masks.
7240       if (LHSMask > RHSMask) {
7241         std::swap(LHSMask, RHSMask);
7242         std::swap(LHS, RHS);
7243       }
7244 
7245       // Select 0xc for each lane used from source operand. Zero has 0xc mask
7246       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
7247       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
7248       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
7249 
7250       // Check of we need to combine values from two sources within a byte.
7251       if (!(LHSUsedLanes & RHSUsedLanes) &&
7252           // If we select high and lower word keep it for SDWA.
7253           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
7254           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
7255         // Kill zero bytes selected by other mask. Zero value is 0xc.
7256         LHSMask &= ~RHSUsedLanes;
7257         RHSMask &= ~LHSUsedLanes;
7258         // Add 4 to each active LHS lane
7259         LHSMask |= LHSUsedLanes & 0x04040404;
7260         // Combine masks
7261         uint32_t Sel = LHSMask | RHSMask;
7262         SDLoc DL(N);
7263 
7264         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
7265                            LHS.getOperand(0), RHS.getOperand(0),
7266                            DAG.getConstant(Sel, DL, MVT::i32));
7267       }
7268     }
7269   }
7270 
7271   if (VT != MVT::i64)
7272     return SDValue();
7273 
7274   // TODO: This could be a generic combine with a predicate for extracting the
7275   // high half of an integer being free.
7276 
7277   // (or i64:x, (zero_extend i32:y)) ->
7278   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
7279   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
7280       RHS.getOpcode() != ISD::ZERO_EXTEND)
7281     std::swap(LHS, RHS);
7282 
7283   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
7284     SDValue ExtSrc = RHS.getOperand(0);
7285     EVT SrcVT = ExtSrc.getValueType();
7286     if (SrcVT == MVT::i32) {
7287       SDLoc SL(N);
7288       SDValue LowLHS, HiBits;
7289       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
7290       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
7291 
7292       DCI.AddToWorklist(LowOr.getNode());
7293       DCI.AddToWorklist(HiBits.getNode());
7294 
7295       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
7296                                 LowOr, HiBits);
7297       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
7298     }
7299   }
7300 
7301   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
7302   if (CRHS) {
7303     if (SDValue Split
7304           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
7305       return Split;
7306   }
7307 
7308   return SDValue();
7309 }
7310 
7311 SDValue SITargetLowering::performXorCombine(SDNode *N,
7312                                             DAGCombinerInfo &DCI) const {
7313   EVT VT = N->getValueType(0);
7314   if (VT != MVT::i64)
7315     return SDValue();
7316 
7317   SDValue LHS = N->getOperand(0);
7318   SDValue RHS = N->getOperand(1);
7319 
7320   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
7321   if (CRHS) {
7322     if (SDValue Split
7323           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
7324       return Split;
7325   }
7326 
7327   return SDValue();
7328 }
7329 
7330 // Instructions that will be lowered with a final instruction that zeros the
7331 // high result bits.
7332 // XXX - probably only need to list legal operations.
7333 static bool fp16SrcZerosHighBits(unsigned Opc) {
7334   switch (Opc) {
7335   case ISD::FADD:
7336   case ISD::FSUB:
7337   case ISD::FMUL:
7338   case ISD::FDIV:
7339   case ISD::FREM:
7340   case ISD::FMA:
7341   case ISD::FMAD:
7342   case ISD::FCANONICALIZE:
7343   case ISD::FP_ROUND:
7344   case ISD::UINT_TO_FP:
7345   case ISD::SINT_TO_FP:
7346   case ISD::FABS:
7347     // Fabs is lowered to a bit operation, but it's an and which will clear the
7348     // high bits anyway.
7349   case ISD::FSQRT:
7350   case ISD::FSIN:
7351   case ISD::FCOS:
7352   case ISD::FPOWI:
7353   case ISD::FPOW:
7354   case ISD::FLOG:
7355   case ISD::FLOG2:
7356   case ISD::FLOG10:
7357   case ISD::FEXP:
7358   case ISD::FEXP2:
7359   case ISD::FCEIL:
7360   case ISD::FTRUNC:
7361   case ISD::FRINT:
7362   case ISD::FNEARBYINT:
7363   case ISD::FROUND:
7364   case ISD::FFLOOR:
7365   case ISD::FMINNUM:
7366   case ISD::FMAXNUM:
7367   case AMDGPUISD::FRACT:
7368   case AMDGPUISD::CLAMP:
7369   case AMDGPUISD::COS_HW:
7370   case AMDGPUISD::SIN_HW:
7371   case AMDGPUISD::FMIN3:
7372   case AMDGPUISD::FMAX3:
7373   case AMDGPUISD::FMED3:
7374   case AMDGPUISD::FMAD_FTZ:
7375   case AMDGPUISD::RCP:
7376   case AMDGPUISD::RSQ:
7377   case AMDGPUISD::RCP_IFLAG:
7378   case AMDGPUISD::LDEXP:
7379     return true;
7380   default:
7381     // fcopysign, select and others may be lowered to 32-bit bit operations
7382     // which don't zero the high bits.
7383     return false;
7384   }
7385 }
7386 
7387 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
7388                                                    DAGCombinerInfo &DCI) const {
7389   if (!Subtarget->has16BitInsts() ||
7390       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
7391     return SDValue();
7392 
7393   EVT VT = N->getValueType(0);
7394   if (VT != MVT::i32)
7395     return SDValue();
7396 
7397   SDValue Src = N->getOperand(0);
7398   if (Src.getValueType() != MVT::i16)
7399     return SDValue();
7400 
7401   // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
7402   // FIXME: It is not universally true that the high bits are zeroed on gfx9.
7403   if (Src.getOpcode() == ISD::BITCAST) {
7404     SDValue BCSrc = Src.getOperand(0);
7405     if (BCSrc.getValueType() == MVT::f16 &&
7406         fp16SrcZerosHighBits(BCSrc.getOpcode()))
7407       return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
7408   }
7409 
7410   return SDValue();
7411 }
7412 
7413 SDValue SITargetLowering::performClassCombine(SDNode *N,
7414                                               DAGCombinerInfo &DCI) const {
7415   SelectionDAG &DAG = DCI.DAG;
7416   SDValue Mask = N->getOperand(1);
7417 
7418   // fp_class x, 0 -> false
7419   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
7420     if (CMask->isNullValue())
7421       return DAG.getConstant(0, SDLoc(N), MVT::i1);
7422   }
7423 
7424   if (N->getOperand(0).isUndef())
7425     return DAG.getUNDEF(MVT::i1);
7426 
7427   return SDValue();
7428 }
7429 
7430 SDValue SITargetLowering::performRcpCombine(SDNode *N,
7431                                             DAGCombinerInfo &DCI) const {
7432   EVT VT = N->getValueType(0);
7433   SDValue N0 = N->getOperand(0);
7434 
7435   if (N0.isUndef())
7436     return N0;
7437 
7438   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
7439                          N0.getOpcode() == ISD::SINT_TO_FP)) {
7440     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
7441                            N->getFlags());
7442   }
7443 
7444   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
7445 }
7446 
7447 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
7448                                        unsigned MaxDepth) const {
7449   unsigned Opcode = Op.getOpcode();
7450   if (Opcode == ISD::FCANONICALIZE)
7451     return true;
7452 
7453   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
7454     auto F = CFP->getValueAPF();
7455     if (F.isNaN() && F.isSignaling())
7456       return false;
7457     return !F.isDenormal() || denormalsEnabledForType(Op.getValueType());
7458   }
7459 
7460   // If source is a result of another standard FP operation it is already in
7461   // canonical form.
7462   if (MaxDepth == 0)
7463     return false;
7464 
7465   switch (Opcode) {
7466   // These will flush denorms if required.
7467   case ISD::FADD:
7468   case ISD::FSUB:
7469   case ISD::FMUL:
7470   case ISD::FCEIL:
7471   case ISD::FFLOOR:
7472   case ISD::FMA:
7473   case ISD::FMAD:
7474   case ISD::FSQRT:
7475   case ISD::FDIV:
7476   case ISD::FREM:
7477   case ISD::FP_ROUND:
7478   case ISD::FP_EXTEND:
7479   case AMDGPUISD::FMUL_LEGACY:
7480   case AMDGPUISD::FMAD_FTZ:
7481   case AMDGPUISD::RCP:
7482   case AMDGPUISD::RSQ:
7483   case AMDGPUISD::RSQ_CLAMP:
7484   case AMDGPUISD::RCP_LEGACY:
7485   case AMDGPUISD::RSQ_LEGACY:
7486   case AMDGPUISD::RCP_IFLAG:
7487   case AMDGPUISD::TRIG_PREOP:
7488   case AMDGPUISD::DIV_SCALE:
7489   case AMDGPUISD::DIV_FMAS:
7490   case AMDGPUISD::DIV_FIXUP:
7491   case AMDGPUISD::FRACT:
7492   case AMDGPUISD::LDEXP:
7493   case AMDGPUISD::CVT_PKRTZ_F16_F32:
7494   case AMDGPUISD::CVT_F32_UBYTE0:
7495   case AMDGPUISD::CVT_F32_UBYTE1:
7496   case AMDGPUISD::CVT_F32_UBYTE2:
7497   case AMDGPUISD::CVT_F32_UBYTE3:
7498     return true;
7499 
7500   // It can/will be lowered or combined as a bit operation.
7501   // Need to check their input recursively to handle.
7502   case ISD::FNEG:
7503   case ISD::FABS:
7504   case ISD::FCOPYSIGN:
7505     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
7506 
7507   case ISD::FSIN:
7508   case ISD::FCOS:
7509   case ISD::FSINCOS:
7510     return Op.getValueType().getScalarType() != MVT::f16;
7511 
7512   case ISD::FMINNUM:
7513   case ISD::FMAXNUM:
7514   case ISD::FMINNUM_IEEE:
7515   case ISD::FMAXNUM_IEEE:
7516   case AMDGPUISD::CLAMP:
7517   case AMDGPUISD::FMED3:
7518   case AMDGPUISD::FMAX3:
7519   case AMDGPUISD::FMIN3: {
7520     // FIXME: Shouldn't treat the generic operations different based these.
7521     // However, we aren't really required to flush the result from
7522     // minnum/maxnum..
7523 
7524     // snans will be quieted, so we only need to worry about denormals.
7525     if (Subtarget->supportsMinMaxDenormModes() ||
7526         denormalsEnabledForType(Op.getValueType()))
7527       return true;
7528 
7529     // Flushing may be required.
7530     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
7531     // targets need to check their input recursively.
7532 
7533     // FIXME: Does this apply with clamp? It's implemented with max.
7534     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
7535       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
7536         return false;
7537     }
7538 
7539     return true;
7540   }
7541   case ISD::SELECT: {
7542     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
7543            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
7544   }
7545   case ISD::BUILD_VECTOR: {
7546     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
7547       SDValue SrcOp = Op.getOperand(i);
7548       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
7549         return false;
7550     }
7551 
7552     return true;
7553   }
7554   case ISD::EXTRACT_VECTOR_ELT:
7555   case ISD::EXTRACT_SUBVECTOR: {
7556     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
7557   }
7558   case ISD::INSERT_VECTOR_ELT: {
7559     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
7560            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
7561   }
7562   case ISD::UNDEF:
7563     // Could be anything.
7564     return false;
7565 
7566   case ISD::BITCAST: {
7567     // Hack round the mess we make when legalizing extract_vector_elt
7568     SDValue Src = Op.getOperand(0);
7569     if (Src.getValueType() == MVT::i16 &&
7570         Src.getOpcode() == ISD::TRUNCATE) {
7571       SDValue TruncSrc = Src.getOperand(0);
7572       if (TruncSrc.getValueType() == MVT::i32 &&
7573           TruncSrc.getOpcode() == ISD::BITCAST &&
7574           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
7575         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
7576       }
7577     }
7578 
7579     return false;
7580   }
7581   case ISD::INTRINSIC_WO_CHAIN: {
7582     unsigned IntrinsicID
7583       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7584     // TODO: Handle more intrinsics
7585     switch (IntrinsicID) {
7586     case Intrinsic::amdgcn_cvt_pkrtz:
7587     case Intrinsic::amdgcn_cubeid:
7588     case Intrinsic::amdgcn_frexp_mant:
7589     case Intrinsic::amdgcn_fdot2:
7590       return true;
7591     default:
7592       break;
7593     }
7594 
7595     LLVM_FALLTHROUGH;
7596   }
7597   default:
7598     return denormalsEnabledForType(Op.getValueType()) &&
7599            DAG.isKnownNeverSNaN(Op);
7600   }
7601 
7602   llvm_unreachable("invalid operation");
7603 }
7604 
7605 // Constant fold canonicalize.
7606 SDValue SITargetLowering::getCanonicalConstantFP(
7607   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
7608   // Flush denormals to 0 if not enabled.
7609   if (C.isDenormal() && !denormalsEnabledForType(VT))
7610     return DAG.getConstantFP(0.0, SL, VT);
7611 
7612   if (C.isNaN()) {
7613     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
7614     if (C.isSignaling()) {
7615       // Quiet a signaling NaN.
7616       // FIXME: Is this supposed to preserve payload bits?
7617       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
7618     }
7619 
7620     // Make sure it is the canonical NaN bitpattern.
7621     //
7622     // TODO: Can we use -1 as the canonical NaN value since it's an inline
7623     // immediate?
7624     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
7625       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
7626   }
7627 
7628   // Already canonical.
7629   return DAG.getConstantFP(C, SL, VT);
7630 }
7631 
7632 static bool vectorEltWillFoldAway(SDValue Op) {
7633   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
7634 }
7635 
7636 SDValue SITargetLowering::performFCanonicalizeCombine(
7637   SDNode *N,
7638   DAGCombinerInfo &DCI) const {
7639   SelectionDAG &DAG = DCI.DAG;
7640   SDValue N0 = N->getOperand(0);
7641   EVT VT = N->getValueType(0);
7642 
7643   // fcanonicalize undef -> qnan
7644   if (N0.isUndef()) {
7645     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
7646     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
7647   }
7648 
7649   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
7650     EVT VT = N->getValueType(0);
7651     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
7652   }
7653 
7654   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
7655   //                                                   (fcanonicalize k)
7656   //
7657   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
7658 
7659   // TODO: This could be better with wider vectors that will be split to v2f16,
7660   // and to consider uses since there aren't that many packed operations.
7661   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
7662       isTypeLegal(MVT::v2f16)) {
7663     SDLoc SL(N);
7664     SDValue NewElts[2];
7665     SDValue Lo = N0.getOperand(0);
7666     SDValue Hi = N0.getOperand(1);
7667     EVT EltVT = Lo.getValueType();
7668 
7669     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
7670       for (unsigned I = 0; I != 2; ++I) {
7671         SDValue Op = N0.getOperand(I);
7672         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
7673           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
7674                                               CFP->getValueAPF());
7675         } else if (Op.isUndef()) {
7676           // Handled below based on what the other operand is.
7677           NewElts[I] = Op;
7678         } else {
7679           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
7680         }
7681       }
7682 
7683       // If one half is undef, and one is constant, perfer a splat vector rather
7684       // than the normal qNaN. If it's a register, prefer 0.0 since that's
7685       // cheaper to use and may be free with a packed operation.
7686       if (NewElts[0].isUndef()) {
7687         if (isa<ConstantFPSDNode>(NewElts[1]))
7688           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
7689             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
7690       }
7691 
7692       if (NewElts[1].isUndef()) {
7693         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
7694           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
7695       }
7696 
7697       return DAG.getBuildVector(VT, SL, NewElts);
7698     }
7699   }
7700 
7701   unsigned SrcOpc = N0.getOpcode();
7702 
7703   // If it's free to do so, push canonicalizes further up the source, which may
7704   // find a canonical source.
7705   //
7706   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
7707   // sNaNs.
7708   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
7709     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
7710     if (CRHS && N0.hasOneUse()) {
7711       SDLoc SL(N);
7712       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
7713                                    N0.getOperand(0));
7714       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
7715       DCI.AddToWorklist(Canon0.getNode());
7716 
7717       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
7718     }
7719   }
7720 
7721   return isCanonicalized(DAG, N0) ? N0 : SDValue();
7722 }
7723 
7724 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
7725   switch (Opc) {
7726   case ISD::FMAXNUM:
7727   case ISD::FMAXNUM_IEEE:
7728     return AMDGPUISD::FMAX3;
7729   case ISD::SMAX:
7730     return AMDGPUISD::SMAX3;
7731   case ISD::UMAX:
7732     return AMDGPUISD::UMAX3;
7733   case ISD::FMINNUM:
7734   case ISD::FMINNUM_IEEE:
7735     return AMDGPUISD::FMIN3;
7736   case ISD::SMIN:
7737     return AMDGPUISD::SMIN3;
7738   case ISD::UMIN:
7739     return AMDGPUISD::UMIN3;
7740   default:
7741     llvm_unreachable("Not a min/max opcode");
7742   }
7743 }
7744 
7745 SDValue SITargetLowering::performIntMed3ImmCombine(
7746   SelectionDAG &DAG, const SDLoc &SL,
7747   SDValue Op0, SDValue Op1, bool Signed) const {
7748   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
7749   if (!K1)
7750     return SDValue();
7751 
7752   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
7753   if (!K0)
7754     return SDValue();
7755 
7756   if (Signed) {
7757     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
7758       return SDValue();
7759   } else {
7760     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
7761       return SDValue();
7762   }
7763 
7764   EVT VT = K0->getValueType(0);
7765   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
7766   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
7767     return DAG.getNode(Med3Opc, SL, VT,
7768                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
7769   }
7770 
7771   // If there isn't a 16-bit med3 operation, convert to 32-bit.
7772   MVT NVT = MVT::i32;
7773   unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
7774 
7775   SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
7776   SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
7777   SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
7778 
7779   SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
7780   return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
7781 }
7782 
7783 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
7784   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
7785     return C;
7786 
7787   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
7788     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
7789       return C;
7790   }
7791 
7792   return nullptr;
7793 }
7794 
7795 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
7796                                                   const SDLoc &SL,
7797                                                   SDValue Op0,
7798                                                   SDValue Op1) const {
7799   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
7800   if (!K1)
7801     return SDValue();
7802 
7803   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
7804   if (!K0)
7805     return SDValue();
7806 
7807   // Ordered >= (although NaN inputs should have folded away by now).
7808   APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
7809   if (Cmp == APFloat::cmpGreaterThan)
7810     return SDValue();
7811 
7812   // TODO: Check IEEE bit enabled?
7813   EVT VT = Op0.getValueType();
7814   if (Subtarget->enableDX10Clamp()) {
7815     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
7816     // hardware fmed3 behavior converting to a min.
7817     // FIXME: Should this be allowing -0.0?
7818     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
7819       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
7820   }
7821 
7822   // med3 for f16 is only available on gfx9+, and not available for v2f16.
7823   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
7824     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
7825     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
7826     // then give the other result, which is different from med3 with a NaN
7827     // input.
7828     SDValue Var = Op0.getOperand(0);
7829     if (!DAG.isKnownNeverSNaN(Var))
7830       return SDValue();
7831 
7832     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7833 
7834     if ((!K0->hasOneUse() ||
7835          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
7836         (!K1->hasOneUse() ||
7837          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
7838       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
7839                          Var, SDValue(K0, 0), SDValue(K1, 0));
7840     }
7841   }
7842 
7843   return SDValue();
7844 }
7845 
7846 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
7847                                                DAGCombinerInfo &DCI) const {
7848   SelectionDAG &DAG = DCI.DAG;
7849 
7850   EVT VT = N->getValueType(0);
7851   unsigned Opc = N->getOpcode();
7852   SDValue Op0 = N->getOperand(0);
7853   SDValue Op1 = N->getOperand(1);
7854 
7855   // Only do this if the inner op has one use since this will just increases
7856   // register pressure for no benefit.
7857 
7858 
7859   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
7860       !VT.isVector() && VT != MVT::f64 &&
7861       ((VT != MVT::f16 && VT != MVT::i16) || Subtarget->hasMin3Max3_16())) {
7862     // max(max(a, b), c) -> max3(a, b, c)
7863     // min(min(a, b), c) -> min3(a, b, c)
7864     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
7865       SDLoc DL(N);
7866       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
7867                          DL,
7868                          N->getValueType(0),
7869                          Op0.getOperand(0),
7870                          Op0.getOperand(1),
7871                          Op1);
7872     }
7873 
7874     // Try commuted.
7875     // max(a, max(b, c)) -> max3(a, b, c)
7876     // min(a, min(b, c)) -> min3(a, b, c)
7877     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
7878       SDLoc DL(N);
7879       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
7880                          DL,
7881                          N->getValueType(0),
7882                          Op0,
7883                          Op1.getOperand(0),
7884                          Op1.getOperand(1));
7885     }
7886   }
7887 
7888   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
7889   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
7890     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
7891       return Med3;
7892   }
7893 
7894   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
7895     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
7896       return Med3;
7897   }
7898 
7899   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
7900   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
7901        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
7902        (Opc == AMDGPUISD::FMIN_LEGACY &&
7903         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
7904       (VT == MVT::f32 || VT == MVT::f64 ||
7905        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
7906        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
7907       Op0.hasOneUse()) {
7908     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
7909       return Res;
7910   }
7911 
7912   return SDValue();
7913 }
7914 
7915 static bool isClampZeroToOne(SDValue A, SDValue B) {
7916   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
7917     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
7918       // FIXME: Should this be allowing -0.0?
7919       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
7920              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
7921     }
7922   }
7923 
7924   return false;
7925 }
7926 
7927 // FIXME: Should only worry about snans for version with chain.
7928 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
7929                                               DAGCombinerInfo &DCI) const {
7930   EVT VT = N->getValueType(0);
7931   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
7932   // NaNs. With a NaN input, the order of the operands may change the result.
7933 
7934   SelectionDAG &DAG = DCI.DAG;
7935   SDLoc SL(N);
7936 
7937   SDValue Src0 = N->getOperand(0);
7938   SDValue Src1 = N->getOperand(1);
7939   SDValue Src2 = N->getOperand(2);
7940 
7941   if (isClampZeroToOne(Src0, Src1)) {
7942     // const_a, const_b, x -> clamp is safe in all cases including signaling
7943     // nans.
7944     // FIXME: Should this be allowing -0.0?
7945     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
7946   }
7947 
7948   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
7949   // handling no dx10-clamp?
7950   if (Subtarget->enableDX10Clamp()) {
7951     // If NaNs is clamped to 0, we are free to reorder the inputs.
7952 
7953     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
7954       std::swap(Src0, Src1);
7955 
7956     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
7957       std::swap(Src1, Src2);
7958 
7959     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
7960       std::swap(Src0, Src1);
7961 
7962     if (isClampZeroToOne(Src1, Src2))
7963       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
7964   }
7965 
7966   return SDValue();
7967 }
7968 
7969 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
7970                                                  DAGCombinerInfo &DCI) const {
7971   SDValue Src0 = N->getOperand(0);
7972   SDValue Src1 = N->getOperand(1);
7973   if (Src0.isUndef() && Src1.isUndef())
7974     return DCI.DAG.getUNDEF(N->getValueType(0));
7975   return SDValue();
7976 }
7977 
7978 SDValue SITargetLowering::performExtractVectorEltCombine(
7979   SDNode *N, DAGCombinerInfo &DCI) const {
7980   SDValue Vec = N->getOperand(0);
7981   SelectionDAG &DAG = DCI.DAG;
7982 
7983   EVT VecVT = Vec.getValueType();
7984   EVT EltVT = VecVT.getVectorElementType();
7985 
7986   if ((Vec.getOpcode() == ISD::FNEG ||
7987        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
7988     SDLoc SL(N);
7989     EVT EltVT = N->getValueType(0);
7990     SDValue Idx = N->getOperand(1);
7991     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
7992                               Vec.getOperand(0), Idx);
7993     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
7994   }
7995 
7996   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
7997   //    =>
7998   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
7999   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
8000   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
8001   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
8002     SDLoc SL(N);
8003     EVT EltVT = N->getValueType(0);
8004     SDValue Idx = N->getOperand(1);
8005     unsigned Opc = Vec.getOpcode();
8006 
8007     switch(Opc) {
8008     default:
8009       break;
8010       // TODO: Support other binary operations.
8011     case ISD::FADD:
8012     case ISD::FSUB:
8013     case ISD::FMUL:
8014     case ISD::ADD:
8015     case ISD::UMIN:
8016     case ISD::UMAX:
8017     case ISD::SMIN:
8018     case ISD::SMAX:
8019     case ISD::FMAXNUM:
8020     case ISD::FMINNUM:
8021     case ISD::FMAXNUM_IEEE:
8022     case ISD::FMINNUM_IEEE: {
8023       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
8024                                  Vec.getOperand(0), Idx);
8025       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
8026                                  Vec.getOperand(1), Idx);
8027 
8028       DCI.AddToWorklist(Elt0.getNode());
8029       DCI.AddToWorklist(Elt1.getNode());
8030       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
8031     }
8032     }
8033   }
8034 
8035   unsigned VecSize = VecVT.getSizeInBits();
8036   unsigned EltSize = EltVT.getSizeInBits();
8037 
8038   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
8039   // This elminates non-constant index and subsequent movrel or scratch access.
8040   // Sub-dword vectors of size 2 dword or less have better implementation.
8041   // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
8042   // instructions.
8043   if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) &&
8044       !isa<ConstantSDNode>(N->getOperand(1))) {
8045     SDLoc SL(N);
8046     SDValue Idx = N->getOperand(1);
8047     EVT IdxVT = Idx.getValueType();
8048     SDValue V;
8049     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
8050       SDValue IC = DAG.getConstant(I, SL, IdxVT);
8051       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
8052       if (I == 0)
8053         V = Elt;
8054       else
8055         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
8056     }
8057     return V;
8058   }
8059 
8060   if (!DCI.isBeforeLegalize())
8061     return SDValue();
8062 
8063   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
8064   // elements. This exposes more load reduction opportunities by replacing
8065   // multiple small extract_vector_elements with a single 32-bit extract.
8066   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
8067   if (isa<MemSDNode>(Vec) &&
8068       EltSize <= 16 &&
8069       EltVT.isByteSized() &&
8070       VecSize > 32 &&
8071       VecSize % 32 == 0 &&
8072       Idx) {
8073     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
8074 
8075     unsigned BitIndex = Idx->getZExtValue() * EltSize;
8076     unsigned EltIdx = BitIndex / 32;
8077     unsigned LeftoverBitIdx = BitIndex % 32;
8078     SDLoc SL(N);
8079 
8080     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
8081     DCI.AddToWorklist(Cast.getNode());
8082 
8083     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
8084                               DAG.getConstant(EltIdx, SL, MVT::i32));
8085     DCI.AddToWorklist(Elt.getNode());
8086     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
8087                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
8088     DCI.AddToWorklist(Srl.getNode());
8089 
8090     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
8091     DCI.AddToWorklist(Trunc.getNode());
8092     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
8093   }
8094 
8095   return SDValue();
8096 }
8097 
8098 SDValue
8099 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
8100                                                 DAGCombinerInfo &DCI) const {
8101   SDValue Vec = N->getOperand(0);
8102   SDValue Idx = N->getOperand(2);
8103   EVT VecVT = Vec.getValueType();
8104   EVT EltVT = VecVT.getVectorElementType();
8105   unsigned VecSize = VecVT.getSizeInBits();
8106   unsigned EltSize = EltVT.getSizeInBits();
8107 
8108   // INSERT_VECTOR_ELT (<n x e>, var-idx)
8109   // => BUILD_VECTOR n x select (e, const-idx)
8110   // This elminates non-constant index and subsequent movrel or scratch access.
8111   // Sub-dword vectors of size 2 dword or less have better implementation.
8112   // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
8113   // instructions.
8114   if (isa<ConstantSDNode>(Idx) ||
8115       VecSize > 256 || (VecSize <= 64 && EltSize < 32))
8116     return SDValue();
8117 
8118   SelectionDAG &DAG = DCI.DAG;
8119   SDLoc SL(N);
8120   SDValue Ins = N->getOperand(1);
8121   EVT IdxVT = Idx.getValueType();
8122 
8123   SmallVector<SDValue, 16> Ops;
8124   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
8125     SDValue IC = DAG.getConstant(I, SL, IdxVT);
8126     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
8127     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
8128     Ops.push_back(V);
8129   }
8130 
8131   return DAG.getBuildVector(VecVT, SL, Ops);
8132 }
8133 
8134 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
8135                                           const SDNode *N0,
8136                                           const SDNode *N1) const {
8137   EVT VT = N0->getValueType(0);
8138 
8139   // Only do this if we are not trying to support denormals. v_mad_f32 does not
8140   // support denormals ever.
8141   if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
8142       (VT == MVT::f16 && !Subtarget->hasFP16Denormals()))
8143     return ISD::FMAD;
8144 
8145   const TargetOptions &Options = DAG.getTarget().Options;
8146   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
8147        (N0->getFlags().hasAllowContract() &&
8148         N1->getFlags().hasAllowContract())) &&
8149       isFMAFasterThanFMulAndFAdd(VT)) {
8150     return ISD::FMA;
8151   }
8152 
8153   return 0;
8154 }
8155 
8156 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
8157                            EVT VT,
8158                            SDValue N0, SDValue N1, SDValue N2,
8159                            bool Signed) {
8160   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
8161   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
8162   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
8163   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
8164 }
8165 
8166 SDValue SITargetLowering::performAddCombine(SDNode *N,
8167                                             DAGCombinerInfo &DCI) const {
8168   SelectionDAG &DAG = DCI.DAG;
8169   EVT VT = N->getValueType(0);
8170   SDLoc SL(N);
8171   SDValue LHS = N->getOperand(0);
8172   SDValue RHS = N->getOperand(1);
8173 
8174   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
8175       && Subtarget->hasMad64_32() &&
8176       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
8177       VT.getScalarSizeInBits() <= 64) {
8178     if (LHS.getOpcode() != ISD::MUL)
8179       std::swap(LHS, RHS);
8180 
8181     SDValue MulLHS = LHS.getOperand(0);
8182     SDValue MulRHS = LHS.getOperand(1);
8183     SDValue AddRHS = RHS;
8184 
8185     // TODO: Maybe restrict if SGPR inputs.
8186     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
8187         numBitsUnsigned(MulRHS, DAG) <= 32) {
8188       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
8189       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
8190       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
8191       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
8192     }
8193 
8194     if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
8195       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
8196       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
8197       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
8198       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
8199     }
8200 
8201     return SDValue();
8202   }
8203 
8204   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
8205     return SDValue();
8206 
8207   // add x, zext (setcc) => addcarry x, 0, setcc
8208   // add x, sext (setcc) => subcarry x, 0, setcc
8209   unsigned Opc = LHS.getOpcode();
8210   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
8211       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
8212     std::swap(RHS, LHS);
8213 
8214   Opc = RHS.getOpcode();
8215   switch (Opc) {
8216   default: break;
8217   case ISD::ZERO_EXTEND:
8218   case ISD::SIGN_EXTEND:
8219   case ISD::ANY_EXTEND: {
8220     auto Cond = RHS.getOperand(0);
8221     if (!isBoolSGPR(Cond))
8222       break;
8223     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
8224     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
8225     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
8226     return DAG.getNode(Opc, SL, VTList, Args);
8227   }
8228   case ISD::ADDCARRY: {
8229     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
8230     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8231     if (!C || C->getZExtValue() != 0) break;
8232     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
8233     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
8234   }
8235   }
8236   return SDValue();
8237 }
8238 
8239 SDValue SITargetLowering::performSubCombine(SDNode *N,
8240                                             DAGCombinerInfo &DCI) const {
8241   SelectionDAG &DAG = DCI.DAG;
8242   EVT VT = N->getValueType(0);
8243 
8244   if (VT != MVT::i32)
8245     return SDValue();
8246 
8247   SDLoc SL(N);
8248   SDValue LHS = N->getOperand(0);
8249   SDValue RHS = N->getOperand(1);
8250 
8251   unsigned Opc = LHS.getOpcode();
8252   if (Opc != ISD::SUBCARRY)
8253     std::swap(RHS, LHS);
8254 
8255   if (LHS.getOpcode() == ISD::SUBCARRY) {
8256     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
8257     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
8258     if (!C || C->getZExtValue() != 0)
8259       return SDValue();
8260     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
8261     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
8262   }
8263   return SDValue();
8264 }
8265 
8266 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
8267   DAGCombinerInfo &DCI) const {
8268 
8269   if (N->getValueType(0) != MVT::i32)
8270     return SDValue();
8271 
8272   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8273   if (!C || C->getZExtValue() != 0)
8274     return SDValue();
8275 
8276   SelectionDAG &DAG = DCI.DAG;
8277   SDValue LHS = N->getOperand(0);
8278 
8279   // addcarry (add x, y), 0, cc => addcarry x, y, cc
8280   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
8281   unsigned LHSOpc = LHS.getOpcode();
8282   unsigned Opc = N->getOpcode();
8283   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
8284       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
8285     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
8286     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
8287   }
8288   return SDValue();
8289 }
8290 
8291 SDValue SITargetLowering::performFAddCombine(SDNode *N,
8292                                              DAGCombinerInfo &DCI) const {
8293   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
8294     return SDValue();
8295 
8296   SelectionDAG &DAG = DCI.DAG;
8297   EVT VT = N->getValueType(0);
8298 
8299   SDLoc SL(N);
8300   SDValue LHS = N->getOperand(0);
8301   SDValue RHS = N->getOperand(1);
8302 
8303   // These should really be instruction patterns, but writing patterns with
8304   // source modiifiers is a pain.
8305 
8306   // fadd (fadd (a, a), b) -> mad 2.0, a, b
8307   if (LHS.getOpcode() == ISD::FADD) {
8308     SDValue A = LHS.getOperand(0);
8309     if (A == LHS.getOperand(1)) {
8310       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
8311       if (FusedOp != 0) {
8312         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
8313         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
8314       }
8315     }
8316   }
8317 
8318   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
8319   if (RHS.getOpcode() == ISD::FADD) {
8320     SDValue A = RHS.getOperand(0);
8321     if (A == RHS.getOperand(1)) {
8322       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
8323       if (FusedOp != 0) {
8324         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
8325         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
8326       }
8327     }
8328   }
8329 
8330   return SDValue();
8331 }
8332 
8333 SDValue SITargetLowering::performFSubCombine(SDNode *N,
8334                                              DAGCombinerInfo &DCI) const {
8335   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
8336     return SDValue();
8337 
8338   SelectionDAG &DAG = DCI.DAG;
8339   SDLoc SL(N);
8340   EVT VT = N->getValueType(0);
8341   assert(!VT.isVector());
8342 
8343   // Try to get the fneg to fold into the source modifier. This undoes generic
8344   // DAG combines and folds them into the mad.
8345   //
8346   // Only do this if we are not trying to support denormals. v_mad_f32 does
8347   // not support denormals ever.
8348   SDValue LHS = N->getOperand(0);
8349   SDValue RHS = N->getOperand(1);
8350   if (LHS.getOpcode() == ISD::FADD) {
8351     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
8352     SDValue A = LHS.getOperand(0);
8353     if (A == LHS.getOperand(1)) {
8354       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
8355       if (FusedOp != 0){
8356         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
8357         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8358 
8359         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
8360       }
8361     }
8362   }
8363 
8364   if (RHS.getOpcode() == ISD::FADD) {
8365     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
8366 
8367     SDValue A = RHS.getOperand(0);
8368     if (A == RHS.getOperand(1)) {
8369       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
8370       if (FusedOp != 0){
8371         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
8372         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
8373       }
8374     }
8375   }
8376 
8377   return SDValue();
8378 }
8379 
8380 SDValue SITargetLowering::performFMACombine(SDNode *N,
8381                                             DAGCombinerInfo &DCI) const {
8382   SelectionDAG &DAG = DCI.DAG;
8383   EVT VT = N->getValueType(0);
8384   SDLoc SL(N);
8385 
8386   if (!Subtarget->hasDLInsts() || VT != MVT::f32)
8387     return SDValue();
8388 
8389   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
8390   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
8391   SDValue Op1 = N->getOperand(0);
8392   SDValue Op2 = N->getOperand(1);
8393   SDValue FMA = N->getOperand(2);
8394 
8395   if (FMA.getOpcode() != ISD::FMA ||
8396       Op1.getOpcode() != ISD::FP_EXTEND ||
8397       Op2.getOpcode() != ISD::FP_EXTEND)
8398     return SDValue();
8399 
8400   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
8401   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
8402   // is sufficient to allow generaing fdot2.
8403   const TargetOptions &Options = DAG.getTarget().Options;
8404   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
8405       (N->getFlags().hasAllowContract() &&
8406        FMA->getFlags().hasAllowContract())) {
8407     Op1 = Op1.getOperand(0);
8408     Op2 = Op2.getOperand(0);
8409     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8410         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8411       return SDValue();
8412 
8413     SDValue Vec1 = Op1.getOperand(0);
8414     SDValue Idx1 = Op1.getOperand(1);
8415     SDValue Vec2 = Op2.getOperand(0);
8416 
8417     SDValue FMAOp1 = FMA.getOperand(0);
8418     SDValue FMAOp2 = FMA.getOperand(1);
8419     SDValue FMAAcc = FMA.getOperand(2);
8420 
8421     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
8422         FMAOp2.getOpcode() != ISD::FP_EXTEND)
8423       return SDValue();
8424 
8425     FMAOp1 = FMAOp1.getOperand(0);
8426     FMAOp2 = FMAOp2.getOperand(0);
8427     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8428         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8429       return SDValue();
8430 
8431     SDValue Vec3 = FMAOp1.getOperand(0);
8432     SDValue Vec4 = FMAOp2.getOperand(0);
8433     SDValue Idx2 = FMAOp1.getOperand(1);
8434 
8435     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
8436         // Idx1 and Idx2 cannot be the same.
8437         Idx1 == Idx2)
8438       return SDValue();
8439 
8440     if (Vec1 == Vec2 || Vec3 == Vec4)
8441       return SDValue();
8442 
8443     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
8444       return SDValue();
8445 
8446     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
8447         (Vec1 == Vec4 && Vec2 == Vec3)) {
8448       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
8449                          DAG.getTargetConstant(0, SL, MVT::i1));
8450     }
8451   }
8452   return SDValue();
8453 }
8454 
8455 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
8456                                               DAGCombinerInfo &DCI) const {
8457   SelectionDAG &DAG = DCI.DAG;
8458   SDLoc SL(N);
8459 
8460   SDValue LHS = N->getOperand(0);
8461   SDValue RHS = N->getOperand(1);
8462   EVT VT = LHS.getValueType();
8463   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
8464 
8465   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
8466   if (!CRHS) {
8467     CRHS = dyn_cast<ConstantSDNode>(LHS);
8468     if (CRHS) {
8469       std::swap(LHS, RHS);
8470       CC = getSetCCSwappedOperands(CC);
8471     }
8472   }
8473 
8474   if (CRHS) {
8475     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
8476         isBoolSGPR(LHS.getOperand(0))) {
8477       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
8478       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
8479       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
8480       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
8481       if ((CRHS->isAllOnesValue() &&
8482            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
8483           (CRHS->isNullValue() &&
8484            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
8485         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
8486                            DAG.getConstant(-1, SL, MVT::i1));
8487       if ((CRHS->isAllOnesValue() &&
8488            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
8489           (CRHS->isNullValue() &&
8490            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
8491         return LHS.getOperand(0);
8492     }
8493 
8494     uint64_t CRHSVal = CRHS->getZExtValue();
8495     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
8496         LHS.getOpcode() == ISD::SELECT &&
8497         isa<ConstantSDNode>(LHS.getOperand(1)) &&
8498         isa<ConstantSDNode>(LHS.getOperand(2)) &&
8499         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
8500         isBoolSGPR(LHS.getOperand(0))) {
8501       // Given CT != FT:
8502       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
8503       // setcc (select cc, CT, CF), CF, ne => cc
8504       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
8505       // setcc (select cc, CT, CF), CT, eq => cc
8506       uint64_t CT = LHS.getConstantOperandVal(1);
8507       uint64_t CF = LHS.getConstantOperandVal(2);
8508 
8509       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
8510           (CT == CRHSVal && CC == ISD::SETNE))
8511         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
8512                            DAG.getConstant(-1, SL, MVT::i1));
8513       if ((CF == CRHSVal && CC == ISD::SETNE) ||
8514           (CT == CRHSVal && CC == ISD::SETEQ))
8515         return LHS.getOperand(0);
8516     }
8517   }
8518 
8519   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
8520                                            VT != MVT::f16))
8521     return SDValue();
8522 
8523   // Match isinf/isfinite pattern
8524   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
8525   // (fcmp one (fabs x), inf) -> (fp_class x,
8526   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
8527   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
8528     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
8529     if (!CRHS)
8530       return SDValue();
8531 
8532     const APFloat &APF = CRHS->getValueAPF();
8533     if (APF.isInfinity() && !APF.isNegative()) {
8534       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
8535                                  SIInstrFlags::N_INFINITY;
8536       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
8537                                     SIInstrFlags::P_ZERO |
8538                                     SIInstrFlags::N_NORMAL |
8539                                     SIInstrFlags::P_NORMAL |
8540                                     SIInstrFlags::N_SUBNORMAL |
8541                                     SIInstrFlags::P_SUBNORMAL;
8542       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
8543       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
8544                          DAG.getConstant(Mask, SL, MVT::i32));
8545     }
8546   }
8547 
8548   return SDValue();
8549 }
8550 
8551 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
8552                                                      DAGCombinerInfo &DCI) const {
8553   SelectionDAG &DAG = DCI.DAG;
8554   SDLoc SL(N);
8555   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
8556 
8557   SDValue Src = N->getOperand(0);
8558   SDValue Srl = N->getOperand(0);
8559   if (Srl.getOpcode() == ISD::ZERO_EXTEND)
8560     Srl = Srl.getOperand(0);
8561 
8562   // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
8563   if (Srl.getOpcode() == ISD::SRL) {
8564     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
8565     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
8566     // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
8567 
8568     if (const ConstantSDNode *C =
8569         dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
8570       Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
8571                                EVT(MVT::i32));
8572 
8573       unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
8574       if (SrcOffset < 32 && SrcOffset % 8 == 0) {
8575         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
8576                            MVT::f32, Srl);
8577       }
8578     }
8579   }
8580 
8581   APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
8582 
8583   KnownBits Known;
8584   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
8585                                         !DCI.isBeforeLegalizeOps());
8586   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8587   if (TLI.ShrinkDemandedConstant(Src, Demanded, TLO) ||
8588       TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
8589     DCI.CommitTargetLoweringOpt(TLO);
8590   }
8591 
8592   return SDValue();
8593 }
8594 
8595 SDValue SITargetLowering::performClampCombine(SDNode *N,
8596                                               DAGCombinerInfo &DCI) const {
8597   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
8598   if (!CSrc)
8599     return SDValue();
8600 
8601   const APFloat &F = CSrc->getValueAPF();
8602   APFloat Zero = APFloat::getZero(F.getSemantics());
8603   APFloat::cmpResult Cmp0 = F.compare(Zero);
8604   if (Cmp0 == APFloat::cmpLessThan ||
8605       (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) {
8606     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
8607   }
8608 
8609   APFloat One(F.getSemantics(), "1.0");
8610   APFloat::cmpResult Cmp1 = F.compare(One);
8611   if (Cmp1 == APFloat::cmpGreaterThan)
8612     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
8613 
8614   return SDValue(CSrc, 0);
8615 }
8616 
8617 
8618 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
8619                                             DAGCombinerInfo &DCI) const {
8620   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
8621     return SDValue();
8622 
8623   switch (N->getOpcode()) {
8624   default:
8625     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
8626   case ISD::ADD:
8627     return performAddCombine(N, DCI);
8628   case ISD::SUB:
8629     return performSubCombine(N, DCI);
8630   case ISD::ADDCARRY:
8631   case ISD::SUBCARRY:
8632     return performAddCarrySubCarryCombine(N, DCI);
8633   case ISD::FADD:
8634     return performFAddCombine(N, DCI);
8635   case ISD::FSUB:
8636     return performFSubCombine(N, DCI);
8637   case ISD::SETCC:
8638     return performSetCCCombine(N, DCI);
8639   case ISD::FMAXNUM:
8640   case ISD::FMINNUM:
8641   case ISD::FMAXNUM_IEEE:
8642   case ISD::FMINNUM_IEEE:
8643   case ISD::SMAX:
8644   case ISD::SMIN:
8645   case ISD::UMAX:
8646   case ISD::UMIN:
8647   case AMDGPUISD::FMIN_LEGACY:
8648   case AMDGPUISD::FMAX_LEGACY:
8649     return performMinMaxCombine(N, DCI);
8650   case ISD::FMA:
8651     return performFMACombine(N, DCI);
8652   case ISD::LOAD: {
8653     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
8654       return Widended;
8655     LLVM_FALLTHROUGH;
8656   }
8657   case ISD::STORE:
8658   case ISD::ATOMIC_LOAD:
8659   case ISD::ATOMIC_STORE:
8660   case ISD::ATOMIC_CMP_SWAP:
8661   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
8662   case ISD::ATOMIC_SWAP:
8663   case ISD::ATOMIC_LOAD_ADD:
8664   case ISD::ATOMIC_LOAD_SUB:
8665   case ISD::ATOMIC_LOAD_AND:
8666   case ISD::ATOMIC_LOAD_OR:
8667   case ISD::ATOMIC_LOAD_XOR:
8668   case ISD::ATOMIC_LOAD_NAND:
8669   case ISD::ATOMIC_LOAD_MIN:
8670   case ISD::ATOMIC_LOAD_MAX:
8671   case ISD::ATOMIC_LOAD_UMIN:
8672   case ISD::ATOMIC_LOAD_UMAX:
8673   case AMDGPUISD::ATOMIC_INC:
8674   case AMDGPUISD::ATOMIC_DEC:
8675   case AMDGPUISD::ATOMIC_LOAD_FADD:
8676   case AMDGPUISD::ATOMIC_LOAD_FMIN:
8677   case AMDGPUISD::ATOMIC_LOAD_FMAX:  // TODO: Target mem intrinsics.
8678     if (DCI.isBeforeLegalize())
8679       break;
8680     return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
8681   case ISD::AND:
8682     return performAndCombine(N, DCI);
8683   case ISD::OR:
8684     return performOrCombine(N, DCI);
8685   case ISD::XOR:
8686     return performXorCombine(N, DCI);
8687   case ISD::ZERO_EXTEND:
8688     return performZeroExtendCombine(N, DCI);
8689   case AMDGPUISD::FP_CLASS:
8690     return performClassCombine(N, DCI);
8691   case ISD::FCANONICALIZE:
8692     return performFCanonicalizeCombine(N, DCI);
8693   case AMDGPUISD::RCP:
8694     return performRcpCombine(N, DCI);
8695   case AMDGPUISD::FRACT:
8696   case AMDGPUISD::RSQ:
8697   case AMDGPUISD::RCP_LEGACY:
8698   case AMDGPUISD::RSQ_LEGACY:
8699   case AMDGPUISD::RCP_IFLAG:
8700   case AMDGPUISD::RSQ_CLAMP:
8701   case AMDGPUISD::LDEXP: {
8702     SDValue Src = N->getOperand(0);
8703     if (Src.isUndef())
8704       return Src;
8705     break;
8706   }
8707   case ISD::SINT_TO_FP:
8708   case ISD::UINT_TO_FP:
8709     return performUCharToFloatCombine(N, DCI);
8710   case AMDGPUISD::CVT_F32_UBYTE0:
8711   case AMDGPUISD::CVT_F32_UBYTE1:
8712   case AMDGPUISD::CVT_F32_UBYTE2:
8713   case AMDGPUISD::CVT_F32_UBYTE3:
8714     return performCvtF32UByteNCombine(N, DCI);
8715   case AMDGPUISD::FMED3:
8716     return performFMed3Combine(N, DCI);
8717   case AMDGPUISD::CVT_PKRTZ_F16_F32:
8718     return performCvtPkRTZCombine(N, DCI);
8719   case AMDGPUISD::CLAMP:
8720     return performClampCombine(N, DCI);
8721   case ISD::SCALAR_TO_VECTOR: {
8722     SelectionDAG &DAG = DCI.DAG;
8723     EVT VT = N->getValueType(0);
8724 
8725     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
8726     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
8727       SDLoc SL(N);
8728       SDValue Src = N->getOperand(0);
8729       EVT EltVT = Src.getValueType();
8730       if (EltVT == MVT::f16)
8731         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
8732 
8733       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
8734       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
8735     }
8736 
8737     break;
8738   }
8739   case ISD::EXTRACT_VECTOR_ELT:
8740     return performExtractVectorEltCombine(N, DCI);
8741   case ISD::INSERT_VECTOR_ELT:
8742     return performInsertVectorEltCombine(N, DCI);
8743   }
8744   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
8745 }
8746 
8747 /// Helper function for adjustWritemask
8748 static unsigned SubIdx2Lane(unsigned Idx) {
8749   switch (Idx) {
8750   default: return 0;
8751   case AMDGPU::sub0: return 0;
8752   case AMDGPU::sub1: return 1;
8753   case AMDGPU::sub2: return 2;
8754   case AMDGPU::sub3: return 3;
8755   }
8756 }
8757 
8758 /// Adjust the writemask of MIMG instructions
8759 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
8760                                           SelectionDAG &DAG) const {
8761   unsigned Opcode = Node->getMachineOpcode();
8762 
8763   // Subtract 1 because the vdata output is not a MachineSDNode operand.
8764   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
8765   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
8766     return Node; // not implemented for D16
8767 
8768   SDNode *Users[4] = { nullptr };
8769   unsigned Lane = 0;
8770   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
8771   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
8772   unsigned NewDmask = 0;
8773   bool HasChain = Node->getNumValues() > 1;
8774 
8775   if (OldDmask == 0) {
8776     // These are folded out, but on the chance it happens don't assert.
8777     return Node;
8778   }
8779 
8780   // Try to figure out the used register components
8781   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
8782        I != E; ++I) {
8783 
8784     // Don't look at users of the chain.
8785     if (I.getUse().getResNo() != 0)
8786       continue;
8787 
8788     // Abort if we can't understand the usage
8789     if (!I->isMachineOpcode() ||
8790         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
8791       return Node;
8792 
8793     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
8794     // Note that subregs are packed, i.e. Lane==0 is the first bit set
8795     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
8796     // set, etc.
8797     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
8798 
8799     // Set which texture component corresponds to the lane.
8800     unsigned Comp;
8801     for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
8802       Comp = countTrailingZeros(Dmask);
8803       Dmask &= ~(1 << Comp);
8804     }
8805 
8806     // Abort if we have more than one user per component
8807     if (Users[Lane])
8808       return Node;
8809 
8810     Users[Lane] = *I;
8811     NewDmask |= 1 << Comp;
8812   }
8813 
8814   // Abort if there's no change
8815   if (NewDmask == OldDmask)
8816     return Node;
8817 
8818   unsigned BitsSet = countPopulation(NewDmask);
8819 
8820   int NewOpcode = AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), BitsSet);
8821   assert(NewOpcode != -1 &&
8822          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
8823          "failed to find equivalent MIMG op");
8824 
8825   // Adjust the writemask in the node
8826   SmallVector<SDValue, 12> Ops;
8827   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
8828   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
8829   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
8830 
8831   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
8832 
8833   MVT ResultVT = BitsSet == 1 ?
8834     SVT : MVT::getVectorVT(SVT, BitsSet == 3 ? 4 : BitsSet);
8835   SDVTList NewVTList = HasChain ?
8836     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
8837 
8838 
8839   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
8840                                               NewVTList, Ops);
8841 
8842   if (HasChain) {
8843     // Update chain.
8844     DAG.setNodeMemRefs(NewNode, Node->memoperands());
8845     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
8846   }
8847 
8848   if (BitsSet == 1) {
8849     assert(Node->hasNUsesOfValue(1, 0));
8850     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
8851                                       SDLoc(Node), Users[Lane]->getValueType(0),
8852                                       SDValue(NewNode, 0));
8853     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
8854     return nullptr;
8855   }
8856 
8857   // Update the users of the node with the new indices
8858   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
8859     SDNode *User = Users[i];
8860     if (!User)
8861       continue;
8862 
8863     SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
8864     DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
8865 
8866     switch (Idx) {
8867     default: break;
8868     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
8869     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
8870     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
8871     }
8872   }
8873 
8874   DAG.RemoveDeadNode(Node);
8875   return nullptr;
8876 }
8877 
8878 static bool isFrameIndexOp(SDValue Op) {
8879   if (Op.getOpcode() == ISD::AssertZext)
8880     Op = Op.getOperand(0);
8881 
8882   return isa<FrameIndexSDNode>(Op);
8883 }
8884 
8885 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
8886 /// with frame index operands.
8887 /// LLVM assumes that inputs are to these instructions are registers.
8888 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
8889                                                         SelectionDAG &DAG) const {
8890   if (Node->getOpcode() == ISD::CopyToReg) {
8891     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
8892     SDValue SrcVal = Node->getOperand(2);
8893 
8894     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
8895     // to try understanding copies to physical registers.
8896     if (SrcVal.getValueType() == MVT::i1 &&
8897         TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) {
8898       SDLoc SL(Node);
8899       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
8900       SDValue VReg = DAG.getRegister(
8901         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
8902 
8903       SDNode *Glued = Node->getGluedNode();
8904       SDValue ToVReg
8905         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
8906                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
8907       SDValue ToResultReg
8908         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
8909                            VReg, ToVReg.getValue(1));
8910       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
8911       DAG.RemoveDeadNode(Node);
8912       return ToResultReg.getNode();
8913     }
8914   }
8915 
8916   SmallVector<SDValue, 8> Ops;
8917   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
8918     if (!isFrameIndexOp(Node->getOperand(i))) {
8919       Ops.push_back(Node->getOperand(i));
8920       continue;
8921     }
8922 
8923     SDLoc DL(Node);
8924     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
8925                                      Node->getOperand(i).getValueType(),
8926                                      Node->getOperand(i)), 0));
8927   }
8928 
8929   return DAG.UpdateNodeOperands(Node, Ops);
8930 }
8931 
8932 /// Fold the instructions after selecting them.
8933 /// Returns null if users were already updated.
8934 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
8935                                           SelectionDAG &DAG) const {
8936   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8937   unsigned Opcode = Node->getMachineOpcode();
8938 
8939   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
8940       !TII->isGather4(Opcode)) {
8941     return adjustWritemask(Node, DAG);
8942   }
8943 
8944   if (Opcode == AMDGPU::INSERT_SUBREG ||
8945       Opcode == AMDGPU::REG_SEQUENCE) {
8946     legalizeTargetIndependentNode(Node, DAG);
8947     return Node;
8948   }
8949 
8950   switch (Opcode) {
8951   case AMDGPU::V_DIV_SCALE_F32:
8952   case AMDGPU::V_DIV_SCALE_F64: {
8953     // Satisfy the operand register constraint when one of the inputs is
8954     // undefined. Ordinarily each undef value will have its own implicit_def of
8955     // a vreg, so force these to use a single register.
8956     SDValue Src0 = Node->getOperand(0);
8957     SDValue Src1 = Node->getOperand(1);
8958     SDValue Src2 = Node->getOperand(2);
8959 
8960     if ((Src0.isMachineOpcode() &&
8961          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
8962         (Src0 == Src1 || Src0 == Src2))
8963       break;
8964 
8965     MVT VT = Src0.getValueType().getSimpleVT();
8966     const TargetRegisterClass *RC = getRegClassFor(VT);
8967 
8968     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
8969     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
8970 
8971     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
8972                                       UndefReg, Src0, SDValue());
8973 
8974     // src0 must be the same register as src1 or src2, even if the value is
8975     // undefined, so make sure we don't violate this constraint.
8976     if (Src0.isMachineOpcode() &&
8977         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
8978       if (Src1.isMachineOpcode() &&
8979           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
8980         Src0 = Src1;
8981       else if (Src2.isMachineOpcode() &&
8982                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
8983         Src0 = Src2;
8984       else {
8985         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
8986         Src0 = UndefReg;
8987         Src1 = UndefReg;
8988       }
8989     } else
8990       break;
8991 
8992     SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
8993     for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
8994       Ops.push_back(Node->getOperand(I));
8995 
8996     Ops.push_back(ImpDef.getValue(1));
8997     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
8998   }
8999   default:
9000     break;
9001   }
9002 
9003   return Node;
9004 }
9005 
9006 /// Assign the register class depending on the number of
9007 /// bits set in the writemask
9008 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9009                                                      SDNode *Node) const {
9010   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9011 
9012   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
9013 
9014   if (TII->isVOP3(MI.getOpcode())) {
9015     // Make sure constant bus requirements are respected.
9016     TII->legalizeOperandsVOP3(MRI, MI);
9017     return;
9018   }
9019 
9020   // Replace unused atomics with the no return version.
9021   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
9022   if (NoRetAtomicOp != -1) {
9023     if (!Node->hasAnyUseOfValue(0)) {
9024       MI.setDesc(TII->get(NoRetAtomicOp));
9025       MI.RemoveOperand(0);
9026       return;
9027     }
9028 
9029     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
9030     // instruction, because the return type of these instructions is a vec2 of
9031     // the memory type, so it can be tied to the input operand.
9032     // This means these instructions always have a use, so we need to add a
9033     // special case to check if the atomic has only one extract_subreg use,
9034     // which itself has no uses.
9035     if ((Node->hasNUsesOfValue(1, 0) &&
9036          Node->use_begin()->isMachineOpcode() &&
9037          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
9038          !Node->use_begin()->hasAnyUseOfValue(0))) {
9039       unsigned Def = MI.getOperand(0).getReg();
9040 
9041       // Change this into a noret atomic.
9042       MI.setDesc(TII->get(NoRetAtomicOp));
9043       MI.RemoveOperand(0);
9044 
9045       // If we only remove the def operand from the atomic instruction, the
9046       // extract_subreg will be left with a use of a vreg without a def.
9047       // So we need to insert an implicit_def to avoid machine verifier
9048       // errors.
9049       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
9050               TII->get(AMDGPU::IMPLICIT_DEF), Def);
9051     }
9052     return;
9053   }
9054 }
9055 
9056 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
9057                               uint64_t Val) {
9058   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
9059   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
9060 }
9061 
9062 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
9063                                                 const SDLoc &DL,
9064                                                 SDValue Ptr) const {
9065   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9066 
9067   // Build the half of the subregister with the constants before building the
9068   // full 128-bit register. If we are building multiple resource descriptors,
9069   // this will allow CSEing of the 2-component register.
9070   const SDValue Ops0[] = {
9071     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
9072     buildSMovImm32(DAG, DL, 0),
9073     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
9074     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
9075     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
9076   };
9077 
9078   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
9079                                                 MVT::v2i32, Ops0), 0);
9080 
9081   // Combine the constants and the pointer.
9082   const SDValue Ops1[] = {
9083     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
9084     Ptr,
9085     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
9086     SubRegHi,
9087     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
9088   };
9089 
9090   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
9091 }
9092 
9093 /// Return a resource descriptor with the 'Add TID' bit enabled
9094 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
9095 ///        of the resource descriptor) to create an offset, which is added to
9096 ///        the resource pointer.
9097 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
9098                                            SDValue Ptr, uint32_t RsrcDword1,
9099                                            uint64_t RsrcDword2And3) const {
9100   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
9101   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
9102   if (RsrcDword1) {
9103     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
9104                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
9105                     0);
9106   }
9107 
9108   SDValue DataLo = buildSMovImm32(DAG, DL,
9109                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
9110   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
9111 
9112   const SDValue Ops[] = {
9113     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
9114     PtrLo,
9115     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
9116     PtrHi,
9117     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
9118     DataLo,
9119     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
9120     DataHi,
9121     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
9122   };
9123 
9124   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
9125 }
9126 
9127 //===----------------------------------------------------------------------===//
9128 //                         SI Inline Assembly Support
9129 //===----------------------------------------------------------------------===//
9130 
9131 std::pair<unsigned, const TargetRegisterClass *>
9132 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
9133                                                StringRef Constraint,
9134                                                MVT VT) const {
9135   const TargetRegisterClass *RC = nullptr;
9136   if (Constraint.size() == 1) {
9137     switch (Constraint[0]) {
9138     default:
9139       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
9140     case 's':
9141     case 'r':
9142       switch (VT.getSizeInBits()) {
9143       default:
9144         return std::make_pair(0U, nullptr);
9145       case 32:
9146       case 16:
9147         RC = &AMDGPU::SReg_32_XM0RegClass;
9148         break;
9149       case 64:
9150         RC = &AMDGPU::SGPR_64RegClass;
9151         break;
9152       case 128:
9153         RC = &AMDGPU::SReg_128RegClass;
9154         break;
9155       case 256:
9156         RC = &AMDGPU::SReg_256RegClass;
9157         break;
9158       case 512:
9159         RC = &AMDGPU::SReg_512RegClass;
9160         break;
9161       }
9162       break;
9163     case 'v':
9164       switch (VT.getSizeInBits()) {
9165       default:
9166         return std::make_pair(0U, nullptr);
9167       case 32:
9168       case 16:
9169         RC = &AMDGPU::VGPR_32RegClass;
9170         break;
9171       case 64:
9172         RC = &AMDGPU::VReg_64RegClass;
9173         break;
9174       case 96:
9175         RC = &AMDGPU::VReg_96RegClass;
9176         break;
9177       case 128:
9178         RC = &AMDGPU::VReg_128RegClass;
9179         break;
9180       case 256:
9181         RC = &AMDGPU::VReg_256RegClass;
9182         break;
9183       case 512:
9184         RC = &AMDGPU::VReg_512RegClass;
9185         break;
9186       }
9187       break;
9188     }
9189     // We actually support i128, i16 and f16 as inline parameters
9190     // even if they are not reported as legal
9191     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
9192                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
9193       return std::make_pair(0U, RC);
9194   }
9195 
9196   if (Constraint.size() > 1) {
9197     if (Constraint[1] == 'v') {
9198       RC = &AMDGPU::VGPR_32RegClass;
9199     } else if (Constraint[1] == 's') {
9200       RC = &AMDGPU::SGPR_32RegClass;
9201     }
9202 
9203     if (RC) {
9204       uint32_t Idx;
9205       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
9206       if (!Failed && Idx < RC->getNumRegs())
9207         return std::make_pair(RC->getRegister(Idx), RC);
9208     }
9209   }
9210   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
9211 }
9212 
9213 SITargetLowering::ConstraintType
9214 SITargetLowering::getConstraintType(StringRef Constraint) const {
9215   if (Constraint.size() == 1) {
9216     switch (Constraint[0]) {
9217     default: break;
9218     case 's':
9219     case 'v':
9220       return C_RegisterClass;
9221     }
9222   }
9223   return TargetLowering::getConstraintType(Constraint);
9224 }
9225 
9226 // Figure out which registers should be reserved for stack access. Only after
9227 // the function is legalized do we know all of the non-spill stack objects or if
9228 // calls are present.
9229 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
9230   MachineRegisterInfo &MRI = MF.getRegInfo();
9231   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9232   const MachineFrameInfo &MFI = MF.getFrameInfo();
9233   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
9234 
9235   if (Info->isEntryFunction()) {
9236     // Callable functions have fixed registers used for stack access.
9237     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
9238   }
9239 
9240   // We have to assume the SP is needed in case there are calls in the function
9241   // during lowering. Calls are only detected after the function is
9242   // lowered. We're about to reserve registers, so don't bother using it if we
9243   // aren't really going to use it.
9244   bool NeedSP = !Info->isEntryFunction() ||
9245     MFI.hasVarSizedObjects() ||
9246     MFI.hasCalls();
9247 
9248   if (NeedSP) {
9249     unsigned ReservedStackPtrOffsetReg = TRI->reservedStackPtrOffsetReg(MF);
9250     Info->setStackPtrOffsetReg(ReservedStackPtrOffsetReg);
9251 
9252     assert(Info->getStackPtrOffsetReg() != Info->getFrameOffsetReg());
9253     assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
9254                                Info->getStackPtrOffsetReg()));
9255     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
9256   }
9257 
9258   MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
9259   MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
9260   MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
9261                      Info->getScratchWaveOffsetReg());
9262 
9263   Info->limitOccupancy(MF);
9264 
9265   TargetLoweringBase::finalizeLowering(MF);
9266 }
9267 
9268 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
9269                                                      KnownBits &Known,
9270                                                      const APInt &DemandedElts,
9271                                                      const SelectionDAG &DAG,
9272                                                      unsigned Depth) const {
9273   TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
9274                                                 DAG, Depth);
9275 
9276   if (getSubtarget()->enableHugePrivateBuffer())
9277     return;
9278 
9279   // Technically it may be possible to have a dispatch with a single workitem
9280   // that uses the full private memory size, but that's not really useful. We
9281   // can't use vaddr in MUBUF instructions if we don't know the address
9282   // calculation won't overflow, so assume the sign bit is never set.
9283   Known.Zero.setHighBits(AssumeFrameIndexHighZeroBits);
9284 }
9285 
9286 LLVM_ATTRIBUTE_UNUSED
9287 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
9288   assert(N->getOpcode() == ISD::CopyFromReg);
9289   do {
9290     // Follow the chain until we find an INLINEASM node.
9291     N = N->getOperand(0).getNode();
9292     if (N->getOpcode() == ISD::INLINEASM)
9293       return true;
9294   } while (N->getOpcode() == ISD::CopyFromReg);
9295   return false;
9296 }
9297 
9298 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
9299   FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const
9300 {
9301   switch (N->getOpcode()) {
9302     case ISD::CopyFromReg:
9303     {
9304       const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
9305       const MachineFunction * MF = FLI->MF;
9306       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
9307       const MachineRegisterInfo &MRI = MF->getRegInfo();
9308       const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo();
9309       unsigned Reg = R->getReg();
9310       if (TRI.isPhysicalRegister(Reg))
9311         return !TRI.isSGPRReg(MRI, Reg);
9312 
9313       if (MRI.isLiveIn(Reg)) {
9314         // workitem.id.x workitem.id.y workitem.id.z
9315         // Any VGPR formal argument is also considered divergent
9316         if (!TRI.isSGPRReg(MRI, Reg))
9317           return true;
9318         // Formal arguments of non-entry functions
9319         // are conservatively considered divergent
9320         else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv()))
9321           return true;
9322         return false;
9323       }
9324       const Value *V = FLI->getValueFromVirtualReg(Reg);
9325       if (V)
9326         return KDA->isDivergent(V);
9327       assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
9328       return !TRI.isSGPRReg(MRI, Reg);
9329     }
9330     break;
9331     case ISD::LOAD: {
9332       const LoadSDNode *L = cast<LoadSDNode>(N);
9333       unsigned AS = L->getAddressSpace();
9334       // A flat load may access private memory.
9335       return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
9336     } break;
9337     case ISD::CALLSEQ_END:
9338     return true;
9339     break;
9340     case ISD::INTRINSIC_WO_CHAIN:
9341     {
9342 
9343     }
9344       return AMDGPU::isIntrinsicSourceOfDivergence(
9345       cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
9346     case ISD::INTRINSIC_W_CHAIN:
9347       return AMDGPU::isIntrinsicSourceOfDivergence(
9348       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
9349     // In some cases intrinsics that are a source of divergence have been
9350     // lowered to AMDGPUISD so we also need to check those too.
9351     case AMDGPUISD::INTERP_MOV:
9352     case AMDGPUISD::INTERP_P1:
9353     case AMDGPUISD::INTERP_P2:
9354       return true;
9355   }
9356   return false;
9357 }
9358 
9359 bool SITargetLowering::denormalsEnabledForType(EVT VT) const {
9360   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
9361   case MVT::f32:
9362     return Subtarget->hasFP32Denormals();
9363   case MVT::f64:
9364     return Subtarget->hasFP64Denormals();
9365   case MVT::f16:
9366     return Subtarget->hasFP16Denormals();
9367   default:
9368     return false;
9369   }
9370 }
9371 
9372 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
9373                                                     const SelectionDAG &DAG,
9374                                                     bool SNaN,
9375                                                     unsigned Depth) const {
9376   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
9377     if (Subtarget->enableDX10Clamp())
9378       return true; // Clamped to 0.
9379     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
9380   }
9381 
9382   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
9383                                                             SNaN, Depth);
9384 }
9385