1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// Custom DAG lowering for SI 12 // 13 //===----------------------------------------------------------------------===// 14 15 #if defined(_MSC_VER) || defined(__MINGW32__) 16 // Provide M_PI. 17 #define _USE_MATH_DEFINES 18 #endif 19 20 #include "SIISelLowering.h" 21 #include "AMDGPU.h" 22 #include "AMDGPUIntrinsicInfo.h" 23 #include "AMDGPUSubtarget.h" 24 #include "AMDGPUTargetMachine.h" 25 #include "SIDefines.h" 26 #include "SIInstrInfo.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIRegisterInfo.h" 29 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 30 #include "Utils/AMDGPUBaseInfo.h" 31 #include "llvm/ADT/APFloat.h" 32 #include "llvm/ADT/APInt.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/ADT/StringRef.h" 38 #include "llvm/ADT/StringSwitch.h" 39 #include "llvm/ADT/Twine.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/CallingConvLower.h" 42 #include "llvm/CodeGen/DAGCombine.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/TargetCallingConv.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/DebugLoc.h" 61 #include "llvm/IR/DerivedTypes.h" 62 #include "llvm/IR/DiagnosticInfo.h" 63 #include "llvm/IR/Function.h" 64 #include "llvm/IR/GlobalValue.h" 65 #include "llvm/IR/InstrTypes.h" 66 #include "llvm/IR/Instruction.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/IntrinsicInst.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CodeGen.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/KnownBits.h" 76 #include "llvm/Support/MachineValueType.h" 77 #include "llvm/Support/MathExtras.h" 78 #include "llvm/Target/TargetOptions.h" 79 #include <cassert> 80 #include <cmath> 81 #include <cstdint> 82 #include <iterator> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "si-lower" 90 91 STATISTIC(NumTailCalls, "Number of tail calls"); 92 93 static cl::opt<bool> EnableVGPRIndexMode( 94 "amdgpu-vgpr-index-mode", 95 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), 96 cl::init(false)); 97 98 static cl::opt<unsigned> AssumeFrameIndexHighZeroBits( 99 "amdgpu-frame-index-zero-bits", 100 cl::desc("High bits of frame index assumed to be zero"), 101 cl::init(5), 102 cl::ReallyHidden); 103 104 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 105 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 106 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 107 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 108 return AMDGPU::SGPR0 + Reg; 109 } 110 } 111 llvm_unreachable("Cannot allocate sgpr"); 112 } 113 114 SITargetLowering::SITargetLowering(const TargetMachine &TM, 115 const GCNSubtarget &STI) 116 : AMDGPUTargetLowering(TM, STI), 117 Subtarget(&STI) { 118 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 119 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 120 121 addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass); 122 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 123 124 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); 125 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 126 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); 127 128 addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass); 129 addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass); 130 131 addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); 132 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); 133 134 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); 135 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); 136 137 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass); 138 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); 139 140 if (Subtarget->has16BitInsts()) { 141 addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass); 142 addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass); 143 144 // Unless there are also VOP3P operations, not operations are really legal. 145 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass); 146 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass); 147 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 148 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 149 } 150 151 computeRegisterProperties(Subtarget->getRegisterInfo()); 152 153 // We need to custom lower vector stores from local memory 154 setOperationAction(ISD::LOAD, MVT::v2i32, Custom); 155 setOperationAction(ISD::LOAD, MVT::v4i32, Custom); 156 setOperationAction(ISD::LOAD, MVT::v8i32, Custom); 157 setOperationAction(ISD::LOAD, MVT::v16i32, Custom); 158 setOperationAction(ISD::LOAD, MVT::i1, Custom); 159 setOperationAction(ISD::LOAD, MVT::v32i32, Custom); 160 161 setOperationAction(ISD::STORE, MVT::v2i32, Custom); 162 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 163 setOperationAction(ISD::STORE, MVT::v8i32, Custom); 164 setOperationAction(ISD::STORE, MVT::v16i32, Custom); 165 setOperationAction(ISD::STORE, MVT::i1, Custom); 166 setOperationAction(ISD::STORE, MVT::v32i32, Custom); 167 168 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 169 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 170 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 171 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 172 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 173 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 174 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 175 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 176 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 177 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 178 179 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 180 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 181 182 setOperationAction(ISD::SELECT, MVT::i1, Promote); 183 setOperationAction(ISD::SELECT, MVT::i64, Custom); 184 setOperationAction(ISD::SELECT, MVT::f64, Promote); 185 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 186 187 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 188 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 189 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 190 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 191 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); 192 193 setOperationAction(ISD::SETCC, MVT::i1, Promote); 194 setOperationAction(ISD::SETCC, MVT::v2i1, Expand); 195 setOperationAction(ISD::SETCC, MVT::v4i1, Expand); 196 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 197 198 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); 199 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); 200 201 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); 202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); 203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 204 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); 205 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 206 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); 207 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); 208 209 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 210 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); 211 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 212 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 213 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom); 214 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom); 215 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); 216 217 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom); 218 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom); 219 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 220 221 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 222 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); 223 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); 224 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom); 225 226 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 227 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 228 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 229 setOperationAction(ISD::BR_CC, MVT::i64, Expand); 230 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 231 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 232 233 setOperationAction(ISD::UADDO, MVT::i32, Legal); 234 setOperationAction(ISD::USUBO, MVT::i32, Legal); 235 236 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); 237 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); 238 239 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 240 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 241 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 242 243 #if 0 244 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); 245 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); 246 #endif 247 248 // We only support LOAD/STORE and vector manipulation ops for vectors 249 // with > 4 elements. 250 for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, 251 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, MVT::v32i32 }) { 252 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 253 switch (Op) { 254 case ISD::LOAD: 255 case ISD::STORE: 256 case ISD::BUILD_VECTOR: 257 case ISD::BITCAST: 258 case ISD::EXTRACT_VECTOR_ELT: 259 case ISD::INSERT_VECTOR_ELT: 260 case ISD::INSERT_SUBVECTOR: 261 case ISD::EXTRACT_SUBVECTOR: 262 case ISD::SCALAR_TO_VECTOR: 263 break; 264 case ISD::CONCAT_VECTORS: 265 setOperationAction(Op, VT, Custom); 266 break; 267 default: 268 setOperationAction(Op, VT, Expand); 269 break; 270 } 271 } 272 } 273 274 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 275 276 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 277 // is expanded to avoid having two separate loops in case the index is a VGPR. 278 279 // Most operations are naturally 32-bit vector operations. We only support 280 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 281 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 282 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 283 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 284 285 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 286 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 287 288 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 289 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 290 291 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 292 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 293 } 294 295 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); 296 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); 297 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); 298 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); 299 300 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom); 301 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); 302 303 // Avoid stack access for these. 304 // TODO: Generalize to more vector types. 305 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); 306 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); 307 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 308 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 309 310 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 311 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 312 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom); 313 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); 314 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom); 315 316 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom); 317 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); 318 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom); 319 320 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom); 321 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom); 322 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 323 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 324 325 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 326 // and output demarshalling 327 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 328 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); 329 330 // We can't return success/failure, only the old value, 331 // let LLVM add the comparison 332 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); 333 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); 334 335 if (Subtarget->hasFlatAddressSpace()) { 336 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); 337 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); 338 } 339 340 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 341 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 342 343 // On SI this is s_memtime and s_memrealtime on VI. 344 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 345 setOperationAction(ISD::TRAP, MVT::Other, Custom); 346 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); 347 348 if (Subtarget->has16BitInsts()) { 349 setOperationAction(ISD::FLOG, MVT::f16, Custom); 350 setOperationAction(ISD::FEXP, MVT::f16, Custom); 351 setOperationAction(ISD::FLOG10, MVT::f16, Custom); 352 } 353 354 // v_mad_f32 does not support denormals according to some sources. 355 if (!Subtarget->hasFP32Denormals()) 356 setOperationAction(ISD::FMAD, MVT::f32, Legal); 357 358 if (!Subtarget->hasBFI()) { 359 // fcopysign can be done in a single instruction with BFI. 360 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 361 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 362 } 363 364 if (!Subtarget->hasBCNT(32)) 365 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 366 367 if (!Subtarget->hasBCNT(64)) 368 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 369 370 if (Subtarget->hasFFBH()) 371 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 372 373 if (Subtarget->hasFFBL()) 374 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 375 376 // We only really have 32-bit BFE instructions (and 16-bit on VI). 377 // 378 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 379 // effort to match them now. We want this to be false for i64 cases when the 380 // extraction isn't restricted to the upper or lower half. Ideally we would 381 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 382 // span the midpoint are probably relatively rare, so don't worry about them 383 // for now. 384 if (Subtarget->hasBFE()) 385 setHasExtractBitsInsn(true); 386 387 setOperationAction(ISD::FMINNUM, MVT::f32, Custom); 388 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom); 389 setOperationAction(ISD::FMINNUM, MVT::f64, Custom); 390 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom); 391 392 393 // These are really only legal for ieee_mode functions. We should be avoiding 394 // them for functions that don't have ieee_mode enabled, so just say they are 395 // legal. 396 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 397 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 398 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 399 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 400 401 402 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { 403 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 404 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 405 setOperationAction(ISD::FRINT, MVT::f64, Legal); 406 } else { 407 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 408 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 409 setOperationAction(ISD::FRINT, MVT::f64, Custom); 410 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 411 } 412 413 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 414 415 setOperationAction(ISD::FSIN, MVT::f32, Custom); 416 setOperationAction(ISD::FCOS, MVT::f32, Custom); 417 setOperationAction(ISD::FDIV, MVT::f32, Custom); 418 setOperationAction(ISD::FDIV, MVT::f64, Custom); 419 420 if (Subtarget->has16BitInsts()) { 421 setOperationAction(ISD::Constant, MVT::i16, Legal); 422 423 setOperationAction(ISD::SMIN, MVT::i16, Legal); 424 setOperationAction(ISD::SMAX, MVT::i16, Legal); 425 426 setOperationAction(ISD::UMIN, MVT::i16, Legal); 427 setOperationAction(ISD::UMAX, MVT::i16, Legal); 428 429 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); 430 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 431 432 setOperationAction(ISD::ROTR, MVT::i16, Promote); 433 setOperationAction(ISD::ROTL, MVT::i16, Promote); 434 435 setOperationAction(ISD::SDIV, MVT::i16, Promote); 436 setOperationAction(ISD::UDIV, MVT::i16, Promote); 437 setOperationAction(ISD::SREM, MVT::i16, Promote); 438 setOperationAction(ISD::UREM, MVT::i16, Promote); 439 440 setOperationAction(ISD::BSWAP, MVT::i16, Promote); 441 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); 442 443 setOperationAction(ISD::CTTZ, MVT::i16, Promote); 444 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); 445 setOperationAction(ISD::CTLZ, MVT::i16, Promote); 446 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); 447 setOperationAction(ISD::CTPOP, MVT::i16, Promote); 448 449 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); 450 451 setOperationAction(ISD::BR_CC, MVT::i16, Expand); 452 453 setOperationAction(ISD::LOAD, MVT::i16, Custom); 454 455 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 456 457 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 458 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 459 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 460 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 461 462 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); 463 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); 464 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); 465 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); 466 467 // F16 - Constant Actions. 468 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 469 470 // F16 - Load/Store Actions. 471 setOperationAction(ISD::LOAD, MVT::f16, Promote); 472 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 473 setOperationAction(ISD::STORE, MVT::f16, Promote); 474 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 475 476 // F16 - VOP1 Actions. 477 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); 478 setOperationAction(ISD::FCOS, MVT::f16, Promote); 479 setOperationAction(ISD::FSIN, MVT::f16, Promote); 480 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); 481 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); 482 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); 483 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); 484 setOperationAction(ISD::FROUND, MVT::f16, Custom); 485 486 // F16 - VOP2 Actions. 487 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 488 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 489 490 setOperationAction(ISD::FDIV, MVT::f16, Custom); 491 492 // F16 - VOP3 Actions. 493 setOperationAction(ISD::FMA, MVT::f16, Legal); 494 if (!Subtarget->hasFP16Denormals()) 495 setOperationAction(ISD::FMAD, MVT::f16, Legal); 496 497 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) { 498 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 499 switch (Op) { 500 case ISD::LOAD: 501 case ISD::STORE: 502 case ISD::BUILD_VECTOR: 503 case ISD::BITCAST: 504 case ISD::EXTRACT_VECTOR_ELT: 505 case ISD::INSERT_VECTOR_ELT: 506 case ISD::INSERT_SUBVECTOR: 507 case ISD::EXTRACT_SUBVECTOR: 508 case ISD::SCALAR_TO_VECTOR: 509 break; 510 case ISD::CONCAT_VECTORS: 511 setOperationAction(Op, VT, Custom); 512 break; 513 default: 514 setOperationAction(Op, VT, Expand); 515 break; 516 } 517 } 518 } 519 520 // XXX - Do these do anything? Vector constants turn into build_vector. 521 setOperationAction(ISD::Constant, MVT::v2i16, Legal); 522 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); 523 524 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal); 525 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal); 526 527 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 528 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 529 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 530 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 531 532 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 533 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 534 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 535 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 536 537 setOperationAction(ISD::AND, MVT::v2i16, Promote); 538 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 539 setOperationAction(ISD::OR, MVT::v2i16, Promote); 540 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 541 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 542 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 543 544 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 545 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 546 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 547 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 548 549 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 550 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 551 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 552 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 553 554 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); 555 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); 556 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); 557 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 558 559 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand); 560 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand); 561 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand); 562 563 if (!Subtarget->hasVOP3PInsts()) { 564 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); 565 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); 566 } 567 568 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 569 // This isn't really legal, but this avoids the legalizer unrolling it (and 570 // allows matching fneg (fabs x) patterns) 571 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 572 573 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom); 574 setOperationAction(ISD::FMINNUM, MVT::f16, Custom); 575 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal); 576 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal); 577 578 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom); 579 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom); 580 581 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand); 582 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand); 583 } 584 585 if (Subtarget->hasVOP3PInsts()) { 586 setOperationAction(ISD::ADD, MVT::v2i16, Legal); 587 setOperationAction(ISD::SUB, MVT::v2i16, Legal); 588 setOperationAction(ISD::MUL, MVT::v2i16, Legal); 589 setOperationAction(ISD::SHL, MVT::v2i16, Legal); 590 setOperationAction(ISD::SRL, MVT::v2i16, Legal); 591 setOperationAction(ISD::SRA, MVT::v2i16, Legal); 592 setOperationAction(ISD::SMIN, MVT::v2i16, Legal); 593 setOperationAction(ISD::UMIN, MVT::v2i16, Legal); 594 setOperationAction(ISD::SMAX, MVT::v2i16, Legal); 595 setOperationAction(ISD::UMAX, MVT::v2i16, Legal); 596 597 setOperationAction(ISD::FADD, MVT::v2f16, Legal); 598 setOperationAction(ISD::FMUL, MVT::v2f16, Legal); 599 setOperationAction(ISD::FMA, MVT::v2f16, Legal); 600 601 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal); 602 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal); 603 604 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal); 605 606 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 607 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 608 609 setOperationAction(ISD::SHL, MVT::v4i16, Custom); 610 setOperationAction(ISD::SRA, MVT::v4i16, Custom); 611 setOperationAction(ISD::SRL, MVT::v4i16, Custom); 612 setOperationAction(ISD::ADD, MVT::v4i16, Custom); 613 setOperationAction(ISD::SUB, MVT::v4i16, Custom); 614 setOperationAction(ISD::MUL, MVT::v4i16, Custom); 615 616 setOperationAction(ISD::SMIN, MVT::v4i16, Custom); 617 setOperationAction(ISD::SMAX, MVT::v4i16, Custom); 618 setOperationAction(ISD::UMIN, MVT::v4i16, Custom); 619 setOperationAction(ISD::UMAX, MVT::v4i16, Custom); 620 621 setOperationAction(ISD::FADD, MVT::v4f16, Custom); 622 setOperationAction(ISD::FMUL, MVT::v4f16, Custom); 623 624 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom); 625 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom); 626 627 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom); 628 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom); 629 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom); 630 631 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 632 setOperationAction(ISD::SELECT, MVT::v4i16, Custom); 633 setOperationAction(ISD::SELECT, MVT::v4f16, Custom); 634 } 635 636 setOperationAction(ISD::FNEG, MVT::v4f16, Custom); 637 setOperationAction(ISD::FABS, MVT::v4f16, Custom); 638 639 if (Subtarget->has16BitInsts()) { 640 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 641 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 642 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 643 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 644 } else { 645 // Legalization hack. 646 setOperationAction(ISD::SELECT, MVT::v2i16, Custom); 647 setOperationAction(ISD::SELECT, MVT::v2f16, Custom); 648 649 setOperationAction(ISD::FNEG, MVT::v2f16, Custom); 650 setOperationAction(ISD::FABS, MVT::v2f16, Custom); 651 } 652 653 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) { 654 setOperationAction(ISD::SELECT, VT, Custom); 655 } 656 657 setTargetDAGCombine(ISD::ADD); 658 setTargetDAGCombine(ISD::ADDCARRY); 659 setTargetDAGCombine(ISD::SUB); 660 setTargetDAGCombine(ISD::SUBCARRY); 661 setTargetDAGCombine(ISD::FADD); 662 setTargetDAGCombine(ISD::FSUB); 663 setTargetDAGCombine(ISD::FMINNUM); 664 setTargetDAGCombine(ISD::FMAXNUM); 665 setTargetDAGCombine(ISD::FMINNUM_IEEE); 666 setTargetDAGCombine(ISD::FMAXNUM_IEEE); 667 setTargetDAGCombine(ISD::FMA); 668 setTargetDAGCombine(ISD::SMIN); 669 setTargetDAGCombine(ISD::SMAX); 670 setTargetDAGCombine(ISD::UMIN); 671 setTargetDAGCombine(ISD::UMAX); 672 setTargetDAGCombine(ISD::SETCC); 673 setTargetDAGCombine(ISD::AND); 674 setTargetDAGCombine(ISD::OR); 675 setTargetDAGCombine(ISD::XOR); 676 setTargetDAGCombine(ISD::SINT_TO_FP); 677 setTargetDAGCombine(ISD::UINT_TO_FP); 678 setTargetDAGCombine(ISD::FCANONICALIZE); 679 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); 680 setTargetDAGCombine(ISD::ZERO_EXTEND); 681 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 682 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 683 684 // All memory operations. Some folding on the pointer operand is done to help 685 // matching the constant offsets in the addressing modes. 686 setTargetDAGCombine(ISD::LOAD); 687 setTargetDAGCombine(ISD::STORE); 688 setTargetDAGCombine(ISD::ATOMIC_LOAD); 689 setTargetDAGCombine(ISD::ATOMIC_STORE); 690 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); 691 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 692 setTargetDAGCombine(ISD::ATOMIC_SWAP); 693 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); 694 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); 695 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); 696 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); 697 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); 698 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); 699 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); 700 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); 701 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); 702 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); 703 704 setSchedulingPreference(Sched::RegPressure); 705 706 // SI at least has hardware support for floating point exceptions, but no way 707 // of using or handling them is implemented. They are also optional in OpenCL 708 // (Section 7.3) 709 setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); 710 } 711 712 const GCNSubtarget *SITargetLowering::getSubtarget() const { 713 return Subtarget; 714 } 715 716 //===----------------------------------------------------------------------===// 717 // TargetLowering queries 718 //===----------------------------------------------------------------------===// 719 720 // v_mad_mix* support a conversion from f16 to f32. 721 // 722 // There is only one special case when denormals are enabled we don't currently, 723 // where this is OK to use. 724 bool SITargetLowering::isFPExtFoldable(unsigned Opcode, 725 EVT DestVT, EVT SrcVT) const { 726 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 727 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 728 DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() && 729 SrcVT.getScalarType() == MVT::f16; 730 } 731 732 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 733 // SI has some legal vector types, but no legal vector operations. Say no 734 // shuffles are legal in order to prefer scalarizing some vector operations. 735 return false; 736 } 737 738 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 739 CallingConv::ID CC, 740 EVT VT) const { 741 // TODO: Consider splitting all arguments into 32-bit pieces. 742 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 743 EVT ScalarVT = VT.getScalarType(); 744 unsigned Size = ScalarVT.getSizeInBits(); 745 if (Size == 32) 746 return ScalarVT.getSimpleVT(); 747 748 if (Size == 64) 749 return MVT::i32; 750 751 if (Size == 16 && Subtarget->has16BitInsts()) 752 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 753 } 754 755 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 756 } 757 758 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 759 CallingConv::ID CC, 760 EVT VT) const { 761 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 762 unsigned NumElts = VT.getVectorNumElements(); 763 EVT ScalarVT = VT.getScalarType(); 764 unsigned Size = ScalarVT.getSizeInBits(); 765 766 if (Size == 32) 767 return NumElts; 768 769 if (Size == 64) 770 return 2 * NumElts; 771 772 if (Size == 16 && Subtarget->has16BitInsts()) 773 return (VT.getVectorNumElements() + 1) / 2; 774 } 775 776 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 777 } 778 779 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 780 LLVMContext &Context, CallingConv::ID CC, 781 EVT VT, EVT &IntermediateVT, 782 unsigned &NumIntermediates, MVT &RegisterVT) const { 783 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 784 unsigned NumElts = VT.getVectorNumElements(); 785 EVT ScalarVT = VT.getScalarType(); 786 unsigned Size = ScalarVT.getSizeInBits(); 787 if (Size == 32) { 788 RegisterVT = ScalarVT.getSimpleVT(); 789 IntermediateVT = RegisterVT; 790 NumIntermediates = NumElts; 791 return NumIntermediates; 792 } 793 794 if (Size == 64) { 795 RegisterVT = MVT::i32; 796 IntermediateVT = RegisterVT; 797 NumIntermediates = 2 * NumElts; 798 return NumIntermediates; 799 } 800 801 // FIXME: We should fix the ABI to be the same on targets without 16-bit 802 // support, but unless we can properly handle 3-vectors, it will be still be 803 // inconsistent. 804 if (Size == 16 && Subtarget->has16BitInsts()) { 805 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 806 IntermediateVT = RegisterVT; 807 NumIntermediates = (NumElts + 1) / 2; 808 return NumIntermediates; 809 } 810 } 811 812 return TargetLowering::getVectorTypeBreakdownForCallingConv( 813 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 814 } 815 816 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 817 const CallInst &CI, 818 MachineFunction &MF, 819 unsigned IntrID) const { 820 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 821 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 822 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 823 (Intrinsic::ID)IntrID); 824 if (Attr.hasFnAttribute(Attribute::ReadNone)) 825 return false; 826 827 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 828 829 if (RsrcIntr->IsImage) { 830 Info.ptrVal = MFI->getImagePSV( 831 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 832 CI.getArgOperand(RsrcIntr->RsrcArg)); 833 Info.align = 0; 834 } else { 835 Info.ptrVal = MFI->getBufferPSV( 836 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), 837 CI.getArgOperand(RsrcIntr->RsrcArg)); 838 } 839 840 Info.flags = MachineMemOperand::MODereferenceable; 841 if (Attr.hasFnAttribute(Attribute::ReadOnly)) { 842 Info.opc = ISD::INTRINSIC_W_CHAIN; 843 Info.memVT = MVT::getVT(CI.getType()); 844 Info.flags |= MachineMemOperand::MOLoad; 845 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) { 846 Info.opc = ISD::INTRINSIC_VOID; 847 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); 848 Info.flags |= MachineMemOperand::MOStore; 849 } else { 850 // Atomic 851 Info.opc = ISD::INTRINSIC_W_CHAIN; 852 Info.memVT = MVT::getVT(CI.getType()); 853 Info.flags = MachineMemOperand::MOLoad | 854 MachineMemOperand::MOStore | 855 MachineMemOperand::MODereferenceable; 856 857 // XXX - Should this be volatile without known ordering? 858 Info.flags |= MachineMemOperand::MOVolatile; 859 } 860 return true; 861 } 862 863 switch (IntrID) { 864 case Intrinsic::amdgcn_atomic_inc: 865 case Intrinsic::amdgcn_atomic_dec: 866 case Intrinsic::amdgcn_ds_fadd: 867 case Intrinsic::amdgcn_ds_fmin: 868 case Intrinsic::amdgcn_ds_fmax: { 869 Info.opc = ISD::INTRINSIC_W_CHAIN; 870 Info.memVT = MVT::getVT(CI.getType()); 871 Info.ptrVal = CI.getOperand(0); 872 Info.align = 0; 873 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 874 875 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 876 if (!Vol || !Vol->isZero()) 877 Info.flags |= MachineMemOperand::MOVolatile; 878 879 return true; 880 } 881 882 default: 883 return false; 884 } 885 } 886 887 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 888 SmallVectorImpl<Value*> &Ops, 889 Type *&AccessTy) const { 890 switch (II->getIntrinsicID()) { 891 case Intrinsic::amdgcn_atomic_inc: 892 case Intrinsic::amdgcn_atomic_dec: 893 case Intrinsic::amdgcn_ds_fadd: 894 case Intrinsic::amdgcn_ds_fmin: 895 case Intrinsic::amdgcn_ds_fmax: { 896 Value *Ptr = II->getArgOperand(0); 897 AccessTy = II->getType(); 898 Ops.push_back(Ptr); 899 return true; 900 } 901 default: 902 return false; 903 } 904 } 905 906 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 907 if (!Subtarget->hasFlatInstOffsets()) { 908 // Flat instructions do not have offsets, and only have the register 909 // address. 910 return AM.BaseOffs == 0 && AM.Scale == 0; 911 } 912 913 // GFX9 added a 13-bit signed offset. When using regular flat instructions, 914 // the sign bit is ignored and is treated as a 12-bit unsigned offset. 915 916 // Just r + i 917 return isUInt<12>(AM.BaseOffs) && AM.Scale == 0; 918 } 919 920 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 921 if (Subtarget->hasFlatGlobalInsts()) 922 return isInt<13>(AM.BaseOffs) && AM.Scale == 0; 923 924 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 925 // Assume the we will use FLAT for all global memory accesses 926 // on VI. 927 // FIXME: This assumption is currently wrong. On VI we still use 928 // MUBUF instructions for the r + i addressing mode. As currently 929 // implemented, the MUBUF instructions only work on buffer < 4GB. 930 // It may be possible to support > 4GB buffers with MUBUF instructions, 931 // by setting the stride value in the resource descriptor which would 932 // increase the size limit to (stride * 4GB). However, this is risky, 933 // because it has never been validated. 934 return isLegalFlatAddressingMode(AM); 935 } 936 937 return isLegalMUBUFAddressingMode(AM); 938 } 939 940 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 941 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 942 // additionally can do r + r + i with addr64. 32-bit has more addressing 943 // mode options. Depending on the resource constant, it can also do 944 // (i64 r0) + (i32 r1) * (i14 i). 945 // 946 // Private arrays end up using a scratch buffer most of the time, so also 947 // assume those use MUBUF instructions. Scratch loads / stores are currently 948 // implemented as mubuf instructions with offen bit set, so slightly 949 // different than the normal addr64. 950 if (!isUInt<12>(AM.BaseOffs)) 951 return false; 952 953 // FIXME: Since we can split immediate into soffset and immediate offset, 954 // would it make sense to allow any immediate? 955 956 switch (AM.Scale) { 957 case 0: // r + i or just i, depending on HasBaseReg. 958 return true; 959 case 1: 960 return true; // We have r + r or r + i. 961 case 2: 962 if (AM.HasBaseReg) { 963 // Reject 2 * r + r. 964 return false; 965 } 966 967 // Allow 2 * r as r + r 968 // Or 2 * r + i is allowed as r + r + i. 969 return true; 970 default: // Don't allow n * r 971 return false; 972 } 973 } 974 975 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 976 const AddrMode &AM, Type *Ty, 977 unsigned AS, Instruction *I) const { 978 // No global is ever allowed as a base. 979 if (AM.BaseGV) 980 return false; 981 982 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 983 return isLegalGlobalAddressingMode(AM); 984 985 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 986 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 987 // If the offset isn't a multiple of 4, it probably isn't going to be 988 // correctly aligned. 989 // FIXME: Can we get the real alignment here? 990 if (AM.BaseOffs % 4 != 0) 991 return isLegalMUBUFAddressingMode(AM); 992 993 // There are no SMRD extloads, so if we have to do a small type access we 994 // will use a MUBUF load. 995 // FIXME?: We also need to do this if unaligned, but we don't know the 996 // alignment here. 997 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 998 return isLegalGlobalAddressingMode(AM); 999 1000 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1001 // SMRD instructions have an 8-bit, dword offset on SI. 1002 if (!isUInt<8>(AM.BaseOffs / 4)) 1003 return false; 1004 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1005 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1006 // in 8-bits, it can use a smaller encoding. 1007 if (!isUInt<32>(AM.BaseOffs / 4)) 1008 return false; 1009 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 1010 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1011 if (!isUInt<20>(AM.BaseOffs)) 1012 return false; 1013 } else 1014 llvm_unreachable("unhandled generation"); 1015 1016 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1017 return true; 1018 1019 if (AM.Scale == 1 && AM.HasBaseReg) 1020 return true; 1021 1022 return false; 1023 1024 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1025 return isLegalMUBUFAddressingMode(AM); 1026 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 1027 AS == AMDGPUAS::REGION_ADDRESS) { 1028 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1029 // field. 1030 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1031 // an 8-bit dword offset but we don't know the alignment here. 1032 if (!isUInt<16>(AM.BaseOffs)) 1033 return false; 1034 1035 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1036 return true; 1037 1038 if (AM.Scale == 1 && AM.HasBaseReg) 1039 return true; 1040 1041 return false; 1042 } else if (AS == AMDGPUAS::FLAT_ADDRESS || 1043 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1044 // For an unknown address space, this usually means that this is for some 1045 // reason being used for pure arithmetic, and not based on some addressing 1046 // computation. We don't have instructions that compute pointers with any 1047 // addressing modes, so treat them as having no offset like flat 1048 // instructions. 1049 return isLegalFlatAddressingMode(AM); 1050 } else { 1051 llvm_unreachable("unhandled address space"); 1052 } 1053 } 1054 1055 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1056 const SelectionDAG &DAG) const { 1057 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1058 return (MemVT.getSizeInBits() <= 4 * 32); 1059 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1060 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1061 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1062 } else if (AS == AMDGPUAS::LOCAL_ADDRESS) { 1063 return (MemVT.getSizeInBits() <= 2 * 32); 1064 } 1065 return true; 1066 } 1067 1068 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 1069 unsigned AddrSpace, 1070 unsigned Align, 1071 bool *IsFast) const { 1072 if (IsFast) 1073 *IsFast = false; 1074 1075 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, 1076 // which isn't a simple VT. 1077 // Until MVT is extended to handle this, simply check for the size and 1078 // rely on the condition below: allow accesses if the size is a multiple of 4. 1079 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && 1080 VT.getStoreSize() > 16)) { 1081 return false; 1082 } 1083 1084 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1085 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1086 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte 1087 // aligned, 8 byte access in a single operation using ds_read2/write2_b32 1088 // with adjacent offsets. 1089 bool AlignedBy4 = (Align % 4 == 0); 1090 if (IsFast) 1091 *IsFast = AlignedBy4; 1092 1093 return AlignedBy4; 1094 } 1095 1096 // FIXME: We have to be conservative here and assume that flat operations 1097 // will access scratch. If we had access to the IR function, then we 1098 // could determine if any private memory was used in the function. 1099 if (!Subtarget->hasUnalignedScratchAccess() && 1100 (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 1101 AddrSpace == AMDGPUAS::FLAT_ADDRESS)) { 1102 bool AlignedBy4 = Align >= 4; 1103 if (IsFast) 1104 *IsFast = AlignedBy4; 1105 1106 return AlignedBy4; 1107 } 1108 1109 if (Subtarget->hasUnalignedBufferAccess()) { 1110 // If we have an uniform constant load, it still requires using a slow 1111 // buffer instruction if unaligned. 1112 if (IsFast) { 1113 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 1114 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? 1115 (Align % 4 == 0) : true; 1116 } 1117 1118 return true; 1119 } 1120 1121 // Smaller than dword value must be aligned. 1122 if (VT.bitsLT(MVT::i32)) 1123 return false; 1124 1125 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1126 // byte-address are ignored, thus forcing Dword alignment. 1127 // This applies to private, global, and constant memory. 1128 if (IsFast) 1129 *IsFast = true; 1130 1131 return VT.bitsGT(MVT::i32) && Align % 4 == 0; 1132 } 1133 1134 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, 1135 unsigned SrcAlign, bool IsMemset, 1136 bool ZeroMemset, 1137 bool MemcpyStrSrc, 1138 MachineFunction &MF) const { 1139 // FIXME: Should account for address space here. 1140 1141 // The default fallback uses the private pointer size as a guess for a type to 1142 // use. Make sure we switch these to 64-bit accesses. 1143 1144 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global 1145 return MVT::v4i32; 1146 1147 if (Size >= 8 && DstAlign >= 4) 1148 return MVT::v2i32; 1149 1150 // Use the default. 1151 return MVT::Other; 1152 } 1153 1154 static bool isFlatGlobalAddrSpace(unsigned AS) { 1155 return AS == AMDGPUAS::GLOBAL_ADDRESS || 1156 AS == AMDGPUAS::FLAT_ADDRESS || 1157 AS == AMDGPUAS::CONSTANT_ADDRESS; 1158 } 1159 1160 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, 1161 unsigned DestAS) const { 1162 return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS); 1163 } 1164 1165 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1166 const MemSDNode *MemNode = cast<MemSDNode>(N); 1167 const Value *Ptr = MemNode->getMemOperand()->getValue(); 1168 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr); 1169 return I && I->getMetadata("amdgpu.noclobber"); 1170 } 1171 1172 bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS, 1173 unsigned DestAS) const { 1174 // Flat -> private/local is a simple truncate. 1175 // Flat -> global is no-op 1176 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1177 return true; 1178 1179 return isNoopAddrSpaceCast(SrcAS, DestAS); 1180 } 1181 1182 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1183 const MemSDNode *MemNode = cast<MemSDNode>(N); 1184 1185 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1186 } 1187 1188 TargetLoweringBase::LegalizeTypeAction 1189 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1190 if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) 1191 return TypeSplitVector; 1192 1193 return TargetLoweringBase::getPreferredVectorAction(VT); 1194 } 1195 1196 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1197 Type *Ty) const { 1198 // FIXME: Could be smarter if called for vector constants. 1199 return true; 1200 } 1201 1202 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1203 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1204 switch (Op) { 1205 case ISD::LOAD: 1206 case ISD::STORE: 1207 1208 // These operations are done with 32-bit instructions anyway. 1209 case ISD::AND: 1210 case ISD::OR: 1211 case ISD::XOR: 1212 case ISD::SELECT: 1213 // TODO: Extensions? 1214 return true; 1215 default: 1216 return false; 1217 } 1218 } 1219 1220 // SimplifySetCC uses this function to determine whether or not it should 1221 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1222 if (VT == MVT::i1 && Op == ISD::SETCC) 1223 return false; 1224 1225 return TargetLowering::isTypeDesirableForOp(Op, VT); 1226 } 1227 1228 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1229 const SDLoc &SL, 1230 SDValue Chain, 1231 uint64_t Offset) const { 1232 const DataLayout &DL = DAG.getDataLayout(); 1233 MachineFunction &MF = DAG.getMachineFunction(); 1234 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1235 1236 const ArgDescriptor *InputPtrReg; 1237 const TargetRegisterClass *RC; 1238 1239 std::tie(InputPtrReg, RC) 1240 = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1241 1242 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1243 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1244 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1245 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1246 1247 return DAG.getObjectPtrOffset(SL, BasePtr, Offset); 1248 } 1249 1250 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1251 const SDLoc &SL) const { 1252 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1253 FIRST_IMPLICIT); 1254 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1255 } 1256 1257 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1258 const SDLoc &SL, SDValue Val, 1259 bool Signed, 1260 const ISD::InputArg *Arg) const { 1261 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1262 VT.bitsLT(MemVT)) { 1263 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1264 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1265 } 1266 1267 if (MemVT.isFloatingPoint()) 1268 Val = getFPExtOrFPTrunc(DAG, Val, SL, VT); 1269 else if (Signed) 1270 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1271 else 1272 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1273 1274 return Val; 1275 } 1276 1277 SDValue SITargetLowering::lowerKernargMemParameter( 1278 SelectionDAG &DAG, EVT VT, EVT MemVT, 1279 const SDLoc &SL, SDValue Chain, 1280 uint64_t Offset, unsigned Align, bool Signed, 1281 const ISD::InputArg *Arg) const { 1282 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 1283 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 1284 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); 1285 1286 // Try to avoid using an extload by loading earlier than the argument address, 1287 // and extracting the relevant bits. The load should hopefully be merged with 1288 // the previous argument. 1289 if (MemVT.getStoreSize() < 4 && Align < 4) { 1290 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1291 int64_t AlignDownOffset = alignDown(Offset, 4); 1292 int64_t OffsetDiff = Offset - AlignDownOffset; 1293 1294 EVT IntVT = MemVT.changeTypeToInteger(); 1295 1296 // TODO: If we passed in the base kernel offset we could have a better 1297 // alignment than 4, but we don't really need it. 1298 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1299 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4, 1300 MachineMemOperand::MODereferenceable | 1301 MachineMemOperand::MOInvariant); 1302 1303 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1304 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1305 1306 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1307 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1308 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1309 1310 1311 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1312 } 1313 1314 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 1315 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align, 1316 MachineMemOperand::MODereferenceable | 1317 MachineMemOperand::MOInvariant); 1318 1319 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 1320 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 1321 } 1322 1323 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 1324 const SDLoc &SL, SDValue Chain, 1325 const ISD::InputArg &Arg) const { 1326 MachineFunction &MF = DAG.getMachineFunction(); 1327 MachineFrameInfo &MFI = MF.getFrameInfo(); 1328 1329 if (Arg.Flags.isByVal()) { 1330 unsigned Size = Arg.Flags.getByValSize(); 1331 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 1332 return DAG.getFrameIndex(FrameIdx, MVT::i32); 1333 } 1334 1335 unsigned ArgOffset = VA.getLocMemOffset(); 1336 unsigned ArgSize = VA.getValVT().getStoreSize(); 1337 1338 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 1339 1340 // Create load nodes to retrieve arguments from the stack. 1341 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1342 SDValue ArgValue; 1343 1344 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 1345 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 1346 MVT MemVT = VA.getValVT(); 1347 1348 switch (VA.getLocInfo()) { 1349 default: 1350 break; 1351 case CCValAssign::BCvt: 1352 MemVT = VA.getLocVT(); 1353 break; 1354 case CCValAssign::SExt: 1355 ExtType = ISD::SEXTLOAD; 1356 break; 1357 case CCValAssign::ZExt: 1358 ExtType = ISD::ZEXTLOAD; 1359 break; 1360 case CCValAssign::AExt: 1361 ExtType = ISD::EXTLOAD; 1362 break; 1363 } 1364 1365 ArgValue = DAG.getExtLoad( 1366 ExtType, SL, VA.getLocVT(), Chain, FIN, 1367 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 1368 MemVT); 1369 return ArgValue; 1370 } 1371 1372 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 1373 const SIMachineFunctionInfo &MFI, 1374 EVT VT, 1375 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 1376 const ArgDescriptor *Reg; 1377 const TargetRegisterClass *RC; 1378 1379 std::tie(Reg, RC) = MFI.getPreloadedValue(PVID); 1380 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); 1381 } 1382 1383 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 1384 CallingConv::ID CallConv, 1385 ArrayRef<ISD::InputArg> Ins, 1386 BitVector &Skipped, 1387 FunctionType *FType, 1388 SIMachineFunctionInfo *Info) { 1389 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 1390 const ISD::InputArg *Arg = &Ins[I]; 1391 1392 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 1393 "vector type argument should have been split"); 1394 1395 // First check if it's a PS input addr. 1396 if (CallConv == CallingConv::AMDGPU_PS && 1397 !Arg->Flags.isInReg() && !Arg->Flags.isByVal() && PSInputNum <= 15) { 1398 1399 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 1400 1401 // Inconveniently only the first part of the split is marked as isSplit, 1402 // so skip to the end. We only want to increment PSInputNum once for the 1403 // entire split argument. 1404 if (Arg->Flags.isSplit()) { 1405 while (!Arg->Flags.isSplitEnd()) { 1406 assert(!Arg->VT.isVector() && 1407 "unexpected vector split in ps argument type"); 1408 if (!SkipArg) 1409 Splits.push_back(*Arg); 1410 Arg = &Ins[++I]; 1411 } 1412 } 1413 1414 if (SkipArg) { 1415 // We can safely skip PS inputs. 1416 Skipped.set(Arg->getOrigArgIndex()); 1417 ++PSInputNum; 1418 continue; 1419 } 1420 1421 Info->markPSInputAllocated(PSInputNum); 1422 if (Arg->Used) 1423 Info->markPSInputEnabled(PSInputNum); 1424 1425 ++PSInputNum; 1426 } 1427 1428 Splits.push_back(*Arg); 1429 } 1430 } 1431 1432 // Allocate special inputs passed in VGPRs. 1433 static void allocateSpecialEntryInputVGPRs(CCState &CCInfo, 1434 MachineFunction &MF, 1435 const SIRegisterInfo &TRI, 1436 SIMachineFunctionInfo &Info) { 1437 if (Info.hasWorkItemIDX()) { 1438 unsigned Reg = AMDGPU::VGPR0; 1439 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1440 1441 CCInfo.AllocateReg(Reg); 1442 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg)); 1443 } 1444 1445 if (Info.hasWorkItemIDY()) { 1446 unsigned Reg = AMDGPU::VGPR1; 1447 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1448 1449 CCInfo.AllocateReg(Reg); 1450 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 1451 } 1452 1453 if (Info.hasWorkItemIDZ()) { 1454 unsigned Reg = AMDGPU::VGPR2; 1455 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1456 1457 CCInfo.AllocateReg(Reg); 1458 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 1459 } 1460 } 1461 1462 // Try to allocate a VGPR at the end of the argument list, or if no argument 1463 // VGPRs are left allocating a stack slot. 1464 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo) { 1465 ArrayRef<MCPhysReg> ArgVGPRs 1466 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 1467 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 1468 if (RegIdx == ArgVGPRs.size()) { 1469 // Spill to stack required. 1470 int64_t Offset = CCInfo.AllocateStack(4, 4); 1471 1472 return ArgDescriptor::createStack(Offset); 1473 } 1474 1475 unsigned Reg = ArgVGPRs[RegIdx]; 1476 Reg = CCInfo.AllocateReg(Reg); 1477 assert(Reg != AMDGPU::NoRegister); 1478 1479 MachineFunction &MF = CCInfo.getMachineFunction(); 1480 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1481 return ArgDescriptor::createRegister(Reg); 1482 } 1483 1484 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 1485 const TargetRegisterClass *RC, 1486 unsigned NumArgRegs) { 1487 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); 1488 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 1489 if (RegIdx == ArgSGPRs.size()) 1490 report_fatal_error("ran out of SGPRs for arguments"); 1491 1492 unsigned Reg = ArgSGPRs[RegIdx]; 1493 Reg = CCInfo.AllocateReg(Reg); 1494 assert(Reg != AMDGPU::NoRegister); 1495 1496 MachineFunction &MF = CCInfo.getMachineFunction(); 1497 MF.addLiveIn(Reg, RC); 1498 return ArgDescriptor::createRegister(Reg); 1499 } 1500 1501 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) { 1502 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 1503 } 1504 1505 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) { 1506 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 1507 } 1508 1509 static void allocateSpecialInputVGPRs(CCState &CCInfo, 1510 MachineFunction &MF, 1511 const SIRegisterInfo &TRI, 1512 SIMachineFunctionInfo &Info) { 1513 if (Info.hasWorkItemIDX()) 1514 Info.setWorkItemIDX(allocateVGPR32Input(CCInfo)); 1515 1516 if (Info.hasWorkItemIDY()) 1517 Info.setWorkItemIDY(allocateVGPR32Input(CCInfo)); 1518 1519 if (Info.hasWorkItemIDZ()) 1520 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo)); 1521 } 1522 1523 static void allocateSpecialInputSGPRs(CCState &CCInfo, 1524 MachineFunction &MF, 1525 const SIRegisterInfo &TRI, 1526 SIMachineFunctionInfo &Info) { 1527 auto &ArgInfo = Info.getArgInfo(); 1528 1529 // TODO: Unify handling with private memory pointers. 1530 1531 if (Info.hasDispatchPtr()) 1532 ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo); 1533 1534 if (Info.hasQueuePtr()) 1535 ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo); 1536 1537 if (Info.hasKernargSegmentPtr()) 1538 ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo); 1539 1540 if (Info.hasDispatchID()) 1541 ArgInfo.DispatchID = allocateSGPR64Input(CCInfo); 1542 1543 // flat_scratch_init is not applicable for non-kernel functions. 1544 1545 if (Info.hasWorkGroupIDX()) 1546 ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo); 1547 1548 if (Info.hasWorkGroupIDY()) 1549 ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo); 1550 1551 if (Info.hasWorkGroupIDZ()) 1552 ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo); 1553 1554 if (Info.hasImplicitArgPtr()) 1555 ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo); 1556 } 1557 1558 // Allocate special inputs passed in user SGPRs. 1559 static void allocateHSAUserSGPRs(CCState &CCInfo, 1560 MachineFunction &MF, 1561 const SIRegisterInfo &TRI, 1562 SIMachineFunctionInfo &Info) { 1563 if (Info.hasImplicitBufferPtr()) { 1564 unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 1565 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 1566 CCInfo.AllocateReg(ImplicitBufferPtrReg); 1567 } 1568 1569 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 1570 if (Info.hasPrivateSegmentBuffer()) { 1571 unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 1572 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 1573 CCInfo.AllocateReg(PrivateSegmentBufferReg); 1574 } 1575 1576 if (Info.hasDispatchPtr()) { 1577 unsigned DispatchPtrReg = Info.addDispatchPtr(TRI); 1578 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 1579 CCInfo.AllocateReg(DispatchPtrReg); 1580 } 1581 1582 if (Info.hasQueuePtr()) { 1583 unsigned QueuePtrReg = Info.addQueuePtr(TRI); 1584 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 1585 CCInfo.AllocateReg(QueuePtrReg); 1586 } 1587 1588 if (Info.hasKernargSegmentPtr()) { 1589 unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI); 1590 MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 1591 CCInfo.AllocateReg(InputPtrReg); 1592 } 1593 1594 if (Info.hasDispatchID()) { 1595 unsigned DispatchIDReg = Info.addDispatchID(TRI); 1596 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 1597 CCInfo.AllocateReg(DispatchIDReg); 1598 } 1599 1600 if (Info.hasFlatScratchInit()) { 1601 unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI); 1602 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 1603 CCInfo.AllocateReg(FlatScratchInitReg); 1604 } 1605 1606 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 1607 // these from the dispatch pointer. 1608 } 1609 1610 // Allocate special input registers that are initialized per-wave. 1611 static void allocateSystemSGPRs(CCState &CCInfo, 1612 MachineFunction &MF, 1613 SIMachineFunctionInfo &Info, 1614 CallingConv::ID CallConv, 1615 bool IsShader) { 1616 if (Info.hasWorkGroupIDX()) { 1617 unsigned Reg = Info.addWorkGroupIDX(); 1618 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); 1619 CCInfo.AllocateReg(Reg); 1620 } 1621 1622 if (Info.hasWorkGroupIDY()) { 1623 unsigned Reg = Info.addWorkGroupIDY(); 1624 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); 1625 CCInfo.AllocateReg(Reg); 1626 } 1627 1628 if (Info.hasWorkGroupIDZ()) { 1629 unsigned Reg = Info.addWorkGroupIDZ(); 1630 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); 1631 CCInfo.AllocateReg(Reg); 1632 } 1633 1634 if (Info.hasWorkGroupInfo()) { 1635 unsigned Reg = Info.addWorkGroupInfo(); 1636 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); 1637 CCInfo.AllocateReg(Reg); 1638 } 1639 1640 if (Info.hasPrivateSegmentWaveByteOffset()) { 1641 // Scratch wave offset passed in system SGPR. 1642 unsigned PrivateSegmentWaveByteOffsetReg; 1643 1644 if (IsShader) { 1645 PrivateSegmentWaveByteOffsetReg = 1646 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 1647 1648 // This is true if the scratch wave byte offset doesn't have a fixed 1649 // location. 1650 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 1651 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 1652 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 1653 } 1654 } else 1655 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 1656 1657 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 1658 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 1659 } 1660 } 1661 1662 static void reservePrivateMemoryRegs(const TargetMachine &TM, 1663 MachineFunction &MF, 1664 const SIRegisterInfo &TRI, 1665 SIMachineFunctionInfo &Info) { 1666 // Now that we've figured out where the scratch register inputs are, see if 1667 // should reserve the arguments and use them directly. 1668 MachineFrameInfo &MFI = MF.getFrameInfo(); 1669 bool HasStackObjects = MFI.hasStackObjects(); 1670 1671 // Record that we know we have non-spill stack objects so we don't need to 1672 // check all stack objects later. 1673 if (HasStackObjects) 1674 Info.setHasNonSpillStackObjects(true); 1675 1676 // Everything live out of a block is spilled with fast regalloc, so it's 1677 // almost certain that spilling will be required. 1678 if (TM.getOptLevel() == CodeGenOpt::None) 1679 HasStackObjects = true; 1680 1681 // For now assume stack access is needed in any callee functions, so we need 1682 // the scratch registers to pass in. 1683 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 1684 1685 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1686 if (ST.isAmdHsaOrMesa(MF.getFunction())) { 1687 if (RequiresStackAccess) { 1688 // If we have stack objects, we unquestionably need the private buffer 1689 // resource. For the Code Object V2 ABI, this will be the first 4 user 1690 // SGPR inputs. We can reserve those and use them directly. 1691 1692 unsigned PrivateSegmentBufferReg = Info.getPreloadedReg( 1693 AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 1694 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 1695 1696 if (MFI.hasCalls()) { 1697 // If we have calls, we need to keep the frame register in a register 1698 // that won't be clobbered by a call, so ensure it is copied somewhere. 1699 1700 // This is not a problem for the scratch wave offset, because the same 1701 // registers are reserved in all functions. 1702 1703 // FIXME: Nothing is really ensuring this is a call preserved register, 1704 // it's just selected from the end so it happens to be. 1705 unsigned ReservedOffsetReg 1706 = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); 1707 Info.setScratchWaveOffsetReg(ReservedOffsetReg); 1708 } else { 1709 unsigned PrivateSegmentWaveByteOffsetReg = Info.getPreloadedReg( 1710 AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); 1711 Info.setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg); 1712 } 1713 } else { 1714 unsigned ReservedBufferReg 1715 = TRI.reservedPrivateSegmentBufferReg(MF); 1716 unsigned ReservedOffsetReg 1717 = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); 1718 1719 // We tentatively reserve the last registers (skipping the last two 1720 // which may contain VCC). After register allocation, we'll replace 1721 // these with the ones immediately after those which were really 1722 // allocated. In the prologue copies will be inserted from the argument 1723 // to these reserved registers. 1724 Info.setScratchRSrcReg(ReservedBufferReg); 1725 Info.setScratchWaveOffsetReg(ReservedOffsetReg); 1726 } 1727 } else { 1728 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 1729 1730 // Without HSA, relocations are used for the scratch pointer and the 1731 // buffer resource setup is always inserted in the prologue. Scratch wave 1732 // offset is still in an input SGPR. 1733 Info.setScratchRSrcReg(ReservedBufferReg); 1734 1735 if (HasStackObjects && !MFI.hasCalls()) { 1736 unsigned ScratchWaveOffsetReg = Info.getPreloadedReg( 1737 AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); 1738 Info.setScratchWaveOffsetReg(ScratchWaveOffsetReg); 1739 } else { 1740 unsigned ReservedOffsetReg 1741 = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); 1742 Info.setScratchWaveOffsetReg(ReservedOffsetReg); 1743 } 1744 } 1745 } 1746 1747 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 1748 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 1749 return !Info->isEntryFunction(); 1750 } 1751 1752 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 1753 1754 } 1755 1756 void SITargetLowering::insertCopiesSplitCSR( 1757 MachineBasicBlock *Entry, 1758 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 1759 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 1760 1761 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 1762 if (!IStart) 1763 return; 1764 1765 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 1766 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 1767 MachineBasicBlock::iterator MBBI = Entry->begin(); 1768 for (const MCPhysReg *I = IStart; *I; ++I) { 1769 const TargetRegisterClass *RC = nullptr; 1770 if (AMDGPU::SReg_64RegClass.contains(*I)) 1771 RC = &AMDGPU::SGPR_64RegClass; 1772 else if (AMDGPU::SReg_32RegClass.contains(*I)) 1773 RC = &AMDGPU::SGPR_32RegClass; 1774 else 1775 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 1776 1777 unsigned NewVR = MRI->createVirtualRegister(RC); 1778 // Create copy from CSR to a virtual register. 1779 Entry->addLiveIn(*I); 1780 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 1781 .addReg(*I); 1782 1783 // Insert the copy-back instructions right before the terminator. 1784 for (auto *Exit : Exits) 1785 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 1786 TII->get(TargetOpcode::COPY), *I) 1787 .addReg(NewVR); 1788 } 1789 } 1790 1791 SDValue SITargetLowering::LowerFormalArguments( 1792 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 1793 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1794 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1795 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 1796 1797 MachineFunction &MF = DAG.getMachineFunction(); 1798 const Function &Fn = MF.getFunction(); 1799 FunctionType *FType = MF.getFunction().getFunctionType(); 1800 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1801 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1802 1803 if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) { 1804 DiagnosticInfoUnsupported NoGraphicsHSA( 1805 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 1806 DAG.getContext()->diagnose(NoGraphicsHSA); 1807 return DAG.getEntryNode(); 1808 } 1809 1810 // Create stack objects that are used for emitting debugger prologue if 1811 // "amdgpu-debugger-emit-prologue" attribute was specified. 1812 if (ST.debuggerEmitPrologue()) 1813 createDebuggerPrologueStackObjects(MF); 1814 1815 SmallVector<ISD::InputArg, 16> Splits; 1816 SmallVector<CCValAssign, 16> ArgLocs; 1817 BitVector Skipped(Ins.size()); 1818 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1819 *DAG.getContext()); 1820 1821 bool IsShader = AMDGPU::isShader(CallConv); 1822 bool IsKernel = AMDGPU::isKernel(CallConv); 1823 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 1824 1825 if (!IsEntryFunc) { 1826 // 4 bytes are reserved at offset 0 for the emergency stack slot. Skip over 1827 // this when allocating argument fixed offsets. 1828 CCInfo.AllocateStack(4, 4); 1829 } 1830 1831 if (IsShader) { 1832 processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 1833 1834 // At least one interpolation mode must be enabled or else the GPU will 1835 // hang. 1836 // 1837 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 1838 // set PSInputAddr, the user wants to enable some bits after the compilation 1839 // based on run-time states. Since we can't know what the final PSInputEna 1840 // will look like, so we shouldn't do anything here and the user should take 1841 // responsibility for the correct programming. 1842 // 1843 // Otherwise, the following restrictions apply: 1844 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 1845 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 1846 // enabled too. 1847 if (CallConv == CallingConv::AMDGPU_PS) { 1848 if ((Info->getPSInputAddr() & 0x7F) == 0 || 1849 ((Info->getPSInputAddr() & 0xF) == 0 && 1850 Info->isPSInputAllocated(11))) { 1851 CCInfo.AllocateReg(AMDGPU::VGPR0); 1852 CCInfo.AllocateReg(AMDGPU::VGPR1); 1853 Info->markPSInputAllocated(0); 1854 Info->markPSInputEnabled(0); 1855 } 1856 if (Subtarget->isAmdPalOS()) { 1857 // For isAmdPalOS, the user does not enable some bits after compilation 1858 // based on run-time states; the register values being generated here are 1859 // the final ones set in hardware. Therefore we need to apply the 1860 // workaround to PSInputAddr and PSInputEnable together. (The case where 1861 // a bit is set in PSInputAddr but not PSInputEnable is where the 1862 // frontend set up an input arg for a particular interpolation mode, but 1863 // nothing uses that input arg. Really we should have an earlier pass 1864 // that removes such an arg.) 1865 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 1866 if ((PsInputBits & 0x7F) == 0 || 1867 ((PsInputBits & 0xF) == 0 && 1868 (PsInputBits >> 11 & 1))) 1869 Info->markPSInputEnabled( 1870 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 1871 } 1872 } 1873 1874 assert(!Info->hasDispatchPtr() && 1875 !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && 1876 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 1877 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && 1878 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && 1879 !Info->hasWorkItemIDZ()); 1880 } else if (IsKernel) { 1881 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 1882 } else { 1883 Splits.append(Ins.begin(), Ins.end()); 1884 } 1885 1886 if (IsEntryFunc) { 1887 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 1888 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 1889 } 1890 1891 if (IsKernel) { 1892 analyzeFormalArgumentsCompute(CCInfo, Ins); 1893 } else { 1894 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 1895 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 1896 } 1897 1898 SmallVector<SDValue, 16> Chains; 1899 1900 // FIXME: This is the minimum kernel argument alignment. We should improve 1901 // this to the maximum alignment of the arguments. 1902 // 1903 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 1904 // kern arg offset. 1905 const unsigned KernelArgBaseAlign = 16; 1906 1907 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 1908 const ISD::InputArg &Arg = Ins[i]; 1909 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 1910 InVals.push_back(DAG.getUNDEF(Arg.VT)); 1911 continue; 1912 } 1913 1914 CCValAssign &VA = ArgLocs[ArgIdx++]; 1915 MVT VT = VA.getLocVT(); 1916 1917 if (IsEntryFunc && VA.isMemLoc()) { 1918 VT = Ins[i].VT; 1919 EVT MemVT = VA.getLocVT(); 1920 1921 const uint64_t Offset = VA.getLocMemOffset(); 1922 unsigned Align = MinAlign(KernelArgBaseAlign, Offset); 1923 1924 SDValue Arg = lowerKernargMemParameter( 1925 DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]); 1926 Chains.push_back(Arg.getValue(1)); 1927 1928 auto *ParamTy = 1929 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 1930 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 1931 ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 1932 // On SI local pointers are just offsets into LDS, so they are always 1933 // less than 16-bits. On CI and newer they could potentially be 1934 // real pointers, so we can't guarantee their size. 1935 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 1936 DAG.getValueType(MVT::i16)); 1937 } 1938 1939 InVals.push_back(Arg); 1940 continue; 1941 } else if (!IsEntryFunc && VA.isMemLoc()) { 1942 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 1943 InVals.push_back(Val); 1944 if (!Arg.Flags.isByVal()) 1945 Chains.push_back(Val.getValue(1)); 1946 continue; 1947 } 1948 1949 assert(VA.isRegLoc() && "Parameter must be in a register!"); 1950 1951 unsigned Reg = VA.getLocReg(); 1952 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 1953 EVT ValVT = VA.getValVT(); 1954 1955 Reg = MF.addLiveIn(Reg, RC); 1956 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 1957 1958 if (Arg.Flags.isSRet() && !getSubtarget()->enableHugePrivateBuffer()) { 1959 // The return object should be reasonably addressable. 1960 1961 // FIXME: This helps when the return is a real sret. If it is a 1962 // automatically inserted sret (i.e. CanLowerReturn returns false), an 1963 // extra copy is inserted in SelectionDAGBuilder which obscures this. 1964 unsigned NumBits = 32 - AssumeFrameIndexHighZeroBits; 1965 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 1966 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 1967 } 1968 1969 // If this is an 8 or 16-bit value, it is really passed promoted 1970 // to 32 bits. Insert an assert[sz]ext to capture this, then 1971 // truncate to the right size. 1972 switch (VA.getLocInfo()) { 1973 case CCValAssign::Full: 1974 break; 1975 case CCValAssign::BCvt: 1976 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 1977 break; 1978 case CCValAssign::SExt: 1979 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 1980 DAG.getValueType(ValVT)); 1981 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 1982 break; 1983 case CCValAssign::ZExt: 1984 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 1985 DAG.getValueType(ValVT)); 1986 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 1987 break; 1988 case CCValAssign::AExt: 1989 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 1990 break; 1991 default: 1992 llvm_unreachable("Unknown loc info!"); 1993 } 1994 1995 InVals.push_back(Val); 1996 } 1997 1998 if (!IsEntryFunc) { 1999 // Special inputs come after user arguments. 2000 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 2001 } 2002 2003 // Start adding system SGPRs. 2004 if (IsEntryFunc) { 2005 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader); 2006 } else { 2007 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2008 CCInfo.AllocateReg(Info->getScratchWaveOffsetReg()); 2009 CCInfo.AllocateReg(Info->getFrameOffsetReg()); 2010 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2011 } 2012 2013 auto &ArgUsageInfo = 2014 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2015 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 2016 2017 unsigned StackArgSize = CCInfo.getNextStackOffset(); 2018 Info->setBytesInStackArgArea(StackArgSize); 2019 2020 return Chains.empty() ? Chain : 2021 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2022 } 2023 2024 // TODO: If return values can't fit in registers, we should return as many as 2025 // possible in registers before passing on stack. 2026 bool SITargetLowering::CanLowerReturn( 2027 CallingConv::ID CallConv, 2028 MachineFunction &MF, bool IsVarArg, 2029 const SmallVectorImpl<ISD::OutputArg> &Outs, 2030 LLVMContext &Context) const { 2031 // Replacing returns with sret/stack usage doesn't make sense for shaders. 2032 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 2033 // for shaders. Vector types should be explicitly handled by CC. 2034 if (AMDGPU::isEntryFunctionCC(CallConv)) 2035 return true; 2036 2037 SmallVector<CCValAssign, 16> RVLocs; 2038 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2039 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); 2040 } 2041 2042 SDValue 2043 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2044 bool isVarArg, 2045 const SmallVectorImpl<ISD::OutputArg> &Outs, 2046 const SmallVectorImpl<SDValue> &OutVals, 2047 const SDLoc &DL, SelectionDAG &DAG) const { 2048 MachineFunction &MF = DAG.getMachineFunction(); 2049 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2050 2051 if (AMDGPU::isKernel(CallConv)) { 2052 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 2053 OutVals, DL, DAG); 2054 } 2055 2056 bool IsShader = AMDGPU::isShader(CallConv); 2057 2058 Info->setIfReturnsVoid(Outs.empty()); 2059 bool IsWaveEnd = Info->returnsVoid() && IsShader; 2060 2061 // CCValAssign - represent the assignment of the return value to a location. 2062 SmallVector<CCValAssign, 48> RVLocs; 2063 SmallVector<ISD::OutputArg, 48> Splits; 2064 2065 // CCState - Info about the registers and stack slots. 2066 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2067 *DAG.getContext()); 2068 2069 // Analyze outgoing return values. 2070 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 2071 2072 SDValue Flag; 2073 SmallVector<SDValue, 48> RetOps; 2074 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2075 2076 // Add return address for callable functions. 2077 if (!Info->isEntryFunction()) { 2078 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2079 SDValue ReturnAddrReg = CreateLiveInRegister( 2080 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 2081 2082 // FIXME: Should be able to use a vreg here, but need a way to prevent it 2083 // from being allcoated to a CSR. 2084 2085 SDValue PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), 2086 MVT::i64); 2087 2088 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, Flag); 2089 Flag = Chain.getValue(1); 2090 2091 RetOps.push_back(PhysReturnAddrReg); 2092 } 2093 2094 // Copy the result values into the output registers. 2095 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 2096 ++I, ++RealRVLocIdx) { 2097 CCValAssign &VA = RVLocs[I]; 2098 assert(VA.isRegLoc() && "Can only return in registers!"); 2099 // TODO: Partially return in registers if return values don't fit. 2100 SDValue Arg = OutVals[RealRVLocIdx]; 2101 2102 // Copied from other backends. 2103 switch (VA.getLocInfo()) { 2104 case CCValAssign::Full: 2105 break; 2106 case CCValAssign::BCvt: 2107 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2108 break; 2109 case CCValAssign::SExt: 2110 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2111 break; 2112 case CCValAssign::ZExt: 2113 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2114 break; 2115 case CCValAssign::AExt: 2116 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2117 break; 2118 default: 2119 llvm_unreachable("Unknown loc info!"); 2120 } 2121 2122 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 2123 Flag = Chain.getValue(1); 2124 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2125 } 2126 2127 // FIXME: Does sret work properly? 2128 if (!Info->isEntryFunction()) { 2129 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2130 const MCPhysReg *I = 2131 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 2132 if (I) { 2133 for (; *I; ++I) { 2134 if (AMDGPU::SReg_64RegClass.contains(*I)) 2135 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 2136 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2137 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 2138 else 2139 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2140 } 2141 } 2142 } 2143 2144 // Update chain and glue. 2145 RetOps[0] = Chain; 2146 if (Flag.getNode()) 2147 RetOps.push_back(Flag); 2148 2149 unsigned Opc = AMDGPUISD::ENDPGM; 2150 if (!IsWaveEnd) 2151 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; 2152 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 2153 } 2154 2155 SDValue SITargetLowering::LowerCallResult( 2156 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2157 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2158 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 2159 SDValue ThisVal) const { 2160 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 2161 2162 // Assign locations to each value returned by this call. 2163 SmallVector<CCValAssign, 16> RVLocs; 2164 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2165 *DAG.getContext()); 2166 CCInfo.AnalyzeCallResult(Ins, RetCC); 2167 2168 // Copy all of the result registers out of their specified physreg. 2169 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2170 CCValAssign VA = RVLocs[i]; 2171 SDValue Val; 2172 2173 if (VA.isRegLoc()) { 2174 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 2175 Chain = Val.getValue(1); 2176 InFlag = Val.getValue(2); 2177 } else if (VA.isMemLoc()) { 2178 report_fatal_error("TODO: return values in memory"); 2179 } else 2180 llvm_unreachable("unknown argument location type"); 2181 2182 switch (VA.getLocInfo()) { 2183 case CCValAssign::Full: 2184 break; 2185 case CCValAssign::BCvt: 2186 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2187 break; 2188 case CCValAssign::ZExt: 2189 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2190 DAG.getValueType(VA.getValVT())); 2191 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2192 break; 2193 case CCValAssign::SExt: 2194 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2195 DAG.getValueType(VA.getValVT())); 2196 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2197 break; 2198 case CCValAssign::AExt: 2199 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2200 break; 2201 default: 2202 llvm_unreachable("Unknown loc info!"); 2203 } 2204 2205 InVals.push_back(Val); 2206 } 2207 2208 return Chain; 2209 } 2210 2211 // Add code to pass special inputs required depending on used features separate 2212 // from the explicit user arguments present in the IR. 2213 void SITargetLowering::passSpecialInputs( 2214 CallLoweringInfo &CLI, 2215 CCState &CCInfo, 2216 const SIMachineFunctionInfo &Info, 2217 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 2218 SmallVectorImpl<SDValue> &MemOpChains, 2219 SDValue Chain) const { 2220 // If we don't have a call site, this was a call inserted by 2221 // legalization. These can never use special inputs. 2222 if (!CLI.CS) 2223 return; 2224 2225 const Function *CalleeFunc = CLI.CS.getCalledFunction(); 2226 assert(CalleeFunc); 2227 2228 SelectionDAG &DAG = CLI.DAG; 2229 const SDLoc &DL = CLI.DL; 2230 2231 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2232 2233 auto &ArgUsageInfo = 2234 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2235 const AMDGPUFunctionArgInfo &CalleeArgInfo 2236 = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 2237 2238 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 2239 2240 // TODO: Unify with private memory register handling. This is complicated by 2241 // the fact that at least in kernels, the input argument is not necessarily 2242 // in the same location as the input. 2243 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 2244 AMDGPUFunctionArgInfo::DISPATCH_PTR, 2245 AMDGPUFunctionArgInfo::QUEUE_PTR, 2246 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR, 2247 AMDGPUFunctionArgInfo::DISPATCH_ID, 2248 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 2249 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 2250 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z, 2251 AMDGPUFunctionArgInfo::WORKITEM_ID_X, 2252 AMDGPUFunctionArgInfo::WORKITEM_ID_Y, 2253 AMDGPUFunctionArgInfo::WORKITEM_ID_Z, 2254 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR 2255 }; 2256 2257 for (auto InputID : InputRegs) { 2258 const ArgDescriptor *OutgoingArg; 2259 const TargetRegisterClass *ArgRC; 2260 2261 std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID); 2262 if (!OutgoingArg) 2263 continue; 2264 2265 const ArgDescriptor *IncomingArg; 2266 const TargetRegisterClass *IncomingArgRC; 2267 std::tie(IncomingArg, IncomingArgRC) 2268 = CallerArgInfo.getPreloadedValue(InputID); 2269 assert(IncomingArgRC == ArgRC); 2270 2271 // All special arguments are ints for now. 2272 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 2273 SDValue InputReg; 2274 2275 if (IncomingArg) { 2276 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 2277 } else { 2278 // The implicit arg ptr is special because it doesn't have a corresponding 2279 // input for kernels, and is computed from the kernarg segment pointer. 2280 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 2281 InputReg = getImplicitArgPtr(DAG, DL); 2282 } 2283 2284 if (OutgoingArg->isRegister()) { 2285 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2286 } else { 2287 unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4); 2288 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2289 SpecialArgOffset); 2290 MemOpChains.push_back(ArgStore); 2291 } 2292 } 2293 } 2294 2295 static bool canGuaranteeTCO(CallingConv::ID CC) { 2296 return CC == CallingConv::Fast; 2297 } 2298 2299 /// Return true if we might ever do TCO for calls with this calling convention. 2300 static bool mayTailCallThisCC(CallingConv::ID CC) { 2301 switch (CC) { 2302 case CallingConv::C: 2303 return true; 2304 default: 2305 return canGuaranteeTCO(CC); 2306 } 2307 } 2308 2309 bool SITargetLowering::isEligibleForTailCallOptimization( 2310 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 2311 const SmallVectorImpl<ISD::OutputArg> &Outs, 2312 const SmallVectorImpl<SDValue> &OutVals, 2313 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 2314 if (!mayTailCallThisCC(CalleeCC)) 2315 return false; 2316 2317 MachineFunction &MF = DAG.getMachineFunction(); 2318 const Function &CallerF = MF.getFunction(); 2319 CallingConv::ID CallerCC = CallerF.getCallingConv(); 2320 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2321 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2322 2323 // Kernels aren't callable, and don't have a live in return address so it 2324 // doesn't make sense to do a tail call with entry functions. 2325 if (!CallerPreserved) 2326 return false; 2327 2328 bool CCMatch = CallerCC == CalleeCC; 2329 2330 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 2331 if (canGuaranteeTCO(CalleeCC) && CCMatch) 2332 return true; 2333 return false; 2334 } 2335 2336 // TODO: Can we handle var args? 2337 if (IsVarArg) 2338 return false; 2339 2340 for (const Argument &Arg : CallerF.args()) { 2341 if (Arg.hasByValAttr()) 2342 return false; 2343 } 2344 2345 LLVMContext &Ctx = *DAG.getContext(); 2346 2347 // Check that the call results are passed in the same way. 2348 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 2349 CCAssignFnForCall(CalleeCC, IsVarArg), 2350 CCAssignFnForCall(CallerCC, IsVarArg))) 2351 return false; 2352 2353 // The callee has to preserve all registers the caller needs to preserve. 2354 if (!CCMatch) { 2355 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2356 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2357 return false; 2358 } 2359 2360 // Nothing more to check if the callee is taking no arguments. 2361 if (Outs.empty()) 2362 return true; 2363 2364 SmallVector<CCValAssign, 16> ArgLocs; 2365 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 2366 2367 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 2368 2369 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 2370 // If the stack arguments for this call do not fit into our own save area then 2371 // the call cannot be made tail. 2372 // TODO: Is this really necessary? 2373 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 2374 return false; 2375 2376 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2377 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 2378 } 2379 2380 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 2381 if (!CI->isTailCall()) 2382 return false; 2383 2384 const Function *ParentFn = CI->getParent()->getParent(); 2385 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 2386 return false; 2387 2388 auto Attr = ParentFn->getFnAttribute("disable-tail-calls"); 2389 return (Attr.getValueAsString() != "true"); 2390 } 2391 2392 // The wave scratch offset register is used as the global base pointer. 2393 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 2394 SmallVectorImpl<SDValue> &InVals) const { 2395 SelectionDAG &DAG = CLI.DAG; 2396 const SDLoc &DL = CLI.DL; 2397 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 2398 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 2399 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 2400 SDValue Chain = CLI.Chain; 2401 SDValue Callee = CLI.Callee; 2402 bool &IsTailCall = CLI.IsTailCall; 2403 CallingConv::ID CallConv = CLI.CallConv; 2404 bool IsVarArg = CLI.IsVarArg; 2405 bool IsSibCall = false; 2406 bool IsThisReturn = false; 2407 MachineFunction &MF = DAG.getMachineFunction(); 2408 2409 if (IsVarArg) { 2410 return lowerUnhandledCall(CLI, InVals, 2411 "unsupported call to variadic function "); 2412 } 2413 2414 if (!CLI.CS.getInstruction()) 2415 report_fatal_error("unsupported libcall legalization"); 2416 2417 if (!CLI.CS.getCalledFunction()) { 2418 return lowerUnhandledCall(CLI, InVals, 2419 "unsupported indirect call to function "); 2420 } 2421 2422 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 2423 return lowerUnhandledCall(CLI, InVals, 2424 "unsupported required tail call to function "); 2425 } 2426 2427 if (AMDGPU::isShader(MF.getFunction().getCallingConv())) { 2428 // Note the issue is with the CC of the calling function, not of the call 2429 // itself. 2430 return lowerUnhandledCall(CLI, InVals, 2431 "unsupported call from graphics shader of function "); 2432 } 2433 2434 // The first 4 bytes are reserved for the callee's emergency stack slot. 2435 if (IsTailCall) { 2436 IsTailCall = isEligibleForTailCallOptimization( 2437 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 2438 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) { 2439 report_fatal_error("failed to perform tail call elimination on a call " 2440 "site marked musttail"); 2441 } 2442 2443 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 2444 2445 // A sibling call is one where we're under the usual C ABI and not planning 2446 // to change that but can still do a tail call: 2447 if (!TailCallOpt && IsTailCall) 2448 IsSibCall = true; 2449 2450 if (IsTailCall) 2451 ++NumTailCalls; 2452 } 2453 2454 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2455 2456 // Analyze operands of the call, assigning locations to each operand. 2457 SmallVector<CCValAssign, 16> ArgLocs; 2458 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2459 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 2460 2461 // The first 4 bytes are reserved for the callee's emergency stack slot. 2462 CCInfo.AllocateStack(4, 4); 2463 2464 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 2465 2466 // Get a count of how many bytes are to be pushed on the stack. 2467 unsigned NumBytes = CCInfo.getNextStackOffset(); 2468 2469 if (IsSibCall) { 2470 // Since we're not changing the ABI to make this a tail call, the memory 2471 // operands are already available in the caller's incoming argument space. 2472 NumBytes = 0; 2473 } 2474 2475 // FPDiff is the byte offset of the call's argument area from the callee's. 2476 // Stores to callee stack arguments will be placed in FixedStackSlots offset 2477 // by this amount for a tail call. In a sibling call it must be 0 because the 2478 // caller will deallocate the entire stack and the callee still expects its 2479 // arguments to begin at SP+0. Completely unused for non-tail calls. 2480 int32_t FPDiff = 0; 2481 MachineFrameInfo &MFI = MF.getFrameInfo(); 2482 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2483 2484 SDValue CallerSavedFP; 2485 2486 // Adjust the stack pointer for the new arguments... 2487 // These operations are automatically eliminated by the prolog/epilog pass 2488 if (!IsSibCall) { 2489 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 2490 2491 unsigned OffsetReg = Info->getScratchWaveOffsetReg(); 2492 2493 // In the HSA case, this should be an identity copy. 2494 SDValue ScratchRSrcReg 2495 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 2496 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 2497 2498 // TODO: Don't hardcode these registers and get from the callee function. 2499 SDValue ScratchWaveOffsetReg 2500 = DAG.getCopyFromReg(Chain, DL, OffsetReg, MVT::i32); 2501 RegsToPass.emplace_back(AMDGPU::SGPR4, ScratchWaveOffsetReg); 2502 2503 if (!Info->isEntryFunction()) { 2504 // Avoid clobbering this function's FP value. In the current convention 2505 // callee will overwrite this, so do save/restore around the call site. 2506 CallerSavedFP = DAG.getCopyFromReg(Chain, DL, 2507 Info->getFrameOffsetReg(), MVT::i32); 2508 } 2509 } 2510 2511 SmallVector<SDValue, 8> MemOpChains; 2512 MVT PtrVT = MVT::i32; 2513 2514 // Walk the register/memloc assignments, inserting copies/loads. 2515 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; 2516 ++i, ++realArgIdx) { 2517 CCValAssign &VA = ArgLocs[i]; 2518 SDValue Arg = OutVals[realArgIdx]; 2519 2520 // Promote the value if needed. 2521 switch (VA.getLocInfo()) { 2522 case CCValAssign::Full: 2523 break; 2524 case CCValAssign::BCvt: 2525 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2526 break; 2527 case CCValAssign::ZExt: 2528 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2529 break; 2530 case CCValAssign::SExt: 2531 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2532 break; 2533 case CCValAssign::AExt: 2534 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2535 break; 2536 case CCValAssign::FPExt: 2537 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 2538 break; 2539 default: 2540 llvm_unreachable("Unknown loc info!"); 2541 } 2542 2543 if (VA.isRegLoc()) { 2544 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 2545 } else { 2546 assert(VA.isMemLoc()); 2547 2548 SDValue DstAddr; 2549 MachinePointerInfo DstInfo; 2550 2551 unsigned LocMemOffset = VA.getLocMemOffset(); 2552 int32_t Offset = LocMemOffset; 2553 2554 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 2555 unsigned Align = 0; 2556 2557 if (IsTailCall) { 2558 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 2559 unsigned OpSize = Flags.isByVal() ? 2560 Flags.getByValSize() : VA.getValVT().getStoreSize(); 2561 2562 // FIXME: We can have better than the minimum byval required alignment. 2563 Align = Flags.isByVal() ? Flags.getByValAlign() : 2564 MinAlign(Subtarget->getStackAlignment(), Offset); 2565 2566 Offset = Offset + FPDiff; 2567 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 2568 2569 DstAddr = DAG.getFrameIndex(FI, PtrVT); 2570 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 2571 2572 // Make sure any stack arguments overlapping with where we're storing 2573 // are loaded before this eventual operation. Otherwise they'll be 2574 // clobbered. 2575 2576 // FIXME: Why is this really necessary? This seems to just result in a 2577 // lot of code to copy the stack and write them back to the same 2578 // locations, which are supposed to be immutable? 2579 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 2580 } else { 2581 DstAddr = PtrOff; 2582 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 2583 Align = MinAlign(Subtarget->getStackAlignment(), LocMemOffset); 2584 } 2585 2586 if (Outs[i].Flags.isByVal()) { 2587 SDValue SizeNode = 2588 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 2589 SDValue Cpy = DAG.getMemcpy( 2590 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), 2591 /*isVol = */ false, /*AlwaysInline = */ true, 2592 /*isTailCall = */ false, DstInfo, 2593 MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy( 2594 *DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS)))); 2595 2596 MemOpChains.push_back(Cpy); 2597 } else { 2598 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Align); 2599 MemOpChains.push_back(Store); 2600 } 2601 } 2602 } 2603 2604 // Copy special input registers after user input arguments. 2605 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 2606 2607 if (!MemOpChains.empty()) 2608 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2609 2610 // Build a sequence of copy-to-reg nodes chained together with token chain 2611 // and flag operands which copy the outgoing args into the appropriate regs. 2612 SDValue InFlag; 2613 for (auto &RegToPass : RegsToPass) { 2614 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 2615 RegToPass.second, InFlag); 2616 InFlag = Chain.getValue(1); 2617 } 2618 2619 2620 SDValue PhysReturnAddrReg; 2621 if (IsTailCall) { 2622 // Since the return is being combined with the call, we need to pass on the 2623 // return address. 2624 2625 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2626 SDValue ReturnAddrReg = CreateLiveInRegister( 2627 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 2628 2629 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), 2630 MVT::i64); 2631 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); 2632 InFlag = Chain.getValue(1); 2633 } 2634 2635 // We don't usually want to end the call-sequence here because we would tidy 2636 // the frame up *after* the call, however in the ABI-changing tail-call case 2637 // we've carefully laid out the parameters so that when sp is reset they'll be 2638 // in the correct location. 2639 if (IsTailCall && !IsSibCall) { 2640 Chain = DAG.getCALLSEQ_END(Chain, 2641 DAG.getTargetConstant(NumBytes, DL, MVT::i32), 2642 DAG.getTargetConstant(0, DL, MVT::i32), 2643 InFlag, DL); 2644 InFlag = Chain.getValue(1); 2645 } 2646 2647 std::vector<SDValue> Ops; 2648 Ops.push_back(Chain); 2649 Ops.push_back(Callee); 2650 2651 if (IsTailCall) { 2652 // Each tail call may have to adjust the stack by a different amount, so 2653 // this information must travel along with the operation for eventual 2654 // consumption by emitEpilogue. 2655 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 2656 2657 Ops.push_back(PhysReturnAddrReg); 2658 } 2659 2660 // Add argument registers to the end of the list so that they are known live 2661 // into the call. 2662 for (auto &RegToPass : RegsToPass) { 2663 Ops.push_back(DAG.getRegister(RegToPass.first, 2664 RegToPass.second.getValueType())); 2665 } 2666 2667 // Add a register mask operand representing the call-preserved registers. 2668 2669 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 2670 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2671 assert(Mask && "Missing call preserved mask for calling convention"); 2672 Ops.push_back(DAG.getRegisterMask(Mask)); 2673 2674 if (InFlag.getNode()) 2675 Ops.push_back(InFlag); 2676 2677 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2678 2679 // If we're doing a tall call, use a TC_RETURN here rather than an 2680 // actual call instruction. 2681 if (IsTailCall) { 2682 MFI.setHasTailCall(); 2683 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); 2684 } 2685 2686 // Returns a chain and a flag for retval copy to use. 2687 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 2688 Chain = Call.getValue(0); 2689 InFlag = Call.getValue(1); 2690 2691 if (CallerSavedFP) { 2692 SDValue FPReg = DAG.getRegister(Info->getFrameOffsetReg(), MVT::i32); 2693 Chain = DAG.getCopyToReg(Chain, DL, FPReg, CallerSavedFP, InFlag); 2694 InFlag = Chain.getValue(1); 2695 } 2696 2697 uint64_t CalleePopBytes = NumBytes; 2698 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), 2699 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), 2700 InFlag, DL); 2701 if (!Ins.empty()) 2702 InFlag = Chain.getValue(1); 2703 2704 // Handle result values, copying them out of physregs into vregs that we 2705 // return. 2706 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 2707 InVals, IsThisReturn, 2708 IsThisReturn ? OutVals[0] : SDValue()); 2709 } 2710 2711 unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT, 2712 SelectionDAG &DAG) const { 2713 unsigned Reg = StringSwitch<unsigned>(RegName) 2714 .Case("m0", AMDGPU::M0) 2715 .Case("exec", AMDGPU::EXEC) 2716 .Case("exec_lo", AMDGPU::EXEC_LO) 2717 .Case("exec_hi", AMDGPU::EXEC_HI) 2718 .Case("flat_scratch", AMDGPU::FLAT_SCR) 2719 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 2720 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 2721 .Default(AMDGPU::NoRegister); 2722 2723 if (Reg == AMDGPU::NoRegister) { 2724 report_fatal_error(Twine("invalid register name \"" 2725 + StringRef(RegName) + "\".")); 2726 2727 } 2728 2729 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2730 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 2731 report_fatal_error(Twine("invalid register \"" 2732 + StringRef(RegName) + "\" for subtarget.")); 2733 } 2734 2735 switch (Reg) { 2736 case AMDGPU::M0: 2737 case AMDGPU::EXEC_LO: 2738 case AMDGPU::EXEC_HI: 2739 case AMDGPU::FLAT_SCR_LO: 2740 case AMDGPU::FLAT_SCR_HI: 2741 if (VT.getSizeInBits() == 32) 2742 return Reg; 2743 break; 2744 case AMDGPU::EXEC: 2745 case AMDGPU::FLAT_SCR: 2746 if (VT.getSizeInBits() == 64) 2747 return Reg; 2748 break; 2749 default: 2750 llvm_unreachable("missing register type checking"); 2751 } 2752 2753 report_fatal_error(Twine("invalid type for register \"" 2754 + StringRef(RegName) + "\".")); 2755 } 2756 2757 // If kill is not the last instruction, split the block so kill is always a 2758 // proper terminator. 2759 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI, 2760 MachineBasicBlock *BB) const { 2761 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 2762 2763 MachineBasicBlock::iterator SplitPoint(&MI); 2764 ++SplitPoint; 2765 2766 if (SplitPoint == BB->end()) { 2767 // Don't bother with a new block. 2768 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 2769 return BB; 2770 } 2771 2772 MachineFunction *MF = BB->getParent(); 2773 MachineBasicBlock *SplitBB 2774 = MF->CreateMachineBasicBlock(BB->getBasicBlock()); 2775 2776 MF->insert(++MachineFunction::iterator(BB), SplitBB); 2777 SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end()); 2778 2779 SplitBB->transferSuccessorsAndUpdatePHIs(BB); 2780 BB->addSuccessor(SplitBB); 2781 2782 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 2783 return SplitBB; 2784 } 2785 2786 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 2787 // wavefront. If the value is uniform and just happens to be in a VGPR, this 2788 // will only do one iteration. In the worst case, this will loop 64 times. 2789 // 2790 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 2791 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop( 2792 const SIInstrInfo *TII, 2793 MachineRegisterInfo &MRI, 2794 MachineBasicBlock &OrigBB, 2795 MachineBasicBlock &LoopBB, 2796 const DebugLoc &DL, 2797 const MachineOperand &IdxReg, 2798 unsigned InitReg, 2799 unsigned ResultReg, 2800 unsigned PhiReg, 2801 unsigned InitSaveExecReg, 2802 int Offset, 2803 bool UseGPRIdxMode, 2804 bool IsIndirectSrc) { 2805 MachineBasicBlock::iterator I = LoopBB.begin(); 2806 2807 unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 2808 unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 2809 unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 2810 unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 2811 2812 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 2813 .addReg(InitReg) 2814 .addMBB(&OrigBB) 2815 .addReg(ResultReg) 2816 .addMBB(&LoopBB); 2817 2818 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 2819 .addReg(InitSaveExecReg) 2820 .addMBB(&OrigBB) 2821 .addReg(NewExec) 2822 .addMBB(&LoopBB); 2823 2824 // Read the next variant <- also loop target. 2825 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 2826 .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef())); 2827 2828 // Compare the just read M0 value to all possible Idx values. 2829 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 2830 .addReg(CurrentIdxReg) 2831 .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg()); 2832 2833 // Update EXEC, save the original EXEC value to VCC. 2834 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec) 2835 .addReg(CondReg, RegState::Kill); 2836 2837 MRI.setSimpleHint(NewExec, CondReg); 2838 2839 if (UseGPRIdxMode) { 2840 unsigned IdxReg; 2841 if (Offset == 0) { 2842 IdxReg = CurrentIdxReg; 2843 } else { 2844 IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 2845 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg) 2846 .addReg(CurrentIdxReg, RegState::Kill) 2847 .addImm(Offset); 2848 } 2849 unsigned IdxMode = IsIndirectSrc ? 2850 VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE; 2851 MachineInstr *SetOn = 2852 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 2853 .addReg(IdxReg, RegState::Kill) 2854 .addImm(IdxMode); 2855 SetOn->getOperand(3).setIsUndef(); 2856 } else { 2857 // Move index from VCC into M0 2858 if (Offset == 0) { 2859 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 2860 .addReg(CurrentIdxReg, RegState::Kill); 2861 } else { 2862 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 2863 .addReg(CurrentIdxReg, RegState::Kill) 2864 .addImm(Offset); 2865 } 2866 } 2867 2868 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 2869 MachineInstr *InsertPt = 2870 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC) 2871 .addReg(AMDGPU::EXEC) 2872 .addReg(NewExec); 2873 2874 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 2875 // s_cbranch_scc0? 2876 2877 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 2878 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 2879 .addMBB(&LoopBB); 2880 2881 return InsertPt->getIterator(); 2882 } 2883 2884 // This has slightly sub-optimal regalloc when the source vector is killed by 2885 // the read. The register allocator does not understand that the kill is 2886 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 2887 // subregister from it, using 1 more VGPR than necessary. This was saved when 2888 // this was expanded after register allocation. 2889 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, 2890 MachineBasicBlock &MBB, 2891 MachineInstr &MI, 2892 unsigned InitResultReg, 2893 unsigned PhiReg, 2894 int Offset, 2895 bool UseGPRIdxMode, 2896 bool IsIndirectSrc) { 2897 MachineFunction *MF = MBB.getParent(); 2898 MachineRegisterInfo &MRI = MF->getRegInfo(); 2899 const DebugLoc &DL = MI.getDebugLoc(); 2900 MachineBasicBlock::iterator I(&MI); 2901 2902 unsigned DstReg = MI.getOperand(0).getReg(); 2903 unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass); 2904 unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass); 2905 2906 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 2907 2908 // Save the EXEC mask 2909 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec) 2910 .addReg(AMDGPU::EXEC); 2911 2912 // To insert the loop we need to split the block. Move everything after this 2913 // point to a new block, and insert a new empty block between the two. 2914 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 2915 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 2916 MachineFunction::iterator MBBI(MBB); 2917 ++MBBI; 2918 2919 MF->insert(MBBI, LoopBB); 2920 MF->insert(MBBI, RemainderBB); 2921 2922 LoopBB->addSuccessor(LoopBB); 2923 LoopBB->addSuccessor(RemainderBB); 2924 2925 // Move the rest of the block into a new block. 2926 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 2927 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 2928 2929 MBB.addSuccessor(LoopBB); 2930 2931 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 2932 2933 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 2934 InitResultReg, DstReg, PhiReg, TmpExec, 2935 Offset, UseGPRIdxMode, IsIndirectSrc); 2936 2937 MachineBasicBlock::iterator First = RemainderBB->begin(); 2938 BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC) 2939 .addReg(SaveExec); 2940 2941 return InsPt; 2942 } 2943 2944 // Returns subreg index, offset 2945 static std::pair<unsigned, int> 2946 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 2947 const TargetRegisterClass *SuperRC, 2948 unsigned VecReg, 2949 int Offset) { 2950 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 2951 2952 // Skip out of bounds offsets, or else we would end up using an undefined 2953 // register. 2954 if (Offset >= NumElts || Offset < 0) 2955 return std::make_pair(AMDGPU::sub0, Offset); 2956 2957 return std::make_pair(AMDGPU::sub0 + Offset, 0); 2958 } 2959 2960 // Return true if the index is an SGPR and was set. 2961 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII, 2962 MachineRegisterInfo &MRI, 2963 MachineInstr &MI, 2964 int Offset, 2965 bool UseGPRIdxMode, 2966 bool IsIndirectSrc) { 2967 MachineBasicBlock *MBB = MI.getParent(); 2968 const DebugLoc &DL = MI.getDebugLoc(); 2969 MachineBasicBlock::iterator I(&MI); 2970 2971 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 2972 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 2973 2974 assert(Idx->getReg() != AMDGPU::NoRegister); 2975 2976 if (!TII->getRegisterInfo().isSGPRClass(IdxRC)) 2977 return false; 2978 2979 if (UseGPRIdxMode) { 2980 unsigned IdxMode = IsIndirectSrc ? 2981 VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE; 2982 if (Offset == 0) { 2983 MachineInstr *SetOn = 2984 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 2985 .add(*Idx) 2986 .addImm(IdxMode); 2987 2988 SetOn->getOperand(3).setIsUndef(); 2989 } else { 2990 unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 2991 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 2992 .add(*Idx) 2993 .addImm(Offset); 2994 MachineInstr *SetOn = 2995 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) 2996 .addReg(Tmp, RegState::Kill) 2997 .addImm(IdxMode); 2998 2999 SetOn->getOperand(3).setIsUndef(); 3000 } 3001 3002 return true; 3003 } 3004 3005 if (Offset == 0) { 3006 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3007 .add(*Idx); 3008 } else { 3009 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3010 .add(*Idx) 3011 .addImm(Offset); 3012 } 3013 3014 return true; 3015 } 3016 3017 // Control flow needs to be inserted if indexing with a VGPR. 3018 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 3019 MachineBasicBlock &MBB, 3020 const GCNSubtarget &ST) { 3021 const SIInstrInfo *TII = ST.getInstrInfo(); 3022 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3023 MachineFunction *MF = MBB.getParent(); 3024 MachineRegisterInfo &MRI = MF->getRegInfo(); 3025 3026 unsigned Dst = MI.getOperand(0).getReg(); 3027 unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 3028 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3029 3030 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 3031 3032 unsigned SubReg; 3033 std::tie(SubReg, Offset) 3034 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 3035 3036 bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode); 3037 3038 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) { 3039 MachineBasicBlock::iterator I(&MI); 3040 const DebugLoc &DL = MI.getDebugLoc(); 3041 3042 if (UseGPRIdxMode) { 3043 // TODO: Look at the uses to avoid the copy. This may require rescheduling 3044 // to avoid interfering with other uses, so probably requires a new 3045 // optimization pass. 3046 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) 3047 .addReg(SrcReg, RegState::Undef, SubReg) 3048 .addReg(SrcReg, RegState::Implicit) 3049 .addReg(AMDGPU::M0, RegState::Implicit); 3050 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3051 } else { 3052 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3053 .addReg(SrcReg, RegState::Undef, SubReg) 3054 .addReg(SrcReg, RegState::Implicit); 3055 } 3056 3057 MI.eraseFromParent(); 3058 3059 return &MBB; 3060 } 3061 3062 const DebugLoc &DL = MI.getDebugLoc(); 3063 MachineBasicBlock::iterator I(&MI); 3064 3065 unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3066 unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3067 3068 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 3069 3070 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, 3071 Offset, UseGPRIdxMode, true); 3072 MachineBasicBlock *LoopBB = InsPt->getParent(); 3073 3074 if (UseGPRIdxMode) { 3075 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) 3076 .addReg(SrcReg, RegState::Undef, SubReg) 3077 .addReg(SrcReg, RegState::Implicit) 3078 .addReg(AMDGPU::M0, RegState::Implicit); 3079 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3080 } else { 3081 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3082 .addReg(SrcReg, RegState::Undef, SubReg) 3083 .addReg(SrcReg, RegState::Implicit); 3084 } 3085 3086 MI.eraseFromParent(); 3087 3088 return LoopBB; 3089 } 3090 3091 static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI, 3092 const TargetRegisterClass *VecRC) { 3093 switch (TRI.getRegSizeInBits(*VecRC)) { 3094 case 32: // 4 bytes 3095 return AMDGPU::V_MOVRELD_B32_V1; 3096 case 64: // 8 bytes 3097 return AMDGPU::V_MOVRELD_B32_V2; 3098 case 128: // 16 bytes 3099 return AMDGPU::V_MOVRELD_B32_V4; 3100 case 256: // 32 bytes 3101 return AMDGPU::V_MOVRELD_B32_V8; 3102 case 512: // 64 bytes 3103 return AMDGPU::V_MOVRELD_B32_V16; 3104 default: 3105 llvm_unreachable("unsupported size for MOVRELD pseudos"); 3106 } 3107 } 3108 3109 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 3110 MachineBasicBlock &MBB, 3111 const GCNSubtarget &ST) { 3112 const SIInstrInfo *TII = ST.getInstrInfo(); 3113 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3114 MachineFunction *MF = MBB.getParent(); 3115 MachineRegisterInfo &MRI = MF->getRegInfo(); 3116 3117 unsigned Dst = MI.getOperand(0).getReg(); 3118 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 3119 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3120 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 3121 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3122 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 3123 3124 // This can be an immediate, but will be folded later. 3125 assert(Val->getReg()); 3126 3127 unsigned SubReg; 3128 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 3129 SrcVec->getReg(), 3130 Offset); 3131 bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode); 3132 3133 if (Idx->getReg() == AMDGPU::NoRegister) { 3134 MachineBasicBlock::iterator I(&MI); 3135 const DebugLoc &DL = MI.getDebugLoc(); 3136 3137 assert(Offset == 0); 3138 3139 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 3140 .add(*SrcVec) 3141 .add(*Val) 3142 .addImm(SubReg); 3143 3144 MI.eraseFromParent(); 3145 return &MBB; 3146 } 3147 3148 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) { 3149 MachineBasicBlock::iterator I(&MI); 3150 const DebugLoc &DL = MI.getDebugLoc(); 3151 3152 if (UseGPRIdxMode) { 3153 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) 3154 .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst 3155 .add(*Val) 3156 .addReg(Dst, RegState::ImplicitDefine) 3157 .addReg(SrcVec->getReg(), RegState::Implicit) 3158 .addReg(AMDGPU::M0, RegState::Implicit); 3159 3160 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3161 } else { 3162 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); 3163 3164 BuildMI(MBB, I, DL, MovRelDesc) 3165 .addReg(Dst, RegState::Define) 3166 .addReg(SrcVec->getReg()) 3167 .add(*Val) 3168 .addImm(SubReg - AMDGPU::sub0); 3169 } 3170 3171 MI.eraseFromParent(); 3172 return &MBB; 3173 } 3174 3175 if (Val->isReg()) 3176 MRI.clearKillFlags(Val->getReg()); 3177 3178 const DebugLoc &DL = MI.getDebugLoc(); 3179 3180 unsigned PhiReg = MRI.createVirtualRegister(VecRC); 3181 3182 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, 3183 Offset, UseGPRIdxMode, false); 3184 MachineBasicBlock *LoopBB = InsPt->getParent(); 3185 3186 if (UseGPRIdxMode) { 3187 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) 3188 .addReg(PhiReg, RegState::Undef, SubReg) // vdst 3189 .add(*Val) // src0 3190 .addReg(Dst, RegState::ImplicitDefine) 3191 .addReg(PhiReg, RegState::Implicit) 3192 .addReg(AMDGPU::M0, RegState::Implicit); 3193 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); 3194 } else { 3195 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); 3196 3197 BuildMI(*LoopBB, InsPt, DL, MovRelDesc) 3198 .addReg(Dst, RegState::Define) 3199 .addReg(PhiReg) 3200 .add(*Val) 3201 .addImm(SubReg - AMDGPU::sub0); 3202 } 3203 3204 MI.eraseFromParent(); 3205 3206 return LoopBB; 3207 } 3208 3209 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 3210 MachineInstr &MI, MachineBasicBlock *BB) const { 3211 3212 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3213 MachineFunction *MF = BB->getParent(); 3214 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 3215 3216 if (TII->isMIMG(MI)) { 3217 if (MI.memoperands_empty() && MI.mayLoadOrStore()) { 3218 report_fatal_error("missing mem operand from MIMG instruction"); 3219 } 3220 // Add a memoperand for mimg instructions so that they aren't assumed to 3221 // be ordered memory instuctions. 3222 3223 return BB; 3224 } 3225 3226 switch (MI.getOpcode()) { 3227 case AMDGPU::S_ADD_U64_PSEUDO: 3228 case AMDGPU::S_SUB_U64_PSEUDO: { 3229 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3230 const DebugLoc &DL = MI.getDebugLoc(); 3231 3232 MachineOperand &Dest = MI.getOperand(0); 3233 MachineOperand &Src0 = MI.getOperand(1); 3234 MachineOperand &Src1 = MI.getOperand(2); 3235 3236 unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3237 unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3238 3239 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, 3240 Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub0, 3241 &AMDGPU::SReg_32_XM0RegClass); 3242 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, 3243 Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub1, 3244 &AMDGPU::SReg_32_XM0RegClass); 3245 3246 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, 3247 Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub0, 3248 &AMDGPU::SReg_32_XM0RegClass); 3249 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, 3250 Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub1, 3251 &AMDGPU::SReg_32_XM0RegClass); 3252 3253 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 3254 3255 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 3256 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 3257 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 3258 .add(Src0Sub0) 3259 .add(Src1Sub0); 3260 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 3261 .add(Src0Sub1) 3262 .add(Src1Sub1); 3263 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 3264 .addReg(DestSub0) 3265 .addImm(AMDGPU::sub0) 3266 .addReg(DestSub1) 3267 .addImm(AMDGPU::sub1); 3268 MI.eraseFromParent(); 3269 return BB; 3270 } 3271 case AMDGPU::SI_INIT_M0: { 3272 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 3273 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3274 .add(MI.getOperand(0)); 3275 MI.eraseFromParent(); 3276 return BB; 3277 } 3278 case AMDGPU::SI_INIT_EXEC: 3279 // This should be before all vector instructions. 3280 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 3281 AMDGPU::EXEC) 3282 .addImm(MI.getOperand(0).getImm()); 3283 MI.eraseFromParent(); 3284 return BB; 3285 3286 case AMDGPU::SI_INIT_EXEC_FROM_INPUT: { 3287 // Extract the thread count from an SGPR input and set EXEC accordingly. 3288 // Since BFM can't shift by 64, handle that case with CMP + CMOV. 3289 // 3290 // S_BFE_U32 count, input, {shift, 7} 3291 // S_BFM_B64 exec, count, 0 3292 // S_CMP_EQ_U32 count, 64 3293 // S_CMOV_B64 exec, -1 3294 MachineInstr *FirstMI = &*BB->begin(); 3295 MachineRegisterInfo &MRI = MF->getRegInfo(); 3296 unsigned InputReg = MI.getOperand(0).getReg(); 3297 unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3298 bool Found = false; 3299 3300 // Move the COPY of the input reg to the beginning, so that we can use it. 3301 for (auto I = BB->begin(); I != &MI; I++) { 3302 if (I->getOpcode() != TargetOpcode::COPY || 3303 I->getOperand(0).getReg() != InputReg) 3304 continue; 3305 3306 if (I == FirstMI) { 3307 FirstMI = &*++BB->begin(); 3308 } else { 3309 I->removeFromParent(); 3310 BB->insert(FirstMI, &*I); 3311 } 3312 Found = true; 3313 break; 3314 } 3315 assert(Found); 3316 (void)Found; 3317 3318 // This should be before all vector instructions. 3319 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg) 3320 .addReg(InputReg) 3321 .addImm((MI.getOperand(1).getImm() & 0x7f) | 0x70000); 3322 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFM_B64), 3323 AMDGPU::EXEC) 3324 .addReg(CountReg) 3325 .addImm(0); 3326 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32)) 3327 .addReg(CountReg, RegState::Kill) 3328 .addImm(64); 3329 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMOV_B64), 3330 AMDGPU::EXEC) 3331 .addImm(-1); 3332 MI.eraseFromParent(); 3333 return BB; 3334 } 3335 3336 case AMDGPU::GET_GROUPSTATICSIZE: { 3337 DebugLoc DL = MI.getDebugLoc(); 3338 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 3339 .add(MI.getOperand(0)) 3340 .addImm(MFI->getLDSSize()); 3341 MI.eraseFromParent(); 3342 return BB; 3343 } 3344 case AMDGPU::SI_INDIRECT_SRC_V1: 3345 case AMDGPU::SI_INDIRECT_SRC_V2: 3346 case AMDGPU::SI_INDIRECT_SRC_V4: 3347 case AMDGPU::SI_INDIRECT_SRC_V8: 3348 case AMDGPU::SI_INDIRECT_SRC_V16: 3349 return emitIndirectSrc(MI, *BB, *getSubtarget()); 3350 case AMDGPU::SI_INDIRECT_DST_V1: 3351 case AMDGPU::SI_INDIRECT_DST_V2: 3352 case AMDGPU::SI_INDIRECT_DST_V4: 3353 case AMDGPU::SI_INDIRECT_DST_V8: 3354 case AMDGPU::SI_INDIRECT_DST_V16: 3355 return emitIndirectDst(MI, *BB, *getSubtarget()); 3356 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 3357 case AMDGPU::SI_KILL_I1_PSEUDO: 3358 return splitKillBlock(MI, BB); 3359 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 3360 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3361 3362 unsigned Dst = MI.getOperand(0).getReg(); 3363 unsigned Src0 = MI.getOperand(1).getReg(); 3364 unsigned Src1 = MI.getOperand(2).getReg(); 3365 const DebugLoc &DL = MI.getDebugLoc(); 3366 unsigned SrcCond = MI.getOperand(3).getReg(); 3367 3368 unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3369 unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3370 unsigned SrcCondCopy = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass); 3371 3372 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 3373 .addReg(SrcCond); 3374 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 3375 .addReg(Src0, 0, AMDGPU::sub0) 3376 .addReg(Src1, 0, AMDGPU::sub0) 3377 .addReg(SrcCondCopy); 3378 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 3379 .addReg(Src0, 0, AMDGPU::sub1) 3380 .addReg(Src1, 0, AMDGPU::sub1) 3381 .addReg(SrcCondCopy); 3382 3383 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 3384 .addReg(DstLo) 3385 .addImm(AMDGPU::sub0) 3386 .addReg(DstHi) 3387 .addImm(AMDGPU::sub1); 3388 MI.eraseFromParent(); 3389 return BB; 3390 } 3391 case AMDGPU::SI_BR_UNDEF: { 3392 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3393 const DebugLoc &DL = MI.getDebugLoc(); 3394 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3395 .add(MI.getOperand(0)); 3396 Br->getOperand(1).setIsUndef(true); // read undef SCC 3397 MI.eraseFromParent(); 3398 return BB; 3399 } 3400 case AMDGPU::ADJCALLSTACKUP: 3401 case AMDGPU::ADJCALLSTACKDOWN: { 3402 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 3403 MachineInstrBuilder MIB(*MF, &MI); 3404 3405 // Add an implicit use of the frame offset reg to prevent the restore copy 3406 // inserted after the call from being reorderd after stack operations in the 3407 // the caller's frame. 3408 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 3409 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit) 3410 .addReg(Info->getFrameOffsetReg(), RegState::Implicit); 3411 return BB; 3412 } 3413 case AMDGPU::SI_CALL_ISEL: 3414 case AMDGPU::SI_TCRETURN_ISEL: { 3415 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3416 const DebugLoc &DL = MI.getDebugLoc(); 3417 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 3418 3419 MachineRegisterInfo &MRI = MF->getRegInfo(); 3420 unsigned GlobalAddrReg = MI.getOperand(0).getReg(); 3421 MachineInstr *PCRel = MRI.getVRegDef(GlobalAddrReg); 3422 assert(PCRel->getOpcode() == AMDGPU::SI_PC_ADD_REL_OFFSET); 3423 3424 const GlobalValue *G = PCRel->getOperand(1).getGlobal(); 3425 3426 MachineInstrBuilder MIB; 3427 if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) { 3428 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg) 3429 .add(MI.getOperand(0)) 3430 .addGlobalAddress(G); 3431 } else { 3432 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_TCRETURN)) 3433 .add(MI.getOperand(0)) 3434 .addGlobalAddress(G); 3435 3436 // There is an additional imm operand for tcreturn, but it should be in the 3437 // right place already. 3438 } 3439 3440 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3441 MIB.add(MI.getOperand(I)); 3442 3443 MIB.cloneMemRefs(MI); 3444 MI.eraseFromParent(); 3445 return BB; 3446 } 3447 default: 3448 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 3449 } 3450 } 3451 3452 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { 3453 return isTypeLegal(VT.getScalarType()); 3454 } 3455 3456 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 3457 // This currently forces unfolding various combinations of fsub into fma with 3458 // free fneg'd operands. As long as we have fast FMA (controlled by 3459 // isFMAFasterThanFMulAndFAdd), we should perform these. 3460 3461 // When fma is quarter rate, for f64 where add / sub are at best half rate, 3462 // most of these combines appear to be cycle neutral but save on instruction 3463 // count / code size. 3464 return true; 3465 } 3466 3467 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 3468 EVT VT) const { 3469 if (!VT.isVector()) { 3470 return MVT::i1; 3471 } 3472 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 3473 } 3474 3475 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 3476 // TODO: Should i16 be used always if legal? For now it would force VALU 3477 // shifts. 3478 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 3479 } 3480 3481 // Answering this is somewhat tricky and depends on the specific device which 3482 // have different rates for fma or all f64 operations. 3483 // 3484 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 3485 // regardless of which device (although the number of cycles differs between 3486 // devices), so it is always profitable for f64. 3487 // 3488 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 3489 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 3490 // which we can always do even without fused FP ops since it returns the same 3491 // result as the separate operations and since it is always full 3492 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 3493 // however does not support denormals, so we do report fma as faster if we have 3494 // a fast fma device and require denormals. 3495 // 3496 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 3497 VT = VT.getScalarType(); 3498 3499 switch (VT.getSimpleVT().SimpleTy) { 3500 case MVT::f32: { 3501 // This is as fast on some subtargets. However, we always have full rate f32 3502 // mad available which returns the same result as the separate operations 3503 // which we should prefer over fma. We can't use this if we want to support 3504 // denormals, so only report this in these cases. 3505 if (Subtarget->hasFP32Denormals()) 3506 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 3507 3508 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 3509 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 3510 } 3511 case MVT::f64: 3512 return true; 3513 case MVT::f16: 3514 return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals(); 3515 default: 3516 break; 3517 } 3518 3519 return false; 3520 } 3521 3522 //===----------------------------------------------------------------------===// 3523 // Custom DAG Lowering Operations 3524 //===----------------------------------------------------------------------===// 3525 3526 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 3527 // wider vector type is legal. 3528 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 3529 SelectionDAG &DAG) const { 3530 unsigned Opc = Op.getOpcode(); 3531 EVT VT = Op.getValueType(); 3532 assert(VT == MVT::v4f16); 3533 3534 SDValue Lo, Hi; 3535 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 3536 3537 SDLoc SL(Op); 3538 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 3539 Op->getFlags()); 3540 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 3541 Op->getFlags()); 3542 3543 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 3544 } 3545 3546 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 3547 // wider vector type is legal. 3548 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 3549 SelectionDAG &DAG) const { 3550 unsigned Opc = Op.getOpcode(); 3551 EVT VT = Op.getValueType(); 3552 assert(VT == MVT::v4i16 || VT == MVT::v4f16); 3553 3554 SDValue Lo0, Hi0; 3555 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 3556 SDValue Lo1, Hi1; 3557 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 3558 3559 SDLoc SL(Op); 3560 3561 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 3562 Op->getFlags()); 3563 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 3564 Op->getFlags()); 3565 3566 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 3567 } 3568 3569 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 3570 switch (Op.getOpcode()) { 3571 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 3572 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 3573 case ISD::LOAD: { 3574 SDValue Result = LowerLOAD(Op, DAG); 3575 assert((!Result.getNode() || 3576 Result.getNode()->getNumValues() == 2) && 3577 "Load should return a value and a chain"); 3578 return Result; 3579 } 3580 3581 case ISD::FSIN: 3582 case ISD::FCOS: 3583 return LowerTrig(Op, DAG); 3584 case ISD::SELECT: return LowerSELECT(Op, DAG); 3585 case ISD::FDIV: return LowerFDIV(Op, DAG); 3586 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 3587 case ISD::STORE: return LowerSTORE(Op, DAG); 3588 case ISD::GlobalAddress: { 3589 MachineFunction &MF = DAG.getMachineFunction(); 3590 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 3591 return LowerGlobalAddress(MFI, Op, DAG); 3592 } 3593 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3594 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 3595 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 3596 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 3597 case ISD::INSERT_VECTOR_ELT: 3598 return lowerINSERT_VECTOR_ELT(Op, DAG); 3599 case ISD::EXTRACT_VECTOR_ELT: 3600 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3601 case ISD::BUILD_VECTOR: 3602 return lowerBUILD_VECTOR(Op, DAG); 3603 case ISD::FP_ROUND: 3604 return lowerFP_ROUND(Op, DAG); 3605 case ISD::TRAP: 3606 return lowerTRAP(Op, DAG); 3607 case ISD::DEBUGTRAP: 3608 return lowerDEBUGTRAP(Op, DAG); 3609 case ISD::FABS: 3610 case ISD::FNEG: 3611 case ISD::FCANONICALIZE: 3612 return splitUnaryVectorOp(Op, DAG); 3613 case ISD::FMINNUM: 3614 case ISD::FMAXNUM: 3615 return lowerFMINNUM_FMAXNUM(Op, DAG); 3616 case ISD::SHL: 3617 case ISD::SRA: 3618 case ISD::SRL: 3619 case ISD::ADD: 3620 case ISD::SUB: 3621 case ISD::MUL: 3622 case ISD::SMIN: 3623 case ISD::SMAX: 3624 case ISD::UMIN: 3625 case ISD::UMAX: 3626 case ISD::FADD: 3627 case ISD::FMUL: 3628 case ISD::FMINNUM_IEEE: 3629 case ISD::FMAXNUM_IEEE: 3630 return splitBinaryVectorOp(Op, DAG); 3631 } 3632 return SDValue(); 3633 } 3634 3635 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 3636 const SDLoc &DL, 3637 SelectionDAG &DAG, bool Unpacked) { 3638 if (!LoadVT.isVector()) 3639 return Result; 3640 3641 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 3642 // Truncate to v2i16/v4i16. 3643 EVT IntLoadVT = LoadVT.changeTypeToInteger(); 3644 3645 // Workaround legalizer not scalarizing truncate after vector op 3646 // legalization byt not creating intermediate vector trunc. 3647 SmallVector<SDValue, 4> Elts; 3648 DAG.ExtractVectorElements(Result, Elts); 3649 for (SDValue &Elt : Elts) 3650 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 3651 3652 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 3653 3654 // Bitcast to original type (v2f16/v4f16). 3655 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); 3656 } 3657 3658 // Cast back to the original packed type. 3659 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); 3660 } 3661 3662 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 3663 MemSDNode *M, 3664 SelectionDAG &DAG, 3665 ArrayRef<SDValue> Ops, 3666 bool IsIntrinsic) const { 3667 SDLoc DL(M); 3668 3669 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 3670 EVT LoadVT = M->getValueType(0); 3671 3672 EVT EquivLoadVT = LoadVT; 3673 if (Unpacked && LoadVT.isVector()) { 3674 EquivLoadVT = LoadVT.isVector() ? 3675 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3676 LoadVT.getVectorNumElements()) : LoadVT; 3677 } 3678 3679 // Change from v4f16/v2f16 to EquivLoadVT. 3680 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 3681 3682 SDValue Load 3683 = DAG.getMemIntrinsicNode( 3684 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 3685 VTList, Ops, M->getMemoryVT(), 3686 M->getMemOperand()); 3687 if (!Unpacked) // Just adjusted the opcode. 3688 return Load; 3689 3690 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 3691 3692 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 3693 } 3694 3695 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 3696 SDNode *N, SelectionDAG &DAG) { 3697 EVT VT = N->getValueType(0); 3698 const auto *CD = dyn_cast<ConstantSDNode>(N->getOperand(3)); 3699 if (!CD) 3700 return DAG.getUNDEF(VT); 3701 3702 int CondCode = CD->getSExtValue(); 3703 if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE || 3704 CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE) 3705 return DAG.getUNDEF(VT); 3706 3707 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 3708 3709 3710 SDValue LHS = N->getOperand(1); 3711 SDValue RHS = N->getOperand(2); 3712 3713 SDLoc DL(N); 3714 3715 EVT CmpVT = LHS.getValueType(); 3716 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 3717 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 3718 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3719 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 3720 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 3721 } 3722 3723 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 3724 3725 return DAG.getNode(AMDGPUISD::SETCC, DL, VT, LHS, RHS, 3726 DAG.getCondCode(CCOpcode)); 3727 } 3728 3729 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 3730 SDNode *N, SelectionDAG &DAG) { 3731 EVT VT = N->getValueType(0); 3732 const auto *CD = dyn_cast<ConstantSDNode>(N->getOperand(3)); 3733 if (!CD) 3734 return DAG.getUNDEF(VT); 3735 3736 int CondCode = CD->getSExtValue(); 3737 if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE || 3738 CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) { 3739 return DAG.getUNDEF(VT); 3740 } 3741 3742 SDValue Src0 = N->getOperand(1); 3743 SDValue Src1 = N->getOperand(2); 3744 EVT CmpVT = Src0.getValueType(); 3745 SDLoc SL(N); 3746 3747 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 3748 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 3749 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 3750 } 3751 3752 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 3753 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 3754 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src0, 3755 Src1, DAG.getCondCode(CCOpcode)); 3756 } 3757 3758 void SITargetLowering::ReplaceNodeResults(SDNode *N, 3759 SmallVectorImpl<SDValue> &Results, 3760 SelectionDAG &DAG) const { 3761 switch (N->getOpcode()) { 3762 case ISD::INSERT_VECTOR_ELT: { 3763 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 3764 Results.push_back(Res); 3765 return; 3766 } 3767 case ISD::EXTRACT_VECTOR_ELT: { 3768 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 3769 Results.push_back(Res); 3770 return; 3771 } 3772 case ISD::INTRINSIC_WO_CHAIN: { 3773 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3774 switch (IID) { 3775 case Intrinsic::amdgcn_cvt_pkrtz: { 3776 SDValue Src0 = N->getOperand(1); 3777 SDValue Src1 = N->getOperand(2); 3778 SDLoc SL(N); 3779 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 3780 Src0, Src1); 3781 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 3782 return; 3783 } 3784 case Intrinsic::amdgcn_cvt_pknorm_i16: 3785 case Intrinsic::amdgcn_cvt_pknorm_u16: 3786 case Intrinsic::amdgcn_cvt_pk_i16: 3787 case Intrinsic::amdgcn_cvt_pk_u16: { 3788 SDValue Src0 = N->getOperand(1); 3789 SDValue Src1 = N->getOperand(2); 3790 SDLoc SL(N); 3791 unsigned Opcode; 3792 3793 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 3794 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 3795 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 3796 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 3797 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 3798 Opcode = AMDGPUISD::CVT_PK_I16_I32; 3799 else 3800 Opcode = AMDGPUISD::CVT_PK_U16_U32; 3801 3802 EVT VT = N->getValueType(0); 3803 if (isTypeLegal(VT)) 3804 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 3805 else { 3806 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 3807 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 3808 } 3809 return; 3810 } 3811 } 3812 break; 3813 } 3814 case ISD::INTRINSIC_W_CHAIN: { 3815 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 3816 Results.push_back(Res); 3817 Results.push_back(Res.getValue(1)); 3818 return; 3819 } 3820 3821 break; 3822 } 3823 case ISD::SELECT: { 3824 SDLoc SL(N); 3825 EVT VT = N->getValueType(0); 3826 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3827 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 3828 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 3829 3830 EVT SelectVT = NewVT; 3831 if (NewVT.bitsLT(MVT::i32)) { 3832 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 3833 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 3834 SelectVT = MVT::i32; 3835 } 3836 3837 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 3838 N->getOperand(0), LHS, RHS); 3839 3840 if (NewVT != SelectVT) 3841 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 3842 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 3843 return; 3844 } 3845 case ISD::FNEG: { 3846 if (N->getValueType(0) != MVT::v2f16) 3847 break; 3848 3849 SDLoc SL(N); 3850 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 3851 3852 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 3853 BC, 3854 DAG.getConstant(0x80008000, SL, MVT::i32)); 3855 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 3856 return; 3857 } 3858 case ISD::FABS: { 3859 if (N->getValueType(0) != MVT::v2f16) 3860 break; 3861 3862 SDLoc SL(N); 3863 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 3864 3865 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 3866 BC, 3867 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 3868 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 3869 return; 3870 } 3871 default: 3872 break; 3873 } 3874 } 3875 3876 /// Helper function for LowerBRCOND 3877 static SDNode *findUser(SDValue Value, unsigned Opcode) { 3878 3879 SDNode *Parent = Value.getNode(); 3880 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 3881 I != E; ++I) { 3882 3883 if (I.getUse().get() != Value) 3884 continue; 3885 3886 if (I->getOpcode() == Opcode) 3887 return *I; 3888 } 3889 return nullptr; 3890 } 3891 3892 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 3893 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 3894 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { 3895 case Intrinsic::amdgcn_if: 3896 return AMDGPUISD::IF; 3897 case Intrinsic::amdgcn_else: 3898 return AMDGPUISD::ELSE; 3899 case Intrinsic::amdgcn_loop: 3900 return AMDGPUISD::LOOP; 3901 case Intrinsic::amdgcn_end_cf: 3902 llvm_unreachable("should not occur"); 3903 default: 3904 return 0; 3905 } 3906 } 3907 3908 // break, if_break, else_break are all only used as inputs to loop, not 3909 // directly as branch conditions. 3910 return 0; 3911 } 3912 3913 void SITargetLowering::createDebuggerPrologueStackObjects( 3914 MachineFunction &MF) const { 3915 // Create stack objects that are used for emitting debugger prologue. 3916 // 3917 // Debugger prologue writes work group IDs and work item IDs to scratch memory 3918 // at fixed location in the following format: 3919 // offset 0: work group ID x 3920 // offset 4: work group ID y 3921 // offset 8: work group ID z 3922 // offset 16: work item ID x 3923 // offset 20: work item ID y 3924 // offset 24: work item ID z 3925 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3926 int ObjectIdx = 0; 3927 3928 // For each dimension: 3929 for (unsigned i = 0; i < 3; ++i) { 3930 // Create fixed stack object for work group ID. 3931 ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true); 3932 Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx); 3933 // Create fixed stack object for work item ID. 3934 ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true); 3935 Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx); 3936 } 3937 } 3938 3939 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 3940 const Triple &TT = getTargetMachine().getTargetTriple(); 3941 return (GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 3942 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 3943 AMDGPU::shouldEmitConstantsToTextSection(TT); 3944 } 3945 3946 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 3947 return (GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 3948 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 3949 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 3950 !shouldEmitFixup(GV) && 3951 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3952 } 3953 3954 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 3955 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 3956 } 3957 3958 /// This transforms the control flow intrinsics to get the branch destination as 3959 /// last parameter, also switches branch target with BR if the need arise 3960 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 3961 SelectionDAG &DAG) const { 3962 SDLoc DL(BRCOND); 3963 3964 SDNode *Intr = BRCOND.getOperand(1).getNode(); 3965 SDValue Target = BRCOND.getOperand(2); 3966 SDNode *BR = nullptr; 3967 SDNode *SetCC = nullptr; 3968 3969 if (Intr->getOpcode() == ISD::SETCC) { 3970 // As long as we negate the condition everything is fine 3971 SetCC = Intr; 3972 Intr = SetCC->getOperand(0).getNode(); 3973 3974 } else { 3975 // Get the target from BR if we don't negate the condition 3976 BR = findUser(BRCOND, ISD::BR); 3977 Target = BR->getOperand(1); 3978 } 3979 3980 // FIXME: This changes the types of the intrinsics instead of introducing new 3981 // nodes with the correct types. 3982 // e.g. llvm.amdgcn.loop 3983 3984 // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3 3985 // => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088> 3986 3987 unsigned CFNode = isCFIntrinsic(Intr); 3988 if (CFNode == 0) { 3989 // This is a uniform branch so we don't need to legalize. 3990 return BRCOND; 3991 } 3992 3993 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 3994 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 3995 3996 assert(!SetCC || 3997 (SetCC->getConstantOperandVal(1) == 1 && 3998 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 3999 ISD::SETNE)); 4000 4001 // operands of the new intrinsic call 4002 SmallVector<SDValue, 4> Ops; 4003 if (HaveChain) 4004 Ops.push_back(BRCOND.getOperand(0)); 4005 4006 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 4007 Ops.push_back(Target); 4008 4009 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 4010 4011 // build the new intrinsic call 4012 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 4013 4014 if (!HaveChain) { 4015 SDValue Ops[] = { 4016 SDValue(Result, 0), 4017 BRCOND.getOperand(0) 4018 }; 4019 4020 Result = DAG.getMergeValues(Ops, DL).getNode(); 4021 } 4022 4023 if (BR) { 4024 // Give the branch instruction our target 4025 SDValue Ops[] = { 4026 BR->getOperand(0), 4027 BRCOND.getOperand(2) 4028 }; 4029 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 4030 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 4031 BR = NewBR.getNode(); 4032 } 4033 4034 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 4035 4036 // Copy the intrinsic results to registers 4037 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 4038 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 4039 if (!CopyToReg) 4040 continue; 4041 4042 Chain = DAG.getCopyToReg( 4043 Chain, DL, 4044 CopyToReg->getOperand(1), 4045 SDValue(Result, i - 1), 4046 SDValue()); 4047 4048 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 4049 } 4050 4051 // Remove the old intrinsic from the chain 4052 DAG.ReplaceAllUsesOfValueWith( 4053 SDValue(Intr, Intr->getNumValues() - 1), 4054 Intr->getOperand(0)); 4055 4056 return Chain; 4057 } 4058 4059 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG, 4060 SDValue Op, 4061 const SDLoc &DL, 4062 EVT VT) const { 4063 return Op.getValueType().bitsLE(VT) ? 4064 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 4065 DAG.getNode(ISD::FTRUNC, DL, VT, Op); 4066 } 4067 4068 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 4069 assert(Op.getValueType() == MVT::f16 && 4070 "Do not know how to custom lower FP_ROUND for non-f16 type"); 4071 4072 SDValue Src = Op.getOperand(0); 4073 EVT SrcVT = Src.getValueType(); 4074 if (SrcVT != MVT::f64) 4075 return Op; 4076 4077 SDLoc DL(Op); 4078 4079 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 4080 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 4081 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 4082 } 4083 4084 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 4085 SelectionDAG &DAG) const { 4086 EVT VT = Op.getValueType(); 4087 bool IsIEEEMode = Subtarget->enableIEEEBit(DAG.getMachineFunction()); 4088 4089 // FIXME: Assert during eslection that this is only selected for 4090 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 4091 // mode functions, but this happens to be OK since it's only done in cases 4092 // where there is known no sNaN. 4093 if (IsIEEEMode) 4094 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 4095 4096 if (VT == MVT::v4f16) 4097 return splitBinaryVectorOp(Op, DAG); 4098 return Op; 4099 } 4100 4101 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 4102 SDLoc SL(Op); 4103 SDValue Chain = Op.getOperand(0); 4104 4105 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4106 !Subtarget->isTrapHandlerEnabled()) 4107 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); 4108 4109 MachineFunction &MF = DAG.getMachineFunction(); 4110 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4111 unsigned UserSGPR = Info->getQueuePtrUserSGPR(); 4112 assert(UserSGPR != AMDGPU::NoRegister); 4113 SDValue QueuePtr = CreateLiveInRegister( 4114 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 4115 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 4116 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 4117 QueuePtr, SDValue()); 4118 SDValue Ops[] = { 4119 ToReg, 4120 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16), 4121 SGPR01, 4122 ToReg.getValue(1) 4123 }; 4124 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 4125 } 4126 4127 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 4128 SDLoc SL(Op); 4129 SDValue Chain = Op.getOperand(0); 4130 MachineFunction &MF = DAG.getMachineFunction(); 4131 4132 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || 4133 !Subtarget->isTrapHandlerEnabled()) { 4134 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 4135 "debugtrap handler not supported", 4136 Op.getDebugLoc(), 4137 DS_Warning); 4138 LLVMContext &Ctx = MF.getFunction().getContext(); 4139 Ctx.diagnose(NoTrap); 4140 return Chain; 4141 } 4142 4143 SDValue Ops[] = { 4144 Chain, 4145 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16) 4146 }; 4147 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 4148 } 4149 4150 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 4151 SelectionDAG &DAG) const { 4152 // FIXME: Use inline constants (src_{shared, private}_base) instead. 4153 if (Subtarget->hasApertureRegs()) { 4154 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 4155 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 4156 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 4157 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 4158 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 4159 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 4160 unsigned Encoding = 4161 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 4162 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 4163 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 4164 4165 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); 4166 SDValue ApertureReg = SDValue( 4167 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); 4168 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); 4169 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); 4170 } 4171 4172 MachineFunction &MF = DAG.getMachineFunction(); 4173 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4174 unsigned UserSGPR = Info->getQueuePtrUserSGPR(); 4175 assert(UserSGPR != AMDGPU::NoRegister); 4176 4177 SDValue QueuePtr = CreateLiveInRegister( 4178 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 4179 4180 // Offset into amd_queue_t for group_segment_aperture_base_hi / 4181 // private_segment_aperture_base_hi. 4182 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 4183 4184 SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset); 4185 4186 // TODO: Use custom target PseudoSourceValue. 4187 // TODO: We should use the value from the IR intrinsic call, but it might not 4188 // be available and how do we get it? 4189 Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()), 4190 AMDGPUAS::CONSTANT_ADDRESS)); 4191 4192 MachinePointerInfo PtrInfo(V, StructOffset); 4193 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 4194 MinAlign(64, StructOffset), 4195 MachineMemOperand::MODereferenceable | 4196 MachineMemOperand::MOInvariant); 4197 } 4198 4199 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 4200 SelectionDAG &DAG) const { 4201 SDLoc SL(Op); 4202 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 4203 4204 SDValue Src = ASC->getOperand(0); 4205 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 4206 4207 const AMDGPUTargetMachine &TM = 4208 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 4209 4210 // flat -> local/private 4211 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 4212 unsigned DestAS = ASC->getDestAddressSpace(); 4213 4214 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 4215 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 4216 unsigned NullVal = TM.getNullPointerValue(DestAS); 4217 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 4218 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 4219 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 4220 4221 return DAG.getNode(ISD::SELECT, SL, MVT::i32, 4222 NonNull, Ptr, SegmentNullPtr); 4223 } 4224 } 4225 4226 // local/private -> flat 4227 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 4228 unsigned SrcAS = ASC->getSrcAddressSpace(); 4229 4230 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 4231 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 4232 unsigned NullVal = TM.getNullPointerValue(SrcAS); 4233 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 4234 4235 SDValue NonNull 4236 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 4237 4238 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 4239 SDValue CvtPtr 4240 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 4241 4242 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, 4243 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), 4244 FlatNullPtr); 4245 } 4246 } 4247 4248 // global <-> flat are no-ops and never emitted. 4249 4250 const MachineFunction &MF = DAG.getMachineFunction(); 4251 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 4252 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 4253 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 4254 4255 return DAG.getUNDEF(ASC->getValueType(0)); 4256 } 4257 4258 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4259 SelectionDAG &DAG) const { 4260 SDValue Vec = Op.getOperand(0); 4261 SDValue InsVal = Op.getOperand(1); 4262 SDValue Idx = Op.getOperand(2); 4263 EVT VecVT = Vec.getValueType(); 4264 EVT EltVT = VecVT.getVectorElementType(); 4265 unsigned VecSize = VecVT.getSizeInBits(); 4266 unsigned EltSize = EltVT.getSizeInBits(); 4267 4268 4269 assert(VecSize <= 64); 4270 4271 unsigned NumElts = VecVT.getVectorNumElements(); 4272 SDLoc SL(Op); 4273 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 4274 4275 if (NumElts == 4 && EltSize == 16 && KIdx) { 4276 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 4277 4278 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 4279 DAG.getConstant(0, SL, MVT::i32)); 4280 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 4281 DAG.getConstant(1, SL, MVT::i32)); 4282 4283 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 4284 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 4285 4286 unsigned Idx = KIdx->getZExtValue(); 4287 bool InsertLo = Idx < 2; 4288 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 4289 InsertLo ? LoVec : HiVec, 4290 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 4291 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 4292 4293 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 4294 4295 SDValue Concat = InsertLo ? 4296 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 4297 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 4298 4299 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 4300 } 4301 4302 if (isa<ConstantSDNode>(Idx)) 4303 return SDValue(); 4304 4305 MVT IntVT = MVT::getIntegerVT(VecSize); 4306 4307 // Avoid stack access for dynamic indexing. 4308 SDValue Val = InsVal; 4309 if (InsVal.getValueType() == MVT::f16) 4310 Val = DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal); 4311 4312 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 4313 SDValue ExtVal = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Val); 4314 4315 assert(isPowerOf2_32(EltSize)); 4316 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 4317 4318 // Convert vector index to bit-index. 4319 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 4320 4321 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 4322 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 4323 DAG.getConstant(0xffff, SL, IntVT), 4324 ScaledIdx); 4325 4326 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 4327 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 4328 DAG.getNOT(SL, BFM, IntVT), BCVec); 4329 4330 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 4331 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 4332 } 4333 4334 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4335 SelectionDAG &DAG) const { 4336 SDLoc SL(Op); 4337 4338 EVT ResultVT = Op.getValueType(); 4339 SDValue Vec = Op.getOperand(0); 4340 SDValue Idx = Op.getOperand(1); 4341 EVT VecVT = Vec.getValueType(); 4342 unsigned VecSize = VecVT.getSizeInBits(); 4343 EVT EltVT = VecVT.getVectorElementType(); 4344 assert(VecSize <= 64); 4345 4346 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 4347 4348 // Make sure we do any optimizations that will make it easier to fold 4349 // source modifiers before obscuring it with bit operations. 4350 4351 // XXX - Why doesn't this get called when vector_shuffle is expanded? 4352 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 4353 return Combined; 4354 4355 unsigned EltSize = EltVT.getSizeInBits(); 4356 assert(isPowerOf2_32(EltSize)); 4357 4358 MVT IntVT = MVT::getIntegerVT(VecSize); 4359 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 4360 4361 // Convert vector index to bit-index (* EltSize) 4362 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 4363 4364 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 4365 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 4366 4367 if (ResultVT == MVT::f16) { 4368 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 4369 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 4370 } 4371 4372 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 4373 } 4374 4375 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 4376 SelectionDAG &DAG) const { 4377 SDLoc SL(Op); 4378 EVT VT = Op.getValueType(); 4379 4380 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 4381 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2); 4382 4383 // Turn into pair of packed build_vectors. 4384 // TODO: Special case for constants that can be materialized with s_mov_b64. 4385 SDValue Lo = DAG.getBuildVector(HalfVT, SL, 4386 { Op.getOperand(0), Op.getOperand(1) }); 4387 SDValue Hi = DAG.getBuildVector(HalfVT, SL, 4388 { Op.getOperand(2), Op.getOperand(3) }); 4389 4390 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo); 4391 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi); 4392 4393 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi }); 4394 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 4395 } 4396 4397 assert(VT == MVT::v2f16 || VT == MVT::v2i16); 4398 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 4399 4400 SDValue Lo = Op.getOperand(0); 4401 SDValue Hi = Op.getOperand(1); 4402 4403 // Avoid adding defined bits with the zero_extend. 4404 if (Hi.isUndef()) { 4405 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 4406 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 4407 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 4408 } 4409 4410 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 4411 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 4412 4413 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 4414 DAG.getConstant(16, SL, MVT::i32)); 4415 if (Lo.isUndef()) 4416 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 4417 4418 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 4419 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 4420 4421 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 4422 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 4423 } 4424 4425 bool 4426 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 4427 // We can fold offsets for anything that doesn't require a GOT relocation. 4428 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 4429 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 4430 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 4431 !shouldEmitGOTReloc(GA->getGlobal()); 4432 } 4433 4434 static SDValue 4435 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 4436 const SDLoc &DL, unsigned Offset, EVT PtrVT, 4437 unsigned GAFlags = SIInstrInfo::MO_NONE) { 4438 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 4439 // lowered to the following code sequence: 4440 // 4441 // For constant address space: 4442 // s_getpc_b64 s[0:1] 4443 // s_add_u32 s0, s0, $symbol 4444 // s_addc_u32 s1, s1, 0 4445 // 4446 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 4447 // a fixup or relocation is emitted to replace $symbol with a literal 4448 // constant, which is a pc-relative offset from the encoding of the $symbol 4449 // operand to the global variable. 4450 // 4451 // For global address space: 4452 // s_getpc_b64 s[0:1] 4453 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 4454 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 4455 // 4456 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 4457 // fixups or relocations are emitted to replace $symbol@*@lo and 4458 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 4459 // which is a 64-bit pc-relative offset from the encoding of the $symbol 4460 // operand to the global variable. 4461 // 4462 // What we want here is an offset from the value returned by s_getpc 4463 // (which is the address of the s_add_u32 instruction) to the global 4464 // variable, but since the encoding of $symbol starts 4 bytes after the start 4465 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 4466 // small. This requires us to add 4 to the global variable offset in order to 4467 // compute the correct address. 4468 SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, 4469 GAFlags); 4470 SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, 4471 GAFlags == SIInstrInfo::MO_NONE ? 4472 GAFlags : GAFlags + 1); 4473 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 4474 } 4475 4476 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 4477 SDValue Op, 4478 SelectionDAG &DAG) const { 4479 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 4480 const GlobalValue *GV = GSD->getGlobal(); 4481 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 4482 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 4483 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) 4484 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 4485 4486 SDLoc DL(GSD); 4487 EVT PtrVT = Op.getValueType(); 4488 4489 // FIXME: Should not make address space based decisions here. 4490 if (shouldEmitFixup(GV)) 4491 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 4492 else if (shouldEmitPCReloc(GV)) 4493 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 4494 SIInstrInfo::MO_REL32); 4495 4496 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 4497 SIInstrInfo::MO_GOTPCREL32); 4498 4499 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 4500 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 4501 const DataLayout &DataLayout = DAG.getDataLayout(); 4502 unsigned Align = DataLayout.getABITypeAlignment(PtrTy); 4503 MachinePointerInfo PtrInfo 4504 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 4505 4506 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align, 4507 MachineMemOperand::MODereferenceable | 4508 MachineMemOperand::MOInvariant); 4509 } 4510 4511 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 4512 const SDLoc &DL, SDValue V) const { 4513 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 4514 // the destination register. 4515 // 4516 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 4517 // so we will end up with redundant moves to m0. 4518 // 4519 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 4520 4521 // A Null SDValue creates a glue result. 4522 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 4523 V, Chain); 4524 return SDValue(M0, 0); 4525 } 4526 4527 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 4528 SDValue Op, 4529 MVT VT, 4530 unsigned Offset) const { 4531 SDLoc SL(Op); 4532 SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL, 4533 DAG.getEntryNode(), Offset, 4, false); 4534 // The local size values will have the hi 16-bits as zero. 4535 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 4536 DAG.getValueType(VT)); 4537 } 4538 4539 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 4540 EVT VT) { 4541 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 4542 "non-hsa intrinsic with hsa target", 4543 DL.getDebugLoc()); 4544 DAG.getContext()->diagnose(BadIntrin); 4545 return DAG.getUNDEF(VT); 4546 } 4547 4548 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 4549 EVT VT) { 4550 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 4551 "intrinsic not supported on subtarget", 4552 DL.getDebugLoc()); 4553 DAG.getContext()->diagnose(BadIntrin); 4554 return DAG.getUNDEF(VT); 4555 } 4556 4557 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 4558 ArrayRef<SDValue> Elts) { 4559 assert(!Elts.empty()); 4560 MVT Type; 4561 unsigned NumElts; 4562 4563 if (Elts.size() == 1) { 4564 Type = MVT::f32; 4565 NumElts = 1; 4566 } else if (Elts.size() == 2) { 4567 Type = MVT::v2f32; 4568 NumElts = 2; 4569 } else if (Elts.size() <= 4) { 4570 Type = MVT::v4f32; 4571 NumElts = 4; 4572 } else if (Elts.size() <= 8) { 4573 Type = MVT::v8f32; 4574 NumElts = 8; 4575 } else { 4576 assert(Elts.size() <= 16); 4577 Type = MVT::v16f32; 4578 NumElts = 16; 4579 } 4580 4581 SmallVector<SDValue, 16> VecElts(NumElts); 4582 for (unsigned i = 0; i < Elts.size(); ++i) { 4583 SDValue Elt = Elts[i]; 4584 if (Elt.getValueType() != MVT::f32) 4585 Elt = DAG.getBitcast(MVT::f32, Elt); 4586 VecElts[i] = Elt; 4587 } 4588 for (unsigned i = Elts.size(); i < NumElts; ++i) 4589 VecElts[i] = DAG.getUNDEF(MVT::f32); 4590 4591 if (NumElts == 1) 4592 return VecElts[0]; 4593 return DAG.getBuildVector(Type, DL, VecElts); 4594 } 4595 4596 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG, 4597 SDValue *GLC, SDValue *SLC) { 4598 auto CachePolicyConst = dyn_cast<ConstantSDNode>(CachePolicy.getNode()); 4599 if (!CachePolicyConst) 4600 return false; 4601 4602 uint64_t Value = CachePolicyConst->getZExtValue(); 4603 SDLoc DL(CachePolicy); 4604 if (GLC) { 4605 *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 4606 Value &= ~(uint64_t)0x1; 4607 } 4608 if (SLC) { 4609 *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 4610 Value &= ~(uint64_t)0x2; 4611 } 4612 4613 return Value == 0; 4614 } 4615 4616 SDValue SITargetLowering::lowerImage(SDValue Op, 4617 const AMDGPU::ImageDimIntrinsicInfo *Intr, 4618 SelectionDAG &DAG) const { 4619 SDLoc DL(Op); 4620 MachineFunction &MF = DAG.getMachineFunction(); 4621 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 4622 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 4623 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 4624 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 4625 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = 4626 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode); 4627 unsigned IntrOpcode = Intr->BaseOpcode; 4628 4629 SmallVector<EVT, 2> ResultTypes(Op->value_begin(), Op->value_end()); 4630 bool IsD16 = false; 4631 bool IsA16 = false; 4632 SDValue VData; 4633 int NumVDataDwords; 4634 unsigned AddrIdx; // Index of first address argument 4635 unsigned DMask; 4636 4637 if (BaseOpcode->Atomic) { 4638 VData = Op.getOperand(2); 4639 4640 bool Is64Bit = VData.getValueType() == MVT::i64; 4641 if (BaseOpcode->AtomicX2) { 4642 SDValue VData2 = Op.getOperand(3); 4643 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 4644 {VData, VData2}); 4645 if (Is64Bit) 4646 VData = DAG.getBitcast(MVT::v4i32, VData); 4647 4648 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 4649 DMask = Is64Bit ? 0xf : 0x3; 4650 NumVDataDwords = Is64Bit ? 4 : 2; 4651 AddrIdx = 4; 4652 } else { 4653 DMask = Is64Bit ? 0x3 : 0x1; 4654 NumVDataDwords = Is64Bit ? 2 : 1; 4655 AddrIdx = 3; 4656 } 4657 } else { 4658 unsigned DMaskIdx; 4659 4660 if (BaseOpcode->Store) { 4661 VData = Op.getOperand(2); 4662 4663 MVT StoreVT = VData.getSimpleValueType(); 4664 if (StoreVT.getScalarType() == MVT::f16) { 4665 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS || 4666 !BaseOpcode->HasD16) 4667 return Op; // D16 is unsupported for this instruction 4668 4669 IsD16 = true; 4670 VData = handleD16VData(VData, DAG); 4671 } 4672 4673 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 4674 DMaskIdx = 3; 4675 } else { 4676 MVT LoadVT = Op.getSimpleValueType(); 4677 if (LoadVT.getScalarType() == MVT::f16) { 4678 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS || 4679 !BaseOpcode->HasD16) 4680 return Op; // D16 is unsupported for this instruction 4681 4682 IsD16 = true; 4683 if (LoadVT.isVector() && Subtarget->hasUnpackedD16VMem()) 4684 ResultTypes[0] = (LoadVT == MVT::v2f16) ? MVT::v2i32 : MVT::v4i32; 4685 } 4686 4687 NumVDataDwords = (ResultTypes[0].getSizeInBits() + 31) / 32; 4688 DMaskIdx = isa<MemSDNode>(Op) ? 2 : 1; 4689 } 4690 4691 auto DMaskConst = dyn_cast<ConstantSDNode>(Op.getOperand(DMaskIdx)); 4692 if (!DMaskConst) 4693 return Op; 4694 4695 AddrIdx = DMaskIdx + 1; 4696 DMask = DMaskConst->getZExtValue(); 4697 if (!DMask && !BaseOpcode->Store) { 4698 // Eliminate no-op loads. Stores with dmask == 0 are *not* no-op: they 4699 // store the channels' default values. 4700 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 4701 if (isa<MemSDNode>(Op)) 4702 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 4703 return Undef; 4704 } 4705 } 4706 4707 unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0; 4708 unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0; 4709 unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0; 4710 unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients + 4711 NumCoords + NumLCM; 4712 unsigned NumMIVAddrs = NumVAddrs; 4713 4714 SmallVector<SDValue, 4> VAddrs; 4715 4716 // Optimize _L to _LZ when _L is zero 4717 if (LZMappingInfo) { 4718 if (auto ConstantLod = 4719 dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { 4720 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 4721 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l 4722 NumMIVAddrs--; // remove 'lod' 4723 } 4724 } 4725 } 4726 4727 // Check for 16 bit addresses and pack if true. 4728 unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs; 4729 MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType(); 4730 const MVT VAddrScalarVT = VAddrVT.getScalarType(); 4731 if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) && 4732 ST->hasFeature(AMDGPU::FeatureR128A16)) { 4733 IsA16 = true; 4734 const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 4735 for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) { 4736 SDValue AddrLo, AddrHi; 4737 // Push back extra arguments. 4738 if (i < DimIdx) { 4739 AddrLo = Op.getOperand(i); 4740 } else { 4741 AddrLo = Op.getOperand(i); 4742 // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, 4743 // in 1D, derivatives dx/dh and dx/dv are packed with undef. 4744 if (((i + 1) >= (AddrIdx + NumMIVAddrs)) || 4745 ((NumGradients / 2) % 2 == 1 && 4746 (i == DimIdx + (NumGradients / 2) - 1 || 4747 i == DimIdx + NumGradients - 1))) { 4748 AddrHi = DAG.getUNDEF(MVT::f16); 4749 } else { 4750 AddrHi = Op.getOperand(i + 1); 4751 i++; 4752 } 4753 AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT, 4754 {AddrLo, AddrHi}); 4755 AddrLo = DAG.getBitcast(MVT::i32, AddrLo); 4756 } 4757 VAddrs.push_back(AddrLo); 4758 } 4759 } else { 4760 for (unsigned i = 0; i < NumMIVAddrs; ++i) 4761 VAddrs.push_back(Op.getOperand(AddrIdx + i)); 4762 } 4763 4764 SDValue VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 4765 4766 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 4767 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 4768 unsigned CtrlIdx; // Index of texfailctrl argument 4769 SDValue Unorm; 4770 if (!BaseOpcode->Sampler) { 4771 Unorm = True; 4772 CtrlIdx = AddrIdx + NumVAddrs + 1; 4773 } else { 4774 auto UnormConst = 4775 dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2)); 4776 if (!UnormConst) 4777 return Op; 4778 4779 Unorm = UnormConst->getZExtValue() ? True : False; 4780 CtrlIdx = AddrIdx + NumVAddrs + 3; 4781 } 4782 4783 SDValue TexFail = Op.getOperand(CtrlIdx); 4784 auto TexFailConst = dyn_cast<ConstantSDNode>(TexFail.getNode()); 4785 if (!TexFailConst || TexFailConst->getZExtValue() != 0) 4786 return Op; 4787 4788 SDValue GLC; 4789 SDValue SLC; 4790 if (BaseOpcode->Atomic) { 4791 GLC = True; // TODO no-return optimization 4792 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC)) 4793 return Op; 4794 } else { 4795 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC)) 4796 return Op; 4797 } 4798 4799 SmallVector<SDValue, 14> Ops; 4800 if (BaseOpcode->Store || BaseOpcode->Atomic) 4801 Ops.push_back(VData); // vdata 4802 Ops.push_back(VAddr); 4803 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc 4804 if (BaseOpcode->Sampler) 4805 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler 4806 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 4807 Ops.push_back(Unorm); 4808 Ops.push_back(GLC); 4809 Ops.push_back(SLC); 4810 Ops.push_back(IsA16 && // a16 or r128 4811 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 4812 Ops.push_back(False); // tfe 4813 Ops.push_back(False); // lwe 4814 Ops.push_back(DimInfo->DA ? True : False); 4815 if (BaseOpcode->HasD16) 4816 Ops.push_back(IsD16 ? True : False); 4817 if (isa<MemSDNode>(Op)) 4818 Ops.push_back(Op.getOperand(0)); // chain 4819 4820 int NumVAddrDwords = VAddr.getValueType().getSizeInBits() / 32; 4821 int Opcode = -1; 4822 4823 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 4824 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 4825 NumVDataDwords, NumVAddrDwords); 4826 if (Opcode == -1) 4827 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 4828 NumVDataDwords, NumVAddrDwords); 4829 assert(Opcode != -1); 4830 4831 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 4832 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 4833 MachineMemOperand *MemRef = MemOp->getMemOperand(); 4834 DAG.setNodeMemRefs(NewNode, {MemRef}); 4835 } 4836 4837 if (BaseOpcode->AtomicX2) { 4838 SmallVector<SDValue, 1> Elt; 4839 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 4840 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 4841 } else if (IsD16 && !BaseOpcode->Store) { 4842 MVT LoadVT = Op.getSimpleValueType(); 4843 SDValue Adjusted = adjustLoadValueTypeImpl( 4844 SDValue(NewNode, 0), LoadVT, DL, DAG, Subtarget->hasUnpackedD16VMem()); 4845 return DAG.getMergeValues({Adjusted, SDValue(NewNode, 1)}, DL); 4846 } 4847 4848 return SDValue(NewNode, 0); 4849 } 4850 4851 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 4852 SDValue Offset, SDValue GLC, 4853 SelectionDAG &DAG) const { 4854 MachineFunction &MF = DAG.getMachineFunction(); 4855 MachineMemOperand *MMO = MF.getMachineMemOperand( 4856 MachinePointerInfo(), 4857 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 4858 MachineMemOperand::MOInvariant, 4859 VT.getStoreSize(), VT.getStoreSize()); 4860 4861 if (!Offset->isDivergent()) { 4862 SDValue Ops[] = { 4863 Rsrc, 4864 Offset, // Offset 4865 GLC // glc 4866 }; 4867 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 4868 DAG.getVTList(VT), Ops, VT, MMO); 4869 } 4870 4871 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 4872 // assume that the buffer is unswizzled. 4873 SmallVector<SDValue, 4> Loads; 4874 unsigned NumLoads = 1; 4875 MVT LoadVT = VT.getSimpleVT(); 4876 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 4877 assert((LoadVT.getScalarType() == MVT::i32 || 4878 LoadVT.getScalarType() == MVT::f32) && 4879 isPowerOf2_32(NumElts)); 4880 4881 if (NumElts == 8 || NumElts == 16) { 4882 NumLoads = NumElts == 16 ? 4 : 2; 4883 LoadVT = MVT::v4i32; 4884 } 4885 4886 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 4887 unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue(); 4888 SDValue Ops[] = { 4889 DAG.getEntryNode(), // Chain 4890 Rsrc, // rsrc 4891 DAG.getConstant(0, DL, MVT::i32), // vindex 4892 {}, // voffset 4893 {}, // soffset 4894 {}, // offset 4895 DAG.getConstant(CachePolicy, DL, MVT::i32), // cachepolicy 4896 DAG.getConstant(0, DL, MVT::i1), // idxen 4897 }; 4898 4899 // Use the alignment to ensure that the required offsets will fit into the 4900 // immediate offsets. 4901 setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4); 4902 4903 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); 4904 for (unsigned i = 0; i < NumLoads; ++i) { 4905 Ops[5] = DAG.getConstant(InstOffset + 16 * i, DL, MVT::i32); 4906 Loads.push_back(DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, 4907 Ops, LoadVT, MMO)); 4908 } 4909 4910 if (VT == MVT::v8i32 || VT == MVT::v16i32) 4911 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 4912 4913 return Loads[0]; 4914 } 4915 4916 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4917 SelectionDAG &DAG) const { 4918 MachineFunction &MF = DAG.getMachineFunction(); 4919 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 4920 4921 EVT VT = Op.getValueType(); 4922 SDLoc DL(Op); 4923 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4924 4925 // TODO: Should this propagate fast-math-flags? 4926 4927 switch (IntrinsicID) { 4928 case Intrinsic::amdgcn_implicit_buffer_ptr: { 4929 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 4930 return emitNonHSAIntrinsicError(DAG, DL, VT); 4931 return getPreloadedValue(DAG, *MFI, VT, 4932 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 4933 } 4934 case Intrinsic::amdgcn_dispatch_ptr: 4935 case Intrinsic::amdgcn_queue_ptr: { 4936 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 4937 DiagnosticInfoUnsupported BadIntrin( 4938 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 4939 DL.getDebugLoc()); 4940 DAG.getContext()->diagnose(BadIntrin); 4941 return DAG.getUNDEF(VT); 4942 } 4943 4944 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 4945 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 4946 return getPreloadedValue(DAG, *MFI, VT, RegID); 4947 } 4948 case Intrinsic::amdgcn_implicitarg_ptr: { 4949 if (MFI->isEntryFunction()) 4950 return getImplicitArgPtr(DAG, DL); 4951 return getPreloadedValue(DAG, *MFI, VT, 4952 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 4953 } 4954 case Intrinsic::amdgcn_kernarg_segment_ptr: { 4955 return getPreloadedValue(DAG, *MFI, VT, 4956 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 4957 } 4958 case Intrinsic::amdgcn_dispatch_id: { 4959 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 4960 } 4961 case Intrinsic::amdgcn_rcp: 4962 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 4963 case Intrinsic::amdgcn_rsq: 4964 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 4965 case Intrinsic::amdgcn_rsq_legacy: 4966 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 4967 return emitRemovedIntrinsicError(DAG, DL, VT); 4968 4969 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); 4970 case Intrinsic::amdgcn_rcp_legacy: 4971 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 4972 return emitRemovedIntrinsicError(DAG, DL, VT); 4973 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 4974 case Intrinsic::amdgcn_rsq_clamp: { 4975 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 4976 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 4977 4978 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 4979 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 4980 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 4981 4982 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 4983 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 4984 DAG.getConstantFP(Max, DL, VT)); 4985 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 4986 DAG.getConstantFP(Min, DL, VT)); 4987 } 4988 case Intrinsic::r600_read_ngroups_x: 4989 if (Subtarget->isAmdHsaOS()) 4990 return emitNonHSAIntrinsicError(DAG, DL, VT); 4991 4992 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 4993 SI::KernelInputOffsets::NGROUPS_X, 4, false); 4994 case Intrinsic::r600_read_ngroups_y: 4995 if (Subtarget->isAmdHsaOS()) 4996 return emitNonHSAIntrinsicError(DAG, DL, VT); 4997 4998 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 4999 SI::KernelInputOffsets::NGROUPS_Y, 4, false); 5000 case Intrinsic::r600_read_ngroups_z: 5001 if (Subtarget->isAmdHsaOS()) 5002 return emitNonHSAIntrinsicError(DAG, DL, VT); 5003 5004 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5005 SI::KernelInputOffsets::NGROUPS_Z, 4, false); 5006 case Intrinsic::r600_read_global_size_x: 5007 if (Subtarget->isAmdHsaOS()) 5008 return emitNonHSAIntrinsicError(DAG, DL, VT); 5009 5010 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5011 SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false); 5012 case Intrinsic::r600_read_global_size_y: 5013 if (Subtarget->isAmdHsaOS()) 5014 return emitNonHSAIntrinsicError(DAG, DL, VT); 5015 5016 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5017 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false); 5018 case Intrinsic::r600_read_global_size_z: 5019 if (Subtarget->isAmdHsaOS()) 5020 return emitNonHSAIntrinsicError(DAG, DL, VT); 5021 5022 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 5023 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false); 5024 case Intrinsic::r600_read_local_size_x: 5025 if (Subtarget->isAmdHsaOS()) 5026 return emitNonHSAIntrinsicError(DAG, DL, VT); 5027 5028 return lowerImplicitZextParam(DAG, Op, MVT::i16, 5029 SI::KernelInputOffsets::LOCAL_SIZE_X); 5030 case Intrinsic::r600_read_local_size_y: 5031 if (Subtarget->isAmdHsaOS()) 5032 return emitNonHSAIntrinsicError(DAG, DL, VT); 5033 5034 return lowerImplicitZextParam(DAG, Op, MVT::i16, 5035 SI::KernelInputOffsets::LOCAL_SIZE_Y); 5036 case Intrinsic::r600_read_local_size_z: 5037 if (Subtarget->isAmdHsaOS()) 5038 return emitNonHSAIntrinsicError(DAG, DL, VT); 5039 5040 return lowerImplicitZextParam(DAG, Op, MVT::i16, 5041 SI::KernelInputOffsets::LOCAL_SIZE_Z); 5042 case Intrinsic::amdgcn_workgroup_id_x: 5043 case Intrinsic::r600_read_tgid_x: 5044 return getPreloadedValue(DAG, *MFI, VT, 5045 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 5046 case Intrinsic::amdgcn_workgroup_id_y: 5047 case Intrinsic::r600_read_tgid_y: 5048 return getPreloadedValue(DAG, *MFI, VT, 5049 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 5050 case Intrinsic::amdgcn_workgroup_id_z: 5051 case Intrinsic::r600_read_tgid_z: 5052 return getPreloadedValue(DAG, *MFI, VT, 5053 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 5054 case Intrinsic::amdgcn_workitem_id_x: 5055 case Intrinsic::r600_read_tidig_x: 5056 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 5057 SDLoc(DAG.getEntryNode()), 5058 MFI->getArgInfo().WorkItemIDX); 5059 case Intrinsic::amdgcn_workitem_id_y: 5060 case Intrinsic::r600_read_tidig_y: 5061 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 5062 SDLoc(DAG.getEntryNode()), 5063 MFI->getArgInfo().WorkItemIDY); 5064 case Intrinsic::amdgcn_workitem_id_z: 5065 case Intrinsic::r600_read_tidig_z: 5066 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 5067 SDLoc(DAG.getEntryNode()), 5068 MFI->getArgInfo().WorkItemIDZ); 5069 case SIIntrinsic::SI_load_const: { 5070 SDValue Load = 5071 lowerSBuffer(MVT::i32, DL, Op.getOperand(1), Op.getOperand(2), 5072 DAG.getTargetConstant(0, DL, MVT::i1), DAG); 5073 return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Load); 5074 } 5075 case Intrinsic::amdgcn_s_buffer_load: { 5076 unsigned Cache = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5077 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), 5078 DAG.getTargetConstant(Cache & 1, DL, MVT::i1), DAG); 5079 } 5080 case Intrinsic::amdgcn_fdiv_fast: 5081 return lowerFDIV_FAST(Op, DAG); 5082 case Intrinsic::amdgcn_interp_mov: { 5083 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); 5084 SDValue Glue = M0.getValue(1); 5085 return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1), 5086 Op.getOperand(2), Op.getOperand(3), Glue); 5087 } 5088 case Intrinsic::amdgcn_interp_p1: { 5089 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); 5090 SDValue Glue = M0.getValue(1); 5091 return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1), 5092 Op.getOperand(2), Op.getOperand(3), Glue); 5093 } 5094 case Intrinsic::amdgcn_interp_p2: { 5095 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5)); 5096 SDValue Glue = SDValue(M0.getNode(), 1); 5097 return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1), 5098 Op.getOperand(2), Op.getOperand(3), Op.getOperand(4), 5099 Glue); 5100 } 5101 case Intrinsic::amdgcn_sin: 5102 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 5103 5104 case Intrinsic::amdgcn_cos: 5105 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 5106 5107 case Intrinsic::amdgcn_log_clamp: { 5108 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 5109 return SDValue(); 5110 5111 DiagnosticInfoUnsupported BadIntrin( 5112 MF.getFunction(), "intrinsic not supported on subtarget", 5113 DL.getDebugLoc()); 5114 DAG.getContext()->diagnose(BadIntrin); 5115 return DAG.getUNDEF(VT); 5116 } 5117 case Intrinsic::amdgcn_ldexp: 5118 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, 5119 Op.getOperand(1), Op.getOperand(2)); 5120 5121 case Intrinsic::amdgcn_fract: 5122 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 5123 5124 case Intrinsic::amdgcn_class: 5125 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 5126 Op.getOperand(1), Op.getOperand(2)); 5127 case Intrinsic::amdgcn_div_fmas: 5128 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 5129 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 5130 Op.getOperand(4)); 5131 5132 case Intrinsic::amdgcn_div_fixup: 5133 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 5134 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 5135 5136 case Intrinsic::amdgcn_trig_preop: 5137 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, 5138 Op.getOperand(1), Op.getOperand(2)); 5139 case Intrinsic::amdgcn_div_scale: { 5140 // 3rd parameter required to be a constant. 5141 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3)); 5142 if (!Param) 5143 return DAG.getMergeValues({ DAG.getUNDEF(VT), DAG.getUNDEF(MVT::i1) }, DL); 5144 5145 // Translate to the operands expected by the machine instruction. The 5146 // first parameter must be the same as the first instruction. 5147 SDValue Numerator = Op.getOperand(1); 5148 SDValue Denominator = Op.getOperand(2); 5149 5150 // Note this order is opposite of the machine instruction's operations, 5151 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 5152 // intrinsic has the numerator as the first operand to match a normal 5153 // division operation. 5154 5155 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 5156 5157 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 5158 Denominator, Numerator); 5159 } 5160 case Intrinsic::amdgcn_icmp: { 5161 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 5162 } 5163 case Intrinsic::amdgcn_fcmp: { 5164 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 5165 } 5166 case Intrinsic::amdgcn_fmed3: 5167 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 5168 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 5169 case Intrinsic::amdgcn_fdot2: 5170 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 5171 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 5172 Op.getOperand(4)); 5173 case Intrinsic::amdgcn_fmul_legacy: 5174 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 5175 Op.getOperand(1), Op.getOperand(2)); 5176 case Intrinsic::amdgcn_sffbh: 5177 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 5178 case Intrinsic::amdgcn_sbfe: 5179 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 5180 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 5181 case Intrinsic::amdgcn_ubfe: 5182 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 5183 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 5184 case Intrinsic::amdgcn_cvt_pkrtz: 5185 case Intrinsic::amdgcn_cvt_pknorm_i16: 5186 case Intrinsic::amdgcn_cvt_pknorm_u16: 5187 case Intrinsic::amdgcn_cvt_pk_i16: 5188 case Intrinsic::amdgcn_cvt_pk_u16: { 5189 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 5190 EVT VT = Op.getValueType(); 5191 unsigned Opcode; 5192 5193 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 5194 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 5195 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 5196 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 5197 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 5198 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 5199 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 5200 Opcode = AMDGPUISD::CVT_PK_I16_I32; 5201 else 5202 Opcode = AMDGPUISD::CVT_PK_U16_U32; 5203 5204 if (isTypeLegal(VT)) 5205 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 5206 5207 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 5208 Op.getOperand(1), Op.getOperand(2)); 5209 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 5210 } 5211 case Intrinsic::amdgcn_wqm: { 5212 SDValue Src = Op.getOperand(1); 5213 return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src), 5214 0); 5215 } 5216 case Intrinsic::amdgcn_wwm: { 5217 SDValue Src = Op.getOperand(1); 5218 return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src), 5219 0); 5220 } 5221 case Intrinsic::amdgcn_fmad_ftz: 5222 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 5223 Op.getOperand(2), Op.getOperand(3)); 5224 default: 5225 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 5226 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 5227 return lowerImage(Op, ImageDimIntr, DAG); 5228 5229 return Op; 5230 } 5231 } 5232 5233 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 5234 SelectionDAG &DAG) const { 5235 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5236 SDLoc DL(Op); 5237 5238 switch (IntrID) { 5239 case Intrinsic::amdgcn_atomic_inc: 5240 case Intrinsic::amdgcn_atomic_dec: 5241 case Intrinsic::amdgcn_ds_fadd: 5242 case Intrinsic::amdgcn_ds_fmin: 5243 case Intrinsic::amdgcn_ds_fmax: { 5244 MemSDNode *M = cast<MemSDNode>(Op); 5245 unsigned Opc; 5246 switch (IntrID) { 5247 case Intrinsic::amdgcn_atomic_inc: 5248 Opc = AMDGPUISD::ATOMIC_INC; 5249 break; 5250 case Intrinsic::amdgcn_atomic_dec: 5251 Opc = AMDGPUISD::ATOMIC_DEC; 5252 break; 5253 case Intrinsic::amdgcn_ds_fadd: 5254 Opc = AMDGPUISD::ATOMIC_LOAD_FADD; 5255 break; 5256 case Intrinsic::amdgcn_ds_fmin: 5257 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 5258 break; 5259 case Intrinsic::amdgcn_ds_fmax: 5260 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 5261 break; 5262 default: 5263 llvm_unreachable("Unknown intrinsic!"); 5264 } 5265 SDValue Ops[] = { 5266 M->getOperand(0), // Chain 5267 M->getOperand(2), // Ptr 5268 M->getOperand(3) // Value 5269 }; 5270 5271 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 5272 M->getMemoryVT(), M->getMemOperand()); 5273 } 5274 case Intrinsic::amdgcn_buffer_load: 5275 case Intrinsic::amdgcn_buffer_load_format: { 5276 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 5277 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 5278 unsigned IdxEn = 1; 5279 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 5280 IdxEn = Idx->getZExtValue() != 0; 5281 SDValue Ops[] = { 5282 Op.getOperand(0), // Chain 5283 Op.getOperand(2), // rsrc 5284 Op.getOperand(3), // vindex 5285 SDValue(), // voffset -- will be set by setBufferOffsets 5286 SDValue(), // soffset -- will be set by setBufferOffsets 5287 SDValue(), // offset -- will be set by setBufferOffsets 5288 DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 5289 DAG.getConstant(IdxEn, DL, MVT::i1), // idxen 5290 }; 5291 5292 setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 5293 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 5294 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 5295 5296 EVT VT = Op.getValueType(); 5297 EVT IntVT = VT.changeTypeToInteger(); 5298 auto *M = cast<MemSDNode>(Op); 5299 EVT LoadVT = Op.getValueType(); 5300 5301 if (LoadVT.getScalarType() == MVT::f16) 5302 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 5303 M, DAG, Ops); 5304 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 5305 M->getMemOperand()); 5306 } 5307 case Intrinsic::amdgcn_raw_buffer_load: 5308 case Intrinsic::amdgcn_raw_buffer_load_format: { 5309 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 5310 SDValue Ops[] = { 5311 Op.getOperand(0), // Chain 5312 Op.getOperand(2), // rsrc 5313 DAG.getConstant(0, DL, MVT::i32), // vindex 5314 Offsets.first, // voffset 5315 Op.getOperand(4), // soffset 5316 Offsets.second, // offset 5317 Op.getOperand(5), // cachepolicy 5318 DAG.getConstant(0, DL, MVT::i1), // idxen 5319 }; 5320 5321 unsigned Opc = (IntrID == Intrinsic::amdgcn_raw_buffer_load) ? 5322 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 5323 5324 EVT VT = Op.getValueType(); 5325 EVT IntVT = VT.changeTypeToInteger(); 5326 auto *M = cast<MemSDNode>(Op); 5327 EVT LoadVT = Op.getValueType(); 5328 5329 if (LoadVT.getScalarType() == MVT::f16) 5330 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 5331 M, DAG, Ops); 5332 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 5333 M->getMemOperand()); 5334 } 5335 case Intrinsic::amdgcn_struct_buffer_load: 5336 case Intrinsic::amdgcn_struct_buffer_load_format: { 5337 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 5338 SDValue Ops[] = { 5339 Op.getOperand(0), // Chain 5340 Op.getOperand(2), // rsrc 5341 Op.getOperand(3), // vindex 5342 Offsets.first, // voffset 5343 Op.getOperand(5), // soffset 5344 Offsets.second, // offset 5345 Op.getOperand(6), // cachepolicy 5346 DAG.getConstant(1, DL, MVT::i1), // idxen 5347 }; 5348 5349 unsigned Opc = (IntrID == Intrinsic::amdgcn_struct_buffer_load) ? 5350 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 5351 5352 EVT VT = Op.getValueType(); 5353 EVT IntVT = VT.changeTypeToInteger(); 5354 auto *M = cast<MemSDNode>(Op); 5355 EVT LoadVT = Op.getValueType(); 5356 5357 if (LoadVT.getScalarType() == MVT::f16) 5358 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 5359 M, DAG, Ops); 5360 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 5361 M->getMemOperand()); 5362 } 5363 case Intrinsic::amdgcn_tbuffer_load: { 5364 MemSDNode *M = cast<MemSDNode>(Op); 5365 EVT LoadVT = Op.getValueType(); 5366 5367 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 5368 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 5369 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 5370 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 5371 unsigned IdxEn = 1; 5372 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 5373 IdxEn = Idx->getZExtValue() != 0; 5374 SDValue Ops[] = { 5375 Op.getOperand(0), // Chain 5376 Op.getOperand(2), // rsrc 5377 Op.getOperand(3), // vindex 5378 Op.getOperand(4), // voffset 5379 Op.getOperand(5), // soffset 5380 Op.getOperand(6), // offset 5381 DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 5382 DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 5383 DAG.getConstant(IdxEn, DL, MVT::i1), // idxen 5384 }; 5385 5386 if (LoadVT.getScalarType() == MVT::f16) 5387 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 5388 M, DAG, Ops); 5389 return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 5390 Op->getVTList(), Ops, LoadVT, 5391 M->getMemOperand()); 5392 } 5393 case Intrinsic::amdgcn_raw_tbuffer_load: { 5394 MemSDNode *M = cast<MemSDNode>(Op); 5395 EVT LoadVT = Op.getValueType(); 5396 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 5397 5398 SDValue Ops[] = { 5399 Op.getOperand(0), // Chain 5400 Op.getOperand(2), // rsrc 5401 DAG.getConstant(0, DL, MVT::i32), // vindex 5402 Offsets.first, // voffset 5403 Op.getOperand(4), // soffset 5404 Offsets.second, // offset 5405 Op.getOperand(5), // format 5406 Op.getOperand(6), // cachepolicy 5407 DAG.getConstant(0, DL, MVT::i1), // idxen 5408 }; 5409 5410 if (LoadVT.getScalarType() == MVT::f16) 5411 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 5412 M, DAG, Ops); 5413 return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 5414 Op->getVTList(), Ops, LoadVT, 5415 M->getMemOperand()); 5416 } 5417 case Intrinsic::amdgcn_struct_tbuffer_load: { 5418 MemSDNode *M = cast<MemSDNode>(Op); 5419 EVT LoadVT = Op.getValueType(); 5420 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 5421 5422 SDValue Ops[] = { 5423 Op.getOperand(0), // Chain 5424 Op.getOperand(2), // rsrc 5425 Op.getOperand(3), // vindex 5426 Offsets.first, // voffset 5427 Op.getOperand(5), // soffset 5428 Offsets.second, // offset 5429 Op.getOperand(6), // format 5430 Op.getOperand(7), // cachepolicy 5431 DAG.getConstant(1, DL, MVT::i1), // idxen 5432 }; 5433 5434 if (LoadVT.getScalarType() == MVT::f16) 5435 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 5436 M, DAG, Ops); 5437 return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 5438 Op->getVTList(), Ops, LoadVT, 5439 M->getMemOperand()); 5440 } 5441 case Intrinsic::amdgcn_buffer_atomic_swap: 5442 case Intrinsic::amdgcn_buffer_atomic_add: 5443 case Intrinsic::amdgcn_buffer_atomic_sub: 5444 case Intrinsic::amdgcn_buffer_atomic_smin: 5445 case Intrinsic::amdgcn_buffer_atomic_umin: 5446 case Intrinsic::amdgcn_buffer_atomic_smax: 5447 case Intrinsic::amdgcn_buffer_atomic_umax: 5448 case Intrinsic::amdgcn_buffer_atomic_and: 5449 case Intrinsic::amdgcn_buffer_atomic_or: 5450 case Intrinsic::amdgcn_buffer_atomic_xor: { 5451 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 5452 unsigned IdxEn = 1; 5453 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 5454 IdxEn = Idx->getZExtValue() != 0; 5455 SDValue Ops[] = { 5456 Op.getOperand(0), // Chain 5457 Op.getOperand(2), // vdata 5458 Op.getOperand(3), // rsrc 5459 Op.getOperand(4), // vindex 5460 SDValue(), // voffset -- will be set by setBufferOffsets 5461 SDValue(), // soffset -- will be set by setBufferOffsets 5462 SDValue(), // offset -- will be set by setBufferOffsets 5463 DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy 5464 DAG.getConstant(IdxEn, DL, MVT::i1), // idxen 5465 }; 5466 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 5467 EVT VT = Op.getValueType(); 5468 5469 auto *M = cast<MemSDNode>(Op); 5470 unsigned Opcode = 0; 5471 5472 switch (IntrID) { 5473 case Intrinsic::amdgcn_buffer_atomic_swap: 5474 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 5475 break; 5476 case Intrinsic::amdgcn_buffer_atomic_add: 5477 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 5478 break; 5479 case Intrinsic::amdgcn_buffer_atomic_sub: 5480 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 5481 break; 5482 case Intrinsic::amdgcn_buffer_atomic_smin: 5483 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 5484 break; 5485 case Intrinsic::amdgcn_buffer_atomic_umin: 5486 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 5487 break; 5488 case Intrinsic::amdgcn_buffer_atomic_smax: 5489 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 5490 break; 5491 case Intrinsic::amdgcn_buffer_atomic_umax: 5492 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 5493 break; 5494 case Intrinsic::amdgcn_buffer_atomic_and: 5495 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 5496 break; 5497 case Intrinsic::amdgcn_buffer_atomic_or: 5498 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 5499 break; 5500 case Intrinsic::amdgcn_buffer_atomic_xor: 5501 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 5502 break; 5503 default: 5504 llvm_unreachable("unhandled atomic opcode"); 5505 } 5506 5507 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 5508 M->getMemOperand()); 5509 } 5510 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 5511 case Intrinsic::amdgcn_raw_buffer_atomic_add: 5512 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 5513 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 5514 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 5515 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 5516 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 5517 case Intrinsic::amdgcn_raw_buffer_atomic_and: 5518 case Intrinsic::amdgcn_raw_buffer_atomic_or: 5519 case Intrinsic::amdgcn_raw_buffer_atomic_xor: { 5520 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 5521 SDValue Ops[] = { 5522 Op.getOperand(0), // Chain 5523 Op.getOperand(2), // vdata 5524 Op.getOperand(3), // rsrc 5525 DAG.getConstant(0, DL, MVT::i32), // vindex 5526 Offsets.first, // voffset 5527 Op.getOperand(5), // soffset 5528 Offsets.second, // offset 5529 Op.getOperand(6), // cachepolicy 5530 DAG.getConstant(0, DL, MVT::i1), // idxen 5531 }; 5532 EVT VT = Op.getValueType(); 5533 5534 auto *M = cast<MemSDNode>(Op); 5535 unsigned Opcode = 0; 5536 5537 switch (IntrID) { 5538 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 5539 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 5540 break; 5541 case Intrinsic::amdgcn_raw_buffer_atomic_add: 5542 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 5543 break; 5544 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 5545 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 5546 break; 5547 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 5548 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 5549 break; 5550 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 5551 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 5552 break; 5553 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 5554 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 5555 break; 5556 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 5557 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 5558 break; 5559 case Intrinsic::amdgcn_raw_buffer_atomic_and: 5560 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 5561 break; 5562 case Intrinsic::amdgcn_raw_buffer_atomic_or: 5563 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 5564 break; 5565 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 5566 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 5567 break; 5568 default: 5569 llvm_unreachable("unhandled atomic opcode"); 5570 } 5571 5572 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 5573 M->getMemOperand()); 5574 } 5575 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 5576 case Intrinsic::amdgcn_struct_buffer_atomic_add: 5577 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 5578 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 5579 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 5580 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 5581 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 5582 case Intrinsic::amdgcn_struct_buffer_atomic_and: 5583 case Intrinsic::amdgcn_struct_buffer_atomic_or: 5584 case Intrinsic::amdgcn_struct_buffer_atomic_xor: { 5585 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 5586 SDValue Ops[] = { 5587 Op.getOperand(0), // Chain 5588 Op.getOperand(2), // vdata 5589 Op.getOperand(3), // rsrc 5590 Op.getOperand(4), // vindex 5591 Offsets.first, // voffset 5592 Op.getOperand(6), // soffset 5593 Offsets.second, // offset 5594 Op.getOperand(7), // cachepolicy 5595 DAG.getConstant(1, DL, MVT::i1), // idxen 5596 }; 5597 EVT VT = Op.getValueType(); 5598 5599 auto *M = cast<MemSDNode>(Op); 5600 unsigned Opcode = 0; 5601 5602 switch (IntrID) { 5603 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 5604 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 5605 break; 5606 case Intrinsic::amdgcn_struct_buffer_atomic_add: 5607 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 5608 break; 5609 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 5610 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 5611 break; 5612 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 5613 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 5614 break; 5615 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 5616 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 5617 break; 5618 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 5619 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 5620 break; 5621 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 5622 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 5623 break; 5624 case Intrinsic::amdgcn_struct_buffer_atomic_and: 5625 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 5626 break; 5627 case Intrinsic::amdgcn_struct_buffer_atomic_or: 5628 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 5629 break; 5630 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 5631 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 5632 break; 5633 default: 5634 llvm_unreachable("unhandled atomic opcode"); 5635 } 5636 5637 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 5638 M->getMemOperand()); 5639 } 5640 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 5641 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 5642 unsigned IdxEn = 1; 5643 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5))) 5644 IdxEn = Idx->getZExtValue() != 0; 5645 SDValue Ops[] = { 5646 Op.getOperand(0), // Chain 5647 Op.getOperand(2), // src 5648 Op.getOperand(3), // cmp 5649 Op.getOperand(4), // rsrc 5650 Op.getOperand(5), // vindex 5651 SDValue(), // voffset -- will be set by setBufferOffsets 5652 SDValue(), // soffset -- will be set by setBufferOffsets 5653 SDValue(), // offset -- will be set by setBufferOffsets 5654 DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy 5655 DAG.getConstant(IdxEn, DL, MVT::i1), // idxen 5656 }; 5657 setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 5658 EVT VT = Op.getValueType(); 5659 auto *M = cast<MemSDNode>(Op); 5660 5661 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 5662 Op->getVTList(), Ops, VT, M->getMemOperand()); 5663 } 5664 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { 5665 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 5666 SDValue Ops[] = { 5667 Op.getOperand(0), // Chain 5668 Op.getOperand(2), // src 5669 Op.getOperand(3), // cmp 5670 Op.getOperand(4), // rsrc 5671 DAG.getConstant(0, DL, MVT::i32), // vindex 5672 Offsets.first, // voffset 5673 Op.getOperand(6), // soffset 5674 Offsets.second, // offset 5675 Op.getOperand(7), // cachepolicy 5676 DAG.getConstant(0, DL, MVT::i1), // idxen 5677 }; 5678 EVT VT = Op.getValueType(); 5679 auto *M = cast<MemSDNode>(Op); 5680 5681 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 5682 Op->getVTList(), Ops, VT, M->getMemOperand()); 5683 } 5684 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { 5685 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 5686 SDValue Ops[] = { 5687 Op.getOperand(0), // Chain 5688 Op.getOperand(2), // src 5689 Op.getOperand(3), // cmp 5690 Op.getOperand(4), // rsrc 5691 Op.getOperand(5), // vindex 5692 Offsets.first, // voffset 5693 Op.getOperand(7), // soffset 5694 Offsets.second, // offset 5695 Op.getOperand(8), // cachepolicy 5696 DAG.getConstant(1, DL, MVT::i1), // idxen 5697 }; 5698 EVT VT = Op.getValueType(); 5699 auto *M = cast<MemSDNode>(Op); 5700 5701 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 5702 Op->getVTList(), Ops, VT, M->getMemOperand()); 5703 } 5704 5705 default: 5706 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 5707 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 5708 return lowerImage(Op, ImageDimIntr, DAG); 5709 5710 return SDValue(); 5711 } 5712 } 5713 5714 SDValue SITargetLowering::handleD16VData(SDValue VData, 5715 SelectionDAG &DAG) const { 5716 EVT StoreVT = VData.getValueType(); 5717 5718 // No change for f16 and legal vector D16 types. 5719 if (!StoreVT.isVector()) 5720 return VData; 5721 5722 SDLoc DL(VData); 5723 assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16"); 5724 5725 if (Subtarget->hasUnpackedD16VMem()) { 5726 // We need to unpack the packed data to store. 5727 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 5728 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 5729 5730 EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 5731 StoreVT.getVectorNumElements()); 5732 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 5733 return DAG.UnrollVectorOp(ZExt.getNode()); 5734 } 5735 5736 assert(isTypeLegal(StoreVT)); 5737 return VData; 5738 } 5739 5740 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 5741 SelectionDAG &DAG) const { 5742 SDLoc DL(Op); 5743 SDValue Chain = Op.getOperand(0); 5744 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5745 MachineFunction &MF = DAG.getMachineFunction(); 5746 5747 switch (IntrinsicID) { 5748 case Intrinsic::amdgcn_exp: { 5749 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2)); 5750 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3)); 5751 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8)); 5752 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9)); 5753 5754 const SDValue Ops[] = { 5755 Chain, 5756 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt 5757 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en 5758 Op.getOperand(4), // src0 5759 Op.getOperand(5), // src1 5760 Op.getOperand(6), // src2 5761 Op.getOperand(7), // src3 5762 DAG.getTargetConstant(0, DL, MVT::i1), // compr 5763 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) 5764 }; 5765 5766 unsigned Opc = Done->isNullValue() ? 5767 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; 5768 return DAG.getNode(Opc, DL, Op->getVTList(), Ops); 5769 } 5770 case Intrinsic::amdgcn_exp_compr: { 5771 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2)); 5772 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3)); 5773 SDValue Src0 = Op.getOperand(4); 5774 SDValue Src1 = Op.getOperand(5); 5775 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 5776 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7)); 5777 5778 SDValue Undef = DAG.getUNDEF(MVT::f32); 5779 const SDValue Ops[] = { 5780 Chain, 5781 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt 5782 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en 5783 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), 5784 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), 5785 Undef, // src2 5786 Undef, // src3 5787 DAG.getTargetConstant(1, DL, MVT::i1), // compr 5788 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) 5789 }; 5790 5791 unsigned Opc = Done->isNullValue() ? 5792 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; 5793 return DAG.getNode(Opc, DL, Op->getVTList(), Ops); 5794 } 5795 case Intrinsic::amdgcn_s_sendmsg: 5796 case Intrinsic::amdgcn_s_sendmsghalt: { 5797 unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ? 5798 AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT; 5799 Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 5800 SDValue Glue = Chain.getValue(1); 5801 return DAG.getNode(NodeOp, DL, MVT::Other, Chain, 5802 Op.getOperand(2), Glue); 5803 } 5804 case Intrinsic::amdgcn_init_exec: { 5805 return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain, 5806 Op.getOperand(2)); 5807 } 5808 case Intrinsic::amdgcn_init_exec_from_input: { 5809 return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain, 5810 Op.getOperand(2), Op.getOperand(3)); 5811 } 5812 case Intrinsic::amdgcn_s_barrier: { 5813 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { 5814 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 5815 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 5816 if (WGSize <= ST.getWavefrontSize()) 5817 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 5818 Op.getOperand(0)), 0); 5819 } 5820 return SDValue(); 5821 }; 5822 case Intrinsic::amdgcn_tbuffer_store: { 5823 SDValue VData = Op.getOperand(2); 5824 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 5825 if (IsD16) 5826 VData = handleD16VData(VData, DAG); 5827 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 5828 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 5829 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 5830 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); 5831 unsigned IdxEn = 1; 5832 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 5833 IdxEn = Idx->getZExtValue() != 0; 5834 SDValue Ops[] = { 5835 Chain, 5836 VData, // vdata 5837 Op.getOperand(3), // rsrc 5838 Op.getOperand(4), // vindex 5839 Op.getOperand(5), // voffset 5840 Op.getOperand(6), // soffset 5841 Op.getOperand(7), // offset 5842 DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 5843 DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 5844 DAG.getConstant(IdxEn, DL, MVT::i1), // idexen 5845 }; 5846 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 5847 AMDGPUISD::TBUFFER_STORE_FORMAT; 5848 MemSDNode *M = cast<MemSDNode>(Op); 5849 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 5850 M->getMemoryVT(), M->getMemOperand()); 5851 } 5852 5853 case Intrinsic::amdgcn_struct_tbuffer_store: { 5854 SDValue VData = Op.getOperand(2); 5855 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 5856 if (IsD16) 5857 VData = handleD16VData(VData, DAG); 5858 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 5859 SDValue Ops[] = { 5860 Chain, 5861 VData, // vdata 5862 Op.getOperand(3), // rsrc 5863 Op.getOperand(4), // vindex 5864 Offsets.first, // voffset 5865 Op.getOperand(6), // soffset 5866 Offsets.second, // offset 5867 Op.getOperand(7), // format 5868 Op.getOperand(8), // cachepolicy 5869 DAG.getConstant(1, DL, MVT::i1), // idexen 5870 }; 5871 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 5872 AMDGPUISD::TBUFFER_STORE_FORMAT; 5873 MemSDNode *M = cast<MemSDNode>(Op); 5874 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 5875 M->getMemoryVT(), M->getMemOperand()); 5876 } 5877 5878 case Intrinsic::amdgcn_raw_tbuffer_store: { 5879 SDValue VData = Op.getOperand(2); 5880 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 5881 if (IsD16) 5882 VData = handleD16VData(VData, DAG); 5883 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 5884 SDValue Ops[] = { 5885 Chain, 5886 VData, // vdata 5887 Op.getOperand(3), // rsrc 5888 DAG.getConstant(0, DL, MVT::i32), // vindex 5889 Offsets.first, // voffset 5890 Op.getOperand(5), // soffset 5891 Offsets.second, // offset 5892 Op.getOperand(6), // format 5893 Op.getOperand(7), // cachepolicy 5894 DAG.getConstant(0, DL, MVT::i1), // idexen 5895 }; 5896 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 5897 AMDGPUISD::TBUFFER_STORE_FORMAT; 5898 MemSDNode *M = cast<MemSDNode>(Op); 5899 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 5900 M->getMemoryVT(), M->getMemOperand()); 5901 } 5902 5903 case Intrinsic::amdgcn_buffer_store: 5904 case Intrinsic::amdgcn_buffer_store_format: { 5905 SDValue VData = Op.getOperand(2); 5906 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 5907 if (IsD16) 5908 VData = handleD16VData(VData, DAG); 5909 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 5910 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 5911 unsigned IdxEn = 1; 5912 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 5913 IdxEn = Idx->getZExtValue() != 0; 5914 SDValue Ops[] = { 5915 Chain, 5916 VData, 5917 Op.getOperand(3), // rsrc 5918 Op.getOperand(4), // vindex 5919 SDValue(), // voffset -- will be set by setBufferOffsets 5920 SDValue(), // soffset -- will be set by setBufferOffsets 5921 SDValue(), // offset -- will be set by setBufferOffsets 5922 DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 5923 DAG.getConstant(IdxEn, DL, MVT::i1), // idxen 5924 }; 5925 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 5926 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 5927 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 5928 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 5929 MemSDNode *M = cast<MemSDNode>(Op); 5930 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 5931 M->getMemoryVT(), M->getMemOperand()); 5932 } 5933 5934 case Intrinsic::amdgcn_raw_buffer_store: 5935 case Intrinsic::amdgcn_raw_buffer_store_format: { 5936 SDValue VData = Op.getOperand(2); 5937 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 5938 if (IsD16) 5939 VData = handleD16VData(VData, DAG); 5940 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 5941 SDValue Ops[] = { 5942 Chain, 5943 VData, 5944 Op.getOperand(3), // rsrc 5945 DAG.getConstant(0, DL, MVT::i32), // vindex 5946 Offsets.first, // voffset 5947 Op.getOperand(5), // soffset 5948 Offsets.second, // offset 5949 Op.getOperand(6), // cachepolicy 5950 DAG.getConstant(0, DL, MVT::i1), // idxen 5951 }; 5952 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_raw_buffer_store ? 5953 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 5954 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 5955 MemSDNode *M = cast<MemSDNode>(Op); 5956 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 5957 M->getMemoryVT(), M->getMemOperand()); 5958 } 5959 5960 case Intrinsic::amdgcn_struct_buffer_store: 5961 case Intrinsic::amdgcn_struct_buffer_store_format: { 5962 SDValue VData = Op.getOperand(2); 5963 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 5964 if (IsD16) 5965 VData = handleD16VData(VData, DAG); 5966 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 5967 SDValue Ops[] = { 5968 Chain, 5969 VData, 5970 Op.getOperand(3), // rsrc 5971 Op.getOperand(4), // vindex 5972 Offsets.first, // voffset 5973 Op.getOperand(6), // soffset 5974 Offsets.second, // offset 5975 Op.getOperand(7), // cachepolicy 5976 DAG.getConstant(1, DL, MVT::i1), // idxen 5977 }; 5978 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? 5979 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 5980 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 5981 MemSDNode *M = cast<MemSDNode>(Op); 5982 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 5983 M->getMemoryVT(), M->getMemOperand()); 5984 } 5985 5986 default: { 5987 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 5988 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 5989 return lowerImage(Op, ImageDimIntr, DAG); 5990 5991 return Op; 5992 } 5993 } 5994 } 5995 5996 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 5997 // offset (the offset that is included in bounds checking and swizzling, to be 5998 // split between the instruction's voffset and immoffset fields) and soffset 5999 // (the offset that is excluded from bounds checking and swizzling, to go in 6000 // the instruction's soffset field). This function takes the first kind of 6001 // offset and figures out how to split it between voffset and immoffset. 6002 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 6003 SDValue Offset, SelectionDAG &DAG) const { 6004 SDLoc DL(Offset); 6005 const unsigned MaxImm = 4095; 6006 SDValue N0 = Offset; 6007 ConstantSDNode *C1 = nullptr; 6008 if (N0.getOpcode() == ISD::ADD) { 6009 if ((C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)))) 6010 N0 = N0.getOperand(0); 6011 } else if ((C1 = dyn_cast<ConstantSDNode>(N0))) 6012 N0 = SDValue(); 6013 6014 if (C1) { 6015 unsigned ImmOffset = C1->getZExtValue(); 6016 // If the immediate value is too big for the immoffset field, put the value 6017 // and -4096 into the immoffset field so that the value that is copied/added 6018 // for the voffset field is a multiple of 4096, and it stands more chance 6019 // of being CSEd with the copy/add for another similar load/store. 6020 // However, do not do that rounding down to a multiple of 4096 if that is a 6021 // negative number, as it appears to be illegal to have a negative offset 6022 // in the vgpr, even if adding the immediate offset makes it positive. 6023 unsigned Overflow = ImmOffset & ~MaxImm; 6024 ImmOffset -= Overflow; 6025 if ((int32_t)Overflow < 0) { 6026 Overflow += ImmOffset; 6027 ImmOffset = 0; 6028 } 6029 C1 = cast<ConstantSDNode>(DAG.getConstant(ImmOffset, DL, MVT::i32)); 6030 if (Overflow) { 6031 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 6032 if (!N0) 6033 N0 = OverflowVal; 6034 else { 6035 SDValue Ops[] = { N0, OverflowVal }; 6036 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 6037 } 6038 } 6039 } 6040 if (!N0) 6041 N0 = DAG.getConstant(0, DL, MVT::i32); 6042 if (!C1) 6043 C1 = cast<ConstantSDNode>(DAG.getConstant(0, DL, MVT::i32)); 6044 return {N0, SDValue(C1, 0)}; 6045 } 6046 6047 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 6048 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 6049 // pointed to by Offsets. 6050 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 6051 SelectionDAG &DAG, SDValue *Offsets, 6052 unsigned Align) const { 6053 SDLoc DL(CombinedOffset); 6054 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 6055 uint32_t Imm = C->getZExtValue(); 6056 uint32_t SOffset, ImmOffset; 6057 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) { 6058 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 6059 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 6060 Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32); 6061 return; 6062 } 6063 } 6064 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 6065 SDValue N0 = CombinedOffset.getOperand(0); 6066 SDValue N1 = CombinedOffset.getOperand(1); 6067 uint32_t SOffset, ImmOffset; 6068 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 6069 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, 6070 Subtarget, Align)) { 6071 Offsets[0] = N0; 6072 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 6073 Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32); 6074 return; 6075 } 6076 } 6077 Offsets[0] = CombinedOffset; 6078 Offsets[1] = DAG.getConstant(0, DL, MVT::i32); 6079 Offsets[2] = DAG.getConstant(0, DL, MVT::i32); 6080 } 6081 6082 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 6083 ISD::LoadExtType ExtType, SDValue Op, 6084 const SDLoc &SL, EVT VT) { 6085 if (VT.bitsLT(Op.getValueType())) 6086 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 6087 6088 switch (ExtType) { 6089 case ISD::SEXTLOAD: 6090 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 6091 case ISD::ZEXTLOAD: 6092 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 6093 case ISD::EXTLOAD: 6094 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 6095 case ISD::NON_EXTLOAD: 6096 return Op; 6097 } 6098 6099 llvm_unreachable("invalid ext type"); 6100 } 6101 6102 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 6103 SelectionDAG &DAG = DCI.DAG; 6104 if (Ld->getAlignment() < 4 || Ld->isDivergent()) 6105 return SDValue(); 6106 6107 // FIXME: Constant loads should all be marked invariant. 6108 unsigned AS = Ld->getAddressSpace(); 6109 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 6110 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 6111 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 6112 return SDValue(); 6113 6114 // Don't do this early, since it may interfere with adjacent load merging for 6115 // illegal types. We can avoid losing alignment information for exotic types 6116 // pre-legalize. 6117 EVT MemVT = Ld->getMemoryVT(); 6118 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 6119 MemVT.getSizeInBits() >= 32) 6120 return SDValue(); 6121 6122 SDLoc SL(Ld); 6123 6124 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 6125 "unexpected vector extload"); 6126 6127 // TODO: Drop only high part of range. 6128 SDValue Ptr = Ld->getBasePtr(); 6129 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 6130 MVT::i32, SL, Ld->getChain(), Ptr, 6131 Ld->getOffset(), 6132 Ld->getPointerInfo(), MVT::i32, 6133 Ld->getAlignment(), 6134 Ld->getMemOperand()->getFlags(), 6135 Ld->getAAInfo(), 6136 nullptr); // Drop ranges 6137 6138 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 6139 if (MemVT.isFloatingPoint()) { 6140 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 6141 "unexpected fp extload"); 6142 TruncVT = MemVT.changeTypeToInteger(); 6143 } 6144 6145 SDValue Cvt = NewLoad; 6146 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 6147 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 6148 DAG.getValueType(TruncVT)); 6149 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 6150 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 6151 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 6152 } else { 6153 assert(Ld->getExtensionType() == ISD::EXTLOAD); 6154 } 6155 6156 EVT VT = Ld->getValueType(0); 6157 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6158 6159 DCI.AddToWorklist(Cvt.getNode()); 6160 6161 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 6162 // the appropriate extension from the 32-bit load. 6163 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 6164 DCI.AddToWorklist(Cvt.getNode()); 6165 6166 // Handle conversion back to floating point if necessary. 6167 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 6168 6169 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 6170 } 6171 6172 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6173 SDLoc DL(Op); 6174 LoadSDNode *Load = cast<LoadSDNode>(Op); 6175 ISD::LoadExtType ExtType = Load->getExtensionType(); 6176 EVT MemVT = Load->getMemoryVT(); 6177 6178 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 6179 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 6180 return SDValue(); 6181 6182 // FIXME: Copied from PPC 6183 // First, load into 32 bits, then truncate to 1 bit. 6184 6185 SDValue Chain = Load->getChain(); 6186 SDValue BasePtr = Load->getBasePtr(); 6187 MachineMemOperand *MMO = Load->getMemOperand(); 6188 6189 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 6190 6191 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 6192 BasePtr, RealMemVT, MMO); 6193 6194 SDValue Ops[] = { 6195 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 6196 NewLD.getValue(1) 6197 }; 6198 6199 return DAG.getMergeValues(Ops, DL); 6200 } 6201 6202 if (!MemVT.isVector()) 6203 return SDValue(); 6204 6205 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 6206 "Custom lowering for non-i32 vectors hasn't been implemented."); 6207 6208 unsigned Alignment = Load->getAlignment(); 6209 unsigned AS = Load->getAddressSpace(); 6210 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, 6211 AS, Alignment)) { 6212 SDValue Ops[2]; 6213 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 6214 return DAG.getMergeValues(Ops, DL); 6215 } 6216 6217 MachineFunction &MF = DAG.getMachineFunction(); 6218 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 6219 // If there is a possibilty that flat instruction access scratch memory 6220 // then we need to use the same legalization rules we use for private. 6221 if (AS == AMDGPUAS::FLAT_ADDRESS) 6222 AS = MFI->hasFlatScratchInit() ? 6223 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 6224 6225 unsigned NumElements = MemVT.getVectorNumElements(); 6226 6227 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 6228 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 6229 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) 6230 return SDValue(); 6231 // Non-uniform loads will be selected to MUBUF instructions, so they 6232 // have the same legalization requirements as global and private 6233 // loads. 6234 // 6235 } 6236 6237 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 6238 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 6239 AS == AMDGPUAS::GLOBAL_ADDRESS) { 6240 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 6241 !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) && 6242 Alignment >= 4 && NumElements < 32) 6243 return SDValue(); 6244 // Non-uniform loads will be selected to MUBUF instructions, so they 6245 // have the same legalization requirements as global and private 6246 // loads. 6247 // 6248 } 6249 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 6250 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 6251 AS == AMDGPUAS::GLOBAL_ADDRESS || 6252 AS == AMDGPUAS::FLAT_ADDRESS) { 6253 if (NumElements > 4) 6254 return SplitVectorLoad(Op, DAG); 6255 // v4 loads are supported for private and global memory. 6256 return SDValue(); 6257 } 6258 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 6259 // Depending on the setting of the private_element_size field in the 6260 // resource descriptor, we can only make private accesses up to a certain 6261 // size. 6262 switch (Subtarget->getMaxPrivateElementSize()) { 6263 case 4: 6264 return scalarizeVectorLoad(Load, DAG); 6265 case 8: 6266 if (NumElements > 2) 6267 return SplitVectorLoad(Op, DAG); 6268 return SDValue(); 6269 case 16: 6270 // Same as global/flat 6271 if (NumElements > 4) 6272 return SplitVectorLoad(Op, DAG); 6273 return SDValue(); 6274 default: 6275 llvm_unreachable("unsupported private_element_size"); 6276 } 6277 } else if (AS == AMDGPUAS::LOCAL_ADDRESS) { 6278 // Use ds_read_b128 if possible. 6279 if (Subtarget->useDS128() && Load->getAlignment() >= 16 && 6280 MemVT.getStoreSize() == 16) 6281 return SDValue(); 6282 6283 if (NumElements > 2) 6284 return SplitVectorLoad(Op, DAG); 6285 6286 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 6287 // address is negative, then the instruction is incorrectly treated as 6288 // out-of-bounds even if base + offsets is in bounds. Split vectorized 6289 // loads here to avoid emitting ds_read2_b32. We may re-combine the 6290 // load later in the SILoadStoreOptimizer. 6291 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 6292 NumElements == 2 && MemVT.getStoreSize() == 8 && 6293 Load->getAlignment() < 8) { 6294 return SplitVectorLoad(Op, DAG); 6295 } 6296 } 6297 return SDValue(); 6298 } 6299 6300 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 6301 EVT VT = Op.getValueType(); 6302 assert(VT.getSizeInBits() == 64); 6303 6304 SDLoc DL(Op); 6305 SDValue Cond = Op.getOperand(0); 6306 6307 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 6308 SDValue One = DAG.getConstant(1, DL, MVT::i32); 6309 6310 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 6311 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 6312 6313 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 6314 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 6315 6316 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 6317 6318 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 6319 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 6320 6321 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 6322 6323 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 6324 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 6325 } 6326 6327 // Catch division cases where we can use shortcuts with rcp and rsq 6328 // instructions. 6329 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 6330 SelectionDAG &DAG) const { 6331 SDLoc SL(Op); 6332 SDValue LHS = Op.getOperand(0); 6333 SDValue RHS = Op.getOperand(1); 6334 EVT VT = Op.getValueType(); 6335 const SDNodeFlags Flags = Op->getFlags(); 6336 bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal(); 6337 6338 if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals()) 6339 return SDValue(); 6340 6341 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 6342 if (Unsafe || VT == MVT::f32 || VT == MVT::f16) { 6343 if (CLHS->isExactlyValue(1.0)) { 6344 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 6345 // the CI documentation has a worst case error of 1 ulp. 6346 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 6347 // use it as long as we aren't trying to use denormals. 6348 // 6349 // v_rcp_f16 and v_rsq_f16 DO support denormals. 6350 6351 // 1.0 / sqrt(x) -> rsq(x) 6352 6353 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 6354 // error seems really high at 2^29 ULP. 6355 if (RHS.getOpcode() == ISD::FSQRT) 6356 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 6357 6358 // 1.0 / x -> rcp(x) 6359 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 6360 } 6361 6362 // Same as for 1.0, but expand the sign out of the constant. 6363 if (CLHS->isExactlyValue(-1.0)) { 6364 // -1.0 / x -> rcp (fneg x) 6365 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 6366 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 6367 } 6368 } 6369 } 6370 6371 if (Unsafe) { 6372 // Turn into multiply by the reciprocal. 6373 // x / y -> x * (1.0 / y) 6374 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 6375 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 6376 } 6377 6378 return SDValue(); 6379 } 6380 6381 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 6382 EVT VT, SDValue A, SDValue B, SDValue GlueChain) { 6383 if (GlueChain->getNumValues() <= 1) { 6384 return DAG.getNode(Opcode, SL, VT, A, B); 6385 } 6386 6387 assert(GlueChain->getNumValues() == 3); 6388 6389 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 6390 switch (Opcode) { 6391 default: llvm_unreachable("no chain equivalent for opcode"); 6392 case ISD::FMUL: 6393 Opcode = AMDGPUISD::FMUL_W_CHAIN; 6394 break; 6395 } 6396 6397 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, 6398 GlueChain.getValue(2)); 6399 } 6400 6401 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 6402 EVT VT, SDValue A, SDValue B, SDValue C, 6403 SDValue GlueChain) { 6404 if (GlueChain->getNumValues() <= 1) { 6405 return DAG.getNode(Opcode, SL, VT, A, B, C); 6406 } 6407 6408 assert(GlueChain->getNumValues() == 3); 6409 6410 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 6411 switch (Opcode) { 6412 default: llvm_unreachable("no chain equivalent for opcode"); 6413 case ISD::FMA: 6414 Opcode = AMDGPUISD::FMA_W_CHAIN; 6415 break; 6416 } 6417 6418 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C, 6419 GlueChain.getValue(2)); 6420 } 6421 6422 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 6423 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 6424 return FastLowered; 6425 6426 SDLoc SL(Op); 6427 SDValue Src0 = Op.getOperand(0); 6428 SDValue Src1 = Op.getOperand(1); 6429 6430 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 6431 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 6432 6433 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 6434 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 6435 6436 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 6437 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 6438 6439 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 6440 } 6441 6442 // Faster 2.5 ULP division that does not support denormals. 6443 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 6444 SDLoc SL(Op); 6445 SDValue LHS = Op.getOperand(1); 6446 SDValue RHS = Op.getOperand(2); 6447 6448 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); 6449 6450 const APFloat K0Val(BitsToFloat(0x6f800000)); 6451 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 6452 6453 const APFloat K1Val(BitsToFloat(0x2f800000)); 6454 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 6455 6456 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 6457 6458 EVT SetCCVT = 6459 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 6460 6461 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 6462 6463 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); 6464 6465 // TODO: Should this propagate fast-math-flags? 6466 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); 6467 6468 // rcp does not support denormals. 6469 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); 6470 6471 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); 6472 6473 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); 6474 } 6475 6476 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 6477 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 6478 return FastLowered; 6479 6480 SDLoc SL(Op); 6481 SDValue LHS = Op.getOperand(0); 6482 SDValue RHS = Op.getOperand(1); 6483 6484 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 6485 6486 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 6487 6488 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 6489 RHS, RHS, LHS); 6490 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 6491 LHS, RHS, LHS); 6492 6493 // Denominator is scaled to not be denormal, so using rcp is ok. 6494 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 6495 DenominatorScaled); 6496 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 6497 DenominatorScaled); 6498 6499 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 6500 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 6501 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 6502 6503 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16); 6504 6505 if (!Subtarget->hasFP32Denormals()) { 6506 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 6507 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 6508 SL, MVT::i32); 6509 SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs, 6510 DAG.getEntryNode(), 6511 EnableDenormValue, BitField); 6512 SDValue Ops[3] = { 6513 NegDivScale0, 6514 EnableDenorm.getValue(0), 6515 EnableDenorm.getValue(1) 6516 }; 6517 6518 NegDivScale0 = DAG.getMergeValues(Ops, SL); 6519 } 6520 6521 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 6522 ApproxRcp, One, NegDivScale0); 6523 6524 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 6525 ApproxRcp, Fma0); 6526 6527 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 6528 Fma1, Fma1); 6529 6530 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 6531 NumeratorScaled, Mul); 6532 6533 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2); 6534 6535 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 6536 NumeratorScaled, Fma3); 6537 6538 if (!Subtarget->hasFP32Denormals()) { 6539 const SDValue DisableDenormValue = 6540 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 6541 SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other, 6542 Fma4.getValue(1), 6543 DisableDenormValue, 6544 BitField, 6545 Fma4.getValue(2)); 6546 6547 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 6548 DisableDenorm, DAG.getRoot()); 6549 DAG.setRoot(OutputChain); 6550 } 6551 6552 SDValue Scale = NumeratorScaled.getValue(1); 6553 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 6554 Fma4, Fma1, Fma3, Scale); 6555 6556 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS); 6557 } 6558 6559 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 6560 if (DAG.getTarget().Options.UnsafeFPMath) 6561 return lowerFastUnsafeFDIV(Op, DAG); 6562 6563 SDLoc SL(Op); 6564 SDValue X = Op.getOperand(0); 6565 SDValue Y = Op.getOperand(1); 6566 6567 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 6568 6569 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 6570 6571 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 6572 6573 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 6574 6575 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 6576 6577 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 6578 6579 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 6580 6581 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 6582 6583 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 6584 6585 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 6586 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 6587 6588 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 6589 NegDivScale0, Mul, DivScale1); 6590 6591 SDValue Scale; 6592 6593 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 6594 // Workaround a hardware bug on SI where the condition output from div_scale 6595 // is not usable. 6596 6597 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 6598 6599 // Figure out if the scale to use for div_fmas. 6600 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 6601 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 6602 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 6603 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 6604 6605 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 6606 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 6607 6608 SDValue Scale0Hi 6609 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 6610 SDValue Scale1Hi 6611 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 6612 6613 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 6614 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 6615 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 6616 } else { 6617 Scale = DivScale1.getValue(1); 6618 } 6619 6620 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 6621 Fma4, Fma3, Mul, Scale); 6622 6623 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 6624 } 6625 6626 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 6627 EVT VT = Op.getValueType(); 6628 6629 if (VT == MVT::f32) 6630 return LowerFDIV32(Op, DAG); 6631 6632 if (VT == MVT::f64) 6633 return LowerFDIV64(Op, DAG); 6634 6635 if (VT == MVT::f16) 6636 return LowerFDIV16(Op, DAG); 6637 6638 llvm_unreachable("Unexpected type for fdiv"); 6639 } 6640 6641 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6642 SDLoc DL(Op); 6643 StoreSDNode *Store = cast<StoreSDNode>(Op); 6644 EVT VT = Store->getMemoryVT(); 6645 6646 if (VT == MVT::i1) { 6647 return DAG.getTruncStore(Store->getChain(), DL, 6648 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 6649 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 6650 } 6651 6652 assert(VT.isVector() && 6653 Store->getValue().getValueType().getScalarType() == MVT::i32); 6654 6655 unsigned AS = Store->getAddressSpace(); 6656 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 6657 AS, Store->getAlignment())) { 6658 return expandUnalignedStore(Store, DAG); 6659 } 6660 6661 MachineFunction &MF = DAG.getMachineFunction(); 6662 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 6663 // If there is a possibilty that flat instruction access scratch memory 6664 // then we need to use the same legalization rules we use for private. 6665 if (AS == AMDGPUAS::FLAT_ADDRESS) 6666 AS = MFI->hasFlatScratchInit() ? 6667 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 6668 6669 unsigned NumElements = VT.getVectorNumElements(); 6670 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 6671 AS == AMDGPUAS::FLAT_ADDRESS) { 6672 if (NumElements > 4) 6673 return SplitVectorStore(Op, DAG); 6674 return SDValue(); 6675 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 6676 switch (Subtarget->getMaxPrivateElementSize()) { 6677 case 4: 6678 return scalarizeVectorStore(Store, DAG); 6679 case 8: 6680 if (NumElements > 2) 6681 return SplitVectorStore(Op, DAG); 6682 return SDValue(); 6683 case 16: 6684 if (NumElements > 4) 6685 return SplitVectorStore(Op, DAG); 6686 return SDValue(); 6687 default: 6688 llvm_unreachable("unsupported private_element_size"); 6689 } 6690 } else if (AS == AMDGPUAS::LOCAL_ADDRESS) { 6691 // Use ds_write_b128 if possible. 6692 if (Subtarget->useDS128() && Store->getAlignment() >= 16 && 6693 VT.getStoreSize() == 16) 6694 return SDValue(); 6695 6696 if (NumElements > 2) 6697 return SplitVectorStore(Op, DAG); 6698 6699 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 6700 // address is negative, then the instruction is incorrectly treated as 6701 // out-of-bounds even if base + offsets is in bounds. Split vectorized 6702 // stores here to avoid emitting ds_write2_b32. We may re-combine the 6703 // store later in the SILoadStoreOptimizer. 6704 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 6705 NumElements == 2 && VT.getStoreSize() == 8 && 6706 Store->getAlignment() < 8) { 6707 return SplitVectorStore(Op, DAG); 6708 } 6709 6710 return SDValue(); 6711 } else { 6712 llvm_unreachable("unhandled address space"); 6713 } 6714 } 6715 6716 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 6717 SDLoc DL(Op); 6718 EVT VT = Op.getValueType(); 6719 SDValue Arg = Op.getOperand(0); 6720 SDValue TrigVal; 6721 6722 // TODO: Should this propagate fast-math-flags? 6723 6724 SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT); 6725 6726 if (Subtarget->hasTrigReducedRange()) { 6727 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi); 6728 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal); 6729 } else { 6730 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi); 6731 } 6732 6733 switch (Op.getOpcode()) { 6734 case ISD::FCOS: 6735 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal); 6736 case ISD::FSIN: 6737 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal); 6738 default: 6739 llvm_unreachable("Wrong trig opcode"); 6740 } 6741 } 6742 6743 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 6744 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 6745 assert(AtomicNode->isCompareAndSwap()); 6746 unsigned AS = AtomicNode->getAddressSpace(); 6747 6748 // No custom lowering required for local address space 6749 if (!isFlatGlobalAddrSpace(AS)) 6750 return Op; 6751 6752 // Non-local address space requires custom lowering for atomic compare 6753 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 6754 SDLoc DL(Op); 6755 SDValue ChainIn = Op.getOperand(0); 6756 SDValue Addr = Op.getOperand(1); 6757 SDValue Old = Op.getOperand(2); 6758 SDValue New = Op.getOperand(3); 6759 EVT VT = Op.getValueType(); 6760 MVT SimpleVT = VT.getSimpleVT(); 6761 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 6762 6763 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 6764 SDValue Ops[] = { ChainIn, Addr, NewOld }; 6765 6766 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 6767 Ops, VT, AtomicNode->getMemOperand()); 6768 } 6769 6770 //===----------------------------------------------------------------------===// 6771 // Custom DAG optimizations 6772 //===----------------------------------------------------------------------===// 6773 6774 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 6775 DAGCombinerInfo &DCI) const { 6776 EVT VT = N->getValueType(0); 6777 EVT ScalarVT = VT.getScalarType(); 6778 if (ScalarVT != MVT::f32) 6779 return SDValue(); 6780 6781 SelectionDAG &DAG = DCI.DAG; 6782 SDLoc DL(N); 6783 6784 SDValue Src = N->getOperand(0); 6785 EVT SrcVT = Src.getValueType(); 6786 6787 // TODO: We could try to match extracting the higher bytes, which would be 6788 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 6789 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 6790 // about in practice. 6791 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 6792 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 6793 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); 6794 DCI.AddToWorklist(Cvt.getNode()); 6795 return Cvt; 6796 } 6797 } 6798 6799 return SDValue(); 6800 } 6801 6802 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 6803 6804 // This is a variant of 6805 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 6806 // 6807 // The normal DAG combiner will do this, but only if the add has one use since 6808 // that would increase the number of instructions. 6809 // 6810 // This prevents us from seeing a constant offset that can be folded into a 6811 // memory instruction's addressing mode. If we know the resulting add offset of 6812 // a pointer can be folded into an addressing offset, we can replace the pointer 6813 // operand with the add of new constant offset. This eliminates one of the uses, 6814 // and may allow the remaining use to also be simplified. 6815 // 6816 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 6817 unsigned AddrSpace, 6818 EVT MemVT, 6819 DAGCombinerInfo &DCI) const { 6820 SDValue N0 = N->getOperand(0); 6821 SDValue N1 = N->getOperand(1); 6822 6823 // We only do this to handle cases where it's profitable when there are 6824 // multiple uses of the add, so defer to the standard combine. 6825 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 6826 N0->hasOneUse()) 6827 return SDValue(); 6828 6829 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 6830 if (!CN1) 6831 return SDValue(); 6832 6833 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6834 if (!CAdd) 6835 return SDValue(); 6836 6837 // If the resulting offset is too large, we can't fold it into the addressing 6838 // mode offset. 6839 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 6840 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 6841 6842 AddrMode AM; 6843 AM.HasBaseReg = true; 6844 AM.BaseOffs = Offset.getSExtValue(); 6845 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 6846 return SDValue(); 6847 6848 SelectionDAG &DAG = DCI.DAG; 6849 SDLoc SL(N); 6850 EVT VT = N->getValueType(0); 6851 6852 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 6853 SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); 6854 6855 SDNodeFlags Flags; 6856 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 6857 (N0.getOpcode() == ISD::OR || 6858 N0->getFlags().hasNoUnsignedWrap())); 6859 6860 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 6861 } 6862 6863 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 6864 DAGCombinerInfo &DCI) const { 6865 SDValue Ptr = N->getBasePtr(); 6866 SelectionDAG &DAG = DCI.DAG; 6867 SDLoc SL(N); 6868 6869 // TODO: We could also do this for multiplies. 6870 if (Ptr.getOpcode() == ISD::SHL) { 6871 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 6872 N->getMemoryVT(), DCI); 6873 if (NewPtr) { 6874 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 6875 6876 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; 6877 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 6878 } 6879 } 6880 6881 return SDValue(); 6882 } 6883 6884 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 6885 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 6886 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 6887 (Opc == ISD::XOR && Val == 0); 6888 } 6889 6890 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 6891 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 6892 // integer combine opportunities since most 64-bit operations are decomposed 6893 // this way. TODO: We won't want this for SALU especially if it is an inline 6894 // immediate. 6895 SDValue SITargetLowering::splitBinaryBitConstantOp( 6896 DAGCombinerInfo &DCI, 6897 const SDLoc &SL, 6898 unsigned Opc, SDValue LHS, 6899 const ConstantSDNode *CRHS) const { 6900 uint64_t Val = CRHS->getZExtValue(); 6901 uint32_t ValLo = Lo_32(Val); 6902 uint32_t ValHi = Hi_32(Val); 6903 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 6904 6905 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 6906 bitOpWithConstantIsReducible(Opc, ValHi)) || 6907 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 6908 // If we need to materialize a 64-bit immediate, it will be split up later 6909 // anyway. Avoid creating the harder to understand 64-bit immediate 6910 // materialization. 6911 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 6912 } 6913 6914 return SDValue(); 6915 } 6916 6917 // Returns true if argument is a boolean value which is not serialized into 6918 // memory or argument and does not require v_cmdmask_b32 to be deserialized. 6919 static bool isBoolSGPR(SDValue V) { 6920 if (V.getValueType() != MVT::i1) 6921 return false; 6922 switch (V.getOpcode()) { 6923 default: break; 6924 case ISD::SETCC: 6925 case ISD::AND: 6926 case ISD::OR: 6927 case ISD::XOR: 6928 case AMDGPUISD::FP_CLASS: 6929 return true; 6930 } 6931 return false; 6932 } 6933 6934 // If a constant has all zeroes or all ones within each byte return it. 6935 // Otherwise return 0. 6936 static uint32_t getConstantPermuteMask(uint32_t C) { 6937 // 0xff for any zero byte in the mask 6938 uint32_t ZeroByteMask = 0; 6939 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 6940 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 6941 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 6942 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 6943 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 6944 if ((NonZeroByteMask & C) != NonZeroByteMask) 6945 return 0; // Partial bytes selected. 6946 return C; 6947 } 6948 6949 // Check if a node selects whole bytes from its operand 0 starting at a byte 6950 // boundary while masking the rest. Returns select mask as in the v_perm_b32 6951 // or -1 if not succeeded. 6952 // Note byte select encoding: 6953 // value 0-3 selects corresponding source byte; 6954 // value 0xc selects zero; 6955 // value 0xff selects 0xff. 6956 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { 6957 assert(V.getValueSizeInBits() == 32); 6958 6959 if (V.getNumOperands() != 2) 6960 return ~0; 6961 6962 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 6963 if (!N1) 6964 return ~0; 6965 6966 uint32_t C = N1->getZExtValue(); 6967 6968 switch (V.getOpcode()) { 6969 default: 6970 break; 6971 case ISD::AND: 6972 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 6973 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 6974 } 6975 break; 6976 6977 case ISD::OR: 6978 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 6979 return (0x03020100 & ~ConstMask) | ConstMask; 6980 } 6981 break; 6982 6983 case ISD::SHL: 6984 if (C % 8) 6985 return ~0; 6986 6987 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 6988 6989 case ISD::SRL: 6990 if (C % 8) 6991 return ~0; 6992 6993 return uint32_t(0x0c0c0c0c03020100ull >> C); 6994 } 6995 6996 return ~0; 6997 } 6998 6999 SDValue SITargetLowering::performAndCombine(SDNode *N, 7000 DAGCombinerInfo &DCI) const { 7001 if (DCI.isBeforeLegalize()) 7002 return SDValue(); 7003 7004 SelectionDAG &DAG = DCI.DAG; 7005 EVT VT = N->getValueType(0); 7006 SDValue LHS = N->getOperand(0); 7007 SDValue RHS = N->getOperand(1); 7008 7009 7010 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 7011 if (VT == MVT::i64 && CRHS) { 7012 if (SDValue Split 7013 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 7014 return Split; 7015 } 7016 7017 if (CRHS && VT == MVT::i32) { 7018 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 7019 // nb = number of trailing zeroes in mask 7020 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 7021 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 7022 uint64_t Mask = CRHS->getZExtValue(); 7023 unsigned Bits = countPopulation(Mask); 7024 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 7025 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 7026 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 7027 unsigned Shift = CShift->getZExtValue(); 7028 unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); 7029 unsigned Offset = NB + Shift; 7030 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 7031 SDLoc SL(N); 7032 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 7033 LHS->getOperand(0), 7034 DAG.getConstant(Offset, SL, MVT::i32), 7035 DAG.getConstant(Bits, SL, MVT::i32)); 7036 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7037 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 7038 DAG.getValueType(NarrowVT)); 7039 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 7040 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 7041 return Shl; 7042 } 7043 } 7044 } 7045 7046 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 7047 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 7048 isa<ConstantSDNode>(LHS.getOperand(2))) { 7049 uint32_t Sel = getConstantPermuteMask(Mask); 7050 if (!Sel) 7051 return SDValue(); 7052 7053 // Select 0xc for all zero bytes 7054 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 7055 SDLoc DL(N); 7056 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 7057 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 7058 } 7059 } 7060 7061 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 7062 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 7063 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 7064 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7065 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 7066 7067 SDValue X = LHS.getOperand(0); 7068 SDValue Y = RHS.getOperand(0); 7069 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) 7070 return SDValue(); 7071 7072 if (LCC == ISD::SETO) { 7073 if (X != LHS.getOperand(1)) 7074 return SDValue(); 7075 7076 if (RCC == ISD::SETUNE) { 7077 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 7078 if (!C1 || !C1->isInfinity() || C1->isNegative()) 7079 return SDValue(); 7080 7081 const uint32_t Mask = SIInstrFlags::N_NORMAL | 7082 SIInstrFlags::N_SUBNORMAL | 7083 SIInstrFlags::N_ZERO | 7084 SIInstrFlags::P_ZERO | 7085 SIInstrFlags::P_SUBNORMAL | 7086 SIInstrFlags::P_NORMAL; 7087 7088 static_assert(((~(SIInstrFlags::S_NAN | 7089 SIInstrFlags::Q_NAN | 7090 SIInstrFlags::N_INFINITY | 7091 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 7092 "mask not equal"); 7093 7094 SDLoc DL(N); 7095 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 7096 X, DAG.getConstant(Mask, DL, MVT::i32)); 7097 } 7098 } 7099 } 7100 7101 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 7102 std::swap(LHS, RHS); 7103 7104 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 7105 RHS.hasOneUse()) { 7106 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7107 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 7108 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 7109 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 7110 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 7111 (RHS.getOperand(0) == LHS.getOperand(0) && 7112 LHS.getOperand(0) == LHS.getOperand(1))) { 7113 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 7114 unsigned NewMask = LCC == ISD::SETO ? 7115 Mask->getZExtValue() & ~OrdMask : 7116 Mask->getZExtValue() & OrdMask; 7117 7118 SDLoc DL(N); 7119 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 7120 DAG.getConstant(NewMask, DL, MVT::i32)); 7121 } 7122 } 7123 7124 if (VT == MVT::i32 && 7125 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 7126 // and x, (sext cc from i1) => select cc, x, 0 7127 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 7128 std::swap(LHS, RHS); 7129 if (isBoolSGPR(RHS.getOperand(0))) 7130 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 7131 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 7132 } 7133 7134 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 7135 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 7136 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 7137 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { 7138 uint32_t LHSMask = getPermuteMask(DAG, LHS); 7139 uint32_t RHSMask = getPermuteMask(DAG, RHS); 7140 if (LHSMask != ~0u && RHSMask != ~0u) { 7141 // Canonicalize the expression in an attempt to have fewer unique masks 7142 // and therefore fewer registers used to hold the masks. 7143 if (LHSMask > RHSMask) { 7144 std::swap(LHSMask, RHSMask); 7145 std::swap(LHS, RHS); 7146 } 7147 7148 // Select 0xc for each lane used from source operand. Zero has 0xc mask 7149 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 7150 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 7151 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 7152 7153 // Check of we need to combine values from two sources within a byte. 7154 if (!(LHSUsedLanes & RHSUsedLanes) && 7155 // If we select high and lower word keep it for SDWA. 7156 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 7157 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 7158 // Each byte in each mask is either selector mask 0-3, or has higher 7159 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 7160 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 7161 // mask which is not 0xff wins. By anding both masks we have a correct 7162 // result except that 0x0c shall be corrected to give 0x0c only. 7163 uint32_t Mask = LHSMask & RHSMask; 7164 for (unsigned I = 0; I < 32; I += 8) { 7165 uint32_t ByteSel = 0xff << I; 7166 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 7167 Mask &= (0x0c << I) & 0xffffffff; 7168 } 7169 7170 // Add 4 to each active LHS lane. It will not affect any existing 0xff 7171 // or 0x0c. 7172 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 7173 SDLoc DL(N); 7174 7175 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 7176 LHS.getOperand(0), RHS.getOperand(0), 7177 DAG.getConstant(Sel, DL, MVT::i32)); 7178 } 7179 } 7180 } 7181 7182 return SDValue(); 7183 } 7184 7185 SDValue SITargetLowering::performOrCombine(SDNode *N, 7186 DAGCombinerInfo &DCI) const { 7187 SelectionDAG &DAG = DCI.DAG; 7188 SDValue LHS = N->getOperand(0); 7189 SDValue RHS = N->getOperand(1); 7190 7191 EVT VT = N->getValueType(0); 7192 if (VT == MVT::i1) { 7193 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 7194 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 7195 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 7196 SDValue Src = LHS.getOperand(0); 7197 if (Src != RHS.getOperand(0)) 7198 return SDValue(); 7199 7200 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 7201 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 7202 if (!CLHS || !CRHS) 7203 return SDValue(); 7204 7205 // Only 10 bits are used. 7206 static const uint32_t MaxMask = 0x3ff; 7207 7208 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 7209 SDLoc DL(N); 7210 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 7211 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 7212 } 7213 7214 return SDValue(); 7215 } 7216 7217 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 7218 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 7219 LHS.getOpcode() == AMDGPUISD::PERM && 7220 isa<ConstantSDNode>(LHS.getOperand(2))) { 7221 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 7222 if (!Sel) 7223 return SDValue(); 7224 7225 Sel |= LHS.getConstantOperandVal(2); 7226 SDLoc DL(N); 7227 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 7228 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 7229 } 7230 7231 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 7232 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 7233 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 7234 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { 7235 uint32_t LHSMask = getPermuteMask(DAG, LHS); 7236 uint32_t RHSMask = getPermuteMask(DAG, RHS); 7237 if (LHSMask != ~0u && RHSMask != ~0u) { 7238 // Canonicalize the expression in an attempt to have fewer unique masks 7239 // and therefore fewer registers used to hold the masks. 7240 if (LHSMask > RHSMask) { 7241 std::swap(LHSMask, RHSMask); 7242 std::swap(LHS, RHS); 7243 } 7244 7245 // Select 0xc for each lane used from source operand. Zero has 0xc mask 7246 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 7247 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 7248 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 7249 7250 // Check of we need to combine values from two sources within a byte. 7251 if (!(LHSUsedLanes & RHSUsedLanes) && 7252 // If we select high and lower word keep it for SDWA. 7253 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 7254 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 7255 // Kill zero bytes selected by other mask. Zero value is 0xc. 7256 LHSMask &= ~RHSUsedLanes; 7257 RHSMask &= ~LHSUsedLanes; 7258 // Add 4 to each active LHS lane 7259 LHSMask |= LHSUsedLanes & 0x04040404; 7260 // Combine masks 7261 uint32_t Sel = LHSMask | RHSMask; 7262 SDLoc DL(N); 7263 7264 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 7265 LHS.getOperand(0), RHS.getOperand(0), 7266 DAG.getConstant(Sel, DL, MVT::i32)); 7267 } 7268 } 7269 } 7270 7271 if (VT != MVT::i64) 7272 return SDValue(); 7273 7274 // TODO: This could be a generic combine with a predicate for extracting the 7275 // high half of an integer being free. 7276 7277 // (or i64:x, (zero_extend i32:y)) -> 7278 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 7279 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 7280 RHS.getOpcode() != ISD::ZERO_EXTEND) 7281 std::swap(LHS, RHS); 7282 7283 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 7284 SDValue ExtSrc = RHS.getOperand(0); 7285 EVT SrcVT = ExtSrc.getValueType(); 7286 if (SrcVT == MVT::i32) { 7287 SDLoc SL(N); 7288 SDValue LowLHS, HiBits; 7289 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 7290 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 7291 7292 DCI.AddToWorklist(LowOr.getNode()); 7293 DCI.AddToWorklist(HiBits.getNode()); 7294 7295 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 7296 LowOr, HiBits); 7297 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 7298 } 7299 } 7300 7301 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7302 if (CRHS) { 7303 if (SDValue Split 7304 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS)) 7305 return Split; 7306 } 7307 7308 return SDValue(); 7309 } 7310 7311 SDValue SITargetLowering::performXorCombine(SDNode *N, 7312 DAGCombinerInfo &DCI) const { 7313 EVT VT = N->getValueType(0); 7314 if (VT != MVT::i64) 7315 return SDValue(); 7316 7317 SDValue LHS = N->getOperand(0); 7318 SDValue RHS = N->getOperand(1); 7319 7320 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 7321 if (CRHS) { 7322 if (SDValue Split 7323 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 7324 return Split; 7325 } 7326 7327 return SDValue(); 7328 } 7329 7330 // Instructions that will be lowered with a final instruction that zeros the 7331 // high result bits. 7332 // XXX - probably only need to list legal operations. 7333 static bool fp16SrcZerosHighBits(unsigned Opc) { 7334 switch (Opc) { 7335 case ISD::FADD: 7336 case ISD::FSUB: 7337 case ISD::FMUL: 7338 case ISD::FDIV: 7339 case ISD::FREM: 7340 case ISD::FMA: 7341 case ISD::FMAD: 7342 case ISD::FCANONICALIZE: 7343 case ISD::FP_ROUND: 7344 case ISD::UINT_TO_FP: 7345 case ISD::SINT_TO_FP: 7346 case ISD::FABS: 7347 // Fabs is lowered to a bit operation, but it's an and which will clear the 7348 // high bits anyway. 7349 case ISD::FSQRT: 7350 case ISD::FSIN: 7351 case ISD::FCOS: 7352 case ISD::FPOWI: 7353 case ISD::FPOW: 7354 case ISD::FLOG: 7355 case ISD::FLOG2: 7356 case ISD::FLOG10: 7357 case ISD::FEXP: 7358 case ISD::FEXP2: 7359 case ISD::FCEIL: 7360 case ISD::FTRUNC: 7361 case ISD::FRINT: 7362 case ISD::FNEARBYINT: 7363 case ISD::FROUND: 7364 case ISD::FFLOOR: 7365 case ISD::FMINNUM: 7366 case ISD::FMAXNUM: 7367 case AMDGPUISD::FRACT: 7368 case AMDGPUISD::CLAMP: 7369 case AMDGPUISD::COS_HW: 7370 case AMDGPUISD::SIN_HW: 7371 case AMDGPUISD::FMIN3: 7372 case AMDGPUISD::FMAX3: 7373 case AMDGPUISD::FMED3: 7374 case AMDGPUISD::FMAD_FTZ: 7375 case AMDGPUISD::RCP: 7376 case AMDGPUISD::RSQ: 7377 case AMDGPUISD::RCP_IFLAG: 7378 case AMDGPUISD::LDEXP: 7379 return true; 7380 default: 7381 // fcopysign, select and others may be lowered to 32-bit bit operations 7382 // which don't zero the high bits. 7383 return false; 7384 } 7385 } 7386 7387 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 7388 DAGCombinerInfo &DCI) const { 7389 if (!Subtarget->has16BitInsts() || 7390 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 7391 return SDValue(); 7392 7393 EVT VT = N->getValueType(0); 7394 if (VT != MVT::i32) 7395 return SDValue(); 7396 7397 SDValue Src = N->getOperand(0); 7398 if (Src.getValueType() != MVT::i16) 7399 return SDValue(); 7400 7401 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src 7402 // FIXME: It is not universally true that the high bits are zeroed on gfx9. 7403 if (Src.getOpcode() == ISD::BITCAST) { 7404 SDValue BCSrc = Src.getOperand(0); 7405 if (BCSrc.getValueType() == MVT::f16 && 7406 fp16SrcZerosHighBits(BCSrc.getOpcode())) 7407 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc); 7408 } 7409 7410 return SDValue(); 7411 } 7412 7413 SDValue SITargetLowering::performClassCombine(SDNode *N, 7414 DAGCombinerInfo &DCI) const { 7415 SelectionDAG &DAG = DCI.DAG; 7416 SDValue Mask = N->getOperand(1); 7417 7418 // fp_class x, 0 -> false 7419 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 7420 if (CMask->isNullValue()) 7421 return DAG.getConstant(0, SDLoc(N), MVT::i1); 7422 } 7423 7424 if (N->getOperand(0).isUndef()) 7425 return DAG.getUNDEF(MVT::i1); 7426 7427 return SDValue(); 7428 } 7429 7430 SDValue SITargetLowering::performRcpCombine(SDNode *N, 7431 DAGCombinerInfo &DCI) const { 7432 EVT VT = N->getValueType(0); 7433 SDValue N0 = N->getOperand(0); 7434 7435 if (N0.isUndef()) 7436 return N0; 7437 7438 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 7439 N0.getOpcode() == ISD::SINT_TO_FP)) { 7440 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 7441 N->getFlags()); 7442 } 7443 7444 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 7445 } 7446 7447 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 7448 unsigned MaxDepth) const { 7449 unsigned Opcode = Op.getOpcode(); 7450 if (Opcode == ISD::FCANONICALIZE) 7451 return true; 7452 7453 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 7454 auto F = CFP->getValueAPF(); 7455 if (F.isNaN() && F.isSignaling()) 7456 return false; 7457 return !F.isDenormal() || denormalsEnabledForType(Op.getValueType()); 7458 } 7459 7460 // If source is a result of another standard FP operation it is already in 7461 // canonical form. 7462 if (MaxDepth == 0) 7463 return false; 7464 7465 switch (Opcode) { 7466 // These will flush denorms if required. 7467 case ISD::FADD: 7468 case ISD::FSUB: 7469 case ISD::FMUL: 7470 case ISD::FCEIL: 7471 case ISD::FFLOOR: 7472 case ISD::FMA: 7473 case ISD::FMAD: 7474 case ISD::FSQRT: 7475 case ISD::FDIV: 7476 case ISD::FREM: 7477 case ISD::FP_ROUND: 7478 case ISD::FP_EXTEND: 7479 case AMDGPUISD::FMUL_LEGACY: 7480 case AMDGPUISD::FMAD_FTZ: 7481 case AMDGPUISD::RCP: 7482 case AMDGPUISD::RSQ: 7483 case AMDGPUISD::RSQ_CLAMP: 7484 case AMDGPUISD::RCP_LEGACY: 7485 case AMDGPUISD::RSQ_LEGACY: 7486 case AMDGPUISD::RCP_IFLAG: 7487 case AMDGPUISD::TRIG_PREOP: 7488 case AMDGPUISD::DIV_SCALE: 7489 case AMDGPUISD::DIV_FMAS: 7490 case AMDGPUISD::DIV_FIXUP: 7491 case AMDGPUISD::FRACT: 7492 case AMDGPUISD::LDEXP: 7493 case AMDGPUISD::CVT_PKRTZ_F16_F32: 7494 case AMDGPUISD::CVT_F32_UBYTE0: 7495 case AMDGPUISD::CVT_F32_UBYTE1: 7496 case AMDGPUISD::CVT_F32_UBYTE2: 7497 case AMDGPUISD::CVT_F32_UBYTE3: 7498 return true; 7499 7500 // It can/will be lowered or combined as a bit operation. 7501 // Need to check their input recursively to handle. 7502 case ISD::FNEG: 7503 case ISD::FABS: 7504 case ISD::FCOPYSIGN: 7505 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 7506 7507 case ISD::FSIN: 7508 case ISD::FCOS: 7509 case ISD::FSINCOS: 7510 return Op.getValueType().getScalarType() != MVT::f16; 7511 7512 case ISD::FMINNUM: 7513 case ISD::FMAXNUM: 7514 case ISD::FMINNUM_IEEE: 7515 case ISD::FMAXNUM_IEEE: 7516 case AMDGPUISD::CLAMP: 7517 case AMDGPUISD::FMED3: 7518 case AMDGPUISD::FMAX3: 7519 case AMDGPUISD::FMIN3: { 7520 // FIXME: Shouldn't treat the generic operations different based these. 7521 // However, we aren't really required to flush the result from 7522 // minnum/maxnum.. 7523 7524 // snans will be quieted, so we only need to worry about denormals. 7525 if (Subtarget->supportsMinMaxDenormModes() || 7526 denormalsEnabledForType(Op.getValueType())) 7527 return true; 7528 7529 // Flushing may be required. 7530 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 7531 // targets need to check their input recursively. 7532 7533 // FIXME: Does this apply with clamp? It's implemented with max. 7534 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 7535 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 7536 return false; 7537 } 7538 7539 return true; 7540 } 7541 case ISD::SELECT: { 7542 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 7543 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 7544 } 7545 case ISD::BUILD_VECTOR: { 7546 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 7547 SDValue SrcOp = Op.getOperand(i); 7548 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 7549 return false; 7550 } 7551 7552 return true; 7553 } 7554 case ISD::EXTRACT_VECTOR_ELT: 7555 case ISD::EXTRACT_SUBVECTOR: { 7556 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 7557 } 7558 case ISD::INSERT_VECTOR_ELT: { 7559 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 7560 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 7561 } 7562 case ISD::UNDEF: 7563 // Could be anything. 7564 return false; 7565 7566 case ISD::BITCAST: { 7567 // Hack round the mess we make when legalizing extract_vector_elt 7568 SDValue Src = Op.getOperand(0); 7569 if (Src.getValueType() == MVT::i16 && 7570 Src.getOpcode() == ISD::TRUNCATE) { 7571 SDValue TruncSrc = Src.getOperand(0); 7572 if (TruncSrc.getValueType() == MVT::i32 && 7573 TruncSrc.getOpcode() == ISD::BITCAST && 7574 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 7575 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 7576 } 7577 } 7578 7579 return false; 7580 } 7581 case ISD::INTRINSIC_WO_CHAIN: { 7582 unsigned IntrinsicID 7583 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7584 // TODO: Handle more intrinsics 7585 switch (IntrinsicID) { 7586 case Intrinsic::amdgcn_cvt_pkrtz: 7587 case Intrinsic::amdgcn_cubeid: 7588 case Intrinsic::amdgcn_frexp_mant: 7589 case Intrinsic::amdgcn_fdot2: 7590 return true; 7591 default: 7592 break; 7593 } 7594 7595 LLVM_FALLTHROUGH; 7596 } 7597 default: 7598 return denormalsEnabledForType(Op.getValueType()) && 7599 DAG.isKnownNeverSNaN(Op); 7600 } 7601 7602 llvm_unreachable("invalid operation"); 7603 } 7604 7605 // Constant fold canonicalize. 7606 SDValue SITargetLowering::getCanonicalConstantFP( 7607 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 7608 // Flush denormals to 0 if not enabled. 7609 if (C.isDenormal() && !denormalsEnabledForType(VT)) 7610 return DAG.getConstantFP(0.0, SL, VT); 7611 7612 if (C.isNaN()) { 7613 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 7614 if (C.isSignaling()) { 7615 // Quiet a signaling NaN. 7616 // FIXME: Is this supposed to preserve payload bits? 7617 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 7618 } 7619 7620 // Make sure it is the canonical NaN bitpattern. 7621 // 7622 // TODO: Can we use -1 as the canonical NaN value since it's an inline 7623 // immediate? 7624 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 7625 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 7626 } 7627 7628 // Already canonical. 7629 return DAG.getConstantFP(C, SL, VT); 7630 } 7631 7632 static bool vectorEltWillFoldAway(SDValue Op) { 7633 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 7634 } 7635 7636 SDValue SITargetLowering::performFCanonicalizeCombine( 7637 SDNode *N, 7638 DAGCombinerInfo &DCI) const { 7639 SelectionDAG &DAG = DCI.DAG; 7640 SDValue N0 = N->getOperand(0); 7641 EVT VT = N->getValueType(0); 7642 7643 // fcanonicalize undef -> qnan 7644 if (N0.isUndef()) { 7645 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 7646 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 7647 } 7648 7649 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 7650 EVT VT = N->getValueType(0); 7651 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 7652 } 7653 7654 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 7655 // (fcanonicalize k) 7656 // 7657 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 7658 7659 // TODO: This could be better with wider vectors that will be split to v2f16, 7660 // and to consider uses since there aren't that many packed operations. 7661 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 7662 isTypeLegal(MVT::v2f16)) { 7663 SDLoc SL(N); 7664 SDValue NewElts[2]; 7665 SDValue Lo = N0.getOperand(0); 7666 SDValue Hi = N0.getOperand(1); 7667 EVT EltVT = Lo.getValueType(); 7668 7669 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 7670 for (unsigned I = 0; I != 2; ++I) { 7671 SDValue Op = N0.getOperand(I); 7672 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 7673 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 7674 CFP->getValueAPF()); 7675 } else if (Op.isUndef()) { 7676 // Handled below based on what the other operand is. 7677 NewElts[I] = Op; 7678 } else { 7679 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 7680 } 7681 } 7682 7683 // If one half is undef, and one is constant, perfer a splat vector rather 7684 // than the normal qNaN. If it's a register, prefer 0.0 since that's 7685 // cheaper to use and may be free with a packed operation. 7686 if (NewElts[0].isUndef()) { 7687 if (isa<ConstantFPSDNode>(NewElts[1])) 7688 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 7689 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 7690 } 7691 7692 if (NewElts[1].isUndef()) { 7693 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 7694 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 7695 } 7696 7697 return DAG.getBuildVector(VT, SL, NewElts); 7698 } 7699 } 7700 7701 unsigned SrcOpc = N0.getOpcode(); 7702 7703 // If it's free to do so, push canonicalizes further up the source, which may 7704 // find a canonical source. 7705 // 7706 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for 7707 // sNaNs. 7708 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 7709 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 7710 if (CRHS && N0.hasOneUse()) { 7711 SDLoc SL(N); 7712 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 7713 N0.getOperand(0)); 7714 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 7715 DCI.AddToWorklist(Canon0.getNode()); 7716 7717 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 7718 } 7719 } 7720 7721 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 7722 } 7723 7724 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 7725 switch (Opc) { 7726 case ISD::FMAXNUM: 7727 case ISD::FMAXNUM_IEEE: 7728 return AMDGPUISD::FMAX3; 7729 case ISD::SMAX: 7730 return AMDGPUISD::SMAX3; 7731 case ISD::UMAX: 7732 return AMDGPUISD::UMAX3; 7733 case ISD::FMINNUM: 7734 case ISD::FMINNUM_IEEE: 7735 return AMDGPUISD::FMIN3; 7736 case ISD::SMIN: 7737 return AMDGPUISD::SMIN3; 7738 case ISD::UMIN: 7739 return AMDGPUISD::UMIN3; 7740 default: 7741 llvm_unreachable("Not a min/max opcode"); 7742 } 7743 } 7744 7745 SDValue SITargetLowering::performIntMed3ImmCombine( 7746 SelectionDAG &DAG, const SDLoc &SL, 7747 SDValue Op0, SDValue Op1, bool Signed) const { 7748 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); 7749 if (!K1) 7750 return SDValue(); 7751 7752 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 7753 if (!K0) 7754 return SDValue(); 7755 7756 if (Signed) { 7757 if (K0->getAPIntValue().sge(K1->getAPIntValue())) 7758 return SDValue(); 7759 } else { 7760 if (K0->getAPIntValue().uge(K1->getAPIntValue())) 7761 return SDValue(); 7762 } 7763 7764 EVT VT = K0->getValueType(0); 7765 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 7766 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { 7767 return DAG.getNode(Med3Opc, SL, VT, 7768 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); 7769 } 7770 7771 // If there isn't a 16-bit med3 operation, convert to 32-bit. 7772 MVT NVT = MVT::i32; 7773 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 7774 7775 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); 7776 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); 7777 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); 7778 7779 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); 7780 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); 7781 } 7782 7783 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 7784 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 7785 return C; 7786 7787 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 7788 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 7789 return C; 7790 } 7791 7792 return nullptr; 7793 } 7794 7795 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 7796 const SDLoc &SL, 7797 SDValue Op0, 7798 SDValue Op1) const { 7799 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 7800 if (!K1) 7801 return SDValue(); 7802 7803 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 7804 if (!K0) 7805 return SDValue(); 7806 7807 // Ordered >= (although NaN inputs should have folded away by now). 7808 APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF()); 7809 if (Cmp == APFloat::cmpGreaterThan) 7810 return SDValue(); 7811 7812 // TODO: Check IEEE bit enabled? 7813 EVT VT = Op0.getValueType(); 7814 if (Subtarget->enableDX10Clamp()) { 7815 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 7816 // hardware fmed3 behavior converting to a min. 7817 // FIXME: Should this be allowing -0.0? 7818 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 7819 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 7820 } 7821 7822 // med3 for f16 is only available on gfx9+, and not available for v2f16. 7823 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 7824 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 7825 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 7826 // then give the other result, which is different from med3 with a NaN 7827 // input. 7828 SDValue Var = Op0.getOperand(0); 7829 if (!DAG.isKnownNeverSNaN(Var)) 7830 return SDValue(); 7831 7832 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 7833 7834 if ((!K0->hasOneUse() || 7835 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 7836 (!K1->hasOneUse() || 7837 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 7838 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 7839 Var, SDValue(K0, 0), SDValue(K1, 0)); 7840 } 7841 } 7842 7843 return SDValue(); 7844 } 7845 7846 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 7847 DAGCombinerInfo &DCI) const { 7848 SelectionDAG &DAG = DCI.DAG; 7849 7850 EVT VT = N->getValueType(0); 7851 unsigned Opc = N->getOpcode(); 7852 SDValue Op0 = N->getOperand(0); 7853 SDValue Op1 = N->getOperand(1); 7854 7855 // Only do this if the inner op has one use since this will just increases 7856 // register pressure for no benefit. 7857 7858 7859 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 7860 !VT.isVector() && VT != MVT::f64 && 7861 ((VT != MVT::f16 && VT != MVT::i16) || Subtarget->hasMin3Max3_16())) { 7862 // max(max(a, b), c) -> max3(a, b, c) 7863 // min(min(a, b), c) -> min3(a, b, c) 7864 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 7865 SDLoc DL(N); 7866 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 7867 DL, 7868 N->getValueType(0), 7869 Op0.getOperand(0), 7870 Op0.getOperand(1), 7871 Op1); 7872 } 7873 7874 // Try commuted. 7875 // max(a, max(b, c)) -> max3(a, b, c) 7876 // min(a, min(b, c)) -> min3(a, b, c) 7877 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 7878 SDLoc DL(N); 7879 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 7880 DL, 7881 N->getValueType(0), 7882 Op0, 7883 Op1.getOperand(0), 7884 Op1.getOperand(1)); 7885 } 7886 } 7887 7888 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 7889 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 7890 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) 7891 return Med3; 7892 } 7893 7894 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 7895 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) 7896 return Med3; 7897 } 7898 7899 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 7900 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 7901 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 7902 (Opc == AMDGPUISD::FMIN_LEGACY && 7903 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 7904 (VT == MVT::f32 || VT == MVT::f64 || 7905 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 7906 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 7907 Op0.hasOneUse()) { 7908 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 7909 return Res; 7910 } 7911 7912 return SDValue(); 7913 } 7914 7915 static bool isClampZeroToOne(SDValue A, SDValue B) { 7916 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 7917 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 7918 // FIXME: Should this be allowing -0.0? 7919 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 7920 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 7921 } 7922 } 7923 7924 return false; 7925 } 7926 7927 // FIXME: Should only worry about snans for version with chain. 7928 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 7929 DAGCombinerInfo &DCI) const { 7930 EVT VT = N->getValueType(0); 7931 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 7932 // NaNs. With a NaN input, the order of the operands may change the result. 7933 7934 SelectionDAG &DAG = DCI.DAG; 7935 SDLoc SL(N); 7936 7937 SDValue Src0 = N->getOperand(0); 7938 SDValue Src1 = N->getOperand(1); 7939 SDValue Src2 = N->getOperand(2); 7940 7941 if (isClampZeroToOne(Src0, Src1)) { 7942 // const_a, const_b, x -> clamp is safe in all cases including signaling 7943 // nans. 7944 // FIXME: Should this be allowing -0.0? 7945 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 7946 } 7947 7948 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 7949 // handling no dx10-clamp? 7950 if (Subtarget->enableDX10Clamp()) { 7951 // If NaNs is clamped to 0, we are free to reorder the inputs. 7952 7953 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 7954 std::swap(Src0, Src1); 7955 7956 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 7957 std::swap(Src1, Src2); 7958 7959 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 7960 std::swap(Src0, Src1); 7961 7962 if (isClampZeroToOne(Src1, Src2)) 7963 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 7964 } 7965 7966 return SDValue(); 7967 } 7968 7969 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 7970 DAGCombinerInfo &DCI) const { 7971 SDValue Src0 = N->getOperand(0); 7972 SDValue Src1 = N->getOperand(1); 7973 if (Src0.isUndef() && Src1.isUndef()) 7974 return DCI.DAG.getUNDEF(N->getValueType(0)); 7975 return SDValue(); 7976 } 7977 7978 SDValue SITargetLowering::performExtractVectorEltCombine( 7979 SDNode *N, DAGCombinerInfo &DCI) const { 7980 SDValue Vec = N->getOperand(0); 7981 SelectionDAG &DAG = DCI.DAG; 7982 7983 EVT VecVT = Vec.getValueType(); 7984 EVT EltVT = VecVT.getVectorElementType(); 7985 7986 if ((Vec.getOpcode() == ISD::FNEG || 7987 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 7988 SDLoc SL(N); 7989 EVT EltVT = N->getValueType(0); 7990 SDValue Idx = N->getOperand(1); 7991 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7992 Vec.getOperand(0), Idx); 7993 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); 7994 } 7995 7996 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 7997 // => 7998 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 7999 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 8000 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 8001 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { 8002 SDLoc SL(N); 8003 EVT EltVT = N->getValueType(0); 8004 SDValue Idx = N->getOperand(1); 8005 unsigned Opc = Vec.getOpcode(); 8006 8007 switch(Opc) { 8008 default: 8009 break; 8010 // TODO: Support other binary operations. 8011 case ISD::FADD: 8012 case ISD::FSUB: 8013 case ISD::FMUL: 8014 case ISD::ADD: 8015 case ISD::UMIN: 8016 case ISD::UMAX: 8017 case ISD::SMIN: 8018 case ISD::SMAX: 8019 case ISD::FMAXNUM: 8020 case ISD::FMINNUM: 8021 case ISD::FMAXNUM_IEEE: 8022 case ISD::FMINNUM_IEEE: { 8023 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 8024 Vec.getOperand(0), Idx); 8025 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 8026 Vec.getOperand(1), Idx); 8027 8028 DCI.AddToWorklist(Elt0.getNode()); 8029 DCI.AddToWorklist(Elt1.getNode()); 8030 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); 8031 } 8032 } 8033 } 8034 8035 unsigned VecSize = VecVT.getSizeInBits(); 8036 unsigned EltSize = EltVT.getSizeInBits(); 8037 8038 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 8039 // This elminates non-constant index and subsequent movrel or scratch access. 8040 // Sub-dword vectors of size 2 dword or less have better implementation. 8041 // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32 8042 // instructions. 8043 if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) && 8044 !isa<ConstantSDNode>(N->getOperand(1))) { 8045 SDLoc SL(N); 8046 SDValue Idx = N->getOperand(1); 8047 EVT IdxVT = Idx.getValueType(); 8048 SDValue V; 8049 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 8050 SDValue IC = DAG.getConstant(I, SL, IdxVT); 8051 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 8052 if (I == 0) 8053 V = Elt; 8054 else 8055 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 8056 } 8057 return V; 8058 } 8059 8060 if (!DCI.isBeforeLegalize()) 8061 return SDValue(); 8062 8063 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 8064 // elements. This exposes more load reduction opportunities by replacing 8065 // multiple small extract_vector_elements with a single 32-bit extract. 8066 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8067 if (isa<MemSDNode>(Vec) && 8068 EltSize <= 16 && 8069 EltVT.isByteSized() && 8070 VecSize > 32 && 8071 VecSize % 32 == 0 && 8072 Idx) { 8073 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 8074 8075 unsigned BitIndex = Idx->getZExtValue() * EltSize; 8076 unsigned EltIdx = BitIndex / 32; 8077 unsigned LeftoverBitIdx = BitIndex % 32; 8078 SDLoc SL(N); 8079 8080 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 8081 DCI.AddToWorklist(Cast.getNode()); 8082 8083 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 8084 DAG.getConstant(EltIdx, SL, MVT::i32)); 8085 DCI.AddToWorklist(Elt.getNode()); 8086 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 8087 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 8088 DCI.AddToWorklist(Srl.getNode()); 8089 8090 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); 8091 DCI.AddToWorklist(Trunc.getNode()); 8092 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); 8093 } 8094 8095 return SDValue(); 8096 } 8097 8098 SDValue 8099 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 8100 DAGCombinerInfo &DCI) const { 8101 SDValue Vec = N->getOperand(0); 8102 SDValue Idx = N->getOperand(2); 8103 EVT VecVT = Vec.getValueType(); 8104 EVT EltVT = VecVT.getVectorElementType(); 8105 unsigned VecSize = VecVT.getSizeInBits(); 8106 unsigned EltSize = EltVT.getSizeInBits(); 8107 8108 // INSERT_VECTOR_ELT (<n x e>, var-idx) 8109 // => BUILD_VECTOR n x select (e, const-idx) 8110 // This elminates non-constant index and subsequent movrel or scratch access. 8111 // Sub-dword vectors of size 2 dword or less have better implementation. 8112 // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32 8113 // instructions. 8114 if (isa<ConstantSDNode>(Idx) || 8115 VecSize > 256 || (VecSize <= 64 && EltSize < 32)) 8116 return SDValue(); 8117 8118 SelectionDAG &DAG = DCI.DAG; 8119 SDLoc SL(N); 8120 SDValue Ins = N->getOperand(1); 8121 EVT IdxVT = Idx.getValueType(); 8122 8123 SmallVector<SDValue, 16> Ops; 8124 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 8125 SDValue IC = DAG.getConstant(I, SL, IdxVT); 8126 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 8127 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 8128 Ops.push_back(V); 8129 } 8130 8131 return DAG.getBuildVector(VecVT, SL, Ops); 8132 } 8133 8134 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 8135 const SDNode *N0, 8136 const SDNode *N1) const { 8137 EVT VT = N0->getValueType(0); 8138 8139 // Only do this if we are not trying to support denormals. v_mad_f32 does not 8140 // support denormals ever. 8141 if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) || 8142 (VT == MVT::f16 && !Subtarget->hasFP16Denormals())) 8143 return ISD::FMAD; 8144 8145 const TargetOptions &Options = DAG.getTarget().Options; 8146 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 8147 (N0->getFlags().hasAllowContract() && 8148 N1->getFlags().hasAllowContract())) && 8149 isFMAFasterThanFMulAndFAdd(VT)) { 8150 return ISD::FMA; 8151 } 8152 8153 return 0; 8154 } 8155 8156 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 8157 EVT VT, 8158 SDValue N0, SDValue N1, SDValue N2, 8159 bool Signed) { 8160 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 8161 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 8162 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 8163 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 8164 } 8165 8166 SDValue SITargetLowering::performAddCombine(SDNode *N, 8167 DAGCombinerInfo &DCI) const { 8168 SelectionDAG &DAG = DCI.DAG; 8169 EVT VT = N->getValueType(0); 8170 SDLoc SL(N); 8171 SDValue LHS = N->getOperand(0); 8172 SDValue RHS = N->getOperand(1); 8173 8174 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) 8175 && Subtarget->hasMad64_32() && 8176 !VT.isVector() && VT.getScalarSizeInBits() > 32 && 8177 VT.getScalarSizeInBits() <= 64) { 8178 if (LHS.getOpcode() != ISD::MUL) 8179 std::swap(LHS, RHS); 8180 8181 SDValue MulLHS = LHS.getOperand(0); 8182 SDValue MulRHS = LHS.getOperand(1); 8183 SDValue AddRHS = RHS; 8184 8185 // TODO: Maybe restrict if SGPR inputs. 8186 if (numBitsUnsigned(MulLHS, DAG) <= 32 && 8187 numBitsUnsigned(MulRHS, DAG) <= 32) { 8188 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); 8189 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); 8190 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); 8191 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); 8192 } 8193 8194 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) { 8195 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); 8196 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); 8197 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); 8198 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); 8199 } 8200 8201 return SDValue(); 8202 } 8203 8204 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 8205 return SDValue(); 8206 8207 // add x, zext (setcc) => addcarry x, 0, setcc 8208 // add x, sext (setcc) => subcarry x, 0, setcc 8209 unsigned Opc = LHS.getOpcode(); 8210 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 8211 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) 8212 std::swap(RHS, LHS); 8213 8214 Opc = RHS.getOpcode(); 8215 switch (Opc) { 8216 default: break; 8217 case ISD::ZERO_EXTEND: 8218 case ISD::SIGN_EXTEND: 8219 case ISD::ANY_EXTEND: { 8220 auto Cond = RHS.getOperand(0); 8221 if (!isBoolSGPR(Cond)) 8222 break; 8223 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 8224 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 8225 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; 8226 return DAG.getNode(Opc, SL, VTList, Args); 8227 } 8228 case ISD::ADDCARRY: { 8229 // add x, (addcarry y, 0, cc) => addcarry x, y, cc 8230 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 8231 if (!C || C->getZExtValue() != 0) break; 8232 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 8233 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); 8234 } 8235 } 8236 return SDValue(); 8237 } 8238 8239 SDValue SITargetLowering::performSubCombine(SDNode *N, 8240 DAGCombinerInfo &DCI) const { 8241 SelectionDAG &DAG = DCI.DAG; 8242 EVT VT = N->getValueType(0); 8243 8244 if (VT != MVT::i32) 8245 return SDValue(); 8246 8247 SDLoc SL(N); 8248 SDValue LHS = N->getOperand(0); 8249 SDValue RHS = N->getOperand(1); 8250 8251 unsigned Opc = LHS.getOpcode(); 8252 if (Opc != ISD::SUBCARRY) 8253 std::swap(RHS, LHS); 8254 8255 if (LHS.getOpcode() == ISD::SUBCARRY) { 8256 // sub (subcarry x, 0, cc), y => subcarry x, y, cc 8257 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 8258 if (!C || C->getZExtValue() != 0) 8259 return SDValue(); 8260 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 8261 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); 8262 } 8263 return SDValue(); 8264 } 8265 8266 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 8267 DAGCombinerInfo &DCI) const { 8268 8269 if (N->getValueType(0) != MVT::i32) 8270 return SDValue(); 8271 8272 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8273 if (!C || C->getZExtValue() != 0) 8274 return SDValue(); 8275 8276 SelectionDAG &DAG = DCI.DAG; 8277 SDValue LHS = N->getOperand(0); 8278 8279 // addcarry (add x, y), 0, cc => addcarry x, y, cc 8280 // subcarry (sub x, y), 0, cc => subcarry x, y, cc 8281 unsigned LHSOpc = LHS.getOpcode(); 8282 unsigned Opc = N->getOpcode(); 8283 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || 8284 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { 8285 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 8286 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 8287 } 8288 return SDValue(); 8289 } 8290 8291 SDValue SITargetLowering::performFAddCombine(SDNode *N, 8292 DAGCombinerInfo &DCI) const { 8293 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 8294 return SDValue(); 8295 8296 SelectionDAG &DAG = DCI.DAG; 8297 EVT VT = N->getValueType(0); 8298 8299 SDLoc SL(N); 8300 SDValue LHS = N->getOperand(0); 8301 SDValue RHS = N->getOperand(1); 8302 8303 // These should really be instruction patterns, but writing patterns with 8304 // source modiifiers is a pain. 8305 8306 // fadd (fadd (a, a), b) -> mad 2.0, a, b 8307 if (LHS.getOpcode() == ISD::FADD) { 8308 SDValue A = LHS.getOperand(0); 8309 if (A == LHS.getOperand(1)) { 8310 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 8311 if (FusedOp != 0) { 8312 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 8313 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 8314 } 8315 } 8316 } 8317 8318 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 8319 if (RHS.getOpcode() == ISD::FADD) { 8320 SDValue A = RHS.getOperand(0); 8321 if (A == RHS.getOperand(1)) { 8322 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 8323 if (FusedOp != 0) { 8324 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 8325 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 8326 } 8327 } 8328 } 8329 8330 return SDValue(); 8331 } 8332 8333 SDValue SITargetLowering::performFSubCombine(SDNode *N, 8334 DAGCombinerInfo &DCI) const { 8335 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 8336 return SDValue(); 8337 8338 SelectionDAG &DAG = DCI.DAG; 8339 SDLoc SL(N); 8340 EVT VT = N->getValueType(0); 8341 assert(!VT.isVector()); 8342 8343 // Try to get the fneg to fold into the source modifier. This undoes generic 8344 // DAG combines and folds them into the mad. 8345 // 8346 // Only do this if we are not trying to support denormals. v_mad_f32 does 8347 // not support denormals ever. 8348 SDValue LHS = N->getOperand(0); 8349 SDValue RHS = N->getOperand(1); 8350 if (LHS.getOpcode() == ISD::FADD) { 8351 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 8352 SDValue A = LHS.getOperand(0); 8353 if (A == LHS.getOperand(1)) { 8354 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 8355 if (FusedOp != 0){ 8356 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 8357 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 8358 8359 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 8360 } 8361 } 8362 } 8363 8364 if (RHS.getOpcode() == ISD::FADD) { 8365 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 8366 8367 SDValue A = RHS.getOperand(0); 8368 if (A == RHS.getOperand(1)) { 8369 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 8370 if (FusedOp != 0){ 8371 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 8372 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 8373 } 8374 } 8375 } 8376 8377 return SDValue(); 8378 } 8379 8380 SDValue SITargetLowering::performFMACombine(SDNode *N, 8381 DAGCombinerInfo &DCI) const { 8382 SelectionDAG &DAG = DCI.DAG; 8383 EVT VT = N->getValueType(0); 8384 SDLoc SL(N); 8385 8386 if (!Subtarget->hasDLInsts() || VT != MVT::f32) 8387 return SDValue(); 8388 8389 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 8390 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 8391 SDValue Op1 = N->getOperand(0); 8392 SDValue Op2 = N->getOperand(1); 8393 SDValue FMA = N->getOperand(2); 8394 8395 if (FMA.getOpcode() != ISD::FMA || 8396 Op1.getOpcode() != ISD::FP_EXTEND || 8397 Op2.getOpcode() != ISD::FP_EXTEND) 8398 return SDValue(); 8399 8400 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 8401 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract 8402 // is sufficient to allow generaing fdot2. 8403 const TargetOptions &Options = DAG.getTarget().Options; 8404 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 8405 (N->getFlags().hasAllowContract() && 8406 FMA->getFlags().hasAllowContract())) { 8407 Op1 = Op1.getOperand(0); 8408 Op2 = Op2.getOperand(0); 8409 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 8410 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 8411 return SDValue(); 8412 8413 SDValue Vec1 = Op1.getOperand(0); 8414 SDValue Idx1 = Op1.getOperand(1); 8415 SDValue Vec2 = Op2.getOperand(0); 8416 8417 SDValue FMAOp1 = FMA.getOperand(0); 8418 SDValue FMAOp2 = FMA.getOperand(1); 8419 SDValue FMAAcc = FMA.getOperand(2); 8420 8421 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 8422 FMAOp2.getOpcode() != ISD::FP_EXTEND) 8423 return SDValue(); 8424 8425 FMAOp1 = FMAOp1.getOperand(0); 8426 FMAOp2 = FMAOp2.getOperand(0); 8427 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 8428 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 8429 return SDValue(); 8430 8431 SDValue Vec3 = FMAOp1.getOperand(0); 8432 SDValue Vec4 = FMAOp2.getOperand(0); 8433 SDValue Idx2 = FMAOp1.getOperand(1); 8434 8435 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 8436 // Idx1 and Idx2 cannot be the same. 8437 Idx1 == Idx2) 8438 return SDValue(); 8439 8440 if (Vec1 == Vec2 || Vec3 == Vec4) 8441 return SDValue(); 8442 8443 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 8444 return SDValue(); 8445 8446 if ((Vec1 == Vec3 && Vec2 == Vec4) || 8447 (Vec1 == Vec4 && Vec2 == Vec3)) { 8448 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 8449 DAG.getTargetConstant(0, SL, MVT::i1)); 8450 } 8451 } 8452 return SDValue(); 8453 } 8454 8455 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 8456 DAGCombinerInfo &DCI) const { 8457 SelectionDAG &DAG = DCI.DAG; 8458 SDLoc SL(N); 8459 8460 SDValue LHS = N->getOperand(0); 8461 SDValue RHS = N->getOperand(1); 8462 EVT VT = LHS.getValueType(); 8463 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8464 8465 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 8466 if (!CRHS) { 8467 CRHS = dyn_cast<ConstantSDNode>(LHS); 8468 if (CRHS) { 8469 std::swap(LHS, RHS); 8470 CC = getSetCCSwappedOperands(CC); 8471 } 8472 } 8473 8474 if (CRHS) { 8475 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 8476 isBoolSGPR(LHS.getOperand(0))) { 8477 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 8478 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 8479 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 8480 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 8481 if ((CRHS->isAllOnesValue() && 8482 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 8483 (CRHS->isNullValue() && 8484 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 8485 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 8486 DAG.getConstant(-1, SL, MVT::i1)); 8487 if ((CRHS->isAllOnesValue() && 8488 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 8489 (CRHS->isNullValue() && 8490 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 8491 return LHS.getOperand(0); 8492 } 8493 8494 uint64_t CRHSVal = CRHS->getZExtValue(); 8495 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 8496 LHS.getOpcode() == ISD::SELECT && 8497 isa<ConstantSDNode>(LHS.getOperand(1)) && 8498 isa<ConstantSDNode>(LHS.getOperand(2)) && 8499 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 8500 isBoolSGPR(LHS.getOperand(0))) { 8501 // Given CT != FT: 8502 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 8503 // setcc (select cc, CT, CF), CF, ne => cc 8504 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 8505 // setcc (select cc, CT, CF), CT, eq => cc 8506 uint64_t CT = LHS.getConstantOperandVal(1); 8507 uint64_t CF = LHS.getConstantOperandVal(2); 8508 8509 if ((CF == CRHSVal && CC == ISD::SETEQ) || 8510 (CT == CRHSVal && CC == ISD::SETNE)) 8511 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 8512 DAG.getConstant(-1, SL, MVT::i1)); 8513 if ((CF == CRHSVal && CC == ISD::SETNE) || 8514 (CT == CRHSVal && CC == ISD::SETEQ)) 8515 return LHS.getOperand(0); 8516 } 8517 } 8518 8519 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && 8520 VT != MVT::f16)) 8521 return SDValue(); 8522 8523 // Match isinf/isfinite pattern 8524 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 8525 // (fcmp one (fabs x), inf) -> (fp_class x, 8526 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 8527 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 8528 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 8529 if (!CRHS) 8530 return SDValue(); 8531 8532 const APFloat &APF = CRHS->getValueAPF(); 8533 if (APF.isInfinity() && !APF.isNegative()) { 8534 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 8535 SIInstrFlags::N_INFINITY; 8536 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 8537 SIInstrFlags::P_ZERO | 8538 SIInstrFlags::N_NORMAL | 8539 SIInstrFlags::P_NORMAL | 8540 SIInstrFlags::N_SUBNORMAL | 8541 SIInstrFlags::P_SUBNORMAL; 8542 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 8543 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 8544 DAG.getConstant(Mask, SL, MVT::i32)); 8545 } 8546 } 8547 8548 return SDValue(); 8549 } 8550 8551 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 8552 DAGCombinerInfo &DCI) const { 8553 SelectionDAG &DAG = DCI.DAG; 8554 SDLoc SL(N); 8555 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 8556 8557 SDValue Src = N->getOperand(0); 8558 SDValue Srl = N->getOperand(0); 8559 if (Srl.getOpcode() == ISD::ZERO_EXTEND) 8560 Srl = Srl.getOperand(0); 8561 8562 // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero. 8563 if (Srl.getOpcode() == ISD::SRL) { 8564 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 8565 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 8566 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 8567 8568 if (const ConstantSDNode *C = 8569 dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 8570 Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)), 8571 EVT(MVT::i32)); 8572 8573 unsigned SrcOffset = C->getZExtValue() + 8 * Offset; 8574 if (SrcOffset < 32 && SrcOffset % 8 == 0) { 8575 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL, 8576 MVT::f32, Srl); 8577 } 8578 } 8579 } 8580 8581 APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 8582 8583 KnownBits Known; 8584 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 8585 !DCI.isBeforeLegalizeOps()); 8586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8587 if (TLI.ShrinkDemandedConstant(Src, Demanded, TLO) || 8588 TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) { 8589 DCI.CommitTargetLoweringOpt(TLO); 8590 } 8591 8592 return SDValue(); 8593 } 8594 8595 SDValue SITargetLowering::performClampCombine(SDNode *N, 8596 DAGCombinerInfo &DCI) const { 8597 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 8598 if (!CSrc) 8599 return SDValue(); 8600 8601 const APFloat &F = CSrc->getValueAPF(); 8602 APFloat Zero = APFloat::getZero(F.getSemantics()); 8603 APFloat::cmpResult Cmp0 = F.compare(Zero); 8604 if (Cmp0 == APFloat::cmpLessThan || 8605 (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { 8606 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 8607 } 8608 8609 APFloat One(F.getSemantics(), "1.0"); 8610 APFloat::cmpResult Cmp1 = F.compare(One); 8611 if (Cmp1 == APFloat::cmpGreaterThan) 8612 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 8613 8614 return SDValue(CSrc, 0); 8615 } 8616 8617 8618 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 8619 DAGCombinerInfo &DCI) const { 8620 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 8621 return SDValue(); 8622 8623 switch (N->getOpcode()) { 8624 default: 8625 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 8626 case ISD::ADD: 8627 return performAddCombine(N, DCI); 8628 case ISD::SUB: 8629 return performSubCombine(N, DCI); 8630 case ISD::ADDCARRY: 8631 case ISD::SUBCARRY: 8632 return performAddCarrySubCarryCombine(N, DCI); 8633 case ISD::FADD: 8634 return performFAddCombine(N, DCI); 8635 case ISD::FSUB: 8636 return performFSubCombine(N, DCI); 8637 case ISD::SETCC: 8638 return performSetCCCombine(N, DCI); 8639 case ISD::FMAXNUM: 8640 case ISD::FMINNUM: 8641 case ISD::FMAXNUM_IEEE: 8642 case ISD::FMINNUM_IEEE: 8643 case ISD::SMAX: 8644 case ISD::SMIN: 8645 case ISD::UMAX: 8646 case ISD::UMIN: 8647 case AMDGPUISD::FMIN_LEGACY: 8648 case AMDGPUISD::FMAX_LEGACY: 8649 return performMinMaxCombine(N, DCI); 8650 case ISD::FMA: 8651 return performFMACombine(N, DCI); 8652 case ISD::LOAD: { 8653 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 8654 return Widended; 8655 LLVM_FALLTHROUGH; 8656 } 8657 case ISD::STORE: 8658 case ISD::ATOMIC_LOAD: 8659 case ISD::ATOMIC_STORE: 8660 case ISD::ATOMIC_CMP_SWAP: 8661 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 8662 case ISD::ATOMIC_SWAP: 8663 case ISD::ATOMIC_LOAD_ADD: 8664 case ISD::ATOMIC_LOAD_SUB: 8665 case ISD::ATOMIC_LOAD_AND: 8666 case ISD::ATOMIC_LOAD_OR: 8667 case ISD::ATOMIC_LOAD_XOR: 8668 case ISD::ATOMIC_LOAD_NAND: 8669 case ISD::ATOMIC_LOAD_MIN: 8670 case ISD::ATOMIC_LOAD_MAX: 8671 case ISD::ATOMIC_LOAD_UMIN: 8672 case ISD::ATOMIC_LOAD_UMAX: 8673 case AMDGPUISD::ATOMIC_INC: 8674 case AMDGPUISD::ATOMIC_DEC: 8675 case AMDGPUISD::ATOMIC_LOAD_FADD: 8676 case AMDGPUISD::ATOMIC_LOAD_FMIN: 8677 case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics. 8678 if (DCI.isBeforeLegalize()) 8679 break; 8680 return performMemSDNodeCombine(cast<MemSDNode>(N), DCI); 8681 case ISD::AND: 8682 return performAndCombine(N, DCI); 8683 case ISD::OR: 8684 return performOrCombine(N, DCI); 8685 case ISD::XOR: 8686 return performXorCombine(N, DCI); 8687 case ISD::ZERO_EXTEND: 8688 return performZeroExtendCombine(N, DCI); 8689 case AMDGPUISD::FP_CLASS: 8690 return performClassCombine(N, DCI); 8691 case ISD::FCANONICALIZE: 8692 return performFCanonicalizeCombine(N, DCI); 8693 case AMDGPUISD::RCP: 8694 return performRcpCombine(N, DCI); 8695 case AMDGPUISD::FRACT: 8696 case AMDGPUISD::RSQ: 8697 case AMDGPUISD::RCP_LEGACY: 8698 case AMDGPUISD::RSQ_LEGACY: 8699 case AMDGPUISD::RCP_IFLAG: 8700 case AMDGPUISD::RSQ_CLAMP: 8701 case AMDGPUISD::LDEXP: { 8702 SDValue Src = N->getOperand(0); 8703 if (Src.isUndef()) 8704 return Src; 8705 break; 8706 } 8707 case ISD::SINT_TO_FP: 8708 case ISD::UINT_TO_FP: 8709 return performUCharToFloatCombine(N, DCI); 8710 case AMDGPUISD::CVT_F32_UBYTE0: 8711 case AMDGPUISD::CVT_F32_UBYTE1: 8712 case AMDGPUISD::CVT_F32_UBYTE2: 8713 case AMDGPUISD::CVT_F32_UBYTE3: 8714 return performCvtF32UByteNCombine(N, DCI); 8715 case AMDGPUISD::FMED3: 8716 return performFMed3Combine(N, DCI); 8717 case AMDGPUISD::CVT_PKRTZ_F16_F32: 8718 return performCvtPkRTZCombine(N, DCI); 8719 case AMDGPUISD::CLAMP: 8720 return performClampCombine(N, DCI); 8721 case ISD::SCALAR_TO_VECTOR: { 8722 SelectionDAG &DAG = DCI.DAG; 8723 EVT VT = N->getValueType(0); 8724 8725 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 8726 if (VT == MVT::v2i16 || VT == MVT::v2f16) { 8727 SDLoc SL(N); 8728 SDValue Src = N->getOperand(0); 8729 EVT EltVT = Src.getValueType(); 8730 if (EltVT == MVT::f16) 8731 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 8732 8733 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 8734 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 8735 } 8736 8737 break; 8738 } 8739 case ISD::EXTRACT_VECTOR_ELT: 8740 return performExtractVectorEltCombine(N, DCI); 8741 case ISD::INSERT_VECTOR_ELT: 8742 return performInsertVectorEltCombine(N, DCI); 8743 } 8744 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 8745 } 8746 8747 /// Helper function for adjustWritemask 8748 static unsigned SubIdx2Lane(unsigned Idx) { 8749 switch (Idx) { 8750 default: return 0; 8751 case AMDGPU::sub0: return 0; 8752 case AMDGPU::sub1: return 1; 8753 case AMDGPU::sub2: return 2; 8754 case AMDGPU::sub3: return 3; 8755 } 8756 } 8757 8758 /// Adjust the writemask of MIMG instructions 8759 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 8760 SelectionDAG &DAG) const { 8761 unsigned Opcode = Node->getMachineOpcode(); 8762 8763 // Subtract 1 because the vdata output is not a MachineSDNode operand. 8764 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 8765 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 8766 return Node; // not implemented for D16 8767 8768 SDNode *Users[4] = { nullptr }; 8769 unsigned Lane = 0; 8770 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 8771 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 8772 unsigned NewDmask = 0; 8773 bool HasChain = Node->getNumValues() > 1; 8774 8775 if (OldDmask == 0) { 8776 // These are folded out, but on the chance it happens don't assert. 8777 return Node; 8778 } 8779 8780 // Try to figure out the used register components 8781 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 8782 I != E; ++I) { 8783 8784 // Don't look at users of the chain. 8785 if (I.getUse().getResNo() != 0) 8786 continue; 8787 8788 // Abort if we can't understand the usage 8789 if (!I->isMachineOpcode() || 8790 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 8791 return Node; 8792 8793 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 8794 // Note that subregs are packed, i.e. Lane==0 is the first bit set 8795 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 8796 // set, etc. 8797 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 8798 8799 // Set which texture component corresponds to the lane. 8800 unsigned Comp; 8801 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 8802 Comp = countTrailingZeros(Dmask); 8803 Dmask &= ~(1 << Comp); 8804 } 8805 8806 // Abort if we have more than one user per component 8807 if (Users[Lane]) 8808 return Node; 8809 8810 Users[Lane] = *I; 8811 NewDmask |= 1 << Comp; 8812 } 8813 8814 // Abort if there's no change 8815 if (NewDmask == OldDmask) 8816 return Node; 8817 8818 unsigned BitsSet = countPopulation(NewDmask); 8819 8820 int NewOpcode = AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), BitsSet); 8821 assert(NewOpcode != -1 && 8822 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 8823 "failed to find equivalent MIMG op"); 8824 8825 // Adjust the writemask in the node 8826 SmallVector<SDValue, 12> Ops; 8827 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 8828 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 8829 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 8830 8831 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 8832 8833 MVT ResultVT = BitsSet == 1 ? 8834 SVT : MVT::getVectorVT(SVT, BitsSet == 3 ? 4 : BitsSet); 8835 SDVTList NewVTList = HasChain ? 8836 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 8837 8838 8839 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 8840 NewVTList, Ops); 8841 8842 if (HasChain) { 8843 // Update chain. 8844 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 8845 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 8846 } 8847 8848 if (BitsSet == 1) { 8849 assert(Node->hasNUsesOfValue(1, 0)); 8850 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 8851 SDLoc(Node), Users[Lane]->getValueType(0), 8852 SDValue(NewNode, 0)); 8853 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 8854 return nullptr; 8855 } 8856 8857 // Update the users of the node with the new indices 8858 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) { 8859 SDNode *User = Users[i]; 8860 if (!User) 8861 continue; 8862 8863 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 8864 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 8865 8866 switch (Idx) { 8867 default: break; 8868 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 8869 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 8870 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 8871 } 8872 } 8873 8874 DAG.RemoveDeadNode(Node); 8875 return nullptr; 8876 } 8877 8878 static bool isFrameIndexOp(SDValue Op) { 8879 if (Op.getOpcode() == ISD::AssertZext) 8880 Op = Op.getOperand(0); 8881 8882 return isa<FrameIndexSDNode>(Op); 8883 } 8884 8885 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 8886 /// with frame index operands. 8887 /// LLVM assumes that inputs are to these instructions are registers. 8888 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 8889 SelectionDAG &DAG) const { 8890 if (Node->getOpcode() == ISD::CopyToReg) { 8891 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 8892 SDValue SrcVal = Node->getOperand(2); 8893 8894 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 8895 // to try understanding copies to physical registers. 8896 if (SrcVal.getValueType() == MVT::i1 && 8897 TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) { 8898 SDLoc SL(Node); 8899 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 8900 SDValue VReg = DAG.getRegister( 8901 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 8902 8903 SDNode *Glued = Node->getGluedNode(); 8904 SDValue ToVReg 8905 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 8906 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 8907 SDValue ToResultReg 8908 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 8909 VReg, ToVReg.getValue(1)); 8910 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 8911 DAG.RemoveDeadNode(Node); 8912 return ToResultReg.getNode(); 8913 } 8914 } 8915 8916 SmallVector<SDValue, 8> Ops; 8917 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 8918 if (!isFrameIndexOp(Node->getOperand(i))) { 8919 Ops.push_back(Node->getOperand(i)); 8920 continue; 8921 } 8922 8923 SDLoc DL(Node); 8924 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 8925 Node->getOperand(i).getValueType(), 8926 Node->getOperand(i)), 0)); 8927 } 8928 8929 return DAG.UpdateNodeOperands(Node, Ops); 8930 } 8931 8932 /// Fold the instructions after selecting them. 8933 /// Returns null if users were already updated. 8934 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 8935 SelectionDAG &DAG) const { 8936 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8937 unsigned Opcode = Node->getMachineOpcode(); 8938 8939 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && 8940 !TII->isGather4(Opcode)) { 8941 return adjustWritemask(Node, DAG); 8942 } 8943 8944 if (Opcode == AMDGPU::INSERT_SUBREG || 8945 Opcode == AMDGPU::REG_SEQUENCE) { 8946 legalizeTargetIndependentNode(Node, DAG); 8947 return Node; 8948 } 8949 8950 switch (Opcode) { 8951 case AMDGPU::V_DIV_SCALE_F32: 8952 case AMDGPU::V_DIV_SCALE_F64: { 8953 // Satisfy the operand register constraint when one of the inputs is 8954 // undefined. Ordinarily each undef value will have its own implicit_def of 8955 // a vreg, so force these to use a single register. 8956 SDValue Src0 = Node->getOperand(0); 8957 SDValue Src1 = Node->getOperand(1); 8958 SDValue Src2 = Node->getOperand(2); 8959 8960 if ((Src0.isMachineOpcode() && 8961 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 8962 (Src0 == Src1 || Src0 == Src2)) 8963 break; 8964 8965 MVT VT = Src0.getValueType().getSimpleVT(); 8966 const TargetRegisterClass *RC = getRegClassFor(VT); 8967 8968 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 8969 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 8970 8971 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 8972 UndefReg, Src0, SDValue()); 8973 8974 // src0 must be the same register as src1 or src2, even if the value is 8975 // undefined, so make sure we don't violate this constraint. 8976 if (Src0.isMachineOpcode() && 8977 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 8978 if (Src1.isMachineOpcode() && 8979 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 8980 Src0 = Src1; 8981 else if (Src2.isMachineOpcode() && 8982 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 8983 Src0 = Src2; 8984 else { 8985 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 8986 Src0 = UndefReg; 8987 Src1 = UndefReg; 8988 } 8989 } else 8990 break; 8991 8992 SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 }; 8993 for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I) 8994 Ops.push_back(Node->getOperand(I)); 8995 8996 Ops.push_back(ImpDef.getValue(1)); 8997 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 8998 } 8999 default: 9000 break; 9001 } 9002 9003 return Node; 9004 } 9005 9006 /// Assign the register class depending on the number of 9007 /// bits set in the writemask 9008 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9009 SDNode *Node) const { 9010 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9011 9012 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 9013 9014 if (TII->isVOP3(MI.getOpcode())) { 9015 // Make sure constant bus requirements are respected. 9016 TII->legalizeOperandsVOP3(MRI, MI); 9017 return; 9018 } 9019 9020 // Replace unused atomics with the no return version. 9021 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); 9022 if (NoRetAtomicOp != -1) { 9023 if (!Node->hasAnyUseOfValue(0)) { 9024 MI.setDesc(TII->get(NoRetAtomicOp)); 9025 MI.RemoveOperand(0); 9026 return; 9027 } 9028 9029 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg 9030 // instruction, because the return type of these instructions is a vec2 of 9031 // the memory type, so it can be tied to the input operand. 9032 // This means these instructions always have a use, so we need to add a 9033 // special case to check if the atomic has only one extract_subreg use, 9034 // which itself has no uses. 9035 if ((Node->hasNUsesOfValue(1, 0) && 9036 Node->use_begin()->isMachineOpcode() && 9037 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && 9038 !Node->use_begin()->hasAnyUseOfValue(0))) { 9039 unsigned Def = MI.getOperand(0).getReg(); 9040 9041 // Change this into a noret atomic. 9042 MI.setDesc(TII->get(NoRetAtomicOp)); 9043 MI.RemoveOperand(0); 9044 9045 // If we only remove the def operand from the atomic instruction, the 9046 // extract_subreg will be left with a use of a vreg without a def. 9047 // So we need to insert an implicit_def to avoid machine verifier 9048 // errors. 9049 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 9050 TII->get(AMDGPU::IMPLICIT_DEF), Def); 9051 } 9052 return; 9053 } 9054 } 9055 9056 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 9057 uint64_t Val) { 9058 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 9059 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 9060 } 9061 9062 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 9063 const SDLoc &DL, 9064 SDValue Ptr) const { 9065 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9066 9067 // Build the half of the subregister with the constants before building the 9068 // full 128-bit register. If we are building multiple resource descriptors, 9069 // this will allow CSEing of the 2-component register. 9070 const SDValue Ops0[] = { 9071 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 9072 buildSMovImm32(DAG, DL, 0), 9073 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 9074 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 9075 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 9076 }; 9077 9078 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 9079 MVT::v2i32, Ops0), 0); 9080 9081 // Combine the constants and the pointer. 9082 const SDValue Ops1[] = { 9083 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), 9084 Ptr, 9085 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 9086 SubRegHi, 9087 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 9088 }; 9089 9090 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 9091 } 9092 9093 /// Return a resource descriptor with the 'Add TID' bit enabled 9094 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 9095 /// of the resource descriptor) to create an offset, which is added to 9096 /// the resource pointer. 9097 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 9098 SDValue Ptr, uint32_t RsrcDword1, 9099 uint64_t RsrcDword2And3) const { 9100 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 9101 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 9102 if (RsrcDword1) { 9103 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 9104 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 9105 0); 9106 } 9107 9108 SDValue DataLo = buildSMovImm32(DAG, DL, 9109 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 9110 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 9111 9112 const SDValue Ops[] = { 9113 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), 9114 PtrLo, 9115 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 9116 PtrHi, 9117 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 9118 DataLo, 9119 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 9120 DataHi, 9121 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 9122 }; 9123 9124 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 9125 } 9126 9127 //===----------------------------------------------------------------------===// 9128 // SI Inline Assembly Support 9129 //===----------------------------------------------------------------------===// 9130 9131 std::pair<unsigned, const TargetRegisterClass *> 9132 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9133 StringRef Constraint, 9134 MVT VT) const { 9135 const TargetRegisterClass *RC = nullptr; 9136 if (Constraint.size() == 1) { 9137 switch (Constraint[0]) { 9138 default: 9139 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9140 case 's': 9141 case 'r': 9142 switch (VT.getSizeInBits()) { 9143 default: 9144 return std::make_pair(0U, nullptr); 9145 case 32: 9146 case 16: 9147 RC = &AMDGPU::SReg_32_XM0RegClass; 9148 break; 9149 case 64: 9150 RC = &AMDGPU::SGPR_64RegClass; 9151 break; 9152 case 128: 9153 RC = &AMDGPU::SReg_128RegClass; 9154 break; 9155 case 256: 9156 RC = &AMDGPU::SReg_256RegClass; 9157 break; 9158 case 512: 9159 RC = &AMDGPU::SReg_512RegClass; 9160 break; 9161 } 9162 break; 9163 case 'v': 9164 switch (VT.getSizeInBits()) { 9165 default: 9166 return std::make_pair(0U, nullptr); 9167 case 32: 9168 case 16: 9169 RC = &AMDGPU::VGPR_32RegClass; 9170 break; 9171 case 64: 9172 RC = &AMDGPU::VReg_64RegClass; 9173 break; 9174 case 96: 9175 RC = &AMDGPU::VReg_96RegClass; 9176 break; 9177 case 128: 9178 RC = &AMDGPU::VReg_128RegClass; 9179 break; 9180 case 256: 9181 RC = &AMDGPU::VReg_256RegClass; 9182 break; 9183 case 512: 9184 RC = &AMDGPU::VReg_512RegClass; 9185 break; 9186 } 9187 break; 9188 } 9189 // We actually support i128, i16 and f16 as inline parameters 9190 // even if they are not reported as legal 9191 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 9192 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 9193 return std::make_pair(0U, RC); 9194 } 9195 9196 if (Constraint.size() > 1) { 9197 if (Constraint[1] == 'v') { 9198 RC = &AMDGPU::VGPR_32RegClass; 9199 } else if (Constraint[1] == 's') { 9200 RC = &AMDGPU::SGPR_32RegClass; 9201 } 9202 9203 if (RC) { 9204 uint32_t Idx; 9205 bool Failed = Constraint.substr(2).getAsInteger(10, Idx); 9206 if (!Failed && Idx < RC->getNumRegs()) 9207 return std::make_pair(RC->getRegister(Idx), RC); 9208 } 9209 } 9210 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9211 } 9212 9213 SITargetLowering::ConstraintType 9214 SITargetLowering::getConstraintType(StringRef Constraint) const { 9215 if (Constraint.size() == 1) { 9216 switch (Constraint[0]) { 9217 default: break; 9218 case 's': 9219 case 'v': 9220 return C_RegisterClass; 9221 } 9222 } 9223 return TargetLowering::getConstraintType(Constraint); 9224 } 9225 9226 // Figure out which registers should be reserved for stack access. Only after 9227 // the function is legalized do we know all of the non-spill stack objects or if 9228 // calls are present. 9229 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 9230 MachineRegisterInfo &MRI = MF.getRegInfo(); 9231 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9232 const MachineFrameInfo &MFI = MF.getFrameInfo(); 9233 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 9234 9235 if (Info->isEntryFunction()) { 9236 // Callable functions have fixed registers used for stack access. 9237 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 9238 } 9239 9240 // We have to assume the SP is needed in case there are calls in the function 9241 // during lowering. Calls are only detected after the function is 9242 // lowered. We're about to reserve registers, so don't bother using it if we 9243 // aren't really going to use it. 9244 bool NeedSP = !Info->isEntryFunction() || 9245 MFI.hasVarSizedObjects() || 9246 MFI.hasCalls(); 9247 9248 if (NeedSP) { 9249 unsigned ReservedStackPtrOffsetReg = TRI->reservedStackPtrOffsetReg(MF); 9250 Info->setStackPtrOffsetReg(ReservedStackPtrOffsetReg); 9251 9252 assert(Info->getStackPtrOffsetReg() != Info->getFrameOffsetReg()); 9253 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 9254 Info->getStackPtrOffsetReg())); 9255 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 9256 } 9257 9258 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 9259 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 9260 MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG, 9261 Info->getScratchWaveOffsetReg()); 9262 9263 Info->limitOccupancy(MF); 9264 9265 TargetLoweringBase::finalizeLowering(MF); 9266 } 9267 9268 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 9269 KnownBits &Known, 9270 const APInt &DemandedElts, 9271 const SelectionDAG &DAG, 9272 unsigned Depth) const { 9273 TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts, 9274 DAG, Depth); 9275 9276 if (getSubtarget()->enableHugePrivateBuffer()) 9277 return; 9278 9279 // Technically it may be possible to have a dispatch with a single workitem 9280 // that uses the full private memory size, but that's not really useful. We 9281 // can't use vaddr in MUBUF instructions if we don't know the address 9282 // calculation won't overflow, so assume the sign bit is never set. 9283 Known.Zero.setHighBits(AssumeFrameIndexHighZeroBits); 9284 } 9285 9286 LLVM_ATTRIBUTE_UNUSED 9287 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 9288 assert(N->getOpcode() == ISD::CopyFromReg); 9289 do { 9290 // Follow the chain until we find an INLINEASM node. 9291 N = N->getOperand(0).getNode(); 9292 if (N->getOpcode() == ISD::INLINEASM) 9293 return true; 9294 } while (N->getOpcode() == ISD::CopyFromReg); 9295 return false; 9296 } 9297 9298 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N, 9299 FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const 9300 { 9301 switch (N->getOpcode()) { 9302 case ISD::CopyFromReg: 9303 { 9304 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 9305 const MachineFunction * MF = FLI->MF; 9306 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 9307 const MachineRegisterInfo &MRI = MF->getRegInfo(); 9308 const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo(); 9309 unsigned Reg = R->getReg(); 9310 if (TRI.isPhysicalRegister(Reg)) 9311 return !TRI.isSGPRReg(MRI, Reg); 9312 9313 if (MRI.isLiveIn(Reg)) { 9314 // workitem.id.x workitem.id.y workitem.id.z 9315 // Any VGPR formal argument is also considered divergent 9316 if (!TRI.isSGPRReg(MRI, Reg)) 9317 return true; 9318 // Formal arguments of non-entry functions 9319 // are conservatively considered divergent 9320 else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv())) 9321 return true; 9322 return false; 9323 } 9324 const Value *V = FLI->getValueFromVirtualReg(Reg); 9325 if (V) 9326 return KDA->isDivergent(V); 9327 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 9328 return !TRI.isSGPRReg(MRI, Reg); 9329 } 9330 break; 9331 case ISD::LOAD: { 9332 const LoadSDNode *L = cast<LoadSDNode>(N); 9333 unsigned AS = L->getAddressSpace(); 9334 // A flat load may access private memory. 9335 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 9336 } break; 9337 case ISD::CALLSEQ_END: 9338 return true; 9339 break; 9340 case ISD::INTRINSIC_WO_CHAIN: 9341 { 9342 9343 } 9344 return AMDGPU::isIntrinsicSourceOfDivergence( 9345 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 9346 case ISD::INTRINSIC_W_CHAIN: 9347 return AMDGPU::isIntrinsicSourceOfDivergence( 9348 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 9349 // In some cases intrinsics that are a source of divergence have been 9350 // lowered to AMDGPUISD so we also need to check those too. 9351 case AMDGPUISD::INTERP_MOV: 9352 case AMDGPUISD::INTERP_P1: 9353 case AMDGPUISD::INTERP_P2: 9354 return true; 9355 } 9356 return false; 9357 } 9358 9359 bool SITargetLowering::denormalsEnabledForType(EVT VT) const { 9360 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 9361 case MVT::f32: 9362 return Subtarget->hasFP32Denormals(); 9363 case MVT::f64: 9364 return Subtarget->hasFP64Denormals(); 9365 case MVT::f16: 9366 return Subtarget->hasFP16Denormals(); 9367 default: 9368 return false; 9369 } 9370 } 9371 9372 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 9373 const SelectionDAG &DAG, 9374 bool SNaN, 9375 unsigned Depth) const { 9376 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 9377 if (Subtarget->enableDX10Clamp()) 9378 return true; // Clamped to 0. 9379 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 9380 } 9381 9382 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 9383 SNaN, Depth); 9384 } 9385