1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/ADT/FloatingPointMode.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
28 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/IntrinsicsAMDGPU.h"
34 #include "llvm/IR/IntrinsicsR600.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/KnownBits.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "si-lower"
41 
42 STATISTIC(NumTailCalls, "Number of tail calls");
43 
44 static cl::opt<bool> DisableLoopAlignment(
45   "amdgpu-disable-loop-alignment",
46   cl::desc("Do not align and prefetch loops"),
47   cl::init(false));
48 
49 static cl::opt<bool> UseDivergentRegisterIndexing(
50   "amdgpu-use-divergent-register-indexing",
51   cl::Hidden,
52   cl::desc("Use indirect register addressing for divergent indexes"),
53   cl::init(false));
54 
55 static bool hasFP32Denormals(const MachineFunction &MF) {
56   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
57   return Info->getMode().allFP32Denormals();
58 }
59 
60 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
61   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
62   return Info->getMode().allFP64FP16Denormals();
63 }
64 
65 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
66   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
67   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
68     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
69       return AMDGPU::SGPR0 + Reg;
70     }
71   }
72   llvm_unreachable("Cannot allocate sgpr");
73 }
74 
75 SITargetLowering::SITargetLowering(const TargetMachine &TM,
76                                    const GCNSubtarget &STI)
77     : AMDGPUTargetLowering(TM, STI),
78       Subtarget(&STI) {
79   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
80   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
81 
82   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
83   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
84 
85   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
86 
87   const SIRegisterInfo *TRI = STI.getRegisterInfo();
88   const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
89 
90   addRegisterClass(MVT::f64, V64RegClass);
91   addRegisterClass(MVT::v2f32, V64RegClass);
92 
93   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
94   addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
95 
96   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
97   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
98 
99   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
100   addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
101 
102   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
103   addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
104 
105   addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
106   addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
107 
108   addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
109   addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
110 
111   addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
112   addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
113 
114   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
115   addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
116 
117   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
118   addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
119 
120   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
121   addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
122 
123   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
124   addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
125 
126   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
127   addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
128 
129   if (Subtarget->has16BitInsts()) {
130     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
131     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
132 
133     // Unless there are also VOP3P operations, not operations are really legal.
134     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
135     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
136     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
137     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
138     addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass);
139     addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass);
140   }
141 
142   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
143   addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
144 
145   computeRegisterProperties(Subtarget->getRegisterInfo());
146 
147   // The boolean content concept here is too inflexible. Compares only ever
148   // really produce a 1-bit result. Any copy/extend from these will turn into a
149   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
150   // it's what most targets use.
151   setBooleanContents(ZeroOrOneBooleanContent);
152   setBooleanVectorContents(ZeroOrOneBooleanContent);
153 
154   // We need to custom lower vector stores from local memory
155   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
156   setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
157   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
158   setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
159   setOperationAction(ISD::LOAD, MVT::v6i32, Custom);
160   setOperationAction(ISD::LOAD, MVT::v7i32, Custom);
161   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
162   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
163   setOperationAction(ISD::LOAD, MVT::i1, Custom);
164   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
165 
166   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
167   setOperationAction(ISD::STORE, MVT::v3i32, Custom);
168   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
169   setOperationAction(ISD::STORE, MVT::v5i32, Custom);
170   setOperationAction(ISD::STORE, MVT::v6i32, Custom);
171   setOperationAction(ISD::STORE, MVT::v7i32, Custom);
172   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
173   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
174   setOperationAction(ISD::STORE, MVT::i1, Custom);
175   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
176 
177   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
178   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
179   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
180   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
181   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
182   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
183   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
184   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
185   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
186   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
187   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
188   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
189   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
190   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
191   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
192   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
193 
194   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
195   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
196   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
197   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
198   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
199   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
200   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
201 
202   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
203   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
204 
205   setOperationAction(ISD::SELECT, MVT::i1, Promote);
206   setOperationAction(ISD::SELECT, MVT::i64, Custom);
207   setOperationAction(ISD::SELECT, MVT::f64, Promote);
208   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
209 
210   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
211   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
212   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
213   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
214   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
215 
216   setOperationAction(ISD::SETCC, MVT::i1, Promote);
217   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
218   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
219   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
220 
221   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
222   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
223   setOperationAction(ISD::TRUNCATE, MVT::v3i32, Expand);
224   setOperationAction(ISD::FP_ROUND, MVT::v3f32, Expand);
225   setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
226   setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
227   setOperationAction(ISD::TRUNCATE, MVT::v5i32, Expand);
228   setOperationAction(ISD::FP_ROUND, MVT::v5f32, Expand);
229   setOperationAction(ISD::TRUNCATE, MVT::v6i32, Expand);
230   setOperationAction(ISD::FP_ROUND, MVT::v6f32, Expand);
231   setOperationAction(ISD::TRUNCATE, MVT::v7i32, Expand);
232   setOperationAction(ISD::FP_ROUND, MVT::v7f32, Expand);
233   setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
234   setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
235   setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
236   setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
237 
238   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
239   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
240   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
241   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
242   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
243   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
244   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
245   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
246 
247   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
248   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
249   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
250   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
251   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
252   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
253 
254   setOperationAction(ISD::UADDO, MVT::i32, Legal);
255   setOperationAction(ISD::USUBO, MVT::i32, Legal);
256 
257   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
258   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
259 
260   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
261   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
262   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
263 
264 #if 0
265   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
266   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
267 #endif
268 
269   // We only support LOAD/STORE and vector manipulation ops for vectors
270   // with > 4 elements.
271   for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
272                   MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
273                   MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32,
274                   MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
275                   MVT::v8i16, MVT::v8f16, MVT::v16i64, MVT::v16f64,
276                   MVT::v32i32, MVT::v32f32 }) {
277     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
278       switch (Op) {
279       case ISD::LOAD:
280       case ISD::STORE:
281       case ISD::BUILD_VECTOR:
282       case ISD::BITCAST:
283       case ISD::EXTRACT_VECTOR_ELT:
284       case ISD::INSERT_VECTOR_ELT:
285       case ISD::EXTRACT_SUBVECTOR:
286       case ISD::SCALAR_TO_VECTOR:
287         break;
288       case ISD::INSERT_SUBVECTOR:
289       case ISD::CONCAT_VECTORS:
290         setOperationAction(Op, VT, Custom);
291         break;
292       default:
293         setOperationAction(Op, VT, Expand);
294         break;
295       }
296     }
297   }
298 
299   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
300 
301   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
302   // is expanded to avoid having two separate loops in case the index is a VGPR.
303 
304   // Most operations are naturally 32-bit vector operations. We only support
305   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
306   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
307     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
308     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
309 
310     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
311     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
312 
313     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
314     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
315 
316     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
317     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
318   }
319 
320   for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
321     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
322     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
323 
324     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
325     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
326 
327     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
328     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
329 
330     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
331     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
332   }
333 
334   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
335     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
336     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
337 
338     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
339     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
340 
341     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
342     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
343 
344     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
345     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
346   }
347 
348   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
349     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
350     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
351 
352     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
353     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
354 
355     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
356     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
357 
358     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
359     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
360   }
361 
362   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
363     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
364     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
365 
366     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
367     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
368 
369     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
370     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
371 
372     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
373     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
374   }
375 
376   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
377   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
378   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
379   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
380 
381   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
382   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
383 
384   // Avoid stack access for these.
385   // TODO: Generalize to more vector types.
386   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
387   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
388   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
389   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
390 
391   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
392   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
393   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
394   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
395   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
396   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
397 
398   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
399   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
400   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
401   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
402 
403   // Deal with vec3 vector operations when widened to vec4.
404   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
405   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
406   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
407   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
408 
409   // Deal with vec5/6/7 vector operations when widened to vec8.
410   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
411   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
412   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6i32, Custom);
413   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6f32, Custom);
414   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7i32, Custom);
415   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7f32, Custom);
416   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
417   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
418 
419   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
420   // and output demarshalling
421   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
422   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
423 
424   // We can't return success/failure, only the old value,
425   // let LLVM add the comparison
426   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
427   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
428 
429   if (Subtarget->hasFlatAddressSpace()) {
430     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
431     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
432   }
433 
434   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
435   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
436 
437   // FIXME: This should be narrowed to i32, but that only happens if i64 is
438   // illegal.
439   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
440   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
441   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
442 
443   // On SI this is s_memtime and s_memrealtime on VI.
444   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
445   setOperationAction(ISD::TRAP, MVT::Other, Custom);
446   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
447 
448   if (Subtarget->has16BitInsts()) {
449     setOperationAction(ISD::FPOW, MVT::f16, Promote);
450     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
451     setOperationAction(ISD::FLOG, MVT::f16, Custom);
452     setOperationAction(ISD::FEXP, MVT::f16, Custom);
453     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
454   }
455 
456   if (Subtarget->hasMadMacF32Insts())
457     setOperationAction(ISD::FMAD, MVT::f32, Legal);
458 
459   if (!Subtarget->hasBFI()) {
460     // fcopysign can be done in a single instruction with BFI.
461     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
462     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
463   }
464 
465   if (!Subtarget->hasBCNT(32))
466     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
467 
468   if (!Subtarget->hasBCNT(64))
469     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
470 
471   if (Subtarget->hasFFBH()) {
472     setOperationAction(ISD::CTLZ, MVT::i32, Custom);
473     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
474   }
475 
476   if (Subtarget->hasFFBL()) {
477     setOperationAction(ISD::CTTZ, MVT::i32, Custom);
478     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
479   }
480 
481   // We only really have 32-bit BFE instructions (and 16-bit on VI).
482   //
483   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
484   // effort to match them now. We want this to be false for i64 cases when the
485   // extraction isn't restricted to the upper or lower half. Ideally we would
486   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
487   // span the midpoint are probably relatively rare, so don't worry about them
488   // for now.
489   if (Subtarget->hasBFE())
490     setHasExtractBitsInsn(true);
491 
492   // Clamp modifier on add/sub
493   if (Subtarget->hasIntClamp()) {
494     setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
495     setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
496   }
497 
498   if (Subtarget->hasAddNoCarry()) {
499     setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
500     setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
501     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
502     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
503   }
504 
505   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
506   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
507   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
508   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
509 
510 
511   // These are really only legal for ieee_mode functions. We should be avoiding
512   // them for functions that don't have ieee_mode enabled, so just say they are
513   // legal.
514   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
515   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
516   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
517   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
518 
519 
520   if (Subtarget->haveRoundOpsF64()) {
521     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
522     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
523     setOperationAction(ISD::FRINT, MVT::f64, Legal);
524   } else {
525     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
526     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
527     setOperationAction(ISD::FRINT, MVT::f64, Custom);
528     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
529   }
530 
531   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
532 
533   setOperationAction(ISD::FSIN, MVT::f32, Custom);
534   setOperationAction(ISD::FCOS, MVT::f32, Custom);
535   setOperationAction(ISD::FDIV, MVT::f32, Custom);
536   setOperationAction(ISD::FDIV, MVT::f64, Custom);
537 
538   if (Subtarget->has16BitInsts()) {
539     setOperationAction(ISD::Constant, MVT::i16, Legal);
540 
541     setOperationAction(ISD::SMIN, MVT::i16, Legal);
542     setOperationAction(ISD::SMAX, MVT::i16, Legal);
543 
544     setOperationAction(ISD::UMIN, MVT::i16, Legal);
545     setOperationAction(ISD::UMAX, MVT::i16, Legal);
546 
547     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
548     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
549 
550     setOperationAction(ISD::ROTR, MVT::i16, Expand);
551     setOperationAction(ISD::ROTL, MVT::i16, Expand);
552 
553     setOperationAction(ISD::SDIV, MVT::i16, Promote);
554     setOperationAction(ISD::UDIV, MVT::i16, Promote);
555     setOperationAction(ISD::SREM, MVT::i16, Promote);
556     setOperationAction(ISD::UREM, MVT::i16, Promote);
557     setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
558     setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
559 
560     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
561 
562     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
563     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
564     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
565     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
566     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
567 
568     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
569 
570     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
571 
572     setOperationAction(ISD::LOAD, MVT::i16, Custom);
573 
574     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
575 
576     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
577     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
578     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
579     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
580 
581     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Custom);
582     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Custom);
583 
584     // F16 - Constant Actions.
585     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
586 
587     // F16 - Load/Store Actions.
588     setOperationAction(ISD::LOAD, MVT::f16, Promote);
589     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
590     setOperationAction(ISD::STORE, MVT::f16, Promote);
591     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
592 
593     // F16 - VOP1 Actions.
594     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
595     setOperationAction(ISD::FCOS, MVT::f16, Custom);
596     setOperationAction(ISD::FSIN, MVT::f16, Custom);
597 
598     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
599     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
600 
601     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
602     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
603     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
604     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
605     setOperationAction(ISD::FROUND, MVT::f16, Custom);
606     setOperationAction(ISD::FPTRUNC_ROUND, MVT::f16, Custom);
607 
608     // F16 - VOP2 Actions.
609     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
610     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
611 
612     setOperationAction(ISD::FDIV, MVT::f16, Custom);
613 
614     // F16 - VOP3 Actions.
615     setOperationAction(ISD::FMA, MVT::f16, Legal);
616     if (STI.hasMadF16())
617       setOperationAction(ISD::FMAD, MVT::f16, Legal);
618 
619     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16,
620                    MVT::v8f16}) {
621       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
622         switch (Op) {
623         case ISD::LOAD:
624         case ISD::STORE:
625         case ISD::BUILD_VECTOR:
626         case ISD::BITCAST:
627         case ISD::EXTRACT_VECTOR_ELT:
628         case ISD::INSERT_VECTOR_ELT:
629         case ISD::INSERT_SUBVECTOR:
630         case ISD::EXTRACT_SUBVECTOR:
631         case ISD::SCALAR_TO_VECTOR:
632           break;
633         case ISD::CONCAT_VECTORS:
634           setOperationAction(Op, VT, Custom);
635           break;
636         default:
637           setOperationAction(Op, VT, Expand);
638           break;
639         }
640       }
641     }
642 
643     // v_perm_b32 can handle either of these.
644     setOperationAction(ISD::BSWAP, MVT::i16, Legal);
645     setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
646     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
647 
648     // XXX - Do these do anything? Vector constants turn into build_vector.
649     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
650     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
651 
652     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
653     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
654 
655     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
656     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
657     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
658     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
659 
660     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
661     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
662     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
663     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
664 
665     setOperationAction(ISD::AND, MVT::v2i16, Promote);
666     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
667     setOperationAction(ISD::OR, MVT::v2i16, Promote);
668     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
669     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
670     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
671 
672     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
673     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
674     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
675     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
676 
677     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
678     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
679     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
680     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
681 
682     setOperationAction(ISD::LOAD, MVT::v8i16, Promote);
683     AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32);
684     setOperationAction(ISD::LOAD, MVT::v8f16, Promote);
685     AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32);
686 
687     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
688     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
689     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
690     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
691 
692     setOperationAction(ISD::STORE, MVT::v8i16, Promote);
693     AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32);
694     setOperationAction(ISD::STORE, MVT::v8f16, Promote);
695     AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32);
696 
697     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
698     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
699     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
700     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
701 
702     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
703     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
704     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
705 
706     setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Expand);
707     setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Expand);
708     setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Expand);
709 
710     if (!Subtarget->hasVOP3PInsts()) {
711       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
712       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
713     }
714 
715     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
716     // This isn't really legal, but this avoids the legalizer unrolling it (and
717     // allows matching fneg (fabs x) patterns)
718     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
719 
720     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
721     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
722     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
723     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
724 
725     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
726     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
727     setOperationAction(ISD::FMINNUM_IEEE, MVT::v8f16, Custom);
728     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v8f16, Custom);
729 
730     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
731     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
732     setOperationAction(ISD::FMINNUM, MVT::v8f16, Expand);
733     setOperationAction(ISD::FMAXNUM, MVT::v8f16, Expand);
734 
735     for (MVT Vec16 : { MVT::v8i16, MVT::v8f16 }) {
736       setOperationAction(ISD::BUILD_VECTOR, Vec16, Custom);
737       setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec16, Custom);
738       setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand);
739       setOperationAction(ISD::SCALAR_TO_VECTOR, Vec16, Expand);
740     }
741   }
742 
743   if (Subtarget->hasVOP3PInsts()) {
744     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
745     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
746     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
747     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
748     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
749     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
750     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
751     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
752     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
753     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
754 
755     setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
756     setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
757     setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
758     setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
759 
760     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
761     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
762     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
763 
764     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
765     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
766 
767     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
768 
769     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
770     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
771 
772     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
773     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
774     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f16, Custom);
775     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom);
776 
777     for (MVT VT : { MVT::v4i16, MVT::v8i16 }) {
778       // Split vector operations.
779       setOperationAction(ISD::SHL, VT, Custom);
780       setOperationAction(ISD::SRA, VT, Custom);
781       setOperationAction(ISD::SRL, VT, Custom);
782       setOperationAction(ISD::ADD, VT, Custom);
783       setOperationAction(ISD::SUB, VT, Custom);
784       setOperationAction(ISD::MUL, VT, Custom);
785 
786       setOperationAction(ISD::SMIN, VT, Custom);
787       setOperationAction(ISD::SMAX, VT, Custom);
788       setOperationAction(ISD::UMIN, VT, Custom);
789       setOperationAction(ISD::UMAX, VT, Custom);
790 
791       setOperationAction(ISD::UADDSAT, VT, Custom);
792       setOperationAction(ISD::SADDSAT, VT, Custom);
793       setOperationAction(ISD::USUBSAT, VT, Custom);
794       setOperationAction(ISD::SSUBSAT, VT, Custom);
795     }
796 
797     for (MVT VT : { MVT::v4f16, MVT::v8f16 }) {
798       // Split vector operations.
799       setOperationAction(ISD::FADD, VT, Custom);
800       setOperationAction(ISD::FMUL, VT, Custom);
801       setOperationAction(ISD::FMA, VT, Custom);
802       setOperationAction(ISD::FCANONICALIZE, VT, Custom);
803     }
804 
805     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
806     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
807 
808     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
809     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
810 
811     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
812     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
813     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
814 
815     if (Subtarget->hasPackedFP32Ops()) {
816       setOperationAction(ISD::FADD, MVT::v2f32, Legal);
817       setOperationAction(ISD::FMUL, MVT::v2f32, Legal);
818       setOperationAction(ISD::FMA,  MVT::v2f32, Legal);
819       setOperationAction(ISD::FNEG, MVT::v2f32, Legal);
820 
821       for (MVT VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32 }) {
822         setOperationAction(ISD::FADD, VT, Custom);
823         setOperationAction(ISD::FMUL, VT, Custom);
824         setOperationAction(ISD::FMA, VT, Custom);
825       }
826     }
827   }
828 
829   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
830   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
831 
832   if (Subtarget->has16BitInsts()) {
833     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
834     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
835     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
836     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
837   } else {
838     // Legalization hack.
839     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
840     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
841 
842     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
843     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
844   }
845 
846   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8,
847                   MVT::v8i16, MVT::v8f16 }) {
848     setOperationAction(ISD::SELECT, VT, Custom);
849   }
850 
851   setOperationAction(ISD::SMULO, MVT::i64, Custom);
852   setOperationAction(ISD::UMULO, MVT::i64, Custom);
853 
854   if (Subtarget->hasMad64_32()) {
855     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
856     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
857   }
858 
859   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
860   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
861   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
862   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
863   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
864   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
865   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
866 
867   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
868   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
869   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
870   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
871   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
872   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
873   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
874   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
875   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
876   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
877   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
878 
879   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
880   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
881   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
882   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
883   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
884   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
885   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
886   setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
887   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
888   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
889 
890   setTargetDAGCombine(ISD::ADD);
891   setTargetDAGCombine(ISD::ADDCARRY);
892   setTargetDAGCombine(ISD::SUB);
893   setTargetDAGCombine(ISD::SUBCARRY);
894   setTargetDAGCombine(ISD::FADD);
895   setTargetDAGCombine(ISD::FSUB);
896   setTargetDAGCombine(ISD::FMINNUM);
897   setTargetDAGCombine(ISD::FMAXNUM);
898   setTargetDAGCombine(ISD::FMINNUM_IEEE);
899   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
900   setTargetDAGCombine(ISD::FMA);
901   setTargetDAGCombine(ISD::SMIN);
902   setTargetDAGCombine(ISD::SMAX);
903   setTargetDAGCombine(ISD::UMIN);
904   setTargetDAGCombine(ISD::UMAX);
905   setTargetDAGCombine(ISD::SETCC);
906   setTargetDAGCombine(ISD::AND);
907   setTargetDAGCombine(ISD::OR);
908   setTargetDAGCombine(ISD::XOR);
909   setTargetDAGCombine(ISD::SINT_TO_FP);
910   setTargetDAGCombine(ISD::UINT_TO_FP);
911   setTargetDAGCombine(ISD::FCANONICALIZE);
912   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
913   setTargetDAGCombine(ISD::ZERO_EXTEND);
914   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
915   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
916   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
917 
918   // All memory operations. Some folding on the pointer operand is done to help
919   // matching the constant offsets in the addressing modes.
920   setTargetDAGCombine(ISD::LOAD);
921   setTargetDAGCombine(ISD::STORE);
922   setTargetDAGCombine(ISD::ATOMIC_LOAD);
923   setTargetDAGCombine(ISD::ATOMIC_STORE);
924   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
925   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
926   setTargetDAGCombine(ISD::ATOMIC_SWAP);
927   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
928   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
929   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
930   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
931   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
932   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
933   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
934   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
935   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
936   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
937   setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
938   setTargetDAGCombine(ISD::INTRINSIC_VOID);
939   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
940 
941   // FIXME: In other contexts we pretend this is a per-function property.
942   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
943 
944   setSchedulingPreference(Sched::RegPressure);
945 }
946 
947 const GCNSubtarget *SITargetLowering::getSubtarget() const {
948   return Subtarget;
949 }
950 
951 //===----------------------------------------------------------------------===//
952 // TargetLowering queries
953 //===----------------------------------------------------------------------===//
954 
955 // v_mad_mix* support a conversion from f16 to f32.
956 //
957 // There is only one special case when denormals are enabled we don't currently,
958 // where this is OK to use.
959 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
960                                        EVT DestVT, EVT SrcVT) const {
961   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
962           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
963     DestVT.getScalarType() == MVT::f32 &&
964     SrcVT.getScalarType() == MVT::f16 &&
965     // TODO: This probably only requires no input flushing?
966     !hasFP32Denormals(DAG.getMachineFunction());
967 }
968 
969 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
970                                        LLT DestTy, LLT SrcTy) const {
971   return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
972           (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
973          DestTy.getScalarSizeInBits() == 32 &&
974          SrcTy.getScalarSizeInBits() == 16 &&
975          // TODO: This probably only requires no input flushing?
976          !hasFP32Denormals(*MI.getMF());
977 }
978 
979 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
980   // SI has some legal vector types, but no legal vector operations. Say no
981   // shuffles are legal in order to prefer scalarizing some vector operations.
982   return false;
983 }
984 
985 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
986                                                     CallingConv::ID CC,
987                                                     EVT VT) const {
988   if (CC == CallingConv::AMDGPU_KERNEL)
989     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
990 
991   if (VT.isVector()) {
992     EVT ScalarVT = VT.getScalarType();
993     unsigned Size = ScalarVT.getSizeInBits();
994     if (Size == 16) {
995       if (Subtarget->has16BitInsts())
996         return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
997       return VT.isInteger() ? MVT::i32 : MVT::f32;
998     }
999 
1000     if (Size < 16)
1001       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
1002     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
1003   }
1004 
1005   if (VT.getSizeInBits() > 32)
1006     return MVT::i32;
1007 
1008   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1009 }
1010 
1011 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1012                                                          CallingConv::ID CC,
1013                                                          EVT VT) const {
1014   if (CC == CallingConv::AMDGPU_KERNEL)
1015     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1016 
1017   if (VT.isVector()) {
1018     unsigned NumElts = VT.getVectorNumElements();
1019     EVT ScalarVT = VT.getScalarType();
1020     unsigned Size = ScalarVT.getSizeInBits();
1021 
1022     // FIXME: Should probably promote 8-bit vectors to i16.
1023     if (Size == 16 && Subtarget->has16BitInsts())
1024       return (NumElts + 1) / 2;
1025 
1026     if (Size <= 32)
1027       return NumElts;
1028 
1029     if (Size > 32)
1030       return NumElts * ((Size + 31) / 32);
1031   } else if (VT.getSizeInBits() > 32)
1032     return (VT.getSizeInBits() + 31) / 32;
1033 
1034   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1035 }
1036 
1037 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
1038   LLVMContext &Context, CallingConv::ID CC,
1039   EVT VT, EVT &IntermediateVT,
1040   unsigned &NumIntermediates, MVT &RegisterVT) const {
1041   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
1042     unsigned NumElts = VT.getVectorNumElements();
1043     EVT ScalarVT = VT.getScalarType();
1044     unsigned Size = ScalarVT.getSizeInBits();
1045     // FIXME: We should fix the ABI to be the same on targets without 16-bit
1046     // support, but unless we can properly handle 3-vectors, it will be still be
1047     // inconsistent.
1048     if (Size == 16 && Subtarget->has16BitInsts()) {
1049       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
1050       IntermediateVT = RegisterVT;
1051       NumIntermediates = (NumElts + 1) / 2;
1052       return NumIntermediates;
1053     }
1054 
1055     if (Size == 32) {
1056       RegisterVT = ScalarVT.getSimpleVT();
1057       IntermediateVT = RegisterVT;
1058       NumIntermediates = NumElts;
1059       return NumIntermediates;
1060     }
1061 
1062     if (Size < 16 && Subtarget->has16BitInsts()) {
1063       // FIXME: Should probably form v2i16 pieces
1064       RegisterVT = MVT::i16;
1065       IntermediateVT = ScalarVT;
1066       NumIntermediates = NumElts;
1067       return NumIntermediates;
1068     }
1069 
1070 
1071     if (Size != 16 && Size <= 32) {
1072       RegisterVT = MVT::i32;
1073       IntermediateVT = ScalarVT;
1074       NumIntermediates = NumElts;
1075       return NumIntermediates;
1076     }
1077 
1078     if (Size > 32) {
1079       RegisterVT = MVT::i32;
1080       IntermediateVT = RegisterVT;
1081       NumIntermediates = NumElts * ((Size + 31) / 32);
1082       return NumIntermediates;
1083     }
1084   }
1085 
1086   return TargetLowering::getVectorTypeBreakdownForCallingConv(
1087     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1088 }
1089 
1090 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
1091   assert(DMaskLanes != 0);
1092 
1093   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1094     unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
1095     return EVT::getVectorVT(Ty->getContext(),
1096                             EVT::getEVT(VT->getElementType()),
1097                             NumElts);
1098   }
1099 
1100   return EVT::getEVT(Ty);
1101 }
1102 
1103 // Peek through TFE struct returns to only use the data size.
1104 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
1105   auto *ST = dyn_cast<StructType>(Ty);
1106   if (!ST)
1107     return memVTFromImageData(Ty, DMaskLanes);
1108 
1109   // Some intrinsics return an aggregate type - special case to work out the
1110   // correct memVT.
1111   //
1112   // Only limited forms of aggregate type currently expected.
1113   if (ST->getNumContainedTypes() != 2 ||
1114       !ST->getContainedType(1)->isIntegerTy(32))
1115     return EVT();
1116   return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
1117 }
1118 
1119 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1120                                           const CallInst &CI,
1121                                           MachineFunction &MF,
1122                                           unsigned IntrID) const {
1123   Info.flags = MachineMemOperand::MONone;
1124   if (CI.hasMetadata(LLVMContext::MD_invariant_load))
1125     Info.flags |= MachineMemOperand::MOInvariant;
1126 
1127   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1128           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1129     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1130                                                   (Intrinsic::ID)IntrID);
1131     if (Attr.hasFnAttr(Attribute::ReadNone))
1132       return false;
1133 
1134     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1135 
1136     if (RsrcIntr->IsImage) {
1137       Info.ptrVal =
1138           MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1139       Info.align.reset();
1140     } else {
1141       Info.ptrVal =
1142           MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1143     }
1144 
1145     Info.flags |= MachineMemOperand::MODereferenceable;
1146     if (Attr.hasFnAttr(Attribute::ReadOnly)) {
1147       unsigned DMaskLanes = 4;
1148 
1149       if (RsrcIntr->IsImage) {
1150         const AMDGPU::ImageDimIntrinsicInfo *Intr
1151           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1152         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1153           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1154 
1155         if (!BaseOpcode->Gather4) {
1156           // If this isn't a gather, we may have excess loaded elements in the
1157           // IR type. Check the dmask for the real number of elements loaded.
1158           unsigned DMask
1159             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1160           DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1161         }
1162 
1163         Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1164       } else
1165         Info.memVT = EVT::getEVT(CI.getType());
1166 
1167       // FIXME: What does alignment mean for an image?
1168       Info.opc = ISD::INTRINSIC_W_CHAIN;
1169       Info.flags |= MachineMemOperand::MOLoad;
1170     } else if (Attr.hasFnAttr(Attribute::WriteOnly)) {
1171       Info.opc = ISD::INTRINSIC_VOID;
1172 
1173       Type *DataTy = CI.getArgOperand(0)->getType();
1174       if (RsrcIntr->IsImage) {
1175         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1176         unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1177         Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1178       } else
1179         Info.memVT = EVT::getEVT(DataTy);
1180 
1181       Info.flags |= MachineMemOperand::MOStore;
1182     } else {
1183       // Atomic
1184       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1185                                             ISD::INTRINSIC_W_CHAIN;
1186       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1187       Info.flags |= MachineMemOperand::MOLoad |
1188                     MachineMemOperand::MOStore |
1189                     MachineMemOperand::MODereferenceable;
1190 
1191       // XXX - Should this be volatile without known ordering?
1192       Info.flags |= MachineMemOperand::MOVolatile;
1193     }
1194     return true;
1195   }
1196 
1197   switch (IntrID) {
1198   case Intrinsic::amdgcn_atomic_inc:
1199   case Intrinsic::amdgcn_atomic_dec:
1200   case Intrinsic::amdgcn_ds_ordered_add:
1201   case Intrinsic::amdgcn_ds_ordered_swap:
1202   case Intrinsic::amdgcn_ds_fadd:
1203   case Intrinsic::amdgcn_ds_fmin:
1204   case Intrinsic::amdgcn_ds_fmax: {
1205     Info.opc = ISD::INTRINSIC_W_CHAIN;
1206     Info.memVT = MVT::getVT(CI.getType());
1207     Info.ptrVal = CI.getOperand(0);
1208     Info.align.reset();
1209     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1210 
1211     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1212     if (!Vol->isZero())
1213       Info.flags |= MachineMemOperand::MOVolatile;
1214 
1215     return true;
1216   }
1217   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1218     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1219 
1220     Info.opc = ISD::INTRINSIC_W_CHAIN;
1221     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1222     Info.ptrVal =
1223         MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1224     Info.align.reset();
1225     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1226 
1227     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1228     if (!Vol || !Vol->isZero())
1229       Info.flags |= MachineMemOperand::MOVolatile;
1230 
1231     return true;
1232   }
1233   case Intrinsic::amdgcn_ds_append:
1234   case Intrinsic::amdgcn_ds_consume: {
1235     Info.opc = ISD::INTRINSIC_W_CHAIN;
1236     Info.memVT = MVT::getVT(CI.getType());
1237     Info.ptrVal = CI.getOperand(0);
1238     Info.align.reset();
1239     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1240 
1241     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1242     if (!Vol->isZero())
1243       Info.flags |= MachineMemOperand::MOVolatile;
1244 
1245     return true;
1246   }
1247   case Intrinsic::amdgcn_global_atomic_csub: {
1248     Info.opc = ISD::INTRINSIC_W_CHAIN;
1249     Info.memVT = MVT::getVT(CI.getType());
1250     Info.ptrVal = CI.getOperand(0);
1251     Info.align.reset();
1252     Info.flags |= MachineMemOperand::MOLoad |
1253                   MachineMemOperand::MOStore |
1254                   MachineMemOperand::MOVolatile;
1255     return true;
1256   }
1257   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1258     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1259     Info.opc = ISD::INTRINSIC_W_CHAIN;
1260     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1261     Info.ptrVal =
1262         MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1263     Info.align.reset();
1264     Info.flags |= MachineMemOperand::MOLoad |
1265                   MachineMemOperand::MODereferenceable;
1266     return true;
1267   }
1268   case Intrinsic::amdgcn_global_atomic_fadd:
1269   case Intrinsic::amdgcn_global_atomic_fmin:
1270   case Intrinsic::amdgcn_global_atomic_fmax:
1271   case Intrinsic::amdgcn_flat_atomic_fadd:
1272   case Intrinsic::amdgcn_flat_atomic_fmin:
1273   case Intrinsic::amdgcn_flat_atomic_fmax: {
1274     Info.opc = ISD::INTRINSIC_W_CHAIN;
1275     Info.memVT = MVT::getVT(CI.getType());
1276     Info.ptrVal = CI.getOperand(0);
1277     Info.align.reset();
1278     Info.flags |= MachineMemOperand::MOLoad |
1279                   MachineMemOperand::MOStore |
1280                   MachineMemOperand::MODereferenceable |
1281                   MachineMemOperand::MOVolatile;
1282     return true;
1283   }
1284   case Intrinsic::amdgcn_ds_gws_init:
1285   case Intrinsic::amdgcn_ds_gws_barrier:
1286   case Intrinsic::amdgcn_ds_gws_sema_v:
1287   case Intrinsic::amdgcn_ds_gws_sema_br:
1288   case Intrinsic::amdgcn_ds_gws_sema_p:
1289   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1290     Info.opc = ISD::INTRINSIC_VOID;
1291 
1292     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1293     Info.ptrVal =
1294         MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1295 
1296     // This is an abstract access, but we need to specify a type and size.
1297     Info.memVT = MVT::i32;
1298     Info.size = 4;
1299     Info.align = Align(4);
1300 
1301     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1302       Info.flags |= MachineMemOperand::MOLoad;
1303     else
1304       Info.flags |= MachineMemOperand::MOStore;
1305     return true;
1306   }
1307   default:
1308     return false;
1309   }
1310 }
1311 
1312 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1313                                             SmallVectorImpl<Value*> &Ops,
1314                                             Type *&AccessTy) const {
1315   switch (II->getIntrinsicID()) {
1316   case Intrinsic::amdgcn_atomic_inc:
1317   case Intrinsic::amdgcn_atomic_dec:
1318   case Intrinsic::amdgcn_ds_ordered_add:
1319   case Intrinsic::amdgcn_ds_ordered_swap:
1320   case Intrinsic::amdgcn_ds_append:
1321   case Intrinsic::amdgcn_ds_consume:
1322   case Intrinsic::amdgcn_ds_fadd:
1323   case Intrinsic::amdgcn_ds_fmin:
1324   case Intrinsic::amdgcn_ds_fmax:
1325   case Intrinsic::amdgcn_global_atomic_fadd:
1326   case Intrinsic::amdgcn_flat_atomic_fadd:
1327   case Intrinsic::amdgcn_flat_atomic_fmin:
1328   case Intrinsic::amdgcn_flat_atomic_fmax:
1329   case Intrinsic::amdgcn_global_atomic_csub: {
1330     Value *Ptr = II->getArgOperand(0);
1331     AccessTy = II->getType();
1332     Ops.push_back(Ptr);
1333     return true;
1334   }
1335   default:
1336     return false;
1337   }
1338 }
1339 
1340 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1341   if (!Subtarget->hasFlatInstOffsets()) {
1342     // Flat instructions do not have offsets, and only have the register
1343     // address.
1344     return AM.BaseOffs == 0 && AM.Scale == 0;
1345   }
1346 
1347   return AM.Scale == 0 &&
1348          (AM.BaseOffs == 0 ||
1349           Subtarget->getInstrInfo()->isLegalFLATOffset(
1350               AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1351 }
1352 
1353 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1354   if (Subtarget->hasFlatGlobalInsts())
1355     return AM.Scale == 0 &&
1356            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1357                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1358                                     SIInstrFlags::FlatGlobal));
1359 
1360   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1361       // Assume the we will use FLAT for all global memory accesses
1362       // on VI.
1363       // FIXME: This assumption is currently wrong.  On VI we still use
1364       // MUBUF instructions for the r + i addressing mode.  As currently
1365       // implemented, the MUBUF instructions only work on buffer < 4GB.
1366       // It may be possible to support > 4GB buffers with MUBUF instructions,
1367       // by setting the stride value in the resource descriptor which would
1368       // increase the size limit to (stride * 4GB).  However, this is risky,
1369       // because it has never been validated.
1370     return isLegalFlatAddressingMode(AM);
1371   }
1372 
1373   return isLegalMUBUFAddressingMode(AM);
1374 }
1375 
1376 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1377   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1378   // additionally can do r + r + i with addr64. 32-bit has more addressing
1379   // mode options. Depending on the resource constant, it can also do
1380   // (i64 r0) + (i32 r1) * (i14 i).
1381   //
1382   // Private arrays end up using a scratch buffer most of the time, so also
1383   // assume those use MUBUF instructions. Scratch loads / stores are currently
1384   // implemented as mubuf instructions with offen bit set, so slightly
1385   // different than the normal addr64.
1386   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1387     return false;
1388 
1389   // FIXME: Since we can split immediate into soffset and immediate offset,
1390   // would it make sense to allow any immediate?
1391 
1392   switch (AM.Scale) {
1393   case 0: // r + i or just i, depending on HasBaseReg.
1394     return true;
1395   case 1:
1396     return true; // We have r + r or r + i.
1397   case 2:
1398     if (AM.HasBaseReg) {
1399       // Reject 2 * r + r.
1400       return false;
1401     }
1402 
1403     // Allow 2 * r as r + r
1404     // Or  2 * r + i is allowed as r + r + i.
1405     return true;
1406   default: // Don't allow n * r
1407     return false;
1408   }
1409 }
1410 
1411 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1412                                              const AddrMode &AM, Type *Ty,
1413                                              unsigned AS, Instruction *I) const {
1414   // No global is ever allowed as a base.
1415   if (AM.BaseGV)
1416     return false;
1417 
1418   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1419     return isLegalGlobalAddressingMode(AM);
1420 
1421   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1422       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1423       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1424     // If the offset isn't a multiple of 4, it probably isn't going to be
1425     // correctly aligned.
1426     // FIXME: Can we get the real alignment here?
1427     if (AM.BaseOffs % 4 != 0)
1428       return isLegalMUBUFAddressingMode(AM);
1429 
1430     // There are no SMRD extloads, so if we have to do a small type access we
1431     // will use a MUBUF load.
1432     // FIXME?: We also need to do this if unaligned, but we don't know the
1433     // alignment here.
1434     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1435       return isLegalGlobalAddressingMode(AM);
1436 
1437     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1438       // SMRD instructions have an 8-bit, dword offset on SI.
1439       if (!isUInt<8>(AM.BaseOffs / 4))
1440         return false;
1441     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1442       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1443       // in 8-bits, it can use a smaller encoding.
1444       if (!isUInt<32>(AM.BaseOffs / 4))
1445         return false;
1446     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1447       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1448       if (!isUInt<20>(AM.BaseOffs))
1449         return false;
1450     } else
1451       llvm_unreachable("unhandled generation");
1452 
1453     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1454       return true;
1455 
1456     if (AM.Scale == 1 && AM.HasBaseReg)
1457       return true;
1458 
1459     return false;
1460 
1461   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1462     return isLegalMUBUFAddressingMode(AM);
1463   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1464              AS == AMDGPUAS::REGION_ADDRESS) {
1465     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1466     // field.
1467     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1468     // an 8-bit dword offset but we don't know the alignment here.
1469     if (!isUInt<16>(AM.BaseOffs))
1470       return false;
1471 
1472     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1473       return true;
1474 
1475     if (AM.Scale == 1 && AM.HasBaseReg)
1476       return true;
1477 
1478     return false;
1479   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1480              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1481     // For an unknown address space, this usually means that this is for some
1482     // reason being used for pure arithmetic, and not based on some addressing
1483     // computation. We don't have instructions that compute pointers with any
1484     // addressing modes, so treat them as having no offset like flat
1485     // instructions.
1486     return isLegalFlatAddressingMode(AM);
1487   }
1488 
1489   // Assume a user alias of global for unknown address spaces.
1490   return isLegalGlobalAddressingMode(AM);
1491 }
1492 
1493 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1494                                         const MachineFunction &MF) const {
1495   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1496     return (MemVT.getSizeInBits() <= 4 * 32);
1497   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1498     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1499     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1500   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1501     return (MemVT.getSizeInBits() <= 2 * 32);
1502   }
1503   return true;
1504 }
1505 
1506 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1507     unsigned Size, unsigned AddrSpace, Align Alignment,
1508     MachineMemOperand::Flags Flags, bool *IsFast) const {
1509   if (IsFast)
1510     *IsFast = false;
1511 
1512   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1513       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1514     // Check if alignment requirements for ds_read/write instructions are
1515     // disabled.
1516     if (Subtarget->hasUnalignedDSAccessEnabled() &&
1517         !Subtarget->hasLDSMisalignedBug()) {
1518       if (IsFast)
1519         *IsFast = Alignment != Align(2);
1520       return true;
1521     }
1522 
1523     // Either, the alignment requirements are "enabled", or there is an
1524     // unaligned LDS access related hardware bug though alignment requirements
1525     // are "disabled". In either case, we need to check for proper alignment
1526     // requirements.
1527     //
1528     if (Size == 64) {
1529       // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1530       // can do a 4 byte aligned, 8 byte access in a single operation using
1531       // ds_read2/write2_b32 with adjacent offsets.
1532       bool AlignedBy4 = Alignment >= Align(4);
1533       if (IsFast)
1534         *IsFast = AlignedBy4;
1535 
1536       return AlignedBy4;
1537     }
1538     if (Size == 96) {
1539       // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1540       // gfx8 and older.
1541       bool AlignedBy16 = Alignment >= Align(16);
1542       if (IsFast)
1543         *IsFast = AlignedBy16;
1544 
1545       return AlignedBy16;
1546     }
1547     if (Size == 128) {
1548       // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1549       // gfx8 and older, but  we can do a 8 byte aligned, 16 byte access in a
1550       // single operation using ds_read2/write2_b64.
1551       bool AlignedBy8 = Alignment >= Align(8);
1552       if (IsFast)
1553         *IsFast = AlignedBy8;
1554 
1555       return AlignedBy8;
1556     }
1557   }
1558 
1559   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1560     bool AlignedBy4 = Alignment >= Align(4);
1561     if (IsFast)
1562       *IsFast = AlignedBy4;
1563 
1564     return AlignedBy4 ||
1565            Subtarget->enableFlatScratch() ||
1566            Subtarget->hasUnalignedScratchAccess();
1567   }
1568 
1569   // FIXME: We have to be conservative here and assume that flat operations
1570   // will access scratch.  If we had access to the IR function, then we
1571   // could determine if any private memory was used in the function.
1572   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1573       !Subtarget->hasUnalignedScratchAccess()) {
1574     bool AlignedBy4 = Alignment >= Align(4);
1575     if (IsFast)
1576       *IsFast = AlignedBy4;
1577 
1578     return AlignedBy4;
1579   }
1580 
1581   if (Subtarget->hasUnalignedBufferAccessEnabled() &&
1582       !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1583         AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1584     // If we have an uniform constant load, it still requires using a slow
1585     // buffer instruction if unaligned.
1586     if (IsFast) {
1587       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1588       // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1589       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1590                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1591         Alignment >= Align(4) : Alignment != Align(2);
1592     }
1593 
1594     return true;
1595   }
1596 
1597   // Smaller than dword value must be aligned.
1598   if (Size < 32)
1599     return false;
1600 
1601   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1602   // byte-address are ignored, thus forcing Dword alignment.
1603   // This applies to private, global, and constant memory.
1604   if (IsFast)
1605     *IsFast = true;
1606 
1607   return Size >= 32 && Alignment >= Align(4);
1608 }
1609 
1610 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1611     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1612     bool *IsFast) const {
1613   if (IsFast)
1614     *IsFast = false;
1615 
1616   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1617   // which isn't a simple VT.
1618   // Until MVT is extended to handle this, simply check for the size and
1619   // rely on the condition below: allow accesses if the size is a multiple of 4.
1620   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1621                            VT.getStoreSize() > 16)) {
1622     return false;
1623   }
1624 
1625   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1626                                             Alignment, Flags, IsFast);
1627 }
1628 
1629 EVT SITargetLowering::getOptimalMemOpType(
1630     const MemOp &Op, const AttributeList &FuncAttributes) const {
1631   // FIXME: Should account for address space here.
1632 
1633   // The default fallback uses the private pointer size as a guess for a type to
1634   // use. Make sure we switch these to 64-bit accesses.
1635 
1636   if (Op.size() >= 16 &&
1637       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1638     return MVT::v4i32;
1639 
1640   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1641     return MVT::v2i32;
1642 
1643   // Use the default.
1644   return MVT::Other;
1645 }
1646 
1647 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1648   const MemSDNode *MemNode = cast<MemSDNode>(N);
1649   return MemNode->getMemOperand()->getFlags() & MONoClobber;
1650 }
1651 
1652 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1653   return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1654          AS == AMDGPUAS::PRIVATE_ADDRESS;
1655 }
1656 
1657 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1658                                            unsigned DestAS) const {
1659   // Flat -> private/local is a simple truncate.
1660   // Flat -> global is no-op
1661   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1662     return true;
1663 
1664   const GCNTargetMachine &TM =
1665       static_cast<const GCNTargetMachine &>(getTargetMachine());
1666   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1667 }
1668 
1669 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1670   const MemSDNode *MemNode = cast<MemSDNode>(N);
1671 
1672   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1673 }
1674 
1675 TargetLoweringBase::LegalizeTypeAction
1676 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1677   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1678       VT.getScalarType().bitsLE(MVT::i16))
1679     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1680   return TargetLoweringBase::getPreferredVectorAction(VT);
1681 }
1682 
1683 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1684                                                          Type *Ty) const {
1685   // FIXME: Could be smarter if called for vector constants.
1686   return true;
1687 }
1688 
1689 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1690   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1691     switch (Op) {
1692     case ISD::LOAD:
1693     case ISD::STORE:
1694 
1695     // These operations are done with 32-bit instructions anyway.
1696     case ISD::AND:
1697     case ISD::OR:
1698     case ISD::XOR:
1699     case ISD::SELECT:
1700       // TODO: Extensions?
1701       return true;
1702     default:
1703       return false;
1704     }
1705   }
1706 
1707   // SimplifySetCC uses this function to determine whether or not it should
1708   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1709   if (VT == MVT::i1 && Op == ISD::SETCC)
1710     return false;
1711 
1712   return TargetLowering::isTypeDesirableForOp(Op, VT);
1713 }
1714 
1715 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1716                                                    const SDLoc &SL,
1717                                                    SDValue Chain,
1718                                                    uint64_t Offset) const {
1719   const DataLayout &DL = DAG.getDataLayout();
1720   MachineFunction &MF = DAG.getMachineFunction();
1721   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1722 
1723   const ArgDescriptor *InputPtrReg;
1724   const TargetRegisterClass *RC;
1725   LLT ArgTy;
1726   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1727 
1728   std::tie(InputPtrReg, RC, ArgTy) =
1729       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1730 
1731   // We may not have the kernarg segment argument if we have no kernel
1732   // arguments.
1733   if (!InputPtrReg)
1734     return DAG.getConstant(0, SL, PtrVT);
1735 
1736   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1737   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1738     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1739 
1740   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1741 }
1742 
1743 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1744                                             const SDLoc &SL) const {
1745   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1746                                                FIRST_IMPLICIT);
1747   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1748 }
1749 
1750 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1751                                          const SDLoc &SL, SDValue Val,
1752                                          bool Signed,
1753                                          const ISD::InputArg *Arg) const {
1754   // First, if it is a widened vector, narrow it.
1755   if (VT.isVector() &&
1756       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1757     EVT NarrowedVT =
1758         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1759                          VT.getVectorNumElements());
1760     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1761                       DAG.getConstant(0, SL, MVT::i32));
1762   }
1763 
1764   // Then convert the vector elements or scalar value.
1765   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1766       VT.bitsLT(MemVT)) {
1767     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1768     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1769   }
1770 
1771   if (MemVT.isFloatingPoint())
1772     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1773   else if (Signed)
1774     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1775   else
1776     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1777 
1778   return Val;
1779 }
1780 
1781 SDValue SITargetLowering::lowerKernargMemParameter(
1782     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1783     uint64_t Offset, Align Alignment, bool Signed,
1784     const ISD::InputArg *Arg) const {
1785   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1786 
1787   // Try to avoid using an extload by loading earlier than the argument address,
1788   // and extracting the relevant bits. The load should hopefully be merged with
1789   // the previous argument.
1790   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1791     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1792     int64_t AlignDownOffset = alignDown(Offset, 4);
1793     int64_t OffsetDiff = Offset - AlignDownOffset;
1794 
1795     EVT IntVT = MemVT.changeTypeToInteger();
1796 
1797     // TODO: If we passed in the base kernel offset we could have a better
1798     // alignment than 4, but we don't really need it.
1799     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1800     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1801                                MachineMemOperand::MODereferenceable |
1802                                    MachineMemOperand::MOInvariant);
1803 
1804     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1805     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1806 
1807     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1808     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1809     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1810 
1811 
1812     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1813   }
1814 
1815   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1816   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1817                              MachineMemOperand::MODereferenceable |
1818                                  MachineMemOperand::MOInvariant);
1819 
1820   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1821   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1822 }
1823 
1824 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1825                                               const SDLoc &SL, SDValue Chain,
1826                                               const ISD::InputArg &Arg) const {
1827   MachineFunction &MF = DAG.getMachineFunction();
1828   MachineFrameInfo &MFI = MF.getFrameInfo();
1829 
1830   if (Arg.Flags.isByVal()) {
1831     unsigned Size = Arg.Flags.getByValSize();
1832     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1833     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1834   }
1835 
1836   unsigned ArgOffset = VA.getLocMemOffset();
1837   unsigned ArgSize = VA.getValVT().getStoreSize();
1838 
1839   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1840 
1841   // Create load nodes to retrieve arguments from the stack.
1842   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1843   SDValue ArgValue;
1844 
1845   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1846   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1847   MVT MemVT = VA.getValVT();
1848 
1849   switch (VA.getLocInfo()) {
1850   default:
1851     break;
1852   case CCValAssign::BCvt:
1853     MemVT = VA.getLocVT();
1854     break;
1855   case CCValAssign::SExt:
1856     ExtType = ISD::SEXTLOAD;
1857     break;
1858   case CCValAssign::ZExt:
1859     ExtType = ISD::ZEXTLOAD;
1860     break;
1861   case CCValAssign::AExt:
1862     ExtType = ISD::EXTLOAD;
1863     break;
1864   }
1865 
1866   ArgValue = DAG.getExtLoad(
1867     ExtType, SL, VA.getLocVT(), Chain, FIN,
1868     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1869     MemVT);
1870   return ArgValue;
1871 }
1872 
1873 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1874   const SIMachineFunctionInfo &MFI,
1875   EVT VT,
1876   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1877   const ArgDescriptor *Reg;
1878   const TargetRegisterClass *RC;
1879   LLT Ty;
1880 
1881   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1882   if (!Reg) {
1883     if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) {
1884       // It's possible for a kernarg intrinsic call to appear in a kernel with
1885       // no allocated segment, in which case we do not add the user sgpr
1886       // argument, so just return null.
1887       return DAG.getConstant(0, SDLoc(), VT);
1888     }
1889 
1890     // It's undefined behavior if a function marked with the amdgpu-no-*
1891     // attributes uses the corresponding intrinsic.
1892     return DAG.getUNDEF(VT);
1893   }
1894 
1895   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1896 }
1897 
1898 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1899                                CallingConv::ID CallConv,
1900                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1901                                FunctionType *FType,
1902                                SIMachineFunctionInfo *Info) {
1903   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1904     const ISD::InputArg *Arg = &Ins[I];
1905 
1906     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1907            "vector type argument should have been split");
1908 
1909     // First check if it's a PS input addr.
1910     if (CallConv == CallingConv::AMDGPU_PS &&
1911         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1912       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1913 
1914       // Inconveniently only the first part of the split is marked as isSplit,
1915       // so skip to the end. We only want to increment PSInputNum once for the
1916       // entire split argument.
1917       if (Arg->Flags.isSplit()) {
1918         while (!Arg->Flags.isSplitEnd()) {
1919           assert((!Arg->VT.isVector() ||
1920                   Arg->VT.getScalarSizeInBits() == 16) &&
1921                  "unexpected vector split in ps argument type");
1922           if (!SkipArg)
1923             Splits.push_back(*Arg);
1924           Arg = &Ins[++I];
1925         }
1926       }
1927 
1928       if (SkipArg) {
1929         // We can safely skip PS inputs.
1930         Skipped.set(Arg->getOrigArgIndex());
1931         ++PSInputNum;
1932         continue;
1933       }
1934 
1935       Info->markPSInputAllocated(PSInputNum);
1936       if (Arg->Used)
1937         Info->markPSInputEnabled(PSInputNum);
1938 
1939       ++PSInputNum;
1940     }
1941 
1942     Splits.push_back(*Arg);
1943   }
1944 }
1945 
1946 // Allocate special inputs passed in VGPRs.
1947 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1948                                                       MachineFunction &MF,
1949                                                       const SIRegisterInfo &TRI,
1950                                                       SIMachineFunctionInfo &Info) const {
1951   const LLT S32 = LLT::scalar(32);
1952   MachineRegisterInfo &MRI = MF.getRegInfo();
1953 
1954   if (Info.hasWorkItemIDX()) {
1955     Register Reg = AMDGPU::VGPR0;
1956     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1957 
1958     CCInfo.AllocateReg(Reg);
1959     unsigned Mask = (Subtarget->hasPackedTID() &&
1960                      Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1961     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1962   }
1963 
1964   if (Info.hasWorkItemIDY()) {
1965     assert(Info.hasWorkItemIDX());
1966     if (Subtarget->hasPackedTID()) {
1967       Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1968                                                         0x3ff << 10));
1969     } else {
1970       unsigned Reg = AMDGPU::VGPR1;
1971       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1972 
1973       CCInfo.AllocateReg(Reg);
1974       Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1975     }
1976   }
1977 
1978   if (Info.hasWorkItemIDZ()) {
1979     assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
1980     if (Subtarget->hasPackedTID()) {
1981       Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1982                                                         0x3ff << 20));
1983     } else {
1984       unsigned Reg = AMDGPU::VGPR2;
1985       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1986 
1987       CCInfo.AllocateReg(Reg);
1988       Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1989     }
1990   }
1991 }
1992 
1993 // Try to allocate a VGPR at the end of the argument list, or if no argument
1994 // VGPRs are left allocating a stack slot.
1995 // If \p Mask is is given it indicates bitfield position in the register.
1996 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1997 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1998                                          ArgDescriptor Arg = ArgDescriptor()) {
1999   if (Arg.isSet())
2000     return ArgDescriptor::createArg(Arg, Mask);
2001 
2002   ArrayRef<MCPhysReg> ArgVGPRs
2003     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
2004   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
2005   if (RegIdx == ArgVGPRs.size()) {
2006     // Spill to stack required.
2007     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
2008 
2009     return ArgDescriptor::createStack(Offset, Mask);
2010   }
2011 
2012   unsigned Reg = ArgVGPRs[RegIdx];
2013   Reg = CCInfo.AllocateReg(Reg);
2014   assert(Reg != AMDGPU::NoRegister);
2015 
2016   MachineFunction &MF = CCInfo.getMachineFunction();
2017   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
2018   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
2019   return ArgDescriptor::createRegister(Reg, Mask);
2020 }
2021 
2022 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
2023                                              const TargetRegisterClass *RC,
2024                                              unsigned NumArgRegs) {
2025   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
2026   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
2027   if (RegIdx == ArgSGPRs.size())
2028     report_fatal_error("ran out of SGPRs for arguments");
2029 
2030   unsigned Reg = ArgSGPRs[RegIdx];
2031   Reg = CCInfo.AllocateReg(Reg);
2032   assert(Reg != AMDGPU::NoRegister);
2033 
2034   MachineFunction &MF = CCInfo.getMachineFunction();
2035   MF.addLiveIn(Reg, RC);
2036   return ArgDescriptor::createRegister(Reg);
2037 }
2038 
2039 // If this has a fixed position, we still should allocate the register in the
2040 // CCInfo state. Technically we could get away with this for values passed
2041 // outside of the normal argument range.
2042 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
2043                                        const TargetRegisterClass *RC,
2044                                        MCRegister Reg) {
2045   Reg = CCInfo.AllocateReg(Reg);
2046   assert(Reg != AMDGPU::NoRegister);
2047   MachineFunction &MF = CCInfo.getMachineFunction();
2048   MF.addLiveIn(Reg, RC);
2049 }
2050 
2051 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
2052   if (Arg) {
2053     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
2054                                Arg.getRegister());
2055   } else
2056     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
2057 }
2058 
2059 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
2060   if (Arg) {
2061     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
2062                                Arg.getRegister());
2063   } else
2064     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
2065 }
2066 
2067 /// Allocate implicit function VGPR arguments at the end of allocated user
2068 /// arguments.
2069 void SITargetLowering::allocateSpecialInputVGPRs(
2070   CCState &CCInfo, MachineFunction &MF,
2071   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2072   const unsigned Mask = 0x3ff;
2073   ArgDescriptor Arg;
2074 
2075   if (Info.hasWorkItemIDX()) {
2076     Arg = allocateVGPR32Input(CCInfo, Mask);
2077     Info.setWorkItemIDX(Arg);
2078   }
2079 
2080   if (Info.hasWorkItemIDY()) {
2081     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
2082     Info.setWorkItemIDY(Arg);
2083   }
2084 
2085   if (Info.hasWorkItemIDZ())
2086     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2087 }
2088 
2089 /// Allocate implicit function VGPR arguments in fixed registers.
2090 void SITargetLowering::allocateSpecialInputVGPRsFixed(
2091   CCState &CCInfo, MachineFunction &MF,
2092   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2093   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2094   if (!Reg)
2095     report_fatal_error("failed to allocated VGPR for implicit arguments");
2096 
2097   const unsigned Mask = 0x3ff;
2098   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2099   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2100   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2101 }
2102 
2103 void SITargetLowering::allocateSpecialInputSGPRs(
2104   CCState &CCInfo,
2105   MachineFunction &MF,
2106   const SIRegisterInfo &TRI,
2107   SIMachineFunctionInfo &Info) const {
2108   auto &ArgInfo = Info.getArgInfo();
2109 
2110   // TODO: Unify handling with private memory pointers.
2111   if (Info.hasDispatchPtr())
2112     allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2113 
2114   if (Info.hasQueuePtr())
2115     allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2116 
2117   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2118   // constant offset from the kernarg segment.
2119   if (Info.hasImplicitArgPtr())
2120     allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2121 
2122   if (Info.hasDispatchID())
2123     allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2124 
2125   // flat_scratch_init is not applicable for non-kernel functions.
2126 
2127   if (Info.hasWorkGroupIDX())
2128     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2129 
2130   if (Info.hasWorkGroupIDY())
2131     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2132 
2133   if (Info.hasWorkGroupIDZ())
2134     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2135 }
2136 
2137 // Allocate special inputs passed in user SGPRs.
2138 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2139                                             MachineFunction &MF,
2140                                             const SIRegisterInfo &TRI,
2141                                             SIMachineFunctionInfo &Info) const {
2142   if (Info.hasImplicitBufferPtr()) {
2143     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2144     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2145     CCInfo.AllocateReg(ImplicitBufferPtrReg);
2146   }
2147 
2148   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2149   if (Info.hasPrivateSegmentBuffer()) {
2150     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2151     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2152     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2153   }
2154 
2155   if (Info.hasDispatchPtr()) {
2156     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2157     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2158     CCInfo.AllocateReg(DispatchPtrReg);
2159   }
2160 
2161   if (Info.hasQueuePtr()) {
2162     Register QueuePtrReg = Info.addQueuePtr(TRI);
2163     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2164     CCInfo.AllocateReg(QueuePtrReg);
2165   }
2166 
2167   if (Info.hasKernargSegmentPtr()) {
2168     MachineRegisterInfo &MRI = MF.getRegInfo();
2169     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2170     CCInfo.AllocateReg(InputPtrReg);
2171 
2172     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2173     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2174   }
2175 
2176   if (Info.hasDispatchID()) {
2177     Register DispatchIDReg = Info.addDispatchID(TRI);
2178     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2179     CCInfo.AllocateReg(DispatchIDReg);
2180   }
2181 
2182   if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2183     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2184     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2185     CCInfo.AllocateReg(FlatScratchInitReg);
2186   }
2187 
2188   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2189   // these from the dispatch pointer.
2190 }
2191 
2192 // Allocate special input registers that are initialized per-wave.
2193 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2194                                            MachineFunction &MF,
2195                                            SIMachineFunctionInfo &Info,
2196                                            CallingConv::ID CallConv,
2197                                            bool IsShader) const {
2198   if (Info.hasWorkGroupIDX()) {
2199     Register Reg = Info.addWorkGroupIDX();
2200     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2201     CCInfo.AllocateReg(Reg);
2202   }
2203 
2204   if (Info.hasWorkGroupIDY()) {
2205     Register Reg = Info.addWorkGroupIDY();
2206     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2207     CCInfo.AllocateReg(Reg);
2208   }
2209 
2210   if (Info.hasWorkGroupIDZ()) {
2211     Register Reg = Info.addWorkGroupIDZ();
2212     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2213     CCInfo.AllocateReg(Reg);
2214   }
2215 
2216   if (Info.hasWorkGroupInfo()) {
2217     Register Reg = Info.addWorkGroupInfo();
2218     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2219     CCInfo.AllocateReg(Reg);
2220   }
2221 
2222   if (Info.hasPrivateSegmentWaveByteOffset()) {
2223     // Scratch wave offset passed in system SGPR.
2224     unsigned PrivateSegmentWaveByteOffsetReg;
2225 
2226     if (IsShader) {
2227       PrivateSegmentWaveByteOffsetReg =
2228         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2229 
2230       // This is true if the scratch wave byte offset doesn't have a fixed
2231       // location.
2232       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2233         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2234         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2235       }
2236     } else
2237       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2238 
2239     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2240     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2241   }
2242 }
2243 
2244 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2245                                      MachineFunction &MF,
2246                                      const SIRegisterInfo &TRI,
2247                                      SIMachineFunctionInfo &Info) {
2248   // Now that we've figured out where the scratch register inputs are, see if
2249   // should reserve the arguments and use them directly.
2250   MachineFrameInfo &MFI = MF.getFrameInfo();
2251   bool HasStackObjects = MFI.hasStackObjects();
2252   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2253 
2254   // Record that we know we have non-spill stack objects so we don't need to
2255   // check all stack objects later.
2256   if (HasStackObjects)
2257     Info.setHasNonSpillStackObjects(true);
2258 
2259   // Everything live out of a block is spilled with fast regalloc, so it's
2260   // almost certain that spilling will be required.
2261   if (TM.getOptLevel() == CodeGenOpt::None)
2262     HasStackObjects = true;
2263 
2264   // For now assume stack access is needed in any callee functions, so we need
2265   // the scratch registers to pass in.
2266   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2267 
2268   if (!ST.enableFlatScratch()) {
2269     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2270       // If we have stack objects, we unquestionably need the private buffer
2271       // resource. For the Code Object V2 ABI, this will be the first 4 user
2272       // SGPR inputs. We can reserve those and use them directly.
2273 
2274       Register PrivateSegmentBufferReg =
2275           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2276       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2277     } else {
2278       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2279       // We tentatively reserve the last registers (skipping the last registers
2280       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2281       // we'll replace these with the ones immediately after those which were
2282       // really allocated. In the prologue copies will be inserted from the
2283       // argument to these reserved registers.
2284 
2285       // Without HSA, relocations are used for the scratch pointer and the
2286       // buffer resource setup is always inserted in the prologue. Scratch wave
2287       // offset is still in an input SGPR.
2288       Info.setScratchRSrcReg(ReservedBufferReg);
2289     }
2290   }
2291 
2292   MachineRegisterInfo &MRI = MF.getRegInfo();
2293 
2294   // For entry functions we have to set up the stack pointer if we use it,
2295   // whereas non-entry functions get this "for free". This means there is no
2296   // intrinsic advantage to using S32 over S34 in cases where we do not have
2297   // calls but do need a frame pointer (i.e. if we are requested to have one
2298   // because frame pointer elimination is disabled). To keep things simple we
2299   // only ever use S32 as the call ABI stack pointer, and so using it does not
2300   // imply we need a separate frame pointer.
2301   //
2302   // Try to use s32 as the SP, but move it if it would interfere with input
2303   // arguments. This won't work with calls though.
2304   //
2305   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2306   // registers.
2307   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2308     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2309   } else {
2310     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2311 
2312     if (MFI.hasCalls())
2313       report_fatal_error("call in graphics shader with too many input SGPRs");
2314 
2315     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2316       if (!MRI.isLiveIn(Reg)) {
2317         Info.setStackPtrOffsetReg(Reg);
2318         break;
2319       }
2320     }
2321 
2322     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2323       report_fatal_error("failed to find register for SP");
2324   }
2325 
2326   // hasFP should be accurate for entry functions even before the frame is
2327   // finalized, because it does not rely on the known stack size, only
2328   // properties like whether variable sized objects are present.
2329   if (ST.getFrameLowering()->hasFP(MF)) {
2330     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2331   }
2332 }
2333 
2334 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2335   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2336   return !Info->isEntryFunction();
2337 }
2338 
2339 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2340 
2341 }
2342 
2343 void SITargetLowering::insertCopiesSplitCSR(
2344   MachineBasicBlock *Entry,
2345   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2346   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2347 
2348   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2349   if (!IStart)
2350     return;
2351 
2352   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2353   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2354   MachineBasicBlock::iterator MBBI = Entry->begin();
2355   for (const MCPhysReg *I = IStart; *I; ++I) {
2356     const TargetRegisterClass *RC = nullptr;
2357     if (AMDGPU::SReg_64RegClass.contains(*I))
2358       RC = &AMDGPU::SGPR_64RegClass;
2359     else if (AMDGPU::SReg_32RegClass.contains(*I))
2360       RC = &AMDGPU::SGPR_32RegClass;
2361     else
2362       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2363 
2364     Register NewVR = MRI->createVirtualRegister(RC);
2365     // Create copy from CSR to a virtual register.
2366     Entry->addLiveIn(*I);
2367     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2368       .addReg(*I);
2369 
2370     // Insert the copy-back instructions right before the terminator.
2371     for (auto *Exit : Exits)
2372       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2373               TII->get(TargetOpcode::COPY), *I)
2374         .addReg(NewVR);
2375   }
2376 }
2377 
2378 SDValue SITargetLowering::LowerFormalArguments(
2379     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2380     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2381     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2382   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2383 
2384   MachineFunction &MF = DAG.getMachineFunction();
2385   const Function &Fn = MF.getFunction();
2386   FunctionType *FType = MF.getFunction().getFunctionType();
2387   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2388 
2389   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2390     DiagnosticInfoUnsupported NoGraphicsHSA(
2391         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2392     DAG.getContext()->diagnose(NoGraphicsHSA);
2393     return DAG.getEntryNode();
2394   }
2395 
2396   Info->allocateModuleLDSGlobal(Fn.getParent());
2397 
2398   SmallVector<ISD::InputArg, 16> Splits;
2399   SmallVector<CCValAssign, 16> ArgLocs;
2400   BitVector Skipped(Ins.size());
2401   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2402                  *DAG.getContext());
2403 
2404   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2405   bool IsKernel = AMDGPU::isKernel(CallConv);
2406   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2407 
2408   if (IsGraphics) {
2409     assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2410            (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2411            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2412            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2413            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2414            !Info->hasWorkItemIDZ());
2415   }
2416 
2417   if (CallConv == CallingConv::AMDGPU_PS) {
2418     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2419 
2420     // At least one interpolation mode must be enabled or else the GPU will
2421     // hang.
2422     //
2423     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2424     // set PSInputAddr, the user wants to enable some bits after the compilation
2425     // based on run-time states. Since we can't know what the final PSInputEna
2426     // will look like, so we shouldn't do anything here and the user should take
2427     // responsibility for the correct programming.
2428     //
2429     // Otherwise, the following restrictions apply:
2430     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2431     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2432     //   enabled too.
2433     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2434         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2435       CCInfo.AllocateReg(AMDGPU::VGPR0);
2436       CCInfo.AllocateReg(AMDGPU::VGPR1);
2437       Info->markPSInputAllocated(0);
2438       Info->markPSInputEnabled(0);
2439     }
2440     if (Subtarget->isAmdPalOS()) {
2441       // For isAmdPalOS, the user does not enable some bits after compilation
2442       // based on run-time states; the register values being generated here are
2443       // the final ones set in hardware. Therefore we need to apply the
2444       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2445       // a bit is set in PSInputAddr but not PSInputEnable is where the
2446       // frontend set up an input arg for a particular interpolation mode, but
2447       // nothing uses that input arg. Really we should have an earlier pass
2448       // that removes such an arg.)
2449       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2450       if ((PsInputBits & 0x7F) == 0 ||
2451           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2452         Info->markPSInputEnabled(
2453             countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2454     }
2455   } else if (IsKernel) {
2456     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2457   } else {
2458     Splits.append(Ins.begin(), Ins.end());
2459   }
2460 
2461   if (IsEntryFunc) {
2462     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2463     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2464   } else if (!IsGraphics) {
2465     // For the fixed ABI, pass workitem IDs in the last argument register.
2466     allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2467   }
2468 
2469   if (IsKernel) {
2470     analyzeFormalArgumentsCompute(CCInfo, Ins);
2471   } else {
2472     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2473     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2474   }
2475 
2476   SmallVector<SDValue, 16> Chains;
2477 
2478   // FIXME: This is the minimum kernel argument alignment. We should improve
2479   // this to the maximum alignment of the arguments.
2480   //
2481   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2482   // kern arg offset.
2483   const Align KernelArgBaseAlign = Align(16);
2484 
2485   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2486     const ISD::InputArg &Arg = Ins[i];
2487     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2488       InVals.push_back(DAG.getUNDEF(Arg.VT));
2489       continue;
2490     }
2491 
2492     CCValAssign &VA = ArgLocs[ArgIdx++];
2493     MVT VT = VA.getLocVT();
2494 
2495     if (IsEntryFunc && VA.isMemLoc()) {
2496       VT = Ins[i].VT;
2497       EVT MemVT = VA.getLocVT();
2498 
2499       const uint64_t Offset = VA.getLocMemOffset();
2500       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2501 
2502       if (Arg.Flags.isByRef()) {
2503         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2504 
2505         const GCNTargetMachine &TM =
2506             static_cast<const GCNTargetMachine &>(getTargetMachine());
2507         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2508                                     Arg.Flags.getPointerAddrSpace())) {
2509           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2510                                      Arg.Flags.getPointerAddrSpace());
2511         }
2512 
2513         InVals.push_back(Ptr);
2514         continue;
2515       }
2516 
2517       SDValue Arg = lowerKernargMemParameter(
2518         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2519       Chains.push_back(Arg.getValue(1));
2520 
2521       auto *ParamTy =
2522         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2523       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2524           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2525                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2526         // On SI local pointers are just offsets into LDS, so they are always
2527         // less than 16-bits.  On CI and newer they could potentially be
2528         // real pointers, so we can't guarantee their size.
2529         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2530                           DAG.getValueType(MVT::i16));
2531       }
2532 
2533       InVals.push_back(Arg);
2534       continue;
2535     } else if (!IsEntryFunc && VA.isMemLoc()) {
2536       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2537       InVals.push_back(Val);
2538       if (!Arg.Flags.isByVal())
2539         Chains.push_back(Val.getValue(1));
2540       continue;
2541     }
2542 
2543     assert(VA.isRegLoc() && "Parameter must be in a register!");
2544 
2545     Register Reg = VA.getLocReg();
2546     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2547     EVT ValVT = VA.getValVT();
2548 
2549     Reg = MF.addLiveIn(Reg, RC);
2550     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2551 
2552     if (Arg.Flags.isSRet()) {
2553       // The return object should be reasonably addressable.
2554 
2555       // FIXME: This helps when the return is a real sret. If it is a
2556       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2557       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2558       unsigned NumBits
2559         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2560       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2561         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2562     }
2563 
2564     // If this is an 8 or 16-bit value, it is really passed promoted
2565     // to 32 bits. Insert an assert[sz]ext to capture this, then
2566     // truncate to the right size.
2567     switch (VA.getLocInfo()) {
2568     case CCValAssign::Full:
2569       break;
2570     case CCValAssign::BCvt:
2571       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2572       break;
2573     case CCValAssign::SExt:
2574       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2575                         DAG.getValueType(ValVT));
2576       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2577       break;
2578     case CCValAssign::ZExt:
2579       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2580                         DAG.getValueType(ValVT));
2581       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2582       break;
2583     case CCValAssign::AExt:
2584       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2585       break;
2586     default:
2587       llvm_unreachable("Unknown loc info!");
2588     }
2589 
2590     InVals.push_back(Val);
2591   }
2592 
2593   // Start adding system SGPRs.
2594   if (IsEntryFunc) {
2595     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2596   } else {
2597     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2598     if (!IsGraphics)
2599       allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2600   }
2601 
2602   auto &ArgUsageInfo =
2603     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2604   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2605 
2606   unsigned StackArgSize = CCInfo.getNextStackOffset();
2607   Info->setBytesInStackArgArea(StackArgSize);
2608 
2609   return Chains.empty() ? Chain :
2610     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2611 }
2612 
2613 // TODO: If return values can't fit in registers, we should return as many as
2614 // possible in registers before passing on stack.
2615 bool SITargetLowering::CanLowerReturn(
2616   CallingConv::ID CallConv,
2617   MachineFunction &MF, bool IsVarArg,
2618   const SmallVectorImpl<ISD::OutputArg> &Outs,
2619   LLVMContext &Context) const {
2620   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2621   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2622   // for shaders. Vector types should be explicitly handled by CC.
2623   if (AMDGPU::isEntryFunctionCC(CallConv))
2624     return true;
2625 
2626   SmallVector<CCValAssign, 16> RVLocs;
2627   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2628   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2629 }
2630 
2631 SDValue
2632 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2633                               bool isVarArg,
2634                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2635                               const SmallVectorImpl<SDValue> &OutVals,
2636                               const SDLoc &DL, SelectionDAG &DAG) const {
2637   MachineFunction &MF = DAG.getMachineFunction();
2638   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2639 
2640   if (AMDGPU::isKernel(CallConv)) {
2641     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2642                                              OutVals, DL, DAG);
2643   }
2644 
2645   bool IsShader = AMDGPU::isShader(CallConv);
2646 
2647   Info->setIfReturnsVoid(Outs.empty());
2648   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2649 
2650   // CCValAssign - represent the assignment of the return value to a location.
2651   SmallVector<CCValAssign, 48> RVLocs;
2652   SmallVector<ISD::OutputArg, 48> Splits;
2653 
2654   // CCState - Info about the registers and stack slots.
2655   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2656                  *DAG.getContext());
2657 
2658   // Analyze outgoing return values.
2659   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2660 
2661   SDValue Flag;
2662   SmallVector<SDValue, 48> RetOps;
2663   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2664 
2665   // Add return address for callable functions.
2666   if (!Info->isEntryFunction()) {
2667     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2668     SDValue ReturnAddrReg = CreateLiveInRegister(
2669       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2670 
2671     SDValue ReturnAddrVirtualReg =
2672         DAG.getRegister(MF.getRegInfo().createVirtualRegister(
2673                             CallConv != CallingConv::AMDGPU_Gfx
2674                                 ? &AMDGPU::CCR_SGPR_64RegClass
2675                                 : &AMDGPU::Gfx_CCR_SGPR_64RegClass),
2676                         MVT::i64);
2677     Chain =
2678         DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2679     Flag = Chain.getValue(1);
2680     RetOps.push_back(ReturnAddrVirtualReg);
2681   }
2682 
2683   // Copy the result values into the output registers.
2684   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2685        ++I, ++RealRVLocIdx) {
2686     CCValAssign &VA = RVLocs[I];
2687     assert(VA.isRegLoc() && "Can only return in registers!");
2688     // TODO: Partially return in registers if return values don't fit.
2689     SDValue Arg = OutVals[RealRVLocIdx];
2690 
2691     // Copied from other backends.
2692     switch (VA.getLocInfo()) {
2693     case CCValAssign::Full:
2694       break;
2695     case CCValAssign::BCvt:
2696       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2697       break;
2698     case CCValAssign::SExt:
2699       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2700       break;
2701     case CCValAssign::ZExt:
2702       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2703       break;
2704     case CCValAssign::AExt:
2705       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2706       break;
2707     default:
2708       llvm_unreachable("Unknown loc info!");
2709     }
2710 
2711     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2712     Flag = Chain.getValue(1);
2713     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2714   }
2715 
2716   // FIXME: Does sret work properly?
2717   if (!Info->isEntryFunction()) {
2718     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2719     const MCPhysReg *I =
2720       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2721     if (I) {
2722       for (; *I; ++I) {
2723         if (AMDGPU::SReg_64RegClass.contains(*I))
2724           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2725         else if (AMDGPU::SReg_32RegClass.contains(*I))
2726           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2727         else
2728           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2729       }
2730     }
2731   }
2732 
2733   // Update chain and glue.
2734   RetOps[0] = Chain;
2735   if (Flag.getNode())
2736     RetOps.push_back(Flag);
2737 
2738   unsigned Opc = AMDGPUISD::ENDPGM;
2739   if (!IsWaveEnd) {
2740     if (IsShader)
2741       Opc = AMDGPUISD::RETURN_TO_EPILOG;
2742     else if (CallConv == CallingConv::AMDGPU_Gfx)
2743       Opc = AMDGPUISD::RET_GFX_FLAG;
2744     else
2745       Opc = AMDGPUISD::RET_FLAG;
2746   }
2747 
2748   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2749 }
2750 
2751 SDValue SITargetLowering::LowerCallResult(
2752     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2753     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2754     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2755     SDValue ThisVal) const {
2756   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2757 
2758   // Assign locations to each value returned by this call.
2759   SmallVector<CCValAssign, 16> RVLocs;
2760   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2761                  *DAG.getContext());
2762   CCInfo.AnalyzeCallResult(Ins, RetCC);
2763 
2764   // Copy all of the result registers out of their specified physreg.
2765   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2766     CCValAssign VA = RVLocs[i];
2767     SDValue Val;
2768 
2769     if (VA.isRegLoc()) {
2770       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2771       Chain = Val.getValue(1);
2772       InFlag = Val.getValue(2);
2773     } else if (VA.isMemLoc()) {
2774       report_fatal_error("TODO: return values in memory");
2775     } else
2776       llvm_unreachable("unknown argument location type");
2777 
2778     switch (VA.getLocInfo()) {
2779     case CCValAssign::Full:
2780       break;
2781     case CCValAssign::BCvt:
2782       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2783       break;
2784     case CCValAssign::ZExt:
2785       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2786                         DAG.getValueType(VA.getValVT()));
2787       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2788       break;
2789     case CCValAssign::SExt:
2790       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2791                         DAG.getValueType(VA.getValVT()));
2792       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2793       break;
2794     case CCValAssign::AExt:
2795       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2796       break;
2797     default:
2798       llvm_unreachable("Unknown loc info!");
2799     }
2800 
2801     InVals.push_back(Val);
2802   }
2803 
2804   return Chain;
2805 }
2806 
2807 // Add code to pass special inputs required depending on used features separate
2808 // from the explicit user arguments present in the IR.
2809 void SITargetLowering::passSpecialInputs(
2810     CallLoweringInfo &CLI,
2811     CCState &CCInfo,
2812     const SIMachineFunctionInfo &Info,
2813     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2814     SmallVectorImpl<SDValue> &MemOpChains,
2815     SDValue Chain) const {
2816   // If we don't have a call site, this was a call inserted by
2817   // legalization. These can never use special inputs.
2818   if (!CLI.CB)
2819     return;
2820 
2821   SelectionDAG &DAG = CLI.DAG;
2822   const SDLoc &DL = CLI.DL;
2823   const Function &F = DAG.getMachineFunction().getFunction();
2824 
2825   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2826   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2827 
2828   const AMDGPUFunctionArgInfo *CalleeArgInfo
2829     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2830   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2831     auto &ArgUsageInfo =
2832       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2833     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2834   }
2835 
2836   // TODO: Unify with private memory register handling. This is complicated by
2837   // the fact that at least in kernels, the input argument is not necessarily
2838   // in the same location as the input.
2839   static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
2840                              StringLiteral> ImplicitAttrs[] = {
2841     {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"},
2842     {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" },
2843     {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"},
2844     {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"},
2845     {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"},
2846     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"},
2847     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}
2848   };
2849 
2850   for (auto Attr : ImplicitAttrs) {
2851     const ArgDescriptor *OutgoingArg;
2852     const TargetRegisterClass *ArgRC;
2853     LLT ArgTy;
2854 
2855     AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first;
2856 
2857     // If the callee does not use the attribute value, skip copying the value.
2858     if (CLI.CB->hasFnAttr(Attr.second))
2859       continue;
2860 
2861     std::tie(OutgoingArg, ArgRC, ArgTy) =
2862         CalleeArgInfo->getPreloadedValue(InputID);
2863     if (!OutgoingArg)
2864       continue;
2865 
2866     const ArgDescriptor *IncomingArg;
2867     const TargetRegisterClass *IncomingArgRC;
2868     LLT Ty;
2869     std::tie(IncomingArg, IncomingArgRC, Ty) =
2870         CallerArgInfo.getPreloadedValue(InputID);
2871     assert(IncomingArgRC == ArgRC);
2872 
2873     // All special arguments are ints for now.
2874     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2875     SDValue InputReg;
2876 
2877     if (IncomingArg) {
2878       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2879     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
2880       // The implicit arg ptr is special because it doesn't have a corresponding
2881       // input for kernels, and is computed from the kernarg segment pointer.
2882       InputReg = getImplicitArgPtr(DAG, DL);
2883     } else {
2884       // We may have proven the input wasn't needed, although the ABI is
2885       // requiring it. We just need to allocate the register appropriately.
2886       InputReg = DAG.getUNDEF(ArgVT);
2887     }
2888 
2889     if (OutgoingArg->isRegister()) {
2890       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2891       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2892         report_fatal_error("failed to allocate implicit input argument");
2893     } else {
2894       unsigned SpecialArgOffset =
2895           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2896       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2897                                               SpecialArgOffset);
2898       MemOpChains.push_back(ArgStore);
2899     }
2900   }
2901 
2902   // Pack workitem IDs into a single register or pass it as is if already
2903   // packed.
2904   const ArgDescriptor *OutgoingArg;
2905   const TargetRegisterClass *ArgRC;
2906   LLT Ty;
2907 
2908   std::tie(OutgoingArg, ArgRC, Ty) =
2909       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2910   if (!OutgoingArg)
2911     std::tie(OutgoingArg, ArgRC, Ty) =
2912         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2913   if (!OutgoingArg)
2914     std::tie(OutgoingArg, ArgRC, Ty) =
2915         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2916   if (!OutgoingArg)
2917     return;
2918 
2919   const ArgDescriptor *IncomingArgX = std::get<0>(
2920       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2921   const ArgDescriptor *IncomingArgY = std::get<0>(
2922       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2923   const ArgDescriptor *IncomingArgZ = std::get<0>(
2924       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2925 
2926   SDValue InputReg;
2927   SDLoc SL;
2928 
2929   const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
2930   const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
2931   const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
2932 
2933   // If incoming ids are not packed we need to pack them.
2934   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
2935       NeedWorkItemIDX) {
2936     if (Subtarget->getMaxWorkitemID(F, 0) != 0) {
2937       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2938     } else {
2939       InputReg = DAG.getConstant(0, DL, MVT::i32);
2940     }
2941   }
2942 
2943   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
2944       NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) {
2945     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2946     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2947                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2948     InputReg = InputReg.getNode() ?
2949                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2950   }
2951 
2952   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
2953       NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) {
2954     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2955     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2956                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2957     InputReg = InputReg.getNode() ?
2958                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2959   }
2960 
2961   if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
2962     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
2963       // We're in a situation where the outgoing function requires the workitem
2964       // ID, but the calling function does not have it (e.g a graphics function
2965       // calling a C calling convention function). This is illegal, but we need
2966       // to produce something.
2967       InputReg = DAG.getUNDEF(MVT::i32);
2968     } else {
2969       // Workitem ids are already packed, any of present incoming arguments
2970       // will carry all required fields.
2971       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2972         IncomingArgX ? *IncomingArgX :
2973         IncomingArgY ? *IncomingArgY :
2974         *IncomingArgZ, ~0u);
2975       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2976     }
2977   }
2978 
2979   if (OutgoingArg->isRegister()) {
2980     if (InputReg)
2981       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2982 
2983     CCInfo.AllocateReg(OutgoingArg->getRegister());
2984   } else {
2985     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2986     if (InputReg) {
2987       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2988                                               SpecialArgOffset);
2989       MemOpChains.push_back(ArgStore);
2990     }
2991   }
2992 }
2993 
2994 static bool canGuaranteeTCO(CallingConv::ID CC) {
2995   return CC == CallingConv::Fast;
2996 }
2997 
2998 /// Return true if we might ever do TCO for calls with this calling convention.
2999 static bool mayTailCallThisCC(CallingConv::ID CC) {
3000   switch (CC) {
3001   case CallingConv::C:
3002   case CallingConv::AMDGPU_Gfx:
3003     return true;
3004   default:
3005     return canGuaranteeTCO(CC);
3006   }
3007 }
3008 
3009 bool SITargetLowering::isEligibleForTailCallOptimization(
3010     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
3011     const SmallVectorImpl<ISD::OutputArg> &Outs,
3012     const SmallVectorImpl<SDValue> &OutVals,
3013     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3014   if (!mayTailCallThisCC(CalleeCC))
3015     return false;
3016 
3017   // For a divergent call target, we need to do a waterfall loop over the
3018   // possible callees which precludes us from using a simple jump.
3019   if (Callee->isDivergent())
3020     return false;
3021 
3022   MachineFunction &MF = DAG.getMachineFunction();
3023   const Function &CallerF = MF.getFunction();
3024   CallingConv::ID CallerCC = CallerF.getCallingConv();
3025   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3026   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3027 
3028   // Kernels aren't callable, and don't have a live in return address so it
3029   // doesn't make sense to do a tail call with entry functions.
3030   if (!CallerPreserved)
3031     return false;
3032 
3033   bool CCMatch = CallerCC == CalleeCC;
3034 
3035   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
3036     if (canGuaranteeTCO(CalleeCC) && CCMatch)
3037       return true;
3038     return false;
3039   }
3040 
3041   // TODO: Can we handle var args?
3042   if (IsVarArg)
3043     return false;
3044 
3045   for (const Argument &Arg : CallerF.args()) {
3046     if (Arg.hasByValAttr())
3047       return false;
3048   }
3049 
3050   LLVMContext &Ctx = *DAG.getContext();
3051 
3052   // Check that the call results are passed in the same way.
3053   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
3054                                   CCAssignFnForCall(CalleeCC, IsVarArg),
3055                                   CCAssignFnForCall(CallerCC, IsVarArg)))
3056     return false;
3057 
3058   // The callee has to preserve all registers the caller needs to preserve.
3059   if (!CCMatch) {
3060     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3061     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3062       return false;
3063   }
3064 
3065   // Nothing more to check if the callee is taking no arguments.
3066   if (Outs.empty())
3067     return true;
3068 
3069   SmallVector<CCValAssign, 16> ArgLocs;
3070   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
3071 
3072   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
3073 
3074   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
3075   // If the stack arguments for this call do not fit into our own save area then
3076   // the call cannot be made tail.
3077   // TODO: Is this really necessary?
3078   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3079     return false;
3080 
3081   const MachineRegisterInfo &MRI = MF.getRegInfo();
3082   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
3083 }
3084 
3085 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3086   if (!CI->isTailCall())
3087     return false;
3088 
3089   const Function *ParentFn = CI->getParent()->getParent();
3090   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
3091     return false;
3092   return true;
3093 }
3094 
3095 // The wave scratch offset register is used as the global base pointer.
3096 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
3097                                     SmallVectorImpl<SDValue> &InVals) const {
3098   SelectionDAG &DAG = CLI.DAG;
3099   const SDLoc &DL = CLI.DL;
3100   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3101   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3102   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3103   SDValue Chain = CLI.Chain;
3104   SDValue Callee = CLI.Callee;
3105   bool &IsTailCall = CLI.IsTailCall;
3106   CallingConv::ID CallConv = CLI.CallConv;
3107   bool IsVarArg = CLI.IsVarArg;
3108   bool IsSibCall = false;
3109   bool IsThisReturn = false;
3110   MachineFunction &MF = DAG.getMachineFunction();
3111 
3112   if (Callee.isUndef() || isNullConstant(Callee)) {
3113     if (!CLI.IsTailCall) {
3114       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
3115         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
3116     }
3117 
3118     return Chain;
3119   }
3120 
3121   if (IsVarArg) {
3122     return lowerUnhandledCall(CLI, InVals,
3123                               "unsupported call to variadic function ");
3124   }
3125 
3126   if (!CLI.CB)
3127     report_fatal_error("unsupported libcall legalization");
3128 
3129   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3130     return lowerUnhandledCall(CLI, InVals,
3131                               "unsupported required tail call to function ");
3132   }
3133 
3134   if (AMDGPU::isShader(CallConv)) {
3135     // Note the issue is with the CC of the called function, not of the call
3136     // itself.
3137     return lowerUnhandledCall(CLI, InVals,
3138                               "unsupported call to a shader function ");
3139   }
3140 
3141   if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
3142       CallConv != CallingConv::AMDGPU_Gfx) {
3143     // Only allow calls with specific calling conventions.
3144     return lowerUnhandledCall(CLI, InVals,
3145                               "unsupported calling convention for call from "
3146                               "graphics shader of function ");
3147   }
3148 
3149   if (IsTailCall) {
3150     IsTailCall = isEligibleForTailCallOptimization(
3151       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3152     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
3153       report_fatal_error("failed to perform tail call elimination on a call "
3154                          "site marked musttail");
3155     }
3156 
3157     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3158 
3159     // A sibling call is one where we're under the usual C ABI and not planning
3160     // to change that but can still do a tail call:
3161     if (!TailCallOpt && IsTailCall)
3162       IsSibCall = true;
3163 
3164     if (IsTailCall)
3165       ++NumTailCalls;
3166   }
3167 
3168   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3169   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3170   SmallVector<SDValue, 8> MemOpChains;
3171 
3172   // Analyze operands of the call, assigning locations to each operand.
3173   SmallVector<CCValAssign, 16> ArgLocs;
3174   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3175   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3176 
3177   if (CallConv != CallingConv::AMDGPU_Gfx) {
3178     // With a fixed ABI, allocate fixed registers before user arguments.
3179     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3180   }
3181 
3182   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3183 
3184   // Get a count of how many bytes are to be pushed on the stack.
3185   unsigned NumBytes = CCInfo.getNextStackOffset();
3186 
3187   if (IsSibCall) {
3188     // Since we're not changing the ABI to make this a tail call, the memory
3189     // operands are already available in the caller's incoming argument space.
3190     NumBytes = 0;
3191   }
3192 
3193   // FPDiff is the byte offset of the call's argument area from the callee's.
3194   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3195   // by this amount for a tail call. In a sibling call it must be 0 because the
3196   // caller will deallocate the entire stack and the callee still expects its
3197   // arguments to begin at SP+0. Completely unused for non-tail calls.
3198   int32_t FPDiff = 0;
3199   MachineFrameInfo &MFI = MF.getFrameInfo();
3200 
3201   // Adjust the stack pointer for the new arguments...
3202   // These operations are automatically eliminated by the prolog/epilog pass
3203   if (!IsSibCall) {
3204     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3205 
3206     if (!Subtarget->enableFlatScratch()) {
3207       SmallVector<SDValue, 4> CopyFromChains;
3208 
3209       // In the HSA case, this should be an identity copy.
3210       SDValue ScratchRSrcReg
3211         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3212       RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3213       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3214       Chain = DAG.getTokenFactor(DL, CopyFromChains);
3215     }
3216   }
3217 
3218   MVT PtrVT = MVT::i32;
3219 
3220   // Walk the register/memloc assignments, inserting copies/loads.
3221   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3222     CCValAssign &VA = ArgLocs[i];
3223     SDValue Arg = OutVals[i];
3224 
3225     // Promote the value if needed.
3226     switch (VA.getLocInfo()) {
3227     case CCValAssign::Full:
3228       break;
3229     case CCValAssign::BCvt:
3230       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3231       break;
3232     case CCValAssign::ZExt:
3233       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3234       break;
3235     case CCValAssign::SExt:
3236       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3237       break;
3238     case CCValAssign::AExt:
3239       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3240       break;
3241     case CCValAssign::FPExt:
3242       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3243       break;
3244     default:
3245       llvm_unreachable("Unknown loc info!");
3246     }
3247 
3248     if (VA.isRegLoc()) {
3249       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3250     } else {
3251       assert(VA.isMemLoc());
3252 
3253       SDValue DstAddr;
3254       MachinePointerInfo DstInfo;
3255 
3256       unsigned LocMemOffset = VA.getLocMemOffset();
3257       int32_t Offset = LocMemOffset;
3258 
3259       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3260       MaybeAlign Alignment;
3261 
3262       if (IsTailCall) {
3263         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3264         unsigned OpSize = Flags.isByVal() ?
3265           Flags.getByValSize() : VA.getValVT().getStoreSize();
3266 
3267         // FIXME: We can have better than the minimum byval required alignment.
3268         Alignment =
3269             Flags.isByVal()
3270                 ? Flags.getNonZeroByValAlign()
3271                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3272 
3273         Offset = Offset + FPDiff;
3274         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3275 
3276         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3277         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3278 
3279         // Make sure any stack arguments overlapping with where we're storing
3280         // are loaded before this eventual operation. Otherwise they'll be
3281         // clobbered.
3282 
3283         // FIXME: Why is this really necessary? This seems to just result in a
3284         // lot of code to copy the stack and write them back to the same
3285         // locations, which are supposed to be immutable?
3286         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3287       } else {
3288         // Stores to the argument stack area are relative to the stack pointer.
3289         SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3290                                         MVT::i32);
3291         DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3292         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3293         Alignment =
3294             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3295       }
3296 
3297       if (Outs[i].Flags.isByVal()) {
3298         SDValue SizeNode =
3299             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3300         SDValue Cpy =
3301             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3302                           Outs[i].Flags.getNonZeroByValAlign(),
3303                           /*isVol = */ false, /*AlwaysInline = */ true,
3304                           /*isTailCall = */ false, DstInfo,
3305                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3306 
3307         MemOpChains.push_back(Cpy);
3308       } else {
3309         SDValue Store =
3310             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3311         MemOpChains.push_back(Store);
3312       }
3313     }
3314   }
3315 
3316   if (!MemOpChains.empty())
3317     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3318 
3319   // Build a sequence of copy-to-reg nodes chained together with token chain
3320   // and flag operands which copy the outgoing args into the appropriate regs.
3321   SDValue InFlag;
3322   for (auto &RegToPass : RegsToPass) {
3323     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3324                              RegToPass.second, InFlag);
3325     InFlag = Chain.getValue(1);
3326   }
3327 
3328 
3329   SDValue PhysReturnAddrReg;
3330   if (IsTailCall) {
3331     // Since the return is being combined with the call, we need to pass on the
3332     // return address.
3333 
3334     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3335     SDValue ReturnAddrReg = CreateLiveInRegister(
3336       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3337 
3338     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3339                                         MVT::i64);
3340     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3341     InFlag = Chain.getValue(1);
3342   }
3343 
3344   // We don't usually want to end the call-sequence here because we would tidy
3345   // the frame up *after* the call, however in the ABI-changing tail-call case
3346   // we've carefully laid out the parameters so that when sp is reset they'll be
3347   // in the correct location.
3348   if (IsTailCall && !IsSibCall) {
3349     Chain = DAG.getCALLSEQ_END(Chain,
3350                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3351                                DAG.getTargetConstant(0, DL, MVT::i32),
3352                                InFlag, DL);
3353     InFlag = Chain.getValue(1);
3354   }
3355 
3356   std::vector<SDValue> Ops;
3357   Ops.push_back(Chain);
3358   Ops.push_back(Callee);
3359   // Add a redundant copy of the callee global which will not be legalized, as
3360   // we need direct access to the callee later.
3361   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3362     const GlobalValue *GV = GSD->getGlobal();
3363     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3364   } else {
3365     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3366   }
3367 
3368   if (IsTailCall) {
3369     // Each tail call may have to adjust the stack by a different amount, so
3370     // this information must travel along with the operation for eventual
3371     // consumption by emitEpilogue.
3372     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3373 
3374     Ops.push_back(PhysReturnAddrReg);
3375   }
3376 
3377   // Add argument registers to the end of the list so that they are known live
3378   // into the call.
3379   for (auto &RegToPass : RegsToPass) {
3380     Ops.push_back(DAG.getRegister(RegToPass.first,
3381                                   RegToPass.second.getValueType()));
3382   }
3383 
3384   // Add a register mask operand representing the call-preserved registers.
3385 
3386   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3387   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3388   assert(Mask && "Missing call preserved mask for calling convention");
3389   Ops.push_back(DAG.getRegisterMask(Mask));
3390 
3391   if (InFlag.getNode())
3392     Ops.push_back(InFlag);
3393 
3394   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3395 
3396   // If we're doing a tall call, use a TC_RETURN here rather than an
3397   // actual call instruction.
3398   if (IsTailCall) {
3399     MFI.setHasTailCall();
3400     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3401   }
3402 
3403   // Returns a chain and a flag for retval copy to use.
3404   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3405   Chain = Call.getValue(0);
3406   InFlag = Call.getValue(1);
3407 
3408   uint64_t CalleePopBytes = NumBytes;
3409   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3410                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3411                              InFlag, DL);
3412   if (!Ins.empty())
3413     InFlag = Chain.getValue(1);
3414 
3415   // Handle result values, copying them out of physregs into vregs that we
3416   // return.
3417   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3418                          InVals, IsThisReturn,
3419                          IsThisReturn ? OutVals[0] : SDValue());
3420 }
3421 
3422 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3423 // except for applying the wave size scale to the increment amount.
3424 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3425     SDValue Op, SelectionDAG &DAG) const {
3426   const MachineFunction &MF = DAG.getMachineFunction();
3427   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3428 
3429   SDLoc dl(Op);
3430   EVT VT = Op.getValueType();
3431   SDValue Tmp1 = Op;
3432   SDValue Tmp2 = Op.getValue(1);
3433   SDValue Tmp3 = Op.getOperand(2);
3434   SDValue Chain = Tmp1.getOperand(0);
3435 
3436   Register SPReg = Info->getStackPtrOffsetReg();
3437 
3438   // Chain the dynamic stack allocation so that it doesn't modify the stack
3439   // pointer when other instructions are using the stack.
3440   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3441 
3442   SDValue Size  = Tmp2.getOperand(1);
3443   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3444   Chain = SP.getValue(1);
3445   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3446   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3447   const TargetFrameLowering *TFL = ST.getFrameLowering();
3448   unsigned Opc =
3449     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3450     ISD::ADD : ISD::SUB;
3451 
3452   SDValue ScaledSize = DAG.getNode(
3453       ISD::SHL, dl, VT, Size,
3454       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3455 
3456   Align StackAlign = TFL->getStackAlign();
3457   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3458   if (Alignment && *Alignment > StackAlign) {
3459     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3460                        DAG.getConstant(-(uint64_t)Alignment->value()
3461                                            << ST.getWavefrontSizeLog2(),
3462                                        dl, VT));
3463   }
3464 
3465   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3466   Tmp2 = DAG.getCALLSEQ_END(
3467       Chain, DAG.getIntPtrConstant(0, dl, true),
3468       DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3469 
3470   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3471 }
3472 
3473 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3474                                                   SelectionDAG &DAG) const {
3475   // We only handle constant sizes here to allow non-entry block, static sized
3476   // allocas. A truly dynamic value is more difficult to support because we
3477   // don't know if the size value is uniform or not. If the size isn't uniform,
3478   // we would need to do a wave reduction to get the maximum size to know how
3479   // much to increment the uniform stack pointer.
3480   SDValue Size = Op.getOperand(1);
3481   if (isa<ConstantSDNode>(Size))
3482       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3483 
3484   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3485 }
3486 
3487 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3488                                              const MachineFunction &MF) const {
3489   Register Reg = StringSwitch<Register>(RegName)
3490     .Case("m0", AMDGPU::M0)
3491     .Case("exec", AMDGPU::EXEC)
3492     .Case("exec_lo", AMDGPU::EXEC_LO)
3493     .Case("exec_hi", AMDGPU::EXEC_HI)
3494     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3495     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3496     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3497     .Default(Register());
3498 
3499   if (Reg == AMDGPU::NoRegister) {
3500     report_fatal_error(Twine("invalid register name \""
3501                              + StringRef(RegName)  + "\"."));
3502 
3503   }
3504 
3505   if (!Subtarget->hasFlatScrRegister() &&
3506        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3507     report_fatal_error(Twine("invalid register \""
3508                              + StringRef(RegName)  + "\" for subtarget."));
3509   }
3510 
3511   switch (Reg) {
3512   case AMDGPU::M0:
3513   case AMDGPU::EXEC_LO:
3514   case AMDGPU::EXEC_HI:
3515   case AMDGPU::FLAT_SCR_LO:
3516   case AMDGPU::FLAT_SCR_HI:
3517     if (VT.getSizeInBits() == 32)
3518       return Reg;
3519     break;
3520   case AMDGPU::EXEC:
3521   case AMDGPU::FLAT_SCR:
3522     if (VT.getSizeInBits() == 64)
3523       return Reg;
3524     break;
3525   default:
3526     llvm_unreachable("missing register type checking");
3527   }
3528 
3529   report_fatal_error(Twine("invalid type for register \""
3530                            + StringRef(RegName) + "\"."));
3531 }
3532 
3533 // If kill is not the last instruction, split the block so kill is always a
3534 // proper terminator.
3535 MachineBasicBlock *
3536 SITargetLowering::splitKillBlock(MachineInstr &MI,
3537                                  MachineBasicBlock *BB) const {
3538   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3539   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3540   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3541   return SplitBB;
3542 }
3543 
3544 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3545 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3546 // be the first instruction in the remainder block.
3547 //
3548 /// \returns { LoopBody, Remainder }
3549 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3550 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3551   MachineFunction *MF = MBB.getParent();
3552   MachineBasicBlock::iterator I(&MI);
3553 
3554   // To insert the loop we need to split the block. Move everything after this
3555   // point to a new block, and insert a new empty block between the two.
3556   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3557   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3558   MachineFunction::iterator MBBI(MBB);
3559   ++MBBI;
3560 
3561   MF->insert(MBBI, LoopBB);
3562   MF->insert(MBBI, RemainderBB);
3563 
3564   LoopBB->addSuccessor(LoopBB);
3565   LoopBB->addSuccessor(RemainderBB);
3566 
3567   // Move the rest of the block into a new block.
3568   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3569 
3570   if (InstInLoop) {
3571     auto Next = std::next(I);
3572 
3573     // Move instruction to loop body.
3574     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3575 
3576     // Move the rest of the block.
3577     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3578   } else {
3579     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3580   }
3581 
3582   MBB.addSuccessor(LoopBB);
3583 
3584   return std::make_pair(LoopBB, RemainderBB);
3585 }
3586 
3587 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3588 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3589   MachineBasicBlock *MBB = MI.getParent();
3590   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3591   auto I = MI.getIterator();
3592   auto E = std::next(I);
3593 
3594   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3595     .addImm(0);
3596 
3597   MIBundleBuilder Bundler(*MBB, I, E);
3598   finalizeBundle(*MBB, Bundler.begin());
3599 }
3600 
3601 MachineBasicBlock *
3602 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3603                                          MachineBasicBlock *BB) const {
3604   const DebugLoc &DL = MI.getDebugLoc();
3605 
3606   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3607 
3608   MachineBasicBlock *LoopBB;
3609   MachineBasicBlock *RemainderBB;
3610   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3611 
3612   // Apparently kill flags are only valid if the def is in the same block?
3613   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3614     Src->setIsKill(false);
3615 
3616   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3617 
3618   MachineBasicBlock::iterator I = LoopBB->end();
3619 
3620   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3621     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3622 
3623   // Clear TRAP_STS.MEM_VIOL
3624   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3625     .addImm(0)
3626     .addImm(EncodedReg);
3627 
3628   bundleInstWithWaitcnt(MI);
3629 
3630   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3631 
3632   // Load and check TRAP_STS.MEM_VIOL
3633   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3634     .addImm(EncodedReg);
3635 
3636   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3637   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3638     .addReg(Reg, RegState::Kill)
3639     .addImm(0);
3640   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3641     .addMBB(LoopBB);
3642 
3643   return RemainderBB;
3644 }
3645 
3646 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3647 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3648 // will only do one iteration. In the worst case, this will loop 64 times.
3649 //
3650 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3651 static MachineBasicBlock::iterator
3652 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3653                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3654                        const DebugLoc &DL, const MachineOperand &Idx,
3655                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3656                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3657                        Register &SGPRIdxReg) {
3658 
3659   MachineFunction *MF = OrigBB.getParent();
3660   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3661   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3662   MachineBasicBlock::iterator I = LoopBB.begin();
3663 
3664   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3665   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3666   Register NewExec = MRI.createVirtualRegister(BoolRC);
3667   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3668   Register CondReg = MRI.createVirtualRegister(BoolRC);
3669 
3670   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3671     .addReg(InitReg)
3672     .addMBB(&OrigBB)
3673     .addReg(ResultReg)
3674     .addMBB(&LoopBB);
3675 
3676   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3677     .addReg(InitSaveExecReg)
3678     .addMBB(&OrigBB)
3679     .addReg(NewExec)
3680     .addMBB(&LoopBB);
3681 
3682   // Read the next variant <- also loop target.
3683   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3684       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3685 
3686   // Compare the just read M0 value to all possible Idx values.
3687   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3688       .addReg(CurrentIdxReg)
3689       .addReg(Idx.getReg(), 0, Idx.getSubReg());
3690 
3691   // Update EXEC, save the original EXEC value to VCC.
3692   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3693                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3694           NewExec)
3695     .addReg(CondReg, RegState::Kill);
3696 
3697   MRI.setSimpleHint(NewExec, CondReg);
3698 
3699   if (UseGPRIdxMode) {
3700     if (Offset == 0) {
3701       SGPRIdxReg = CurrentIdxReg;
3702     } else {
3703       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3704       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3705           .addReg(CurrentIdxReg, RegState::Kill)
3706           .addImm(Offset);
3707     }
3708   } else {
3709     // Move index from VCC into M0
3710     if (Offset == 0) {
3711       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3712         .addReg(CurrentIdxReg, RegState::Kill);
3713     } else {
3714       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3715         .addReg(CurrentIdxReg, RegState::Kill)
3716         .addImm(Offset);
3717     }
3718   }
3719 
3720   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3721   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3722   MachineInstr *InsertPt =
3723     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3724                                                   : AMDGPU::S_XOR_B64_term), Exec)
3725       .addReg(Exec)
3726       .addReg(NewExec);
3727 
3728   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3729   // s_cbranch_scc0?
3730 
3731   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3732   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3733     .addMBB(&LoopBB);
3734 
3735   return InsertPt->getIterator();
3736 }
3737 
3738 // This has slightly sub-optimal regalloc when the source vector is killed by
3739 // the read. The register allocator does not understand that the kill is
3740 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3741 // subregister from it, using 1 more VGPR than necessary. This was saved when
3742 // this was expanded after register allocation.
3743 static MachineBasicBlock::iterator
3744 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3745                unsigned InitResultReg, unsigned PhiReg, int Offset,
3746                bool UseGPRIdxMode, Register &SGPRIdxReg) {
3747   MachineFunction *MF = MBB.getParent();
3748   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3749   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3750   MachineRegisterInfo &MRI = MF->getRegInfo();
3751   const DebugLoc &DL = MI.getDebugLoc();
3752   MachineBasicBlock::iterator I(&MI);
3753 
3754   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3755   Register DstReg = MI.getOperand(0).getReg();
3756   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3757   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3758   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3759   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3760 
3761   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3762 
3763   // Save the EXEC mask
3764   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3765     .addReg(Exec);
3766 
3767   MachineBasicBlock *LoopBB;
3768   MachineBasicBlock *RemainderBB;
3769   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3770 
3771   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3772 
3773   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3774                                       InitResultReg, DstReg, PhiReg, TmpExec,
3775                                       Offset, UseGPRIdxMode, SGPRIdxReg);
3776 
3777   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3778   MachineFunction::iterator MBBI(LoopBB);
3779   ++MBBI;
3780   MF->insert(MBBI, LandingPad);
3781   LoopBB->removeSuccessor(RemainderBB);
3782   LandingPad->addSuccessor(RemainderBB);
3783   LoopBB->addSuccessor(LandingPad);
3784   MachineBasicBlock::iterator First = LandingPad->begin();
3785   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3786     .addReg(SaveExec);
3787 
3788   return InsPt;
3789 }
3790 
3791 // Returns subreg index, offset
3792 static std::pair<unsigned, int>
3793 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3794                             const TargetRegisterClass *SuperRC,
3795                             unsigned VecReg,
3796                             int Offset) {
3797   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3798 
3799   // Skip out of bounds offsets, or else we would end up using an undefined
3800   // register.
3801   if (Offset >= NumElts || Offset < 0)
3802     return std::make_pair(AMDGPU::sub0, Offset);
3803 
3804   return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3805 }
3806 
3807 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3808                                  MachineRegisterInfo &MRI, MachineInstr &MI,
3809                                  int Offset) {
3810   MachineBasicBlock *MBB = MI.getParent();
3811   const DebugLoc &DL = MI.getDebugLoc();
3812   MachineBasicBlock::iterator I(&MI);
3813 
3814   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3815 
3816   assert(Idx->getReg() != AMDGPU::NoRegister);
3817 
3818   if (Offset == 0) {
3819     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3820   } else {
3821     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3822         .add(*Idx)
3823         .addImm(Offset);
3824   }
3825 }
3826 
3827 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3828                                    MachineRegisterInfo &MRI, MachineInstr &MI,
3829                                    int Offset) {
3830   MachineBasicBlock *MBB = MI.getParent();
3831   const DebugLoc &DL = MI.getDebugLoc();
3832   MachineBasicBlock::iterator I(&MI);
3833 
3834   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3835 
3836   if (Offset == 0)
3837     return Idx->getReg();
3838 
3839   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3840   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3841       .add(*Idx)
3842       .addImm(Offset);
3843   return Tmp;
3844 }
3845 
3846 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3847                                           MachineBasicBlock &MBB,
3848                                           const GCNSubtarget &ST) {
3849   const SIInstrInfo *TII = ST.getInstrInfo();
3850   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3851   MachineFunction *MF = MBB.getParent();
3852   MachineRegisterInfo &MRI = MF->getRegInfo();
3853 
3854   Register Dst = MI.getOperand(0).getReg();
3855   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3856   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3857   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3858 
3859   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3860   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3861 
3862   unsigned SubReg;
3863   std::tie(SubReg, Offset)
3864     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3865 
3866   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3867 
3868   // Check for a SGPR index.
3869   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3870     MachineBasicBlock::iterator I(&MI);
3871     const DebugLoc &DL = MI.getDebugLoc();
3872 
3873     if (UseGPRIdxMode) {
3874       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3875       // to avoid interfering with other uses, so probably requires a new
3876       // optimization pass.
3877       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3878 
3879       const MCInstrDesc &GPRIDXDesc =
3880           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3881       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3882           .addReg(SrcReg)
3883           .addReg(Idx)
3884           .addImm(SubReg);
3885     } else {
3886       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3887 
3888       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3889         .addReg(SrcReg, 0, SubReg)
3890         .addReg(SrcReg, RegState::Implicit);
3891     }
3892 
3893     MI.eraseFromParent();
3894 
3895     return &MBB;
3896   }
3897 
3898   // Control flow needs to be inserted if indexing with a VGPR.
3899   const DebugLoc &DL = MI.getDebugLoc();
3900   MachineBasicBlock::iterator I(&MI);
3901 
3902   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3903   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3904 
3905   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3906 
3907   Register SGPRIdxReg;
3908   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3909                               UseGPRIdxMode, SGPRIdxReg);
3910 
3911   MachineBasicBlock *LoopBB = InsPt->getParent();
3912 
3913   if (UseGPRIdxMode) {
3914     const MCInstrDesc &GPRIDXDesc =
3915         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3916 
3917     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3918         .addReg(SrcReg)
3919         .addReg(SGPRIdxReg)
3920         .addImm(SubReg);
3921   } else {
3922     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3923       .addReg(SrcReg, 0, SubReg)
3924       .addReg(SrcReg, RegState::Implicit);
3925   }
3926 
3927   MI.eraseFromParent();
3928 
3929   return LoopBB;
3930 }
3931 
3932 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3933                                           MachineBasicBlock &MBB,
3934                                           const GCNSubtarget &ST) {
3935   const SIInstrInfo *TII = ST.getInstrInfo();
3936   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3937   MachineFunction *MF = MBB.getParent();
3938   MachineRegisterInfo &MRI = MF->getRegInfo();
3939 
3940   Register Dst = MI.getOperand(0).getReg();
3941   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3942   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3943   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3944   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3945   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3946   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3947 
3948   // This can be an immediate, but will be folded later.
3949   assert(Val->getReg());
3950 
3951   unsigned SubReg;
3952   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3953                                                          SrcVec->getReg(),
3954                                                          Offset);
3955   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3956 
3957   if (Idx->getReg() == AMDGPU::NoRegister) {
3958     MachineBasicBlock::iterator I(&MI);
3959     const DebugLoc &DL = MI.getDebugLoc();
3960 
3961     assert(Offset == 0);
3962 
3963     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3964         .add(*SrcVec)
3965         .add(*Val)
3966         .addImm(SubReg);
3967 
3968     MI.eraseFromParent();
3969     return &MBB;
3970   }
3971 
3972   // Check for a SGPR index.
3973   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3974     MachineBasicBlock::iterator I(&MI);
3975     const DebugLoc &DL = MI.getDebugLoc();
3976 
3977     if (UseGPRIdxMode) {
3978       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3979 
3980       const MCInstrDesc &GPRIDXDesc =
3981           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3982       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3983           .addReg(SrcVec->getReg())
3984           .add(*Val)
3985           .addReg(Idx)
3986           .addImm(SubReg);
3987     } else {
3988       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3989 
3990       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3991           TRI.getRegSizeInBits(*VecRC), 32, false);
3992       BuildMI(MBB, I, DL, MovRelDesc, Dst)
3993           .addReg(SrcVec->getReg())
3994           .add(*Val)
3995           .addImm(SubReg);
3996     }
3997     MI.eraseFromParent();
3998     return &MBB;
3999   }
4000 
4001   // Control flow needs to be inserted if indexing with a VGPR.
4002   if (Val->isReg())
4003     MRI.clearKillFlags(Val->getReg());
4004 
4005   const DebugLoc &DL = MI.getDebugLoc();
4006 
4007   Register PhiReg = MRI.createVirtualRegister(VecRC);
4008 
4009   Register SGPRIdxReg;
4010   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
4011                               UseGPRIdxMode, SGPRIdxReg);
4012   MachineBasicBlock *LoopBB = InsPt->getParent();
4013 
4014   if (UseGPRIdxMode) {
4015     const MCInstrDesc &GPRIDXDesc =
4016         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
4017 
4018     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
4019         .addReg(PhiReg)
4020         .add(*Val)
4021         .addReg(SGPRIdxReg)
4022         .addImm(AMDGPU::sub0);
4023   } else {
4024     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
4025         TRI.getRegSizeInBits(*VecRC), 32, false);
4026     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
4027         .addReg(PhiReg)
4028         .add(*Val)
4029         .addImm(AMDGPU::sub0);
4030   }
4031 
4032   MI.eraseFromParent();
4033   return LoopBB;
4034 }
4035 
4036 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
4037   MachineInstr &MI, MachineBasicBlock *BB) const {
4038 
4039   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4040   MachineFunction *MF = BB->getParent();
4041   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
4042 
4043   switch (MI.getOpcode()) {
4044   case AMDGPU::S_UADDO_PSEUDO:
4045   case AMDGPU::S_USUBO_PSEUDO: {
4046     const DebugLoc &DL = MI.getDebugLoc();
4047     MachineOperand &Dest0 = MI.getOperand(0);
4048     MachineOperand &Dest1 = MI.getOperand(1);
4049     MachineOperand &Src0 = MI.getOperand(2);
4050     MachineOperand &Src1 = MI.getOperand(3);
4051 
4052     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
4053                        ? AMDGPU::S_ADD_I32
4054                        : AMDGPU::S_SUB_I32;
4055     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
4056 
4057     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
4058         .addImm(1)
4059         .addImm(0);
4060 
4061     MI.eraseFromParent();
4062     return BB;
4063   }
4064   case AMDGPU::S_ADD_U64_PSEUDO:
4065   case AMDGPU::S_SUB_U64_PSEUDO: {
4066     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4067     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4068     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4069     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
4070     const DebugLoc &DL = MI.getDebugLoc();
4071 
4072     MachineOperand &Dest = MI.getOperand(0);
4073     MachineOperand &Src0 = MI.getOperand(1);
4074     MachineOperand &Src1 = MI.getOperand(2);
4075 
4076     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4077     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4078 
4079     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
4080         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4081     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
4082         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4083 
4084     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
4085         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4086     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
4087         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4088 
4089     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
4090 
4091     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
4092     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
4093     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
4094     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
4095     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4096         .addReg(DestSub0)
4097         .addImm(AMDGPU::sub0)
4098         .addReg(DestSub1)
4099         .addImm(AMDGPU::sub1);
4100     MI.eraseFromParent();
4101     return BB;
4102   }
4103   case AMDGPU::V_ADD_U64_PSEUDO:
4104   case AMDGPU::V_SUB_U64_PSEUDO: {
4105     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4106     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4107     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4108     const DebugLoc &DL = MI.getDebugLoc();
4109 
4110     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
4111 
4112     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4113 
4114     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4115     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4116 
4117     Register CarryReg = MRI.createVirtualRegister(CarryRC);
4118     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4119 
4120     MachineOperand &Dest = MI.getOperand(0);
4121     MachineOperand &Src0 = MI.getOperand(1);
4122     MachineOperand &Src1 = MI.getOperand(2);
4123 
4124     const TargetRegisterClass *Src0RC = Src0.isReg()
4125                                             ? MRI.getRegClass(Src0.getReg())
4126                                             : &AMDGPU::VReg_64RegClass;
4127     const TargetRegisterClass *Src1RC = Src1.isReg()
4128                                             ? MRI.getRegClass(Src1.getReg())
4129                                             : &AMDGPU::VReg_64RegClass;
4130 
4131     const TargetRegisterClass *Src0SubRC =
4132         TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
4133     const TargetRegisterClass *Src1SubRC =
4134         TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
4135 
4136     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4137         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4138     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4139         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4140 
4141     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4142         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4143     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4144         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4145 
4146     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4147     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4148                                .addReg(CarryReg, RegState::Define)
4149                                .add(SrcReg0Sub0)
4150                                .add(SrcReg1Sub0)
4151                                .addImm(0); // clamp bit
4152 
4153     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4154     MachineInstr *HiHalf =
4155         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4156             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4157             .add(SrcReg0Sub1)
4158             .add(SrcReg1Sub1)
4159             .addReg(CarryReg, RegState::Kill)
4160             .addImm(0); // clamp bit
4161 
4162     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4163         .addReg(DestSub0)
4164         .addImm(AMDGPU::sub0)
4165         .addReg(DestSub1)
4166         .addImm(AMDGPU::sub1);
4167     TII->legalizeOperands(*LoHalf);
4168     TII->legalizeOperands(*HiHalf);
4169     MI.eraseFromParent();
4170     return BB;
4171   }
4172   case AMDGPU::S_ADD_CO_PSEUDO:
4173   case AMDGPU::S_SUB_CO_PSEUDO: {
4174     // This pseudo has a chance to be selected
4175     // only from uniform add/subcarry node. All the VGPR operands
4176     // therefore assumed to be splat vectors.
4177     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4178     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4179     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4180     MachineBasicBlock::iterator MII = MI;
4181     const DebugLoc &DL = MI.getDebugLoc();
4182     MachineOperand &Dest = MI.getOperand(0);
4183     MachineOperand &CarryDest = MI.getOperand(1);
4184     MachineOperand &Src0 = MI.getOperand(2);
4185     MachineOperand &Src1 = MI.getOperand(3);
4186     MachineOperand &Src2 = MI.getOperand(4);
4187     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4188                        ? AMDGPU::S_ADDC_U32
4189                        : AMDGPU::S_SUBB_U32;
4190     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4191       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4192       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4193           .addReg(Src0.getReg());
4194       Src0.setReg(RegOp0);
4195     }
4196     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4197       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4198       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4199           .addReg(Src1.getReg());
4200       Src1.setReg(RegOp1);
4201     }
4202     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4203     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4204       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4205           .addReg(Src2.getReg());
4206       Src2.setReg(RegOp2);
4207     }
4208 
4209     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4210     unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
4211     assert(WaveSize == 64 || WaveSize == 32);
4212 
4213     if (WaveSize == 64) {
4214       if (ST.hasScalarCompareEq64()) {
4215         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4216             .addReg(Src2.getReg())
4217             .addImm(0);
4218       } else {
4219         const TargetRegisterClass *SubRC =
4220             TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4221         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4222             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4223         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4224             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4225         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4226 
4227         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4228             .add(Src2Sub0)
4229             .add(Src2Sub1);
4230 
4231         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4232             .addReg(Src2_32, RegState::Kill)
4233             .addImm(0);
4234       }
4235     } else {
4236       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4237           .addReg(Src2.getReg())
4238           .addImm(0);
4239     }
4240 
4241     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4242 
4243     unsigned SelOpc =
4244         (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
4245 
4246     BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
4247         .addImm(-1)
4248         .addImm(0);
4249 
4250     MI.eraseFromParent();
4251     return BB;
4252   }
4253   case AMDGPU::SI_INIT_M0: {
4254     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4255             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4256         .add(MI.getOperand(0));
4257     MI.eraseFromParent();
4258     return BB;
4259   }
4260   case AMDGPU::GET_GROUPSTATICSIZE: {
4261     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4262            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4263     DebugLoc DL = MI.getDebugLoc();
4264     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4265         .add(MI.getOperand(0))
4266         .addImm(MFI->getLDSSize());
4267     MI.eraseFromParent();
4268     return BB;
4269   }
4270   case AMDGPU::SI_INDIRECT_SRC_V1:
4271   case AMDGPU::SI_INDIRECT_SRC_V2:
4272   case AMDGPU::SI_INDIRECT_SRC_V4:
4273   case AMDGPU::SI_INDIRECT_SRC_V8:
4274   case AMDGPU::SI_INDIRECT_SRC_V16:
4275   case AMDGPU::SI_INDIRECT_SRC_V32:
4276     return emitIndirectSrc(MI, *BB, *getSubtarget());
4277   case AMDGPU::SI_INDIRECT_DST_V1:
4278   case AMDGPU::SI_INDIRECT_DST_V2:
4279   case AMDGPU::SI_INDIRECT_DST_V4:
4280   case AMDGPU::SI_INDIRECT_DST_V8:
4281   case AMDGPU::SI_INDIRECT_DST_V16:
4282   case AMDGPU::SI_INDIRECT_DST_V32:
4283     return emitIndirectDst(MI, *BB, *getSubtarget());
4284   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4285   case AMDGPU::SI_KILL_I1_PSEUDO:
4286     return splitKillBlock(MI, BB);
4287   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4288     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4289     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4290     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4291 
4292     Register Dst = MI.getOperand(0).getReg();
4293     Register Src0 = MI.getOperand(1).getReg();
4294     Register Src1 = MI.getOperand(2).getReg();
4295     const DebugLoc &DL = MI.getDebugLoc();
4296     Register SrcCond = MI.getOperand(3).getReg();
4297 
4298     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4299     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4300     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4301     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4302 
4303     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4304       .addReg(SrcCond);
4305     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4306       .addImm(0)
4307       .addReg(Src0, 0, AMDGPU::sub0)
4308       .addImm(0)
4309       .addReg(Src1, 0, AMDGPU::sub0)
4310       .addReg(SrcCondCopy);
4311     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4312       .addImm(0)
4313       .addReg(Src0, 0, AMDGPU::sub1)
4314       .addImm(0)
4315       .addReg(Src1, 0, AMDGPU::sub1)
4316       .addReg(SrcCondCopy);
4317 
4318     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4319       .addReg(DstLo)
4320       .addImm(AMDGPU::sub0)
4321       .addReg(DstHi)
4322       .addImm(AMDGPU::sub1);
4323     MI.eraseFromParent();
4324     return BB;
4325   }
4326   case AMDGPU::SI_BR_UNDEF: {
4327     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4328     const DebugLoc &DL = MI.getDebugLoc();
4329     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4330                            .add(MI.getOperand(0));
4331     Br->getOperand(1).setIsUndef(true); // read undef SCC
4332     MI.eraseFromParent();
4333     return BB;
4334   }
4335   case AMDGPU::ADJCALLSTACKUP:
4336   case AMDGPU::ADJCALLSTACKDOWN: {
4337     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4338     MachineInstrBuilder MIB(*MF, &MI);
4339     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4340        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4341     return BB;
4342   }
4343   case AMDGPU::SI_CALL_ISEL: {
4344     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4345     const DebugLoc &DL = MI.getDebugLoc();
4346 
4347     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4348 
4349     MachineInstrBuilder MIB;
4350     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4351 
4352     for (const MachineOperand &MO : MI.operands())
4353       MIB.add(MO);
4354 
4355     MIB.cloneMemRefs(MI);
4356     MI.eraseFromParent();
4357     return BB;
4358   }
4359   case AMDGPU::V_ADD_CO_U32_e32:
4360   case AMDGPU::V_SUB_CO_U32_e32:
4361   case AMDGPU::V_SUBREV_CO_U32_e32: {
4362     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4363     const DebugLoc &DL = MI.getDebugLoc();
4364     unsigned Opc = MI.getOpcode();
4365 
4366     bool NeedClampOperand = false;
4367     if (TII->pseudoToMCOpcode(Opc) == -1) {
4368       Opc = AMDGPU::getVOPe64(Opc);
4369       NeedClampOperand = true;
4370     }
4371 
4372     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4373     if (TII->isVOP3(*I)) {
4374       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4375       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4376       I.addReg(TRI->getVCC(), RegState::Define);
4377     }
4378     I.add(MI.getOperand(1))
4379      .add(MI.getOperand(2));
4380     if (NeedClampOperand)
4381       I.addImm(0); // clamp bit for e64 encoding
4382 
4383     TII->legalizeOperands(*I);
4384 
4385     MI.eraseFromParent();
4386     return BB;
4387   }
4388   case AMDGPU::V_ADDC_U32_e32:
4389   case AMDGPU::V_SUBB_U32_e32:
4390   case AMDGPU::V_SUBBREV_U32_e32:
4391     // These instructions have an implicit use of vcc which counts towards the
4392     // constant bus limit.
4393     TII->legalizeOperands(MI);
4394     return BB;
4395   case AMDGPU::DS_GWS_INIT:
4396   case AMDGPU::DS_GWS_SEMA_BR:
4397   case AMDGPU::DS_GWS_BARRIER:
4398     if (Subtarget->needsAlignedVGPRs()) {
4399       // Add implicit aligned super-reg to force alignment on the data operand.
4400       const DebugLoc &DL = MI.getDebugLoc();
4401       MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4402       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
4403       MachineOperand *Op = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
4404       Register DataReg = Op->getReg();
4405       bool IsAGPR = TRI->isAGPR(MRI, DataReg);
4406       Register Undef = MRI.createVirtualRegister(
4407           IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass);
4408       BuildMI(*BB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), Undef);
4409       Register NewVR =
4410           MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass
4411                                            : &AMDGPU::VReg_64_Align2RegClass);
4412       BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), NewVR)
4413           .addReg(DataReg, 0, Op->getSubReg())
4414           .addImm(AMDGPU::sub0)
4415           .addReg(Undef)
4416           .addImm(AMDGPU::sub1);
4417       Op->setReg(NewVR);
4418       Op->setSubReg(AMDGPU::sub0);
4419       MI.addOperand(MachineOperand::CreateReg(NewVR, false, true));
4420     }
4421     LLVM_FALLTHROUGH;
4422   case AMDGPU::DS_GWS_SEMA_V:
4423   case AMDGPU::DS_GWS_SEMA_P:
4424   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4425     // A s_waitcnt 0 is required to be the instruction immediately following.
4426     if (getSubtarget()->hasGWSAutoReplay()) {
4427       bundleInstWithWaitcnt(MI);
4428       return BB;
4429     }
4430 
4431     return emitGWSMemViolTestLoop(MI, BB);
4432   case AMDGPU::S_SETREG_B32: {
4433     // Try to optimize cases that only set the denormal mode or rounding mode.
4434     //
4435     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4436     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4437     // instead.
4438     //
4439     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4440     // allow you to have a no side effect instruction in the output of a
4441     // sideeffecting pattern.
4442     unsigned ID, Offset, Width;
4443     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4444     if (ID != AMDGPU::Hwreg::ID_MODE)
4445       return BB;
4446 
4447     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4448     const unsigned SetMask = WidthMask << Offset;
4449 
4450     if (getSubtarget()->hasDenormModeInst()) {
4451       unsigned SetDenormOp = 0;
4452       unsigned SetRoundOp = 0;
4453 
4454       // The dedicated instructions can only set the whole denorm or round mode
4455       // at once, not a subset of bits in either.
4456       if (SetMask ==
4457           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4458         // If this fully sets both the round and denorm mode, emit the two
4459         // dedicated instructions for these.
4460         SetRoundOp = AMDGPU::S_ROUND_MODE;
4461         SetDenormOp = AMDGPU::S_DENORM_MODE;
4462       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4463         SetRoundOp = AMDGPU::S_ROUND_MODE;
4464       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4465         SetDenormOp = AMDGPU::S_DENORM_MODE;
4466       }
4467 
4468       if (SetRoundOp || SetDenormOp) {
4469         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4470         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4471         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4472           unsigned ImmVal = Def->getOperand(1).getImm();
4473           if (SetRoundOp) {
4474             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4475                 .addImm(ImmVal & 0xf);
4476 
4477             // If we also have the denorm mode, get just the denorm mode bits.
4478             ImmVal >>= 4;
4479           }
4480 
4481           if (SetDenormOp) {
4482             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4483                 .addImm(ImmVal & 0xf);
4484           }
4485 
4486           MI.eraseFromParent();
4487           return BB;
4488         }
4489       }
4490     }
4491 
4492     // If only FP bits are touched, used the no side effects pseudo.
4493     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4494                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4495       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4496 
4497     return BB;
4498   }
4499   default:
4500     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4501   }
4502 }
4503 
4504 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4505   return isTypeLegal(VT.getScalarType());
4506 }
4507 
4508 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4509   // This currently forces unfolding various combinations of fsub into fma with
4510   // free fneg'd operands. As long as we have fast FMA (controlled by
4511   // isFMAFasterThanFMulAndFAdd), we should perform these.
4512 
4513   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4514   // most of these combines appear to be cycle neutral but save on instruction
4515   // count / code size.
4516   return true;
4517 }
4518 
4519 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; }
4520 
4521 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4522                                          EVT VT) const {
4523   if (!VT.isVector()) {
4524     return MVT::i1;
4525   }
4526   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4527 }
4528 
4529 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4530   // TODO: Should i16 be used always if legal? For now it would force VALU
4531   // shifts.
4532   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4533 }
4534 
4535 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4536   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4537              ? Ty.changeElementSize(16)
4538              : Ty.changeElementSize(32);
4539 }
4540 
4541 // Answering this is somewhat tricky and depends on the specific device which
4542 // have different rates for fma or all f64 operations.
4543 //
4544 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4545 // regardless of which device (although the number of cycles differs between
4546 // devices), so it is always profitable for f64.
4547 //
4548 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4549 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4550 // which we can always do even without fused FP ops since it returns the same
4551 // result as the separate operations and since it is always full
4552 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4553 // however does not support denormals, so we do report fma as faster if we have
4554 // a fast fma device and require denormals.
4555 //
4556 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4557                                                   EVT VT) const {
4558   VT = VT.getScalarType();
4559 
4560   switch (VT.getSimpleVT().SimpleTy) {
4561   case MVT::f32: {
4562     // If mad is not available this depends only on if f32 fma is full rate.
4563     if (!Subtarget->hasMadMacF32Insts())
4564       return Subtarget->hasFastFMAF32();
4565 
4566     // Otherwise f32 mad is always full rate and returns the same result as
4567     // the separate operations so should be preferred over fma.
4568     // However does not support denomals.
4569     if (hasFP32Denormals(MF))
4570       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4571 
4572     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4573     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4574   }
4575   case MVT::f64:
4576     return true;
4577   case MVT::f16:
4578     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4579   default:
4580     break;
4581   }
4582 
4583   return false;
4584 }
4585 
4586 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4587                                                   LLT Ty) const {
4588   switch (Ty.getScalarSizeInBits()) {
4589   case 16:
4590     return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
4591   case 32:
4592     return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
4593   case 64:
4594     return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
4595   default:
4596     break;
4597   }
4598 
4599   return false;
4600 }
4601 
4602 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const {
4603   if (!Ty.isScalar())
4604     return false;
4605 
4606   if (Ty.getScalarSizeInBits() == 16)
4607     return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF());
4608   if (Ty.getScalarSizeInBits() == 32)
4609     return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF());
4610 
4611   return false;
4612 }
4613 
4614 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4615                                    const SDNode *N) const {
4616   // TODO: Check future ftz flag
4617   // v_mad_f32/v_mac_f32 do not support denormals.
4618   EVT VT = N->getValueType(0);
4619   if (VT == MVT::f32)
4620     return Subtarget->hasMadMacF32Insts() &&
4621            !hasFP32Denormals(DAG.getMachineFunction());
4622   if (VT == MVT::f16) {
4623     return Subtarget->hasMadF16() &&
4624            !hasFP64FP16Denormals(DAG.getMachineFunction());
4625   }
4626 
4627   return false;
4628 }
4629 
4630 //===----------------------------------------------------------------------===//
4631 // Custom DAG Lowering Operations
4632 //===----------------------------------------------------------------------===//
4633 
4634 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4635 // wider vector type is legal.
4636 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4637                                              SelectionDAG &DAG) const {
4638   unsigned Opc = Op.getOpcode();
4639   EVT VT = Op.getValueType();
4640   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4641 
4642   SDValue Lo, Hi;
4643   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4644 
4645   SDLoc SL(Op);
4646   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4647                              Op->getFlags());
4648   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4649                              Op->getFlags());
4650 
4651   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4652 }
4653 
4654 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4655 // wider vector type is legal.
4656 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4657                                               SelectionDAG &DAG) const {
4658   unsigned Opc = Op.getOpcode();
4659   EVT VT = Op.getValueType();
4660   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4661          VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8f32 ||
4662          VT == MVT::v16f32 || VT == MVT::v32f32);
4663 
4664   SDValue Lo0, Hi0;
4665   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4666   SDValue Lo1, Hi1;
4667   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4668 
4669   SDLoc SL(Op);
4670 
4671   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4672                              Op->getFlags());
4673   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4674                              Op->getFlags());
4675 
4676   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4677 }
4678 
4679 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4680                                               SelectionDAG &DAG) const {
4681   unsigned Opc = Op.getOpcode();
4682   EVT VT = Op.getValueType();
4683   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
4684          VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v8f32 ||
4685          VT == MVT::v16f32 || VT == MVT::v32f32);
4686 
4687   SDValue Lo0, Hi0;
4688   SDValue Op0 = Op.getOperand(0);
4689   std::tie(Lo0, Hi0) = Op0.getValueType().isVector()
4690                          ? DAG.SplitVectorOperand(Op.getNode(), 0)
4691                          : std::make_pair(Op0, Op0);
4692   SDValue Lo1, Hi1;
4693   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4694   SDValue Lo2, Hi2;
4695   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4696 
4697   SDLoc SL(Op);
4698   auto ResVT = DAG.GetSplitDestVTs(VT);
4699 
4700   SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2,
4701                              Op->getFlags());
4702   SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2,
4703                              Op->getFlags());
4704 
4705   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4706 }
4707 
4708 
4709 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4710   switch (Op.getOpcode()) {
4711   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4712   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4713   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4714   case ISD::LOAD: {
4715     SDValue Result = LowerLOAD(Op, DAG);
4716     assert((!Result.getNode() ||
4717             Result.getNode()->getNumValues() == 2) &&
4718            "Load should return a value and a chain");
4719     return Result;
4720   }
4721 
4722   case ISD::FSIN:
4723   case ISD::FCOS:
4724     return LowerTrig(Op, DAG);
4725   case ISD::SELECT: return LowerSELECT(Op, DAG);
4726   case ISD::FDIV: return LowerFDIV(Op, DAG);
4727   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4728   case ISD::STORE: return LowerSTORE(Op, DAG);
4729   case ISD::GlobalAddress: {
4730     MachineFunction &MF = DAG.getMachineFunction();
4731     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4732     return LowerGlobalAddress(MFI, Op, DAG);
4733   }
4734   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4735   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4736   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4737   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4738   case ISD::INSERT_SUBVECTOR:
4739     return lowerINSERT_SUBVECTOR(Op, DAG);
4740   case ISD::INSERT_VECTOR_ELT:
4741     return lowerINSERT_VECTOR_ELT(Op, DAG);
4742   case ISD::EXTRACT_VECTOR_ELT:
4743     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4744   case ISD::VECTOR_SHUFFLE:
4745     return lowerVECTOR_SHUFFLE(Op, DAG);
4746   case ISD::BUILD_VECTOR:
4747     return lowerBUILD_VECTOR(Op, DAG);
4748   case ISD::FP_ROUND:
4749     return lowerFP_ROUND(Op, DAG);
4750   case ISD::FPTRUNC_ROUND: {
4751     unsigned Opc;
4752     SDLoc DL(Op);
4753 
4754     if (Op.getOperand(0)->getValueType(0) != MVT::f32)
4755       return SDValue();
4756 
4757     // Get the rounding mode from the last operand
4758     int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4759     if (RoundMode == (int)RoundingMode::TowardPositive)
4760       Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD;
4761     else if (RoundMode == (int)RoundingMode::TowardNegative)
4762       Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD;
4763     else
4764       return SDValue();
4765 
4766     return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0));
4767   }
4768   case ISD::TRAP:
4769     return lowerTRAP(Op, DAG);
4770   case ISD::DEBUGTRAP:
4771     return lowerDEBUGTRAP(Op, DAG);
4772   case ISD::FABS:
4773   case ISD::FNEG:
4774   case ISD::FCANONICALIZE:
4775   case ISD::BSWAP:
4776     return splitUnaryVectorOp(Op, DAG);
4777   case ISD::FMINNUM:
4778   case ISD::FMAXNUM:
4779     return lowerFMINNUM_FMAXNUM(Op, DAG);
4780   case ISD::FMA:
4781     return splitTernaryVectorOp(Op, DAG);
4782   case ISD::FP_TO_SINT:
4783   case ISD::FP_TO_UINT:
4784     return LowerFP_TO_INT(Op, DAG);
4785   case ISD::SHL:
4786   case ISD::SRA:
4787   case ISD::SRL:
4788   case ISD::ADD:
4789   case ISD::SUB:
4790   case ISD::MUL:
4791   case ISD::SMIN:
4792   case ISD::SMAX:
4793   case ISD::UMIN:
4794   case ISD::UMAX:
4795   case ISD::FADD:
4796   case ISD::FMUL:
4797   case ISD::FMINNUM_IEEE:
4798   case ISD::FMAXNUM_IEEE:
4799   case ISD::UADDSAT:
4800   case ISD::USUBSAT:
4801   case ISD::SADDSAT:
4802   case ISD::SSUBSAT:
4803     return splitBinaryVectorOp(Op, DAG);
4804   case ISD::SMULO:
4805   case ISD::UMULO:
4806     return lowerXMULO(Op, DAG);
4807   case ISD::SMUL_LOHI:
4808   case ISD::UMUL_LOHI:
4809     return lowerXMUL_LOHI(Op, DAG);
4810   case ISD::DYNAMIC_STACKALLOC:
4811     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4812   }
4813   return SDValue();
4814 }
4815 
4816 // Used for D16: Casts the result of an instruction into the right vector,
4817 // packs values if loads return unpacked values.
4818 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4819                                        const SDLoc &DL,
4820                                        SelectionDAG &DAG, bool Unpacked) {
4821   if (!LoadVT.isVector())
4822     return Result;
4823 
4824   // Cast back to the original packed type or to a larger type that is a
4825   // multiple of 32 bit for D16. Widening the return type is a required for
4826   // legalization.
4827   EVT FittingLoadVT = LoadVT;
4828   if ((LoadVT.getVectorNumElements() % 2) == 1) {
4829     FittingLoadVT =
4830         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4831                          LoadVT.getVectorNumElements() + 1);
4832   }
4833 
4834   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4835     // Truncate to v2i16/v4i16.
4836     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4837 
4838     // Workaround legalizer not scalarizing truncate after vector op
4839     // legalization but not creating intermediate vector trunc.
4840     SmallVector<SDValue, 4> Elts;
4841     DAG.ExtractVectorElements(Result, Elts);
4842     for (SDValue &Elt : Elts)
4843       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4844 
4845     // Pad illegal v1i16/v3fi6 to v4i16
4846     if ((LoadVT.getVectorNumElements() % 2) == 1)
4847       Elts.push_back(DAG.getUNDEF(MVT::i16));
4848 
4849     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4850 
4851     // Bitcast to original type (v2f16/v4f16).
4852     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4853   }
4854 
4855   // Cast back to the original packed type.
4856   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4857 }
4858 
4859 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4860                                               MemSDNode *M,
4861                                               SelectionDAG &DAG,
4862                                               ArrayRef<SDValue> Ops,
4863                                               bool IsIntrinsic) const {
4864   SDLoc DL(M);
4865 
4866   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4867   EVT LoadVT = M->getValueType(0);
4868 
4869   EVT EquivLoadVT = LoadVT;
4870   if (LoadVT.isVector()) {
4871     if (Unpacked) {
4872       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4873                                      LoadVT.getVectorNumElements());
4874     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4875       // Widen v3f16 to legal type
4876       EquivLoadVT =
4877           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4878                            LoadVT.getVectorNumElements() + 1);
4879     }
4880   }
4881 
4882   // Change from v4f16/v2f16 to EquivLoadVT.
4883   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4884 
4885   SDValue Load
4886     = DAG.getMemIntrinsicNode(
4887       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4888       VTList, Ops, M->getMemoryVT(),
4889       M->getMemOperand());
4890 
4891   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4892 
4893   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4894 }
4895 
4896 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4897                                              SelectionDAG &DAG,
4898                                              ArrayRef<SDValue> Ops) const {
4899   SDLoc DL(M);
4900   EVT LoadVT = M->getValueType(0);
4901   EVT EltType = LoadVT.getScalarType();
4902   EVT IntVT = LoadVT.changeTypeToInteger();
4903 
4904   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4905 
4906   unsigned Opc =
4907       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4908 
4909   if (IsD16) {
4910     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4911   }
4912 
4913   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4914   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4915     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4916 
4917   if (isTypeLegal(LoadVT)) {
4918     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4919                                M->getMemOperand(), DAG);
4920   }
4921 
4922   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4923   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4924   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4925                                         M->getMemOperand(), DAG);
4926   return DAG.getMergeValues(
4927       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4928       DL);
4929 }
4930 
4931 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4932                                   SDNode *N, SelectionDAG &DAG) {
4933   EVT VT = N->getValueType(0);
4934   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4935   unsigned CondCode = CD->getZExtValue();
4936   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4937     return DAG.getUNDEF(VT);
4938 
4939   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4940 
4941   SDValue LHS = N->getOperand(1);
4942   SDValue RHS = N->getOperand(2);
4943 
4944   SDLoc DL(N);
4945 
4946   EVT CmpVT = LHS.getValueType();
4947   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4948     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4949       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4950     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4951     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4952   }
4953 
4954   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4955 
4956   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4957   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4958 
4959   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4960                               DAG.getCondCode(CCOpcode));
4961   if (VT.bitsEq(CCVT))
4962     return SetCC;
4963   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4964 }
4965 
4966 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4967                                   SDNode *N, SelectionDAG &DAG) {
4968   EVT VT = N->getValueType(0);
4969   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4970 
4971   unsigned CondCode = CD->getZExtValue();
4972   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4973     return DAG.getUNDEF(VT);
4974 
4975   SDValue Src0 = N->getOperand(1);
4976   SDValue Src1 = N->getOperand(2);
4977   EVT CmpVT = Src0.getValueType();
4978   SDLoc SL(N);
4979 
4980   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4981     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4982     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4983   }
4984 
4985   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4986   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4987   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4988   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4989   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4990                               Src1, DAG.getCondCode(CCOpcode));
4991   if (VT.bitsEq(CCVT))
4992     return SetCC;
4993   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4994 }
4995 
4996 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4997                                     SelectionDAG &DAG) {
4998   EVT VT = N->getValueType(0);
4999   SDValue Src = N->getOperand(1);
5000   SDLoc SL(N);
5001 
5002   if (Src.getOpcode() == ISD::SETCC) {
5003     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
5004     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
5005                        Src.getOperand(1), Src.getOperand(2));
5006   }
5007   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
5008     // (ballot 0) -> 0
5009     if (Arg->isZero())
5010       return DAG.getConstant(0, SL, VT);
5011 
5012     // (ballot 1) -> EXEC/EXEC_LO
5013     if (Arg->isOne()) {
5014       Register Exec;
5015       if (VT.getScalarSizeInBits() == 32)
5016         Exec = AMDGPU::EXEC_LO;
5017       else if (VT.getScalarSizeInBits() == 64)
5018         Exec = AMDGPU::EXEC;
5019       else
5020         return SDValue();
5021 
5022       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
5023     }
5024   }
5025 
5026   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
5027   // ISD::SETNE)
5028   return DAG.getNode(
5029       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
5030       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
5031 }
5032 
5033 void SITargetLowering::ReplaceNodeResults(SDNode *N,
5034                                           SmallVectorImpl<SDValue> &Results,
5035                                           SelectionDAG &DAG) const {
5036   switch (N->getOpcode()) {
5037   case ISD::INSERT_VECTOR_ELT: {
5038     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
5039       Results.push_back(Res);
5040     return;
5041   }
5042   case ISD::EXTRACT_VECTOR_ELT: {
5043     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
5044       Results.push_back(Res);
5045     return;
5046   }
5047   case ISD::INTRINSIC_WO_CHAIN: {
5048     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5049     switch (IID) {
5050     case Intrinsic::amdgcn_cvt_pkrtz: {
5051       SDValue Src0 = N->getOperand(1);
5052       SDValue Src1 = N->getOperand(2);
5053       SDLoc SL(N);
5054       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
5055                                 Src0, Src1);
5056       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
5057       return;
5058     }
5059     case Intrinsic::amdgcn_cvt_pknorm_i16:
5060     case Intrinsic::amdgcn_cvt_pknorm_u16:
5061     case Intrinsic::amdgcn_cvt_pk_i16:
5062     case Intrinsic::amdgcn_cvt_pk_u16: {
5063       SDValue Src0 = N->getOperand(1);
5064       SDValue Src1 = N->getOperand(2);
5065       SDLoc SL(N);
5066       unsigned Opcode;
5067 
5068       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
5069         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
5070       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
5071         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
5072       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
5073         Opcode = AMDGPUISD::CVT_PK_I16_I32;
5074       else
5075         Opcode = AMDGPUISD::CVT_PK_U16_U32;
5076 
5077       EVT VT = N->getValueType(0);
5078       if (isTypeLegal(VT))
5079         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
5080       else {
5081         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
5082         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
5083       }
5084       return;
5085     }
5086     }
5087     break;
5088   }
5089   case ISD::INTRINSIC_W_CHAIN: {
5090     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
5091       if (Res.getOpcode() == ISD::MERGE_VALUES) {
5092         // FIXME: Hacky
5093         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
5094           Results.push_back(Res.getOperand(I));
5095         }
5096       } else {
5097         Results.push_back(Res);
5098         Results.push_back(Res.getValue(1));
5099       }
5100       return;
5101     }
5102 
5103     break;
5104   }
5105   case ISD::SELECT: {
5106     SDLoc SL(N);
5107     EVT VT = N->getValueType(0);
5108     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
5109     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
5110     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
5111 
5112     EVT SelectVT = NewVT;
5113     if (NewVT.bitsLT(MVT::i32)) {
5114       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
5115       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
5116       SelectVT = MVT::i32;
5117     }
5118 
5119     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
5120                                     N->getOperand(0), LHS, RHS);
5121 
5122     if (NewVT != SelectVT)
5123       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
5124     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
5125     return;
5126   }
5127   case ISD::FNEG: {
5128     if (N->getValueType(0) != MVT::v2f16)
5129       break;
5130 
5131     SDLoc SL(N);
5132     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5133 
5134     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
5135                              BC,
5136                              DAG.getConstant(0x80008000, SL, MVT::i32));
5137     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5138     return;
5139   }
5140   case ISD::FABS: {
5141     if (N->getValueType(0) != MVT::v2f16)
5142       break;
5143 
5144     SDLoc SL(N);
5145     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5146 
5147     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
5148                              BC,
5149                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
5150     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5151     return;
5152   }
5153   default:
5154     break;
5155   }
5156 }
5157 
5158 /// Helper function for LowerBRCOND
5159 static SDNode *findUser(SDValue Value, unsigned Opcode) {
5160 
5161   SDNode *Parent = Value.getNode();
5162   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
5163        I != E; ++I) {
5164 
5165     if (I.getUse().get() != Value)
5166       continue;
5167 
5168     if (I->getOpcode() == Opcode)
5169       return *I;
5170   }
5171   return nullptr;
5172 }
5173 
5174 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
5175   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
5176     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
5177     case Intrinsic::amdgcn_if:
5178       return AMDGPUISD::IF;
5179     case Intrinsic::amdgcn_else:
5180       return AMDGPUISD::ELSE;
5181     case Intrinsic::amdgcn_loop:
5182       return AMDGPUISD::LOOP;
5183     case Intrinsic::amdgcn_end_cf:
5184       llvm_unreachable("should not occur");
5185     default:
5186       return 0;
5187     }
5188   }
5189 
5190   // break, if_break, else_break are all only used as inputs to loop, not
5191   // directly as branch conditions.
5192   return 0;
5193 }
5194 
5195 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
5196   const Triple &TT = getTargetMachine().getTargetTriple();
5197   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5198           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5199          AMDGPU::shouldEmitConstantsToTextSection(TT);
5200 }
5201 
5202 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
5203   // FIXME: Either avoid relying on address space here or change the default
5204   // address space for functions to avoid the explicit check.
5205   return (GV->getValueType()->isFunctionTy() ||
5206           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
5207          !shouldEmitFixup(GV) &&
5208          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5209 }
5210 
5211 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5212   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5213 }
5214 
5215 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5216   if (!GV->hasExternalLinkage())
5217     return true;
5218 
5219   const auto OS = getTargetMachine().getTargetTriple().getOS();
5220   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5221 }
5222 
5223 /// This transforms the control flow intrinsics to get the branch destination as
5224 /// last parameter, also switches branch target with BR if the need arise
5225 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5226                                       SelectionDAG &DAG) const {
5227   SDLoc DL(BRCOND);
5228 
5229   SDNode *Intr = BRCOND.getOperand(1).getNode();
5230   SDValue Target = BRCOND.getOperand(2);
5231   SDNode *BR = nullptr;
5232   SDNode *SetCC = nullptr;
5233 
5234   if (Intr->getOpcode() == ISD::SETCC) {
5235     // As long as we negate the condition everything is fine
5236     SetCC = Intr;
5237     Intr = SetCC->getOperand(0).getNode();
5238 
5239   } else {
5240     // Get the target from BR if we don't negate the condition
5241     BR = findUser(BRCOND, ISD::BR);
5242     assert(BR && "brcond missing unconditional branch user");
5243     Target = BR->getOperand(1);
5244   }
5245 
5246   unsigned CFNode = isCFIntrinsic(Intr);
5247   if (CFNode == 0) {
5248     // This is a uniform branch so we don't need to legalize.
5249     return BRCOND;
5250   }
5251 
5252   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5253                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5254 
5255   assert(!SetCC ||
5256         (SetCC->getConstantOperandVal(1) == 1 &&
5257          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5258                                                              ISD::SETNE));
5259 
5260   // operands of the new intrinsic call
5261   SmallVector<SDValue, 4> Ops;
5262   if (HaveChain)
5263     Ops.push_back(BRCOND.getOperand(0));
5264 
5265   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
5266   Ops.push_back(Target);
5267 
5268   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5269 
5270   // build the new intrinsic call
5271   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5272 
5273   if (!HaveChain) {
5274     SDValue Ops[] =  {
5275       SDValue(Result, 0),
5276       BRCOND.getOperand(0)
5277     };
5278 
5279     Result = DAG.getMergeValues(Ops, DL).getNode();
5280   }
5281 
5282   if (BR) {
5283     // Give the branch instruction our target
5284     SDValue Ops[] = {
5285       BR->getOperand(0),
5286       BRCOND.getOperand(2)
5287     };
5288     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5289     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5290   }
5291 
5292   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5293 
5294   // Copy the intrinsic results to registers
5295   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5296     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5297     if (!CopyToReg)
5298       continue;
5299 
5300     Chain = DAG.getCopyToReg(
5301       Chain, DL,
5302       CopyToReg->getOperand(1),
5303       SDValue(Result, i - 1),
5304       SDValue());
5305 
5306     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5307   }
5308 
5309   // Remove the old intrinsic from the chain
5310   DAG.ReplaceAllUsesOfValueWith(
5311     SDValue(Intr, Intr->getNumValues() - 1),
5312     Intr->getOperand(0));
5313 
5314   return Chain;
5315 }
5316 
5317 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5318                                           SelectionDAG &DAG) const {
5319   MVT VT = Op.getSimpleValueType();
5320   SDLoc DL(Op);
5321   // Checking the depth
5322   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5323     return DAG.getConstant(0, DL, VT);
5324 
5325   MachineFunction &MF = DAG.getMachineFunction();
5326   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5327   // Check for kernel and shader functions
5328   if (Info->isEntryFunction())
5329     return DAG.getConstant(0, DL, VT);
5330 
5331   MachineFrameInfo &MFI = MF.getFrameInfo();
5332   // There is a call to @llvm.returnaddress in this function
5333   MFI.setReturnAddressIsTaken(true);
5334 
5335   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5336   // Get the return address reg and mark it as an implicit live-in
5337   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5338 
5339   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5340 }
5341 
5342 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5343                                             SDValue Op,
5344                                             const SDLoc &DL,
5345                                             EVT VT) const {
5346   return Op.getValueType().bitsLE(VT) ?
5347       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5348     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5349                 DAG.getTargetConstant(0, DL, MVT::i32));
5350 }
5351 
5352 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5353   assert(Op.getValueType() == MVT::f16 &&
5354          "Do not know how to custom lower FP_ROUND for non-f16 type");
5355 
5356   SDValue Src = Op.getOperand(0);
5357   EVT SrcVT = Src.getValueType();
5358   if (SrcVT != MVT::f64)
5359     return Op;
5360 
5361   SDLoc DL(Op);
5362 
5363   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5364   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5365   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5366 }
5367 
5368 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5369                                                SelectionDAG &DAG) const {
5370   EVT VT = Op.getValueType();
5371   const MachineFunction &MF = DAG.getMachineFunction();
5372   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5373   bool IsIEEEMode = Info->getMode().IEEE;
5374 
5375   // FIXME: Assert during selection that this is only selected for
5376   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5377   // mode functions, but this happens to be OK since it's only done in cases
5378   // where there is known no sNaN.
5379   if (IsIEEEMode)
5380     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5381 
5382   if (VT == MVT::v4f16 || VT == MVT::v8f16)
5383     return splitBinaryVectorOp(Op, DAG);
5384   return Op;
5385 }
5386 
5387 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5388   EVT VT = Op.getValueType();
5389   SDLoc SL(Op);
5390   SDValue LHS = Op.getOperand(0);
5391   SDValue RHS = Op.getOperand(1);
5392   bool isSigned = Op.getOpcode() == ISD::SMULO;
5393 
5394   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5395     const APInt &C = RHSC->getAPIntValue();
5396     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5397     if (C.isPowerOf2()) {
5398       // smulo(x, signed_min) is same as umulo(x, signed_min).
5399       bool UseArithShift = isSigned && !C.isMinSignedValue();
5400       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5401       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5402       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5403           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5404                       SL, VT, Result, ShiftAmt),
5405           LHS, ISD::SETNE);
5406       return DAG.getMergeValues({ Result, Overflow }, SL);
5407     }
5408   }
5409 
5410   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5411   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5412                             SL, VT, LHS, RHS);
5413 
5414   SDValue Sign = isSigned
5415     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5416                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5417     : DAG.getConstant(0, SL, VT);
5418   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5419 
5420   return DAG.getMergeValues({ Result, Overflow }, SL);
5421 }
5422 
5423 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
5424   if (Op->isDivergent()) {
5425     // Select to V_MAD_[IU]64_[IU]32.
5426     return Op;
5427   }
5428   if (Subtarget->hasSMulHi()) {
5429     // Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
5430     return SDValue();
5431   }
5432   // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
5433   // calculate the high part, so we might as well do the whole thing with
5434   // V_MAD_[IU]64_[IU]32.
5435   return Op;
5436 }
5437 
5438 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5439   if (!Subtarget->isTrapHandlerEnabled() ||
5440       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5441     return lowerTrapEndpgm(Op, DAG);
5442 
5443   if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) {
5444     switch (*HsaAbiVer) {
5445     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
5446     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
5447       return lowerTrapHsaQueuePtr(Op, DAG);
5448     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
5449     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
5450       return Subtarget->supportsGetDoorbellID() ?
5451           lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG);
5452     }
5453   }
5454 
5455   llvm_unreachable("Unknown trap handler");
5456 }
5457 
5458 SDValue SITargetLowering::lowerTrapEndpgm(
5459     SDValue Op, SelectionDAG &DAG) const {
5460   SDLoc SL(Op);
5461   SDValue Chain = Op.getOperand(0);
5462   return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5463 }
5464 
5465 SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5466     SDValue Op, SelectionDAG &DAG) const {
5467   SDLoc SL(Op);
5468   SDValue Chain = Op.getOperand(0);
5469 
5470   MachineFunction &MF = DAG.getMachineFunction();
5471   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5472   Register UserSGPR = Info->getQueuePtrUserSGPR();
5473 
5474   SDValue QueuePtr;
5475   if (UserSGPR == AMDGPU::NoRegister) {
5476     // We probably are in a function incorrectly marked with
5477     // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the trap,
5478     // so just use a null pointer.
5479     QueuePtr = DAG.getConstant(0, SL, MVT::i64);
5480   } else {
5481     QueuePtr = CreateLiveInRegister(
5482       DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5483   }
5484 
5485   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5486   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5487                                    QueuePtr, SDValue());
5488 
5489   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5490   SDValue Ops[] = {
5491     ToReg,
5492     DAG.getTargetConstant(TrapID, SL, MVT::i16),
5493     SGPR01,
5494     ToReg.getValue(1)
5495   };
5496   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5497 }
5498 
5499 SDValue SITargetLowering::lowerTrapHsa(
5500     SDValue Op, SelectionDAG &DAG) const {
5501   SDLoc SL(Op);
5502   SDValue Chain = Op.getOperand(0);
5503 
5504   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5505   SDValue Ops[] = {
5506     Chain,
5507     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5508   };
5509   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5510 }
5511 
5512 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5513   SDLoc SL(Op);
5514   SDValue Chain = Op.getOperand(0);
5515   MachineFunction &MF = DAG.getMachineFunction();
5516 
5517   if (!Subtarget->isTrapHandlerEnabled() ||
5518       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5519     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5520                                      "debugtrap handler not supported",
5521                                      Op.getDebugLoc(),
5522                                      DS_Warning);
5523     LLVMContext &Ctx = MF.getFunction().getContext();
5524     Ctx.diagnose(NoTrap);
5525     return Chain;
5526   }
5527 
5528   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5529   SDValue Ops[] = {
5530     Chain,
5531     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5532   };
5533   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5534 }
5535 
5536 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5537                                              SelectionDAG &DAG) const {
5538   // FIXME: Use inline constants (src_{shared, private}_base) instead.
5539   if (Subtarget->hasApertureRegs()) {
5540     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5541         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5542         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5543     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5544         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5545         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5546     unsigned Encoding =
5547         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5548         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5549         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5550 
5551     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5552     SDValue ApertureReg = SDValue(
5553         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5554     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5555     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5556   }
5557 
5558   MachineFunction &MF = DAG.getMachineFunction();
5559   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5560   Register UserSGPR = Info->getQueuePtrUserSGPR();
5561   if (UserSGPR == AMDGPU::NoRegister) {
5562     // We probably are in a function incorrectly marked with
5563     // amdgpu-no-queue-ptr. This is undefined.
5564     return DAG.getUNDEF(MVT::i32);
5565   }
5566 
5567   SDValue QueuePtr = CreateLiveInRegister(
5568     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5569 
5570   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5571   // private_segment_aperture_base_hi.
5572   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5573 
5574   SDValue Ptr =
5575       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5576 
5577   // TODO: Use custom target PseudoSourceValue.
5578   // TODO: We should use the value from the IR intrinsic call, but it might not
5579   // be available and how do we get it?
5580   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5581   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5582                      commonAlignment(Align(64), StructOffset),
5583                      MachineMemOperand::MODereferenceable |
5584                          MachineMemOperand::MOInvariant);
5585 }
5586 
5587 /// Return true if the value is a known valid address, such that a null check is
5588 /// not necessary.
5589 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG,
5590                            const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
5591   if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) ||
5592       isa<BasicBlockSDNode>(Val))
5593     return true;
5594 
5595   if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
5596     return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
5597 
5598   // TODO: Search through arithmetic, handle arguments and loads
5599   // marked nonnull.
5600   return false;
5601 }
5602 
5603 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5604                                              SelectionDAG &DAG) const {
5605   SDLoc SL(Op);
5606   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5607 
5608   SDValue Src = ASC->getOperand(0);
5609   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5610   unsigned SrcAS = ASC->getSrcAddressSpace();
5611 
5612   const AMDGPUTargetMachine &TM =
5613     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5614 
5615   // flat -> local/private
5616   if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
5617     unsigned DestAS = ASC->getDestAddressSpace();
5618 
5619     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5620         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5621       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5622 
5623       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5624         return Ptr;
5625 
5626       unsigned NullVal = TM.getNullPointerValue(DestAS);
5627       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5628       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5629 
5630       return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr,
5631                          SegmentNullPtr);
5632     }
5633   }
5634 
5635   // local/private -> flat
5636   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5637     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5638         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5639 
5640       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5641       SDValue CvtPtr =
5642           DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5643       CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
5644 
5645       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5646         return CvtPtr;
5647 
5648       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5649       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5650 
5651       SDValue NonNull
5652         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5653 
5654       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr,
5655                          FlatNullPtr);
5656     }
5657   }
5658 
5659   if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5660       Op.getValueType() == MVT::i64) {
5661     const SIMachineFunctionInfo *Info =
5662         DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
5663     SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32);
5664     SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi);
5665     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
5666   }
5667 
5668   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5669       Src.getValueType() == MVT::i64)
5670     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5671 
5672   // global <-> flat are no-ops and never emitted.
5673 
5674   const MachineFunction &MF = DAG.getMachineFunction();
5675   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5676     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5677   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5678 
5679   return DAG.getUNDEF(ASC->getValueType(0));
5680 }
5681 
5682 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5683 // the small vector and inserting them into the big vector. That is better than
5684 // the default expansion of doing it via a stack slot. Even though the use of
5685 // the stack slot would be optimized away afterwards, the stack slot itself
5686 // remains.
5687 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5688                                                 SelectionDAG &DAG) const {
5689   SDValue Vec = Op.getOperand(0);
5690   SDValue Ins = Op.getOperand(1);
5691   SDValue Idx = Op.getOperand(2);
5692   EVT VecVT = Vec.getValueType();
5693   EVT InsVT = Ins.getValueType();
5694   EVT EltVT = VecVT.getVectorElementType();
5695   unsigned InsNumElts = InsVT.getVectorNumElements();
5696   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5697   SDLoc SL(Op);
5698 
5699   for (unsigned I = 0; I != InsNumElts; ++I) {
5700     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5701                               DAG.getConstant(I, SL, MVT::i32));
5702     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5703                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5704   }
5705   return Vec;
5706 }
5707 
5708 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5709                                                  SelectionDAG &DAG) const {
5710   SDValue Vec = Op.getOperand(0);
5711   SDValue InsVal = Op.getOperand(1);
5712   SDValue Idx = Op.getOperand(2);
5713   EVT VecVT = Vec.getValueType();
5714   EVT EltVT = VecVT.getVectorElementType();
5715   unsigned VecSize = VecVT.getSizeInBits();
5716   unsigned EltSize = EltVT.getSizeInBits();
5717 
5718 
5719   assert(VecSize <= 64);
5720 
5721   unsigned NumElts = VecVT.getVectorNumElements();
5722   SDLoc SL(Op);
5723   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5724 
5725   if (NumElts == 4 && EltSize == 16 && KIdx) {
5726     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5727 
5728     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5729                                  DAG.getConstant(0, SL, MVT::i32));
5730     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5731                                  DAG.getConstant(1, SL, MVT::i32));
5732 
5733     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5734     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5735 
5736     unsigned Idx = KIdx->getZExtValue();
5737     bool InsertLo = Idx < 2;
5738     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5739       InsertLo ? LoVec : HiVec,
5740       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5741       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5742 
5743     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5744 
5745     SDValue Concat = InsertLo ?
5746       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5747       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5748 
5749     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5750   }
5751 
5752   if (isa<ConstantSDNode>(Idx))
5753     return SDValue();
5754 
5755   MVT IntVT = MVT::getIntegerVT(VecSize);
5756 
5757   // Avoid stack access for dynamic indexing.
5758   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5759 
5760   // Create a congruent vector with the target value in each element so that
5761   // the required element can be masked and ORed into the target vector.
5762   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5763                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5764 
5765   assert(isPowerOf2_32(EltSize));
5766   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5767 
5768   // Convert vector index to bit-index.
5769   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5770 
5771   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5772   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5773                             DAG.getConstant(0xffff, SL, IntVT),
5774                             ScaledIdx);
5775 
5776   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5777   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5778                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5779 
5780   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5781   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5782 }
5783 
5784 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5785                                                   SelectionDAG &DAG) const {
5786   SDLoc SL(Op);
5787 
5788   EVT ResultVT = Op.getValueType();
5789   SDValue Vec = Op.getOperand(0);
5790   SDValue Idx = Op.getOperand(1);
5791   EVT VecVT = Vec.getValueType();
5792   unsigned VecSize = VecVT.getSizeInBits();
5793   EVT EltVT = VecVT.getVectorElementType();
5794 
5795   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5796 
5797   // Make sure we do any optimizations that will make it easier to fold
5798   // source modifiers before obscuring it with bit operations.
5799 
5800   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5801   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5802     return Combined;
5803 
5804   if (VecSize == 128) {
5805     SDValue Lo, Hi;
5806     EVT LoVT, HiVT;
5807     SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec);
5808     std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5809     Lo =
5810         DAG.getBitcast(LoVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64,
5811                                          V2, DAG.getConstant(0, SL, MVT::i32)));
5812     Hi =
5813         DAG.getBitcast(HiVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64,
5814                                          V2, DAG.getConstant(1, SL, MVT::i32)));
5815     EVT IdxVT = Idx.getValueType();
5816     unsigned NElem = VecVT.getVectorNumElements();
5817     assert(isPowerOf2_32(NElem));
5818     SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT);
5819     SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask);
5820     SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT);
5821     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx);
5822   }
5823 
5824   assert(VecSize <= 64);
5825 
5826   unsigned EltSize = EltVT.getSizeInBits();
5827   assert(isPowerOf2_32(EltSize));
5828 
5829   MVT IntVT = MVT::getIntegerVT(VecSize);
5830   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5831 
5832   // Convert vector index to bit-index (* EltSize)
5833   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5834 
5835   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5836   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5837 
5838   if (ResultVT == MVT::f16) {
5839     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5840     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5841   }
5842 
5843   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5844 }
5845 
5846 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5847   assert(Elt % 2 == 0);
5848   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5849 }
5850 
5851 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5852                                               SelectionDAG &DAG) const {
5853   SDLoc SL(Op);
5854   EVT ResultVT = Op.getValueType();
5855   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5856 
5857   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5858   EVT EltVT = PackVT.getVectorElementType();
5859   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5860 
5861   // vector_shuffle <0,1,6,7> lhs, rhs
5862   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5863   //
5864   // vector_shuffle <6,7,2,3> lhs, rhs
5865   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5866   //
5867   // vector_shuffle <6,7,0,1> lhs, rhs
5868   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5869 
5870   // Avoid scalarizing when both halves are reading from consecutive elements.
5871   SmallVector<SDValue, 4> Pieces;
5872   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5873     if (elementPairIsContiguous(SVN->getMask(), I)) {
5874       const int Idx = SVN->getMaskElt(I);
5875       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5876       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5877       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5878                                     PackVT, SVN->getOperand(VecIdx),
5879                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5880       Pieces.push_back(SubVec);
5881     } else {
5882       const int Idx0 = SVN->getMaskElt(I);
5883       const int Idx1 = SVN->getMaskElt(I + 1);
5884       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5885       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5886       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5887       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5888 
5889       SDValue Vec0 = SVN->getOperand(VecIdx0);
5890       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5891                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5892 
5893       SDValue Vec1 = SVN->getOperand(VecIdx1);
5894       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5895                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5896       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5897     }
5898   }
5899 
5900   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5901 }
5902 
5903 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5904                                             SelectionDAG &DAG) const {
5905   SDLoc SL(Op);
5906   EVT VT = Op.getValueType();
5907 
5908   if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5909       VT == MVT::v8i16 || VT == MVT::v8f16) {
5910     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
5911                                   VT.getVectorNumElements() / 2);
5912     MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits());
5913 
5914     // Turn into pair of packed build_vectors.
5915     // TODO: Special case for constants that can be materialized with s_mov_b64.
5916     SmallVector<SDValue, 4> LoOps, HiOps;
5917     for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) {
5918       LoOps.push_back(Op.getOperand(I));
5919       HiOps.push_back(Op.getOperand(I + E));
5920     }
5921     SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps);
5922     SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps);
5923 
5924     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo);
5925     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi);
5926 
5927     SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL,
5928                                        { CastLo, CastHi });
5929     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5930   }
5931 
5932   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5933   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5934 
5935   SDValue Lo = Op.getOperand(0);
5936   SDValue Hi = Op.getOperand(1);
5937 
5938   // Avoid adding defined bits with the zero_extend.
5939   if (Hi.isUndef()) {
5940     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5941     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5942     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5943   }
5944 
5945   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5946   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5947 
5948   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5949                               DAG.getConstant(16, SL, MVT::i32));
5950   if (Lo.isUndef())
5951     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5952 
5953   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5954   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5955 
5956   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5957   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5958 }
5959 
5960 bool
5961 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5962   // We can fold offsets for anything that doesn't require a GOT relocation.
5963   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5964           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5965           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5966          !shouldEmitGOTReloc(GA->getGlobal());
5967 }
5968 
5969 static SDValue
5970 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5971                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
5972                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5973   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5974   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5975   // lowered to the following code sequence:
5976   //
5977   // For constant address space:
5978   //   s_getpc_b64 s[0:1]
5979   //   s_add_u32 s0, s0, $symbol
5980   //   s_addc_u32 s1, s1, 0
5981   //
5982   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5983   //   a fixup or relocation is emitted to replace $symbol with a literal
5984   //   constant, which is a pc-relative offset from the encoding of the $symbol
5985   //   operand to the global variable.
5986   //
5987   // For global address space:
5988   //   s_getpc_b64 s[0:1]
5989   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5990   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5991   //
5992   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5993   //   fixups or relocations are emitted to replace $symbol@*@lo and
5994   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5995   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5996   //   operand to the global variable.
5997   //
5998   // What we want here is an offset from the value returned by s_getpc
5999   // (which is the address of the s_add_u32 instruction) to the global
6000   // variable, but since the encoding of $symbol starts 4 bytes after the start
6001   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
6002   // small. This requires us to add 4 to the global variable offset in order to
6003   // compute the correct address. Similarly for the s_addc_u32 instruction, the
6004   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
6005   // instruction.
6006   SDValue PtrLo =
6007       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
6008   SDValue PtrHi;
6009   if (GAFlags == SIInstrInfo::MO_NONE) {
6010     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
6011   } else {
6012     PtrHi =
6013         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
6014   }
6015   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
6016 }
6017 
6018 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
6019                                              SDValue Op,
6020                                              SelectionDAG &DAG) const {
6021   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
6022   SDLoc DL(GSD);
6023   EVT PtrVT = Op.getValueType();
6024 
6025   const GlobalValue *GV = GSD->getGlobal();
6026   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
6027        shouldUseLDSConstAddress(GV)) ||
6028       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
6029       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
6030     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
6031         GV->hasExternalLinkage()) {
6032       Type *Ty = GV->getValueType();
6033       // HIP uses an unsized array `extern __shared__ T s[]` or similar
6034       // zero-sized type in other languages to declare the dynamic shared
6035       // memory which size is not known at the compile time. They will be
6036       // allocated by the runtime and placed directly after the static
6037       // allocated ones. They all share the same offset.
6038       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
6039         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
6040         // Adjust alignment for that dynamic shared memory array.
6041         MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
6042         return SDValue(
6043             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
6044       }
6045     }
6046     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
6047   }
6048 
6049   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
6050     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
6051                                             SIInstrInfo::MO_ABS32_LO);
6052     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
6053   }
6054 
6055   if (shouldEmitFixup(GV))
6056     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
6057   else if (shouldEmitPCReloc(GV))
6058     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
6059                                    SIInstrInfo::MO_REL32);
6060 
6061   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
6062                                             SIInstrInfo::MO_GOTPCREL32);
6063 
6064   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
6065   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
6066   const DataLayout &DataLayout = DAG.getDataLayout();
6067   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
6068   MachinePointerInfo PtrInfo
6069     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
6070 
6071   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
6072                      MachineMemOperand::MODereferenceable |
6073                          MachineMemOperand::MOInvariant);
6074 }
6075 
6076 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
6077                                    const SDLoc &DL, SDValue V) const {
6078   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
6079   // the destination register.
6080   //
6081   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
6082   // so we will end up with redundant moves to m0.
6083   //
6084   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
6085 
6086   // A Null SDValue creates a glue result.
6087   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
6088                                   V, Chain);
6089   return SDValue(M0, 0);
6090 }
6091 
6092 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
6093                                                  SDValue Op,
6094                                                  MVT VT,
6095                                                  unsigned Offset) const {
6096   SDLoc SL(Op);
6097   SDValue Param = lowerKernargMemParameter(
6098       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
6099   // The local size values will have the hi 16-bits as zero.
6100   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
6101                      DAG.getValueType(VT));
6102 }
6103 
6104 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6105                                         EVT VT) {
6106   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6107                                       "non-hsa intrinsic with hsa target",
6108                                       DL.getDebugLoc());
6109   DAG.getContext()->diagnose(BadIntrin);
6110   return DAG.getUNDEF(VT);
6111 }
6112 
6113 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6114                                          EVT VT) {
6115   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6116                                       "intrinsic not supported on subtarget",
6117                                       DL.getDebugLoc());
6118   DAG.getContext()->diagnose(BadIntrin);
6119   return DAG.getUNDEF(VT);
6120 }
6121 
6122 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
6123                                     ArrayRef<SDValue> Elts) {
6124   assert(!Elts.empty());
6125   MVT Type;
6126   unsigned NumElts = Elts.size();
6127 
6128   if (NumElts <= 8) {
6129     Type = MVT::getVectorVT(MVT::f32, NumElts);
6130   } else {
6131     assert(Elts.size() <= 16);
6132     Type = MVT::v16f32;
6133     NumElts = 16;
6134   }
6135 
6136   SmallVector<SDValue, 16> VecElts(NumElts);
6137   for (unsigned i = 0; i < Elts.size(); ++i) {
6138     SDValue Elt = Elts[i];
6139     if (Elt.getValueType() != MVT::f32)
6140       Elt = DAG.getBitcast(MVT::f32, Elt);
6141     VecElts[i] = Elt;
6142   }
6143   for (unsigned i = Elts.size(); i < NumElts; ++i)
6144     VecElts[i] = DAG.getUNDEF(MVT::f32);
6145 
6146   if (NumElts == 1)
6147     return VecElts[0];
6148   return DAG.getBuildVector(Type, DL, VecElts);
6149 }
6150 
6151 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
6152                               SDValue Src, int ExtraElts) {
6153   EVT SrcVT = Src.getValueType();
6154 
6155   SmallVector<SDValue, 8> Elts;
6156 
6157   if (SrcVT.isVector())
6158     DAG.ExtractVectorElements(Src, Elts);
6159   else
6160     Elts.push_back(Src);
6161 
6162   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
6163   while (ExtraElts--)
6164     Elts.push_back(Undef);
6165 
6166   return DAG.getBuildVector(CastVT, DL, Elts);
6167 }
6168 
6169 // Re-construct the required return value for a image load intrinsic.
6170 // This is more complicated due to the optional use TexFailCtrl which means the required
6171 // return type is an aggregate
6172 static SDValue constructRetValue(SelectionDAG &DAG,
6173                                  MachineSDNode *Result,
6174                                  ArrayRef<EVT> ResultTypes,
6175                                  bool IsTexFail, bool Unpacked, bool IsD16,
6176                                  int DMaskPop, int NumVDataDwords,
6177                                  const SDLoc &DL) {
6178   // Determine the required return type. This is the same regardless of IsTexFail flag
6179   EVT ReqRetVT = ResultTypes[0];
6180   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
6181   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6182     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
6183 
6184   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6185     DMaskPop : (DMaskPop + 1) / 2;
6186 
6187   MVT DataDwordVT = NumDataDwords == 1 ?
6188     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
6189 
6190   MVT MaskPopVT = MaskPopDwords == 1 ?
6191     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
6192 
6193   SDValue Data(Result, 0);
6194   SDValue TexFail;
6195 
6196   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
6197     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
6198     if (MaskPopVT.isVector()) {
6199       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
6200                          SDValue(Result, 0), ZeroIdx);
6201     } else {
6202       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
6203                          SDValue(Result, 0), ZeroIdx);
6204     }
6205   }
6206 
6207   if (DataDwordVT.isVector())
6208     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
6209                           NumDataDwords - MaskPopDwords);
6210 
6211   if (IsD16)
6212     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
6213 
6214   EVT LegalReqRetVT = ReqRetVT;
6215   if (!ReqRetVT.isVector()) {
6216     if (!Data.getValueType().isInteger())
6217       Data = DAG.getNode(ISD::BITCAST, DL,
6218                          Data.getValueType().changeTypeToInteger(), Data);
6219     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
6220   } else {
6221     // We need to widen the return vector to a legal type
6222     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
6223         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
6224       LegalReqRetVT =
6225           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
6226                            ReqRetVT.getVectorNumElements() + 1);
6227     }
6228   }
6229   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
6230 
6231   if (IsTexFail) {
6232     TexFail =
6233         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
6234                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
6235 
6236     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
6237   }
6238 
6239   if (Result->getNumValues() == 1)
6240     return Data;
6241 
6242   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
6243 }
6244 
6245 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
6246                          SDValue *LWE, bool &IsTexFail) {
6247   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
6248 
6249   uint64_t Value = TexFailCtrlConst->getZExtValue();
6250   if (Value) {
6251     IsTexFail = true;
6252   }
6253 
6254   SDLoc DL(TexFailCtrlConst);
6255   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
6256   Value &= ~(uint64_t)0x1;
6257   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
6258   Value &= ~(uint64_t)0x2;
6259 
6260   return Value == 0;
6261 }
6262 
6263 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
6264                                       MVT PackVectorVT,
6265                                       SmallVectorImpl<SDValue> &PackedAddrs,
6266                                       unsigned DimIdx, unsigned EndIdx,
6267                                       unsigned NumGradients) {
6268   SDLoc DL(Op);
6269   for (unsigned I = DimIdx; I < EndIdx; I++) {
6270     SDValue Addr = Op.getOperand(I);
6271 
6272     // Gradients are packed with undef for each coordinate.
6273     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
6274     // 1D: undef,dx/dh; undef,dx/dv
6275     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
6276     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
6277     if (((I + 1) >= EndIdx) ||
6278         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
6279                                          I == DimIdx + NumGradients - 1))) {
6280       if (Addr.getValueType() != MVT::i16)
6281         Addr = DAG.getBitcast(MVT::i16, Addr);
6282       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
6283     } else {
6284       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
6285       I++;
6286     }
6287     Addr = DAG.getBitcast(MVT::f32, Addr);
6288     PackedAddrs.push_back(Addr);
6289   }
6290 }
6291 
6292 SDValue SITargetLowering::lowerImage(SDValue Op,
6293                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
6294                                      SelectionDAG &DAG, bool WithChain) const {
6295   SDLoc DL(Op);
6296   MachineFunction &MF = DAG.getMachineFunction();
6297   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
6298   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
6299       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
6300   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
6301   unsigned IntrOpcode = Intr->BaseOpcode;
6302   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6303 
6304   SmallVector<EVT, 3> ResultTypes(Op->values());
6305   SmallVector<EVT, 3> OrigResultTypes(Op->values());
6306   bool IsD16 = false;
6307   bool IsG16 = false;
6308   bool IsA16 = false;
6309   SDValue VData;
6310   int NumVDataDwords;
6311   bool AdjustRetType = false;
6312 
6313   // Offset of intrinsic arguments
6314   const unsigned ArgOffset = WithChain ? 2 : 1;
6315 
6316   unsigned DMask;
6317   unsigned DMaskLanes = 0;
6318 
6319   if (BaseOpcode->Atomic) {
6320     VData = Op.getOperand(2);
6321 
6322     bool Is64Bit = VData.getValueType() == MVT::i64;
6323     if (BaseOpcode->AtomicX2) {
6324       SDValue VData2 = Op.getOperand(3);
6325       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6326                                  {VData, VData2});
6327       if (Is64Bit)
6328         VData = DAG.getBitcast(MVT::v4i32, VData);
6329 
6330       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6331       DMask = Is64Bit ? 0xf : 0x3;
6332       NumVDataDwords = Is64Bit ? 4 : 2;
6333     } else {
6334       DMask = Is64Bit ? 0x3 : 0x1;
6335       NumVDataDwords = Is64Bit ? 2 : 1;
6336     }
6337   } else {
6338     auto *DMaskConst =
6339         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6340     DMask = DMaskConst->getZExtValue();
6341     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6342 
6343     if (BaseOpcode->Store) {
6344       VData = Op.getOperand(2);
6345 
6346       MVT StoreVT = VData.getSimpleValueType();
6347       if (StoreVT.getScalarType() == MVT::f16) {
6348         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6349           return Op; // D16 is unsupported for this instruction
6350 
6351         IsD16 = true;
6352         VData = handleD16VData(VData, DAG, true);
6353       }
6354 
6355       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6356     } else {
6357       // Work out the num dwords based on the dmask popcount and underlying type
6358       // and whether packing is supported.
6359       MVT LoadVT = ResultTypes[0].getSimpleVT();
6360       if (LoadVT.getScalarType() == MVT::f16) {
6361         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6362           return Op; // D16 is unsupported for this instruction
6363 
6364         IsD16 = true;
6365       }
6366 
6367       // Confirm that the return type is large enough for the dmask specified
6368       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6369           (!LoadVT.isVector() && DMaskLanes > 1))
6370           return Op;
6371 
6372       // The sq block of gfx8 and gfx9 do not estimate register use correctly
6373       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6374       // instructions.
6375       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6376           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6377         NumVDataDwords = (DMaskLanes + 1) / 2;
6378       else
6379         NumVDataDwords = DMaskLanes;
6380 
6381       AdjustRetType = true;
6382     }
6383   }
6384 
6385   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6386   SmallVector<SDValue, 4> VAddrs;
6387 
6388   // Check for 16 bit addresses or derivatives and pack if true.
6389   MVT VAddrVT =
6390       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6391   MVT VAddrScalarVT = VAddrVT.getScalarType();
6392   MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6393   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6394 
6395   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6396   VAddrScalarVT = VAddrVT.getScalarType();
6397   MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6398   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6399 
6400   // Push back extra arguments.
6401   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) {
6402     if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) {
6403       assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
6404       // Special handling of bias when A16 is on. Bias is of type half but
6405       // occupies full 32-bit.
6406       SDValue Bias = DAG.getBuildVector(
6407           MVT::v2f16, DL,
6408           {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)});
6409       VAddrs.push_back(Bias);
6410     } else {
6411       assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
6412              "Bias needs to be converted to 16 bit in A16 mode");
6413       VAddrs.push_back(Op.getOperand(ArgOffset + I));
6414     }
6415   }
6416 
6417   if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6418     // 16 bit gradients are supported, but are tied to the A16 control
6419     // so both gradients and addresses must be 16 bit
6420     LLVM_DEBUG(
6421         dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6422                   "require 16 bit args for both gradients and addresses");
6423     return Op;
6424   }
6425 
6426   if (IsA16) {
6427     if (!ST->hasA16()) {
6428       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6429                            "support 16 bit addresses\n");
6430       return Op;
6431     }
6432   }
6433 
6434   // We've dealt with incorrect input so we know that if IsA16, IsG16
6435   // are set then we have to compress/pack operands (either address,
6436   // gradient or both)
6437   // In the case where a16 and gradients are tied (no G16 support) then we
6438   // have already verified that both IsA16 and IsG16 are true
6439   if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6440     // Activate g16
6441     const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6442         AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6443     IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6444   }
6445 
6446   // Add gradients (packed or unpacked)
6447   if (IsG16) {
6448     // Pack the gradients
6449     // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6450     packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6451                               ArgOffset + Intr->GradientStart,
6452                               ArgOffset + Intr->CoordStart, Intr->NumGradients);
6453   } else {
6454     for (unsigned I = ArgOffset + Intr->GradientStart;
6455          I < ArgOffset + Intr->CoordStart; I++)
6456       VAddrs.push_back(Op.getOperand(I));
6457   }
6458 
6459   // Add addresses (packed or unpacked)
6460   if (IsA16) {
6461     packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6462                               ArgOffset + Intr->CoordStart, VAddrEnd,
6463                               0 /* No gradients */);
6464   } else {
6465     // Add uncompressed address
6466     for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6467       VAddrs.push_back(Op.getOperand(I));
6468   }
6469 
6470   // If the register allocator cannot place the address registers contiguously
6471   // without introducing moves, then using the non-sequential address encoding
6472   // is always preferable, since it saves VALU instructions and is usually a
6473   // wash in terms of code size or even better.
6474   //
6475   // However, we currently have no way of hinting to the register allocator that
6476   // MIMG addresses should be placed contiguously when it is possible to do so,
6477   // so force non-NSA for the common 2-address case as a heuristic.
6478   //
6479   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6480   // allocation when possible.
6481   bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) &&
6482                 VAddrs.size() >= 3 &&
6483                 VAddrs.size() <= (unsigned)ST->getNSAMaxSize();
6484   SDValue VAddr;
6485   if (!UseNSA)
6486     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6487 
6488   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6489   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6490   SDValue Unorm;
6491   if (!BaseOpcode->Sampler) {
6492     Unorm = True;
6493   } else {
6494     auto UnormConst =
6495         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6496 
6497     Unorm = UnormConst->getZExtValue() ? True : False;
6498   }
6499 
6500   SDValue TFE;
6501   SDValue LWE;
6502   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6503   bool IsTexFail = false;
6504   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6505     return Op;
6506 
6507   if (IsTexFail) {
6508     if (!DMaskLanes) {
6509       // Expecting to get an error flag since TFC is on - and dmask is 0
6510       // Force dmask to be at least 1 otherwise the instruction will fail
6511       DMask = 0x1;
6512       DMaskLanes = 1;
6513       NumVDataDwords = 1;
6514     }
6515     NumVDataDwords += 1;
6516     AdjustRetType = true;
6517   }
6518 
6519   // Has something earlier tagged that the return type needs adjusting
6520   // This happens if the instruction is a load or has set TexFailCtrl flags
6521   if (AdjustRetType) {
6522     // NumVDataDwords reflects the true number of dwords required in the return type
6523     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6524       // This is a no-op load. This can be eliminated
6525       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6526       if (isa<MemSDNode>(Op))
6527         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6528       return Undef;
6529     }
6530 
6531     EVT NewVT = NumVDataDwords > 1 ?
6532                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6533                 : MVT::i32;
6534 
6535     ResultTypes[0] = NewVT;
6536     if (ResultTypes.size() == 3) {
6537       // Original result was aggregate type used for TexFailCtrl results
6538       // The actual instruction returns as a vector type which has now been
6539       // created. Remove the aggregate result.
6540       ResultTypes.erase(&ResultTypes[1]);
6541     }
6542   }
6543 
6544   unsigned CPol = cast<ConstantSDNode>(
6545       Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6546   if (BaseOpcode->Atomic)
6547     CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6548   if (CPol & ~AMDGPU::CPol::ALL)
6549     return Op;
6550 
6551   SmallVector<SDValue, 26> Ops;
6552   if (BaseOpcode->Store || BaseOpcode->Atomic)
6553     Ops.push_back(VData); // vdata
6554   if (UseNSA)
6555     append_range(Ops, VAddrs);
6556   else
6557     Ops.push_back(VAddr);
6558   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6559   if (BaseOpcode->Sampler)
6560     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6561   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6562   if (IsGFX10Plus)
6563     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6564   Ops.push_back(Unorm);
6565   Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6566   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6567                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6568   if (IsGFX10Plus)
6569     Ops.push_back(IsA16 ? True : False);
6570   if (!Subtarget->hasGFX90AInsts()) {
6571     Ops.push_back(TFE); //tfe
6572   } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6573     report_fatal_error("TFE is not supported on this GPU");
6574   }
6575   Ops.push_back(LWE); // lwe
6576   if (!IsGFX10Plus)
6577     Ops.push_back(DimInfo->DA ? True : False);
6578   if (BaseOpcode->HasD16)
6579     Ops.push_back(IsD16 ? True : False);
6580   if (isa<MemSDNode>(Op))
6581     Ops.push_back(Op.getOperand(0)); // chain
6582 
6583   int NumVAddrDwords =
6584       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6585   int Opcode = -1;
6586 
6587   if (IsGFX10Plus) {
6588     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6589                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6590                                           : AMDGPU::MIMGEncGfx10Default,
6591                                    NumVDataDwords, NumVAddrDwords);
6592   } else {
6593     if (Subtarget->hasGFX90AInsts()) {
6594       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
6595                                      NumVDataDwords, NumVAddrDwords);
6596       if (Opcode == -1)
6597         report_fatal_error(
6598             "requested image instruction is not supported on this GPU");
6599     }
6600     if (Opcode == -1 &&
6601         Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6602       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6603                                      NumVDataDwords, NumVAddrDwords);
6604     if (Opcode == -1)
6605       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6606                                      NumVDataDwords, NumVAddrDwords);
6607   }
6608   assert(Opcode != -1);
6609 
6610   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6611   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6612     MachineMemOperand *MemRef = MemOp->getMemOperand();
6613     DAG.setNodeMemRefs(NewNode, {MemRef});
6614   }
6615 
6616   if (BaseOpcode->AtomicX2) {
6617     SmallVector<SDValue, 1> Elt;
6618     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6619     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6620   }
6621   if (BaseOpcode->Store)
6622     return SDValue(NewNode, 0);
6623   return constructRetValue(DAG, NewNode,
6624                            OrigResultTypes, IsTexFail,
6625                            Subtarget->hasUnpackedD16VMem(), IsD16,
6626                            DMaskLanes, NumVDataDwords, DL);
6627 }
6628 
6629 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6630                                        SDValue Offset, SDValue CachePolicy,
6631                                        SelectionDAG &DAG) const {
6632   MachineFunction &MF = DAG.getMachineFunction();
6633 
6634   const DataLayout &DataLayout = DAG.getDataLayout();
6635   Align Alignment =
6636       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6637 
6638   MachineMemOperand *MMO = MF.getMachineMemOperand(
6639       MachinePointerInfo(),
6640       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6641           MachineMemOperand::MOInvariant,
6642       VT.getStoreSize(), Alignment);
6643 
6644   if (!Offset->isDivergent()) {
6645     SDValue Ops[] = {
6646         Rsrc,
6647         Offset, // Offset
6648         CachePolicy
6649     };
6650 
6651     // Widen vec3 load to vec4.
6652     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6653       EVT WidenedVT =
6654           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6655       auto WidenedOp = DAG.getMemIntrinsicNode(
6656           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6657           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6658       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6659                                    DAG.getVectorIdxConstant(0, DL));
6660       return Subvector;
6661     }
6662 
6663     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6664                                    DAG.getVTList(VT), Ops, VT, MMO);
6665   }
6666 
6667   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6668   // assume that the buffer is unswizzled.
6669   SmallVector<SDValue, 4> Loads;
6670   unsigned NumLoads = 1;
6671   MVT LoadVT = VT.getSimpleVT();
6672   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6673   assert((LoadVT.getScalarType() == MVT::i32 ||
6674           LoadVT.getScalarType() == MVT::f32));
6675 
6676   if (NumElts == 8 || NumElts == 16) {
6677     NumLoads = NumElts / 4;
6678     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6679   }
6680 
6681   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6682   SDValue Ops[] = {
6683       DAG.getEntryNode(),                               // Chain
6684       Rsrc,                                             // rsrc
6685       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6686       {},                                               // voffset
6687       {},                                               // soffset
6688       {},                                               // offset
6689       CachePolicy,                                      // cachepolicy
6690       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6691   };
6692 
6693   // Use the alignment to ensure that the required offsets will fit into the
6694   // immediate offsets.
6695   setBufferOffsets(Offset, DAG, &Ops[3],
6696                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6697 
6698   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6699   for (unsigned i = 0; i < NumLoads; ++i) {
6700     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6701     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6702                                         LoadVT, MMO, DAG));
6703   }
6704 
6705   if (NumElts == 8 || NumElts == 16)
6706     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6707 
6708   return Loads[0];
6709 }
6710 
6711 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6712                                                   SelectionDAG &DAG) const {
6713   MachineFunction &MF = DAG.getMachineFunction();
6714   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6715 
6716   EVT VT = Op.getValueType();
6717   SDLoc DL(Op);
6718   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6719 
6720   // TODO: Should this propagate fast-math-flags?
6721 
6722   switch (IntrinsicID) {
6723   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6724     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6725       return emitNonHSAIntrinsicError(DAG, DL, VT);
6726     return getPreloadedValue(DAG, *MFI, VT,
6727                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6728   }
6729   case Intrinsic::amdgcn_dispatch_ptr:
6730   case Intrinsic::amdgcn_queue_ptr: {
6731     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6732       DiagnosticInfoUnsupported BadIntrin(
6733           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6734           DL.getDebugLoc());
6735       DAG.getContext()->diagnose(BadIntrin);
6736       return DAG.getUNDEF(VT);
6737     }
6738 
6739     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6740       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6741     return getPreloadedValue(DAG, *MFI, VT, RegID);
6742   }
6743   case Intrinsic::amdgcn_implicitarg_ptr: {
6744     if (MFI->isEntryFunction())
6745       return getImplicitArgPtr(DAG, DL);
6746     return getPreloadedValue(DAG, *MFI, VT,
6747                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6748   }
6749   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6750     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6751       // This only makes sense to call in a kernel, so just lower to null.
6752       return DAG.getConstant(0, DL, VT);
6753     }
6754 
6755     return getPreloadedValue(DAG, *MFI, VT,
6756                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6757   }
6758   case Intrinsic::amdgcn_dispatch_id: {
6759     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6760   }
6761   case Intrinsic::amdgcn_rcp:
6762     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6763   case Intrinsic::amdgcn_rsq:
6764     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6765   case Intrinsic::amdgcn_rsq_legacy:
6766     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6767       return emitRemovedIntrinsicError(DAG, DL, VT);
6768     return SDValue();
6769   case Intrinsic::amdgcn_rcp_legacy:
6770     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6771       return emitRemovedIntrinsicError(DAG, DL, VT);
6772     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6773   case Intrinsic::amdgcn_rsq_clamp: {
6774     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6775       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6776 
6777     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6778     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6779     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6780 
6781     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6782     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6783                               DAG.getConstantFP(Max, DL, VT));
6784     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6785                        DAG.getConstantFP(Min, DL, VT));
6786   }
6787   case Intrinsic::r600_read_ngroups_x:
6788     if (Subtarget->isAmdHsaOS())
6789       return emitNonHSAIntrinsicError(DAG, DL, VT);
6790 
6791     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6792                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6793                                     false);
6794   case Intrinsic::r600_read_ngroups_y:
6795     if (Subtarget->isAmdHsaOS())
6796       return emitNonHSAIntrinsicError(DAG, DL, VT);
6797 
6798     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6799                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6800                                     false);
6801   case Intrinsic::r600_read_ngroups_z:
6802     if (Subtarget->isAmdHsaOS())
6803       return emitNonHSAIntrinsicError(DAG, DL, VT);
6804 
6805     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6806                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6807                                     false);
6808   case Intrinsic::r600_read_global_size_x:
6809     if (Subtarget->isAmdHsaOS())
6810       return emitNonHSAIntrinsicError(DAG, DL, VT);
6811 
6812     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6813                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6814                                     Align(4), false);
6815   case Intrinsic::r600_read_global_size_y:
6816     if (Subtarget->isAmdHsaOS())
6817       return emitNonHSAIntrinsicError(DAG, DL, VT);
6818 
6819     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6820                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6821                                     Align(4), false);
6822   case Intrinsic::r600_read_global_size_z:
6823     if (Subtarget->isAmdHsaOS())
6824       return emitNonHSAIntrinsicError(DAG, DL, VT);
6825 
6826     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6827                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6828                                     Align(4), false);
6829   case Intrinsic::r600_read_local_size_x:
6830     if (Subtarget->isAmdHsaOS())
6831       return emitNonHSAIntrinsicError(DAG, DL, VT);
6832 
6833     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6834                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6835   case Intrinsic::r600_read_local_size_y:
6836     if (Subtarget->isAmdHsaOS())
6837       return emitNonHSAIntrinsicError(DAG, DL, VT);
6838 
6839     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6840                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6841   case Intrinsic::r600_read_local_size_z:
6842     if (Subtarget->isAmdHsaOS())
6843       return emitNonHSAIntrinsicError(DAG, DL, VT);
6844 
6845     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6846                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6847   case Intrinsic::amdgcn_workgroup_id_x:
6848     return getPreloadedValue(DAG, *MFI, VT,
6849                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6850   case Intrinsic::amdgcn_workgroup_id_y:
6851     return getPreloadedValue(DAG, *MFI, VT,
6852                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6853   case Intrinsic::amdgcn_workgroup_id_z:
6854     return getPreloadedValue(DAG, *MFI, VT,
6855                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6856   case Intrinsic::amdgcn_workitem_id_x:
6857     if (Subtarget->getMaxWorkitemID(MF.getFunction(), 0) == 0)
6858       return DAG.getConstant(0, DL, MVT::i32);
6859 
6860     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6861                           SDLoc(DAG.getEntryNode()),
6862                           MFI->getArgInfo().WorkItemIDX);
6863   case Intrinsic::amdgcn_workitem_id_y:
6864     if (Subtarget->getMaxWorkitemID(MF.getFunction(), 1) == 0)
6865       return DAG.getConstant(0, DL, MVT::i32);
6866 
6867     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6868                           SDLoc(DAG.getEntryNode()),
6869                           MFI->getArgInfo().WorkItemIDY);
6870   case Intrinsic::amdgcn_workitem_id_z:
6871     if (Subtarget->getMaxWorkitemID(MF.getFunction(), 2) == 0)
6872       return DAG.getConstant(0, DL, MVT::i32);
6873 
6874     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6875                           SDLoc(DAG.getEntryNode()),
6876                           MFI->getArgInfo().WorkItemIDZ);
6877   case Intrinsic::amdgcn_wavefrontsize:
6878     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6879                            SDLoc(Op), MVT::i32);
6880   case Intrinsic::amdgcn_s_buffer_load: {
6881     unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6882     if (CPol & ~AMDGPU::CPol::ALL)
6883       return Op;
6884     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6885                         DAG);
6886   }
6887   case Intrinsic::amdgcn_fdiv_fast:
6888     return lowerFDIV_FAST(Op, DAG);
6889   case Intrinsic::amdgcn_sin:
6890     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6891 
6892   case Intrinsic::amdgcn_cos:
6893     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6894 
6895   case Intrinsic::amdgcn_mul_u24:
6896     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6897   case Intrinsic::amdgcn_mul_i24:
6898     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6899 
6900   case Intrinsic::amdgcn_log_clamp: {
6901     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6902       return SDValue();
6903 
6904     return emitRemovedIntrinsicError(DAG, DL, VT);
6905   }
6906   case Intrinsic::amdgcn_ldexp:
6907     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6908                        Op.getOperand(1), Op.getOperand(2));
6909 
6910   case Intrinsic::amdgcn_fract:
6911     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6912 
6913   case Intrinsic::amdgcn_class:
6914     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6915                        Op.getOperand(1), Op.getOperand(2));
6916   case Intrinsic::amdgcn_div_fmas:
6917     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6918                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6919                        Op.getOperand(4));
6920 
6921   case Intrinsic::amdgcn_div_fixup:
6922     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6923                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6924 
6925   case Intrinsic::amdgcn_div_scale: {
6926     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6927 
6928     // Translate to the operands expected by the machine instruction. The
6929     // first parameter must be the same as the first instruction.
6930     SDValue Numerator = Op.getOperand(1);
6931     SDValue Denominator = Op.getOperand(2);
6932 
6933     // Note this order is opposite of the machine instruction's operations,
6934     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6935     // intrinsic has the numerator as the first operand to match a normal
6936     // division operation.
6937 
6938     SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
6939 
6940     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6941                        Denominator, Numerator);
6942   }
6943   case Intrinsic::amdgcn_icmp: {
6944     // There is a Pat that handles this variant, so return it as-is.
6945     if (Op.getOperand(1).getValueType() == MVT::i1 &&
6946         Op.getConstantOperandVal(2) == 0 &&
6947         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6948       return Op;
6949     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6950   }
6951   case Intrinsic::amdgcn_fcmp: {
6952     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6953   }
6954   case Intrinsic::amdgcn_ballot:
6955     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6956   case Intrinsic::amdgcn_fmed3:
6957     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6958                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6959   case Intrinsic::amdgcn_fdot2:
6960     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6961                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6962                        Op.getOperand(4));
6963   case Intrinsic::amdgcn_fmul_legacy:
6964     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6965                        Op.getOperand(1), Op.getOperand(2));
6966   case Intrinsic::amdgcn_sffbh:
6967     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6968   case Intrinsic::amdgcn_sbfe:
6969     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6970                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6971   case Intrinsic::amdgcn_ubfe:
6972     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6973                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6974   case Intrinsic::amdgcn_cvt_pkrtz:
6975   case Intrinsic::amdgcn_cvt_pknorm_i16:
6976   case Intrinsic::amdgcn_cvt_pknorm_u16:
6977   case Intrinsic::amdgcn_cvt_pk_i16:
6978   case Intrinsic::amdgcn_cvt_pk_u16: {
6979     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6980     EVT VT = Op.getValueType();
6981     unsigned Opcode;
6982 
6983     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6984       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6985     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6986       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6987     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6988       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6989     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6990       Opcode = AMDGPUISD::CVT_PK_I16_I32;
6991     else
6992       Opcode = AMDGPUISD::CVT_PK_U16_U32;
6993 
6994     if (isTypeLegal(VT))
6995       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6996 
6997     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6998                                Op.getOperand(1), Op.getOperand(2));
6999     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
7000   }
7001   case Intrinsic::amdgcn_fmad_ftz:
7002     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
7003                        Op.getOperand(2), Op.getOperand(3));
7004 
7005   case Intrinsic::amdgcn_if_break:
7006     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
7007                                       Op->getOperand(1), Op->getOperand(2)), 0);
7008 
7009   case Intrinsic::amdgcn_groupstaticsize: {
7010     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
7011     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
7012       return Op;
7013 
7014     const Module *M = MF.getFunction().getParent();
7015     const GlobalValue *GV =
7016         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
7017     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
7018                                             SIInstrInfo::MO_ABS32_LO);
7019     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
7020   }
7021   case Intrinsic::amdgcn_is_shared:
7022   case Intrinsic::amdgcn_is_private: {
7023     SDLoc SL(Op);
7024     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
7025       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
7026     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
7027     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
7028                                  Op.getOperand(1));
7029 
7030     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
7031                                 DAG.getConstant(1, SL, MVT::i32));
7032     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
7033   }
7034   case Intrinsic::amdgcn_perm:
7035     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
7036                        Op.getOperand(2), Op.getOperand(3));
7037   case Intrinsic::amdgcn_reloc_constant: {
7038     Module *M = const_cast<Module *>(MF.getFunction().getParent());
7039     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
7040     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
7041     auto RelocSymbol = cast<GlobalVariable>(
7042         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
7043     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
7044                                             SIInstrInfo::MO_ABS32_LO);
7045     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
7046   }
7047   default:
7048     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7049             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7050       return lowerImage(Op, ImageDimIntr, DAG, false);
7051 
7052     return Op;
7053   }
7054 }
7055 
7056 /// Update \p MMO based on the offset inputs to an intrinsic.
7057 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset,
7058                             SDValue SOffset, SDValue Offset,
7059                             SDValue VIndex = SDValue()) {
7060   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
7061       !isa<ConstantSDNode>(Offset)) {
7062     // The combined offset is not known to be constant, so we cannot represent
7063     // it in the MMO. Give up.
7064     MMO->setValue((Value *)nullptr);
7065     return;
7066   }
7067 
7068   if (VIndex && (!isa<ConstantSDNode>(VIndex) ||
7069                  !cast<ConstantSDNode>(VIndex)->isZero())) {
7070     // The strided index component of the address is not known to be zero, so we
7071     // cannot represent it in the MMO. Give up.
7072     MMO->setValue((Value *)nullptr);
7073     return;
7074   }
7075 
7076   MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() +
7077                  cast<ConstantSDNode>(SOffset)->getSExtValue() +
7078                  cast<ConstantSDNode>(Offset)->getSExtValue());
7079 }
7080 
7081 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
7082                                                      SelectionDAG &DAG,
7083                                                      unsigned NewOpcode) const {
7084   SDLoc DL(Op);
7085 
7086   SDValue VData = Op.getOperand(2);
7087   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7088   SDValue Ops[] = {
7089     Op.getOperand(0), // Chain
7090     VData,            // vdata
7091     Op.getOperand(3), // rsrc
7092     DAG.getConstant(0, DL, MVT::i32), // vindex
7093     Offsets.first,    // voffset
7094     Op.getOperand(5), // soffset
7095     Offsets.second,   // offset
7096     Op.getOperand(6), // cachepolicy
7097     DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7098   };
7099 
7100   auto *M = cast<MemSDNode>(Op);
7101   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
7102 
7103   EVT MemVT = VData.getValueType();
7104   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7105                                  M->getMemOperand());
7106 }
7107 
7108 // Return a value to use for the idxen operand by examining the vindex operand.
7109 static unsigned getIdxEn(SDValue VIndex) {
7110   if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex))
7111     // No need to set idxen if vindex is known to be zero.
7112     return VIndexC->getZExtValue() != 0;
7113   return 1;
7114 }
7115 
7116 SDValue
7117 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
7118                                                 unsigned NewOpcode) const {
7119   SDLoc DL(Op);
7120 
7121   SDValue VData = Op.getOperand(2);
7122   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7123   SDValue Ops[] = {
7124     Op.getOperand(0), // Chain
7125     VData,            // vdata
7126     Op.getOperand(3), // rsrc
7127     Op.getOperand(4), // vindex
7128     Offsets.first,    // voffset
7129     Op.getOperand(6), // soffset
7130     Offsets.second,   // offset
7131     Op.getOperand(7), // cachepolicy
7132     DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7133   };
7134 
7135   auto *M = cast<MemSDNode>(Op);
7136   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7137 
7138   EVT MemVT = VData.getValueType();
7139   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7140                                  M->getMemOperand());
7141 }
7142 
7143 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
7144                                                  SelectionDAG &DAG) const {
7145   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7146   SDLoc DL(Op);
7147 
7148   switch (IntrID) {
7149   case Intrinsic::amdgcn_ds_ordered_add:
7150   case Intrinsic::amdgcn_ds_ordered_swap: {
7151     MemSDNode *M = cast<MemSDNode>(Op);
7152     SDValue Chain = M->getOperand(0);
7153     SDValue M0 = M->getOperand(2);
7154     SDValue Value = M->getOperand(3);
7155     unsigned IndexOperand = M->getConstantOperandVal(7);
7156     unsigned WaveRelease = M->getConstantOperandVal(8);
7157     unsigned WaveDone = M->getConstantOperandVal(9);
7158 
7159     unsigned OrderedCountIndex = IndexOperand & 0x3f;
7160     IndexOperand &= ~0x3f;
7161     unsigned CountDw = 0;
7162 
7163     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
7164       CountDw = (IndexOperand >> 24) & 0xf;
7165       IndexOperand &= ~(0xf << 24);
7166 
7167       if (CountDw < 1 || CountDw > 4) {
7168         report_fatal_error(
7169             "ds_ordered_count: dword count must be between 1 and 4");
7170       }
7171     }
7172 
7173     if (IndexOperand)
7174       report_fatal_error("ds_ordered_count: bad index operand");
7175 
7176     if (WaveDone && !WaveRelease)
7177       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
7178 
7179     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
7180     unsigned ShaderType =
7181         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
7182     unsigned Offset0 = OrderedCountIndex << 2;
7183     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
7184                        (Instruction << 4);
7185 
7186     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
7187       Offset1 |= (CountDw - 1) << 6;
7188 
7189     unsigned Offset = Offset0 | (Offset1 << 8);
7190 
7191     SDValue Ops[] = {
7192       Chain,
7193       Value,
7194       DAG.getTargetConstant(Offset, DL, MVT::i16),
7195       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
7196     };
7197     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
7198                                    M->getVTList(), Ops, M->getMemoryVT(),
7199                                    M->getMemOperand());
7200   }
7201   case Intrinsic::amdgcn_ds_fadd: {
7202     MemSDNode *M = cast<MemSDNode>(Op);
7203     unsigned Opc;
7204     switch (IntrID) {
7205     case Intrinsic::amdgcn_ds_fadd:
7206       Opc = ISD::ATOMIC_LOAD_FADD;
7207       break;
7208     }
7209 
7210     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
7211                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
7212                          M->getMemOperand());
7213   }
7214   case Intrinsic::amdgcn_atomic_inc:
7215   case Intrinsic::amdgcn_atomic_dec:
7216   case Intrinsic::amdgcn_ds_fmin:
7217   case Intrinsic::amdgcn_ds_fmax: {
7218     MemSDNode *M = cast<MemSDNode>(Op);
7219     unsigned Opc;
7220     switch (IntrID) {
7221     case Intrinsic::amdgcn_atomic_inc:
7222       Opc = AMDGPUISD::ATOMIC_INC;
7223       break;
7224     case Intrinsic::amdgcn_atomic_dec:
7225       Opc = AMDGPUISD::ATOMIC_DEC;
7226       break;
7227     case Intrinsic::amdgcn_ds_fmin:
7228       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
7229       break;
7230     case Intrinsic::amdgcn_ds_fmax:
7231       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
7232       break;
7233     default:
7234       llvm_unreachable("Unknown intrinsic!");
7235     }
7236     SDValue Ops[] = {
7237       M->getOperand(0), // Chain
7238       M->getOperand(2), // Ptr
7239       M->getOperand(3)  // Value
7240     };
7241 
7242     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
7243                                    M->getMemoryVT(), M->getMemOperand());
7244   }
7245   case Intrinsic::amdgcn_buffer_load:
7246   case Intrinsic::amdgcn_buffer_load_format: {
7247     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7248     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7249     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7250     SDValue Ops[] = {
7251       Op.getOperand(0), // Chain
7252       Op.getOperand(2), // rsrc
7253       Op.getOperand(3), // vindex
7254       SDValue(),        // voffset -- will be set by setBufferOffsets
7255       SDValue(),        // soffset -- will be set by setBufferOffsets
7256       SDValue(),        // offset -- will be set by setBufferOffsets
7257       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7258       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7259     };
7260     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
7261 
7262     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
7263         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
7264 
7265     EVT VT = Op.getValueType();
7266     EVT IntVT = VT.changeTypeToInteger();
7267     auto *M = cast<MemSDNode>(Op);
7268     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7269     EVT LoadVT = Op.getValueType();
7270 
7271     if (LoadVT.getScalarType() == MVT::f16)
7272       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
7273                                  M, DAG, Ops);
7274 
7275     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
7276     if (LoadVT.getScalarType() == MVT::i8 ||
7277         LoadVT.getScalarType() == MVT::i16)
7278       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
7279 
7280     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
7281                                M->getMemOperand(), DAG);
7282   }
7283   case Intrinsic::amdgcn_raw_buffer_load:
7284   case Intrinsic::amdgcn_raw_buffer_load_format: {
7285     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
7286 
7287     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7288     SDValue Ops[] = {
7289       Op.getOperand(0), // Chain
7290       Op.getOperand(2), // rsrc
7291       DAG.getConstant(0, DL, MVT::i32), // vindex
7292       Offsets.first,    // voffset
7293       Op.getOperand(4), // soffset
7294       Offsets.second,   // offset
7295       Op.getOperand(5), // cachepolicy, swizzled buffer
7296       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7297     };
7298 
7299     auto *M = cast<MemSDNode>(Op);
7300     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]);
7301     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
7302   }
7303   case Intrinsic::amdgcn_struct_buffer_load:
7304   case Intrinsic::amdgcn_struct_buffer_load_format: {
7305     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7306 
7307     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7308     SDValue Ops[] = {
7309       Op.getOperand(0), // Chain
7310       Op.getOperand(2), // rsrc
7311       Op.getOperand(3), // vindex
7312       Offsets.first,    // voffset
7313       Op.getOperand(5), // soffset
7314       Offsets.second,   // offset
7315       Op.getOperand(6), // cachepolicy, swizzled buffer
7316       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7317     };
7318 
7319     auto *M = cast<MemSDNode>(Op);
7320     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7321     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7322   }
7323   case Intrinsic::amdgcn_tbuffer_load: {
7324     MemSDNode *M = cast<MemSDNode>(Op);
7325     EVT LoadVT = Op.getValueType();
7326 
7327     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7328     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7329     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7330     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7331     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7332     SDValue Ops[] = {
7333       Op.getOperand(0),  // Chain
7334       Op.getOperand(2),  // rsrc
7335       Op.getOperand(3),  // vindex
7336       Op.getOperand(4),  // voffset
7337       Op.getOperand(5),  // soffset
7338       Op.getOperand(6),  // offset
7339       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7340       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7341       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7342     };
7343 
7344     if (LoadVT.getScalarType() == MVT::f16)
7345       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7346                                  M, DAG, Ops);
7347     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7348                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7349                                DAG);
7350   }
7351   case Intrinsic::amdgcn_raw_tbuffer_load: {
7352     MemSDNode *M = cast<MemSDNode>(Op);
7353     EVT LoadVT = Op.getValueType();
7354     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7355 
7356     SDValue Ops[] = {
7357       Op.getOperand(0),  // Chain
7358       Op.getOperand(2),  // rsrc
7359       DAG.getConstant(0, DL, MVT::i32), // vindex
7360       Offsets.first,     // voffset
7361       Op.getOperand(4),  // soffset
7362       Offsets.second,    // offset
7363       Op.getOperand(5),  // format
7364       Op.getOperand(6),  // cachepolicy, swizzled buffer
7365       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7366     };
7367 
7368     if (LoadVT.getScalarType() == MVT::f16)
7369       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7370                                  M, DAG, Ops);
7371     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7372                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7373                                DAG);
7374   }
7375   case Intrinsic::amdgcn_struct_tbuffer_load: {
7376     MemSDNode *M = cast<MemSDNode>(Op);
7377     EVT LoadVT = Op.getValueType();
7378     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7379 
7380     SDValue Ops[] = {
7381       Op.getOperand(0),  // Chain
7382       Op.getOperand(2),  // rsrc
7383       Op.getOperand(3),  // vindex
7384       Offsets.first,     // voffset
7385       Op.getOperand(5),  // soffset
7386       Offsets.second,    // offset
7387       Op.getOperand(6),  // format
7388       Op.getOperand(7),  // cachepolicy, swizzled buffer
7389       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7390     };
7391 
7392     if (LoadVT.getScalarType() == MVT::f16)
7393       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7394                                  M, DAG, Ops);
7395     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7396                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7397                                DAG);
7398   }
7399   case Intrinsic::amdgcn_buffer_atomic_swap:
7400   case Intrinsic::amdgcn_buffer_atomic_add:
7401   case Intrinsic::amdgcn_buffer_atomic_sub:
7402   case Intrinsic::amdgcn_buffer_atomic_csub:
7403   case Intrinsic::amdgcn_buffer_atomic_smin:
7404   case Intrinsic::amdgcn_buffer_atomic_umin:
7405   case Intrinsic::amdgcn_buffer_atomic_smax:
7406   case Intrinsic::amdgcn_buffer_atomic_umax:
7407   case Intrinsic::amdgcn_buffer_atomic_and:
7408   case Intrinsic::amdgcn_buffer_atomic_or:
7409   case Intrinsic::amdgcn_buffer_atomic_xor:
7410   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7411     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7412     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7413     SDValue Ops[] = {
7414       Op.getOperand(0), // Chain
7415       Op.getOperand(2), // vdata
7416       Op.getOperand(3), // rsrc
7417       Op.getOperand(4), // vindex
7418       SDValue(),        // voffset -- will be set by setBufferOffsets
7419       SDValue(),        // soffset -- will be set by setBufferOffsets
7420       SDValue(),        // offset -- will be set by setBufferOffsets
7421       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7422       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7423     };
7424     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7425 
7426     EVT VT = Op.getValueType();
7427 
7428     auto *M = cast<MemSDNode>(Op);
7429     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7430     unsigned Opcode = 0;
7431 
7432     switch (IntrID) {
7433     case Intrinsic::amdgcn_buffer_atomic_swap:
7434       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7435       break;
7436     case Intrinsic::amdgcn_buffer_atomic_add:
7437       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7438       break;
7439     case Intrinsic::amdgcn_buffer_atomic_sub:
7440       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7441       break;
7442     case Intrinsic::amdgcn_buffer_atomic_csub:
7443       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7444       break;
7445     case Intrinsic::amdgcn_buffer_atomic_smin:
7446       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7447       break;
7448     case Intrinsic::amdgcn_buffer_atomic_umin:
7449       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7450       break;
7451     case Intrinsic::amdgcn_buffer_atomic_smax:
7452       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7453       break;
7454     case Intrinsic::amdgcn_buffer_atomic_umax:
7455       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7456       break;
7457     case Intrinsic::amdgcn_buffer_atomic_and:
7458       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7459       break;
7460     case Intrinsic::amdgcn_buffer_atomic_or:
7461       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7462       break;
7463     case Intrinsic::amdgcn_buffer_atomic_xor:
7464       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7465       break;
7466     case Intrinsic::amdgcn_buffer_atomic_fadd:
7467       if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7468         DiagnosticInfoUnsupported
7469           NoFpRet(DAG.getMachineFunction().getFunction(),
7470                   "return versions of fp atomics not supported",
7471                   DL.getDebugLoc(), DS_Error);
7472         DAG.getContext()->diagnose(NoFpRet);
7473         return SDValue();
7474       }
7475       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7476       break;
7477     default:
7478       llvm_unreachable("unhandled atomic opcode");
7479     }
7480 
7481     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7482                                    M->getMemOperand());
7483   }
7484   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7485     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7486   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7487     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7488   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7489     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7490   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7491     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7492   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7493     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7494   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7495     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7496   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7497     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7498   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7499     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7500   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7501     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7502   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7503     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7504   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7505     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7506   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7507     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7508   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7509     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7510   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7511     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7512   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7513     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7514   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7515     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7516   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7517     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7518   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7519     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7520   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7521     return lowerStructBufferAtomicIntrin(Op, DAG,
7522                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7523   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7524     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7525   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7526     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7527   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7528     return lowerStructBufferAtomicIntrin(Op, DAG,
7529                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7530   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7531     return lowerStructBufferAtomicIntrin(Op, DAG,
7532                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7533   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7534     return lowerStructBufferAtomicIntrin(Op, DAG,
7535                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7536   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7537     return lowerStructBufferAtomicIntrin(Op, DAG,
7538                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7539   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7540     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7541   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7542     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7543   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7544     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7545   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7546     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7547   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7548     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7549 
7550   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7551     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7552     unsigned IdxEn = getIdxEn(Op.getOperand(5));
7553     SDValue Ops[] = {
7554       Op.getOperand(0), // Chain
7555       Op.getOperand(2), // src
7556       Op.getOperand(3), // cmp
7557       Op.getOperand(4), // rsrc
7558       Op.getOperand(5), // vindex
7559       SDValue(),        // voffset -- will be set by setBufferOffsets
7560       SDValue(),        // soffset -- will be set by setBufferOffsets
7561       SDValue(),        // offset -- will be set by setBufferOffsets
7562       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7563       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7564     };
7565     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7566 
7567     EVT VT = Op.getValueType();
7568     auto *M = cast<MemSDNode>(Op);
7569     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7570 
7571     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7572                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7573   }
7574   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7575     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7576     SDValue Ops[] = {
7577       Op.getOperand(0), // Chain
7578       Op.getOperand(2), // src
7579       Op.getOperand(3), // cmp
7580       Op.getOperand(4), // rsrc
7581       DAG.getConstant(0, DL, MVT::i32), // vindex
7582       Offsets.first,    // voffset
7583       Op.getOperand(6), // soffset
7584       Offsets.second,   // offset
7585       Op.getOperand(7), // cachepolicy
7586       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7587     };
7588     EVT VT = Op.getValueType();
7589     auto *M = cast<MemSDNode>(Op);
7590     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]);
7591 
7592     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7593                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7594   }
7595   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7596     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7597     SDValue Ops[] = {
7598       Op.getOperand(0), // Chain
7599       Op.getOperand(2), // src
7600       Op.getOperand(3), // cmp
7601       Op.getOperand(4), // rsrc
7602       Op.getOperand(5), // vindex
7603       Offsets.first,    // voffset
7604       Op.getOperand(7), // soffset
7605       Offsets.second,   // offset
7606       Op.getOperand(8), // cachepolicy
7607       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7608     };
7609     EVT VT = Op.getValueType();
7610     auto *M = cast<MemSDNode>(Op);
7611     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7612 
7613     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7614                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7615   }
7616   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7617     MemSDNode *M = cast<MemSDNode>(Op);
7618     SDValue NodePtr = M->getOperand(2);
7619     SDValue RayExtent = M->getOperand(3);
7620     SDValue RayOrigin = M->getOperand(4);
7621     SDValue RayDir = M->getOperand(5);
7622     SDValue RayInvDir = M->getOperand(6);
7623     SDValue TDescr = M->getOperand(7);
7624 
7625     assert(NodePtr.getValueType() == MVT::i32 ||
7626            NodePtr.getValueType() == MVT::i64);
7627     assert(RayDir.getValueType() == MVT::v3f16 ||
7628            RayDir.getValueType() == MVT::v3f32);
7629 
7630     if (!Subtarget->hasGFX10_AEncoding()) {
7631       emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
7632       return SDValue();
7633     }
7634 
7635     const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7636     const bool Is64 = NodePtr.getValueType() == MVT::i64;
7637     const unsigned NumVDataDwords = 4;
7638     const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7639     const bool UseNSA = Subtarget->hasNSAEncoding() &&
7640                         NumVAddrDwords <= Subtarget->getNSAMaxSize();
7641     const unsigned BaseOpcodes[2][2] = {
7642         {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7643         {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7644          AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7645     int Opcode;
7646     if (UseNSA) {
7647       Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7648                                      AMDGPU::MIMGEncGfx10NSA, NumVDataDwords,
7649                                      NumVAddrDwords);
7650     } else {
7651       Opcode = AMDGPU::getMIMGOpcode(
7652           BaseOpcodes[Is64][IsA16], AMDGPU::MIMGEncGfx10Default, NumVDataDwords,
7653           PowerOf2Ceil(NumVAddrDwords));
7654     }
7655     assert(Opcode != -1);
7656 
7657     SmallVector<SDValue, 16> Ops;
7658 
7659     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7660       SmallVector<SDValue, 3> Lanes;
7661       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7662       if (Lanes[0].getValueSizeInBits() == 32) {
7663         for (unsigned I = 0; I < 3; ++I)
7664           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7665       } else {
7666         if (IsAligned) {
7667           Ops.push_back(
7668             DAG.getBitcast(MVT::i32,
7669                            DAG.getBuildVector(MVT::v2f16, DL,
7670                                               { Lanes[0], Lanes[1] })));
7671           Ops.push_back(Lanes[2]);
7672         } else {
7673           SDValue Elt0 = Ops.pop_back_val();
7674           Ops.push_back(
7675             DAG.getBitcast(MVT::i32,
7676                            DAG.getBuildVector(MVT::v2f16, DL,
7677                                               { Elt0, Lanes[0] })));
7678           Ops.push_back(
7679             DAG.getBitcast(MVT::i32,
7680                            DAG.getBuildVector(MVT::v2f16, DL,
7681                                               { Lanes[1], Lanes[2] })));
7682         }
7683       }
7684     };
7685 
7686     if (Is64)
7687       DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7688     else
7689       Ops.push_back(NodePtr);
7690 
7691     Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7692     packLanes(RayOrigin, true);
7693     packLanes(RayDir, true);
7694     packLanes(RayInvDir, false);
7695 
7696     if (!UseNSA) {
7697       // Build a single vector containing all the operands so far prepared.
7698       if (NumVAddrDwords > 8) {
7699         SDValue Undef = DAG.getUNDEF(MVT::i32);
7700         Ops.append(16 - Ops.size(), Undef);
7701       }
7702       assert(Ops.size() == 8 || Ops.size() == 16);
7703       SDValue MergedOps = DAG.getBuildVector(
7704           Ops.size() == 16 ? MVT::v16i32 : MVT::v8i32, DL, Ops);
7705       Ops.clear();
7706       Ops.push_back(MergedOps);
7707     }
7708 
7709     Ops.push_back(TDescr);
7710     if (IsA16)
7711       Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7712     Ops.push_back(M->getChain());
7713 
7714     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7715     MachineMemOperand *MemRef = M->getMemOperand();
7716     DAG.setNodeMemRefs(NewNode, {MemRef});
7717     return SDValue(NewNode, 0);
7718   }
7719   case Intrinsic::amdgcn_global_atomic_fadd:
7720     if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7721       DiagnosticInfoUnsupported
7722         NoFpRet(DAG.getMachineFunction().getFunction(),
7723                 "return versions of fp atomics not supported",
7724                 DL.getDebugLoc(), DS_Error);
7725       DAG.getContext()->diagnose(NoFpRet);
7726       return SDValue();
7727     }
7728     LLVM_FALLTHROUGH;
7729   case Intrinsic::amdgcn_global_atomic_fmin:
7730   case Intrinsic::amdgcn_global_atomic_fmax:
7731   case Intrinsic::amdgcn_flat_atomic_fadd:
7732   case Intrinsic::amdgcn_flat_atomic_fmin:
7733   case Intrinsic::amdgcn_flat_atomic_fmax: {
7734     MemSDNode *M = cast<MemSDNode>(Op);
7735     SDValue Ops[] = {
7736       M->getOperand(0), // Chain
7737       M->getOperand(2), // Ptr
7738       M->getOperand(3)  // Value
7739     };
7740     unsigned Opcode = 0;
7741     switch (IntrID) {
7742     case Intrinsic::amdgcn_global_atomic_fadd:
7743     case Intrinsic::amdgcn_flat_atomic_fadd: {
7744       EVT VT = Op.getOperand(3).getValueType();
7745       return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7746                            DAG.getVTList(VT, MVT::Other), Ops,
7747                            M->getMemOperand());
7748     }
7749     case Intrinsic::amdgcn_global_atomic_fmin:
7750     case Intrinsic::amdgcn_flat_atomic_fmin: {
7751       Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
7752       break;
7753     }
7754     case Intrinsic::amdgcn_global_atomic_fmax:
7755     case Intrinsic::amdgcn_flat_atomic_fmax: {
7756       Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
7757       break;
7758     }
7759     default:
7760       llvm_unreachable("unhandled atomic opcode");
7761     }
7762     return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
7763                                    M->getVTList(), Ops, M->getMemoryVT(),
7764                                    M->getMemOperand());
7765   }
7766   default:
7767 
7768     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7769             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7770       return lowerImage(Op, ImageDimIntr, DAG, true);
7771 
7772     return SDValue();
7773   }
7774 }
7775 
7776 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7777 // dwordx4 if on SI.
7778 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7779                                               SDVTList VTList,
7780                                               ArrayRef<SDValue> Ops, EVT MemVT,
7781                                               MachineMemOperand *MMO,
7782                                               SelectionDAG &DAG) const {
7783   EVT VT = VTList.VTs[0];
7784   EVT WidenedVT = VT;
7785   EVT WidenedMemVT = MemVT;
7786   if (!Subtarget->hasDwordx3LoadStores() &&
7787       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7788     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7789                                  WidenedVT.getVectorElementType(), 4);
7790     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7791                                     WidenedMemVT.getVectorElementType(), 4);
7792     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7793   }
7794 
7795   assert(VTList.NumVTs == 2);
7796   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7797 
7798   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7799                                        WidenedMemVT, MMO);
7800   if (WidenedVT != VT) {
7801     auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7802                                DAG.getVectorIdxConstant(0, DL));
7803     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7804   }
7805   return NewOp;
7806 }
7807 
7808 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7809                                          bool ImageStore) const {
7810   EVT StoreVT = VData.getValueType();
7811 
7812   // No change for f16 and legal vector D16 types.
7813   if (!StoreVT.isVector())
7814     return VData;
7815 
7816   SDLoc DL(VData);
7817   unsigned NumElements = StoreVT.getVectorNumElements();
7818 
7819   if (Subtarget->hasUnpackedD16VMem()) {
7820     // We need to unpack the packed data to store.
7821     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7822     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7823 
7824     EVT EquivStoreVT =
7825         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7826     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7827     return DAG.UnrollVectorOp(ZExt.getNode());
7828   }
7829 
7830   // The sq block of gfx8.1 does not estimate register use correctly for d16
7831   // image store instructions. The data operand is computed as if it were not a
7832   // d16 image instruction.
7833   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7834     // Bitcast to i16
7835     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7836     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7837 
7838     // Decompose into scalars
7839     SmallVector<SDValue, 4> Elts;
7840     DAG.ExtractVectorElements(IntVData, Elts);
7841 
7842     // Group pairs of i16 into v2i16 and bitcast to i32
7843     SmallVector<SDValue, 4> PackedElts;
7844     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7845       SDValue Pair =
7846           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7847       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7848       PackedElts.push_back(IntPair);
7849     }
7850     if ((NumElements % 2) == 1) {
7851       // Handle v3i16
7852       unsigned I = Elts.size() / 2;
7853       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7854                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7855       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7856       PackedElts.push_back(IntPair);
7857     }
7858 
7859     // Pad using UNDEF
7860     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7861 
7862     // Build final vector
7863     EVT VecVT =
7864         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7865     return DAG.getBuildVector(VecVT, DL, PackedElts);
7866   }
7867 
7868   if (NumElements == 3) {
7869     EVT IntStoreVT =
7870         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7871     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7872 
7873     EVT WidenedStoreVT = EVT::getVectorVT(
7874         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7875     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7876                                          WidenedStoreVT.getStoreSizeInBits());
7877     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7878     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7879   }
7880 
7881   assert(isTypeLegal(StoreVT));
7882   return VData;
7883 }
7884 
7885 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7886                                               SelectionDAG &DAG) const {
7887   SDLoc DL(Op);
7888   SDValue Chain = Op.getOperand(0);
7889   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7890   MachineFunction &MF = DAG.getMachineFunction();
7891 
7892   switch (IntrinsicID) {
7893   case Intrinsic::amdgcn_exp_compr: {
7894     SDValue Src0 = Op.getOperand(4);
7895     SDValue Src1 = Op.getOperand(5);
7896     // Hack around illegal type on SI by directly selecting it.
7897     if (isTypeLegal(Src0.getValueType()))
7898       return SDValue();
7899 
7900     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7901     SDValue Undef = DAG.getUNDEF(MVT::f32);
7902     const SDValue Ops[] = {
7903       Op.getOperand(2), // tgt
7904       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7905       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7906       Undef, // src2
7907       Undef, // src3
7908       Op.getOperand(7), // vm
7909       DAG.getTargetConstant(1, DL, MVT::i1), // compr
7910       Op.getOperand(3), // en
7911       Op.getOperand(0) // Chain
7912     };
7913 
7914     unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7915     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7916   }
7917   case Intrinsic::amdgcn_s_barrier: {
7918     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7919       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7920       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7921       if (WGSize <= ST.getWavefrontSize())
7922         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7923                                           Op.getOperand(0)), 0);
7924     }
7925     return SDValue();
7926   };
7927   case Intrinsic::amdgcn_tbuffer_store: {
7928     SDValue VData = Op.getOperand(2);
7929     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7930     if (IsD16)
7931       VData = handleD16VData(VData, DAG);
7932     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7933     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7934     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7935     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7936     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7937     SDValue Ops[] = {
7938       Chain,
7939       VData,             // vdata
7940       Op.getOperand(3),  // rsrc
7941       Op.getOperand(4),  // vindex
7942       Op.getOperand(5),  // voffset
7943       Op.getOperand(6),  // soffset
7944       Op.getOperand(7),  // offset
7945       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7946       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7947       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7948     };
7949     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7950                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7951     MemSDNode *M = cast<MemSDNode>(Op);
7952     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7953                                    M->getMemoryVT(), M->getMemOperand());
7954   }
7955 
7956   case Intrinsic::amdgcn_struct_tbuffer_store: {
7957     SDValue VData = Op.getOperand(2);
7958     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7959     if (IsD16)
7960       VData = handleD16VData(VData, DAG);
7961     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7962     SDValue Ops[] = {
7963       Chain,
7964       VData,             // vdata
7965       Op.getOperand(3),  // rsrc
7966       Op.getOperand(4),  // vindex
7967       Offsets.first,     // voffset
7968       Op.getOperand(6),  // soffset
7969       Offsets.second,    // offset
7970       Op.getOperand(7),  // format
7971       Op.getOperand(8),  // cachepolicy, swizzled buffer
7972       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7973     };
7974     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7975                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7976     MemSDNode *M = cast<MemSDNode>(Op);
7977     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7978                                    M->getMemoryVT(), M->getMemOperand());
7979   }
7980 
7981   case Intrinsic::amdgcn_raw_tbuffer_store: {
7982     SDValue VData = Op.getOperand(2);
7983     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7984     if (IsD16)
7985       VData = handleD16VData(VData, DAG);
7986     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7987     SDValue Ops[] = {
7988       Chain,
7989       VData,             // vdata
7990       Op.getOperand(3),  // rsrc
7991       DAG.getConstant(0, DL, MVT::i32), // vindex
7992       Offsets.first,     // voffset
7993       Op.getOperand(5),  // soffset
7994       Offsets.second,    // offset
7995       Op.getOperand(6),  // format
7996       Op.getOperand(7),  // cachepolicy, swizzled buffer
7997       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7998     };
7999     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8000                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8001     MemSDNode *M = cast<MemSDNode>(Op);
8002     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8003                                    M->getMemoryVT(), M->getMemOperand());
8004   }
8005 
8006   case Intrinsic::amdgcn_buffer_store:
8007   case Intrinsic::amdgcn_buffer_store_format: {
8008     SDValue VData = Op.getOperand(2);
8009     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8010     if (IsD16)
8011       VData = handleD16VData(VData, DAG);
8012     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
8013     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
8014     unsigned IdxEn = getIdxEn(Op.getOperand(4));
8015     SDValue Ops[] = {
8016       Chain,
8017       VData,
8018       Op.getOperand(3), // rsrc
8019       Op.getOperand(4), // vindex
8020       SDValue(), // voffset -- will be set by setBufferOffsets
8021       SDValue(), // soffset -- will be set by setBufferOffsets
8022       SDValue(), // offset -- will be set by setBufferOffsets
8023       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
8024       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8025     };
8026     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
8027 
8028     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
8029                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8030     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8031     MemSDNode *M = cast<MemSDNode>(Op);
8032     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8033 
8034     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8035     EVT VDataType = VData.getValueType().getScalarType();
8036     if (VDataType == MVT::i8 || VDataType == MVT::i16)
8037       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8038 
8039     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8040                                    M->getMemoryVT(), M->getMemOperand());
8041   }
8042 
8043   case Intrinsic::amdgcn_raw_buffer_store:
8044   case Intrinsic::amdgcn_raw_buffer_store_format: {
8045     const bool IsFormat =
8046         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
8047 
8048     SDValue VData = Op.getOperand(2);
8049     EVT VDataVT = VData.getValueType();
8050     EVT EltType = VDataVT.getScalarType();
8051     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8052     if (IsD16) {
8053       VData = handleD16VData(VData, DAG);
8054       VDataVT = VData.getValueType();
8055     }
8056 
8057     if (!isTypeLegal(VDataVT)) {
8058       VData =
8059           DAG.getNode(ISD::BITCAST, DL,
8060                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8061     }
8062 
8063     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8064     SDValue Ops[] = {
8065       Chain,
8066       VData,
8067       Op.getOperand(3), // rsrc
8068       DAG.getConstant(0, DL, MVT::i32), // vindex
8069       Offsets.first,    // voffset
8070       Op.getOperand(5), // soffset
8071       Offsets.second,   // offset
8072       Op.getOperand(6), // cachepolicy, swizzled buffer
8073       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8074     };
8075     unsigned Opc =
8076         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
8077     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8078     MemSDNode *M = cast<MemSDNode>(Op);
8079     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
8080 
8081     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8082     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8083       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
8084 
8085     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8086                                    M->getMemoryVT(), M->getMemOperand());
8087   }
8088 
8089   case Intrinsic::amdgcn_struct_buffer_store:
8090   case Intrinsic::amdgcn_struct_buffer_store_format: {
8091     const bool IsFormat =
8092         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
8093 
8094     SDValue VData = Op.getOperand(2);
8095     EVT VDataVT = VData.getValueType();
8096     EVT EltType = VDataVT.getScalarType();
8097     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8098 
8099     if (IsD16) {
8100       VData = handleD16VData(VData, DAG);
8101       VDataVT = VData.getValueType();
8102     }
8103 
8104     if (!isTypeLegal(VDataVT)) {
8105       VData =
8106           DAG.getNode(ISD::BITCAST, DL,
8107                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8108     }
8109 
8110     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8111     SDValue Ops[] = {
8112       Chain,
8113       VData,
8114       Op.getOperand(3), // rsrc
8115       Op.getOperand(4), // vindex
8116       Offsets.first,    // voffset
8117       Op.getOperand(6), // soffset
8118       Offsets.second,   // offset
8119       Op.getOperand(7), // cachepolicy, swizzled buffer
8120       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8121     };
8122     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
8123                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8124     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8125     MemSDNode *M = cast<MemSDNode>(Op);
8126     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8127 
8128     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8129     EVT VDataType = VData.getValueType().getScalarType();
8130     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8131       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8132 
8133     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8134                                    M->getMemoryVT(), M->getMemOperand());
8135   }
8136   case Intrinsic::amdgcn_end_cf:
8137     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
8138                                       Op->getOperand(2), Chain), 0);
8139 
8140   default: {
8141     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
8142             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
8143       return lowerImage(Op, ImageDimIntr, DAG, true);
8144 
8145     return Op;
8146   }
8147   }
8148 }
8149 
8150 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
8151 // offset (the offset that is included in bounds checking and swizzling, to be
8152 // split between the instruction's voffset and immoffset fields) and soffset
8153 // (the offset that is excluded from bounds checking and swizzling, to go in
8154 // the instruction's soffset field).  This function takes the first kind of
8155 // offset and figures out how to split it between voffset and immoffset.
8156 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
8157     SDValue Offset, SelectionDAG &DAG) const {
8158   SDLoc DL(Offset);
8159   const unsigned MaxImm = 4095;
8160   SDValue N0 = Offset;
8161   ConstantSDNode *C1 = nullptr;
8162 
8163   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
8164     N0 = SDValue();
8165   else if (DAG.isBaseWithConstantOffset(N0)) {
8166     C1 = cast<ConstantSDNode>(N0.getOperand(1));
8167     N0 = N0.getOperand(0);
8168   }
8169 
8170   if (C1) {
8171     unsigned ImmOffset = C1->getZExtValue();
8172     // If the immediate value is too big for the immoffset field, put the value
8173     // and -4096 into the immoffset field so that the value that is copied/added
8174     // for the voffset field is a multiple of 4096, and it stands more chance
8175     // of being CSEd with the copy/add for another similar load/store.
8176     // However, do not do that rounding down to a multiple of 4096 if that is a
8177     // negative number, as it appears to be illegal to have a negative offset
8178     // in the vgpr, even if adding the immediate offset makes it positive.
8179     unsigned Overflow = ImmOffset & ~MaxImm;
8180     ImmOffset -= Overflow;
8181     if ((int32_t)Overflow < 0) {
8182       Overflow += ImmOffset;
8183       ImmOffset = 0;
8184     }
8185     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
8186     if (Overflow) {
8187       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
8188       if (!N0)
8189         N0 = OverflowVal;
8190       else {
8191         SDValue Ops[] = { N0, OverflowVal };
8192         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
8193       }
8194     }
8195   }
8196   if (!N0)
8197     N0 = DAG.getConstant(0, DL, MVT::i32);
8198   if (!C1)
8199     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
8200   return {N0, SDValue(C1, 0)};
8201 }
8202 
8203 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
8204 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
8205 // pointed to by Offsets.
8206 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
8207                                         SelectionDAG &DAG, SDValue *Offsets,
8208                                         Align Alignment) const {
8209   SDLoc DL(CombinedOffset);
8210   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
8211     uint32_t Imm = C->getZExtValue();
8212     uint32_t SOffset, ImmOffset;
8213     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
8214                                  Alignment)) {
8215       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
8216       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8217       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8218       return;
8219     }
8220   }
8221   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
8222     SDValue N0 = CombinedOffset.getOperand(0);
8223     SDValue N1 = CombinedOffset.getOperand(1);
8224     uint32_t SOffset, ImmOffset;
8225     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
8226     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
8227                                                 Subtarget, Alignment)) {
8228       Offsets[0] = N0;
8229       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8230       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8231       return;
8232     }
8233   }
8234   Offsets[0] = CombinedOffset;
8235   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
8236   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
8237 }
8238 
8239 // Handle 8 bit and 16 bit buffer loads
8240 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
8241                                                      EVT LoadVT, SDLoc DL,
8242                                                      ArrayRef<SDValue> Ops,
8243                                                      MemSDNode *M) const {
8244   EVT IntVT = LoadVT.changeTypeToInteger();
8245   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
8246          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
8247 
8248   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
8249   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
8250                                                Ops, IntVT,
8251                                                M->getMemOperand());
8252   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
8253   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
8254 
8255   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
8256 }
8257 
8258 // Handle 8 bit and 16 bit buffer stores
8259 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
8260                                                       EVT VDataType, SDLoc DL,
8261                                                       SDValue Ops[],
8262                                                       MemSDNode *M) const {
8263   if (VDataType == MVT::f16)
8264     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
8265 
8266   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
8267   Ops[1] = BufferStoreExt;
8268   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
8269                                  AMDGPUISD::BUFFER_STORE_SHORT;
8270   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
8271   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
8272                                      M->getMemOperand());
8273 }
8274 
8275 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
8276                                  ISD::LoadExtType ExtType, SDValue Op,
8277                                  const SDLoc &SL, EVT VT) {
8278   if (VT.bitsLT(Op.getValueType()))
8279     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
8280 
8281   switch (ExtType) {
8282   case ISD::SEXTLOAD:
8283     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
8284   case ISD::ZEXTLOAD:
8285     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
8286   case ISD::EXTLOAD:
8287     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
8288   case ISD::NON_EXTLOAD:
8289     return Op;
8290   }
8291 
8292   llvm_unreachable("invalid ext type");
8293 }
8294 
8295 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
8296   SelectionDAG &DAG = DCI.DAG;
8297   if (Ld->getAlignment() < 4 || Ld->isDivergent())
8298     return SDValue();
8299 
8300   // FIXME: Constant loads should all be marked invariant.
8301   unsigned AS = Ld->getAddressSpace();
8302   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
8303       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8304       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
8305     return SDValue();
8306 
8307   // Don't do this early, since it may interfere with adjacent load merging for
8308   // illegal types. We can avoid losing alignment information for exotic types
8309   // pre-legalize.
8310   EVT MemVT = Ld->getMemoryVT();
8311   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
8312       MemVT.getSizeInBits() >= 32)
8313     return SDValue();
8314 
8315   SDLoc SL(Ld);
8316 
8317   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
8318          "unexpected vector extload");
8319 
8320   // TODO: Drop only high part of range.
8321   SDValue Ptr = Ld->getBasePtr();
8322   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
8323                                 MVT::i32, SL, Ld->getChain(), Ptr,
8324                                 Ld->getOffset(),
8325                                 Ld->getPointerInfo(), MVT::i32,
8326                                 Ld->getAlignment(),
8327                                 Ld->getMemOperand()->getFlags(),
8328                                 Ld->getAAInfo(),
8329                                 nullptr); // Drop ranges
8330 
8331   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
8332   if (MemVT.isFloatingPoint()) {
8333     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
8334            "unexpected fp extload");
8335     TruncVT = MemVT.changeTypeToInteger();
8336   }
8337 
8338   SDValue Cvt = NewLoad;
8339   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
8340     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
8341                       DAG.getValueType(TruncVT));
8342   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
8343              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
8344     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
8345   } else {
8346     assert(Ld->getExtensionType() == ISD::EXTLOAD);
8347   }
8348 
8349   EVT VT = Ld->getValueType(0);
8350   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8351 
8352   DCI.AddToWorklist(Cvt.getNode());
8353 
8354   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8355   // the appropriate extension from the 32-bit load.
8356   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8357   DCI.AddToWorklist(Cvt.getNode());
8358 
8359   // Handle conversion back to floating point if necessary.
8360   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8361 
8362   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8363 }
8364 
8365 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8366   SDLoc DL(Op);
8367   LoadSDNode *Load = cast<LoadSDNode>(Op);
8368   ISD::LoadExtType ExtType = Load->getExtensionType();
8369   EVT MemVT = Load->getMemoryVT();
8370 
8371   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8372     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8373       return SDValue();
8374 
8375     // FIXME: Copied from PPC
8376     // First, load into 32 bits, then truncate to 1 bit.
8377 
8378     SDValue Chain = Load->getChain();
8379     SDValue BasePtr = Load->getBasePtr();
8380     MachineMemOperand *MMO = Load->getMemOperand();
8381 
8382     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8383 
8384     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8385                                    BasePtr, RealMemVT, MMO);
8386 
8387     if (!MemVT.isVector()) {
8388       SDValue Ops[] = {
8389         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8390         NewLD.getValue(1)
8391       };
8392 
8393       return DAG.getMergeValues(Ops, DL);
8394     }
8395 
8396     SmallVector<SDValue, 3> Elts;
8397     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8398       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8399                                 DAG.getConstant(I, DL, MVT::i32));
8400 
8401       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8402     }
8403 
8404     SDValue Ops[] = {
8405       DAG.getBuildVector(MemVT, DL, Elts),
8406       NewLD.getValue(1)
8407     };
8408 
8409     return DAG.getMergeValues(Ops, DL);
8410   }
8411 
8412   if (!MemVT.isVector())
8413     return SDValue();
8414 
8415   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8416          "Custom lowering for non-i32 vectors hasn't been implemented.");
8417 
8418   unsigned Alignment = Load->getAlignment();
8419   unsigned AS = Load->getAddressSpace();
8420   if (Subtarget->hasLDSMisalignedBug() &&
8421       AS == AMDGPUAS::FLAT_ADDRESS &&
8422       Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8423     return SplitVectorLoad(Op, DAG);
8424   }
8425 
8426   MachineFunction &MF = DAG.getMachineFunction();
8427   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8428   // If there is a possibilty that flat instruction access scratch memory
8429   // then we need to use the same legalization rules we use for private.
8430   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8431       !Subtarget->hasMultiDwordFlatScratchAddressing())
8432     AS = MFI->hasFlatScratchInit() ?
8433          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8434 
8435   unsigned NumElements = MemVT.getVectorNumElements();
8436 
8437   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8438       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8439     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
8440       if (MemVT.isPow2VectorType())
8441         return SDValue();
8442       return WidenOrSplitVectorLoad(Op, DAG);
8443     }
8444     // Non-uniform loads will be selected to MUBUF instructions, so they
8445     // have the same legalization requirements as global and private
8446     // loads.
8447     //
8448   }
8449 
8450   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8451       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8452       AS == AMDGPUAS::GLOBAL_ADDRESS) {
8453     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8454         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8455         Alignment >= 4 && NumElements < 32) {
8456       if (MemVT.isPow2VectorType())
8457         return SDValue();
8458       return WidenOrSplitVectorLoad(Op, DAG);
8459     }
8460     // Non-uniform loads will be selected to MUBUF instructions, so they
8461     // have the same legalization requirements as global and private
8462     // loads.
8463     //
8464   }
8465   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8466       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8467       AS == AMDGPUAS::GLOBAL_ADDRESS ||
8468       AS == AMDGPUAS::FLAT_ADDRESS) {
8469     if (NumElements > 4)
8470       return SplitVectorLoad(Op, DAG);
8471     // v3 loads not supported on SI.
8472     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8473       return WidenOrSplitVectorLoad(Op, DAG);
8474 
8475     // v3 and v4 loads are supported for private and global memory.
8476     return SDValue();
8477   }
8478   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8479     // Depending on the setting of the private_element_size field in the
8480     // resource descriptor, we can only make private accesses up to a certain
8481     // size.
8482     switch (Subtarget->getMaxPrivateElementSize()) {
8483     case 4: {
8484       SDValue Ops[2];
8485       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8486       return DAG.getMergeValues(Ops, DL);
8487     }
8488     case 8:
8489       if (NumElements > 2)
8490         return SplitVectorLoad(Op, DAG);
8491       return SDValue();
8492     case 16:
8493       // Same as global/flat
8494       if (NumElements > 4)
8495         return SplitVectorLoad(Op, DAG);
8496       // v3 loads not supported on SI.
8497       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8498         return WidenOrSplitVectorLoad(Op, DAG);
8499 
8500       return SDValue();
8501     default:
8502       llvm_unreachable("unsupported private_element_size");
8503     }
8504   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8505     // Use ds_read_b128 or ds_read_b96 when possible.
8506     if (Subtarget->hasDS96AndDS128() &&
8507         ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8508          MemVT.getStoreSize() == 12) &&
8509         allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8510                                            Load->getAlign()))
8511       return SDValue();
8512 
8513     if (NumElements > 2)
8514       return SplitVectorLoad(Op, DAG);
8515 
8516     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8517     // address is negative, then the instruction is incorrectly treated as
8518     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8519     // loads here to avoid emitting ds_read2_b32. We may re-combine the
8520     // load later in the SILoadStoreOptimizer.
8521     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8522         NumElements == 2 && MemVT.getStoreSize() == 8 &&
8523         Load->getAlignment() < 8) {
8524       return SplitVectorLoad(Op, DAG);
8525     }
8526   }
8527 
8528   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8529                                       MemVT, *Load->getMemOperand())) {
8530     SDValue Ops[2];
8531     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8532     return DAG.getMergeValues(Ops, DL);
8533   }
8534 
8535   return SDValue();
8536 }
8537 
8538 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8539   EVT VT = Op.getValueType();
8540   if (VT.getSizeInBits() == 128)
8541     return splitTernaryVectorOp(Op, DAG);
8542 
8543   assert(VT.getSizeInBits() == 64);
8544 
8545   SDLoc DL(Op);
8546   SDValue Cond = Op.getOperand(0);
8547 
8548   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8549   SDValue One = DAG.getConstant(1, DL, MVT::i32);
8550 
8551   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8552   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8553 
8554   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8555   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8556 
8557   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8558 
8559   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8560   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8561 
8562   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8563 
8564   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8565   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8566 }
8567 
8568 // Catch division cases where we can use shortcuts with rcp and rsq
8569 // instructions.
8570 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8571                                               SelectionDAG &DAG) const {
8572   SDLoc SL(Op);
8573   SDValue LHS = Op.getOperand(0);
8574   SDValue RHS = Op.getOperand(1);
8575   EVT VT = Op.getValueType();
8576   const SDNodeFlags Flags = Op->getFlags();
8577 
8578   bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8579 
8580   // Without !fpmath accuracy information, we can't do more because we don't
8581   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8582   if (!AllowInaccurateRcp)
8583     return SDValue();
8584 
8585   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8586     if (CLHS->isExactlyValue(1.0)) {
8587       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8588       // the CI documentation has a worst case error of 1 ulp.
8589       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8590       // use it as long as we aren't trying to use denormals.
8591       //
8592       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8593 
8594       // 1.0 / sqrt(x) -> rsq(x)
8595 
8596       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8597       // error seems really high at 2^29 ULP.
8598       if (RHS.getOpcode() == ISD::FSQRT)
8599         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8600 
8601       // 1.0 / x -> rcp(x)
8602       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8603     }
8604 
8605     // Same as for 1.0, but expand the sign out of the constant.
8606     if (CLHS->isExactlyValue(-1.0)) {
8607       // -1.0 / x -> rcp (fneg x)
8608       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8609       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8610     }
8611   }
8612 
8613   // Turn into multiply by the reciprocal.
8614   // x / y -> x * (1.0 / y)
8615   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8616   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8617 }
8618 
8619 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8620                                                 SelectionDAG &DAG) const {
8621   SDLoc SL(Op);
8622   SDValue X = Op.getOperand(0);
8623   SDValue Y = Op.getOperand(1);
8624   EVT VT = Op.getValueType();
8625   const SDNodeFlags Flags = Op->getFlags();
8626 
8627   bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8628                             DAG.getTarget().Options.UnsafeFPMath;
8629   if (!AllowInaccurateDiv)
8630     return SDValue();
8631 
8632   SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8633   SDValue One = DAG.getConstantFP(1.0, SL, VT);
8634 
8635   SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8636   SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8637 
8638   R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8639   SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8640   R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8641   SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8642   SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8643   return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8644 }
8645 
8646 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8647                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8648                           SDNodeFlags Flags) {
8649   if (GlueChain->getNumValues() <= 1) {
8650     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8651   }
8652 
8653   assert(GlueChain->getNumValues() == 3);
8654 
8655   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8656   switch (Opcode) {
8657   default: llvm_unreachable("no chain equivalent for opcode");
8658   case ISD::FMUL:
8659     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8660     break;
8661   }
8662 
8663   return DAG.getNode(Opcode, SL, VTList,
8664                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8665                      Flags);
8666 }
8667 
8668 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8669                            EVT VT, SDValue A, SDValue B, SDValue C,
8670                            SDValue GlueChain, SDNodeFlags Flags) {
8671   if (GlueChain->getNumValues() <= 1) {
8672     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8673   }
8674 
8675   assert(GlueChain->getNumValues() == 3);
8676 
8677   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8678   switch (Opcode) {
8679   default: llvm_unreachable("no chain equivalent for opcode");
8680   case ISD::FMA:
8681     Opcode = AMDGPUISD::FMA_W_CHAIN;
8682     break;
8683   }
8684 
8685   return DAG.getNode(Opcode, SL, VTList,
8686                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8687                      Flags);
8688 }
8689 
8690 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8691   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8692     return FastLowered;
8693 
8694   SDLoc SL(Op);
8695   SDValue Src0 = Op.getOperand(0);
8696   SDValue Src1 = Op.getOperand(1);
8697 
8698   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8699   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8700 
8701   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8702   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8703 
8704   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8705   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8706 
8707   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8708 }
8709 
8710 // Faster 2.5 ULP division that does not support denormals.
8711 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8712   SDLoc SL(Op);
8713   SDValue LHS = Op.getOperand(1);
8714   SDValue RHS = Op.getOperand(2);
8715 
8716   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8717 
8718   const APFloat K0Val(BitsToFloat(0x6f800000));
8719   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8720 
8721   const APFloat K1Val(BitsToFloat(0x2f800000));
8722   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8723 
8724   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8725 
8726   EVT SetCCVT =
8727     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8728 
8729   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8730 
8731   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8732 
8733   // TODO: Should this propagate fast-math-flags?
8734   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8735 
8736   // rcp does not support denormals.
8737   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8738 
8739   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8740 
8741   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8742 }
8743 
8744 // Returns immediate value for setting the F32 denorm mode when using the
8745 // S_DENORM_MODE instruction.
8746 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8747                                     const SDLoc &SL, const GCNSubtarget *ST) {
8748   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8749   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8750                                 ? FP_DENORM_FLUSH_NONE
8751                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8752 
8753   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8754   return DAG.getTargetConstant(Mode, SL, MVT::i32);
8755 }
8756 
8757 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8758   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8759     return FastLowered;
8760 
8761   // The selection matcher assumes anything with a chain selecting to a
8762   // mayRaiseFPException machine instruction. Since we're introducing a chain
8763   // here, we need to explicitly report nofpexcept for the regular fdiv
8764   // lowering.
8765   SDNodeFlags Flags = Op->getFlags();
8766   Flags.setNoFPExcept(true);
8767 
8768   SDLoc SL(Op);
8769   SDValue LHS = Op.getOperand(0);
8770   SDValue RHS = Op.getOperand(1);
8771 
8772   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8773 
8774   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8775 
8776   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8777                                           {RHS, RHS, LHS}, Flags);
8778   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8779                                         {LHS, RHS, LHS}, Flags);
8780 
8781   // Denominator is scaled to not be denormal, so using rcp is ok.
8782   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8783                                   DenominatorScaled, Flags);
8784   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8785                                      DenominatorScaled, Flags);
8786 
8787   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8788                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8789                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8790   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8791 
8792   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8793 
8794   if (!HasFP32Denormals) {
8795     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8796     // lowering. The chain dependence is insufficient, and we need glue. We do
8797     // not need the glue variants in a strictfp function.
8798 
8799     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8800 
8801     SDNode *EnableDenorm;
8802     if (Subtarget->hasDenormModeInst()) {
8803       const SDValue EnableDenormValue =
8804           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8805 
8806       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8807                                  DAG.getEntryNode(), EnableDenormValue).getNode();
8808     } else {
8809       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
8810                                                         SL, MVT::i32);
8811       EnableDenorm =
8812           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8813                              {EnableDenormValue, BitField, DAG.getEntryNode()});
8814     }
8815 
8816     SDValue Ops[3] = {
8817       NegDivScale0,
8818       SDValue(EnableDenorm, 0),
8819       SDValue(EnableDenorm, 1)
8820     };
8821 
8822     NegDivScale0 = DAG.getMergeValues(Ops, SL);
8823   }
8824 
8825   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8826                              ApproxRcp, One, NegDivScale0, Flags);
8827 
8828   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8829                              ApproxRcp, Fma0, Flags);
8830 
8831   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8832                            Fma1, Fma1, Flags);
8833 
8834   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8835                              NumeratorScaled, Mul, Flags);
8836 
8837   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8838                              Fma2, Fma1, Mul, Fma2, Flags);
8839 
8840   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8841                              NumeratorScaled, Fma3, Flags);
8842 
8843   if (!HasFP32Denormals) {
8844     SDNode *DisableDenorm;
8845     if (Subtarget->hasDenormModeInst()) {
8846       const SDValue DisableDenormValue =
8847           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
8848 
8849       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8850                                   Fma4.getValue(1), DisableDenormValue,
8851                                   Fma4.getValue(2)).getNode();
8852     } else {
8853       const SDValue DisableDenormValue =
8854           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
8855 
8856       DisableDenorm = DAG.getMachineNode(
8857           AMDGPU::S_SETREG_B32, SL, MVT::Other,
8858           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8859     }
8860 
8861     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8862                                       SDValue(DisableDenorm, 0), DAG.getRoot());
8863     DAG.setRoot(OutputChain);
8864   }
8865 
8866   SDValue Scale = NumeratorScaled.getValue(1);
8867   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8868                              {Fma4, Fma1, Fma3, Scale}, Flags);
8869 
8870   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8871 }
8872 
8873 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8874   if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
8875     return FastLowered;
8876 
8877   SDLoc SL(Op);
8878   SDValue X = Op.getOperand(0);
8879   SDValue Y = Op.getOperand(1);
8880 
8881   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8882 
8883   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8884 
8885   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8886 
8887   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8888 
8889   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8890 
8891   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8892 
8893   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8894 
8895   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8896 
8897   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8898 
8899   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8900   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8901 
8902   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8903                              NegDivScale0, Mul, DivScale1);
8904 
8905   SDValue Scale;
8906 
8907   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8908     // Workaround a hardware bug on SI where the condition output from div_scale
8909     // is not usable.
8910 
8911     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8912 
8913     // Figure out if the scale to use for div_fmas.
8914     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8915     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8916     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8917     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8918 
8919     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8920     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8921 
8922     SDValue Scale0Hi
8923       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8924     SDValue Scale1Hi
8925       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8926 
8927     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8928     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8929     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8930   } else {
8931     Scale = DivScale1.getValue(1);
8932   }
8933 
8934   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8935                              Fma4, Fma3, Mul, Scale);
8936 
8937   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8938 }
8939 
8940 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8941   EVT VT = Op.getValueType();
8942 
8943   if (VT == MVT::f32)
8944     return LowerFDIV32(Op, DAG);
8945 
8946   if (VT == MVT::f64)
8947     return LowerFDIV64(Op, DAG);
8948 
8949   if (VT == MVT::f16)
8950     return LowerFDIV16(Op, DAG);
8951 
8952   llvm_unreachable("Unexpected type for fdiv");
8953 }
8954 
8955 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8956   SDLoc DL(Op);
8957   StoreSDNode *Store = cast<StoreSDNode>(Op);
8958   EVT VT = Store->getMemoryVT();
8959 
8960   if (VT == MVT::i1) {
8961     return DAG.getTruncStore(Store->getChain(), DL,
8962        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8963        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8964   }
8965 
8966   assert(VT.isVector() &&
8967          Store->getValue().getValueType().getScalarType() == MVT::i32);
8968 
8969   unsigned AS = Store->getAddressSpace();
8970   if (Subtarget->hasLDSMisalignedBug() &&
8971       AS == AMDGPUAS::FLAT_ADDRESS &&
8972       Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8973     return SplitVectorStore(Op, DAG);
8974   }
8975 
8976   MachineFunction &MF = DAG.getMachineFunction();
8977   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8978   // If there is a possibilty that flat instruction access scratch memory
8979   // then we need to use the same legalization rules we use for private.
8980   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8981       !Subtarget->hasMultiDwordFlatScratchAddressing())
8982     AS = MFI->hasFlatScratchInit() ?
8983          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8984 
8985   unsigned NumElements = VT.getVectorNumElements();
8986   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8987       AS == AMDGPUAS::FLAT_ADDRESS) {
8988     if (NumElements > 4)
8989       return SplitVectorStore(Op, DAG);
8990     // v3 stores not supported on SI.
8991     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8992       return SplitVectorStore(Op, DAG);
8993 
8994     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8995                                         VT, *Store->getMemOperand()))
8996       return expandUnalignedStore(Store, DAG);
8997 
8998     return SDValue();
8999   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
9000     switch (Subtarget->getMaxPrivateElementSize()) {
9001     case 4:
9002       return scalarizeVectorStore(Store, DAG);
9003     case 8:
9004       if (NumElements > 2)
9005         return SplitVectorStore(Op, DAG);
9006       return SDValue();
9007     case 16:
9008       if (NumElements > 4 ||
9009           (NumElements == 3 && !Subtarget->enableFlatScratch()))
9010         return SplitVectorStore(Op, DAG);
9011       return SDValue();
9012     default:
9013       llvm_unreachable("unsupported private_element_size");
9014     }
9015   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
9016     // Use ds_write_b128 or ds_write_b96 when possible.
9017     if (Subtarget->hasDS96AndDS128() &&
9018         ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
9019          (VT.getStoreSize() == 12)) &&
9020         allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
9021                                            Store->getAlign()))
9022       return SDValue();
9023 
9024     if (NumElements > 2)
9025       return SplitVectorStore(Op, DAG);
9026 
9027     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
9028     // address is negative, then the instruction is incorrectly treated as
9029     // out-of-bounds even if base + offsets is in bounds. Split vectorized
9030     // stores here to avoid emitting ds_write2_b32. We may re-combine the
9031     // store later in the SILoadStoreOptimizer.
9032     if (!Subtarget->hasUsableDSOffset() &&
9033         NumElements == 2 && VT.getStoreSize() == 8 &&
9034         Store->getAlignment() < 8) {
9035       return SplitVectorStore(Op, DAG);
9036     }
9037 
9038     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
9039                                         VT, *Store->getMemOperand())) {
9040       if (VT.isVector())
9041         return SplitVectorStore(Op, DAG);
9042       return expandUnalignedStore(Store, DAG);
9043     }
9044 
9045     return SDValue();
9046   } else {
9047     llvm_unreachable("unhandled address space");
9048   }
9049 }
9050 
9051 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
9052   SDLoc DL(Op);
9053   EVT VT = Op.getValueType();
9054   SDValue Arg = Op.getOperand(0);
9055   SDValue TrigVal;
9056 
9057   // Propagate fast-math flags so that the multiply we introduce can be folded
9058   // if Arg is already the result of a multiply by constant.
9059   auto Flags = Op->getFlags();
9060 
9061   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
9062 
9063   if (Subtarget->hasTrigReducedRange()) {
9064     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9065     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
9066   } else {
9067     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9068   }
9069 
9070   switch (Op.getOpcode()) {
9071   case ISD::FCOS:
9072     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
9073   case ISD::FSIN:
9074     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
9075   default:
9076     llvm_unreachable("Wrong trig opcode");
9077   }
9078 }
9079 
9080 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9081   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
9082   assert(AtomicNode->isCompareAndSwap());
9083   unsigned AS = AtomicNode->getAddressSpace();
9084 
9085   // No custom lowering required for local address space
9086   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
9087     return Op;
9088 
9089   // Non-local address space requires custom lowering for atomic compare
9090   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
9091   SDLoc DL(Op);
9092   SDValue ChainIn = Op.getOperand(0);
9093   SDValue Addr = Op.getOperand(1);
9094   SDValue Old = Op.getOperand(2);
9095   SDValue New = Op.getOperand(3);
9096   EVT VT = Op.getValueType();
9097   MVT SimpleVT = VT.getSimpleVT();
9098   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
9099 
9100   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
9101   SDValue Ops[] = { ChainIn, Addr, NewOld };
9102 
9103   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
9104                                  Ops, VT, AtomicNode->getMemOperand());
9105 }
9106 
9107 //===----------------------------------------------------------------------===//
9108 // Custom DAG optimizations
9109 //===----------------------------------------------------------------------===//
9110 
9111 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
9112                                                      DAGCombinerInfo &DCI) const {
9113   EVT VT = N->getValueType(0);
9114   EVT ScalarVT = VT.getScalarType();
9115   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
9116     return SDValue();
9117 
9118   SelectionDAG &DAG = DCI.DAG;
9119   SDLoc DL(N);
9120 
9121   SDValue Src = N->getOperand(0);
9122   EVT SrcVT = Src.getValueType();
9123 
9124   // TODO: We could try to match extracting the higher bytes, which would be
9125   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
9126   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
9127   // about in practice.
9128   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
9129     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
9130       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
9131       DCI.AddToWorklist(Cvt.getNode());
9132 
9133       // For the f16 case, fold to a cast to f32 and then cast back to f16.
9134       if (ScalarVT != MVT::f32) {
9135         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
9136                           DAG.getTargetConstant(0, DL, MVT::i32));
9137       }
9138       return Cvt;
9139     }
9140   }
9141 
9142   return SDValue();
9143 }
9144 
9145 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
9146 
9147 // This is a variant of
9148 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
9149 //
9150 // The normal DAG combiner will do this, but only if the add has one use since
9151 // that would increase the number of instructions.
9152 //
9153 // This prevents us from seeing a constant offset that can be folded into a
9154 // memory instruction's addressing mode. If we know the resulting add offset of
9155 // a pointer can be folded into an addressing offset, we can replace the pointer
9156 // operand with the add of new constant offset. This eliminates one of the uses,
9157 // and may allow the remaining use to also be simplified.
9158 //
9159 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
9160                                                unsigned AddrSpace,
9161                                                EVT MemVT,
9162                                                DAGCombinerInfo &DCI) const {
9163   SDValue N0 = N->getOperand(0);
9164   SDValue N1 = N->getOperand(1);
9165 
9166   // We only do this to handle cases where it's profitable when there are
9167   // multiple uses of the add, so defer to the standard combine.
9168   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
9169       N0->hasOneUse())
9170     return SDValue();
9171 
9172   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
9173   if (!CN1)
9174     return SDValue();
9175 
9176   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9177   if (!CAdd)
9178     return SDValue();
9179 
9180   // If the resulting offset is too large, we can't fold it into the addressing
9181   // mode offset.
9182   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
9183   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
9184 
9185   AddrMode AM;
9186   AM.HasBaseReg = true;
9187   AM.BaseOffs = Offset.getSExtValue();
9188   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
9189     return SDValue();
9190 
9191   SelectionDAG &DAG = DCI.DAG;
9192   SDLoc SL(N);
9193   EVT VT = N->getValueType(0);
9194 
9195   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
9196   SDValue COffset = DAG.getConstant(Offset, SL, VT);
9197 
9198   SDNodeFlags Flags;
9199   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
9200                           (N0.getOpcode() == ISD::OR ||
9201                            N0->getFlags().hasNoUnsignedWrap()));
9202 
9203   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
9204 }
9205 
9206 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
9207 /// by the chain and intrinsic ID. Theoretically we would also need to check the
9208 /// specific intrinsic, but they all place the pointer operand first.
9209 static unsigned getBasePtrIndex(const MemSDNode *N) {
9210   switch (N->getOpcode()) {
9211   case ISD::STORE:
9212   case ISD::INTRINSIC_W_CHAIN:
9213   case ISD::INTRINSIC_VOID:
9214     return 2;
9215   default:
9216     return 1;
9217   }
9218 }
9219 
9220 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
9221                                                   DAGCombinerInfo &DCI) const {
9222   SelectionDAG &DAG = DCI.DAG;
9223   SDLoc SL(N);
9224 
9225   unsigned PtrIdx = getBasePtrIndex(N);
9226   SDValue Ptr = N->getOperand(PtrIdx);
9227 
9228   // TODO: We could also do this for multiplies.
9229   if (Ptr.getOpcode() == ISD::SHL) {
9230     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
9231                                           N->getMemoryVT(), DCI);
9232     if (NewPtr) {
9233       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
9234 
9235       NewOps[PtrIdx] = NewPtr;
9236       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
9237     }
9238   }
9239 
9240   return SDValue();
9241 }
9242 
9243 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
9244   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
9245          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
9246          (Opc == ISD::XOR && Val == 0);
9247 }
9248 
9249 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
9250 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
9251 // integer combine opportunities since most 64-bit operations are decomposed
9252 // this way.  TODO: We won't want this for SALU especially if it is an inline
9253 // immediate.
9254 SDValue SITargetLowering::splitBinaryBitConstantOp(
9255   DAGCombinerInfo &DCI,
9256   const SDLoc &SL,
9257   unsigned Opc, SDValue LHS,
9258   const ConstantSDNode *CRHS) const {
9259   uint64_t Val = CRHS->getZExtValue();
9260   uint32_t ValLo = Lo_32(Val);
9261   uint32_t ValHi = Hi_32(Val);
9262   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9263 
9264     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
9265          bitOpWithConstantIsReducible(Opc, ValHi)) ||
9266         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
9267     // If we need to materialize a 64-bit immediate, it will be split up later
9268     // anyway. Avoid creating the harder to understand 64-bit immediate
9269     // materialization.
9270     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
9271   }
9272 
9273   return SDValue();
9274 }
9275 
9276 // Returns true if argument is a boolean value which is not serialized into
9277 // memory or argument and does not require v_cndmask_b32 to be deserialized.
9278 static bool isBoolSGPR(SDValue V) {
9279   if (V.getValueType() != MVT::i1)
9280     return false;
9281   switch (V.getOpcode()) {
9282   default:
9283     break;
9284   case ISD::SETCC:
9285   case AMDGPUISD::FP_CLASS:
9286     return true;
9287   case ISD::AND:
9288   case ISD::OR:
9289   case ISD::XOR:
9290     return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
9291   }
9292   return false;
9293 }
9294 
9295 // If a constant has all zeroes or all ones within each byte return it.
9296 // Otherwise return 0.
9297 static uint32_t getConstantPermuteMask(uint32_t C) {
9298   // 0xff for any zero byte in the mask
9299   uint32_t ZeroByteMask = 0;
9300   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
9301   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
9302   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
9303   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
9304   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
9305   if ((NonZeroByteMask & C) != NonZeroByteMask)
9306     return 0; // Partial bytes selected.
9307   return C;
9308 }
9309 
9310 // Check if a node selects whole bytes from its operand 0 starting at a byte
9311 // boundary while masking the rest. Returns select mask as in the v_perm_b32
9312 // or -1 if not succeeded.
9313 // Note byte select encoding:
9314 // value 0-3 selects corresponding source byte;
9315 // value 0xc selects zero;
9316 // value 0xff selects 0xff.
9317 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
9318   assert(V.getValueSizeInBits() == 32);
9319 
9320   if (V.getNumOperands() != 2)
9321     return ~0;
9322 
9323   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
9324   if (!N1)
9325     return ~0;
9326 
9327   uint32_t C = N1->getZExtValue();
9328 
9329   switch (V.getOpcode()) {
9330   default:
9331     break;
9332   case ISD::AND:
9333     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9334       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
9335     }
9336     break;
9337 
9338   case ISD::OR:
9339     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9340       return (0x03020100 & ~ConstMask) | ConstMask;
9341     }
9342     break;
9343 
9344   case ISD::SHL:
9345     if (C % 8)
9346       return ~0;
9347 
9348     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
9349 
9350   case ISD::SRL:
9351     if (C % 8)
9352       return ~0;
9353 
9354     return uint32_t(0x0c0c0c0c03020100ull >> C);
9355   }
9356 
9357   return ~0;
9358 }
9359 
9360 SDValue SITargetLowering::performAndCombine(SDNode *N,
9361                                             DAGCombinerInfo &DCI) const {
9362   if (DCI.isBeforeLegalize())
9363     return SDValue();
9364 
9365   SelectionDAG &DAG = DCI.DAG;
9366   EVT VT = N->getValueType(0);
9367   SDValue LHS = N->getOperand(0);
9368   SDValue RHS = N->getOperand(1);
9369 
9370 
9371   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9372   if (VT == MVT::i64 && CRHS) {
9373     if (SDValue Split
9374         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
9375       return Split;
9376   }
9377 
9378   if (CRHS && VT == MVT::i32) {
9379     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
9380     // nb = number of trailing zeroes in mask
9381     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
9382     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
9383     uint64_t Mask = CRHS->getZExtValue();
9384     unsigned Bits = countPopulation(Mask);
9385     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9386         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9387       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9388         unsigned Shift = CShift->getZExtValue();
9389         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9390         unsigned Offset = NB + Shift;
9391         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9392           SDLoc SL(N);
9393           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9394                                     LHS->getOperand(0),
9395                                     DAG.getConstant(Offset, SL, MVT::i32),
9396                                     DAG.getConstant(Bits, SL, MVT::i32));
9397           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9398           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9399                                     DAG.getValueType(NarrowVT));
9400           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9401                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9402           return Shl;
9403         }
9404       }
9405     }
9406 
9407     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9408     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9409         isa<ConstantSDNode>(LHS.getOperand(2))) {
9410       uint32_t Sel = getConstantPermuteMask(Mask);
9411       if (!Sel)
9412         return SDValue();
9413 
9414       // Select 0xc for all zero bytes
9415       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9416       SDLoc DL(N);
9417       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9418                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9419     }
9420   }
9421 
9422   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9423   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9424   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9425     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9426     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9427 
9428     SDValue X = LHS.getOperand(0);
9429     SDValue Y = RHS.getOperand(0);
9430     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9431       return SDValue();
9432 
9433     if (LCC == ISD::SETO) {
9434       if (X != LHS.getOperand(1))
9435         return SDValue();
9436 
9437       if (RCC == ISD::SETUNE) {
9438         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9439         if (!C1 || !C1->isInfinity() || C1->isNegative())
9440           return SDValue();
9441 
9442         const uint32_t Mask = SIInstrFlags::N_NORMAL |
9443                               SIInstrFlags::N_SUBNORMAL |
9444                               SIInstrFlags::N_ZERO |
9445                               SIInstrFlags::P_ZERO |
9446                               SIInstrFlags::P_SUBNORMAL |
9447                               SIInstrFlags::P_NORMAL;
9448 
9449         static_assert(((~(SIInstrFlags::S_NAN |
9450                           SIInstrFlags::Q_NAN |
9451                           SIInstrFlags::N_INFINITY |
9452                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9453                       "mask not equal");
9454 
9455         SDLoc DL(N);
9456         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9457                            X, DAG.getConstant(Mask, DL, MVT::i32));
9458       }
9459     }
9460   }
9461 
9462   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9463     std::swap(LHS, RHS);
9464 
9465   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9466       RHS.hasOneUse()) {
9467     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9468     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9469     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9470     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9471     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9472         (RHS.getOperand(0) == LHS.getOperand(0) &&
9473          LHS.getOperand(0) == LHS.getOperand(1))) {
9474       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9475       unsigned NewMask = LCC == ISD::SETO ?
9476         Mask->getZExtValue() & ~OrdMask :
9477         Mask->getZExtValue() & OrdMask;
9478 
9479       SDLoc DL(N);
9480       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9481                          DAG.getConstant(NewMask, DL, MVT::i32));
9482     }
9483   }
9484 
9485   if (VT == MVT::i32 &&
9486       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9487     // and x, (sext cc from i1) => select cc, x, 0
9488     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9489       std::swap(LHS, RHS);
9490     if (isBoolSGPR(RHS.getOperand(0)))
9491       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9492                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9493   }
9494 
9495   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9496   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9497   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9498       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9499     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9500     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9501     if (LHSMask != ~0u && RHSMask != ~0u) {
9502       // Canonicalize the expression in an attempt to have fewer unique masks
9503       // and therefore fewer registers used to hold the masks.
9504       if (LHSMask > RHSMask) {
9505         std::swap(LHSMask, RHSMask);
9506         std::swap(LHS, RHS);
9507       }
9508 
9509       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9510       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9511       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9512       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9513 
9514       // Check of we need to combine values from two sources within a byte.
9515       if (!(LHSUsedLanes & RHSUsedLanes) &&
9516           // If we select high and lower word keep it for SDWA.
9517           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9518           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9519         // Each byte in each mask is either selector mask 0-3, or has higher
9520         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9521         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9522         // mask which is not 0xff wins. By anding both masks we have a correct
9523         // result except that 0x0c shall be corrected to give 0x0c only.
9524         uint32_t Mask = LHSMask & RHSMask;
9525         for (unsigned I = 0; I < 32; I += 8) {
9526           uint32_t ByteSel = 0xff << I;
9527           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9528             Mask &= (0x0c << I) & 0xffffffff;
9529         }
9530 
9531         // Add 4 to each active LHS lane. It will not affect any existing 0xff
9532         // or 0x0c.
9533         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9534         SDLoc DL(N);
9535 
9536         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9537                            LHS.getOperand(0), RHS.getOperand(0),
9538                            DAG.getConstant(Sel, DL, MVT::i32));
9539       }
9540     }
9541   }
9542 
9543   return SDValue();
9544 }
9545 
9546 SDValue SITargetLowering::performOrCombine(SDNode *N,
9547                                            DAGCombinerInfo &DCI) const {
9548   SelectionDAG &DAG = DCI.DAG;
9549   SDValue LHS = N->getOperand(0);
9550   SDValue RHS = N->getOperand(1);
9551 
9552   EVT VT = N->getValueType(0);
9553   if (VT == MVT::i1) {
9554     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9555     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9556         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9557       SDValue Src = LHS.getOperand(0);
9558       if (Src != RHS.getOperand(0))
9559         return SDValue();
9560 
9561       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9562       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9563       if (!CLHS || !CRHS)
9564         return SDValue();
9565 
9566       // Only 10 bits are used.
9567       static const uint32_t MaxMask = 0x3ff;
9568 
9569       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9570       SDLoc DL(N);
9571       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9572                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
9573     }
9574 
9575     return SDValue();
9576   }
9577 
9578   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9579   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9580       LHS.getOpcode() == AMDGPUISD::PERM &&
9581       isa<ConstantSDNode>(LHS.getOperand(2))) {
9582     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9583     if (!Sel)
9584       return SDValue();
9585 
9586     Sel |= LHS.getConstantOperandVal(2);
9587     SDLoc DL(N);
9588     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9589                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9590   }
9591 
9592   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9593   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9594   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9595       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9596     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9597     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9598     if (LHSMask != ~0u && RHSMask != ~0u) {
9599       // Canonicalize the expression in an attempt to have fewer unique masks
9600       // and therefore fewer registers used to hold the masks.
9601       if (LHSMask > RHSMask) {
9602         std::swap(LHSMask, RHSMask);
9603         std::swap(LHS, RHS);
9604       }
9605 
9606       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9607       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9608       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9609       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9610 
9611       // Check of we need to combine values from two sources within a byte.
9612       if (!(LHSUsedLanes & RHSUsedLanes) &&
9613           // If we select high and lower word keep it for SDWA.
9614           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9615           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9616         // Kill zero bytes selected by other mask. Zero value is 0xc.
9617         LHSMask &= ~RHSUsedLanes;
9618         RHSMask &= ~LHSUsedLanes;
9619         // Add 4 to each active LHS lane
9620         LHSMask |= LHSUsedLanes & 0x04040404;
9621         // Combine masks
9622         uint32_t Sel = LHSMask | RHSMask;
9623         SDLoc DL(N);
9624 
9625         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9626                            LHS.getOperand(0), RHS.getOperand(0),
9627                            DAG.getConstant(Sel, DL, MVT::i32));
9628       }
9629     }
9630   }
9631 
9632   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9633     return SDValue();
9634 
9635   // TODO: This could be a generic combine with a predicate for extracting the
9636   // high half of an integer being free.
9637 
9638   // (or i64:x, (zero_extend i32:y)) ->
9639   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9640   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9641       RHS.getOpcode() != ISD::ZERO_EXTEND)
9642     std::swap(LHS, RHS);
9643 
9644   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9645     SDValue ExtSrc = RHS.getOperand(0);
9646     EVT SrcVT = ExtSrc.getValueType();
9647     if (SrcVT == MVT::i32) {
9648       SDLoc SL(N);
9649       SDValue LowLHS, HiBits;
9650       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9651       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9652 
9653       DCI.AddToWorklist(LowOr.getNode());
9654       DCI.AddToWorklist(HiBits.getNode());
9655 
9656       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9657                                 LowOr, HiBits);
9658       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9659     }
9660   }
9661 
9662   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9663   if (CRHS) {
9664     if (SDValue Split
9665           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
9666                                      N->getOperand(0), CRHS))
9667       return Split;
9668   }
9669 
9670   return SDValue();
9671 }
9672 
9673 SDValue SITargetLowering::performXorCombine(SDNode *N,
9674                                             DAGCombinerInfo &DCI) const {
9675   if (SDValue RV = reassociateScalarOps(N, DCI.DAG))
9676     return RV;
9677 
9678   EVT VT = N->getValueType(0);
9679   if (VT != MVT::i64)
9680     return SDValue();
9681 
9682   SDValue LHS = N->getOperand(0);
9683   SDValue RHS = N->getOperand(1);
9684 
9685   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9686   if (CRHS) {
9687     if (SDValue Split
9688           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9689       return Split;
9690   }
9691 
9692   return SDValue();
9693 }
9694 
9695 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9696                                                    DAGCombinerInfo &DCI) const {
9697   if (!Subtarget->has16BitInsts() ||
9698       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9699     return SDValue();
9700 
9701   EVT VT = N->getValueType(0);
9702   if (VT != MVT::i32)
9703     return SDValue();
9704 
9705   SDValue Src = N->getOperand(0);
9706   if (Src.getValueType() != MVT::i16)
9707     return SDValue();
9708 
9709   return SDValue();
9710 }
9711 
9712 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9713                                                         DAGCombinerInfo &DCI)
9714                                                         const {
9715   SDValue Src = N->getOperand(0);
9716   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9717 
9718   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9719       VTSign->getVT() == MVT::i8) ||
9720       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9721       VTSign->getVT() == MVT::i16)) &&
9722       Src.hasOneUse()) {
9723     auto *M = cast<MemSDNode>(Src);
9724     SDValue Ops[] = {
9725       Src.getOperand(0), // Chain
9726       Src.getOperand(1), // rsrc
9727       Src.getOperand(2), // vindex
9728       Src.getOperand(3), // voffset
9729       Src.getOperand(4), // soffset
9730       Src.getOperand(5), // offset
9731       Src.getOperand(6),
9732       Src.getOperand(7)
9733     };
9734     // replace with BUFFER_LOAD_BYTE/SHORT
9735     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9736                                          Src.getOperand(0).getValueType());
9737     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9738                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9739     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9740                                                           ResList,
9741                                                           Ops, M->getMemoryVT(),
9742                                                           M->getMemOperand());
9743     return DCI.DAG.getMergeValues({BufferLoadSignExt,
9744                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
9745   }
9746   return SDValue();
9747 }
9748 
9749 SDValue SITargetLowering::performClassCombine(SDNode *N,
9750                                               DAGCombinerInfo &DCI) const {
9751   SelectionDAG &DAG = DCI.DAG;
9752   SDValue Mask = N->getOperand(1);
9753 
9754   // fp_class x, 0 -> false
9755   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9756     if (CMask->isZero())
9757       return DAG.getConstant(0, SDLoc(N), MVT::i1);
9758   }
9759 
9760   if (N->getOperand(0).isUndef())
9761     return DAG.getUNDEF(MVT::i1);
9762 
9763   return SDValue();
9764 }
9765 
9766 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9767                                             DAGCombinerInfo &DCI) const {
9768   EVT VT = N->getValueType(0);
9769   SDValue N0 = N->getOperand(0);
9770 
9771   if (N0.isUndef())
9772     return N0;
9773 
9774   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9775                          N0.getOpcode() == ISD::SINT_TO_FP)) {
9776     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9777                            N->getFlags());
9778   }
9779 
9780   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9781     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9782                            N0.getOperand(0), N->getFlags());
9783   }
9784 
9785   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9786 }
9787 
9788 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9789                                        unsigned MaxDepth) const {
9790   unsigned Opcode = Op.getOpcode();
9791   if (Opcode == ISD::FCANONICALIZE)
9792     return true;
9793 
9794   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9795     auto F = CFP->getValueAPF();
9796     if (F.isNaN() && F.isSignaling())
9797       return false;
9798     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9799   }
9800 
9801   // If source is a result of another standard FP operation it is already in
9802   // canonical form.
9803   if (MaxDepth == 0)
9804     return false;
9805 
9806   switch (Opcode) {
9807   // These will flush denorms if required.
9808   case ISD::FADD:
9809   case ISD::FSUB:
9810   case ISD::FMUL:
9811   case ISD::FCEIL:
9812   case ISD::FFLOOR:
9813   case ISD::FMA:
9814   case ISD::FMAD:
9815   case ISD::FSQRT:
9816   case ISD::FDIV:
9817   case ISD::FREM:
9818   case ISD::FP_ROUND:
9819   case ISD::FP_EXTEND:
9820   case AMDGPUISD::FMUL_LEGACY:
9821   case AMDGPUISD::FMAD_FTZ:
9822   case AMDGPUISD::RCP:
9823   case AMDGPUISD::RSQ:
9824   case AMDGPUISD::RSQ_CLAMP:
9825   case AMDGPUISD::RCP_LEGACY:
9826   case AMDGPUISD::RCP_IFLAG:
9827   case AMDGPUISD::DIV_SCALE:
9828   case AMDGPUISD::DIV_FMAS:
9829   case AMDGPUISD::DIV_FIXUP:
9830   case AMDGPUISD::FRACT:
9831   case AMDGPUISD::LDEXP:
9832   case AMDGPUISD::CVT_PKRTZ_F16_F32:
9833   case AMDGPUISD::CVT_F32_UBYTE0:
9834   case AMDGPUISD::CVT_F32_UBYTE1:
9835   case AMDGPUISD::CVT_F32_UBYTE2:
9836   case AMDGPUISD::CVT_F32_UBYTE3:
9837     return true;
9838 
9839   // It can/will be lowered or combined as a bit operation.
9840   // Need to check their input recursively to handle.
9841   case ISD::FNEG:
9842   case ISD::FABS:
9843   case ISD::FCOPYSIGN:
9844     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9845 
9846   case ISD::FSIN:
9847   case ISD::FCOS:
9848   case ISD::FSINCOS:
9849     return Op.getValueType().getScalarType() != MVT::f16;
9850 
9851   case ISD::FMINNUM:
9852   case ISD::FMAXNUM:
9853   case ISD::FMINNUM_IEEE:
9854   case ISD::FMAXNUM_IEEE:
9855   case AMDGPUISD::CLAMP:
9856   case AMDGPUISD::FMED3:
9857   case AMDGPUISD::FMAX3:
9858   case AMDGPUISD::FMIN3: {
9859     // FIXME: Shouldn't treat the generic operations different based these.
9860     // However, we aren't really required to flush the result from
9861     // minnum/maxnum..
9862 
9863     // snans will be quieted, so we only need to worry about denormals.
9864     if (Subtarget->supportsMinMaxDenormModes() ||
9865         denormalsEnabledForType(DAG, Op.getValueType()))
9866       return true;
9867 
9868     // Flushing may be required.
9869     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9870     // targets need to check their input recursively.
9871 
9872     // FIXME: Does this apply with clamp? It's implemented with max.
9873     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9874       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9875         return false;
9876     }
9877 
9878     return true;
9879   }
9880   case ISD::SELECT: {
9881     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9882            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9883   }
9884   case ISD::BUILD_VECTOR: {
9885     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9886       SDValue SrcOp = Op.getOperand(i);
9887       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9888         return false;
9889     }
9890 
9891     return true;
9892   }
9893   case ISD::EXTRACT_VECTOR_ELT:
9894   case ISD::EXTRACT_SUBVECTOR: {
9895     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9896   }
9897   case ISD::INSERT_VECTOR_ELT: {
9898     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9899            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9900   }
9901   case ISD::UNDEF:
9902     // Could be anything.
9903     return false;
9904 
9905   case ISD::BITCAST:
9906     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9907   case ISD::TRUNCATE: {
9908     // Hack round the mess we make when legalizing extract_vector_elt
9909     if (Op.getValueType() == MVT::i16) {
9910       SDValue TruncSrc = Op.getOperand(0);
9911       if (TruncSrc.getValueType() == MVT::i32 &&
9912           TruncSrc.getOpcode() == ISD::BITCAST &&
9913           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9914         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9915       }
9916     }
9917     return false;
9918   }
9919   case ISD::INTRINSIC_WO_CHAIN: {
9920     unsigned IntrinsicID
9921       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9922     // TODO: Handle more intrinsics
9923     switch (IntrinsicID) {
9924     case Intrinsic::amdgcn_cvt_pkrtz:
9925     case Intrinsic::amdgcn_cubeid:
9926     case Intrinsic::amdgcn_frexp_mant:
9927     case Intrinsic::amdgcn_fdot2:
9928     case Intrinsic::amdgcn_rcp:
9929     case Intrinsic::amdgcn_rsq:
9930     case Intrinsic::amdgcn_rsq_clamp:
9931     case Intrinsic::amdgcn_rcp_legacy:
9932     case Intrinsic::amdgcn_rsq_legacy:
9933     case Intrinsic::amdgcn_trig_preop:
9934       return true;
9935     default:
9936       break;
9937     }
9938 
9939     LLVM_FALLTHROUGH;
9940   }
9941   default:
9942     return denormalsEnabledForType(DAG, Op.getValueType()) &&
9943            DAG.isKnownNeverSNaN(Op);
9944   }
9945 
9946   llvm_unreachable("invalid operation");
9947 }
9948 
9949 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
9950                                        unsigned MaxDepth) const {
9951   MachineRegisterInfo &MRI = MF.getRegInfo();
9952   MachineInstr *MI = MRI.getVRegDef(Reg);
9953   unsigned Opcode = MI->getOpcode();
9954 
9955   if (Opcode == AMDGPU::G_FCANONICALIZE)
9956     return true;
9957 
9958   Optional<FPValueAndVReg> FCR;
9959   // Constant splat (can be padded with undef) or scalar constant.
9960   if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) {
9961     if (FCR->Value.isSignaling())
9962       return false;
9963     return !FCR->Value.isDenormal() ||
9964            denormalsEnabledForType(MRI.getType(FCR->VReg), MF);
9965   }
9966 
9967   if (MaxDepth == 0)
9968     return false;
9969 
9970   switch (Opcode) {
9971   case AMDGPU::G_FMINNUM_IEEE:
9972   case AMDGPU::G_FMAXNUM_IEEE: {
9973     if (Subtarget->supportsMinMaxDenormModes() ||
9974         denormalsEnabledForType(MRI.getType(Reg), MF))
9975       return true;
9976     for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
9977       if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
9978         return false;
9979     return true;
9980   }
9981   default:
9982     return denormalsEnabledForType(MRI.getType(Reg), MF) &&
9983            isKnownNeverSNaN(Reg, MRI);
9984   }
9985 
9986   llvm_unreachable("invalid operation");
9987 }
9988 
9989 // Constant fold canonicalize.
9990 SDValue SITargetLowering::getCanonicalConstantFP(
9991   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9992   // Flush denormals to 0 if not enabled.
9993   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9994     return DAG.getConstantFP(0.0, SL, VT);
9995 
9996   if (C.isNaN()) {
9997     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9998     if (C.isSignaling()) {
9999       // Quiet a signaling NaN.
10000       // FIXME: Is this supposed to preserve payload bits?
10001       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
10002     }
10003 
10004     // Make sure it is the canonical NaN bitpattern.
10005     //
10006     // TODO: Can we use -1 as the canonical NaN value since it's an inline
10007     // immediate?
10008     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
10009       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
10010   }
10011 
10012   // Already canonical.
10013   return DAG.getConstantFP(C, SL, VT);
10014 }
10015 
10016 static bool vectorEltWillFoldAway(SDValue Op) {
10017   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
10018 }
10019 
10020 SDValue SITargetLowering::performFCanonicalizeCombine(
10021   SDNode *N,
10022   DAGCombinerInfo &DCI) const {
10023   SelectionDAG &DAG = DCI.DAG;
10024   SDValue N0 = N->getOperand(0);
10025   EVT VT = N->getValueType(0);
10026 
10027   // fcanonicalize undef -> qnan
10028   if (N0.isUndef()) {
10029     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
10030     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
10031   }
10032 
10033   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
10034     EVT VT = N->getValueType(0);
10035     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
10036   }
10037 
10038   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
10039   //                                                   (fcanonicalize k)
10040   //
10041   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
10042 
10043   // TODO: This could be better with wider vectors that will be split to v2f16,
10044   // and to consider uses since there aren't that many packed operations.
10045   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
10046       isTypeLegal(MVT::v2f16)) {
10047     SDLoc SL(N);
10048     SDValue NewElts[2];
10049     SDValue Lo = N0.getOperand(0);
10050     SDValue Hi = N0.getOperand(1);
10051     EVT EltVT = Lo.getValueType();
10052 
10053     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
10054       for (unsigned I = 0; I != 2; ++I) {
10055         SDValue Op = N0.getOperand(I);
10056         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
10057           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
10058                                               CFP->getValueAPF());
10059         } else if (Op.isUndef()) {
10060           // Handled below based on what the other operand is.
10061           NewElts[I] = Op;
10062         } else {
10063           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
10064         }
10065       }
10066 
10067       // If one half is undef, and one is constant, perfer a splat vector rather
10068       // than the normal qNaN. If it's a register, prefer 0.0 since that's
10069       // cheaper to use and may be free with a packed operation.
10070       if (NewElts[0].isUndef()) {
10071         if (isa<ConstantFPSDNode>(NewElts[1]))
10072           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
10073             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
10074       }
10075 
10076       if (NewElts[1].isUndef()) {
10077         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
10078           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
10079       }
10080 
10081       return DAG.getBuildVector(VT, SL, NewElts);
10082     }
10083   }
10084 
10085   unsigned SrcOpc = N0.getOpcode();
10086 
10087   // If it's free to do so, push canonicalizes further up the source, which may
10088   // find a canonical source.
10089   //
10090   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
10091   // sNaNs.
10092   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
10093     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
10094     if (CRHS && N0.hasOneUse()) {
10095       SDLoc SL(N);
10096       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
10097                                    N0.getOperand(0));
10098       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
10099       DCI.AddToWorklist(Canon0.getNode());
10100 
10101       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
10102     }
10103   }
10104 
10105   return isCanonicalized(DAG, N0) ? N0 : SDValue();
10106 }
10107 
10108 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
10109   switch (Opc) {
10110   case ISD::FMAXNUM:
10111   case ISD::FMAXNUM_IEEE:
10112     return AMDGPUISD::FMAX3;
10113   case ISD::SMAX:
10114     return AMDGPUISD::SMAX3;
10115   case ISD::UMAX:
10116     return AMDGPUISD::UMAX3;
10117   case ISD::FMINNUM:
10118   case ISD::FMINNUM_IEEE:
10119     return AMDGPUISD::FMIN3;
10120   case ISD::SMIN:
10121     return AMDGPUISD::SMIN3;
10122   case ISD::UMIN:
10123     return AMDGPUISD::UMIN3;
10124   default:
10125     llvm_unreachable("Not a min/max opcode");
10126   }
10127 }
10128 
10129 SDValue SITargetLowering::performIntMed3ImmCombine(
10130   SelectionDAG &DAG, const SDLoc &SL,
10131   SDValue Op0, SDValue Op1, bool Signed) const {
10132   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
10133   if (!K1)
10134     return SDValue();
10135 
10136   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
10137   if (!K0)
10138     return SDValue();
10139 
10140   if (Signed) {
10141     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
10142       return SDValue();
10143   } else {
10144     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
10145       return SDValue();
10146   }
10147 
10148   EVT VT = K0->getValueType(0);
10149   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
10150   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
10151     return DAG.getNode(Med3Opc, SL, VT,
10152                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
10153   }
10154 
10155   // If there isn't a 16-bit med3 operation, convert to 32-bit.
10156   if (VT == MVT::i16) {
10157     MVT NVT = MVT::i32;
10158     unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10159 
10160     SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
10161     SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
10162     SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
10163 
10164     SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
10165     return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
10166   }
10167 
10168   return SDValue();
10169 }
10170 
10171 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
10172   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
10173     return C;
10174 
10175   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
10176     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
10177       return C;
10178   }
10179 
10180   return nullptr;
10181 }
10182 
10183 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
10184                                                   const SDLoc &SL,
10185                                                   SDValue Op0,
10186                                                   SDValue Op1) const {
10187   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
10188   if (!K1)
10189     return SDValue();
10190 
10191   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
10192   if (!K0)
10193     return SDValue();
10194 
10195   // Ordered >= (although NaN inputs should have folded away by now).
10196   if (K0->getValueAPF() > K1->getValueAPF())
10197     return SDValue();
10198 
10199   const MachineFunction &MF = DAG.getMachineFunction();
10200   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10201 
10202   // TODO: Check IEEE bit enabled?
10203   EVT VT = Op0.getValueType();
10204   if (Info->getMode().DX10Clamp) {
10205     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
10206     // hardware fmed3 behavior converting to a min.
10207     // FIXME: Should this be allowing -0.0?
10208     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
10209       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
10210   }
10211 
10212   // med3 for f16 is only available on gfx9+, and not available for v2f16.
10213   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
10214     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
10215     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
10216     // then give the other result, which is different from med3 with a NaN
10217     // input.
10218     SDValue Var = Op0.getOperand(0);
10219     if (!DAG.isKnownNeverSNaN(Var))
10220       return SDValue();
10221 
10222     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10223 
10224     if ((!K0->hasOneUse() ||
10225          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
10226         (!K1->hasOneUse() ||
10227          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
10228       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
10229                          Var, SDValue(K0, 0), SDValue(K1, 0));
10230     }
10231   }
10232 
10233   return SDValue();
10234 }
10235 
10236 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
10237                                                DAGCombinerInfo &DCI) const {
10238   SelectionDAG &DAG = DCI.DAG;
10239 
10240   EVT VT = N->getValueType(0);
10241   unsigned Opc = N->getOpcode();
10242   SDValue Op0 = N->getOperand(0);
10243   SDValue Op1 = N->getOperand(1);
10244 
10245   // Only do this if the inner op has one use since this will just increases
10246   // register pressure for no benefit.
10247 
10248   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
10249       !VT.isVector() &&
10250       (VT == MVT::i32 || VT == MVT::f32 ||
10251        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
10252     // max(max(a, b), c) -> max3(a, b, c)
10253     // min(min(a, b), c) -> min3(a, b, c)
10254     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
10255       SDLoc DL(N);
10256       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10257                          DL,
10258                          N->getValueType(0),
10259                          Op0.getOperand(0),
10260                          Op0.getOperand(1),
10261                          Op1);
10262     }
10263 
10264     // Try commuted.
10265     // max(a, max(b, c)) -> max3(a, b, c)
10266     // min(a, min(b, c)) -> min3(a, b, c)
10267     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
10268       SDLoc DL(N);
10269       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10270                          DL,
10271                          N->getValueType(0),
10272                          Op0,
10273                          Op1.getOperand(0),
10274                          Op1.getOperand(1));
10275     }
10276   }
10277 
10278   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
10279   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
10280     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
10281       return Med3;
10282   }
10283 
10284   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
10285     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
10286       return Med3;
10287   }
10288 
10289   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
10290   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
10291        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
10292        (Opc == AMDGPUISD::FMIN_LEGACY &&
10293         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
10294       (VT == MVT::f32 || VT == MVT::f64 ||
10295        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
10296        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
10297       Op0.hasOneUse()) {
10298     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
10299       return Res;
10300   }
10301 
10302   return SDValue();
10303 }
10304 
10305 static bool isClampZeroToOne(SDValue A, SDValue B) {
10306   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
10307     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
10308       // FIXME: Should this be allowing -0.0?
10309       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
10310              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
10311     }
10312   }
10313 
10314   return false;
10315 }
10316 
10317 // FIXME: Should only worry about snans for version with chain.
10318 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
10319                                               DAGCombinerInfo &DCI) const {
10320   EVT VT = N->getValueType(0);
10321   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
10322   // NaNs. With a NaN input, the order of the operands may change the result.
10323 
10324   SelectionDAG &DAG = DCI.DAG;
10325   SDLoc SL(N);
10326 
10327   SDValue Src0 = N->getOperand(0);
10328   SDValue Src1 = N->getOperand(1);
10329   SDValue Src2 = N->getOperand(2);
10330 
10331   if (isClampZeroToOne(Src0, Src1)) {
10332     // const_a, const_b, x -> clamp is safe in all cases including signaling
10333     // nans.
10334     // FIXME: Should this be allowing -0.0?
10335     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
10336   }
10337 
10338   const MachineFunction &MF = DAG.getMachineFunction();
10339   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10340 
10341   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
10342   // handling no dx10-clamp?
10343   if (Info->getMode().DX10Clamp) {
10344     // If NaNs is clamped to 0, we are free to reorder the inputs.
10345 
10346     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10347       std::swap(Src0, Src1);
10348 
10349     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
10350       std::swap(Src1, Src2);
10351 
10352     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10353       std::swap(Src0, Src1);
10354 
10355     if (isClampZeroToOne(Src1, Src2))
10356       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
10357   }
10358 
10359   return SDValue();
10360 }
10361 
10362 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
10363                                                  DAGCombinerInfo &DCI) const {
10364   SDValue Src0 = N->getOperand(0);
10365   SDValue Src1 = N->getOperand(1);
10366   if (Src0.isUndef() && Src1.isUndef())
10367     return DCI.DAG.getUNDEF(N->getValueType(0));
10368   return SDValue();
10369 }
10370 
10371 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10372 // expanded into a set of cmp/select instructions.
10373 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10374                                                 unsigned NumElem,
10375                                                 bool IsDivergentIdx) {
10376   if (UseDivergentRegisterIndexing)
10377     return false;
10378 
10379   unsigned VecSize = EltSize * NumElem;
10380 
10381   // Sub-dword vectors of size 2 dword or less have better implementation.
10382   if (VecSize <= 64 && EltSize < 32)
10383     return false;
10384 
10385   // Always expand the rest of sub-dword instructions, otherwise it will be
10386   // lowered via memory.
10387   if (EltSize < 32)
10388     return true;
10389 
10390   // Always do this if var-idx is divergent, otherwise it will become a loop.
10391   if (IsDivergentIdx)
10392     return true;
10393 
10394   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10395   unsigned NumInsts = NumElem /* Number of compares */ +
10396                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10397   return NumInsts <= 16;
10398 }
10399 
10400 static bool shouldExpandVectorDynExt(SDNode *N) {
10401   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10402   if (isa<ConstantSDNode>(Idx))
10403     return false;
10404 
10405   SDValue Vec = N->getOperand(0);
10406   EVT VecVT = Vec.getValueType();
10407   EVT EltVT = VecVT.getVectorElementType();
10408   unsigned EltSize = EltVT.getSizeInBits();
10409   unsigned NumElem = VecVT.getVectorNumElements();
10410 
10411   return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
10412                                                     Idx->isDivergent());
10413 }
10414 
10415 SDValue SITargetLowering::performExtractVectorEltCombine(
10416   SDNode *N, DAGCombinerInfo &DCI) const {
10417   SDValue Vec = N->getOperand(0);
10418   SelectionDAG &DAG = DCI.DAG;
10419 
10420   EVT VecVT = Vec.getValueType();
10421   EVT EltVT = VecVT.getVectorElementType();
10422 
10423   if ((Vec.getOpcode() == ISD::FNEG ||
10424        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10425     SDLoc SL(N);
10426     EVT EltVT = N->getValueType(0);
10427     SDValue Idx = N->getOperand(1);
10428     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10429                               Vec.getOperand(0), Idx);
10430     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10431   }
10432 
10433   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10434   //    =>
10435   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10436   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10437   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10438   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10439     SDLoc SL(N);
10440     EVT EltVT = N->getValueType(0);
10441     SDValue Idx = N->getOperand(1);
10442     unsigned Opc = Vec.getOpcode();
10443 
10444     switch(Opc) {
10445     default:
10446       break;
10447       // TODO: Support other binary operations.
10448     case ISD::FADD:
10449     case ISD::FSUB:
10450     case ISD::FMUL:
10451     case ISD::ADD:
10452     case ISD::UMIN:
10453     case ISD::UMAX:
10454     case ISD::SMIN:
10455     case ISD::SMAX:
10456     case ISD::FMAXNUM:
10457     case ISD::FMINNUM:
10458     case ISD::FMAXNUM_IEEE:
10459     case ISD::FMINNUM_IEEE: {
10460       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10461                                  Vec.getOperand(0), Idx);
10462       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10463                                  Vec.getOperand(1), Idx);
10464 
10465       DCI.AddToWorklist(Elt0.getNode());
10466       DCI.AddToWorklist(Elt1.getNode());
10467       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10468     }
10469     }
10470   }
10471 
10472   unsigned VecSize = VecVT.getSizeInBits();
10473   unsigned EltSize = EltVT.getSizeInBits();
10474 
10475   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10476   if (::shouldExpandVectorDynExt(N)) {
10477     SDLoc SL(N);
10478     SDValue Idx = N->getOperand(1);
10479     SDValue V;
10480     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10481       SDValue IC = DAG.getVectorIdxConstant(I, SL);
10482       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10483       if (I == 0)
10484         V = Elt;
10485       else
10486         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10487     }
10488     return V;
10489   }
10490 
10491   if (!DCI.isBeforeLegalize())
10492     return SDValue();
10493 
10494   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10495   // elements. This exposes more load reduction opportunities by replacing
10496   // multiple small extract_vector_elements with a single 32-bit extract.
10497   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10498   if (isa<MemSDNode>(Vec) &&
10499       EltSize <= 16 &&
10500       EltVT.isByteSized() &&
10501       VecSize > 32 &&
10502       VecSize % 32 == 0 &&
10503       Idx) {
10504     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10505 
10506     unsigned BitIndex = Idx->getZExtValue() * EltSize;
10507     unsigned EltIdx = BitIndex / 32;
10508     unsigned LeftoverBitIdx = BitIndex % 32;
10509     SDLoc SL(N);
10510 
10511     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10512     DCI.AddToWorklist(Cast.getNode());
10513 
10514     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10515                               DAG.getConstant(EltIdx, SL, MVT::i32));
10516     DCI.AddToWorklist(Elt.getNode());
10517     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10518                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10519     DCI.AddToWorklist(Srl.getNode());
10520 
10521     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10522     DCI.AddToWorklist(Trunc.getNode());
10523     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10524   }
10525 
10526   return SDValue();
10527 }
10528 
10529 SDValue
10530 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10531                                                 DAGCombinerInfo &DCI) const {
10532   SDValue Vec = N->getOperand(0);
10533   SDValue Idx = N->getOperand(2);
10534   EVT VecVT = Vec.getValueType();
10535   EVT EltVT = VecVT.getVectorElementType();
10536 
10537   // INSERT_VECTOR_ELT (<n x e>, var-idx)
10538   // => BUILD_VECTOR n x select (e, const-idx)
10539   if (!::shouldExpandVectorDynExt(N))
10540     return SDValue();
10541 
10542   SelectionDAG &DAG = DCI.DAG;
10543   SDLoc SL(N);
10544   SDValue Ins = N->getOperand(1);
10545   EVT IdxVT = Idx.getValueType();
10546 
10547   SmallVector<SDValue, 16> Ops;
10548   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10549     SDValue IC = DAG.getConstant(I, SL, IdxVT);
10550     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10551     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10552     Ops.push_back(V);
10553   }
10554 
10555   return DAG.getBuildVector(VecVT, SL, Ops);
10556 }
10557 
10558 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10559                                           const SDNode *N0,
10560                                           const SDNode *N1) const {
10561   EVT VT = N0->getValueType(0);
10562 
10563   // Only do this if we are not trying to support denormals. v_mad_f32 does not
10564   // support denormals ever.
10565   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10566        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10567         getSubtarget()->hasMadF16())) &&
10568        isOperationLegal(ISD::FMAD, VT))
10569     return ISD::FMAD;
10570 
10571   const TargetOptions &Options = DAG.getTarget().Options;
10572   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10573        (N0->getFlags().hasAllowContract() &&
10574         N1->getFlags().hasAllowContract())) &&
10575       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10576     return ISD::FMA;
10577   }
10578 
10579   return 0;
10580 }
10581 
10582 // For a reassociatable opcode perform:
10583 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10584 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10585                                                SelectionDAG &DAG) const {
10586   EVT VT = N->getValueType(0);
10587   if (VT != MVT::i32 && VT != MVT::i64)
10588     return SDValue();
10589 
10590   if (DAG.isBaseWithConstantOffset(SDValue(N, 0)))
10591     return SDValue();
10592 
10593   unsigned Opc = N->getOpcode();
10594   SDValue Op0 = N->getOperand(0);
10595   SDValue Op1 = N->getOperand(1);
10596 
10597   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10598     return SDValue();
10599 
10600   if (Op0->isDivergent())
10601     std::swap(Op0, Op1);
10602 
10603   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10604     return SDValue();
10605 
10606   SDValue Op2 = Op1.getOperand(1);
10607   Op1 = Op1.getOperand(0);
10608   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10609     return SDValue();
10610 
10611   if (Op1->isDivergent())
10612     std::swap(Op1, Op2);
10613 
10614   SDLoc SL(N);
10615   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10616   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10617 }
10618 
10619 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10620                            EVT VT,
10621                            SDValue N0, SDValue N1, SDValue N2,
10622                            bool Signed) {
10623   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10624   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10625   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10626   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10627 }
10628 
10629 SDValue SITargetLowering::performAddCombine(SDNode *N,
10630                                             DAGCombinerInfo &DCI) const {
10631   SelectionDAG &DAG = DCI.DAG;
10632   EVT VT = N->getValueType(0);
10633   SDLoc SL(N);
10634   SDValue LHS = N->getOperand(0);
10635   SDValue RHS = N->getOperand(1);
10636 
10637   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10638       && Subtarget->hasMad64_32() &&
10639       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10640       VT.getScalarSizeInBits() <= 64) {
10641     if (LHS.getOpcode() != ISD::MUL)
10642       std::swap(LHS, RHS);
10643 
10644     SDValue MulLHS = LHS.getOperand(0);
10645     SDValue MulRHS = LHS.getOperand(1);
10646     SDValue AddRHS = RHS;
10647 
10648     // TODO: Maybe restrict if SGPR inputs.
10649     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10650         numBitsUnsigned(MulRHS, DAG) <= 32) {
10651       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10652       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10653       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10654       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10655     }
10656 
10657     if (numBitsSigned(MulLHS, DAG) <= 32 && numBitsSigned(MulRHS, DAG) <= 32) {
10658       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10659       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10660       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10661       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10662     }
10663 
10664     return SDValue();
10665   }
10666 
10667   if (SDValue V = reassociateScalarOps(N, DAG)) {
10668     return V;
10669   }
10670 
10671   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10672     return SDValue();
10673 
10674   // add x, zext (setcc) => addcarry x, 0, setcc
10675   // add x, sext (setcc) => subcarry x, 0, setcc
10676   unsigned Opc = LHS.getOpcode();
10677   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10678       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10679     std::swap(RHS, LHS);
10680 
10681   Opc = RHS.getOpcode();
10682   switch (Opc) {
10683   default: break;
10684   case ISD::ZERO_EXTEND:
10685   case ISD::SIGN_EXTEND:
10686   case ISD::ANY_EXTEND: {
10687     auto Cond = RHS.getOperand(0);
10688     // If this won't be a real VOPC output, we would still need to insert an
10689     // extra instruction anyway.
10690     if (!isBoolSGPR(Cond))
10691       break;
10692     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10693     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10694     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10695     return DAG.getNode(Opc, SL, VTList, Args);
10696   }
10697   case ISD::ADDCARRY: {
10698     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10699     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10700     if (!C || C->getZExtValue() != 0) break;
10701     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10702     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10703   }
10704   }
10705   return SDValue();
10706 }
10707 
10708 SDValue SITargetLowering::performSubCombine(SDNode *N,
10709                                             DAGCombinerInfo &DCI) const {
10710   SelectionDAG &DAG = DCI.DAG;
10711   EVT VT = N->getValueType(0);
10712 
10713   if (VT != MVT::i32)
10714     return SDValue();
10715 
10716   SDLoc SL(N);
10717   SDValue LHS = N->getOperand(0);
10718   SDValue RHS = N->getOperand(1);
10719 
10720   // sub x, zext (setcc) => subcarry x, 0, setcc
10721   // sub x, sext (setcc) => addcarry x, 0, setcc
10722   unsigned Opc = RHS.getOpcode();
10723   switch (Opc) {
10724   default: break;
10725   case ISD::ZERO_EXTEND:
10726   case ISD::SIGN_EXTEND:
10727   case ISD::ANY_EXTEND: {
10728     auto Cond = RHS.getOperand(0);
10729     // If this won't be a real VOPC output, we would still need to insert an
10730     // extra instruction anyway.
10731     if (!isBoolSGPR(Cond))
10732       break;
10733     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10734     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10735     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10736     return DAG.getNode(Opc, SL, VTList, Args);
10737   }
10738   }
10739 
10740   if (LHS.getOpcode() == ISD::SUBCARRY) {
10741     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10742     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10743     if (!C || !C->isZero())
10744       return SDValue();
10745     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10746     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10747   }
10748   return SDValue();
10749 }
10750 
10751 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10752   DAGCombinerInfo &DCI) const {
10753 
10754   if (N->getValueType(0) != MVT::i32)
10755     return SDValue();
10756 
10757   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10758   if (!C || C->getZExtValue() != 0)
10759     return SDValue();
10760 
10761   SelectionDAG &DAG = DCI.DAG;
10762   SDValue LHS = N->getOperand(0);
10763 
10764   // addcarry (add x, y), 0, cc => addcarry x, y, cc
10765   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10766   unsigned LHSOpc = LHS.getOpcode();
10767   unsigned Opc = N->getOpcode();
10768   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10769       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10770     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10771     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10772   }
10773   return SDValue();
10774 }
10775 
10776 SDValue SITargetLowering::performFAddCombine(SDNode *N,
10777                                              DAGCombinerInfo &DCI) const {
10778   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10779     return SDValue();
10780 
10781   SelectionDAG &DAG = DCI.DAG;
10782   EVT VT = N->getValueType(0);
10783 
10784   SDLoc SL(N);
10785   SDValue LHS = N->getOperand(0);
10786   SDValue RHS = N->getOperand(1);
10787 
10788   // These should really be instruction patterns, but writing patterns with
10789   // source modiifiers is a pain.
10790 
10791   // fadd (fadd (a, a), b) -> mad 2.0, a, b
10792   if (LHS.getOpcode() == ISD::FADD) {
10793     SDValue A = LHS.getOperand(0);
10794     if (A == LHS.getOperand(1)) {
10795       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10796       if (FusedOp != 0) {
10797         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10798         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10799       }
10800     }
10801   }
10802 
10803   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10804   if (RHS.getOpcode() == ISD::FADD) {
10805     SDValue A = RHS.getOperand(0);
10806     if (A == RHS.getOperand(1)) {
10807       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10808       if (FusedOp != 0) {
10809         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10810         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10811       }
10812     }
10813   }
10814 
10815   return SDValue();
10816 }
10817 
10818 SDValue SITargetLowering::performFSubCombine(SDNode *N,
10819                                              DAGCombinerInfo &DCI) const {
10820   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10821     return SDValue();
10822 
10823   SelectionDAG &DAG = DCI.DAG;
10824   SDLoc SL(N);
10825   EVT VT = N->getValueType(0);
10826   assert(!VT.isVector());
10827 
10828   // Try to get the fneg to fold into the source modifier. This undoes generic
10829   // DAG combines and folds them into the mad.
10830   //
10831   // Only do this if we are not trying to support denormals. v_mad_f32 does
10832   // not support denormals ever.
10833   SDValue LHS = N->getOperand(0);
10834   SDValue RHS = N->getOperand(1);
10835   if (LHS.getOpcode() == ISD::FADD) {
10836     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10837     SDValue A = LHS.getOperand(0);
10838     if (A == LHS.getOperand(1)) {
10839       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10840       if (FusedOp != 0){
10841         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10842         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10843 
10844         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10845       }
10846     }
10847   }
10848 
10849   if (RHS.getOpcode() == ISD::FADD) {
10850     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10851 
10852     SDValue A = RHS.getOperand(0);
10853     if (A == RHS.getOperand(1)) {
10854       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10855       if (FusedOp != 0){
10856         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10857         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10858       }
10859     }
10860   }
10861 
10862   return SDValue();
10863 }
10864 
10865 SDValue SITargetLowering::performFMACombine(SDNode *N,
10866                                             DAGCombinerInfo &DCI) const {
10867   SelectionDAG &DAG = DCI.DAG;
10868   EVT VT = N->getValueType(0);
10869   SDLoc SL(N);
10870 
10871   if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
10872     return SDValue();
10873 
10874   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10875   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10876   SDValue Op1 = N->getOperand(0);
10877   SDValue Op2 = N->getOperand(1);
10878   SDValue FMA = N->getOperand(2);
10879 
10880   if (FMA.getOpcode() != ISD::FMA ||
10881       Op1.getOpcode() != ISD::FP_EXTEND ||
10882       Op2.getOpcode() != ISD::FP_EXTEND)
10883     return SDValue();
10884 
10885   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10886   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10887   // is sufficient to allow generaing fdot2.
10888   const TargetOptions &Options = DAG.getTarget().Options;
10889   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10890       (N->getFlags().hasAllowContract() &&
10891        FMA->getFlags().hasAllowContract())) {
10892     Op1 = Op1.getOperand(0);
10893     Op2 = Op2.getOperand(0);
10894     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10895         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10896       return SDValue();
10897 
10898     SDValue Vec1 = Op1.getOperand(0);
10899     SDValue Idx1 = Op1.getOperand(1);
10900     SDValue Vec2 = Op2.getOperand(0);
10901 
10902     SDValue FMAOp1 = FMA.getOperand(0);
10903     SDValue FMAOp2 = FMA.getOperand(1);
10904     SDValue FMAAcc = FMA.getOperand(2);
10905 
10906     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10907         FMAOp2.getOpcode() != ISD::FP_EXTEND)
10908       return SDValue();
10909 
10910     FMAOp1 = FMAOp1.getOperand(0);
10911     FMAOp2 = FMAOp2.getOperand(0);
10912     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10913         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10914       return SDValue();
10915 
10916     SDValue Vec3 = FMAOp1.getOperand(0);
10917     SDValue Vec4 = FMAOp2.getOperand(0);
10918     SDValue Idx2 = FMAOp1.getOperand(1);
10919 
10920     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10921         // Idx1 and Idx2 cannot be the same.
10922         Idx1 == Idx2)
10923       return SDValue();
10924 
10925     if (Vec1 == Vec2 || Vec3 == Vec4)
10926       return SDValue();
10927 
10928     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10929       return SDValue();
10930 
10931     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10932         (Vec1 == Vec4 && Vec2 == Vec3)) {
10933       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10934                          DAG.getTargetConstant(0, SL, MVT::i1));
10935     }
10936   }
10937   return SDValue();
10938 }
10939 
10940 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10941                                               DAGCombinerInfo &DCI) const {
10942   SelectionDAG &DAG = DCI.DAG;
10943   SDLoc SL(N);
10944 
10945   SDValue LHS = N->getOperand(0);
10946   SDValue RHS = N->getOperand(1);
10947   EVT VT = LHS.getValueType();
10948   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10949 
10950   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10951   if (!CRHS) {
10952     CRHS = dyn_cast<ConstantSDNode>(LHS);
10953     if (CRHS) {
10954       std::swap(LHS, RHS);
10955       CC = getSetCCSwappedOperands(CC);
10956     }
10957   }
10958 
10959   if (CRHS) {
10960     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10961         isBoolSGPR(LHS.getOperand(0))) {
10962       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10963       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10964       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
10965       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
10966       if ((CRHS->isAllOnes() &&
10967            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10968           (CRHS->isZero() &&
10969            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10970         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10971                            DAG.getConstant(-1, SL, MVT::i1));
10972       if ((CRHS->isAllOnes() &&
10973            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10974           (CRHS->isZero() &&
10975            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10976         return LHS.getOperand(0);
10977     }
10978 
10979     const APInt &CRHSVal = CRHS->getAPIntValue();
10980     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10981         LHS.getOpcode() == ISD::SELECT &&
10982         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10983         isa<ConstantSDNode>(LHS.getOperand(2)) &&
10984         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10985         isBoolSGPR(LHS.getOperand(0))) {
10986       // Given CT != FT:
10987       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10988       // setcc (select cc, CT, CF), CF, ne => cc
10989       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10990       // setcc (select cc, CT, CF), CT, eq => cc
10991       const APInt &CT = LHS.getConstantOperandAPInt(1);
10992       const APInt &CF = LHS.getConstantOperandAPInt(2);
10993 
10994       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10995           (CT == CRHSVal && CC == ISD::SETNE))
10996         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10997                            DAG.getConstant(-1, SL, MVT::i1));
10998       if ((CF == CRHSVal && CC == ISD::SETNE) ||
10999           (CT == CRHSVal && CC == ISD::SETEQ))
11000         return LHS.getOperand(0);
11001     }
11002   }
11003 
11004   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
11005                                            VT != MVT::f16))
11006     return SDValue();
11007 
11008   // Match isinf/isfinite pattern
11009   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
11010   // (fcmp one (fabs x), inf) -> (fp_class x,
11011   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
11012   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
11013     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
11014     if (!CRHS)
11015       return SDValue();
11016 
11017     const APFloat &APF = CRHS->getValueAPF();
11018     if (APF.isInfinity() && !APF.isNegative()) {
11019       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
11020                                  SIInstrFlags::N_INFINITY;
11021       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
11022                                     SIInstrFlags::P_ZERO |
11023                                     SIInstrFlags::N_NORMAL |
11024                                     SIInstrFlags::P_NORMAL |
11025                                     SIInstrFlags::N_SUBNORMAL |
11026                                     SIInstrFlags::P_SUBNORMAL;
11027       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
11028       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
11029                          DAG.getConstant(Mask, SL, MVT::i32));
11030     }
11031   }
11032 
11033   return SDValue();
11034 }
11035 
11036 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
11037                                                      DAGCombinerInfo &DCI) const {
11038   SelectionDAG &DAG = DCI.DAG;
11039   SDLoc SL(N);
11040   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
11041 
11042   SDValue Src = N->getOperand(0);
11043   SDValue Shift = N->getOperand(0);
11044 
11045   // TODO: Extend type shouldn't matter (assuming legal types).
11046   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
11047     Shift = Shift.getOperand(0);
11048 
11049   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
11050     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
11051     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
11052     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
11053     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
11054     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
11055     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
11056       SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0),
11057                                  SDLoc(Shift.getOperand(0)), MVT::i32);
11058 
11059       unsigned ShiftOffset = 8 * Offset;
11060       if (Shift.getOpcode() == ISD::SHL)
11061         ShiftOffset -= C->getZExtValue();
11062       else
11063         ShiftOffset += C->getZExtValue();
11064 
11065       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
11066         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
11067                            MVT::f32, Shifted);
11068       }
11069     }
11070   }
11071 
11072   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11073   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
11074   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
11075     // We simplified Src. If this node is not dead, visit it again so it is
11076     // folded properly.
11077     if (N->getOpcode() != ISD::DELETED_NODE)
11078       DCI.AddToWorklist(N);
11079     return SDValue(N, 0);
11080   }
11081 
11082   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
11083   if (SDValue DemandedSrc =
11084           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
11085     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
11086 
11087   return SDValue();
11088 }
11089 
11090 SDValue SITargetLowering::performClampCombine(SDNode *N,
11091                                               DAGCombinerInfo &DCI) const {
11092   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
11093   if (!CSrc)
11094     return SDValue();
11095 
11096   const MachineFunction &MF = DCI.DAG.getMachineFunction();
11097   const APFloat &F = CSrc->getValueAPF();
11098   APFloat Zero = APFloat::getZero(F.getSemantics());
11099   if (F < Zero ||
11100       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
11101     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
11102   }
11103 
11104   APFloat One(F.getSemantics(), "1.0");
11105   if (F > One)
11106     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
11107 
11108   return SDValue(CSrc, 0);
11109 }
11110 
11111 
11112 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
11113                                             DAGCombinerInfo &DCI) const {
11114   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
11115     return SDValue();
11116   switch (N->getOpcode()) {
11117   case ISD::ADD:
11118     return performAddCombine(N, DCI);
11119   case ISD::SUB:
11120     return performSubCombine(N, DCI);
11121   case ISD::ADDCARRY:
11122   case ISD::SUBCARRY:
11123     return performAddCarrySubCarryCombine(N, DCI);
11124   case ISD::FADD:
11125     return performFAddCombine(N, DCI);
11126   case ISD::FSUB:
11127     return performFSubCombine(N, DCI);
11128   case ISD::SETCC:
11129     return performSetCCCombine(N, DCI);
11130   case ISD::FMAXNUM:
11131   case ISD::FMINNUM:
11132   case ISD::FMAXNUM_IEEE:
11133   case ISD::FMINNUM_IEEE:
11134   case ISD::SMAX:
11135   case ISD::SMIN:
11136   case ISD::UMAX:
11137   case ISD::UMIN:
11138   case AMDGPUISD::FMIN_LEGACY:
11139   case AMDGPUISD::FMAX_LEGACY:
11140     return performMinMaxCombine(N, DCI);
11141   case ISD::FMA:
11142     return performFMACombine(N, DCI);
11143   case ISD::AND:
11144     return performAndCombine(N, DCI);
11145   case ISD::OR:
11146     return performOrCombine(N, DCI);
11147   case ISD::XOR:
11148     return performXorCombine(N, DCI);
11149   case ISD::ZERO_EXTEND:
11150     return performZeroExtendCombine(N, DCI);
11151   case ISD::SIGN_EXTEND_INREG:
11152     return performSignExtendInRegCombine(N , DCI);
11153   case AMDGPUISD::FP_CLASS:
11154     return performClassCombine(N, DCI);
11155   case ISD::FCANONICALIZE:
11156     return performFCanonicalizeCombine(N, DCI);
11157   case AMDGPUISD::RCP:
11158     return performRcpCombine(N, DCI);
11159   case AMDGPUISD::FRACT:
11160   case AMDGPUISD::RSQ:
11161   case AMDGPUISD::RCP_LEGACY:
11162   case AMDGPUISD::RCP_IFLAG:
11163   case AMDGPUISD::RSQ_CLAMP:
11164   case AMDGPUISD::LDEXP: {
11165     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
11166     SDValue Src = N->getOperand(0);
11167     if (Src.isUndef())
11168       return Src;
11169     break;
11170   }
11171   case ISD::SINT_TO_FP:
11172   case ISD::UINT_TO_FP:
11173     return performUCharToFloatCombine(N, DCI);
11174   case AMDGPUISD::CVT_F32_UBYTE0:
11175   case AMDGPUISD::CVT_F32_UBYTE1:
11176   case AMDGPUISD::CVT_F32_UBYTE2:
11177   case AMDGPUISD::CVT_F32_UBYTE3:
11178     return performCvtF32UByteNCombine(N, DCI);
11179   case AMDGPUISD::FMED3:
11180     return performFMed3Combine(N, DCI);
11181   case AMDGPUISD::CVT_PKRTZ_F16_F32:
11182     return performCvtPkRTZCombine(N, DCI);
11183   case AMDGPUISD::CLAMP:
11184     return performClampCombine(N, DCI);
11185   case ISD::SCALAR_TO_VECTOR: {
11186     SelectionDAG &DAG = DCI.DAG;
11187     EVT VT = N->getValueType(0);
11188 
11189     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
11190     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
11191       SDLoc SL(N);
11192       SDValue Src = N->getOperand(0);
11193       EVT EltVT = Src.getValueType();
11194       if (EltVT == MVT::f16)
11195         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
11196 
11197       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
11198       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
11199     }
11200 
11201     break;
11202   }
11203   case ISD::EXTRACT_VECTOR_ELT:
11204     return performExtractVectorEltCombine(N, DCI);
11205   case ISD::INSERT_VECTOR_ELT:
11206     return performInsertVectorEltCombine(N, DCI);
11207   case ISD::LOAD: {
11208     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
11209       return Widended;
11210     LLVM_FALLTHROUGH;
11211   }
11212   default: {
11213     if (!DCI.isBeforeLegalize()) {
11214       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
11215         return performMemSDNodeCombine(MemNode, DCI);
11216     }
11217 
11218     break;
11219   }
11220   }
11221 
11222   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
11223 }
11224 
11225 /// Helper function for adjustWritemask
11226 static unsigned SubIdx2Lane(unsigned Idx) {
11227   switch (Idx) {
11228   default: return ~0u;
11229   case AMDGPU::sub0: return 0;
11230   case AMDGPU::sub1: return 1;
11231   case AMDGPU::sub2: return 2;
11232   case AMDGPU::sub3: return 3;
11233   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
11234   }
11235 }
11236 
11237 /// Adjust the writemask of MIMG instructions
11238 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
11239                                           SelectionDAG &DAG) const {
11240   unsigned Opcode = Node->getMachineOpcode();
11241 
11242   // Subtract 1 because the vdata output is not a MachineSDNode operand.
11243   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
11244   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
11245     return Node; // not implemented for D16
11246 
11247   SDNode *Users[5] = { nullptr };
11248   unsigned Lane = 0;
11249   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
11250   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
11251   unsigned NewDmask = 0;
11252   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
11253   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
11254   bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
11255                   Node->getConstantOperandVal(LWEIdx))
11256                      ? true
11257                      : false;
11258   unsigned TFCLane = 0;
11259   bool HasChain = Node->getNumValues() > 1;
11260 
11261   if (OldDmask == 0) {
11262     // These are folded out, but on the chance it happens don't assert.
11263     return Node;
11264   }
11265 
11266   unsigned OldBitsSet = countPopulation(OldDmask);
11267   // Work out which is the TFE/LWE lane if that is enabled.
11268   if (UsesTFC) {
11269     TFCLane = OldBitsSet;
11270   }
11271 
11272   // Try to figure out the used register components
11273   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
11274        I != E; ++I) {
11275 
11276     // Don't look at users of the chain.
11277     if (I.getUse().getResNo() != 0)
11278       continue;
11279 
11280     // Abort if we can't understand the usage
11281     if (!I->isMachineOpcode() ||
11282         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
11283       return Node;
11284 
11285     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
11286     // Note that subregs are packed, i.e. Lane==0 is the first bit set
11287     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
11288     // set, etc.
11289     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
11290     if (Lane == ~0u)
11291       return Node;
11292 
11293     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
11294     if (UsesTFC && Lane == TFCLane) {
11295       Users[Lane] = *I;
11296     } else {
11297       // Set which texture component corresponds to the lane.
11298       unsigned Comp;
11299       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
11300         Comp = countTrailingZeros(Dmask);
11301         Dmask &= ~(1 << Comp);
11302       }
11303 
11304       // Abort if we have more than one user per component.
11305       if (Users[Lane])
11306         return Node;
11307 
11308       Users[Lane] = *I;
11309       NewDmask |= 1 << Comp;
11310     }
11311   }
11312 
11313   // Don't allow 0 dmask, as hardware assumes one channel enabled.
11314   bool NoChannels = !NewDmask;
11315   if (NoChannels) {
11316     if (!UsesTFC) {
11317       // No uses of the result and not using TFC. Then do nothing.
11318       return Node;
11319     }
11320     // If the original dmask has one channel - then nothing to do
11321     if (OldBitsSet == 1)
11322       return Node;
11323     // Use an arbitrary dmask - required for the instruction to work
11324     NewDmask = 1;
11325   }
11326   // Abort if there's no change
11327   if (NewDmask == OldDmask)
11328     return Node;
11329 
11330   unsigned BitsSet = countPopulation(NewDmask);
11331 
11332   // Check for TFE or LWE - increase the number of channels by one to account
11333   // for the extra return value
11334   // This will need adjustment for D16 if this is also included in
11335   // adjustWriteMask (this function) but at present D16 are excluded.
11336   unsigned NewChannels = BitsSet + UsesTFC;
11337 
11338   int NewOpcode =
11339       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
11340   assert(NewOpcode != -1 &&
11341          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
11342          "failed to find equivalent MIMG op");
11343 
11344   // Adjust the writemask in the node
11345   SmallVector<SDValue, 12> Ops;
11346   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
11347   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
11348   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
11349 
11350   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
11351 
11352   MVT ResultVT = NewChannels == 1 ?
11353     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
11354                            NewChannels == 5 ? 8 : NewChannels);
11355   SDVTList NewVTList = HasChain ?
11356     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
11357 
11358 
11359   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
11360                                               NewVTList, Ops);
11361 
11362   if (HasChain) {
11363     // Update chain.
11364     DAG.setNodeMemRefs(NewNode, Node->memoperands());
11365     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11366   }
11367 
11368   if (NewChannels == 1) {
11369     assert(Node->hasNUsesOfValue(1, 0));
11370     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11371                                       SDLoc(Node), Users[Lane]->getValueType(0),
11372                                       SDValue(NewNode, 0));
11373     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11374     return nullptr;
11375   }
11376 
11377   // Update the users of the node with the new indices
11378   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11379     SDNode *User = Users[i];
11380     if (!User) {
11381       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11382       // Users[0] is still nullptr because channel 0 doesn't really have a use.
11383       if (i || !NoChannels)
11384         continue;
11385     } else {
11386       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11387       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11388     }
11389 
11390     switch (Idx) {
11391     default: break;
11392     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11393     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11394     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11395     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11396     }
11397   }
11398 
11399   DAG.RemoveDeadNode(Node);
11400   return nullptr;
11401 }
11402 
11403 static bool isFrameIndexOp(SDValue Op) {
11404   if (Op.getOpcode() == ISD::AssertZext)
11405     Op = Op.getOperand(0);
11406 
11407   return isa<FrameIndexSDNode>(Op);
11408 }
11409 
11410 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11411 /// with frame index operands.
11412 /// LLVM assumes that inputs are to these instructions are registers.
11413 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11414                                                         SelectionDAG &DAG) const {
11415   if (Node->getOpcode() == ISD::CopyToReg) {
11416     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11417     SDValue SrcVal = Node->getOperand(2);
11418 
11419     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11420     // to try understanding copies to physical registers.
11421     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11422       SDLoc SL(Node);
11423       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11424       SDValue VReg = DAG.getRegister(
11425         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11426 
11427       SDNode *Glued = Node->getGluedNode();
11428       SDValue ToVReg
11429         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11430                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11431       SDValue ToResultReg
11432         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11433                            VReg, ToVReg.getValue(1));
11434       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11435       DAG.RemoveDeadNode(Node);
11436       return ToResultReg.getNode();
11437     }
11438   }
11439 
11440   SmallVector<SDValue, 8> Ops;
11441   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11442     if (!isFrameIndexOp(Node->getOperand(i))) {
11443       Ops.push_back(Node->getOperand(i));
11444       continue;
11445     }
11446 
11447     SDLoc DL(Node);
11448     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11449                                      Node->getOperand(i).getValueType(),
11450                                      Node->getOperand(i)), 0));
11451   }
11452 
11453   return DAG.UpdateNodeOperands(Node, Ops);
11454 }
11455 
11456 /// Fold the instructions after selecting them.
11457 /// Returns null if users were already updated.
11458 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11459                                           SelectionDAG &DAG) const {
11460   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11461   unsigned Opcode = Node->getMachineOpcode();
11462 
11463   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11464       !TII->isGather4(Opcode) &&
11465       AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11466     return adjustWritemask(Node, DAG);
11467   }
11468 
11469   if (Opcode == AMDGPU::INSERT_SUBREG ||
11470       Opcode == AMDGPU::REG_SEQUENCE) {
11471     legalizeTargetIndependentNode(Node, DAG);
11472     return Node;
11473   }
11474 
11475   switch (Opcode) {
11476   case AMDGPU::V_DIV_SCALE_F32_e64:
11477   case AMDGPU::V_DIV_SCALE_F64_e64: {
11478     // Satisfy the operand register constraint when one of the inputs is
11479     // undefined. Ordinarily each undef value will have its own implicit_def of
11480     // a vreg, so force these to use a single register.
11481     SDValue Src0 = Node->getOperand(1);
11482     SDValue Src1 = Node->getOperand(3);
11483     SDValue Src2 = Node->getOperand(5);
11484 
11485     if ((Src0.isMachineOpcode() &&
11486          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11487         (Src0 == Src1 || Src0 == Src2))
11488       break;
11489 
11490     MVT VT = Src0.getValueType().getSimpleVT();
11491     const TargetRegisterClass *RC =
11492         getRegClassFor(VT, Src0.getNode()->isDivergent());
11493 
11494     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11495     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11496 
11497     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11498                                       UndefReg, Src0, SDValue());
11499 
11500     // src0 must be the same register as src1 or src2, even if the value is
11501     // undefined, so make sure we don't violate this constraint.
11502     if (Src0.isMachineOpcode() &&
11503         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11504       if (Src1.isMachineOpcode() &&
11505           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11506         Src0 = Src1;
11507       else if (Src2.isMachineOpcode() &&
11508                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11509         Src0 = Src2;
11510       else {
11511         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11512         Src0 = UndefReg;
11513         Src1 = UndefReg;
11514       }
11515     } else
11516       break;
11517 
11518     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11519     Ops[1] = Src0;
11520     Ops[3] = Src1;
11521     Ops[5] = Src2;
11522     Ops.push_back(ImpDef.getValue(1));
11523     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11524   }
11525   default:
11526     break;
11527   }
11528 
11529   return Node;
11530 }
11531 
11532 // Any MIMG instructions that use tfe or lwe require an initialization of the
11533 // result register that will be written in the case of a memory access failure.
11534 // The required code is also added to tie this init code to the result of the
11535 // img instruction.
11536 void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
11537   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11538   const SIRegisterInfo &TRI = TII->getRegisterInfo();
11539   MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
11540   MachineBasicBlock &MBB = *MI.getParent();
11541 
11542   MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
11543   MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
11544   MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
11545 
11546   if (!TFE && !LWE) // intersect_ray
11547     return;
11548 
11549   unsigned TFEVal = TFE ? TFE->getImm() : 0;
11550   unsigned LWEVal = LWE->getImm();
11551   unsigned D16Val = D16 ? D16->getImm() : 0;
11552 
11553   if (!TFEVal && !LWEVal)
11554     return;
11555 
11556   // At least one of TFE or LWE are non-zero
11557   // We have to insert a suitable initialization of the result value and
11558   // tie this to the dest of the image instruction.
11559 
11560   const DebugLoc &DL = MI.getDebugLoc();
11561 
11562   int DstIdx =
11563       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
11564 
11565   // Calculate which dword we have to initialize to 0.
11566   MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
11567 
11568   // check that dmask operand is found.
11569   assert(MO_Dmask && "Expected dmask operand in instruction");
11570 
11571   unsigned dmask = MO_Dmask->getImm();
11572   // Determine the number of active lanes taking into account the
11573   // Gather4 special case
11574   unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask);
11575 
11576   bool Packed = !Subtarget->hasUnpackedD16VMem();
11577 
11578   unsigned InitIdx =
11579       D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
11580 
11581   // Abandon attempt if the dst size isn't large enough
11582   // - this is in fact an error but this is picked up elsewhere and
11583   // reported correctly.
11584   uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
11585   if (DstSize < InitIdx)
11586     return;
11587 
11588   // Create a register for the intialization value.
11589   Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11590   unsigned NewDst = 0; // Final initialized value will be in here
11591 
11592   // If PRTStrictNull feature is enabled (the default) then initialize
11593   // all the result registers to 0, otherwise just the error indication
11594   // register (VGPRn+1)
11595   unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
11596   unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
11597 
11598   BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
11599   for (; SizeLeft; SizeLeft--, CurrIdx++) {
11600     NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11601     // Initialize dword
11602     Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
11603     BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
11604       .addImm(0);
11605     // Insert into the super-reg
11606     BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
11607       .addReg(PrevDst)
11608       .addReg(SubReg)
11609       .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
11610 
11611     PrevDst = NewDst;
11612   }
11613 
11614   // Add as an implicit operand
11615   MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
11616 
11617   // Tie the just added implicit operand to the dst
11618   MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
11619 }
11620 
11621 /// Assign the register class depending on the number of
11622 /// bits set in the writemask
11623 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11624                                                      SDNode *Node) const {
11625   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11626 
11627   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11628 
11629   if (TII->isVOP3(MI.getOpcode())) {
11630     // Make sure constant bus requirements are respected.
11631     TII->legalizeOperandsVOP3(MRI, MI);
11632 
11633     // Prefer VGPRs over AGPRs in mAI instructions where possible.
11634     // This saves a chain-copy of registers and better ballance register
11635     // use between vgpr and agpr as agpr tuples tend to be big.
11636     if (MI.getDesc().OpInfo) {
11637       unsigned Opc = MI.getOpcode();
11638       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11639       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11640                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11641         if (I == -1)
11642           break;
11643         MachineOperand &Op = MI.getOperand(I);
11644         if (!Op.isReg() || !Op.getReg().isVirtual())
11645           continue;
11646         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11647         if (!TRI->hasAGPRs(RC))
11648           continue;
11649         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11650         if (!Src || !Src->isCopy() ||
11651             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11652           continue;
11653         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11654         // All uses of agpr64 and agpr32 can also accept vgpr except for
11655         // v_accvgpr_read, but we do not produce agpr reads during selection,
11656         // so no use checks are needed.
11657         MRI.setRegClass(Op.getReg(), NewRC);
11658       }
11659     }
11660 
11661     return;
11662   }
11663 
11664   // Replace unused atomics with the no return version.
11665   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11666   if (NoRetAtomicOp != -1) {
11667     if (!Node->hasAnyUseOfValue(0)) {
11668       int CPolIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
11669                                                AMDGPU::OpName::cpol);
11670       if (CPolIdx != -1) {
11671         MachineOperand &CPol = MI.getOperand(CPolIdx);
11672         CPol.setImm(CPol.getImm() & ~AMDGPU::CPol::GLC);
11673       }
11674       MI.RemoveOperand(0);
11675       MI.setDesc(TII->get(NoRetAtomicOp));
11676       return;
11677     }
11678 
11679     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11680     // instruction, because the return type of these instructions is a vec2 of
11681     // the memory type, so it can be tied to the input operand.
11682     // This means these instructions always have a use, so we need to add a
11683     // special case to check if the atomic has only one extract_subreg use,
11684     // which itself has no uses.
11685     if ((Node->hasNUsesOfValue(1, 0) &&
11686          Node->use_begin()->isMachineOpcode() &&
11687          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11688          !Node->use_begin()->hasAnyUseOfValue(0))) {
11689       Register Def = MI.getOperand(0).getReg();
11690 
11691       // Change this into a noret atomic.
11692       MI.setDesc(TII->get(NoRetAtomicOp));
11693       MI.RemoveOperand(0);
11694 
11695       // If we only remove the def operand from the atomic instruction, the
11696       // extract_subreg will be left with a use of a vreg without a def.
11697       // So we need to insert an implicit_def to avoid machine verifier
11698       // errors.
11699       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11700               TII->get(AMDGPU::IMPLICIT_DEF), Def);
11701     }
11702     return;
11703   }
11704 
11705   if (TII->isMIMG(MI) && !MI.mayStore())
11706     AddIMGInit(MI);
11707 }
11708 
11709 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11710                               uint64_t Val) {
11711   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11712   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11713 }
11714 
11715 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11716                                                 const SDLoc &DL,
11717                                                 SDValue Ptr) const {
11718   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11719 
11720   // Build the half of the subregister with the constants before building the
11721   // full 128-bit register. If we are building multiple resource descriptors,
11722   // this will allow CSEing of the 2-component register.
11723   const SDValue Ops0[] = {
11724     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11725     buildSMovImm32(DAG, DL, 0),
11726     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11727     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11728     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11729   };
11730 
11731   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11732                                                 MVT::v2i32, Ops0), 0);
11733 
11734   // Combine the constants and the pointer.
11735   const SDValue Ops1[] = {
11736     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11737     Ptr,
11738     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11739     SubRegHi,
11740     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11741   };
11742 
11743   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11744 }
11745 
11746 /// Return a resource descriptor with the 'Add TID' bit enabled
11747 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11748 ///        of the resource descriptor) to create an offset, which is added to
11749 ///        the resource pointer.
11750 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11751                                            SDValue Ptr, uint32_t RsrcDword1,
11752                                            uint64_t RsrcDword2And3) const {
11753   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11754   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11755   if (RsrcDword1) {
11756     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11757                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11758                     0);
11759   }
11760 
11761   SDValue DataLo = buildSMovImm32(DAG, DL,
11762                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
11763   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11764 
11765   const SDValue Ops[] = {
11766     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11767     PtrLo,
11768     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11769     PtrHi,
11770     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11771     DataLo,
11772     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11773     DataHi,
11774     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11775   };
11776 
11777   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11778 }
11779 
11780 //===----------------------------------------------------------------------===//
11781 //                         SI Inline Assembly Support
11782 //===----------------------------------------------------------------------===//
11783 
11784 std::pair<unsigned, const TargetRegisterClass *>
11785 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
11786                                                StringRef Constraint,
11787                                                MVT VT) const {
11788   const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
11789 
11790   const TargetRegisterClass *RC = nullptr;
11791   if (Constraint.size() == 1) {
11792     const unsigned BitWidth = VT.getSizeInBits();
11793     switch (Constraint[0]) {
11794     default:
11795       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11796     case 's':
11797     case 'r':
11798       switch (BitWidth) {
11799       case 16:
11800         RC = &AMDGPU::SReg_32RegClass;
11801         break;
11802       case 64:
11803         RC = &AMDGPU::SGPR_64RegClass;
11804         break;
11805       default:
11806         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11807         if (!RC)
11808           return std::make_pair(0U, nullptr);
11809         break;
11810       }
11811       break;
11812     case 'v':
11813       switch (BitWidth) {
11814       case 16:
11815         RC = &AMDGPU::VGPR_32RegClass;
11816         break;
11817       default:
11818         RC = TRI->getVGPRClassForBitWidth(BitWidth);
11819         if (!RC)
11820           return std::make_pair(0U, nullptr);
11821         break;
11822       }
11823       break;
11824     case 'a':
11825       if (!Subtarget->hasMAIInsts())
11826         break;
11827       switch (BitWidth) {
11828       case 16:
11829         RC = &AMDGPU::AGPR_32RegClass;
11830         break;
11831       default:
11832         RC = TRI->getAGPRClassForBitWidth(BitWidth);
11833         if (!RC)
11834           return std::make_pair(0U, nullptr);
11835         break;
11836       }
11837       break;
11838     }
11839     // We actually support i128, i16 and f16 as inline parameters
11840     // even if they are not reported as legal
11841     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11842                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11843       return std::make_pair(0U, RC);
11844   }
11845 
11846   if (Constraint.startswith("{") && Constraint.endswith("}")) {
11847     StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
11848     if (RegName.consume_front("v")) {
11849       RC = &AMDGPU::VGPR_32RegClass;
11850     } else if (RegName.consume_front("s")) {
11851       RC = &AMDGPU::SGPR_32RegClass;
11852     } else if (RegName.consume_front("a")) {
11853       RC = &AMDGPU::AGPR_32RegClass;
11854     }
11855 
11856     if (RC) {
11857       uint32_t Idx;
11858       if (RegName.consume_front("[")) {
11859         uint32_t End;
11860         bool Failed = RegName.consumeInteger(10, Idx);
11861         Failed |= !RegName.consume_front(":");
11862         Failed |= RegName.consumeInteger(10, End);
11863         Failed |= !RegName.consume_back("]");
11864         if (!Failed) {
11865           uint32_t Width = (End - Idx + 1) * 32;
11866           MCRegister Reg = RC->getRegister(Idx);
11867           if (SIRegisterInfo::isVGPRClass(RC))
11868             RC = TRI->getVGPRClassForBitWidth(Width);
11869           else if (SIRegisterInfo::isSGPRClass(RC))
11870             RC = TRI->getSGPRClassForBitWidth(Width);
11871           else if (SIRegisterInfo::isAGPRClass(RC))
11872             RC = TRI->getAGPRClassForBitWidth(Width);
11873           if (RC) {
11874             Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
11875             return std::make_pair(Reg, RC);
11876           }
11877         }
11878       } else {
11879         bool Failed = RegName.getAsInteger(10, Idx);
11880         if (!Failed && Idx < RC->getNumRegs())
11881           return std::make_pair(RC->getRegister(Idx), RC);
11882       }
11883     }
11884   }
11885 
11886   auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11887   if (Ret.first)
11888     Ret.second = TRI->getPhysRegClass(Ret.first);
11889 
11890   return Ret;
11891 }
11892 
11893 static bool isImmConstraint(StringRef Constraint) {
11894   if (Constraint.size() == 1) {
11895     switch (Constraint[0]) {
11896     default: break;
11897     case 'I':
11898     case 'J':
11899     case 'A':
11900     case 'B':
11901     case 'C':
11902       return true;
11903     }
11904   } else if (Constraint == "DA" ||
11905              Constraint == "DB") {
11906     return true;
11907   }
11908   return false;
11909 }
11910 
11911 SITargetLowering::ConstraintType
11912 SITargetLowering::getConstraintType(StringRef Constraint) const {
11913   if (Constraint.size() == 1) {
11914     switch (Constraint[0]) {
11915     default: break;
11916     case 's':
11917     case 'v':
11918     case 'a':
11919       return C_RegisterClass;
11920     }
11921   }
11922   if (isImmConstraint(Constraint)) {
11923     return C_Other;
11924   }
11925   return TargetLowering::getConstraintType(Constraint);
11926 }
11927 
11928 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11929   if (!AMDGPU::isInlinableIntLiteral(Val)) {
11930     Val = Val & maskTrailingOnes<uint64_t>(Size);
11931   }
11932   return Val;
11933 }
11934 
11935 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11936                                                     std::string &Constraint,
11937                                                     std::vector<SDValue> &Ops,
11938                                                     SelectionDAG &DAG) const {
11939   if (isImmConstraint(Constraint)) {
11940     uint64_t Val;
11941     if (getAsmOperandConstVal(Op, Val) &&
11942         checkAsmConstraintVal(Op, Constraint, Val)) {
11943       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11944       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11945     }
11946   } else {
11947     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11948   }
11949 }
11950 
11951 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11952   unsigned Size = Op.getScalarValueSizeInBits();
11953   if (Size > 64)
11954     return false;
11955 
11956   if (Size == 16 && !Subtarget->has16BitInsts())
11957     return false;
11958 
11959   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11960     Val = C->getSExtValue();
11961     return true;
11962   }
11963   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11964     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11965     return true;
11966   }
11967   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11968     if (Size != 16 || Op.getNumOperands() != 2)
11969       return false;
11970     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11971       return false;
11972     if (ConstantSDNode *C = V->getConstantSplatNode()) {
11973       Val = C->getSExtValue();
11974       return true;
11975     }
11976     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11977       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11978       return true;
11979     }
11980   }
11981 
11982   return false;
11983 }
11984 
11985 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11986                                              const std::string &Constraint,
11987                                              uint64_t Val) const {
11988   if (Constraint.size() == 1) {
11989     switch (Constraint[0]) {
11990     case 'I':
11991       return AMDGPU::isInlinableIntLiteral(Val);
11992     case 'J':
11993       return isInt<16>(Val);
11994     case 'A':
11995       return checkAsmConstraintValA(Op, Val);
11996     case 'B':
11997       return isInt<32>(Val);
11998     case 'C':
11999       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
12000              AMDGPU::isInlinableIntLiteral(Val);
12001     default:
12002       break;
12003     }
12004   } else if (Constraint.size() == 2) {
12005     if (Constraint == "DA") {
12006       int64_t HiBits = static_cast<int32_t>(Val >> 32);
12007       int64_t LoBits = static_cast<int32_t>(Val);
12008       return checkAsmConstraintValA(Op, HiBits, 32) &&
12009              checkAsmConstraintValA(Op, LoBits, 32);
12010     }
12011     if (Constraint == "DB") {
12012       return true;
12013     }
12014   }
12015   llvm_unreachable("Invalid asm constraint");
12016 }
12017 
12018 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
12019                                               uint64_t Val,
12020                                               unsigned MaxSize) const {
12021   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
12022   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
12023   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
12024       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
12025       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
12026     return true;
12027   }
12028   return false;
12029 }
12030 
12031 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
12032   switch (UnalignedClassID) {
12033   case AMDGPU::VReg_64RegClassID:
12034     return AMDGPU::VReg_64_Align2RegClassID;
12035   case AMDGPU::VReg_96RegClassID:
12036     return AMDGPU::VReg_96_Align2RegClassID;
12037   case AMDGPU::VReg_128RegClassID:
12038     return AMDGPU::VReg_128_Align2RegClassID;
12039   case AMDGPU::VReg_160RegClassID:
12040     return AMDGPU::VReg_160_Align2RegClassID;
12041   case AMDGPU::VReg_192RegClassID:
12042     return AMDGPU::VReg_192_Align2RegClassID;
12043   case AMDGPU::VReg_224RegClassID:
12044     return AMDGPU::VReg_224_Align2RegClassID;
12045   case AMDGPU::VReg_256RegClassID:
12046     return AMDGPU::VReg_256_Align2RegClassID;
12047   case AMDGPU::VReg_512RegClassID:
12048     return AMDGPU::VReg_512_Align2RegClassID;
12049   case AMDGPU::VReg_1024RegClassID:
12050     return AMDGPU::VReg_1024_Align2RegClassID;
12051   case AMDGPU::AReg_64RegClassID:
12052     return AMDGPU::AReg_64_Align2RegClassID;
12053   case AMDGPU::AReg_96RegClassID:
12054     return AMDGPU::AReg_96_Align2RegClassID;
12055   case AMDGPU::AReg_128RegClassID:
12056     return AMDGPU::AReg_128_Align2RegClassID;
12057   case AMDGPU::AReg_160RegClassID:
12058     return AMDGPU::AReg_160_Align2RegClassID;
12059   case AMDGPU::AReg_192RegClassID:
12060     return AMDGPU::AReg_192_Align2RegClassID;
12061   case AMDGPU::AReg_256RegClassID:
12062     return AMDGPU::AReg_256_Align2RegClassID;
12063   case AMDGPU::AReg_512RegClassID:
12064     return AMDGPU::AReg_512_Align2RegClassID;
12065   case AMDGPU::AReg_1024RegClassID:
12066     return AMDGPU::AReg_1024_Align2RegClassID;
12067   default:
12068     return -1;
12069   }
12070 }
12071 
12072 // Figure out which registers should be reserved for stack access. Only after
12073 // the function is legalized do we know all of the non-spill stack objects or if
12074 // calls are present.
12075 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
12076   MachineRegisterInfo &MRI = MF.getRegInfo();
12077   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12078   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
12079   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12080   const SIInstrInfo *TII = ST.getInstrInfo();
12081 
12082   if (Info->isEntryFunction()) {
12083     // Callable functions have fixed registers used for stack access.
12084     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
12085   }
12086 
12087   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
12088                              Info->getStackPtrOffsetReg()));
12089   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
12090     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
12091 
12092   // We need to worry about replacing the default register with itself in case
12093   // of MIR testcases missing the MFI.
12094   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
12095     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
12096 
12097   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
12098     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
12099 
12100   Info->limitOccupancy(MF);
12101 
12102   if (ST.isWave32() && !MF.empty()) {
12103     for (auto &MBB : MF) {
12104       for (auto &MI : MBB) {
12105         TII->fixImplicitOperands(MI);
12106       }
12107     }
12108   }
12109 
12110   // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
12111   // classes if required. Ideally the register class constraints would differ
12112   // per-subtarget, but there's no easy way to achieve that right now. This is
12113   // not a problem for VGPRs because the correctly aligned VGPR class is implied
12114   // from using them as the register class for legal types.
12115   if (ST.needsAlignedVGPRs()) {
12116     for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
12117       const Register Reg = Register::index2VirtReg(I);
12118       const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
12119       if (!RC)
12120         continue;
12121       int NewClassID = getAlignedAGPRClassID(RC->getID());
12122       if (NewClassID != -1)
12123         MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
12124     }
12125   }
12126 
12127   TargetLoweringBase::finalizeLowering(MF);
12128 }
12129 
12130 void SITargetLowering::computeKnownBitsForFrameIndex(
12131   const int FI, KnownBits &Known, const MachineFunction &MF) const {
12132   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
12133 
12134   // Set the high bits to zero based on the maximum allowed scratch size per
12135   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
12136   // calculation won't overflow, so assume the sign bit is never set.
12137   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
12138 }
12139 
12140 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
12141                                    KnownBits &Known, unsigned Dim) {
12142   unsigned MaxValue =
12143       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
12144   Known.Zero.setHighBits(countLeadingZeros(MaxValue));
12145 }
12146 
12147 void SITargetLowering::computeKnownBitsForTargetInstr(
12148     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
12149     const MachineRegisterInfo &MRI, unsigned Depth) const {
12150   const MachineInstr *MI = MRI.getVRegDef(R);
12151   switch (MI->getOpcode()) {
12152   case AMDGPU::G_INTRINSIC: {
12153     switch (MI->getIntrinsicID()) {
12154     case Intrinsic::amdgcn_workitem_id_x:
12155       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
12156       break;
12157     case Intrinsic::amdgcn_workitem_id_y:
12158       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
12159       break;
12160     case Intrinsic::amdgcn_workitem_id_z:
12161       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
12162       break;
12163     case Intrinsic::amdgcn_mbcnt_lo:
12164     case Intrinsic::amdgcn_mbcnt_hi: {
12165       // These return at most the wavefront size - 1.
12166       unsigned Size = MRI.getType(R).getSizeInBits();
12167       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
12168       break;
12169     }
12170     case Intrinsic::amdgcn_groupstaticsize: {
12171       // We can report everything over the maximum size as 0. We can't report
12172       // based on the actual size because we don't know if it's accurate or not
12173       // at any given point.
12174       Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
12175       break;
12176     }
12177     }
12178     break;
12179   }
12180   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
12181     Known.Zero.setHighBits(24);
12182     break;
12183   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
12184     Known.Zero.setHighBits(16);
12185     break;
12186   }
12187 }
12188 
12189 Align SITargetLowering::computeKnownAlignForTargetInstr(
12190   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
12191   unsigned Depth) const {
12192   const MachineInstr *MI = MRI.getVRegDef(R);
12193   switch (MI->getOpcode()) {
12194   case AMDGPU::G_INTRINSIC:
12195   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
12196     // FIXME: Can this move to generic code? What about the case where the call
12197     // site specifies a lower alignment?
12198     Intrinsic::ID IID = MI->getIntrinsicID();
12199     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
12200     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
12201     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
12202       return *RetAlign;
12203     return Align(1);
12204   }
12205   default:
12206     return Align(1);
12207   }
12208 }
12209 
12210 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
12211   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
12212   const Align CacheLineAlign = Align(64);
12213 
12214   // Pre-GFX10 target did not benefit from loop alignment
12215   if (!ML || DisableLoopAlignment ||
12216       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
12217       getSubtarget()->hasInstFwdPrefetchBug())
12218     return PrefAlign;
12219 
12220   // On GFX10 I$ is 4 x 64 bytes cache lines.
12221   // By default prefetcher keeps one cache line behind and reads two ahead.
12222   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
12223   // behind and one ahead.
12224   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
12225   // If loop fits 64 bytes it always spans no more than two cache lines and
12226   // does not need an alignment.
12227   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
12228   // Else if loop is less or equal 192 bytes we need two lines behind.
12229 
12230   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12231   const MachineBasicBlock *Header = ML->getHeader();
12232   if (Header->getAlignment() != PrefAlign)
12233     return Header->getAlignment(); // Already processed.
12234 
12235   unsigned LoopSize = 0;
12236   for (const MachineBasicBlock *MBB : ML->blocks()) {
12237     // If inner loop block is aligned assume in average half of the alignment
12238     // size to be added as nops.
12239     if (MBB != Header)
12240       LoopSize += MBB->getAlignment().value() / 2;
12241 
12242     for (const MachineInstr &MI : *MBB) {
12243       LoopSize += TII->getInstSizeInBytes(MI);
12244       if (LoopSize > 192)
12245         return PrefAlign;
12246     }
12247   }
12248 
12249   if (LoopSize <= 64)
12250     return PrefAlign;
12251 
12252   if (LoopSize <= 128)
12253     return CacheLineAlign;
12254 
12255   // If any of parent loops is surrounded by prefetch instructions do not
12256   // insert new for inner loop, which would reset parent's settings.
12257   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
12258     if (MachineBasicBlock *Exit = P->getExitBlock()) {
12259       auto I = Exit->getFirstNonDebugInstr();
12260       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
12261         return CacheLineAlign;
12262     }
12263   }
12264 
12265   MachineBasicBlock *Pre = ML->getLoopPreheader();
12266   MachineBasicBlock *Exit = ML->getExitBlock();
12267 
12268   if (Pre && Exit) {
12269     BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
12270             TII->get(AMDGPU::S_INST_PREFETCH))
12271       .addImm(1); // prefetch 2 lines behind PC
12272 
12273     BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
12274             TII->get(AMDGPU::S_INST_PREFETCH))
12275       .addImm(2); // prefetch 1 line behind PC
12276   }
12277 
12278   return CacheLineAlign;
12279 }
12280 
12281 LLVM_ATTRIBUTE_UNUSED
12282 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
12283   assert(N->getOpcode() == ISD::CopyFromReg);
12284   do {
12285     // Follow the chain until we find an INLINEASM node.
12286     N = N->getOperand(0).getNode();
12287     if (N->getOpcode() == ISD::INLINEASM ||
12288         N->getOpcode() == ISD::INLINEASM_BR)
12289       return true;
12290   } while (N->getOpcode() == ISD::CopyFromReg);
12291   return false;
12292 }
12293 
12294 bool SITargetLowering::isSDNodeSourceOfDivergence(
12295     const SDNode *N, FunctionLoweringInfo *FLI,
12296     LegacyDivergenceAnalysis *KDA) const {
12297   switch (N->getOpcode()) {
12298   case ISD::CopyFromReg: {
12299     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
12300     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
12301     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12302     Register Reg = R->getReg();
12303 
12304     // FIXME: Why does this need to consider isLiveIn?
12305     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
12306       return !TRI->isSGPRReg(MRI, Reg);
12307 
12308     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
12309       return KDA->isDivergent(V);
12310 
12311     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
12312     return !TRI->isSGPRReg(MRI, Reg);
12313   }
12314   case ISD::LOAD: {
12315     const LoadSDNode *L = cast<LoadSDNode>(N);
12316     unsigned AS = L->getAddressSpace();
12317     // A flat load may access private memory.
12318     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
12319   }
12320   case ISD::CALLSEQ_END:
12321     return true;
12322   case ISD::INTRINSIC_WO_CHAIN:
12323     return AMDGPU::isIntrinsicSourceOfDivergence(
12324         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
12325   case ISD::INTRINSIC_W_CHAIN:
12326     return AMDGPU::isIntrinsicSourceOfDivergence(
12327         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
12328   case AMDGPUISD::ATOMIC_CMP_SWAP:
12329   case AMDGPUISD::ATOMIC_INC:
12330   case AMDGPUISD::ATOMIC_DEC:
12331   case AMDGPUISD::ATOMIC_LOAD_FMIN:
12332   case AMDGPUISD::ATOMIC_LOAD_FMAX:
12333   case AMDGPUISD::BUFFER_ATOMIC_SWAP:
12334   case AMDGPUISD::BUFFER_ATOMIC_ADD:
12335   case AMDGPUISD::BUFFER_ATOMIC_SUB:
12336   case AMDGPUISD::BUFFER_ATOMIC_SMIN:
12337   case AMDGPUISD::BUFFER_ATOMIC_UMIN:
12338   case AMDGPUISD::BUFFER_ATOMIC_SMAX:
12339   case AMDGPUISD::BUFFER_ATOMIC_UMAX:
12340   case AMDGPUISD::BUFFER_ATOMIC_AND:
12341   case AMDGPUISD::BUFFER_ATOMIC_OR:
12342   case AMDGPUISD::BUFFER_ATOMIC_XOR:
12343   case AMDGPUISD::BUFFER_ATOMIC_INC:
12344   case AMDGPUISD::BUFFER_ATOMIC_DEC:
12345   case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
12346   case AMDGPUISD::BUFFER_ATOMIC_CSUB:
12347   case AMDGPUISD::BUFFER_ATOMIC_FADD:
12348   case AMDGPUISD::BUFFER_ATOMIC_FMIN:
12349   case AMDGPUISD::BUFFER_ATOMIC_FMAX:
12350     // Target-specific read-modify-write atomics are sources of divergence.
12351     return true;
12352   default:
12353     if (auto *A = dyn_cast<AtomicSDNode>(N)) {
12354       // Generic read-modify-write atomics are sources of divergence.
12355       return A->readMem() && A->writeMem();
12356     }
12357     return false;
12358   }
12359 }
12360 
12361 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
12362                                                EVT VT) const {
12363   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
12364   case MVT::f32:
12365     return hasFP32Denormals(DAG.getMachineFunction());
12366   case MVT::f64:
12367   case MVT::f16:
12368     return hasFP64FP16Denormals(DAG.getMachineFunction());
12369   default:
12370     return false;
12371   }
12372 }
12373 
12374 bool SITargetLowering::denormalsEnabledForType(LLT Ty,
12375                                                MachineFunction &MF) const {
12376   switch (Ty.getScalarSizeInBits()) {
12377   case 32:
12378     return hasFP32Denormals(MF);
12379   case 64:
12380   case 16:
12381     return hasFP64FP16Denormals(MF);
12382   default:
12383     return false;
12384   }
12385 }
12386 
12387 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
12388                                                     const SelectionDAG &DAG,
12389                                                     bool SNaN,
12390                                                     unsigned Depth) const {
12391   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
12392     const MachineFunction &MF = DAG.getMachineFunction();
12393     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12394 
12395     if (Info->getMode().DX10Clamp)
12396       return true; // Clamped to 0.
12397     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
12398   }
12399 
12400   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
12401                                                             SNaN, Depth);
12402 }
12403 
12404 // Global FP atomic instructions have a hardcoded FP mode and do not support
12405 // FP32 denormals, and only support v2f16 denormals.
12406 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
12407   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
12408   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
12409   if (&Flt == &APFloat::IEEEsingle())
12410     return DenormMode == DenormalMode::getPreserveSign();
12411   return DenormMode == DenormalMode::getIEEE();
12412 }
12413 
12414 TargetLowering::AtomicExpansionKind
12415 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
12416 
12417   auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) {
12418     OptimizationRemarkEmitter ORE(RMW->getFunction());
12419     LLVMContext &Ctx = RMW->getFunction()->getContext();
12420     SmallVector<StringRef> SSNs;
12421     Ctx.getSyncScopeNames(SSNs);
12422     auto MemScope = SSNs[RMW->getSyncScopeID()].empty()
12423                         ? "system"
12424                         : SSNs[RMW->getSyncScopeID()];
12425     ORE.emit([&]() {
12426       return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
12427              << "Hardware instruction generated for atomic "
12428              << RMW->getOperationName(RMW->getOperation())
12429              << " operation at memory scope " << MemScope
12430              << " due to an unsafe request.";
12431     });
12432     return Kind;
12433   };
12434 
12435   switch (RMW->getOperation()) {
12436   case AtomicRMWInst::FAdd: {
12437     Type *Ty = RMW->getType();
12438 
12439     // We don't have a way to support 16-bit atomics now, so just leave them
12440     // as-is.
12441     if (Ty->isHalfTy())
12442       return AtomicExpansionKind::None;
12443 
12444     if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
12445       return AtomicExpansionKind::CmpXChg;
12446 
12447     unsigned AS = RMW->getPointerAddressSpace();
12448 
12449     if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) &&
12450          Subtarget->hasAtomicFaddInsts()) {
12451       // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
12452       // floating point atomic instructions. May generate more efficient code,
12453       // but may not respect rounding and denormal modes, and may give incorrect
12454       // results for certain memory destinations.
12455       if (RMW->getFunction()
12456               ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12457               .getValueAsString() != "true")
12458         return AtomicExpansionKind::CmpXChg;
12459 
12460       if (Subtarget->hasGFX90AInsts()) {
12461         if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS)
12462           return AtomicExpansionKind::CmpXChg;
12463 
12464         auto SSID = RMW->getSyncScopeID();
12465         if (SSID == SyncScope::System ||
12466             SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"))
12467           return AtomicExpansionKind::CmpXChg;
12468 
12469         return ReportUnsafeHWInst(AtomicExpansionKind::None);
12470       }
12471 
12472       if (AS == AMDGPUAS::FLAT_ADDRESS)
12473         return AtomicExpansionKind::CmpXChg;
12474 
12475       return RMW->use_empty() ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12476                               : AtomicExpansionKind::CmpXChg;
12477     }
12478 
12479     // DS FP atomics do repect the denormal mode, but the rounding mode is fixed
12480     // to round-to-nearest-even.
12481     // The only exception is DS_ADD_F64 which never flushes regardless of mode.
12482     if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) {
12483       if (!Ty->isDoubleTy())
12484         return AtomicExpansionKind::None;
12485 
12486       if (fpModeMatchesGlobalFPAtomicMode(RMW))
12487         return AtomicExpansionKind::None;
12488 
12489       return RMW->getFunction()
12490                          ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12491                          .getValueAsString() == "true"
12492                  ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12493                  : AtomicExpansionKind::CmpXChg;
12494     }
12495 
12496     return AtomicExpansionKind::CmpXChg;
12497   }
12498   default:
12499     break;
12500   }
12501 
12502   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
12503 }
12504 
12505 const TargetRegisterClass *
12506 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
12507   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
12508   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12509   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
12510     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
12511                                                : &AMDGPU::SReg_32RegClass;
12512   if (!TRI->isSGPRClass(RC) && !isDivergent)
12513     return TRI->getEquivalentSGPRClass(RC);
12514   else if (TRI->isSGPRClass(RC) && isDivergent)
12515     return TRI->getEquivalentVGPRClass(RC);
12516 
12517   return RC;
12518 }
12519 
12520 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
12521 // uniform values (as produced by the mask results of control flow intrinsics)
12522 // used outside of divergent blocks. The phi users need to also be treated as
12523 // always uniform.
12524 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
12525                       unsigned WaveSize) {
12526   // FIXME: We asssume we never cast the mask results of a control flow
12527   // intrinsic.
12528   // Early exit if the type won't be consistent as a compile time hack.
12529   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
12530   if (!IT || IT->getBitWidth() != WaveSize)
12531     return false;
12532 
12533   if (!isa<Instruction>(V))
12534     return false;
12535   if (!Visited.insert(V).second)
12536     return false;
12537   bool Result = false;
12538   for (auto U : V->users()) {
12539     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
12540       if (V == U->getOperand(1)) {
12541         switch (Intrinsic->getIntrinsicID()) {
12542         default:
12543           Result = false;
12544           break;
12545         case Intrinsic::amdgcn_if_break:
12546         case Intrinsic::amdgcn_if:
12547         case Intrinsic::amdgcn_else:
12548           Result = true;
12549           break;
12550         }
12551       }
12552       if (V == U->getOperand(0)) {
12553         switch (Intrinsic->getIntrinsicID()) {
12554         default:
12555           Result = false;
12556           break;
12557         case Intrinsic::amdgcn_end_cf:
12558         case Intrinsic::amdgcn_loop:
12559           Result = true;
12560           break;
12561         }
12562       }
12563     } else {
12564       Result = hasCFUser(U, Visited, WaveSize);
12565     }
12566     if (Result)
12567       break;
12568   }
12569   return Result;
12570 }
12571 
12572 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
12573                                                const Value *V) const {
12574   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
12575     if (CI->isInlineAsm()) {
12576       // FIXME: This cannot give a correct answer. This should only trigger in
12577       // the case where inline asm returns mixed SGPR and VGPR results, used
12578       // outside the defining block. We don't have a specific result to
12579       // consider, so this assumes if any value is SGPR, the overall register
12580       // also needs to be SGPR.
12581       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
12582       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
12583           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
12584       for (auto &TC : TargetConstraints) {
12585         if (TC.Type == InlineAsm::isOutput) {
12586           ComputeConstraintToUse(TC, SDValue());
12587           const TargetRegisterClass *RC = getRegForInlineAsmConstraint(
12588               SIRI, TC.ConstraintCode, TC.ConstraintVT).second;
12589           if (RC && SIRI->isSGPRClass(RC))
12590             return true;
12591         }
12592       }
12593     }
12594   }
12595   SmallPtrSet<const Value *, 16> Visited;
12596   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
12597 }
12598 
12599 std::pair<InstructionCost, MVT>
12600 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
12601                                           Type *Ty) const {
12602   std::pair<InstructionCost, MVT> Cost =
12603       TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
12604   auto Size = DL.getTypeSizeInBits(Ty);
12605   // Maximum load or store can handle 8 dwords for scalar and 4 for
12606   // vector ALU. Let's assume anything above 8 dwords is expensive
12607   // even if legal.
12608   if (Size <= 256)
12609     return Cost;
12610 
12611   Cost.first += (Size + 255) / 256;
12612   return Cost;
12613 }
12614 
12615 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const {
12616   SDNode::use_iterator I = N->use_begin(), E = N->use_end();
12617   for (; I != E; ++I) {
12618     if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) {
12619       if (getBasePtrIndex(M) == I.getOperandNo())
12620         return true;
12621     }
12622   }
12623   return false;
12624 }
12625 
12626 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0,
12627                                            SDValue N1) const {
12628   if (!N0.hasOneUse())
12629     return false;
12630   // Take care of the oportunity to keep N0 uniform
12631   if (N0->isDivergent() || !N1->isDivergent())
12632     return true;
12633   // Check if we have a good chance to form the memory access pattern with the
12634   // base and offset
12635   return (DAG.isBaseWithConstantOffset(N0) &&
12636           hasMemSDNodeUser(*N0->use_begin()));
12637 }
12638 
12639 MachineMemOperand::Flags
12640 SITargetLowering::getTargetMMOFlags(const Instruction &I) const {
12641   // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load.
12642   if (I.getMetadata("amdgpu.noclobber"))
12643     return MONoClobber;
12644   return MachineMemOperand::MONone;
12645 }
12646