1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19 #include "SIDefines.h"
20 #include "SIInstrInfo.h"
21 #include "SIMachineFunctionInfo.h"
22 #include "SIRegisterInfo.h"
23 #include "Utils/AMDGPUBaseInfo.h"
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/StringSwitch.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/CallingConvLower.h"
36 #include "llvm/CodeGen/DAGCombine.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGNodes.h"
52 #include "llvm/CodeGen/TargetCallingConv.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/ValueTypes.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugLoc.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/DiagnosticInfo.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/GlobalValue.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MachineValueType.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Target/TargetOptions.h"
76 #include <cassert>
77 #include <cmath>
78 #include <cstdint>
79 #include <iterator>
80 #include <tuple>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "si-lower"
87 
88 STATISTIC(NumTailCalls, "Number of tail calls");
89 
90 static cl::opt<bool> DisableLoopAlignment(
91   "amdgpu-disable-loop-alignment",
92   cl::desc("Do not align and prefetch loops"),
93   cl::init(false));
94 
95 static cl::opt<bool> VGPRReserveforSGPRSpill(
96     "amdgpu-reserve-vgpr-for-sgpr-spill",
97     cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true));
98 
99 static cl::opt<bool> UseDivergentRegisterIndexing(
100   "amdgpu-use-divergent-register-indexing",
101   cl::Hidden,
102   cl::desc("Use indirect register addressing for divergent indexes"),
103   cl::init(false));
104 
105 static bool hasFP32Denormals(const MachineFunction &MF) {
106   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
107   return Info->getMode().allFP32Denormals();
108 }
109 
110 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
111   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
112   return Info->getMode().allFP64FP16Denormals();
113 }
114 
115 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
116   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
117   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
118     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
119       return AMDGPU::SGPR0 + Reg;
120     }
121   }
122   llvm_unreachable("Cannot allocate sgpr");
123 }
124 
125 SITargetLowering::SITargetLowering(const TargetMachine &TM,
126                                    const GCNSubtarget &STI)
127     : AMDGPUTargetLowering(TM, STI),
128       Subtarget(&STI) {
129   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
130   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
131 
132   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
133   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
134 
135   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
136   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
137   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
138 
139   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
140   addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
141 
142   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
143   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
144 
145   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
146   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
147 
148   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
149   addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
150 
151   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
152   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
153 
154   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
155   addRegisterClass(MVT::v4f64, &AMDGPU::VReg_256RegClass);
156 
157   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
158   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
159 
160   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
161   addRegisterClass(MVT::v8f64, &AMDGPU::VReg_512RegClass);
162 
163   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
164   addRegisterClass(MVT::v16f64, &AMDGPU::VReg_1024RegClass);
165 
166   if (Subtarget->has16BitInsts()) {
167     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
168     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
169 
170     // Unless there are also VOP3P operations, not operations are really legal.
171     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
172     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
173     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
174     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
175   }
176 
177   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
178   addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
179 
180   computeRegisterProperties(Subtarget->getRegisterInfo());
181 
182   // The boolean content concept here is too inflexible. Compares only ever
183   // really produce a 1-bit result. Any copy/extend from these will turn into a
184   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
185   // it's what most targets use.
186   setBooleanContents(ZeroOrOneBooleanContent);
187   setBooleanVectorContents(ZeroOrOneBooleanContent);
188 
189   // We need to custom lower vector stores from local memory
190   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
191   setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
192   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
193   setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
194   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
195   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
196   setOperationAction(ISD::LOAD, MVT::i1, Custom);
197   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
198 
199   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
200   setOperationAction(ISD::STORE, MVT::v3i32, Custom);
201   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
202   setOperationAction(ISD::STORE, MVT::v5i32, Custom);
203   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
204   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
205   setOperationAction(ISD::STORE, MVT::i1, Custom);
206   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
207 
208   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
209   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
210   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
211   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
212   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
213   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
214   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
215   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
216   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
217   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
218   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
219   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
220   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
221   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
222   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
223   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
224 
225   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
226   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
227   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
228   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
229   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
230 
231   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
232   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
233 
234   setOperationAction(ISD::SELECT, MVT::i1, Promote);
235   setOperationAction(ISD::SELECT, MVT::i64, Custom);
236   setOperationAction(ISD::SELECT, MVT::f64, Promote);
237   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
238 
239   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
240   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
241   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
242   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
243   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
244 
245   setOperationAction(ISD::SETCC, MVT::i1, Promote);
246   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
247   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
248   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
249 
250   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
251   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
252   setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
253   setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
254   setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
255   setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
256   setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
257   setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
258 
259   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
260   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
261   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
262   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
263   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
264   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
265   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
266   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
267 
268   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
269   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
270   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
271   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
272   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
273   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
274 
275   setOperationAction(ISD::UADDO, MVT::i32, Legal);
276   setOperationAction(ISD::USUBO, MVT::i32, Legal);
277 
278   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
279   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
280 
281   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
282   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
283   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
284 
285 #if 0
286   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
287   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
288 #endif
289 
290   // We only support LOAD/STORE and vector manipulation ops for vectors
291   // with > 4 elements.
292   for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
293                   MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
294                   MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
295                   MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) {
296     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
297       switch (Op) {
298       case ISD::LOAD:
299       case ISD::STORE:
300       case ISD::BUILD_VECTOR:
301       case ISD::BITCAST:
302       case ISD::EXTRACT_VECTOR_ELT:
303       case ISD::INSERT_VECTOR_ELT:
304       case ISD::INSERT_SUBVECTOR:
305       case ISD::EXTRACT_SUBVECTOR:
306       case ISD::SCALAR_TO_VECTOR:
307         break;
308       case ISD::CONCAT_VECTORS:
309         setOperationAction(Op, VT, Custom);
310         break;
311       default:
312         setOperationAction(Op, VT, Expand);
313         break;
314       }
315     }
316   }
317 
318   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
319 
320   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
321   // is expanded to avoid having two separate loops in case the index is a VGPR.
322 
323   // Most operations are naturally 32-bit vector operations. We only support
324   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
325   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
326     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
327     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
328 
329     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
330     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
331 
332     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
333     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
334 
335     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
336     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
337   }
338 
339   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
340     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
341     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
342 
343     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
344     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
345 
346     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
347     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
348 
349     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
350     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
351   }
352 
353   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
354     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
355     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
356 
357     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
358     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
359 
360     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
361     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
362 
363     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
364     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
365   }
366 
367   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
368     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
369     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
370 
371     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
372     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
373 
374     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
375     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
376 
377     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
378     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
379   }
380 
381   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
382   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
383   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
384   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
385 
386   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
387   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
388 
389   // Avoid stack access for these.
390   // TODO: Generalize to more vector types.
391   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
392   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
393   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
394   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
395 
396   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
397   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
398   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
399   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
400   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
401 
402   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
403   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
404   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
405 
406   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
407   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
408   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
409   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
410 
411   // Deal with vec3 vector operations when widened to vec4.
412   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
413   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
414   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
415   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
416 
417   // Deal with vec5 vector operations when widened to vec8.
418   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
419   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
420   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
421   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
422 
423   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
424   // and output demarshalling
425   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
426   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
427 
428   // We can't return success/failure, only the old value,
429   // let LLVM add the comparison
430   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
431   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
432 
433   if (Subtarget->hasFlatAddressSpace()) {
434     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
435     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
436   }
437 
438   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
439 
440   // FIXME: This should be narrowed to i32, but that only happens if i64 is
441   // illegal.
442   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
443   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
444   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
445 
446   // On SI this is s_memtime and s_memrealtime on VI.
447   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
448   setOperationAction(ISD::TRAP, MVT::Other, Custom);
449   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
450 
451   if (Subtarget->has16BitInsts()) {
452     setOperationAction(ISD::FPOW, MVT::f16, Promote);
453     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
454     setOperationAction(ISD::FLOG, MVT::f16, Custom);
455     setOperationAction(ISD::FEXP, MVT::f16, Custom);
456     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
457   }
458 
459   if (Subtarget->hasMadMacF32Insts())
460     setOperationAction(ISD::FMAD, MVT::f32, Legal);
461 
462   if (!Subtarget->hasBFI()) {
463     // fcopysign can be done in a single instruction with BFI.
464     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
465     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466   }
467 
468   if (!Subtarget->hasBCNT(32))
469     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
470 
471   if (!Subtarget->hasBCNT(64))
472     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
473 
474   if (Subtarget->hasFFBH())
475     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
476 
477   if (Subtarget->hasFFBL())
478     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
479 
480   // We only really have 32-bit BFE instructions (and 16-bit on VI).
481   //
482   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
483   // effort to match them now. We want this to be false for i64 cases when the
484   // extraction isn't restricted to the upper or lower half. Ideally we would
485   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
486   // span the midpoint are probably relatively rare, so don't worry about them
487   // for now.
488   if (Subtarget->hasBFE())
489     setHasExtractBitsInsn(true);
490 
491   // Clamp modifier on add/sub
492   if (Subtarget->hasIntClamp()) {
493     setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
494     setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
495   }
496 
497   if (Subtarget->hasAddNoCarry()) {
498     setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
499     setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
500     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
501     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
502   }
503 
504   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
505   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
506   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
507   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
508 
509 
510   // These are really only legal for ieee_mode functions. We should be avoiding
511   // them for functions that don't have ieee_mode enabled, so just say they are
512   // legal.
513   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
514   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
515   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
516   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
517 
518 
519   if (Subtarget->haveRoundOpsF64()) {
520     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
521     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
522     setOperationAction(ISD::FRINT, MVT::f64, Legal);
523   } else {
524     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
525     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
526     setOperationAction(ISD::FRINT, MVT::f64, Custom);
527     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
528   }
529 
530   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
531 
532   setOperationAction(ISD::FSIN, MVT::f32, Custom);
533   setOperationAction(ISD::FCOS, MVT::f32, Custom);
534   setOperationAction(ISD::FDIV, MVT::f32, Custom);
535   setOperationAction(ISD::FDIV, MVT::f64, Custom);
536 
537   if (Subtarget->has16BitInsts()) {
538     setOperationAction(ISD::Constant, MVT::i16, Legal);
539 
540     setOperationAction(ISD::SMIN, MVT::i16, Legal);
541     setOperationAction(ISD::SMAX, MVT::i16, Legal);
542 
543     setOperationAction(ISD::UMIN, MVT::i16, Legal);
544     setOperationAction(ISD::UMAX, MVT::i16, Legal);
545 
546     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
547     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
548 
549     setOperationAction(ISD::ROTR, MVT::i16, Expand);
550     setOperationAction(ISD::ROTL, MVT::i16, Expand);
551 
552     setOperationAction(ISD::SDIV, MVT::i16, Promote);
553     setOperationAction(ISD::UDIV, MVT::i16, Promote);
554     setOperationAction(ISD::SREM, MVT::i16, Promote);
555     setOperationAction(ISD::UREM, MVT::i16, Promote);
556     setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
557     setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
558 
559     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
560 
561     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
562     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
563     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
564     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
565     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
566 
567     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
568 
569     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
570 
571     setOperationAction(ISD::LOAD, MVT::i16, Custom);
572 
573     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
574 
575     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
576     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
577     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
578     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
579 
580     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
581     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
582 
583     // F16 - Constant Actions.
584     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
585 
586     // F16 - Load/Store Actions.
587     setOperationAction(ISD::LOAD, MVT::f16, Promote);
588     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
589     setOperationAction(ISD::STORE, MVT::f16, Promote);
590     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
591 
592     // F16 - VOP1 Actions.
593     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
594     setOperationAction(ISD::FCOS, MVT::f16, Custom);
595     setOperationAction(ISD::FSIN, MVT::f16, Custom);
596 
597     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
598     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
599 
600     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
601     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
602     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
603     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
604     setOperationAction(ISD::FROUND, MVT::f16, Custom);
605 
606     // F16 - VOP2 Actions.
607     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
608     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
609 
610     setOperationAction(ISD::FDIV, MVT::f16, Custom);
611 
612     // F16 - VOP3 Actions.
613     setOperationAction(ISD::FMA, MVT::f16, Legal);
614     if (STI.hasMadF16())
615       setOperationAction(ISD::FMAD, MVT::f16, Legal);
616 
617     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
618       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
619         switch (Op) {
620         case ISD::LOAD:
621         case ISD::STORE:
622         case ISD::BUILD_VECTOR:
623         case ISD::BITCAST:
624         case ISD::EXTRACT_VECTOR_ELT:
625         case ISD::INSERT_VECTOR_ELT:
626         case ISD::INSERT_SUBVECTOR:
627         case ISD::EXTRACT_SUBVECTOR:
628         case ISD::SCALAR_TO_VECTOR:
629           break;
630         case ISD::CONCAT_VECTORS:
631           setOperationAction(Op, VT, Custom);
632           break;
633         default:
634           setOperationAction(Op, VT, Expand);
635           break;
636         }
637       }
638     }
639 
640     // v_perm_b32 can handle either of these.
641     setOperationAction(ISD::BSWAP, MVT::i16, Legal);
642     setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
643     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
644 
645     // XXX - Do these do anything? Vector constants turn into build_vector.
646     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
647     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
648 
649     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
650     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
651 
652     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
653     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
654     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
655     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
656 
657     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
658     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
659     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
660     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
661 
662     setOperationAction(ISD::AND, MVT::v2i16, Promote);
663     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
664     setOperationAction(ISD::OR, MVT::v2i16, Promote);
665     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
666     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
667     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
668 
669     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
670     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
671     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
672     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
673 
674     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
675     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
676     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
677     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
678 
679     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
680     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
681     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
682     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
683 
684     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
685     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
686     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
687 
688     if (!Subtarget->hasVOP3PInsts()) {
689       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
690       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
691     }
692 
693     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
694     // This isn't really legal, but this avoids the legalizer unrolling it (and
695     // allows matching fneg (fabs x) patterns)
696     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
697 
698     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
699     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
700     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
701     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
702 
703     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
704     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
705 
706     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
707     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
708   }
709 
710   if (Subtarget->hasVOP3PInsts()) {
711     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
712     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
713     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
714     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
715     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
716     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
717     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
718     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
719     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
720     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
721 
722     setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
723     setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
724     setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
725     setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
726 
727     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
728     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
729     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
730 
731     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
732     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
733 
734     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
735 
736     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
737     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
738 
739     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
740     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
741 
742     setOperationAction(ISD::SHL, MVT::v4i16, Custom);
743     setOperationAction(ISD::SRA, MVT::v4i16, Custom);
744     setOperationAction(ISD::SRL, MVT::v4i16, Custom);
745     setOperationAction(ISD::ADD, MVT::v4i16, Custom);
746     setOperationAction(ISD::SUB, MVT::v4i16, Custom);
747     setOperationAction(ISD::MUL, MVT::v4i16, Custom);
748 
749     setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
750     setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
751     setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
752     setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
753 
754     setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom);
755     setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom);
756     setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom);
757     setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom);
758 
759     setOperationAction(ISD::FADD, MVT::v4f16, Custom);
760     setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
761     setOperationAction(ISD::FMA, MVT::v4f16, Custom);
762 
763     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
764     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
765 
766     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
767     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
768     setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
769 
770     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
771     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
772     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
773   }
774 
775   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
776   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
777 
778   if (Subtarget->has16BitInsts()) {
779     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
780     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
781     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
782     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
783   } else {
784     // Legalization hack.
785     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
786     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
787 
788     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
789     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
790   }
791 
792   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
793     setOperationAction(ISD::SELECT, VT, Custom);
794   }
795 
796   setOperationAction(ISD::SMULO, MVT::i64, Custom);
797   setOperationAction(ISD::UMULO, MVT::i64, Custom);
798 
799   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
800   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
801   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
802   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
803   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
804   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
805   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
806 
807   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
808   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
809   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
810   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
811   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
812   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
813   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
814   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
815   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
816   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
817   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
818 
819   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
820   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
821   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
822   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
823   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
824   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
825   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
826   setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
827   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
828   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
829 
830   setTargetDAGCombine(ISD::ADD);
831   setTargetDAGCombine(ISD::ADDCARRY);
832   setTargetDAGCombine(ISD::SUB);
833   setTargetDAGCombine(ISD::SUBCARRY);
834   setTargetDAGCombine(ISD::FADD);
835   setTargetDAGCombine(ISD::FSUB);
836   setTargetDAGCombine(ISD::FMINNUM);
837   setTargetDAGCombine(ISD::FMAXNUM);
838   setTargetDAGCombine(ISD::FMINNUM_IEEE);
839   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
840   setTargetDAGCombine(ISD::FMA);
841   setTargetDAGCombine(ISD::SMIN);
842   setTargetDAGCombine(ISD::SMAX);
843   setTargetDAGCombine(ISD::UMIN);
844   setTargetDAGCombine(ISD::UMAX);
845   setTargetDAGCombine(ISD::SETCC);
846   setTargetDAGCombine(ISD::AND);
847   setTargetDAGCombine(ISD::OR);
848   setTargetDAGCombine(ISD::XOR);
849   setTargetDAGCombine(ISD::SINT_TO_FP);
850   setTargetDAGCombine(ISD::UINT_TO_FP);
851   setTargetDAGCombine(ISD::FCANONICALIZE);
852   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
853   setTargetDAGCombine(ISD::ZERO_EXTEND);
854   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
855   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
856   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
857 
858   // All memory operations. Some folding on the pointer operand is done to help
859   // matching the constant offsets in the addressing modes.
860   setTargetDAGCombine(ISD::LOAD);
861   setTargetDAGCombine(ISD::STORE);
862   setTargetDAGCombine(ISD::ATOMIC_LOAD);
863   setTargetDAGCombine(ISD::ATOMIC_STORE);
864   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
865   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
866   setTargetDAGCombine(ISD::ATOMIC_SWAP);
867   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
868   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
869   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
870   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
871   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
872   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
873   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
874   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
875   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
876   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
877   setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
878   setTargetDAGCombine(ISD::INTRINSIC_VOID);
879   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
880 
881   // FIXME: In other contexts we pretend this is a per-function property.
882   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
883 
884   setSchedulingPreference(Sched::RegPressure);
885 }
886 
887 const GCNSubtarget *SITargetLowering::getSubtarget() const {
888   return Subtarget;
889 }
890 
891 //===----------------------------------------------------------------------===//
892 // TargetLowering queries
893 //===----------------------------------------------------------------------===//
894 
895 // v_mad_mix* support a conversion from f16 to f32.
896 //
897 // There is only one special case when denormals are enabled we don't currently,
898 // where this is OK to use.
899 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
900                                        EVT DestVT, EVT SrcVT) const {
901   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
902           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
903     DestVT.getScalarType() == MVT::f32 &&
904     SrcVT.getScalarType() == MVT::f16 &&
905     // TODO: This probably only requires no input flushing?
906     !hasFP32Denormals(DAG.getMachineFunction());
907 }
908 
909 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
910   // SI has some legal vector types, but no legal vector operations. Say no
911   // shuffles are legal in order to prefer scalarizing some vector operations.
912   return false;
913 }
914 
915 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
916                                                     CallingConv::ID CC,
917                                                     EVT VT) const {
918   if (CC == CallingConv::AMDGPU_KERNEL)
919     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
920 
921   if (VT.isVector()) {
922     EVT ScalarVT = VT.getScalarType();
923     unsigned Size = ScalarVT.getSizeInBits();
924     if (Size == 16) {
925       if (Subtarget->has16BitInsts())
926         return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
927       return VT.isInteger() ? MVT::i32 : MVT::f32;
928     }
929 
930     if (Size < 16)
931       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
932     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
933   }
934 
935   if (VT.getSizeInBits() > 32)
936     return MVT::i32;
937 
938   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
939 }
940 
941 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
942                                                          CallingConv::ID CC,
943                                                          EVT VT) const {
944   if (CC == CallingConv::AMDGPU_KERNEL)
945     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
946 
947   if (VT.isVector()) {
948     unsigned NumElts = VT.getVectorNumElements();
949     EVT ScalarVT = VT.getScalarType();
950     unsigned Size = ScalarVT.getSizeInBits();
951 
952     // FIXME: Should probably promote 8-bit vectors to i16.
953     if (Size == 16 && Subtarget->has16BitInsts())
954       return (NumElts + 1) / 2;
955 
956     if (Size <= 32)
957       return NumElts;
958 
959     if (Size > 32)
960       return NumElts * ((Size + 31) / 32);
961   } else if (VT.getSizeInBits() > 32)
962     return (VT.getSizeInBits() + 31) / 32;
963 
964   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
965 }
966 
967 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
968   LLVMContext &Context, CallingConv::ID CC,
969   EVT VT, EVT &IntermediateVT,
970   unsigned &NumIntermediates, MVT &RegisterVT) const {
971   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
972     unsigned NumElts = VT.getVectorNumElements();
973     EVT ScalarVT = VT.getScalarType();
974     unsigned Size = ScalarVT.getSizeInBits();
975     // FIXME: We should fix the ABI to be the same on targets without 16-bit
976     // support, but unless we can properly handle 3-vectors, it will be still be
977     // inconsistent.
978     if (Size == 16 && Subtarget->has16BitInsts()) {
979       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
980       IntermediateVT = RegisterVT;
981       NumIntermediates = (NumElts + 1) / 2;
982       return NumIntermediates;
983     }
984 
985     if (Size == 32) {
986       RegisterVT = ScalarVT.getSimpleVT();
987       IntermediateVT = RegisterVT;
988       NumIntermediates = NumElts;
989       return NumIntermediates;
990     }
991 
992     if (Size < 16 && Subtarget->has16BitInsts()) {
993       // FIXME: Should probably form v2i16 pieces
994       RegisterVT = MVT::i16;
995       IntermediateVT = ScalarVT;
996       NumIntermediates = NumElts;
997       return NumIntermediates;
998     }
999 
1000 
1001     if (Size != 16 && Size <= 32) {
1002       RegisterVT = MVT::i32;
1003       IntermediateVT = ScalarVT;
1004       NumIntermediates = NumElts;
1005       return NumIntermediates;
1006     }
1007 
1008     if (Size > 32) {
1009       RegisterVT = MVT::i32;
1010       IntermediateVT = RegisterVT;
1011       NumIntermediates = NumElts * ((Size + 31) / 32);
1012       return NumIntermediates;
1013     }
1014   }
1015 
1016   return TargetLowering::getVectorTypeBreakdownForCallingConv(
1017     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1018 }
1019 
1020 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
1021   assert(DMaskLanes != 0);
1022 
1023   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1024     unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
1025     return EVT::getVectorVT(Ty->getContext(),
1026                             EVT::getEVT(VT->getElementType()),
1027                             NumElts);
1028   }
1029 
1030   return EVT::getEVT(Ty);
1031 }
1032 
1033 // Peek through TFE struct returns to only use the data size.
1034 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
1035   auto *ST = dyn_cast<StructType>(Ty);
1036   if (!ST)
1037     return memVTFromImageData(Ty, DMaskLanes);
1038 
1039   // Some intrinsics return an aggregate type - special case to work out the
1040   // correct memVT.
1041   //
1042   // Only limited forms of aggregate type currently expected.
1043   if (ST->getNumContainedTypes() != 2 ||
1044       !ST->getContainedType(1)->isIntegerTy(32))
1045     return EVT();
1046   return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
1047 }
1048 
1049 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1050                                           const CallInst &CI,
1051                                           MachineFunction &MF,
1052                                           unsigned IntrID) const {
1053   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1054           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1055     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1056                                                   (Intrinsic::ID)IntrID);
1057     if (Attr.hasFnAttribute(Attribute::ReadNone))
1058       return false;
1059 
1060     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1061 
1062     if (RsrcIntr->IsImage) {
1063       Info.ptrVal = MFI->getImagePSV(
1064         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1065         CI.getArgOperand(RsrcIntr->RsrcArg));
1066       Info.align.reset();
1067     } else {
1068       Info.ptrVal = MFI->getBufferPSV(
1069         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1070         CI.getArgOperand(RsrcIntr->RsrcArg));
1071     }
1072 
1073     Info.flags = MachineMemOperand::MODereferenceable;
1074     if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
1075       unsigned DMaskLanes = 4;
1076 
1077       if (RsrcIntr->IsImage) {
1078         const AMDGPU::ImageDimIntrinsicInfo *Intr
1079           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1080         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1081           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1082 
1083         if (!BaseOpcode->Gather4) {
1084           // If this isn't a gather, we may have excess loaded elements in the
1085           // IR type. Check the dmask for the real number of elements loaded.
1086           unsigned DMask
1087             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1088           DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1089         }
1090 
1091         Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1092       } else
1093         Info.memVT = EVT::getEVT(CI.getType());
1094 
1095       // FIXME: What does alignment mean for an image?
1096       Info.opc = ISD::INTRINSIC_W_CHAIN;
1097       Info.flags |= MachineMemOperand::MOLoad;
1098     } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
1099       Info.opc = ISD::INTRINSIC_VOID;
1100 
1101       Type *DataTy = CI.getArgOperand(0)->getType();
1102       if (RsrcIntr->IsImage) {
1103         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1104         unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1105         Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1106       } else
1107         Info.memVT = EVT::getEVT(DataTy);
1108 
1109       Info.flags |= MachineMemOperand::MOStore;
1110     } else {
1111       // Atomic
1112       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1113                                             ISD::INTRINSIC_W_CHAIN;
1114       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1115       Info.flags = MachineMemOperand::MOLoad |
1116                    MachineMemOperand::MOStore |
1117                    MachineMemOperand::MODereferenceable;
1118 
1119       // XXX - Should this be volatile without known ordering?
1120       Info.flags |= MachineMemOperand::MOVolatile;
1121     }
1122     return true;
1123   }
1124 
1125   switch (IntrID) {
1126   case Intrinsic::amdgcn_atomic_inc:
1127   case Intrinsic::amdgcn_atomic_dec:
1128   case Intrinsic::amdgcn_ds_ordered_add:
1129   case Intrinsic::amdgcn_ds_ordered_swap:
1130   case Intrinsic::amdgcn_ds_fadd:
1131   case Intrinsic::amdgcn_ds_fmin:
1132   case Intrinsic::amdgcn_ds_fmax: {
1133     Info.opc = ISD::INTRINSIC_W_CHAIN;
1134     Info.memVT = MVT::getVT(CI.getType());
1135     Info.ptrVal = CI.getOperand(0);
1136     Info.align.reset();
1137     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1138 
1139     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1140     if (!Vol->isZero())
1141       Info.flags |= MachineMemOperand::MOVolatile;
1142 
1143     return true;
1144   }
1145   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1146     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1147 
1148     Info.opc = ISD::INTRINSIC_W_CHAIN;
1149     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1150     Info.ptrVal = MFI->getBufferPSV(
1151       *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1152       CI.getArgOperand(1));
1153     Info.align.reset();
1154     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1155 
1156     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1157     if (!Vol || !Vol->isZero())
1158       Info.flags |= MachineMemOperand::MOVolatile;
1159 
1160     return true;
1161   }
1162   case Intrinsic::amdgcn_ds_append:
1163   case Intrinsic::amdgcn_ds_consume: {
1164     Info.opc = ISD::INTRINSIC_W_CHAIN;
1165     Info.memVT = MVT::getVT(CI.getType());
1166     Info.ptrVal = CI.getOperand(0);
1167     Info.align.reset();
1168     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1169 
1170     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1171     if (!Vol->isZero())
1172       Info.flags |= MachineMemOperand::MOVolatile;
1173 
1174     return true;
1175   }
1176   case Intrinsic::amdgcn_global_atomic_csub: {
1177     Info.opc = ISD::INTRINSIC_W_CHAIN;
1178     Info.memVT = MVT::getVT(CI.getType());
1179     Info.ptrVal = CI.getOperand(0);
1180     Info.align.reset();
1181     Info.flags = MachineMemOperand::MOLoad |
1182                  MachineMemOperand::MOStore |
1183                  MachineMemOperand::MOVolatile;
1184     return true;
1185   }
1186   case Intrinsic::amdgcn_global_atomic_fadd: {
1187     Info.opc = ISD::INTRINSIC_W_CHAIN;
1188     Info.memVT = MVT::getVT(CI.getType());
1189     Info.ptrVal = CI.getOperand(0);
1190     Info.align.reset();
1191     Info.flags = MachineMemOperand::MOLoad |
1192                  MachineMemOperand::MOStore |
1193                  MachineMemOperand::MODereferenceable |
1194                  MachineMemOperand::MOVolatile;
1195     return true;
1196   }
1197   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1198     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1199     Info.opc = ISD::INTRINSIC_W_CHAIN;
1200     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1201     Info.ptrVal = MFI->getImagePSV(
1202         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), CI.getArgOperand(5));
1203     Info.align.reset();
1204     Info.flags = MachineMemOperand::MOLoad |
1205                  MachineMemOperand::MODereferenceable;
1206     return true;
1207   }
1208   case Intrinsic::amdgcn_ds_gws_init:
1209   case Intrinsic::amdgcn_ds_gws_barrier:
1210   case Intrinsic::amdgcn_ds_gws_sema_v:
1211   case Intrinsic::amdgcn_ds_gws_sema_br:
1212   case Intrinsic::amdgcn_ds_gws_sema_p:
1213   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1214     Info.opc = ISD::INTRINSIC_VOID;
1215 
1216     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1217     Info.ptrVal =
1218         MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1219 
1220     // This is an abstract access, but we need to specify a type and size.
1221     Info.memVT = MVT::i32;
1222     Info.size = 4;
1223     Info.align = Align(4);
1224 
1225     Info.flags = MachineMemOperand::MOStore;
1226     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1227       Info.flags = MachineMemOperand::MOLoad;
1228     return true;
1229   }
1230   default:
1231     return false;
1232   }
1233 }
1234 
1235 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1236                                             SmallVectorImpl<Value*> &Ops,
1237                                             Type *&AccessTy) const {
1238   switch (II->getIntrinsicID()) {
1239   case Intrinsic::amdgcn_atomic_inc:
1240   case Intrinsic::amdgcn_atomic_dec:
1241   case Intrinsic::amdgcn_ds_ordered_add:
1242   case Intrinsic::amdgcn_ds_ordered_swap:
1243   case Intrinsic::amdgcn_ds_append:
1244   case Intrinsic::amdgcn_ds_consume:
1245   case Intrinsic::amdgcn_ds_fadd:
1246   case Intrinsic::amdgcn_ds_fmin:
1247   case Intrinsic::amdgcn_ds_fmax:
1248   case Intrinsic::amdgcn_global_atomic_fadd:
1249   case Intrinsic::amdgcn_global_atomic_csub: {
1250     Value *Ptr = II->getArgOperand(0);
1251     AccessTy = II->getType();
1252     Ops.push_back(Ptr);
1253     return true;
1254   }
1255   default:
1256     return false;
1257   }
1258 }
1259 
1260 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1261   if (!Subtarget->hasFlatInstOffsets()) {
1262     // Flat instructions do not have offsets, and only have the register
1263     // address.
1264     return AM.BaseOffs == 0 && AM.Scale == 0;
1265   }
1266 
1267   return AM.Scale == 0 &&
1268          (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1269                                   AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS,
1270                                   /*Signed=*/false));
1271 }
1272 
1273 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1274   if (Subtarget->hasFlatGlobalInsts())
1275     return AM.Scale == 0 &&
1276            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1277                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1278                                     /*Signed=*/true));
1279 
1280   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1281       // Assume the we will use FLAT for all global memory accesses
1282       // on VI.
1283       // FIXME: This assumption is currently wrong.  On VI we still use
1284       // MUBUF instructions for the r + i addressing mode.  As currently
1285       // implemented, the MUBUF instructions only work on buffer < 4GB.
1286       // It may be possible to support > 4GB buffers with MUBUF instructions,
1287       // by setting the stride value in the resource descriptor which would
1288       // increase the size limit to (stride * 4GB).  However, this is risky,
1289       // because it has never been validated.
1290     return isLegalFlatAddressingMode(AM);
1291   }
1292 
1293   return isLegalMUBUFAddressingMode(AM);
1294 }
1295 
1296 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1297   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1298   // additionally can do r + r + i with addr64. 32-bit has more addressing
1299   // mode options. Depending on the resource constant, it can also do
1300   // (i64 r0) + (i32 r1) * (i14 i).
1301   //
1302   // Private arrays end up using a scratch buffer most of the time, so also
1303   // assume those use MUBUF instructions. Scratch loads / stores are currently
1304   // implemented as mubuf instructions with offen bit set, so slightly
1305   // different than the normal addr64.
1306   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1307     return false;
1308 
1309   // FIXME: Since we can split immediate into soffset and immediate offset,
1310   // would it make sense to allow any immediate?
1311 
1312   switch (AM.Scale) {
1313   case 0: // r + i or just i, depending on HasBaseReg.
1314     return true;
1315   case 1:
1316     return true; // We have r + r or r + i.
1317   case 2:
1318     if (AM.HasBaseReg) {
1319       // Reject 2 * r + r.
1320       return false;
1321     }
1322 
1323     // Allow 2 * r as r + r
1324     // Or  2 * r + i is allowed as r + r + i.
1325     return true;
1326   default: // Don't allow n * r
1327     return false;
1328   }
1329 }
1330 
1331 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1332                                              const AddrMode &AM, Type *Ty,
1333                                              unsigned AS, Instruction *I) const {
1334   // No global is ever allowed as a base.
1335   if (AM.BaseGV)
1336     return false;
1337 
1338   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1339     return isLegalGlobalAddressingMode(AM);
1340 
1341   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1342       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1343       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1344     // If the offset isn't a multiple of 4, it probably isn't going to be
1345     // correctly aligned.
1346     // FIXME: Can we get the real alignment here?
1347     if (AM.BaseOffs % 4 != 0)
1348       return isLegalMUBUFAddressingMode(AM);
1349 
1350     // There are no SMRD extloads, so if we have to do a small type access we
1351     // will use a MUBUF load.
1352     // FIXME?: We also need to do this if unaligned, but we don't know the
1353     // alignment here.
1354     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1355       return isLegalGlobalAddressingMode(AM);
1356 
1357     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1358       // SMRD instructions have an 8-bit, dword offset on SI.
1359       if (!isUInt<8>(AM.BaseOffs / 4))
1360         return false;
1361     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1362       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1363       // in 8-bits, it can use a smaller encoding.
1364       if (!isUInt<32>(AM.BaseOffs / 4))
1365         return false;
1366     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1367       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1368       if (!isUInt<20>(AM.BaseOffs))
1369         return false;
1370     } else
1371       llvm_unreachable("unhandled generation");
1372 
1373     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1374       return true;
1375 
1376     if (AM.Scale == 1 && AM.HasBaseReg)
1377       return true;
1378 
1379     return false;
1380 
1381   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1382     return isLegalMUBUFAddressingMode(AM);
1383   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1384              AS == AMDGPUAS::REGION_ADDRESS) {
1385     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1386     // field.
1387     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1388     // an 8-bit dword offset but we don't know the alignment here.
1389     if (!isUInt<16>(AM.BaseOffs))
1390       return false;
1391 
1392     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1393       return true;
1394 
1395     if (AM.Scale == 1 && AM.HasBaseReg)
1396       return true;
1397 
1398     return false;
1399   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1400              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1401     // For an unknown address space, this usually means that this is for some
1402     // reason being used for pure arithmetic, and not based on some addressing
1403     // computation. We don't have instructions that compute pointers with any
1404     // addressing modes, so treat them as having no offset like flat
1405     // instructions.
1406     return isLegalFlatAddressingMode(AM);
1407   }
1408 
1409   // Assume a user alias of global for unknown address spaces.
1410   return isLegalGlobalAddressingMode(AM);
1411 }
1412 
1413 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1414                                         const SelectionDAG &DAG) const {
1415   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1416     return (MemVT.getSizeInBits() <= 4 * 32);
1417   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1418     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1419     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1420   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1421     return (MemVT.getSizeInBits() <= 2 * 32);
1422   }
1423   return true;
1424 }
1425 
1426 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1427     unsigned Size, unsigned AddrSpace, Align Alignment,
1428     MachineMemOperand::Flags Flags, bool *IsFast) const {
1429   if (IsFast)
1430     *IsFast = false;
1431 
1432   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1433       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1434     // Check if alignment requirements for ds_read/write instructions are
1435     // disabled.
1436     if (Subtarget->hasUnalignedDSAccessEnabled() &&
1437         !Subtarget->hasLDSMisalignedBug()) {
1438       if (IsFast)
1439         *IsFast = Alignment != Align(2);
1440       return true;
1441     }
1442 
1443     if (Size == 64) {
1444       // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1445       // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1446       // with adjacent offsets.
1447       bool AlignedBy4 = Alignment >= Align(4);
1448       if (IsFast)
1449         *IsFast = AlignedBy4;
1450 
1451       return AlignedBy4;
1452     }
1453     if (Size == 96) {
1454       // ds_read/write_b96 require 16-byte alignment on gfx8 and older.
1455       bool Aligned = Alignment >= Align(16);
1456       if (IsFast)
1457         *IsFast = Aligned;
1458 
1459       return Aligned;
1460     }
1461     if (Size == 128) {
1462       // ds_read/write_b128 require 16-byte alignment on gfx8 and older, but we
1463       // can do a 8 byte aligned, 16 byte access in a single operation using
1464       // ds_read2/write2_b64.
1465       bool Aligned = Alignment >= Align(8);
1466       if (IsFast)
1467         *IsFast = Aligned;
1468 
1469       return Aligned;
1470     }
1471   }
1472 
1473   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1474     bool AlignedBy4 = Alignment >= Align(4);
1475     if (IsFast)
1476       *IsFast = AlignedBy4;
1477 
1478     return AlignedBy4 ||
1479            Subtarget->enableFlatScratch() ||
1480            Subtarget->hasUnalignedScratchAccess();
1481   }
1482 
1483   // FIXME: We have to be conservative here and assume that flat operations
1484   // will access scratch.  If we had access to the IR function, then we
1485   // could determine if any private memory was used in the function.
1486   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1487       !Subtarget->hasUnalignedScratchAccess()) {
1488     bool AlignedBy4 = Alignment >= Align(4);
1489     if (IsFast)
1490       *IsFast = AlignedBy4;
1491 
1492     return AlignedBy4;
1493   }
1494 
1495   if (Subtarget->hasUnalignedBufferAccessEnabled() &&
1496       !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1497         AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1498     // If we have an uniform constant load, it still requires using a slow
1499     // buffer instruction if unaligned.
1500     if (IsFast) {
1501       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1502       // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1503       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1504                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1505         Alignment >= Align(4) : Alignment != Align(2);
1506     }
1507 
1508     return true;
1509   }
1510 
1511   // Smaller than dword value must be aligned.
1512   if (Size < 32)
1513     return false;
1514 
1515   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1516   // byte-address are ignored, thus forcing Dword alignment.
1517   // This applies to private, global, and constant memory.
1518   if (IsFast)
1519     *IsFast = true;
1520 
1521   return Size >= 32 && Alignment >= Align(4);
1522 }
1523 
1524 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1525     EVT VT, unsigned AddrSpace, unsigned Alignment,
1526     MachineMemOperand::Flags Flags, bool *IsFast) const {
1527   if (IsFast)
1528     *IsFast = false;
1529 
1530   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1531   // which isn't a simple VT.
1532   // Until MVT is extended to handle this, simply check for the size and
1533   // rely on the condition below: allow accesses if the size is a multiple of 4.
1534   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1535                            VT.getStoreSize() > 16)) {
1536     return false;
1537   }
1538 
1539   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1540                                             Align(Alignment), Flags, IsFast);
1541 }
1542 
1543 EVT SITargetLowering::getOptimalMemOpType(
1544     const MemOp &Op, const AttributeList &FuncAttributes) const {
1545   // FIXME: Should account for address space here.
1546 
1547   // The default fallback uses the private pointer size as a guess for a type to
1548   // use. Make sure we switch these to 64-bit accesses.
1549 
1550   if (Op.size() >= 16 &&
1551       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1552     return MVT::v4i32;
1553 
1554   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1555     return MVT::v2i32;
1556 
1557   // Use the default.
1558   return MVT::Other;
1559 }
1560 
1561 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1562   const MemSDNode *MemNode = cast<MemSDNode>(N);
1563   const Value *Ptr = MemNode->getMemOperand()->getValue();
1564   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1565   return I && I->getMetadata("amdgpu.noclobber");
1566 }
1567 
1568 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1569                                            unsigned DestAS) const {
1570   // Flat -> private/local is a simple truncate.
1571   // Flat -> global is no-op
1572   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1573     return true;
1574 
1575   const GCNTargetMachine &TM =
1576       static_cast<const GCNTargetMachine &>(getTargetMachine());
1577   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1578 }
1579 
1580 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1581   const MemSDNode *MemNode = cast<MemSDNode>(N);
1582 
1583   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1584 }
1585 
1586 TargetLoweringBase::LegalizeTypeAction
1587 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1588   int NumElts = VT.getVectorNumElements();
1589   if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16))
1590     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1591   return TargetLoweringBase::getPreferredVectorAction(VT);
1592 }
1593 
1594 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1595                                                          Type *Ty) const {
1596   // FIXME: Could be smarter if called for vector constants.
1597   return true;
1598 }
1599 
1600 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1601   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1602     switch (Op) {
1603     case ISD::LOAD:
1604     case ISD::STORE:
1605 
1606     // These operations are done with 32-bit instructions anyway.
1607     case ISD::AND:
1608     case ISD::OR:
1609     case ISD::XOR:
1610     case ISD::SELECT:
1611       // TODO: Extensions?
1612       return true;
1613     default:
1614       return false;
1615     }
1616   }
1617 
1618   // SimplifySetCC uses this function to determine whether or not it should
1619   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1620   if (VT == MVT::i1 && Op == ISD::SETCC)
1621     return false;
1622 
1623   return TargetLowering::isTypeDesirableForOp(Op, VT);
1624 }
1625 
1626 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1627                                                    const SDLoc &SL,
1628                                                    SDValue Chain,
1629                                                    uint64_t Offset) const {
1630   const DataLayout &DL = DAG.getDataLayout();
1631   MachineFunction &MF = DAG.getMachineFunction();
1632   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1633 
1634   const ArgDescriptor *InputPtrReg;
1635   const TargetRegisterClass *RC;
1636   LLT ArgTy;
1637 
1638   std::tie(InputPtrReg, RC, ArgTy) =
1639       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1640 
1641   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1642   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1643   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1644     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1645 
1646   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1647 }
1648 
1649 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1650                                             const SDLoc &SL) const {
1651   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1652                                                FIRST_IMPLICIT);
1653   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1654 }
1655 
1656 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1657                                          const SDLoc &SL, SDValue Val,
1658                                          bool Signed,
1659                                          const ISD::InputArg *Arg) const {
1660   // First, if it is a widened vector, narrow it.
1661   if (VT.isVector() &&
1662       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1663     EVT NarrowedVT =
1664         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1665                          VT.getVectorNumElements());
1666     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1667                       DAG.getConstant(0, SL, MVT::i32));
1668   }
1669 
1670   // Then convert the vector elements or scalar value.
1671   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1672       VT.bitsLT(MemVT)) {
1673     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1674     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1675   }
1676 
1677   if (MemVT.isFloatingPoint())
1678     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1679   else if (Signed)
1680     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1681   else
1682     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1683 
1684   return Val;
1685 }
1686 
1687 SDValue SITargetLowering::lowerKernargMemParameter(
1688     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1689     uint64_t Offset, Align Alignment, bool Signed,
1690     const ISD::InputArg *Arg) const {
1691   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1692 
1693   // Try to avoid using an extload by loading earlier than the argument address,
1694   // and extracting the relevant bits. The load should hopefully be merged with
1695   // the previous argument.
1696   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1697     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1698     int64_t AlignDownOffset = alignDown(Offset, 4);
1699     int64_t OffsetDiff = Offset - AlignDownOffset;
1700 
1701     EVT IntVT = MemVT.changeTypeToInteger();
1702 
1703     // TODO: If we passed in the base kernel offset we could have a better
1704     // alignment than 4, but we don't really need it.
1705     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1706     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1707                                MachineMemOperand::MODereferenceable |
1708                                    MachineMemOperand::MOInvariant);
1709 
1710     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1711     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1712 
1713     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1714     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1715     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1716 
1717 
1718     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1719   }
1720 
1721   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1722   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1723                              MachineMemOperand::MODereferenceable |
1724                                  MachineMemOperand::MOInvariant);
1725 
1726   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1727   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1728 }
1729 
1730 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1731                                               const SDLoc &SL, SDValue Chain,
1732                                               const ISD::InputArg &Arg) const {
1733   MachineFunction &MF = DAG.getMachineFunction();
1734   MachineFrameInfo &MFI = MF.getFrameInfo();
1735 
1736   if (Arg.Flags.isByVal()) {
1737     unsigned Size = Arg.Flags.getByValSize();
1738     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1739     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1740   }
1741 
1742   unsigned ArgOffset = VA.getLocMemOffset();
1743   unsigned ArgSize = VA.getValVT().getStoreSize();
1744 
1745   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1746 
1747   // Create load nodes to retrieve arguments from the stack.
1748   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1749   SDValue ArgValue;
1750 
1751   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1752   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1753   MVT MemVT = VA.getValVT();
1754 
1755   switch (VA.getLocInfo()) {
1756   default:
1757     break;
1758   case CCValAssign::BCvt:
1759     MemVT = VA.getLocVT();
1760     break;
1761   case CCValAssign::SExt:
1762     ExtType = ISD::SEXTLOAD;
1763     break;
1764   case CCValAssign::ZExt:
1765     ExtType = ISD::ZEXTLOAD;
1766     break;
1767   case CCValAssign::AExt:
1768     ExtType = ISD::EXTLOAD;
1769     break;
1770   }
1771 
1772   ArgValue = DAG.getExtLoad(
1773     ExtType, SL, VA.getLocVT(), Chain, FIN,
1774     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1775     MemVT);
1776   return ArgValue;
1777 }
1778 
1779 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1780   const SIMachineFunctionInfo &MFI,
1781   EVT VT,
1782   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1783   const ArgDescriptor *Reg;
1784   const TargetRegisterClass *RC;
1785   LLT Ty;
1786 
1787   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1788   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1789 }
1790 
1791 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1792                                CallingConv::ID CallConv,
1793                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1794                                FunctionType *FType,
1795                                SIMachineFunctionInfo *Info) {
1796   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1797     const ISD::InputArg *Arg = &Ins[I];
1798 
1799     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1800            "vector type argument should have been split");
1801 
1802     // First check if it's a PS input addr.
1803     if (CallConv == CallingConv::AMDGPU_PS &&
1804         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1805       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1806 
1807       // Inconveniently only the first part of the split is marked as isSplit,
1808       // so skip to the end. We only want to increment PSInputNum once for the
1809       // entire split argument.
1810       if (Arg->Flags.isSplit()) {
1811         while (!Arg->Flags.isSplitEnd()) {
1812           assert((!Arg->VT.isVector() ||
1813                   Arg->VT.getScalarSizeInBits() == 16) &&
1814                  "unexpected vector split in ps argument type");
1815           if (!SkipArg)
1816             Splits.push_back(*Arg);
1817           Arg = &Ins[++I];
1818         }
1819       }
1820 
1821       if (SkipArg) {
1822         // We can safely skip PS inputs.
1823         Skipped.set(Arg->getOrigArgIndex());
1824         ++PSInputNum;
1825         continue;
1826       }
1827 
1828       Info->markPSInputAllocated(PSInputNum);
1829       if (Arg->Used)
1830         Info->markPSInputEnabled(PSInputNum);
1831 
1832       ++PSInputNum;
1833     }
1834 
1835     Splits.push_back(*Arg);
1836   }
1837 }
1838 
1839 // Allocate special inputs passed in VGPRs.
1840 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1841                                                       MachineFunction &MF,
1842                                                       const SIRegisterInfo &TRI,
1843                                                       SIMachineFunctionInfo &Info) const {
1844   const LLT S32 = LLT::scalar(32);
1845   MachineRegisterInfo &MRI = MF.getRegInfo();
1846 
1847   if (Info.hasWorkItemIDX()) {
1848     Register Reg = AMDGPU::VGPR0;
1849     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1850 
1851     CCInfo.AllocateReg(Reg);
1852     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1853   }
1854 
1855   if (Info.hasWorkItemIDY()) {
1856     Register Reg = AMDGPU::VGPR1;
1857     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1858 
1859     CCInfo.AllocateReg(Reg);
1860     Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1861   }
1862 
1863   if (Info.hasWorkItemIDZ()) {
1864     Register Reg = AMDGPU::VGPR2;
1865     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1866 
1867     CCInfo.AllocateReg(Reg);
1868     Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1869   }
1870 }
1871 
1872 // Try to allocate a VGPR at the end of the argument list, or if no argument
1873 // VGPRs are left allocating a stack slot.
1874 // If \p Mask is is given it indicates bitfield position in the register.
1875 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1876 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1877                                          ArgDescriptor Arg = ArgDescriptor()) {
1878   if (Arg.isSet())
1879     return ArgDescriptor::createArg(Arg, Mask);
1880 
1881   ArrayRef<MCPhysReg> ArgVGPRs
1882     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1883   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1884   if (RegIdx == ArgVGPRs.size()) {
1885     // Spill to stack required.
1886     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1887 
1888     return ArgDescriptor::createStack(Offset, Mask);
1889   }
1890 
1891   unsigned Reg = ArgVGPRs[RegIdx];
1892   Reg = CCInfo.AllocateReg(Reg);
1893   assert(Reg != AMDGPU::NoRegister);
1894 
1895   MachineFunction &MF = CCInfo.getMachineFunction();
1896   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1897   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1898   return ArgDescriptor::createRegister(Reg, Mask);
1899 }
1900 
1901 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1902                                              const TargetRegisterClass *RC,
1903                                              unsigned NumArgRegs) {
1904   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1905   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1906   if (RegIdx == ArgSGPRs.size())
1907     report_fatal_error("ran out of SGPRs for arguments");
1908 
1909   unsigned Reg = ArgSGPRs[RegIdx];
1910   Reg = CCInfo.AllocateReg(Reg);
1911   assert(Reg != AMDGPU::NoRegister);
1912 
1913   MachineFunction &MF = CCInfo.getMachineFunction();
1914   MF.addLiveIn(Reg, RC);
1915   return ArgDescriptor::createRegister(Reg);
1916 }
1917 
1918 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1919   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1920 }
1921 
1922 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1923   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1924 }
1925 
1926 /// Allocate implicit function VGPR arguments at the end of allocated user
1927 /// arguments.
1928 void SITargetLowering::allocateSpecialInputVGPRs(
1929   CCState &CCInfo, MachineFunction &MF,
1930   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1931   const unsigned Mask = 0x3ff;
1932   ArgDescriptor Arg;
1933 
1934   if (Info.hasWorkItemIDX()) {
1935     Arg = allocateVGPR32Input(CCInfo, Mask);
1936     Info.setWorkItemIDX(Arg);
1937   }
1938 
1939   if (Info.hasWorkItemIDY()) {
1940     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1941     Info.setWorkItemIDY(Arg);
1942   }
1943 
1944   if (Info.hasWorkItemIDZ())
1945     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1946 }
1947 
1948 /// Allocate implicit function VGPR arguments in fixed registers.
1949 void SITargetLowering::allocateSpecialInputVGPRsFixed(
1950   CCState &CCInfo, MachineFunction &MF,
1951   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1952   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
1953   if (!Reg)
1954     report_fatal_error("failed to allocated VGPR for implicit arguments");
1955 
1956   const unsigned Mask = 0x3ff;
1957   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1958   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
1959   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
1960 }
1961 
1962 void SITargetLowering::allocateSpecialInputSGPRs(
1963   CCState &CCInfo,
1964   MachineFunction &MF,
1965   const SIRegisterInfo &TRI,
1966   SIMachineFunctionInfo &Info) const {
1967   auto &ArgInfo = Info.getArgInfo();
1968 
1969   // TODO: Unify handling with private memory pointers.
1970 
1971   if (Info.hasDispatchPtr())
1972     ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1973 
1974   if (Info.hasQueuePtr())
1975     ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1976 
1977   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
1978   // constant offset from the kernarg segment.
1979   if (Info.hasImplicitArgPtr())
1980     ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1981 
1982   if (Info.hasDispatchID())
1983     ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1984 
1985   // flat_scratch_init is not applicable for non-kernel functions.
1986 
1987   if (Info.hasWorkGroupIDX())
1988     ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1989 
1990   if (Info.hasWorkGroupIDY())
1991     ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1992 
1993   if (Info.hasWorkGroupIDZ())
1994     ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1995 }
1996 
1997 // Allocate special inputs passed in user SGPRs.
1998 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
1999                                             MachineFunction &MF,
2000                                             const SIRegisterInfo &TRI,
2001                                             SIMachineFunctionInfo &Info) const {
2002   if (Info.hasImplicitBufferPtr()) {
2003     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2004     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2005     CCInfo.AllocateReg(ImplicitBufferPtrReg);
2006   }
2007 
2008   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2009   if (Info.hasPrivateSegmentBuffer()) {
2010     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2011     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2012     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2013   }
2014 
2015   if (Info.hasDispatchPtr()) {
2016     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2017     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2018     CCInfo.AllocateReg(DispatchPtrReg);
2019   }
2020 
2021   if (Info.hasQueuePtr()) {
2022     Register QueuePtrReg = Info.addQueuePtr(TRI);
2023     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2024     CCInfo.AllocateReg(QueuePtrReg);
2025   }
2026 
2027   if (Info.hasKernargSegmentPtr()) {
2028     MachineRegisterInfo &MRI = MF.getRegInfo();
2029     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2030     CCInfo.AllocateReg(InputPtrReg);
2031 
2032     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2033     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2034   }
2035 
2036   if (Info.hasDispatchID()) {
2037     Register DispatchIDReg = Info.addDispatchID(TRI);
2038     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2039     CCInfo.AllocateReg(DispatchIDReg);
2040   }
2041 
2042   if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2043     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2044     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2045     CCInfo.AllocateReg(FlatScratchInitReg);
2046   }
2047 
2048   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2049   // these from the dispatch pointer.
2050 }
2051 
2052 // Allocate special input registers that are initialized per-wave.
2053 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2054                                            MachineFunction &MF,
2055                                            SIMachineFunctionInfo &Info,
2056                                            CallingConv::ID CallConv,
2057                                            bool IsShader) const {
2058   if (Info.hasWorkGroupIDX()) {
2059     Register Reg = Info.addWorkGroupIDX();
2060     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2061     CCInfo.AllocateReg(Reg);
2062   }
2063 
2064   if (Info.hasWorkGroupIDY()) {
2065     Register Reg = Info.addWorkGroupIDY();
2066     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2067     CCInfo.AllocateReg(Reg);
2068   }
2069 
2070   if (Info.hasWorkGroupIDZ()) {
2071     Register Reg = Info.addWorkGroupIDZ();
2072     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2073     CCInfo.AllocateReg(Reg);
2074   }
2075 
2076   if (Info.hasWorkGroupInfo()) {
2077     Register Reg = Info.addWorkGroupInfo();
2078     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2079     CCInfo.AllocateReg(Reg);
2080   }
2081 
2082   if (Info.hasPrivateSegmentWaveByteOffset()) {
2083     // Scratch wave offset passed in system SGPR.
2084     unsigned PrivateSegmentWaveByteOffsetReg;
2085 
2086     if (IsShader) {
2087       PrivateSegmentWaveByteOffsetReg =
2088         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2089 
2090       // This is true if the scratch wave byte offset doesn't have a fixed
2091       // location.
2092       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2093         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2094         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2095       }
2096     } else
2097       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2098 
2099     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2100     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2101   }
2102 }
2103 
2104 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2105                                      MachineFunction &MF,
2106                                      const SIRegisterInfo &TRI,
2107                                      SIMachineFunctionInfo &Info) {
2108   // Now that we've figured out where the scratch register inputs are, see if
2109   // should reserve the arguments and use them directly.
2110   MachineFrameInfo &MFI = MF.getFrameInfo();
2111   bool HasStackObjects = MFI.hasStackObjects();
2112   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2113 
2114   // Record that we know we have non-spill stack objects so we don't need to
2115   // check all stack objects later.
2116   if (HasStackObjects)
2117     Info.setHasNonSpillStackObjects(true);
2118 
2119   // Everything live out of a block is spilled with fast regalloc, so it's
2120   // almost certain that spilling will be required.
2121   if (TM.getOptLevel() == CodeGenOpt::None)
2122     HasStackObjects = true;
2123 
2124   // For now assume stack access is needed in any callee functions, so we need
2125   // the scratch registers to pass in.
2126   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2127 
2128   if (!ST.enableFlatScratch()) {
2129     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2130       // If we have stack objects, we unquestionably need the private buffer
2131       // resource. For the Code Object V2 ABI, this will be the first 4 user
2132       // SGPR inputs. We can reserve those and use them directly.
2133 
2134       Register PrivateSegmentBufferReg =
2135           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2136       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2137     } else {
2138       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2139       // We tentatively reserve the last registers (skipping the last registers
2140       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2141       // we'll replace these with the ones immediately after those which were
2142       // really allocated. In the prologue copies will be inserted from the
2143       // argument to these reserved registers.
2144 
2145       // Without HSA, relocations are used for the scratch pointer and the
2146       // buffer resource setup is always inserted in the prologue. Scratch wave
2147       // offset is still in an input SGPR.
2148       Info.setScratchRSrcReg(ReservedBufferReg);
2149     }
2150   }
2151 
2152   MachineRegisterInfo &MRI = MF.getRegInfo();
2153 
2154   // For entry functions we have to set up the stack pointer if we use it,
2155   // whereas non-entry functions get this "for free". This means there is no
2156   // intrinsic advantage to using S32 over S34 in cases where we do not have
2157   // calls but do need a frame pointer (i.e. if we are requested to have one
2158   // because frame pointer elimination is disabled). To keep things simple we
2159   // only ever use S32 as the call ABI stack pointer, and so using it does not
2160   // imply we need a separate frame pointer.
2161   //
2162   // Try to use s32 as the SP, but move it if it would interfere with input
2163   // arguments. This won't work with calls though.
2164   //
2165   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2166   // registers.
2167   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2168     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2169   } else {
2170     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2171 
2172     if (MFI.hasCalls())
2173       report_fatal_error("call in graphics shader with too many input SGPRs");
2174 
2175     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2176       if (!MRI.isLiveIn(Reg)) {
2177         Info.setStackPtrOffsetReg(Reg);
2178         break;
2179       }
2180     }
2181 
2182     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2183       report_fatal_error("failed to find register for SP");
2184   }
2185 
2186   // hasFP should be accurate for entry functions even before the frame is
2187   // finalized, because it does not rely on the known stack size, only
2188   // properties like whether variable sized objects are present.
2189   if (ST.getFrameLowering()->hasFP(MF)) {
2190     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2191   }
2192 }
2193 
2194 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2195   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2196   return !Info->isEntryFunction();
2197 }
2198 
2199 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2200 
2201 }
2202 
2203 void SITargetLowering::insertCopiesSplitCSR(
2204   MachineBasicBlock *Entry,
2205   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2206   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2207 
2208   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2209   if (!IStart)
2210     return;
2211 
2212   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2213   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2214   MachineBasicBlock::iterator MBBI = Entry->begin();
2215   for (const MCPhysReg *I = IStart; *I; ++I) {
2216     const TargetRegisterClass *RC = nullptr;
2217     if (AMDGPU::SReg_64RegClass.contains(*I))
2218       RC = &AMDGPU::SGPR_64RegClass;
2219     else if (AMDGPU::SReg_32RegClass.contains(*I))
2220       RC = &AMDGPU::SGPR_32RegClass;
2221     else
2222       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2223 
2224     Register NewVR = MRI->createVirtualRegister(RC);
2225     // Create copy from CSR to a virtual register.
2226     Entry->addLiveIn(*I);
2227     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2228       .addReg(*I);
2229 
2230     // Insert the copy-back instructions right before the terminator.
2231     for (auto *Exit : Exits)
2232       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2233               TII->get(TargetOpcode::COPY), *I)
2234         .addReg(NewVR);
2235   }
2236 }
2237 
2238 SDValue SITargetLowering::LowerFormalArguments(
2239     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2240     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2241     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2242   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2243 
2244   MachineFunction &MF = DAG.getMachineFunction();
2245   const Function &Fn = MF.getFunction();
2246   FunctionType *FType = MF.getFunction().getFunctionType();
2247   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2248 
2249   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2250     DiagnosticInfoUnsupported NoGraphicsHSA(
2251         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2252     DAG.getContext()->diagnose(NoGraphicsHSA);
2253     return DAG.getEntryNode();
2254   }
2255 
2256   SmallVector<ISD::InputArg, 16> Splits;
2257   SmallVector<CCValAssign, 16> ArgLocs;
2258   BitVector Skipped(Ins.size());
2259   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2260                  *DAG.getContext());
2261 
2262   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2263   bool IsKernel = AMDGPU::isKernel(CallConv);
2264   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2265 
2266   if (IsGraphics) {
2267     assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2268            (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2269            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2270            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2271            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2272            !Info->hasWorkItemIDZ());
2273   }
2274 
2275   if (CallConv == CallingConv::AMDGPU_PS) {
2276     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2277 
2278     // At least one interpolation mode must be enabled or else the GPU will
2279     // hang.
2280     //
2281     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2282     // set PSInputAddr, the user wants to enable some bits after the compilation
2283     // based on run-time states. Since we can't know what the final PSInputEna
2284     // will look like, so we shouldn't do anything here and the user should take
2285     // responsibility for the correct programming.
2286     //
2287     // Otherwise, the following restrictions apply:
2288     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2289     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2290     //   enabled too.
2291     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2292         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2293       CCInfo.AllocateReg(AMDGPU::VGPR0);
2294       CCInfo.AllocateReg(AMDGPU::VGPR1);
2295       Info->markPSInputAllocated(0);
2296       Info->markPSInputEnabled(0);
2297     }
2298     if (Subtarget->isAmdPalOS()) {
2299       // For isAmdPalOS, the user does not enable some bits after compilation
2300       // based on run-time states; the register values being generated here are
2301       // the final ones set in hardware. Therefore we need to apply the
2302       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2303       // a bit is set in PSInputAddr but not PSInputEnable is where the
2304       // frontend set up an input arg for a particular interpolation mode, but
2305       // nothing uses that input arg. Really we should have an earlier pass
2306       // that removes such an arg.)
2307       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2308       if ((PsInputBits & 0x7F) == 0 ||
2309           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2310         Info->markPSInputEnabled(
2311             countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2312     }
2313   } else if (IsKernel) {
2314     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2315   } else {
2316     Splits.append(Ins.begin(), Ins.end());
2317   }
2318 
2319   if (IsEntryFunc) {
2320     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2321     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2322   } else {
2323     // For the fixed ABI, pass workitem IDs in the last argument register.
2324     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
2325       allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2326   }
2327 
2328   if (IsKernel) {
2329     analyzeFormalArgumentsCompute(CCInfo, Ins);
2330   } else {
2331     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2332     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2333   }
2334 
2335   SmallVector<SDValue, 16> Chains;
2336 
2337   // FIXME: This is the minimum kernel argument alignment. We should improve
2338   // this to the maximum alignment of the arguments.
2339   //
2340   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2341   // kern arg offset.
2342   const Align KernelArgBaseAlign = Align(16);
2343 
2344   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2345     const ISD::InputArg &Arg = Ins[i];
2346     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2347       InVals.push_back(DAG.getUNDEF(Arg.VT));
2348       continue;
2349     }
2350 
2351     CCValAssign &VA = ArgLocs[ArgIdx++];
2352     MVT VT = VA.getLocVT();
2353 
2354     if (IsEntryFunc && VA.isMemLoc()) {
2355       VT = Ins[i].VT;
2356       EVT MemVT = VA.getLocVT();
2357 
2358       const uint64_t Offset = VA.getLocMemOffset();
2359       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2360 
2361       if (Arg.Flags.isByRef()) {
2362         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2363 
2364         const GCNTargetMachine &TM =
2365             static_cast<const GCNTargetMachine &>(getTargetMachine());
2366         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2367                                     Arg.Flags.getPointerAddrSpace())) {
2368           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2369                                      Arg.Flags.getPointerAddrSpace());
2370         }
2371 
2372         InVals.push_back(Ptr);
2373         continue;
2374       }
2375 
2376       SDValue Arg = lowerKernargMemParameter(
2377         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2378       Chains.push_back(Arg.getValue(1));
2379 
2380       auto *ParamTy =
2381         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2382       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2383           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2384                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2385         // On SI local pointers are just offsets into LDS, so they are always
2386         // less than 16-bits.  On CI and newer they could potentially be
2387         // real pointers, so we can't guarantee their size.
2388         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2389                           DAG.getValueType(MVT::i16));
2390       }
2391 
2392       InVals.push_back(Arg);
2393       continue;
2394     } else if (!IsEntryFunc && VA.isMemLoc()) {
2395       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2396       InVals.push_back(Val);
2397       if (!Arg.Flags.isByVal())
2398         Chains.push_back(Val.getValue(1));
2399       continue;
2400     }
2401 
2402     assert(VA.isRegLoc() && "Parameter must be in a register!");
2403 
2404     Register Reg = VA.getLocReg();
2405     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2406     EVT ValVT = VA.getValVT();
2407 
2408     Reg = MF.addLiveIn(Reg, RC);
2409     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2410 
2411     if (Arg.Flags.isSRet()) {
2412       // The return object should be reasonably addressable.
2413 
2414       // FIXME: This helps when the return is a real sret. If it is a
2415       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2416       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2417       unsigned NumBits
2418         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2419       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2420         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2421     }
2422 
2423     // If this is an 8 or 16-bit value, it is really passed promoted
2424     // to 32 bits. Insert an assert[sz]ext to capture this, then
2425     // truncate to the right size.
2426     switch (VA.getLocInfo()) {
2427     case CCValAssign::Full:
2428       break;
2429     case CCValAssign::BCvt:
2430       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2431       break;
2432     case CCValAssign::SExt:
2433       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2434                         DAG.getValueType(ValVT));
2435       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2436       break;
2437     case CCValAssign::ZExt:
2438       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2439                         DAG.getValueType(ValVT));
2440       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2441       break;
2442     case CCValAssign::AExt:
2443       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2444       break;
2445     default:
2446       llvm_unreachable("Unknown loc info!");
2447     }
2448 
2449     InVals.push_back(Val);
2450   }
2451 
2452   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
2453     // Special inputs come after user arguments.
2454     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2455   }
2456 
2457   // Start adding system SGPRs.
2458   if (IsEntryFunc) {
2459     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2460   } else {
2461     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2462     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2463   }
2464 
2465   auto &ArgUsageInfo =
2466     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2467   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2468 
2469   unsigned StackArgSize = CCInfo.getNextStackOffset();
2470   Info->setBytesInStackArgArea(StackArgSize);
2471 
2472   return Chains.empty() ? Chain :
2473     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2474 }
2475 
2476 // TODO: If return values can't fit in registers, we should return as many as
2477 // possible in registers before passing on stack.
2478 bool SITargetLowering::CanLowerReturn(
2479   CallingConv::ID CallConv,
2480   MachineFunction &MF, bool IsVarArg,
2481   const SmallVectorImpl<ISD::OutputArg> &Outs,
2482   LLVMContext &Context) const {
2483   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2484   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2485   // for shaders. Vector types should be explicitly handled by CC.
2486   if (AMDGPU::isEntryFunctionCC(CallConv))
2487     return true;
2488 
2489   SmallVector<CCValAssign, 16> RVLocs;
2490   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2491   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2492 }
2493 
2494 SDValue
2495 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2496                               bool isVarArg,
2497                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2498                               const SmallVectorImpl<SDValue> &OutVals,
2499                               const SDLoc &DL, SelectionDAG &DAG) const {
2500   MachineFunction &MF = DAG.getMachineFunction();
2501   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2502 
2503   if (AMDGPU::isKernel(CallConv)) {
2504     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2505                                              OutVals, DL, DAG);
2506   }
2507 
2508   bool IsShader = AMDGPU::isShader(CallConv);
2509 
2510   Info->setIfReturnsVoid(Outs.empty());
2511   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2512 
2513   // CCValAssign - represent the assignment of the return value to a location.
2514   SmallVector<CCValAssign, 48> RVLocs;
2515   SmallVector<ISD::OutputArg, 48> Splits;
2516 
2517   // CCState - Info about the registers and stack slots.
2518   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2519                  *DAG.getContext());
2520 
2521   // Analyze outgoing return values.
2522   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2523 
2524   SDValue Flag;
2525   SmallVector<SDValue, 48> RetOps;
2526   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2527 
2528   // Add return address for callable functions.
2529   if (!Info->isEntryFunction()) {
2530     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2531     SDValue ReturnAddrReg = CreateLiveInRegister(
2532       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2533 
2534     SDValue ReturnAddrVirtualReg = DAG.getRegister(
2535         MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2536         MVT::i64);
2537     Chain =
2538         DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2539     Flag = Chain.getValue(1);
2540     RetOps.push_back(ReturnAddrVirtualReg);
2541   }
2542 
2543   // Copy the result values into the output registers.
2544   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2545        ++I, ++RealRVLocIdx) {
2546     CCValAssign &VA = RVLocs[I];
2547     assert(VA.isRegLoc() && "Can only return in registers!");
2548     // TODO: Partially return in registers if return values don't fit.
2549     SDValue Arg = OutVals[RealRVLocIdx];
2550 
2551     // Copied from other backends.
2552     switch (VA.getLocInfo()) {
2553     case CCValAssign::Full:
2554       break;
2555     case CCValAssign::BCvt:
2556       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2557       break;
2558     case CCValAssign::SExt:
2559       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2560       break;
2561     case CCValAssign::ZExt:
2562       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2563       break;
2564     case CCValAssign::AExt:
2565       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2566       break;
2567     default:
2568       llvm_unreachable("Unknown loc info!");
2569     }
2570 
2571     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2572     Flag = Chain.getValue(1);
2573     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2574   }
2575 
2576   // FIXME: Does sret work properly?
2577   if (!Info->isEntryFunction()) {
2578     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2579     const MCPhysReg *I =
2580       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2581     if (I) {
2582       for (; *I; ++I) {
2583         if (AMDGPU::SReg_64RegClass.contains(*I))
2584           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2585         else if (AMDGPU::SReg_32RegClass.contains(*I))
2586           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2587         else
2588           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2589       }
2590     }
2591   }
2592 
2593   // Update chain and glue.
2594   RetOps[0] = Chain;
2595   if (Flag.getNode())
2596     RetOps.push_back(Flag);
2597 
2598   unsigned Opc = AMDGPUISD::ENDPGM;
2599   if (!IsWaveEnd)
2600     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2601   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2602 }
2603 
2604 SDValue SITargetLowering::LowerCallResult(
2605     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2606     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2607     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2608     SDValue ThisVal) const {
2609   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2610 
2611   // Assign locations to each value returned by this call.
2612   SmallVector<CCValAssign, 16> RVLocs;
2613   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2614                  *DAG.getContext());
2615   CCInfo.AnalyzeCallResult(Ins, RetCC);
2616 
2617   // Copy all of the result registers out of their specified physreg.
2618   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2619     CCValAssign VA = RVLocs[i];
2620     SDValue Val;
2621 
2622     if (VA.isRegLoc()) {
2623       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2624       Chain = Val.getValue(1);
2625       InFlag = Val.getValue(2);
2626     } else if (VA.isMemLoc()) {
2627       report_fatal_error("TODO: return values in memory");
2628     } else
2629       llvm_unreachable("unknown argument location type");
2630 
2631     switch (VA.getLocInfo()) {
2632     case CCValAssign::Full:
2633       break;
2634     case CCValAssign::BCvt:
2635       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2636       break;
2637     case CCValAssign::ZExt:
2638       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2639                         DAG.getValueType(VA.getValVT()));
2640       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2641       break;
2642     case CCValAssign::SExt:
2643       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2644                         DAG.getValueType(VA.getValVT()));
2645       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2646       break;
2647     case CCValAssign::AExt:
2648       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2649       break;
2650     default:
2651       llvm_unreachable("Unknown loc info!");
2652     }
2653 
2654     InVals.push_back(Val);
2655   }
2656 
2657   return Chain;
2658 }
2659 
2660 // Add code to pass special inputs required depending on used features separate
2661 // from the explicit user arguments present in the IR.
2662 void SITargetLowering::passSpecialInputs(
2663     CallLoweringInfo &CLI,
2664     CCState &CCInfo,
2665     const SIMachineFunctionInfo &Info,
2666     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2667     SmallVectorImpl<SDValue> &MemOpChains,
2668     SDValue Chain) const {
2669   // If we don't have a call site, this was a call inserted by
2670   // legalization. These can never use special inputs.
2671   if (!CLI.CB)
2672     return;
2673 
2674   SelectionDAG &DAG = CLI.DAG;
2675   const SDLoc &DL = CLI.DL;
2676 
2677   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2678   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2679 
2680   const AMDGPUFunctionArgInfo *CalleeArgInfo
2681     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2682   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2683     auto &ArgUsageInfo =
2684       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2685     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2686   }
2687 
2688   // TODO: Unify with private memory register handling. This is complicated by
2689   // the fact that at least in kernels, the input argument is not necessarily
2690   // in the same location as the input.
2691   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2692     AMDGPUFunctionArgInfo::DISPATCH_PTR,
2693     AMDGPUFunctionArgInfo::QUEUE_PTR,
2694     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
2695     AMDGPUFunctionArgInfo::DISPATCH_ID,
2696     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2697     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2698     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
2699   };
2700 
2701   for (auto InputID : InputRegs) {
2702     const ArgDescriptor *OutgoingArg;
2703     const TargetRegisterClass *ArgRC;
2704     LLT ArgTy;
2705 
2706     std::tie(OutgoingArg, ArgRC, ArgTy) =
2707         CalleeArgInfo->getPreloadedValue(InputID);
2708     if (!OutgoingArg)
2709       continue;
2710 
2711     const ArgDescriptor *IncomingArg;
2712     const TargetRegisterClass *IncomingArgRC;
2713     LLT Ty;
2714     std::tie(IncomingArg, IncomingArgRC, Ty) =
2715         CallerArgInfo.getPreloadedValue(InputID);
2716     assert(IncomingArgRC == ArgRC);
2717 
2718     // All special arguments are ints for now.
2719     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2720     SDValue InputReg;
2721 
2722     if (IncomingArg) {
2723       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2724     } else {
2725       // The implicit arg ptr is special because it doesn't have a corresponding
2726       // input for kernels, and is computed from the kernarg segment pointer.
2727       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2728       InputReg = getImplicitArgPtr(DAG, DL);
2729     }
2730 
2731     if (OutgoingArg->isRegister()) {
2732       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2733       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2734         report_fatal_error("failed to allocate implicit input argument");
2735     } else {
2736       unsigned SpecialArgOffset =
2737           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2738       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2739                                               SpecialArgOffset);
2740       MemOpChains.push_back(ArgStore);
2741     }
2742   }
2743 
2744   // Pack workitem IDs into a single register or pass it as is if already
2745   // packed.
2746   const ArgDescriptor *OutgoingArg;
2747   const TargetRegisterClass *ArgRC;
2748   LLT Ty;
2749 
2750   std::tie(OutgoingArg, ArgRC, Ty) =
2751       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2752   if (!OutgoingArg)
2753     std::tie(OutgoingArg, ArgRC, Ty) =
2754         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2755   if (!OutgoingArg)
2756     std::tie(OutgoingArg, ArgRC, Ty) =
2757         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2758   if (!OutgoingArg)
2759     return;
2760 
2761   const ArgDescriptor *IncomingArgX = std::get<0>(
2762       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2763   const ArgDescriptor *IncomingArgY = std::get<0>(
2764       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2765   const ArgDescriptor *IncomingArgZ = std::get<0>(
2766       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2767 
2768   SDValue InputReg;
2769   SDLoc SL;
2770 
2771   // If incoming ids are not packed we need to pack them.
2772   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX)
2773     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2774 
2775   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
2776     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2777     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2778                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2779     InputReg = InputReg.getNode() ?
2780                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2781   }
2782 
2783   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
2784     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2785     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2786                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2787     InputReg = InputReg.getNode() ?
2788                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2789   }
2790 
2791   if (!InputReg.getNode()) {
2792     // Workitem ids are already packed, any of present incoming arguments
2793     // will carry all required fields.
2794     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2795       IncomingArgX ? *IncomingArgX :
2796       IncomingArgY ? *IncomingArgY :
2797                      *IncomingArgZ, ~0u);
2798     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2799   }
2800 
2801   if (OutgoingArg->isRegister()) {
2802     RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2803     CCInfo.AllocateReg(OutgoingArg->getRegister());
2804   } else {
2805     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2806     SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2807                                             SpecialArgOffset);
2808     MemOpChains.push_back(ArgStore);
2809   }
2810 }
2811 
2812 static bool canGuaranteeTCO(CallingConv::ID CC) {
2813   return CC == CallingConv::Fast;
2814 }
2815 
2816 /// Return true if we might ever do TCO for calls with this calling convention.
2817 static bool mayTailCallThisCC(CallingConv::ID CC) {
2818   switch (CC) {
2819   case CallingConv::C:
2820     return true;
2821   default:
2822     return canGuaranteeTCO(CC);
2823   }
2824 }
2825 
2826 bool SITargetLowering::isEligibleForTailCallOptimization(
2827     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2828     const SmallVectorImpl<ISD::OutputArg> &Outs,
2829     const SmallVectorImpl<SDValue> &OutVals,
2830     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2831   if (!mayTailCallThisCC(CalleeCC))
2832     return false;
2833 
2834   MachineFunction &MF = DAG.getMachineFunction();
2835   const Function &CallerF = MF.getFunction();
2836   CallingConv::ID CallerCC = CallerF.getCallingConv();
2837   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2838   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2839 
2840   // Kernels aren't callable, and don't have a live in return address so it
2841   // doesn't make sense to do a tail call with entry functions.
2842   if (!CallerPreserved)
2843     return false;
2844 
2845   bool CCMatch = CallerCC == CalleeCC;
2846 
2847   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2848     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2849       return true;
2850     return false;
2851   }
2852 
2853   // TODO: Can we handle var args?
2854   if (IsVarArg)
2855     return false;
2856 
2857   for (const Argument &Arg : CallerF.args()) {
2858     if (Arg.hasByValAttr())
2859       return false;
2860   }
2861 
2862   LLVMContext &Ctx = *DAG.getContext();
2863 
2864   // Check that the call results are passed in the same way.
2865   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2866                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2867                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2868     return false;
2869 
2870   // The callee has to preserve all registers the caller needs to preserve.
2871   if (!CCMatch) {
2872     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2873     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2874       return false;
2875   }
2876 
2877   // Nothing more to check if the callee is taking no arguments.
2878   if (Outs.empty())
2879     return true;
2880 
2881   SmallVector<CCValAssign, 16> ArgLocs;
2882   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2883 
2884   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2885 
2886   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2887   // If the stack arguments for this call do not fit into our own save area then
2888   // the call cannot be made tail.
2889   // TODO: Is this really necessary?
2890   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2891     return false;
2892 
2893   const MachineRegisterInfo &MRI = MF.getRegInfo();
2894   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2895 }
2896 
2897 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2898   if (!CI->isTailCall())
2899     return false;
2900 
2901   const Function *ParentFn = CI->getParent()->getParent();
2902   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2903     return false;
2904   return true;
2905 }
2906 
2907 // The wave scratch offset register is used as the global base pointer.
2908 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2909                                     SmallVectorImpl<SDValue> &InVals) const {
2910   SelectionDAG &DAG = CLI.DAG;
2911   const SDLoc &DL = CLI.DL;
2912   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2913   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2914   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2915   SDValue Chain = CLI.Chain;
2916   SDValue Callee = CLI.Callee;
2917   bool &IsTailCall = CLI.IsTailCall;
2918   CallingConv::ID CallConv = CLI.CallConv;
2919   bool IsVarArg = CLI.IsVarArg;
2920   bool IsSibCall = false;
2921   bool IsThisReturn = false;
2922   MachineFunction &MF = DAG.getMachineFunction();
2923 
2924   if (Callee.isUndef() || isNullConstant(Callee)) {
2925     if (!CLI.IsTailCall) {
2926       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2927         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2928     }
2929 
2930     return Chain;
2931   }
2932 
2933   if (IsVarArg) {
2934     return lowerUnhandledCall(CLI, InVals,
2935                               "unsupported call to variadic function ");
2936   }
2937 
2938   if (!CLI.CB)
2939     report_fatal_error("unsupported libcall legalization");
2940 
2941   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
2942       !CLI.CB->getCalledFunction() && CallConv != CallingConv::AMDGPU_Gfx) {
2943     return lowerUnhandledCall(CLI, InVals,
2944                               "unsupported indirect call to function ");
2945   }
2946 
2947   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2948     return lowerUnhandledCall(CLI, InVals,
2949                               "unsupported required tail call to function ");
2950   }
2951 
2952   if (AMDGPU::isShader(CallConv)) {
2953     // Note the issue is with the CC of the called function, not of the call
2954     // itself.
2955     return lowerUnhandledCall(CLI, InVals,
2956                               "unsupported call to a shader function ");
2957   }
2958 
2959   if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
2960       CallConv != CallingConv::AMDGPU_Gfx) {
2961     // Only allow calls with specific calling conventions.
2962     return lowerUnhandledCall(CLI, InVals,
2963                               "unsupported calling convention for call from "
2964                               "graphics shader of function ");
2965   }
2966 
2967   if (IsTailCall) {
2968     IsTailCall = isEligibleForTailCallOptimization(
2969       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2970     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
2971       report_fatal_error("failed to perform tail call elimination on a call "
2972                          "site marked musttail");
2973     }
2974 
2975     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2976 
2977     // A sibling call is one where we're under the usual C ABI and not planning
2978     // to change that but can still do a tail call:
2979     if (!TailCallOpt && IsTailCall)
2980       IsSibCall = true;
2981 
2982     if (IsTailCall)
2983       ++NumTailCalls;
2984   }
2985 
2986   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2987   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2988   SmallVector<SDValue, 8> MemOpChains;
2989 
2990   // Analyze operands of the call, assigning locations to each operand.
2991   SmallVector<CCValAssign, 16> ArgLocs;
2992   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2993   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2994 
2995   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
2996       CallConv != CallingConv::AMDGPU_Gfx) {
2997     // With a fixed ABI, allocate fixed registers before user arguments.
2998     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2999   }
3000 
3001   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3002 
3003   // Get a count of how many bytes are to be pushed on the stack.
3004   unsigned NumBytes = CCInfo.getNextStackOffset();
3005 
3006   if (IsSibCall) {
3007     // Since we're not changing the ABI to make this a tail call, the memory
3008     // operands are already available in the caller's incoming argument space.
3009     NumBytes = 0;
3010   }
3011 
3012   // FPDiff is the byte offset of the call's argument area from the callee's.
3013   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3014   // by this amount for a tail call. In a sibling call it must be 0 because the
3015   // caller will deallocate the entire stack and the callee still expects its
3016   // arguments to begin at SP+0. Completely unused for non-tail calls.
3017   int32_t FPDiff = 0;
3018   MachineFrameInfo &MFI = MF.getFrameInfo();
3019 
3020   // Adjust the stack pointer for the new arguments...
3021   // These operations are automatically eliminated by the prolog/epilog pass
3022   if (!IsSibCall) {
3023     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3024 
3025     if (!Subtarget->enableFlatScratch()) {
3026       SmallVector<SDValue, 4> CopyFromChains;
3027 
3028       // In the HSA case, this should be an identity copy.
3029       SDValue ScratchRSrcReg
3030         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3031       RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3032       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3033       Chain = DAG.getTokenFactor(DL, CopyFromChains);
3034     }
3035   }
3036 
3037   MVT PtrVT = MVT::i32;
3038 
3039   // Walk the register/memloc assignments, inserting copies/loads.
3040   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3041     CCValAssign &VA = ArgLocs[i];
3042     SDValue Arg = OutVals[i];
3043 
3044     // Promote the value if needed.
3045     switch (VA.getLocInfo()) {
3046     case CCValAssign::Full:
3047       break;
3048     case CCValAssign::BCvt:
3049       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3050       break;
3051     case CCValAssign::ZExt:
3052       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3053       break;
3054     case CCValAssign::SExt:
3055       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3056       break;
3057     case CCValAssign::AExt:
3058       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3059       break;
3060     case CCValAssign::FPExt:
3061       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3062       break;
3063     default:
3064       llvm_unreachable("Unknown loc info!");
3065     }
3066 
3067     if (VA.isRegLoc()) {
3068       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3069     } else {
3070       assert(VA.isMemLoc());
3071 
3072       SDValue DstAddr;
3073       MachinePointerInfo DstInfo;
3074 
3075       unsigned LocMemOffset = VA.getLocMemOffset();
3076       int32_t Offset = LocMemOffset;
3077 
3078       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3079       MaybeAlign Alignment;
3080 
3081       if (IsTailCall) {
3082         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3083         unsigned OpSize = Flags.isByVal() ?
3084           Flags.getByValSize() : VA.getValVT().getStoreSize();
3085 
3086         // FIXME: We can have better than the minimum byval required alignment.
3087         Alignment =
3088             Flags.isByVal()
3089                 ? Flags.getNonZeroByValAlign()
3090                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3091 
3092         Offset = Offset + FPDiff;
3093         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3094 
3095         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3096         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3097 
3098         // Make sure any stack arguments overlapping with where we're storing
3099         // are loaded before this eventual operation. Otherwise they'll be
3100         // clobbered.
3101 
3102         // FIXME: Why is this really necessary? This seems to just result in a
3103         // lot of code to copy the stack and write them back to the same
3104         // locations, which are supposed to be immutable?
3105         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3106       } else {
3107         DstAddr = PtrOff;
3108         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3109         Alignment =
3110             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3111       }
3112 
3113       if (Outs[i].Flags.isByVal()) {
3114         SDValue SizeNode =
3115             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3116         SDValue Cpy =
3117             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3118                           Outs[i].Flags.getNonZeroByValAlign(),
3119                           /*isVol = */ false, /*AlwaysInline = */ true,
3120                           /*isTailCall = */ false, DstInfo,
3121                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3122 
3123         MemOpChains.push_back(Cpy);
3124       } else {
3125         SDValue Store =
3126             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3127         MemOpChains.push_back(Store);
3128       }
3129     }
3130   }
3131 
3132   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
3133       CallConv != CallingConv::AMDGPU_Gfx) {
3134     // Copy special input registers after user input arguments.
3135     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3136   }
3137 
3138   if (!MemOpChains.empty())
3139     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3140 
3141   // Build a sequence of copy-to-reg nodes chained together with token chain
3142   // and flag operands which copy the outgoing args into the appropriate regs.
3143   SDValue InFlag;
3144   for (auto &RegToPass : RegsToPass) {
3145     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3146                              RegToPass.second, InFlag);
3147     InFlag = Chain.getValue(1);
3148   }
3149 
3150 
3151   SDValue PhysReturnAddrReg;
3152   if (IsTailCall) {
3153     // Since the return is being combined with the call, we need to pass on the
3154     // return address.
3155 
3156     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3157     SDValue ReturnAddrReg = CreateLiveInRegister(
3158       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3159 
3160     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3161                                         MVT::i64);
3162     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3163     InFlag = Chain.getValue(1);
3164   }
3165 
3166   // We don't usually want to end the call-sequence here because we would tidy
3167   // the frame up *after* the call, however in the ABI-changing tail-call case
3168   // we've carefully laid out the parameters so that when sp is reset they'll be
3169   // in the correct location.
3170   if (IsTailCall && !IsSibCall) {
3171     Chain = DAG.getCALLSEQ_END(Chain,
3172                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3173                                DAG.getTargetConstant(0, DL, MVT::i32),
3174                                InFlag, DL);
3175     InFlag = Chain.getValue(1);
3176   }
3177 
3178   std::vector<SDValue> Ops;
3179   Ops.push_back(Chain);
3180   Ops.push_back(Callee);
3181   // Add a redundant copy of the callee global which will not be legalized, as
3182   // we need direct access to the callee later.
3183   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3184     const GlobalValue *GV = GSD->getGlobal();
3185     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3186   } else {
3187     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3188   }
3189 
3190   if (IsTailCall) {
3191     // Each tail call may have to adjust the stack by a different amount, so
3192     // this information must travel along with the operation for eventual
3193     // consumption by emitEpilogue.
3194     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3195 
3196     Ops.push_back(PhysReturnAddrReg);
3197   }
3198 
3199   // Add argument registers to the end of the list so that they are known live
3200   // into the call.
3201   for (auto &RegToPass : RegsToPass) {
3202     Ops.push_back(DAG.getRegister(RegToPass.first,
3203                                   RegToPass.second.getValueType()));
3204   }
3205 
3206   // Add a register mask operand representing the call-preserved registers.
3207 
3208   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3209   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3210   assert(Mask && "Missing call preserved mask for calling convention");
3211   Ops.push_back(DAG.getRegisterMask(Mask));
3212 
3213   if (InFlag.getNode())
3214     Ops.push_back(InFlag);
3215 
3216   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3217 
3218   // If we're doing a tall call, use a TC_RETURN here rather than an
3219   // actual call instruction.
3220   if (IsTailCall) {
3221     MFI.setHasTailCall();
3222     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3223   }
3224 
3225   // Returns a chain and a flag for retval copy to use.
3226   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3227   Chain = Call.getValue(0);
3228   InFlag = Call.getValue(1);
3229 
3230   uint64_t CalleePopBytes = NumBytes;
3231   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3232                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3233                              InFlag, DL);
3234   if (!Ins.empty())
3235     InFlag = Chain.getValue(1);
3236 
3237   // Handle result values, copying them out of physregs into vregs that we
3238   // return.
3239   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3240                          InVals, IsThisReturn,
3241                          IsThisReturn ? OutVals[0] : SDValue());
3242 }
3243 
3244 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3245 // except for applying the wave size scale to the increment amount.
3246 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3247     SDValue Op, SelectionDAG &DAG) const {
3248   const MachineFunction &MF = DAG.getMachineFunction();
3249   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3250 
3251   SDLoc dl(Op);
3252   EVT VT = Op.getValueType();
3253   SDValue Tmp1 = Op;
3254   SDValue Tmp2 = Op.getValue(1);
3255   SDValue Tmp3 = Op.getOperand(2);
3256   SDValue Chain = Tmp1.getOperand(0);
3257 
3258   Register SPReg = Info->getStackPtrOffsetReg();
3259 
3260   // Chain the dynamic stack allocation so that it doesn't modify the stack
3261   // pointer when other instructions are using the stack.
3262   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3263 
3264   SDValue Size  = Tmp2.getOperand(1);
3265   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3266   Chain = SP.getValue(1);
3267   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3268   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3269   const TargetFrameLowering *TFL = ST.getFrameLowering();
3270   unsigned Opc =
3271     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3272     ISD::ADD : ISD::SUB;
3273 
3274   SDValue ScaledSize = DAG.getNode(
3275       ISD::SHL, dl, VT, Size,
3276       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3277 
3278   Align StackAlign = TFL->getStackAlign();
3279   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3280   if (Alignment && *Alignment > StackAlign) {
3281     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3282                        DAG.getConstant(-(uint64_t)Alignment->value()
3283                                            << ST.getWavefrontSizeLog2(),
3284                                        dl, VT));
3285   }
3286 
3287   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3288   Tmp2 = DAG.getCALLSEQ_END(
3289       Chain, DAG.getIntPtrConstant(0, dl, true),
3290       DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3291 
3292   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3293 }
3294 
3295 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3296                                                   SelectionDAG &DAG) const {
3297   // We only handle constant sizes here to allow non-entry block, static sized
3298   // allocas. A truly dynamic value is more difficult to support because we
3299   // don't know if the size value is uniform or not. If the size isn't uniform,
3300   // we would need to do a wave reduction to get the maximum size to know how
3301   // much to increment the uniform stack pointer.
3302   SDValue Size = Op.getOperand(1);
3303   if (isa<ConstantSDNode>(Size))
3304       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3305 
3306   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3307 }
3308 
3309 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3310                                              const MachineFunction &MF) const {
3311   Register Reg = StringSwitch<Register>(RegName)
3312     .Case("m0", AMDGPU::M0)
3313     .Case("exec", AMDGPU::EXEC)
3314     .Case("exec_lo", AMDGPU::EXEC_LO)
3315     .Case("exec_hi", AMDGPU::EXEC_HI)
3316     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3317     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3318     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3319     .Default(Register());
3320 
3321   if (Reg == AMDGPU::NoRegister) {
3322     report_fatal_error(Twine("invalid register name \""
3323                              + StringRef(RegName)  + "\"."));
3324 
3325   }
3326 
3327   if (!Subtarget->hasFlatScrRegister() &&
3328        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3329     report_fatal_error(Twine("invalid register \""
3330                              + StringRef(RegName)  + "\" for subtarget."));
3331   }
3332 
3333   switch (Reg) {
3334   case AMDGPU::M0:
3335   case AMDGPU::EXEC_LO:
3336   case AMDGPU::EXEC_HI:
3337   case AMDGPU::FLAT_SCR_LO:
3338   case AMDGPU::FLAT_SCR_HI:
3339     if (VT.getSizeInBits() == 32)
3340       return Reg;
3341     break;
3342   case AMDGPU::EXEC:
3343   case AMDGPU::FLAT_SCR:
3344     if (VT.getSizeInBits() == 64)
3345       return Reg;
3346     break;
3347   default:
3348     llvm_unreachable("missing register type checking");
3349   }
3350 
3351   report_fatal_error(Twine("invalid type for register \""
3352                            + StringRef(RegName) + "\"."));
3353 }
3354 
3355 // If kill is not the last instruction, split the block so kill is always a
3356 // proper terminator.
3357 MachineBasicBlock *
3358 SITargetLowering::splitKillBlock(MachineInstr &MI,
3359                                  MachineBasicBlock *BB) const {
3360   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3361   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3362   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3363   return SplitBB;
3364 }
3365 
3366 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3367 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3368 // be the first instruction in the remainder block.
3369 //
3370 /// \returns { LoopBody, Remainder }
3371 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3372 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3373   MachineFunction *MF = MBB.getParent();
3374   MachineBasicBlock::iterator I(&MI);
3375 
3376   // To insert the loop we need to split the block. Move everything after this
3377   // point to a new block, and insert a new empty block between the two.
3378   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3379   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3380   MachineFunction::iterator MBBI(MBB);
3381   ++MBBI;
3382 
3383   MF->insert(MBBI, LoopBB);
3384   MF->insert(MBBI, RemainderBB);
3385 
3386   LoopBB->addSuccessor(LoopBB);
3387   LoopBB->addSuccessor(RemainderBB);
3388 
3389   // Move the rest of the block into a new block.
3390   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3391 
3392   if (InstInLoop) {
3393     auto Next = std::next(I);
3394 
3395     // Move instruction to loop body.
3396     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3397 
3398     // Move the rest of the block.
3399     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3400   } else {
3401     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3402   }
3403 
3404   MBB.addSuccessor(LoopBB);
3405 
3406   return std::make_pair(LoopBB, RemainderBB);
3407 }
3408 
3409 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3410 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3411   MachineBasicBlock *MBB = MI.getParent();
3412   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3413   auto I = MI.getIterator();
3414   auto E = std::next(I);
3415 
3416   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3417     .addImm(0);
3418 
3419   MIBundleBuilder Bundler(*MBB, I, E);
3420   finalizeBundle(*MBB, Bundler.begin());
3421 }
3422 
3423 MachineBasicBlock *
3424 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3425                                          MachineBasicBlock *BB) const {
3426   const DebugLoc &DL = MI.getDebugLoc();
3427 
3428   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3429 
3430   MachineBasicBlock *LoopBB;
3431   MachineBasicBlock *RemainderBB;
3432   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3433 
3434   // Apparently kill flags are only valid if the def is in the same block?
3435   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3436     Src->setIsKill(false);
3437 
3438   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3439 
3440   MachineBasicBlock::iterator I = LoopBB->end();
3441 
3442   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3443     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3444 
3445   // Clear TRAP_STS.MEM_VIOL
3446   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3447     .addImm(0)
3448     .addImm(EncodedReg);
3449 
3450   bundleInstWithWaitcnt(MI);
3451 
3452   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3453 
3454   // Load and check TRAP_STS.MEM_VIOL
3455   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3456     .addImm(EncodedReg);
3457 
3458   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3459   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3460     .addReg(Reg, RegState::Kill)
3461     .addImm(0);
3462   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3463     .addMBB(LoopBB);
3464 
3465   return RemainderBB;
3466 }
3467 
3468 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3469 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3470 // will only do one iteration. In the worst case, this will loop 64 times.
3471 //
3472 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3473 static MachineBasicBlock::iterator
3474 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3475                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3476                        const DebugLoc &DL, const MachineOperand &Idx,
3477                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3478                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3479                        Register &SGPRIdxReg) {
3480 
3481   MachineFunction *MF = OrigBB.getParent();
3482   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3483   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3484   MachineBasicBlock::iterator I = LoopBB.begin();
3485 
3486   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3487   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3488   Register NewExec = MRI.createVirtualRegister(BoolRC);
3489   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3490   Register CondReg = MRI.createVirtualRegister(BoolRC);
3491 
3492   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3493     .addReg(InitReg)
3494     .addMBB(&OrigBB)
3495     .addReg(ResultReg)
3496     .addMBB(&LoopBB);
3497 
3498   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3499     .addReg(InitSaveExecReg)
3500     .addMBB(&OrigBB)
3501     .addReg(NewExec)
3502     .addMBB(&LoopBB);
3503 
3504   // Read the next variant <- also loop target.
3505   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3506       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3507 
3508   // Compare the just read M0 value to all possible Idx values.
3509   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3510       .addReg(CurrentIdxReg)
3511       .addReg(Idx.getReg(), 0, Idx.getSubReg());
3512 
3513   // Update EXEC, save the original EXEC value to VCC.
3514   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3515                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3516           NewExec)
3517     .addReg(CondReg, RegState::Kill);
3518 
3519   MRI.setSimpleHint(NewExec, CondReg);
3520 
3521   if (UseGPRIdxMode) {
3522     if (Offset == 0) {
3523       SGPRIdxReg = CurrentIdxReg;
3524     } else {
3525       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3526       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3527           .addReg(CurrentIdxReg, RegState::Kill)
3528           .addImm(Offset);
3529     }
3530   } else {
3531     // Move index from VCC into M0
3532     if (Offset == 0) {
3533       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3534         .addReg(CurrentIdxReg, RegState::Kill);
3535     } else {
3536       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3537         .addReg(CurrentIdxReg, RegState::Kill)
3538         .addImm(Offset);
3539     }
3540   }
3541 
3542   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3543   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3544   MachineInstr *InsertPt =
3545     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3546                                                   : AMDGPU::S_XOR_B64_term), Exec)
3547       .addReg(Exec)
3548       .addReg(NewExec);
3549 
3550   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3551   // s_cbranch_scc0?
3552 
3553   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3554   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3555     .addMBB(&LoopBB);
3556 
3557   return InsertPt->getIterator();
3558 }
3559 
3560 // This has slightly sub-optimal regalloc when the source vector is killed by
3561 // the read. The register allocator does not understand that the kill is
3562 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3563 // subregister from it, using 1 more VGPR than necessary. This was saved when
3564 // this was expanded after register allocation.
3565 static MachineBasicBlock::iterator
3566 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3567                unsigned InitResultReg, unsigned PhiReg, int Offset,
3568                bool UseGPRIdxMode, Register &SGPRIdxReg) {
3569   MachineFunction *MF = MBB.getParent();
3570   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3571   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3572   MachineRegisterInfo &MRI = MF->getRegInfo();
3573   const DebugLoc &DL = MI.getDebugLoc();
3574   MachineBasicBlock::iterator I(&MI);
3575 
3576   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3577   Register DstReg = MI.getOperand(0).getReg();
3578   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3579   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3580   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3581   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3582 
3583   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3584 
3585   // Save the EXEC mask
3586   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3587     .addReg(Exec);
3588 
3589   MachineBasicBlock *LoopBB;
3590   MachineBasicBlock *RemainderBB;
3591   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3592 
3593   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3594 
3595   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3596                                       InitResultReg, DstReg, PhiReg, TmpExec,
3597                                       Offset, UseGPRIdxMode, SGPRIdxReg);
3598 
3599   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3600   MachineFunction::iterator MBBI(LoopBB);
3601   ++MBBI;
3602   MF->insert(MBBI, LandingPad);
3603   LoopBB->removeSuccessor(RemainderBB);
3604   LandingPad->addSuccessor(RemainderBB);
3605   LoopBB->addSuccessor(LandingPad);
3606   MachineBasicBlock::iterator First = LandingPad->begin();
3607   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3608     .addReg(SaveExec);
3609 
3610   return InsPt;
3611 }
3612 
3613 // Returns subreg index, offset
3614 static std::pair<unsigned, int>
3615 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3616                             const TargetRegisterClass *SuperRC,
3617                             unsigned VecReg,
3618                             int Offset) {
3619   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3620 
3621   // Skip out of bounds offsets, or else we would end up using an undefined
3622   // register.
3623   if (Offset >= NumElts || Offset < 0)
3624     return std::make_pair(AMDGPU::sub0, Offset);
3625 
3626   return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3627 }
3628 
3629 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3630                                  MachineRegisterInfo &MRI, MachineInstr &MI,
3631                                  int Offset) {
3632   MachineBasicBlock *MBB = MI.getParent();
3633   const DebugLoc &DL = MI.getDebugLoc();
3634   MachineBasicBlock::iterator I(&MI);
3635 
3636   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3637 
3638   assert(Idx->getReg() != AMDGPU::NoRegister);
3639 
3640   if (Offset == 0) {
3641     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3642   } else {
3643     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3644         .add(*Idx)
3645         .addImm(Offset);
3646   }
3647 }
3648 
3649 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3650                                    MachineRegisterInfo &MRI, MachineInstr &MI,
3651                                    int Offset) {
3652   MachineBasicBlock *MBB = MI.getParent();
3653   const DebugLoc &DL = MI.getDebugLoc();
3654   MachineBasicBlock::iterator I(&MI);
3655 
3656   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3657 
3658   if (Offset == 0)
3659     return Idx->getReg();
3660 
3661   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3662   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3663       .add(*Idx)
3664       .addImm(Offset);
3665   return Tmp;
3666 }
3667 
3668 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3669                                           MachineBasicBlock &MBB,
3670                                           const GCNSubtarget &ST) {
3671   const SIInstrInfo *TII = ST.getInstrInfo();
3672   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3673   MachineFunction *MF = MBB.getParent();
3674   MachineRegisterInfo &MRI = MF->getRegInfo();
3675 
3676   Register Dst = MI.getOperand(0).getReg();
3677   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3678   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3679   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3680 
3681   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3682   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3683 
3684   unsigned SubReg;
3685   std::tie(SubReg, Offset)
3686     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3687 
3688   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3689 
3690   // Check for a SGPR index.
3691   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3692     MachineBasicBlock::iterator I(&MI);
3693     const DebugLoc &DL = MI.getDebugLoc();
3694 
3695     if (UseGPRIdxMode) {
3696       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3697       // to avoid interfering with other uses, so probably requires a new
3698       // optimization pass.
3699       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3700 
3701       const MCInstrDesc &GPRIDXDesc =
3702           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3703       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3704           .addReg(SrcReg)
3705           .addReg(Idx)
3706           .addImm(SubReg);
3707     } else {
3708       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3709 
3710       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3711         .addReg(SrcReg, 0, SubReg)
3712         .addReg(SrcReg, RegState::Implicit);
3713     }
3714 
3715     MI.eraseFromParent();
3716 
3717     return &MBB;
3718   }
3719 
3720   // Control flow needs to be inserted if indexing with a VGPR.
3721   const DebugLoc &DL = MI.getDebugLoc();
3722   MachineBasicBlock::iterator I(&MI);
3723 
3724   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3725   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3726 
3727   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3728 
3729   Register SGPRIdxReg;
3730   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3731                               UseGPRIdxMode, SGPRIdxReg);
3732 
3733   MachineBasicBlock *LoopBB = InsPt->getParent();
3734 
3735   if (UseGPRIdxMode) {
3736     const MCInstrDesc &GPRIDXDesc =
3737         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3738 
3739     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3740         .addReg(SrcReg)
3741         .addReg(SGPRIdxReg)
3742         .addImm(SubReg);
3743   } else {
3744     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3745       .addReg(SrcReg, 0, SubReg)
3746       .addReg(SrcReg, RegState::Implicit);
3747   }
3748 
3749   MI.eraseFromParent();
3750 
3751   return LoopBB;
3752 }
3753 
3754 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3755                                           MachineBasicBlock &MBB,
3756                                           const GCNSubtarget &ST) {
3757   const SIInstrInfo *TII = ST.getInstrInfo();
3758   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3759   MachineFunction *MF = MBB.getParent();
3760   MachineRegisterInfo &MRI = MF->getRegInfo();
3761 
3762   Register Dst = MI.getOperand(0).getReg();
3763   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3764   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3765   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3766   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3767   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3768   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3769 
3770   // This can be an immediate, but will be folded later.
3771   assert(Val->getReg());
3772 
3773   unsigned SubReg;
3774   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3775                                                          SrcVec->getReg(),
3776                                                          Offset);
3777   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3778 
3779   if (Idx->getReg() == AMDGPU::NoRegister) {
3780     MachineBasicBlock::iterator I(&MI);
3781     const DebugLoc &DL = MI.getDebugLoc();
3782 
3783     assert(Offset == 0);
3784 
3785     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3786         .add(*SrcVec)
3787         .add(*Val)
3788         .addImm(SubReg);
3789 
3790     MI.eraseFromParent();
3791     return &MBB;
3792   }
3793 
3794   // Check for a SGPR index.
3795   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3796     MachineBasicBlock::iterator I(&MI);
3797     const DebugLoc &DL = MI.getDebugLoc();
3798 
3799     if (UseGPRIdxMode) {
3800       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3801 
3802       const MCInstrDesc &GPRIDXDesc =
3803           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3804       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3805           .addReg(SrcVec->getReg())
3806           .add(*Val)
3807           .addReg(Idx)
3808           .addImm(SubReg);
3809     } else {
3810       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3811 
3812       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3813           TRI.getRegSizeInBits(*VecRC), 32, false);
3814       BuildMI(MBB, I, DL, MovRelDesc, Dst)
3815           .addReg(SrcVec->getReg())
3816           .add(*Val)
3817           .addImm(SubReg);
3818     }
3819     MI.eraseFromParent();
3820     return &MBB;
3821   }
3822 
3823   // Control flow needs to be inserted if indexing with a VGPR.
3824   if (Val->isReg())
3825     MRI.clearKillFlags(Val->getReg());
3826 
3827   const DebugLoc &DL = MI.getDebugLoc();
3828 
3829   Register PhiReg = MRI.createVirtualRegister(VecRC);
3830 
3831   Register SGPRIdxReg;
3832   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3833                               UseGPRIdxMode, SGPRIdxReg);
3834   MachineBasicBlock *LoopBB = InsPt->getParent();
3835 
3836   if (UseGPRIdxMode) {
3837     const MCInstrDesc &GPRIDXDesc =
3838         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3839 
3840     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3841         .addReg(PhiReg)
3842         .add(*Val)
3843         .addReg(SGPRIdxReg)
3844         .addImm(AMDGPU::sub0);
3845   } else {
3846     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3847         TRI.getRegSizeInBits(*VecRC), 32, false);
3848     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3849         .addReg(PhiReg)
3850         .add(*Val)
3851         .addImm(AMDGPU::sub0);
3852   }
3853 
3854   MI.eraseFromParent();
3855   return LoopBB;
3856 }
3857 
3858 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3859   MachineInstr &MI, MachineBasicBlock *BB) const {
3860 
3861   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3862   MachineFunction *MF = BB->getParent();
3863   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3864 
3865   switch (MI.getOpcode()) {
3866   case AMDGPU::S_UADDO_PSEUDO:
3867   case AMDGPU::S_USUBO_PSEUDO: {
3868     const DebugLoc &DL = MI.getDebugLoc();
3869     MachineOperand &Dest0 = MI.getOperand(0);
3870     MachineOperand &Dest1 = MI.getOperand(1);
3871     MachineOperand &Src0 = MI.getOperand(2);
3872     MachineOperand &Src1 = MI.getOperand(3);
3873 
3874     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3875                        ? AMDGPU::S_ADD_I32
3876                        : AMDGPU::S_SUB_I32;
3877     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3878 
3879     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3880         .addImm(1)
3881         .addImm(0);
3882 
3883     MI.eraseFromParent();
3884     return BB;
3885   }
3886   case AMDGPU::S_ADD_U64_PSEUDO:
3887   case AMDGPU::S_SUB_U64_PSEUDO: {
3888     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3889     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3890     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3891     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3892     const DebugLoc &DL = MI.getDebugLoc();
3893 
3894     MachineOperand &Dest = MI.getOperand(0);
3895     MachineOperand &Src0 = MI.getOperand(1);
3896     MachineOperand &Src1 = MI.getOperand(2);
3897 
3898     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3899     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3900 
3901     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
3902         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3903     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
3904         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3905 
3906     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
3907         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3908     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
3909         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3910 
3911     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3912 
3913     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3914     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3915     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
3916     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
3917     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3918         .addReg(DestSub0)
3919         .addImm(AMDGPU::sub0)
3920         .addReg(DestSub1)
3921         .addImm(AMDGPU::sub1);
3922     MI.eraseFromParent();
3923     return BB;
3924   }
3925   case AMDGPU::V_ADD_U64_PSEUDO:
3926   case AMDGPU::V_SUB_U64_PSEUDO: {
3927     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3928     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3929     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3930     const DebugLoc &DL = MI.getDebugLoc();
3931 
3932     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
3933 
3934     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3935 
3936     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3937     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3938 
3939     Register CarryReg = MRI.createVirtualRegister(CarryRC);
3940     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
3941 
3942     MachineOperand &Dest = MI.getOperand(0);
3943     MachineOperand &Src0 = MI.getOperand(1);
3944     MachineOperand &Src1 = MI.getOperand(2);
3945 
3946     const TargetRegisterClass *Src0RC = Src0.isReg()
3947                                             ? MRI.getRegClass(Src0.getReg())
3948                                             : &AMDGPU::VReg_64RegClass;
3949     const TargetRegisterClass *Src1RC = Src1.isReg()
3950                                             ? MRI.getRegClass(Src1.getReg())
3951                                             : &AMDGPU::VReg_64RegClass;
3952 
3953     const TargetRegisterClass *Src0SubRC =
3954         TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
3955     const TargetRegisterClass *Src1SubRC =
3956         TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
3957 
3958     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
3959         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
3960     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
3961         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
3962 
3963     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
3964         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
3965     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
3966         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
3967 
3968     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
3969     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3970                                .addReg(CarryReg, RegState::Define)
3971                                .add(SrcReg0Sub0)
3972                                .add(SrcReg1Sub0)
3973                                .addImm(0); // clamp bit
3974 
3975     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
3976     MachineInstr *HiHalf =
3977         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3978             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
3979             .add(SrcReg0Sub1)
3980             .add(SrcReg1Sub1)
3981             .addReg(CarryReg, RegState::Kill)
3982             .addImm(0); // clamp bit
3983 
3984     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3985         .addReg(DestSub0)
3986         .addImm(AMDGPU::sub0)
3987         .addReg(DestSub1)
3988         .addImm(AMDGPU::sub1);
3989     TII->legalizeOperands(*LoHalf);
3990     TII->legalizeOperands(*HiHalf);
3991     MI.eraseFromParent();
3992     return BB;
3993   }
3994   case AMDGPU::S_ADD_CO_PSEUDO:
3995   case AMDGPU::S_SUB_CO_PSEUDO: {
3996     // This pseudo has a chance to be selected
3997     // only from uniform add/subcarry node. All the VGPR operands
3998     // therefore assumed to be splat vectors.
3999     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4000     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4001     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4002     MachineBasicBlock::iterator MII = MI;
4003     const DebugLoc &DL = MI.getDebugLoc();
4004     MachineOperand &Dest = MI.getOperand(0);
4005     MachineOperand &CarryDest = MI.getOperand(1);
4006     MachineOperand &Src0 = MI.getOperand(2);
4007     MachineOperand &Src1 = MI.getOperand(3);
4008     MachineOperand &Src2 = MI.getOperand(4);
4009     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4010                        ? AMDGPU::S_ADDC_U32
4011                        : AMDGPU::S_SUBB_U32;
4012     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4013       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4014       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4015           .addReg(Src0.getReg());
4016       Src0.setReg(RegOp0);
4017     }
4018     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4019       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4020       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4021           .addReg(Src1.getReg());
4022       Src1.setReg(RegOp1);
4023     }
4024     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4025     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4026       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4027           .addReg(Src2.getReg());
4028       Src2.setReg(RegOp2);
4029     }
4030 
4031     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4032     if (TRI->getRegSizeInBits(*Src2RC) == 64) {
4033       if (ST.hasScalarCompareEq64()) {
4034         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4035             .addReg(Src2.getReg())
4036             .addImm(0);
4037       } else {
4038         const TargetRegisterClass *SubRC =
4039             TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4040         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4041             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4042         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4043             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4044         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4045 
4046         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4047             .add(Src2Sub0)
4048             .add(Src2Sub1);
4049 
4050         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4051             .addReg(Src2_32, RegState::Kill)
4052             .addImm(0);
4053       }
4054     } else {
4055       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4056           .addReg(Src2.getReg())
4057           .addImm(0);
4058     }
4059 
4060     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4061 
4062     BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg())
4063       .addReg(AMDGPU::SCC);
4064     MI.eraseFromParent();
4065     return BB;
4066   }
4067   case AMDGPU::SI_INIT_M0: {
4068     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4069             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4070         .add(MI.getOperand(0));
4071     MI.eraseFromParent();
4072     return BB;
4073   }
4074   case AMDGPU::SI_INIT_EXEC:
4075     // This should be before all vector instructions.
4076     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
4077             AMDGPU::EXEC)
4078         .addImm(MI.getOperand(0).getImm());
4079     MI.eraseFromParent();
4080     return BB;
4081 
4082   case AMDGPU::SI_INIT_EXEC_LO:
4083     // This should be before all vector instructions.
4084     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
4085             AMDGPU::EXEC_LO)
4086         .addImm(MI.getOperand(0).getImm());
4087     MI.eraseFromParent();
4088     return BB;
4089 
4090   case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
4091     // Extract the thread count from an SGPR input and set EXEC accordingly.
4092     // Since BFM can't shift by 64, handle that case with CMP + CMOV.
4093     //
4094     // S_BFE_U32 count, input, {shift, 7}
4095     // S_BFM_B64 exec, count, 0
4096     // S_CMP_EQ_U32 count, 64
4097     // S_CMOV_B64 exec, -1
4098     MachineInstr *FirstMI = &*BB->begin();
4099     MachineRegisterInfo &MRI = MF->getRegInfo();
4100     Register InputReg = MI.getOperand(0).getReg();
4101     Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
4102     bool Found = false;
4103 
4104     // Move the COPY of the input reg to the beginning, so that we can use it.
4105     for (auto I = BB->begin(); I != &MI; I++) {
4106       if (I->getOpcode() != TargetOpcode::COPY ||
4107           I->getOperand(0).getReg() != InputReg)
4108         continue;
4109 
4110       if (I == FirstMI) {
4111         FirstMI = &*++BB->begin();
4112       } else {
4113         I->removeFromParent();
4114         BB->insert(FirstMI, &*I);
4115       }
4116       Found = true;
4117       break;
4118     }
4119     assert(Found);
4120     (void)Found;
4121 
4122     // This should be before all vector instructions.
4123     unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
4124     bool isWave32 = getSubtarget()->isWave32();
4125     unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4126     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
4127         .addReg(InputReg)
4128         .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
4129     BuildMI(*BB, FirstMI, DebugLoc(),
4130             TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
4131             Exec)
4132         .addReg(CountReg)
4133         .addImm(0);
4134     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
4135         .addReg(CountReg, RegState::Kill)
4136         .addImm(getSubtarget()->getWavefrontSize());
4137     BuildMI(*BB, FirstMI, DebugLoc(),
4138             TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
4139             Exec)
4140         .addImm(-1);
4141     MI.eraseFromParent();
4142     return BB;
4143   }
4144 
4145   case AMDGPU::GET_GROUPSTATICSIZE: {
4146     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4147            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4148     DebugLoc DL = MI.getDebugLoc();
4149     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4150         .add(MI.getOperand(0))
4151         .addImm(MFI->getLDSSize());
4152     MI.eraseFromParent();
4153     return BB;
4154   }
4155   case AMDGPU::SI_INDIRECT_SRC_V1:
4156   case AMDGPU::SI_INDIRECT_SRC_V2:
4157   case AMDGPU::SI_INDIRECT_SRC_V4:
4158   case AMDGPU::SI_INDIRECT_SRC_V8:
4159   case AMDGPU::SI_INDIRECT_SRC_V16:
4160   case AMDGPU::SI_INDIRECT_SRC_V32:
4161     return emitIndirectSrc(MI, *BB, *getSubtarget());
4162   case AMDGPU::SI_INDIRECT_DST_V1:
4163   case AMDGPU::SI_INDIRECT_DST_V2:
4164   case AMDGPU::SI_INDIRECT_DST_V4:
4165   case AMDGPU::SI_INDIRECT_DST_V8:
4166   case AMDGPU::SI_INDIRECT_DST_V16:
4167   case AMDGPU::SI_INDIRECT_DST_V32:
4168     return emitIndirectDst(MI, *BB, *getSubtarget());
4169   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4170   case AMDGPU::SI_KILL_I1_PSEUDO:
4171     return splitKillBlock(MI, BB);
4172   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4173     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4174     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4175     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4176 
4177     Register Dst = MI.getOperand(0).getReg();
4178     Register Src0 = MI.getOperand(1).getReg();
4179     Register Src1 = MI.getOperand(2).getReg();
4180     const DebugLoc &DL = MI.getDebugLoc();
4181     Register SrcCond = MI.getOperand(3).getReg();
4182 
4183     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4184     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4185     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4186     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4187 
4188     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4189       .addReg(SrcCond);
4190     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4191       .addImm(0)
4192       .addReg(Src0, 0, AMDGPU::sub0)
4193       .addImm(0)
4194       .addReg(Src1, 0, AMDGPU::sub0)
4195       .addReg(SrcCondCopy);
4196     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4197       .addImm(0)
4198       .addReg(Src0, 0, AMDGPU::sub1)
4199       .addImm(0)
4200       .addReg(Src1, 0, AMDGPU::sub1)
4201       .addReg(SrcCondCopy);
4202 
4203     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4204       .addReg(DstLo)
4205       .addImm(AMDGPU::sub0)
4206       .addReg(DstHi)
4207       .addImm(AMDGPU::sub1);
4208     MI.eraseFromParent();
4209     return BB;
4210   }
4211   case AMDGPU::SI_BR_UNDEF: {
4212     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4213     const DebugLoc &DL = MI.getDebugLoc();
4214     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4215                            .add(MI.getOperand(0));
4216     Br->getOperand(1).setIsUndef(true); // read undef SCC
4217     MI.eraseFromParent();
4218     return BB;
4219   }
4220   case AMDGPU::ADJCALLSTACKUP:
4221   case AMDGPU::ADJCALLSTACKDOWN: {
4222     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4223     MachineInstrBuilder MIB(*MF, &MI);
4224     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4225        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4226     return BB;
4227   }
4228   case AMDGPU::SI_CALL_ISEL: {
4229     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4230     const DebugLoc &DL = MI.getDebugLoc();
4231 
4232     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4233 
4234     MachineInstrBuilder MIB;
4235     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4236 
4237     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
4238       MIB.add(MI.getOperand(I));
4239 
4240     MIB.cloneMemRefs(MI);
4241     MI.eraseFromParent();
4242     return BB;
4243   }
4244   case AMDGPU::V_ADD_CO_U32_e32:
4245   case AMDGPU::V_SUB_CO_U32_e32:
4246   case AMDGPU::V_SUBREV_CO_U32_e32: {
4247     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4248     const DebugLoc &DL = MI.getDebugLoc();
4249     unsigned Opc = MI.getOpcode();
4250 
4251     bool NeedClampOperand = false;
4252     if (TII->pseudoToMCOpcode(Opc) == -1) {
4253       Opc = AMDGPU::getVOPe64(Opc);
4254       NeedClampOperand = true;
4255     }
4256 
4257     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4258     if (TII->isVOP3(*I)) {
4259       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4260       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4261       I.addReg(TRI->getVCC(), RegState::Define);
4262     }
4263     I.add(MI.getOperand(1))
4264      .add(MI.getOperand(2));
4265     if (NeedClampOperand)
4266       I.addImm(0); // clamp bit for e64 encoding
4267 
4268     TII->legalizeOperands(*I);
4269 
4270     MI.eraseFromParent();
4271     return BB;
4272   }
4273   case AMDGPU::DS_GWS_INIT:
4274   case AMDGPU::DS_GWS_SEMA_V:
4275   case AMDGPU::DS_GWS_SEMA_BR:
4276   case AMDGPU::DS_GWS_SEMA_P:
4277   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4278   case AMDGPU::DS_GWS_BARRIER:
4279     // A s_waitcnt 0 is required to be the instruction immediately following.
4280     if (getSubtarget()->hasGWSAutoReplay()) {
4281       bundleInstWithWaitcnt(MI);
4282       return BB;
4283     }
4284 
4285     return emitGWSMemViolTestLoop(MI, BB);
4286   case AMDGPU::S_SETREG_B32: {
4287     // Try to optimize cases that only set the denormal mode or rounding mode.
4288     //
4289     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4290     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4291     // instead.
4292     //
4293     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4294     // allow you to have a no side effect instruction in the output of a
4295     // sideeffecting pattern.
4296     unsigned ID, Offset, Width;
4297     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4298     if (ID != AMDGPU::Hwreg::ID_MODE)
4299       return BB;
4300 
4301     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4302     const unsigned SetMask = WidthMask << Offset;
4303 
4304     if (getSubtarget()->hasDenormModeInst()) {
4305       unsigned SetDenormOp = 0;
4306       unsigned SetRoundOp = 0;
4307 
4308       // The dedicated instructions can only set the whole denorm or round mode
4309       // at once, not a subset of bits in either.
4310       if (SetMask ==
4311           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4312         // If this fully sets both the round and denorm mode, emit the two
4313         // dedicated instructions for these.
4314         SetRoundOp = AMDGPU::S_ROUND_MODE;
4315         SetDenormOp = AMDGPU::S_DENORM_MODE;
4316       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4317         SetRoundOp = AMDGPU::S_ROUND_MODE;
4318       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4319         SetDenormOp = AMDGPU::S_DENORM_MODE;
4320       }
4321 
4322       if (SetRoundOp || SetDenormOp) {
4323         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4324         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4325         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4326           unsigned ImmVal = Def->getOperand(1).getImm();
4327           if (SetRoundOp) {
4328             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4329                 .addImm(ImmVal & 0xf);
4330 
4331             // If we also have the denorm mode, get just the denorm mode bits.
4332             ImmVal >>= 4;
4333           }
4334 
4335           if (SetDenormOp) {
4336             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4337                 .addImm(ImmVal & 0xf);
4338           }
4339 
4340           MI.eraseFromParent();
4341           return BB;
4342         }
4343       }
4344     }
4345 
4346     // If only FP bits are touched, used the no side effects pseudo.
4347     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4348                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4349       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4350 
4351     return BB;
4352   }
4353   default:
4354     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4355   }
4356 }
4357 
4358 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4359   return isTypeLegal(VT.getScalarType());
4360 }
4361 
4362 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4363   // This currently forces unfolding various combinations of fsub into fma with
4364   // free fneg'd operands. As long as we have fast FMA (controlled by
4365   // isFMAFasterThanFMulAndFAdd), we should perform these.
4366 
4367   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4368   // most of these combines appear to be cycle neutral but save on instruction
4369   // count / code size.
4370   return true;
4371 }
4372 
4373 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4374                                          EVT VT) const {
4375   if (!VT.isVector()) {
4376     return MVT::i1;
4377   }
4378   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4379 }
4380 
4381 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4382   // TODO: Should i16 be used always if legal? For now it would force VALU
4383   // shifts.
4384   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4385 }
4386 
4387 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4388   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4389              ? Ty.changeElementSize(16)
4390              : Ty.changeElementSize(32);
4391 }
4392 
4393 // Answering this is somewhat tricky and depends on the specific device which
4394 // have different rates for fma or all f64 operations.
4395 //
4396 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4397 // regardless of which device (although the number of cycles differs between
4398 // devices), so it is always profitable for f64.
4399 //
4400 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4401 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4402 // which we can always do even without fused FP ops since it returns the same
4403 // result as the separate operations and since it is always full
4404 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4405 // however does not support denormals, so we do report fma as faster if we have
4406 // a fast fma device and require denormals.
4407 //
4408 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4409                                                   EVT VT) const {
4410   VT = VT.getScalarType();
4411 
4412   switch (VT.getSimpleVT().SimpleTy) {
4413   case MVT::f32: {
4414     // If mad is not available this depends only on if f32 fma is full rate.
4415     if (!Subtarget->hasMadMacF32Insts())
4416       return Subtarget->hasFastFMAF32();
4417 
4418     // Otherwise f32 mad is always full rate and returns the same result as
4419     // the separate operations so should be preferred over fma.
4420     // However does not support denomals.
4421     if (hasFP32Denormals(MF))
4422       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4423 
4424     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4425     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4426   }
4427   case MVT::f64:
4428     return true;
4429   case MVT::f16:
4430     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4431   default:
4432     break;
4433   }
4434 
4435   return false;
4436 }
4437 
4438 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4439                                    const SDNode *N) const {
4440   // TODO: Check future ftz flag
4441   // v_mad_f32/v_mac_f32 do not support denormals.
4442   EVT VT = N->getValueType(0);
4443   if (VT == MVT::f32)
4444     return Subtarget->hasMadMacF32Insts() &&
4445            !hasFP32Denormals(DAG.getMachineFunction());
4446   if (VT == MVT::f16) {
4447     return Subtarget->hasMadF16() &&
4448            !hasFP64FP16Denormals(DAG.getMachineFunction());
4449   }
4450 
4451   return false;
4452 }
4453 
4454 //===----------------------------------------------------------------------===//
4455 // Custom DAG Lowering Operations
4456 //===----------------------------------------------------------------------===//
4457 
4458 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4459 // wider vector type is legal.
4460 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4461                                              SelectionDAG &DAG) const {
4462   unsigned Opc = Op.getOpcode();
4463   EVT VT = Op.getValueType();
4464   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4465 
4466   SDValue Lo, Hi;
4467   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4468 
4469   SDLoc SL(Op);
4470   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4471                              Op->getFlags());
4472   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4473                              Op->getFlags());
4474 
4475   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4476 }
4477 
4478 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4479 // wider vector type is legal.
4480 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4481                                               SelectionDAG &DAG) const {
4482   unsigned Opc = Op.getOpcode();
4483   EVT VT = Op.getValueType();
4484   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4485 
4486   SDValue Lo0, Hi0;
4487   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4488   SDValue Lo1, Hi1;
4489   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4490 
4491   SDLoc SL(Op);
4492 
4493   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4494                              Op->getFlags());
4495   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4496                              Op->getFlags());
4497 
4498   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4499 }
4500 
4501 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4502                                               SelectionDAG &DAG) const {
4503   unsigned Opc = Op.getOpcode();
4504   EVT VT = Op.getValueType();
4505   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4506 
4507   SDValue Lo0, Hi0;
4508   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4509   SDValue Lo1, Hi1;
4510   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4511   SDValue Lo2, Hi2;
4512   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4513 
4514   SDLoc SL(Op);
4515 
4516   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4517                              Op->getFlags());
4518   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4519                              Op->getFlags());
4520 
4521   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4522 }
4523 
4524 
4525 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4526   switch (Op.getOpcode()) {
4527   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4528   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4529   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4530   case ISD::LOAD: {
4531     SDValue Result = LowerLOAD(Op, DAG);
4532     assert((!Result.getNode() ||
4533             Result.getNode()->getNumValues() == 2) &&
4534            "Load should return a value and a chain");
4535     return Result;
4536   }
4537 
4538   case ISD::FSIN:
4539   case ISD::FCOS:
4540     return LowerTrig(Op, DAG);
4541   case ISD::SELECT: return LowerSELECT(Op, DAG);
4542   case ISD::FDIV: return LowerFDIV(Op, DAG);
4543   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4544   case ISD::STORE: return LowerSTORE(Op, DAG);
4545   case ISD::GlobalAddress: {
4546     MachineFunction &MF = DAG.getMachineFunction();
4547     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4548     return LowerGlobalAddress(MFI, Op, DAG);
4549   }
4550   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4551   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4552   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4553   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4554   case ISD::INSERT_SUBVECTOR:
4555     return lowerINSERT_SUBVECTOR(Op, DAG);
4556   case ISD::INSERT_VECTOR_ELT:
4557     return lowerINSERT_VECTOR_ELT(Op, DAG);
4558   case ISD::EXTRACT_VECTOR_ELT:
4559     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4560   case ISD::VECTOR_SHUFFLE:
4561     return lowerVECTOR_SHUFFLE(Op, DAG);
4562   case ISD::BUILD_VECTOR:
4563     return lowerBUILD_VECTOR(Op, DAG);
4564   case ISD::FP_ROUND:
4565     return lowerFP_ROUND(Op, DAG);
4566   case ISD::TRAP:
4567     return lowerTRAP(Op, DAG);
4568   case ISD::DEBUGTRAP:
4569     return lowerDEBUGTRAP(Op, DAG);
4570   case ISD::FABS:
4571   case ISD::FNEG:
4572   case ISD::FCANONICALIZE:
4573   case ISD::BSWAP:
4574     return splitUnaryVectorOp(Op, DAG);
4575   case ISD::FMINNUM:
4576   case ISD::FMAXNUM:
4577     return lowerFMINNUM_FMAXNUM(Op, DAG);
4578   case ISD::FMA:
4579     return splitTernaryVectorOp(Op, DAG);
4580   case ISD::SHL:
4581   case ISD::SRA:
4582   case ISD::SRL:
4583   case ISD::ADD:
4584   case ISD::SUB:
4585   case ISD::MUL:
4586   case ISD::SMIN:
4587   case ISD::SMAX:
4588   case ISD::UMIN:
4589   case ISD::UMAX:
4590   case ISD::FADD:
4591   case ISD::FMUL:
4592   case ISD::FMINNUM_IEEE:
4593   case ISD::FMAXNUM_IEEE:
4594   case ISD::UADDSAT:
4595   case ISD::USUBSAT:
4596   case ISD::SADDSAT:
4597   case ISD::SSUBSAT:
4598     return splitBinaryVectorOp(Op, DAG);
4599   case ISD::SMULO:
4600   case ISD::UMULO:
4601     return lowerXMULO(Op, DAG);
4602   case ISD::DYNAMIC_STACKALLOC:
4603     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4604   }
4605   return SDValue();
4606 }
4607 
4608 // Used for D16: Casts the result of an instruction into the right vector,
4609 // packs values if loads return unpacked values.
4610 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4611                                        const SDLoc &DL,
4612                                        SelectionDAG &DAG, bool Unpacked) {
4613   if (!LoadVT.isVector())
4614     return Result;
4615 
4616   // Cast back to the original packed type or to a larger type that is a
4617   // multiple of 32 bit for D16. Widening the return type is a required for
4618   // legalization.
4619   EVT FittingLoadVT = LoadVT;
4620   if ((LoadVT.getVectorNumElements() % 2) == 1) {
4621     FittingLoadVT =
4622         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4623                          LoadVT.getVectorNumElements() + 1);
4624   }
4625 
4626   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4627     // Truncate to v2i16/v4i16.
4628     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4629 
4630     // Workaround legalizer not scalarizing truncate after vector op
4631     // legalization but not creating intermediate vector trunc.
4632     SmallVector<SDValue, 4> Elts;
4633     DAG.ExtractVectorElements(Result, Elts);
4634     for (SDValue &Elt : Elts)
4635       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4636 
4637     // Pad illegal v1i16/v3fi6 to v4i16
4638     if ((LoadVT.getVectorNumElements() % 2) == 1)
4639       Elts.push_back(DAG.getUNDEF(MVT::i16));
4640 
4641     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4642 
4643     // Bitcast to original type (v2f16/v4f16).
4644     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4645   }
4646 
4647   // Cast back to the original packed type.
4648   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4649 }
4650 
4651 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4652                                               MemSDNode *M,
4653                                               SelectionDAG &DAG,
4654                                               ArrayRef<SDValue> Ops,
4655                                               bool IsIntrinsic) const {
4656   SDLoc DL(M);
4657 
4658   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4659   EVT LoadVT = M->getValueType(0);
4660 
4661   EVT EquivLoadVT = LoadVT;
4662   if (LoadVT.isVector()) {
4663     if (Unpacked) {
4664       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4665                                      LoadVT.getVectorNumElements());
4666     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4667       // Widen v3f16 to legal type
4668       EquivLoadVT =
4669           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4670                            LoadVT.getVectorNumElements() + 1);
4671     }
4672   }
4673 
4674   // Change from v4f16/v2f16 to EquivLoadVT.
4675   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4676 
4677   SDValue Load
4678     = DAG.getMemIntrinsicNode(
4679       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4680       VTList, Ops, M->getMemoryVT(),
4681       M->getMemOperand());
4682 
4683   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4684 
4685   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4686 }
4687 
4688 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4689                                              SelectionDAG &DAG,
4690                                              ArrayRef<SDValue> Ops) const {
4691   SDLoc DL(M);
4692   EVT LoadVT = M->getValueType(0);
4693   EVT EltType = LoadVT.getScalarType();
4694   EVT IntVT = LoadVT.changeTypeToInteger();
4695 
4696   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4697 
4698   unsigned Opc =
4699       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4700 
4701   if (IsD16) {
4702     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4703   }
4704 
4705   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4706   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4707     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4708 
4709   if (isTypeLegal(LoadVT)) {
4710     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4711                                M->getMemOperand(), DAG);
4712   }
4713 
4714   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4715   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4716   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4717                                         M->getMemOperand(), DAG);
4718   return DAG.getMergeValues(
4719       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4720       DL);
4721 }
4722 
4723 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4724                                   SDNode *N, SelectionDAG &DAG) {
4725   EVT VT = N->getValueType(0);
4726   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4727   unsigned CondCode = CD->getZExtValue();
4728   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4729     return DAG.getUNDEF(VT);
4730 
4731   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4732 
4733   SDValue LHS = N->getOperand(1);
4734   SDValue RHS = N->getOperand(2);
4735 
4736   SDLoc DL(N);
4737 
4738   EVT CmpVT = LHS.getValueType();
4739   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4740     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4741       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4742     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4743     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4744   }
4745 
4746   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4747 
4748   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4749   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4750 
4751   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4752                               DAG.getCondCode(CCOpcode));
4753   if (VT.bitsEq(CCVT))
4754     return SetCC;
4755   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4756 }
4757 
4758 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4759                                   SDNode *N, SelectionDAG &DAG) {
4760   EVT VT = N->getValueType(0);
4761   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4762 
4763   unsigned CondCode = CD->getZExtValue();
4764   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4765     return DAG.getUNDEF(VT);
4766 
4767   SDValue Src0 = N->getOperand(1);
4768   SDValue Src1 = N->getOperand(2);
4769   EVT CmpVT = Src0.getValueType();
4770   SDLoc SL(N);
4771 
4772   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4773     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4774     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4775   }
4776 
4777   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4778   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4779   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4780   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4781   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4782                               Src1, DAG.getCondCode(CCOpcode));
4783   if (VT.bitsEq(CCVT))
4784     return SetCC;
4785   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4786 }
4787 
4788 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4789                                     SelectionDAG &DAG) {
4790   EVT VT = N->getValueType(0);
4791   SDValue Src = N->getOperand(1);
4792   SDLoc SL(N);
4793 
4794   if (Src.getOpcode() == ISD::SETCC) {
4795     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4796     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4797                        Src.getOperand(1), Src.getOperand(2));
4798   }
4799   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4800     // (ballot 0) -> 0
4801     if (Arg->isNullValue())
4802       return DAG.getConstant(0, SL, VT);
4803 
4804     // (ballot 1) -> EXEC/EXEC_LO
4805     if (Arg->isOne()) {
4806       Register Exec;
4807       if (VT.getScalarSizeInBits() == 32)
4808         Exec = AMDGPU::EXEC_LO;
4809       else if (VT.getScalarSizeInBits() == 64)
4810         Exec = AMDGPU::EXEC;
4811       else
4812         return SDValue();
4813 
4814       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4815     }
4816   }
4817 
4818   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4819   // ISD::SETNE)
4820   return DAG.getNode(
4821       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4822       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4823 }
4824 
4825 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4826                                           SmallVectorImpl<SDValue> &Results,
4827                                           SelectionDAG &DAG) const {
4828   switch (N->getOpcode()) {
4829   case ISD::INSERT_VECTOR_ELT: {
4830     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4831       Results.push_back(Res);
4832     return;
4833   }
4834   case ISD::EXTRACT_VECTOR_ELT: {
4835     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4836       Results.push_back(Res);
4837     return;
4838   }
4839   case ISD::INTRINSIC_WO_CHAIN: {
4840     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4841     switch (IID) {
4842     case Intrinsic::amdgcn_cvt_pkrtz: {
4843       SDValue Src0 = N->getOperand(1);
4844       SDValue Src1 = N->getOperand(2);
4845       SDLoc SL(N);
4846       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4847                                 Src0, Src1);
4848       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4849       return;
4850     }
4851     case Intrinsic::amdgcn_cvt_pknorm_i16:
4852     case Intrinsic::amdgcn_cvt_pknorm_u16:
4853     case Intrinsic::amdgcn_cvt_pk_i16:
4854     case Intrinsic::amdgcn_cvt_pk_u16: {
4855       SDValue Src0 = N->getOperand(1);
4856       SDValue Src1 = N->getOperand(2);
4857       SDLoc SL(N);
4858       unsigned Opcode;
4859 
4860       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4861         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4862       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4863         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4864       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4865         Opcode = AMDGPUISD::CVT_PK_I16_I32;
4866       else
4867         Opcode = AMDGPUISD::CVT_PK_U16_U32;
4868 
4869       EVT VT = N->getValueType(0);
4870       if (isTypeLegal(VT))
4871         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4872       else {
4873         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4874         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4875       }
4876       return;
4877     }
4878     }
4879     break;
4880   }
4881   case ISD::INTRINSIC_W_CHAIN: {
4882     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4883       if (Res.getOpcode() == ISD::MERGE_VALUES) {
4884         // FIXME: Hacky
4885         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
4886           Results.push_back(Res.getOperand(I));
4887         }
4888       } else {
4889         Results.push_back(Res);
4890         Results.push_back(Res.getValue(1));
4891       }
4892       return;
4893     }
4894 
4895     break;
4896   }
4897   case ISD::SELECT: {
4898     SDLoc SL(N);
4899     EVT VT = N->getValueType(0);
4900     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4901     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4902     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4903 
4904     EVT SelectVT = NewVT;
4905     if (NewVT.bitsLT(MVT::i32)) {
4906       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4907       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4908       SelectVT = MVT::i32;
4909     }
4910 
4911     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4912                                     N->getOperand(0), LHS, RHS);
4913 
4914     if (NewVT != SelectVT)
4915       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4916     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4917     return;
4918   }
4919   case ISD::FNEG: {
4920     if (N->getValueType(0) != MVT::v2f16)
4921       break;
4922 
4923     SDLoc SL(N);
4924     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4925 
4926     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4927                              BC,
4928                              DAG.getConstant(0x80008000, SL, MVT::i32));
4929     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4930     return;
4931   }
4932   case ISD::FABS: {
4933     if (N->getValueType(0) != MVT::v2f16)
4934       break;
4935 
4936     SDLoc SL(N);
4937     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4938 
4939     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4940                              BC,
4941                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4942     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4943     return;
4944   }
4945   default:
4946     break;
4947   }
4948 }
4949 
4950 /// Helper function for LowerBRCOND
4951 static SDNode *findUser(SDValue Value, unsigned Opcode) {
4952 
4953   SDNode *Parent = Value.getNode();
4954   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4955        I != E; ++I) {
4956 
4957     if (I.getUse().get() != Value)
4958       continue;
4959 
4960     if (I->getOpcode() == Opcode)
4961       return *I;
4962   }
4963   return nullptr;
4964 }
4965 
4966 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4967   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4968     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4969     case Intrinsic::amdgcn_if:
4970       return AMDGPUISD::IF;
4971     case Intrinsic::amdgcn_else:
4972       return AMDGPUISD::ELSE;
4973     case Intrinsic::amdgcn_loop:
4974       return AMDGPUISD::LOOP;
4975     case Intrinsic::amdgcn_end_cf:
4976       llvm_unreachable("should not occur");
4977     default:
4978       return 0;
4979     }
4980   }
4981 
4982   // break, if_break, else_break are all only used as inputs to loop, not
4983   // directly as branch conditions.
4984   return 0;
4985 }
4986 
4987 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4988   const Triple &TT = getTargetMachine().getTargetTriple();
4989   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4990           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4991          AMDGPU::shouldEmitConstantsToTextSection(TT);
4992 }
4993 
4994 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4995   // FIXME: Either avoid relying on address space here or change the default
4996   // address space for functions to avoid the explicit check.
4997   return (GV->getValueType()->isFunctionTy() ||
4998           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
4999          !shouldEmitFixup(GV) &&
5000          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5001 }
5002 
5003 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5004   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5005 }
5006 
5007 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5008   if (!GV->hasExternalLinkage())
5009     return true;
5010 
5011   const auto OS = getTargetMachine().getTargetTriple().getOS();
5012   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5013 }
5014 
5015 /// This transforms the control flow intrinsics to get the branch destination as
5016 /// last parameter, also switches branch target with BR if the need arise
5017 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5018                                       SelectionDAG &DAG) const {
5019   SDLoc DL(BRCOND);
5020 
5021   SDNode *Intr = BRCOND.getOperand(1).getNode();
5022   SDValue Target = BRCOND.getOperand(2);
5023   SDNode *BR = nullptr;
5024   SDNode *SetCC = nullptr;
5025 
5026   if (Intr->getOpcode() == ISD::SETCC) {
5027     // As long as we negate the condition everything is fine
5028     SetCC = Intr;
5029     Intr = SetCC->getOperand(0).getNode();
5030 
5031   } else {
5032     // Get the target from BR if we don't negate the condition
5033     BR = findUser(BRCOND, ISD::BR);
5034     assert(BR && "brcond missing unconditional branch user");
5035     Target = BR->getOperand(1);
5036   }
5037 
5038   unsigned CFNode = isCFIntrinsic(Intr);
5039   if (CFNode == 0) {
5040     // This is a uniform branch so we don't need to legalize.
5041     return BRCOND;
5042   }
5043 
5044   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5045                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5046 
5047   assert(!SetCC ||
5048         (SetCC->getConstantOperandVal(1) == 1 &&
5049          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5050                                                              ISD::SETNE));
5051 
5052   // operands of the new intrinsic call
5053   SmallVector<SDValue, 4> Ops;
5054   if (HaveChain)
5055     Ops.push_back(BRCOND.getOperand(0));
5056 
5057   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
5058   Ops.push_back(Target);
5059 
5060   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5061 
5062   // build the new intrinsic call
5063   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5064 
5065   if (!HaveChain) {
5066     SDValue Ops[] =  {
5067       SDValue(Result, 0),
5068       BRCOND.getOperand(0)
5069     };
5070 
5071     Result = DAG.getMergeValues(Ops, DL).getNode();
5072   }
5073 
5074   if (BR) {
5075     // Give the branch instruction our target
5076     SDValue Ops[] = {
5077       BR->getOperand(0),
5078       BRCOND.getOperand(2)
5079     };
5080     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5081     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5082   }
5083 
5084   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5085 
5086   // Copy the intrinsic results to registers
5087   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5088     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5089     if (!CopyToReg)
5090       continue;
5091 
5092     Chain = DAG.getCopyToReg(
5093       Chain, DL,
5094       CopyToReg->getOperand(1),
5095       SDValue(Result, i - 1),
5096       SDValue());
5097 
5098     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5099   }
5100 
5101   // Remove the old intrinsic from the chain
5102   DAG.ReplaceAllUsesOfValueWith(
5103     SDValue(Intr, Intr->getNumValues() - 1),
5104     Intr->getOperand(0));
5105 
5106   return Chain;
5107 }
5108 
5109 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5110                                           SelectionDAG &DAG) const {
5111   MVT VT = Op.getSimpleValueType();
5112   SDLoc DL(Op);
5113   // Checking the depth
5114   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5115     return DAG.getConstant(0, DL, VT);
5116 
5117   MachineFunction &MF = DAG.getMachineFunction();
5118   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5119   // Check for kernel and shader functions
5120   if (Info->isEntryFunction())
5121     return DAG.getConstant(0, DL, VT);
5122 
5123   MachineFrameInfo &MFI = MF.getFrameInfo();
5124   // There is a call to @llvm.returnaddress in this function
5125   MFI.setReturnAddressIsTaken(true);
5126 
5127   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5128   // Get the return address reg and mark it as an implicit live-in
5129   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5130 
5131   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5132 }
5133 
5134 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5135                                             SDValue Op,
5136                                             const SDLoc &DL,
5137                                             EVT VT) const {
5138   return Op.getValueType().bitsLE(VT) ?
5139       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5140     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5141                 DAG.getTargetConstant(0, DL, MVT::i32));
5142 }
5143 
5144 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5145   assert(Op.getValueType() == MVT::f16 &&
5146          "Do not know how to custom lower FP_ROUND for non-f16 type");
5147 
5148   SDValue Src = Op.getOperand(0);
5149   EVT SrcVT = Src.getValueType();
5150   if (SrcVT != MVT::f64)
5151     return Op;
5152 
5153   SDLoc DL(Op);
5154 
5155   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5156   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5157   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5158 }
5159 
5160 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5161                                                SelectionDAG &DAG) const {
5162   EVT VT = Op.getValueType();
5163   const MachineFunction &MF = DAG.getMachineFunction();
5164   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5165   bool IsIEEEMode = Info->getMode().IEEE;
5166 
5167   // FIXME: Assert during selection that this is only selected for
5168   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5169   // mode functions, but this happens to be OK since it's only done in cases
5170   // where there is known no sNaN.
5171   if (IsIEEEMode)
5172     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5173 
5174   if (VT == MVT::v4f16)
5175     return splitBinaryVectorOp(Op, DAG);
5176   return Op;
5177 }
5178 
5179 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5180   EVT VT = Op.getValueType();
5181   SDLoc SL(Op);
5182   SDValue LHS = Op.getOperand(0);
5183   SDValue RHS = Op.getOperand(1);
5184   bool isSigned = Op.getOpcode() == ISD::SMULO;
5185 
5186   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5187     const APInt &C = RHSC->getAPIntValue();
5188     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5189     if (C.isPowerOf2()) {
5190       // smulo(x, signed_min) is same as umulo(x, signed_min).
5191       bool UseArithShift = isSigned && !C.isMinSignedValue();
5192       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5193       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5194       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5195           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5196                       SL, VT, Result, ShiftAmt),
5197           LHS, ISD::SETNE);
5198       return DAG.getMergeValues({ Result, Overflow }, SL);
5199     }
5200   }
5201 
5202   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5203   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5204                             SL, VT, LHS, RHS);
5205 
5206   SDValue Sign = isSigned
5207     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5208                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5209     : DAG.getConstant(0, SL, VT);
5210   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5211 
5212   return DAG.getMergeValues({ Result, Overflow }, SL);
5213 }
5214 
5215 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5216   SDLoc SL(Op);
5217   SDValue Chain = Op.getOperand(0);
5218 
5219   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
5220       !Subtarget->isTrapHandlerEnabled())
5221     return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5222 
5223   MachineFunction &MF = DAG.getMachineFunction();
5224   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5225   Register UserSGPR = Info->getQueuePtrUserSGPR();
5226   assert(UserSGPR != AMDGPU::NoRegister);
5227   SDValue QueuePtr = CreateLiveInRegister(
5228     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5229   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5230   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5231                                    QueuePtr, SDValue());
5232   SDValue Ops[] = {
5233     ToReg,
5234     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
5235     SGPR01,
5236     ToReg.getValue(1)
5237   };
5238   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5239 }
5240 
5241 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5242   SDLoc SL(Op);
5243   SDValue Chain = Op.getOperand(0);
5244   MachineFunction &MF = DAG.getMachineFunction();
5245 
5246   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
5247       !Subtarget->isTrapHandlerEnabled()) {
5248     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5249                                      "debugtrap handler not supported",
5250                                      Op.getDebugLoc(),
5251                                      DS_Warning);
5252     LLVMContext &Ctx = MF.getFunction().getContext();
5253     Ctx.diagnose(NoTrap);
5254     return Chain;
5255   }
5256 
5257   SDValue Ops[] = {
5258     Chain,
5259     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
5260   };
5261   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5262 }
5263 
5264 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5265                                              SelectionDAG &DAG) const {
5266   // FIXME: Use inline constants (src_{shared, private}_base) instead.
5267   if (Subtarget->hasApertureRegs()) {
5268     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5269         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5270         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5271     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5272         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5273         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5274     unsigned Encoding =
5275         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5276         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5277         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5278 
5279     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5280     SDValue ApertureReg = SDValue(
5281         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5282     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5283     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5284   }
5285 
5286   MachineFunction &MF = DAG.getMachineFunction();
5287   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5288   Register UserSGPR = Info->getQueuePtrUserSGPR();
5289   assert(UserSGPR != AMDGPU::NoRegister);
5290 
5291   SDValue QueuePtr = CreateLiveInRegister(
5292     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5293 
5294   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5295   // private_segment_aperture_base_hi.
5296   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5297 
5298   SDValue Ptr =
5299       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5300 
5301   // TODO: Use custom target PseudoSourceValue.
5302   // TODO: We should use the value from the IR intrinsic call, but it might not
5303   // be available and how do we get it?
5304   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5305   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5306                      commonAlignment(Align(64), StructOffset),
5307                      MachineMemOperand::MODereferenceable |
5308                          MachineMemOperand::MOInvariant);
5309 }
5310 
5311 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5312                                              SelectionDAG &DAG) const {
5313   SDLoc SL(Op);
5314   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5315 
5316   SDValue Src = ASC->getOperand(0);
5317   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5318 
5319   const AMDGPUTargetMachine &TM =
5320     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5321 
5322   // flat -> local/private
5323   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5324     unsigned DestAS = ASC->getDestAddressSpace();
5325 
5326     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5327         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5328       unsigned NullVal = TM.getNullPointerValue(DestAS);
5329       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5330       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5331       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5332 
5333       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
5334                          NonNull, Ptr, SegmentNullPtr);
5335     }
5336   }
5337 
5338   // local/private -> flat
5339   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5340     unsigned SrcAS = ASC->getSrcAddressSpace();
5341 
5342     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5343         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5344       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5345       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5346 
5347       SDValue NonNull
5348         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5349 
5350       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5351       SDValue CvtPtr
5352         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5353 
5354       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
5355                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
5356                          FlatNullPtr);
5357     }
5358   }
5359 
5360   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5361       Src.getValueType() == MVT::i64)
5362     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5363 
5364   // global <-> flat are no-ops and never emitted.
5365 
5366   const MachineFunction &MF = DAG.getMachineFunction();
5367   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5368     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5369   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5370 
5371   return DAG.getUNDEF(ASC->getValueType(0));
5372 }
5373 
5374 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5375 // the small vector and inserting them into the big vector. That is better than
5376 // the default expansion of doing it via a stack slot. Even though the use of
5377 // the stack slot would be optimized away afterwards, the stack slot itself
5378 // remains.
5379 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5380                                                 SelectionDAG &DAG) const {
5381   SDValue Vec = Op.getOperand(0);
5382   SDValue Ins = Op.getOperand(1);
5383   SDValue Idx = Op.getOperand(2);
5384   EVT VecVT = Vec.getValueType();
5385   EVT InsVT = Ins.getValueType();
5386   EVT EltVT = VecVT.getVectorElementType();
5387   unsigned InsNumElts = InsVT.getVectorNumElements();
5388   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5389   SDLoc SL(Op);
5390 
5391   for (unsigned I = 0; I != InsNumElts; ++I) {
5392     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5393                               DAG.getConstant(I, SL, MVT::i32));
5394     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5395                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5396   }
5397   return Vec;
5398 }
5399 
5400 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5401                                                  SelectionDAG &DAG) const {
5402   SDValue Vec = Op.getOperand(0);
5403   SDValue InsVal = Op.getOperand(1);
5404   SDValue Idx = Op.getOperand(2);
5405   EVT VecVT = Vec.getValueType();
5406   EVT EltVT = VecVT.getVectorElementType();
5407   unsigned VecSize = VecVT.getSizeInBits();
5408   unsigned EltSize = EltVT.getSizeInBits();
5409 
5410 
5411   assert(VecSize <= 64);
5412 
5413   unsigned NumElts = VecVT.getVectorNumElements();
5414   SDLoc SL(Op);
5415   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5416 
5417   if (NumElts == 4 && EltSize == 16 && KIdx) {
5418     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5419 
5420     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5421                                  DAG.getConstant(0, SL, MVT::i32));
5422     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5423                                  DAG.getConstant(1, SL, MVT::i32));
5424 
5425     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5426     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5427 
5428     unsigned Idx = KIdx->getZExtValue();
5429     bool InsertLo = Idx < 2;
5430     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5431       InsertLo ? LoVec : HiVec,
5432       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5433       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5434 
5435     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5436 
5437     SDValue Concat = InsertLo ?
5438       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5439       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5440 
5441     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5442   }
5443 
5444   if (isa<ConstantSDNode>(Idx))
5445     return SDValue();
5446 
5447   MVT IntVT = MVT::getIntegerVT(VecSize);
5448 
5449   // Avoid stack access for dynamic indexing.
5450   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5451 
5452   // Create a congruent vector with the target value in each element so that
5453   // the required element can be masked and ORed into the target vector.
5454   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5455                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5456 
5457   assert(isPowerOf2_32(EltSize));
5458   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5459 
5460   // Convert vector index to bit-index.
5461   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5462 
5463   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5464   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5465                             DAG.getConstant(0xffff, SL, IntVT),
5466                             ScaledIdx);
5467 
5468   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5469   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5470                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5471 
5472   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5473   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5474 }
5475 
5476 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5477                                                   SelectionDAG &DAG) const {
5478   SDLoc SL(Op);
5479 
5480   EVT ResultVT = Op.getValueType();
5481   SDValue Vec = Op.getOperand(0);
5482   SDValue Idx = Op.getOperand(1);
5483   EVT VecVT = Vec.getValueType();
5484   unsigned VecSize = VecVT.getSizeInBits();
5485   EVT EltVT = VecVT.getVectorElementType();
5486   assert(VecSize <= 64);
5487 
5488   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5489 
5490   // Make sure we do any optimizations that will make it easier to fold
5491   // source modifiers before obscuring it with bit operations.
5492 
5493   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5494   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5495     return Combined;
5496 
5497   unsigned EltSize = EltVT.getSizeInBits();
5498   assert(isPowerOf2_32(EltSize));
5499 
5500   MVT IntVT = MVT::getIntegerVT(VecSize);
5501   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5502 
5503   // Convert vector index to bit-index (* EltSize)
5504   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5505 
5506   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5507   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5508 
5509   if (ResultVT == MVT::f16) {
5510     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5511     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5512   }
5513 
5514   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5515 }
5516 
5517 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5518   assert(Elt % 2 == 0);
5519   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5520 }
5521 
5522 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5523                                               SelectionDAG &DAG) const {
5524   SDLoc SL(Op);
5525   EVT ResultVT = Op.getValueType();
5526   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5527 
5528   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5529   EVT EltVT = PackVT.getVectorElementType();
5530   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5531 
5532   // vector_shuffle <0,1,6,7> lhs, rhs
5533   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5534   //
5535   // vector_shuffle <6,7,2,3> lhs, rhs
5536   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5537   //
5538   // vector_shuffle <6,7,0,1> lhs, rhs
5539   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5540 
5541   // Avoid scalarizing when both halves are reading from consecutive elements.
5542   SmallVector<SDValue, 4> Pieces;
5543   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5544     if (elementPairIsContiguous(SVN->getMask(), I)) {
5545       const int Idx = SVN->getMaskElt(I);
5546       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5547       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5548       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5549                                     PackVT, SVN->getOperand(VecIdx),
5550                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5551       Pieces.push_back(SubVec);
5552     } else {
5553       const int Idx0 = SVN->getMaskElt(I);
5554       const int Idx1 = SVN->getMaskElt(I + 1);
5555       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5556       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5557       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5558       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5559 
5560       SDValue Vec0 = SVN->getOperand(VecIdx0);
5561       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5562                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5563 
5564       SDValue Vec1 = SVN->getOperand(VecIdx1);
5565       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5566                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5567       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5568     }
5569   }
5570 
5571   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5572 }
5573 
5574 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5575                                             SelectionDAG &DAG) const {
5576   SDLoc SL(Op);
5577   EVT VT = Op.getValueType();
5578 
5579   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
5580     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
5581 
5582     // Turn into pair of packed build_vectors.
5583     // TODO: Special case for constants that can be materialized with s_mov_b64.
5584     SDValue Lo = DAG.getBuildVector(HalfVT, SL,
5585                                     { Op.getOperand(0), Op.getOperand(1) });
5586     SDValue Hi = DAG.getBuildVector(HalfVT, SL,
5587                                     { Op.getOperand(2), Op.getOperand(3) });
5588 
5589     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
5590     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
5591 
5592     SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
5593     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5594   }
5595 
5596   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5597   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5598 
5599   SDValue Lo = Op.getOperand(0);
5600   SDValue Hi = Op.getOperand(1);
5601 
5602   // Avoid adding defined bits with the zero_extend.
5603   if (Hi.isUndef()) {
5604     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5605     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5606     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5607   }
5608 
5609   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5610   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5611 
5612   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5613                               DAG.getConstant(16, SL, MVT::i32));
5614   if (Lo.isUndef())
5615     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5616 
5617   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5618   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5619 
5620   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5621   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5622 }
5623 
5624 bool
5625 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5626   // We can fold offsets for anything that doesn't require a GOT relocation.
5627   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5628           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5629           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5630          !shouldEmitGOTReloc(GA->getGlobal());
5631 }
5632 
5633 static SDValue
5634 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5635                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
5636                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5637   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5638   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5639   // lowered to the following code sequence:
5640   //
5641   // For constant address space:
5642   //   s_getpc_b64 s[0:1]
5643   //   s_add_u32 s0, s0, $symbol
5644   //   s_addc_u32 s1, s1, 0
5645   //
5646   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5647   //   a fixup or relocation is emitted to replace $symbol with a literal
5648   //   constant, which is a pc-relative offset from the encoding of the $symbol
5649   //   operand to the global variable.
5650   //
5651   // For global address space:
5652   //   s_getpc_b64 s[0:1]
5653   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5654   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5655   //
5656   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5657   //   fixups or relocations are emitted to replace $symbol@*@lo and
5658   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5659   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5660   //   operand to the global variable.
5661   //
5662   // What we want here is an offset from the value returned by s_getpc
5663   // (which is the address of the s_add_u32 instruction) to the global
5664   // variable, but since the encoding of $symbol starts 4 bytes after the start
5665   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5666   // small. This requires us to add 4 to the global variable offset in order to
5667   // compute the correct address. Similarly for the s_addc_u32 instruction, the
5668   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5669   // instruction.
5670   SDValue PtrLo =
5671       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5672   SDValue PtrHi;
5673   if (GAFlags == SIInstrInfo::MO_NONE) {
5674     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5675   } else {
5676     PtrHi =
5677         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5678   }
5679   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5680 }
5681 
5682 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5683                                              SDValue Op,
5684                                              SelectionDAG &DAG) const {
5685   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5686   SDLoc DL(GSD);
5687   EVT PtrVT = Op.getValueType();
5688 
5689   const GlobalValue *GV = GSD->getGlobal();
5690   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5691        shouldUseLDSConstAddress(GV)) ||
5692       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5693       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
5694     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5695         GV->hasExternalLinkage()) {
5696       Type *Ty = GV->getValueType();
5697       // HIP uses an unsized array `extern __shared__ T s[]` or similar
5698       // zero-sized type in other languages to declare the dynamic shared
5699       // memory which size is not known at the compile time. They will be
5700       // allocated by the runtime and placed directly after the static
5701       // allocated ones. They all share the same offset.
5702       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
5703         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
5704         // Adjust alignment for that dynamic shared memory array.
5705         MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
5706         return SDValue(
5707             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
5708       }
5709     }
5710     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5711   }
5712 
5713   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5714     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5715                                             SIInstrInfo::MO_ABS32_LO);
5716     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5717   }
5718 
5719   if (shouldEmitFixup(GV))
5720     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5721   else if (shouldEmitPCReloc(GV))
5722     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5723                                    SIInstrInfo::MO_REL32);
5724 
5725   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5726                                             SIInstrInfo::MO_GOTPCREL32);
5727 
5728   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5729   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5730   const DataLayout &DataLayout = DAG.getDataLayout();
5731   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
5732   MachinePointerInfo PtrInfo
5733     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5734 
5735   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
5736                      MachineMemOperand::MODereferenceable |
5737                          MachineMemOperand::MOInvariant);
5738 }
5739 
5740 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5741                                    const SDLoc &DL, SDValue V) const {
5742   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5743   // the destination register.
5744   //
5745   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5746   // so we will end up with redundant moves to m0.
5747   //
5748   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5749 
5750   // A Null SDValue creates a glue result.
5751   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5752                                   V, Chain);
5753   return SDValue(M0, 0);
5754 }
5755 
5756 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5757                                                  SDValue Op,
5758                                                  MVT VT,
5759                                                  unsigned Offset) const {
5760   SDLoc SL(Op);
5761   SDValue Param = lowerKernargMemParameter(
5762       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
5763   // The local size values will have the hi 16-bits as zero.
5764   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5765                      DAG.getValueType(VT));
5766 }
5767 
5768 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5769                                         EVT VT) {
5770   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5771                                       "non-hsa intrinsic with hsa target",
5772                                       DL.getDebugLoc());
5773   DAG.getContext()->diagnose(BadIntrin);
5774   return DAG.getUNDEF(VT);
5775 }
5776 
5777 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5778                                          EVT VT) {
5779   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5780                                       "intrinsic not supported on subtarget",
5781                                       DL.getDebugLoc());
5782   DAG.getContext()->diagnose(BadIntrin);
5783   return DAG.getUNDEF(VT);
5784 }
5785 
5786 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5787                                     ArrayRef<SDValue> Elts) {
5788   assert(!Elts.empty());
5789   MVT Type;
5790   unsigned NumElts;
5791 
5792   if (Elts.size() == 1) {
5793     Type = MVT::f32;
5794     NumElts = 1;
5795   } else if (Elts.size() == 2) {
5796     Type = MVT::v2f32;
5797     NumElts = 2;
5798   } else if (Elts.size() == 3) {
5799     Type = MVT::v3f32;
5800     NumElts = 3;
5801   } else if (Elts.size() <= 4) {
5802     Type = MVT::v4f32;
5803     NumElts = 4;
5804   } else if (Elts.size() <= 8) {
5805     Type = MVT::v8f32;
5806     NumElts = 8;
5807   } else {
5808     assert(Elts.size() <= 16);
5809     Type = MVT::v16f32;
5810     NumElts = 16;
5811   }
5812 
5813   SmallVector<SDValue, 16> VecElts(NumElts);
5814   for (unsigned i = 0; i < Elts.size(); ++i) {
5815     SDValue Elt = Elts[i];
5816     if (Elt.getValueType() != MVT::f32)
5817       Elt = DAG.getBitcast(MVT::f32, Elt);
5818     VecElts[i] = Elt;
5819   }
5820   for (unsigned i = Elts.size(); i < NumElts; ++i)
5821     VecElts[i] = DAG.getUNDEF(MVT::f32);
5822 
5823   if (NumElts == 1)
5824     return VecElts[0];
5825   return DAG.getBuildVector(Type, DL, VecElts);
5826 }
5827 
5828 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5829                              SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5830   auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5831 
5832   uint64_t Value = CachePolicyConst->getZExtValue();
5833   SDLoc DL(CachePolicy);
5834   if (GLC) {
5835     *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5836     Value &= ~(uint64_t)0x1;
5837   }
5838   if (SLC) {
5839     *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5840     Value &= ~(uint64_t)0x2;
5841   }
5842   if (DLC) {
5843     *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5844     Value &= ~(uint64_t)0x4;
5845   }
5846 
5847   return Value == 0;
5848 }
5849 
5850 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
5851                               SDValue Src, int ExtraElts) {
5852   EVT SrcVT = Src.getValueType();
5853 
5854   SmallVector<SDValue, 8> Elts;
5855 
5856   if (SrcVT.isVector())
5857     DAG.ExtractVectorElements(Src, Elts);
5858   else
5859     Elts.push_back(Src);
5860 
5861   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
5862   while (ExtraElts--)
5863     Elts.push_back(Undef);
5864 
5865   return DAG.getBuildVector(CastVT, DL, Elts);
5866 }
5867 
5868 // Re-construct the required return value for a image load intrinsic.
5869 // This is more complicated due to the optional use TexFailCtrl which means the required
5870 // return type is an aggregate
5871 static SDValue constructRetValue(SelectionDAG &DAG,
5872                                  MachineSDNode *Result,
5873                                  ArrayRef<EVT> ResultTypes,
5874                                  bool IsTexFail, bool Unpacked, bool IsD16,
5875                                  int DMaskPop, int NumVDataDwords,
5876                                  const SDLoc &DL, LLVMContext &Context) {
5877   // Determine the required return type. This is the same regardless of IsTexFail flag
5878   EVT ReqRetVT = ResultTypes[0];
5879   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5880   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5881     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
5882 
5883   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5884     DMaskPop : (DMaskPop + 1) / 2;
5885 
5886   MVT DataDwordVT = NumDataDwords == 1 ?
5887     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
5888 
5889   MVT MaskPopVT = MaskPopDwords == 1 ?
5890     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
5891 
5892   SDValue Data(Result, 0);
5893   SDValue TexFail;
5894 
5895   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
5896     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
5897     if (MaskPopVT.isVector()) {
5898       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
5899                          SDValue(Result, 0), ZeroIdx);
5900     } else {
5901       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
5902                          SDValue(Result, 0), ZeroIdx);
5903     }
5904   }
5905 
5906   if (DataDwordVT.isVector())
5907     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
5908                           NumDataDwords - MaskPopDwords);
5909 
5910   if (IsD16)
5911     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
5912 
5913   EVT LegalReqRetVT = ReqRetVT;
5914   if (!ReqRetVT.isVector()) {
5915     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
5916   } else {
5917     // We need to widen the return vector to a legal type
5918     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
5919         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
5920       LegalReqRetVT =
5921           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
5922                            ReqRetVT.getVectorNumElements() + 1);
5923     }
5924   }
5925   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
5926 
5927   if (IsTexFail) {
5928     TexFail =
5929         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
5930                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
5931 
5932     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
5933   }
5934 
5935   if (Result->getNumValues() == 1)
5936     return Data;
5937 
5938   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
5939 }
5940 
5941 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5942                          SDValue *LWE, bool &IsTexFail) {
5943   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5944 
5945   uint64_t Value = TexFailCtrlConst->getZExtValue();
5946   if (Value) {
5947     IsTexFail = true;
5948   }
5949 
5950   SDLoc DL(TexFailCtrlConst);
5951   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5952   Value &= ~(uint64_t)0x1;
5953   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5954   Value &= ~(uint64_t)0x2;
5955 
5956   return Value == 0;
5957 }
5958 
5959 static void packImageA16AddressToDwords(SelectionDAG &DAG, SDValue Op,
5960                                         MVT PackVectorVT,
5961                                         SmallVectorImpl<SDValue> &PackedAddrs,
5962                                         unsigned DimIdx, unsigned EndIdx,
5963                                         unsigned NumGradients) {
5964   SDLoc DL(Op);
5965   for (unsigned I = DimIdx; I < EndIdx; I++) {
5966     SDValue Addr = Op.getOperand(I);
5967 
5968     // Gradients are packed with undef for each coordinate.
5969     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
5970     // 1D: undef,dx/dh; undef,dx/dv
5971     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
5972     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
5973     if (((I + 1) >= EndIdx) ||
5974         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
5975                                          I == DimIdx + NumGradients - 1))) {
5976       if (Addr.getValueType() != MVT::i16)
5977         Addr = DAG.getBitcast(MVT::i16, Addr);
5978       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
5979     } else {
5980       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
5981       I++;
5982     }
5983     Addr = DAG.getBitcast(MVT::f32, Addr);
5984     PackedAddrs.push_back(Addr);
5985   }
5986 }
5987 
5988 SDValue SITargetLowering::lowerImage(SDValue Op,
5989                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
5990                                      SelectionDAG &DAG, bool WithChain) const {
5991   SDLoc DL(Op);
5992   MachineFunction &MF = DAG.getMachineFunction();
5993   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5994   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5995       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5996   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5997   const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5998       AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5999   const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
6000       AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
6001   unsigned IntrOpcode = Intr->BaseOpcode;
6002   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6003 
6004   SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
6005   SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
6006   bool IsD16 = false;
6007   bool IsG16 = false;
6008   bool IsA16 = false;
6009   SDValue VData;
6010   int NumVDataDwords;
6011   bool AdjustRetType = false;
6012 
6013   // Offset of intrinsic arguments
6014   const unsigned ArgOffset = WithChain ? 2 : 1;
6015 
6016   unsigned DMask;
6017   unsigned DMaskLanes = 0;
6018 
6019   if (BaseOpcode->Atomic) {
6020     VData = Op.getOperand(2);
6021 
6022     bool Is64Bit = VData.getValueType() == MVT::i64;
6023     if (BaseOpcode->AtomicX2) {
6024       SDValue VData2 = Op.getOperand(3);
6025       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6026                                  {VData, VData2});
6027       if (Is64Bit)
6028         VData = DAG.getBitcast(MVT::v4i32, VData);
6029 
6030       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6031       DMask = Is64Bit ? 0xf : 0x3;
6032       NumVDataDwords = Is64Bit ? 4 : 2;
6033     } else {
6034       DMask = Is64Bit ? 0x3 : 0x1;
6035       NumVDataDwords = Is64Bit ? 2 : 1;
6036     }
6037   } else {
6038     auto *DMaskConst =
6039         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6040     DMask = DMaskConst->getZExtValue();
6041     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6042 
6043     if (BaseOpcode->Store) {
6044       VData = Op.getOperand(2);
6045 
6046       MVT StoreVT = VData.getSimpleValueType();
6047       if (StoreVT.getScalarType() == MVT::f16) {
6048         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6049           return Op; // D16 is unsupported for this instruction
6050 
6051         IsD16 = true;
6052         VData = handleD16VData(VData, DAG, true);
6053       }
6054 
6055       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6056     } else {
6057       // Work out the num dwords based on the dmask popcount and underlying type
6058       // and whether packing is supported.
6059       MVT LoadVT = ResultTypes[0].getSimpleVT();
6060       if (LoadVT.getScalarType() == MVT::f16) {
6061         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6062           return Op; // D16 is unsupported for this instruction
6063 
6064         IsD16 = true;
6065       }
6066 
6067       // Confirm that the return type is large enough for the dmask specified
6068       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6069           (!LoadVT.isVector() && DMaskLanes > 1))
6070           return Op;
6071 
6072       // The sq block of gfx8 and gfx9 do not estimate register use correctly
6073       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6074       // instructions.
6075       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6076           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6077         NumVDataDwords = (DMaskLanes + 1) / 2;
6078       else
6079         NumVDataDwords = DMaskLanes;
6080 
6081       AdjustRetType = true;
6082     }
6083   }
6084 
6085   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6086   SmallVector<SDValue, 4> VAddrs;
6087 
6088   // Optimize _L to _LZ when _L is zero
6089   if (LZMappingInfo) {
6090     if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>(
6091             Op.getOperand(ArgOffset + Intr->LodIndex))) {
6092       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
6093         IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
6094         VAddrEnd--;                      // remove 'lod'
6095       }
6096     }
6097   }
6098 
6099   // Optimize _mip away, when 'lod' is zero
6100   if (MIPMappingInfo) {
6101     if (auto *ConstantLod = dyn_cast<ConstantSDNode>(
6102             Op.getOperand(ArgOffset + Intr->MipIndex))) {
6103       if (ConstantLod->isNullValue()) {
6104         IntrOpcode = MIPMappingInfo->NONMIP;  // set new opcode to variant without _mip
6105         VAddrEnd--;                           // remove 'mip'
6106       }
6107     }
6108   }
6109 
6110   // Push back extra arguments.
6111   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++)
6112     VAddrs.push_back(Op.getOperand(ArgOffset + I));
6113 
6114   // Check for 16 bit addresses or derivatives and pack if true.
6115   MVT VAddrVT =
6116       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6117   MVT VAddrScalarVT = VAddrVT.getScalarType();
6118   MVT PackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6119   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6120 
6121   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6122   VAddrScalarVT = VAddrVT.getScalarType();
6123   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6124   if (IsA16 || IsG16) {
6125     if (IsA16) {
6126       if (!ST->hasA16()) {
6127         LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6128                              "support 16 bit addresses\n");
6129         return Op;
6130       }
6131       if (!IsG16) {
6132         LLVM_DEBUG(
6133             dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6134                       "need 16 bit derivatives but got 32 bit derivatives\n");
6135         return Op;
6136       }
6137     } else if (!ST->hasG16()) {
6138       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6139                            "support 16 bit derivatives\n");
6140       return Op;
6141     }
6142 
6143     if (BaseOpcode->Gradients && !IsA16) {
6144       if (!ST->hasG16()) {
6145         LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6146                              "support 16 bit derivatives\n");
6147         return Op;
6148       }
6149       // Activate g16
6150       const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6151           AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6152       IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6153     }
6154 
6155     // Don't compress addresses for G16
6156     const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6157     packImageA16AddressToDwords(DAG, Op, PackVectorVT, VAddrs,
6158                                 ArgOffset + Intr->GradientStart, PackEndIdx,
6159                                 Intr->NumGradients);
6160 
6161     if (!IsA16) {
6162       // Add uncompressed address
6163       for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6164         VAddrs.push_back(Op.getOperand(I));
6165     }
6166   } else {
6167     for (unsigned I = ArgOffset + Intr->GradientStart; I < VAddrEnd; I++)
6168       VAddrs.push_back(Op.getOperand(I));
6169   }
6170 
6171   // If the register allocator cannot place the address registers contiguously
6172   // without introducing moves, then using the non-sequential address encoding
6173   // is always preferable, since it saves VALU instructions and is usually a
6174   // wash in terms of code size or even better.
6175   //
6176   // However, we currently have no way of hinting to the register allocator that
6177   // MIMG addresses should be placed contiguously when it is possible to do so,
6178   // so force non-NSA for the common 2-address case as a heuristic.
6179   //
6180   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6181   // allocation when possible.
6182   bool UseNSA =
6183       ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
6184   SDValue VAddr;
6185   if (!UseNSA)
6186     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6187 
6188   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6189   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6190   SDValue Unorm;
6191   if (!BaseOpcode->Sampler) {
6192     Unorm = True;
6193   } else {
6194     auto UnormConst =
6195         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6196 
6197     Unorm = UnormConst->getZExtValue() ? True : False;
6198   }
6199 
6200   SDValue TFE;
6201   SDValue LWE;
6202   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6203   bool IsTexFail = false;
6204   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6205     return Op;
6206 
6207   if (IsTexFail) {
6208     if (!DMaskLanes) {
6209       // Expecting to get an error flag since TFC is on - and dmask is 0
6210       // Force dmask to be at least 1 otherwise the instruction will fail
6211       DMask = 0x1;
6212       DMaskLanes = 1;
6213       NumVDataDwords = 1;
6214     }
6215     NumVDataDwords += 1;
6216     AdjustRetType = true;
6217   }
6218 
6219   // Has something earlier tagged that the return type needs adjusting
6220   // This happens if the instruction is a load or has set TexFailCtrl flags
6221   if (AdjustRetType) {
6222     // NumVDataDwords reflects the true number of dwords required in the return type
6223     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6224       // This is a no-op load. This can be eliminated
6225       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6226       if (isa<MemSDNode>(Op))
6227         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6228       return Undef;
6229     }
6230 
6231     EVT NewVT = NumVDataDwords > 1 ?
6232                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6233                 : MVT::i32;
6234 
6235     ResultTypes[0] = NewVT;
6236     if (ResultTypes.size() == 3) {
6237       // Original result was aggregate type used for TexFailCtrl results
6238       // The actual instruction returns as a vector type which has now been
6239       // created. Remove the aggregate result.
6240       ResultTypes.erase(&ResultTypes[1]);
6241     }
6242   }
6243 
6244   SDValue GLC;
6245   SDValue SLC;
6246   SDValue DLC;
6247   if (BaseOpcode->Atomic) {
6248     GLC = True; // TODO no-return optimization
6249     if (!parseCachePolicy(Op.getOperand(ArgOffset + Intr->CachePolicyIndex),
6250                           DAG, nullptr, &SLC, IsGFX10Plus ? &DLC : nullptr))
6251       return Op;
6252   } else {
6253     if (!parseCachePolicy(Op.getOperand(ArgOffset + Intr->CachePolicyIndex),
6254                           DAG, &GLC, &SLC, IsGFX10Plus ? &DLC : nullptr))
6255       return Op;
6256   }
6257 
6258   SmallVector<SDValue, 26> Ops;
6259   if (BaseOpcode->Store || BaseOpcode->Atomic)
6260     Ops.push_back(VData); // vdata
6261   if (UseNSA) {
6262     for (const SDValue &Addr : VAddrs)
6263       Ops.push_back(Addr);
6264   } else {
6265     Ops.push_back(VAddr);
6266   }
6267   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6268   if (BaseOpcode->Sampler)
6269     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6270   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6271   if (IsGFX10Plus)
6272     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6273   Ops.push_back(Unorm);
6274   if (IsGFX10Plus)
6275     Ops.push_back(DLC);
6276   Ops.push_back(GLC);
6277   Ops.push_back(SLC);
6278   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6279                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6280   if (IsGFX10Plus)
6281     Ops.push_back(IsA16 ? True : False);
6282   Ops.push_back(TFE);
6283   Ops.push_back(LWE);
6284   if (!IsGFX10Plus)
6285     Ops.push_back(DimInfo->DA ? True : False);
6286   if (BaseOpcode->HasD16)
6287     Ops.push_back(IsD16 ? True : False);
6288   if (isa<MemSDNode>(Op))
6289     Ops.push_back(Op.getOperand(0)); // chain
6290 
6291   int NumVAddrDwords =
6292       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6293   int Opcode = -1;
6294 
6295   if (IsGFX10Plus) {
6296     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6297                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6298                                           : AMDGPU::MIMGEncGfx10Default,
6299                                    NumVDataDwords, NumVAddrDwords);
6300   } else {
6301     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6302       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6303                                      NumVDataDwords, NumVAddrDwords);
6304     if (Opcode == -1)
6305       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6306                                      NumVDataDwords, NumVAddrDwords);
6307   }
6308   assert(Opcode != -1);
6309 
6310   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6311   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6312     MachineMemOperand *MemRef = MemOp->getMemOperand();
6313     DAG.setNodeMemRefs(NewNode, {MemRef});
6314   }
6315 
6316   if (BaseOpcode->AtomicX2) {
6317     SmallVector<SDValue, 1> Elt;
6318     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6319     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6320   } else if (!BaseOpcode->Store) {
6321     return constructRetValue(DAG, NewNode,
6322                              OrigResultTypes, IsTexFail,
6323                              Subtarget->hasUnpackedD16VMem(), IsD16,
6324                              DMaskLanes, NumVDataDwords, DL,
6325                              *DAG.getContext());
6326   }
6327 
6328   return SDValue(NewNode, 0);
6329 }
6330 
6331 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6332                                        SDValue Offset, SDValue CachePolicy,
6333                                        SelectionDAG &DAG) const {
6334   MachineFunction &MF = DAG.getMachineFunction();
6335 
6336   const DataLayout &DataLayout = DAG.getDataLayout();
6337   Align Alignment =
6338       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6339 
6340   MachineMemOperand *MMO = MF.getMachineMemOperand(
6341       MachinePointerInfo(),
6342       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6343           MachineMemOperand::MOInvariant,
6344       VT.getStoreSize(), Alignment);
6345 
6346   if (!Offset->isDivergent()) {
6347     SDValue Ops[] = {
6348         Rsrc,
6349         Offset, // Offset
6350         CachePolicy
6351     };
6352 
6353     // Widen vec3 load to vec4.
6354     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6355       EVT WidenedVT =
6356           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6357       auto WidenedOp = DAG.getMemIntrinsicNode(
6358           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6359           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6360       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6361                                    DAG.getVectorIdxConstant(0, DL));
6362       return Subvector;
6363     }
6364 
6365     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6366                                    DAG.getVTList(VT), Ops, VT, MMO);
6367   }
6368 
6369   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6370   // assume that the buffer is unswizzled.
6371   SmallVector<SDValue, 4> Loads;
6372   unsigned NumLoads = 1;
6373   MVT LoadVT = VT.getSimpleVT();
6374   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6375   assert((LoadVT.getScalarType() == MVT::i32 ||
6376           LoadVT.getScalarType() == MVT::f32));
6377 
6378   if (NumElts == 8 || NumElts == 16) {
6379     NumLoads = NumElts / 4;
6380     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6381   }
6382 
6383   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6384   SDValue Ops[] = {
6385       DAG.getEntryNode(),                               // Chain
6386       Rsrc,                                             // rsrc
6387       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6388       {},                                               // voffset
6389       {},                                               // soffset
6390       {},                                               // offset
6391       CachePolicy,                                      // cachepolicy
6392       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6393   };
6394 
6395   // Use the alignment to ensure that the required offsets will fit into the
6396   // immediate offsets.
6397   setBufferOffsets(Offset, DAG, &Ops[3],
6398                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6399 
6400   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6401   for (unsigned i = 0; i < NumLoads; ++i) {
6402     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6403     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6404                                         LoadVT, MMO, DAG));
6405   }
6406 
6407   if (NumElts == 8 || NumElts == 16)
6408     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6409 
6410   return Loads[0];
6411 }
6412 
6413 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6414                                                   SelectionDAG &DAG) const {
6415   MachineFunction &MF = DAG.getMachineFunction();
6416   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6417 
6418   EVT VT = Op.getValueType();
6419   SDLoc DL(Op);
6420   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6421 
6422   // TODO: Should this propagate fast-math-flags?
6423 
6424   switch (IntrinsicID) {
6425   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6426     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6427       return emitNonHSAIntrinsicError(DAG, DL, VT);
6428     return getPreloadedValue(DAG, *MFI, VT,
6429                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6430   }
6431   case Intrinsic::amdgcn_dispatch_ptr:
6432   case Intrinsic::amdgcn_queue_ptr: {
6433     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6434       DiagnosticInfoUnsupported BadIntrin(
6435           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6436           DL.getDebugLoc());
6437       DAG.getContext()->diagnose(BadIntrin);
6438       return DAG.getUNDEF(VT);
6439     }
6440 
6441     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6442       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6443     return getPreloadedValue(DAG, *MFI, VT, RegID);
6444   }
6445   case Intrinsic::amdgcn_implicitarg_ptr: {
6446     if (MFI->isEntryFunction())
6447       return getImplicitArgPtr(DAG, DL);
6448     return getPreloadedValue(DAG, *MFI, VT,
6449                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6450   }
6451   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6452     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6453       // This only makes sense to call in a kernel, so just lower to null.
6454       return DAG.getConstant(0, DL, VT);
6455     }
6456 
6457     return getPreloadedValue(DAG, *MFI, VT,
6458                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6459   }
6460   case Intrinsic::amdgcn_dispatch_id: {
6461     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6462   }
6463   case Intrinsic::amdgcn_rcp:
6464     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6465   case Intrinsic::amdgcn_rsq:
6466     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6467   case Intrinsic::amdgcn_rsq_legacy:
6468     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6469       return emitRemovedIntrinsicError(DAG, DL, VT);
6470     return SDValue();
6471   case Intrinsic::amdgcn_rcp_legacy:
6472     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6473       return emitRemovedIntrinsicError(DAG, DL, VT);
6474     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6475   case Intrinsic::amdgcn_rsq_clamp: {
6476     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6477       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6478 
6479     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6480     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6481     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6482 
6483     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6484     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6485                               DAG.getConstantFP(Max, DL, VT));
6486     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6487                        DAG.getConstantFP(Min, DL, VT));
6488   }
6489   case Intrinsic::r600_read_ngroups_x:
6490     if (Subtarget->isAmdHsaOS())
6491       return emitNonHSAIntrinsicError(DAG, DL, VT);
6492 
6493     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6494                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6495                                     false);
6496   case Intrinsic::r600_read_ngroups_y:
6497     if (Subtarget->isAmdHsaOS())
6498       return emitNonHSAIntrinsicError(DAG, DL, VT);
6499 
6500     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6501                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6502                                     false);
6503   case Intrinsic::r600_read_ngroups_z:
6504     if (Subtarget->isAmdHsaOS())
6505       return emitNonHSAIntrinsicError(DAG, DL, VT);
6506 
6507     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6508                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6509                                     false);
6510   case Intrinsic::r600_read_global_size_x:
6511     if (Subtarget->isAmdHsaOS())
6512       return emitNonHSAIntrinsicError(DAG, DL, VT);
6513 
6514     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6515                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6516                                     Align(4), false);
6517   case Intrinsic::r600_read_global_size_y:
6518     if (Subtarget->isAmdHsaOS())
6519       return emitNonHSAIntrinsicError(DAG, DL, VT);
6520 
6521     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6522                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6523                                     Align(4), false);
6524   case Intrinsic::r600_read_global_size_z:
6525     if (Subtarget->isAmdHsaOS())
6526       return emitNonHSAIntrinsicError(DAG, DL, VT);
6527 
6528     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6529                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6530                                     Align(4), false);
6531   case Intrinsic::r600_read_local_size_x:
6532     if (Subtarget->isAmdHsaOS())
6533       return emitNonHSAIntrinsicError(DAG, DL, VT);
6534 
6535     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6536                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6537   case Intrinsic::r600_read_local_size_y:
6538     if (Subtarget->isAmdHsaOS())
6539       return emitNonHSAIntrinsicError(DAG, DL, VT);
6540 
6541     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6542                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6543   case Intrinsic::r600_read_local_size_z:
6544     if (Subtarget->isAmdHsaOS())
6545       return emitNonHSAIntrinsicError(DAG, DL, VT);
6546 
6547     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6548                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6549   case Intrinsic::amdgcn_workgroup_id_x:
6550     return getPreloadedValue(DAG, *MFI, VT,
6551                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6552   case Intrinsic::amdgcn_workgroup_id_y:
6553     return getPreloadedValue(DAG, *MFI, VT,
6554                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6555   case Intrinsic::amdgcn_workgroup_id_z:
6556     return getPreloadedValue(DAG, *MFI, VT,
6557                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6558   case Intrinsic::amdgcn_workitem_id_x:
6559     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6560                           SDLoc(DAG.getEntryNode()),
6561                           MFI->getArgInfo().WorkItemIDX);
6562   case Intrinsic::amdgcn_workitem_id_y:
6563     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6564                           SDLoc(DAG.getEntryNode()),
6565                           MFI->getArgInfo().WorkItemIDY);
6566   case Intrinsic::amdgcn_workitem_id_z:
6567     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6568                           SDLoc(DAG.getEntryNode()),
6569                           MFI->getArgInfo().WorkItemIDZ);
6570   case Intrinsic::amdgcn_wavefrontsize:
6571     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6572                            SDLoc(Op), MVT::i32);
6573   case Intrinsic::amdgcn_s_buffer_load: {
6574     bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6575     SDValue GLC;
6576     SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
6577     if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
6578                           IsGFX10Plus ? &DLC : nullptr))
6579       return Op;
6580     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6581                         DAG);
6582   }
6583   case Intrinsic::amdgcn_fdiv_fast:
6584     return lowerFDIV_FAST(Op, DAG);
6585   case Intrinsic::amdgcn_sin:
6586     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6587 
6588   case Intrinsic::amdgcn_cos:
6589     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6590 
6591   case Intrinsic::amdgcn_mul_u24:
6592     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6593   case Intrinsic::amdgcn_mul_i24:
6594     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6595 
6596   case Intrinsic::amdgcn_log_clamp: {
6597     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6598       return SDValue();
6599 
6600     return emitRemovedIntrinsicError(DAG, DL, VT);
6601   }
6602   case Intrinsic::amdgcn_ldexp:
6603     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6604                        Op.getOperand(1), Op.getOperand(2));
6605 
6606   case Intrinsic::amdgcn_fract:
6607     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6608 
6609   case Intrinsic::amdgcn_class:
6610     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6611                        Op.getOperand(1), Op.getOperand(2));
6612   case Intrinsic::amdgcn_div_fmas:
6613     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6614                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6615                        Op.getOperand(4));
6616 
6617   case Intrinsic::amdgcn_div_fixup:
6618     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6619                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6620 
6621   case Intrinsic::amdgcn_div_scale: {
6622     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6623 
6624     // Translate to the operands expected by the machine instruction. The
6625     // first parameter must be the same as the first instruction.
6626     SDValue Numerator = Op.getOperand(1);
6627     SDValue Denominator = Op.getOperand(2);
6628 
6629     // Note this order is opposite of the machine instruction's operations,
6630     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6631     // intrinsic has the numerator as the first operand to match a normal
6632     // division operation.
6633 
6634     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
6635 
6636     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6637                        Denominator, Numerator);
6638   }
6639   case Intrinsic::amdgcn_icmp: {
6640     // There is a Pat that handles this variant, so return it as-is.
6641     if (Op.getOperand(1).getValueType() == MVT::i1 &&
6642         Op.getConstantOperandVal(2) == 0 &&
6643         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6644       return Op;
6645     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6646   }
6647   case Intrinsic::amdgcn_fcmp: {
6648     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6649   }
6650   case Intrinsic::amdgcn_ballot:
6651     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6652   case Intrinsic::amdgcn_fmed3:
6653     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6654                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6655   case Intrinsic::amdgcn_fdot2:
6656     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6657                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6658                        Op.getOperand(4));
6659   case Intrinsic::amdgcn_fmul_legacy:
6660     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6661                        Op.getOperand(1), Op.getOperand(2));
6662   case Intrinsic::amdgcn_sffbh:
6663     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6664   case Intrinsic::amdgcn_sbfe:
6665     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6666                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6667   case Intrinsic::amdgcn_ubfe:
6668     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6669                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6670   case Intrinsic::amdgcn_cvt_pkrtz:
6671   case Intrinsic::amdgcn_cvt_pknorm_i16:
6672   case Intrinsic::amdgcn_cvt_pknorm_u16:
6673   case Intrinsic::amdgcn_cvt_pk_i16:
6674   case Intrinsic::amdgcn_cvt_pk_u16: {
6675     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6676     EVT VT = Op.getValueType();
6677     unsigned Opcode;
6678 
6679     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6680       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6681     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6682       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6683     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6684       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6685     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6686       Opcode = AMDGPUISD::CVT_PK_I16_I32;
6687     else
6688       Opcode = AMDGPUISD::CVT_PK_U16_U32;
6689 
6690     if (isTypeLegal(VT))
6691       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6692 
6693     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6694                                Op.getOperand(1), Op.getOperand(2));
6695     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6696   }
6697   case Intrinsic::amdgcn_fmad_ftz:
6698     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6699                        Op.getOperand(2), Op.getOperand(3));
6700 
6701   case Intrinsic::amdgcn_if_break:
6702     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6703                                       Op->getOperand(1), Op->getOperand(2)), 0);
6704 
6705   case Intrinsic::amdgcn_groupstaticsize: {
6706     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6707     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6708       return Op;
6709 
6710     const Module *M = MF.getFunction().getParent();
6711     const GlobalValue *GV =
6712         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6713     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6714                                             SIInstrInfo::MO_ABS32_LO);
6715     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6716   }
6717   case Intrinsic::amdgcn_is_shared:
6718   case Intrinsic::amdgcn_is_private: {
6719     SDLoc SL(Op);
6720     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6721       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6722     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6723     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6724                                  Op.getOperand(1));
6725 
6726     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6727                                 DAG.getConstant(1, SL, MVT::i32));
6728     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6729   }
6730   case Intrinsic::amdgcn_alignbit:
6731     return DAG.getNode(ISD::FSHR, DL, VT,
6732                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6733   case Intrinsic::amdgcn_reloc_constant: {
6734     Module *M = const_cast<Module *>(MF.getFunction().getParent());
6735     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
6736     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
6737     auto RelocSymbol = cast<GlobalVariable>(
6738         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
6739     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
6740                                             SIInstrInfo::MO_ABS32_LO);
6741     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6742   }
6743   default:
6744     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6745             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6746       return lowerImage(Op, ImageDimIntr, DAG, false);
6747 
6748     return Op;
6749   }
6750 }
6751 
6752 // This function computes an appropriate offset to pass to
6753 // MachineMemOperand::setOffset() based on the offset inputs to
6754 // an intrinsic.  If any of the offsets are non-contstant or
6755 // if VIndex is non-zero then this function returns 0.  Otherwise,
6756 // it returns the sum of VOffset, SOffset, and Offset.
6757 static unsigned getBufferOffsetForMMO(SDValue VOffset,
6758                                       SDValue SOffset,
6759                                       SDValue Offset,
6760                                       SDValue VIndex = SDValue()) {
6761 
6762   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6763       !isa<ConstantSDNode>(Offset))
6764     return 0;
6765 
6766   if (VIndex) {
6767     if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue())
6768       return 0;
6769   }
6770 
6771   return cast<ConstantSDNode>(VOffset)->getSExtValue() +
6772          cast<ConstantSDNode>(SOffset)->getSExtValue() +
6773          cast<ConstantSDNode>(Offset)->getSExtValue();
6774 }
6775 
6776 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
6777                                                      SelectionDAG &DAG,
6778                                                      unsigned NewOpcode) const {
6779   SDLoc DL(Op);
6780 
6781   SDValue VData = Op.getOperand(2);
6782   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6783   SDValue Ops[] = {
6784     Op.getOperand(0), // Chain
6785     VData,            // vdata
6786     Op.getOperand(3), // rsrc
6787     DAG.getConstant(0, DL, MVT::i32), // vindex
6788     Offsets.first,    // voffset
6789     Op.getOperand(5), // soffset
6790     Offsets.second,   // offset
6791     Op.getOperand(6), // cachepolicy
6792     DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6793   };
6794 
6795   auto *M = cast<MemSDNode>(Op);
6796   M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6797 
6798   EVT MemVT = VData.getValueType();
6799   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6800                                  M->getMemOperand());
6801 }
6802 
6803 SDValue
6804 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
6805                                                 unsigned NewOpcode) const {
6806   SDLoc DL(Op);
6807 
6808   SDValue VData = Op.getOperand(2);
6809   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6810   SDValue Ops[] = {
6811     Op.getOperand(0), // Chain
6812     VData,            // vdata
6813     Op.getOperand(3), // rsrc
6814     Op.getOperand(4), // vindex
6815     Offsets.first,    // voffset
6816     Op.getOperand(6), // soffset
6817     Offsets.second,   // offset
6818     Op.getOperand(7), // cachepolicy
6819     DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6820   };
6821 
6822   auto *M = cast<MemSDNode>(Op);
6823   M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
6824                                                       Ops[3]));
6825 
6826   EVT MemVT = VData.getValueType();
6827   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6828                                  M->getMemOperand());
6829 }
6830 
6831 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6832                                                  SelectionDAG &DAG) const {
6833   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6834   SDLoc DL(Op);
6835 
6836   switch (IntrID) {
6837   case Intrinsic::amdgcn_ds_ordered_add:
6838   case Intrinsic::amdgcn_ds_ordered_swap: {
6839     MemSDNode *M = cast<MemSDNode>(Op);
6840     SDValue Chain = M->getOperand(0);
6841     SDValue M0 = M->getOperand(2);
6842     SDValue Value = M->getOperand(3);
6843     unsigned IndexOperand = M->getConstantOperandVal(7);
6844     unsigned WaveRelease = M->getConstantOperandVal(8);
6845     unsigned WaveDone = M->getConstantOperandVal(9);
6846 
6847     unsigned OrderedCountIndex = IndexOperand & 0x3f;
6848     IndexOperand &= ~0x3f;
6849     unsigned CountDw = 0;
6850 
6851     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6852       CountDw = (IndexOperand >> 24) & 0xf;
6853       IndexOperand &= ~(0xf << 24);
6854 
6855       if (CountDw < 1 || CountDw > 4) {
6856         report_fatal_error(
6857             "ds_ordered_count: dword count must be between 1 and 4");
6858       }
6859     }
6860 
6861     if (IndexOperand)
6862       report_fatal_error("ds_ordered_count: bad index operand");
6863 
6864     if (WaveDone && !WaveRelease)
6865       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6866 
6867     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
6868     unsigned ShaderType =
6869         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
6870     unsigned Offset0 = OrderedCountIndex << 2;
6871     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6872                        (Instruction << 4);
6873 
6874     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6875       Offset1 |= (CountDw - 1) << 6;
6876 
6877     unsigned Offset = Offset0 | (Offset1 << 8);
6878 
6879     SDValue Ops[] = {
6880       Chain,
6881       Value,
6882       DAG.getTargetConstant(Offset, DL, MVT::i16),
6883       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6884     };
6885     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6886                                    M->getVTList(), Ops, M->getMemoryVT(),
6887                                    M->getMemOperand());
6888   }
6889   case Intrinsic::amdgcn_ds_fadd: {
6890     MemSDNode *M = cast<MemSDNode>(Op);
6891     unsigned Opc;
6892     switch (IntrID) {
6893     case Intrinsic::amdgcn_ds_fadd:
6894       Opc = ISD::ATOMIC_LOAD_FADD;
6895       break;
6896     }
6897 
6898     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6899                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
6900                          M->getMemOperand());
6901   }
6902   case Intrinsic::amdgcn_atomic_inc:
6903   case Intrinsic::amdgcn_atomic_dec:
6904   case Intrinsic::amdgcn_ds_fmin:
6905   case Intrinsic::amdgcn_ds_fmax: {
6906     MemSDNode *M = cast<MemSDNode>(Op);
6907     unsigned Opc;
6908     switch (IntrID) {
6909     case Intrinsic::amdgcn_atomic_inc:
6910       Opc = AMDGPUISD::ATOMIC_INC;
6911       break;
6912     case Intrinsic::amdgcn_atomic_dec:
6913       Opc = AMDGPUISD::ATOMIC_DEC;
6914       break;
6915     case Intrinsic::amdgcn_ds_fmin:
6916       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6917       break;
6918     case Intrinsic::amdgcn_ds_fmax:
6919       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6920       break;
6921     default:
6922       llvm_unreachable("Unknown intrinsic!");
6923     }
6924     SDValue Ops[] = {
6925       M->getOperand(0), // Chain
6926       M->getOperand(2), // Ptr
6927       M->getOperand(3)  // Value
6928     };
6929 
6930     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6931                                    M->getMemoryVT(), M->getMemOperand());
6932   }
6933   case Intrinsic::amdgcn_buffer_load:
6934   case Intrinsic::amdgcn_buffer_load_format: {
6935     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6936     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6937     unsigned IdxEn = 1;
6938     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6939       IdxEn = Idx->getZExtValue() != 0;
6940     SDValue Ops[] = {
6941       Op.getOperand(0), // Chain
6942       Op.getOperand(2), // rsrc
6943       Op.getOperand(3), // vindex
6944       SDValue(),        // voffset -- will be set by setBufferOffsets
6945       SDValue(),        // soffset -- will be set by setBufferOffsets
6946       SDValue(),        // offset -- will be set by setBufferOffsets
6947       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6948       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6949     };
6950 
6951     unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6952     // We don't know the offset if vindex is non-zero, so clear it.
6953     if (IdxEn)
6954       Offset = 0;
6955 
6956     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6957         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6958 
6959     EVT VT = Op.getValueType();
6960     EVT IntVT = VT.changeTypeToInteger();
6961     auto *M = cast<MemSDNode>(Op);
6962     M->getMemOperand()->setOffset(Offset);
6963     EVT LoadVT = Op.getValueType();
6964 
6965     if (LoadVT.getScalarType() == MVT::f16)
6966       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6967                                  M, DAG, Ops);
6968 
6969     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6970     if (LoadVT.getScalarType() == MVT::i8 ||
6971         LoadVT.getScalarType() == MVT::i16)
6972       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6973 
6974     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6975                                M->getMemOperand(), DAG);
6976   }
6977   case Intrinsic::amdgcn_raw_buffer_load:
6978   case Intrinsic::amdgcn_raw_buffer_load_format: {
6979     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
6980 
6981     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6982     SDValue Ops[] = {
6983       Op.getOperand(0), // Chain
6984       Op.getOperand(2), // rsrc
6985       DAG.getConstant(0, DL, MVT::i32), // vindex
6986       Offsets.first,    // voffset
6987       Op.getOperand(4), // soffset
6988       Offsets.second,   // offset
6989       Op.getOperand(5), // cachepolicy, swizzled buffer
6990       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6991     };
6992 
6993     auto *M = cast<MemSDNode>(Op);
6994     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5]));
6995     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
6996   }
6997   case Intrinsic::amdgcn_struct_buffer_load:
6998   case Intrinsic::amdgcn_struct_buffer_load_format: {
6999     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7000 
7001     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7002     SDValue Ops[] = {
7003       Op.getOperand(0), // Chain
7004       Op.getOperand(2), // rsrc
7005       Op.getOperand(3), // vindex
7006       Offsets.first,    // voffset
7007       Op.getOperand(5), // soffset
7008       Offsets.second,   // offset
7009       Op.getOperand(6), // cachepolicy, swizzled buffer
7010       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7011     };
7012 
7013     auto *M = cast<MemSDNode>(Op);
7014     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5],
7015                                                         Ops[2]));
7016     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7017   }
7018   case Intrinsic::amdgcn_tbuffer_load: {
7019     MemSDNode *M = cast<MemSDNode>(Op);
7020     EVT LoadVT = Op.getValueType();
7021 
7022     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7023     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7024     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7025     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7026     unsigned IdxEn = 1;
7027     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
7028       IdxEn = Idx->getZExtValue() != 0;
7029     SDValue Ops[] = {
7030       Op.getOperand(0),  // Chain
7031       Op.getOperand(2),  // rsrc
7032       Op.getOperand(3),  // vindex
7033       Op.getOperand(4),  // voffset
7034       Op.getOperand(5),  // soffset
7035       Op.getOperand(6),  // offset
7036       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7037       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7038       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7039     };
7040 
7041     if (LoadVT.getScalarType() == MVT::f16)
7042       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7043                                  M, DAG, Ops);
7044     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7045                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7046                                DAG);
7047   }
7048   case Intrinsic::amdgcn_raw_tbuffer_load: {
7049     MemSDNode *M = cast<MemSDNode>(Op);
7050     EVT LoadVT = Op.getValueType();
7051     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7052 
7053     SDValue Ops[] = {
7054       Op.getOperand(0),  // Chain
7055       Op.getOperand(2),  // rsrc
7056       DAG.getConstant(0, DL, MVT::i32), // vindex
7057       Offsets.first,     // voffset
7058       Op.getOperand(4),  // soffset
7059       Offsets.second,    // offset
7060       Op.getOperand(5),  // format
7061       Op.getOperand(6),  // cachepolicy, swizzled buffer
7062       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7063     };
7064 
7065     if (LoadVT.getScalarType() == MVT::f16)
7066       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7067                                  M, DAG, Ops);
7068     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7069                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7070                                DAG);
7071   }
7072   case Intrinsic::amdgcn_struct_tbuffer_load: {
7073     MemSDNode *M = cast<MemSDNode>(Op);
7074     EVT LoadVT = Op.getValueType();
7075     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7076 
7077     SDValue Ops[] = {
7078       Op.getOperand(0),  // Chain
7079       Op.getOperand(2),  // rsrc
7080       Op.getOperand(3),  // vindex
7081       Offsets.first,     // voffset
7082       Op.getOperand(5),  // soffset
7083       Offsets.second,    // offset
7084       Op.getOperand(6),  // format
7085       Op.getOperand(7),  // cachepolicy, swizzled buffer
7086       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7087     };
7088 
7089     if (LoadVT.getScalarType() == MVT::f16)
7090       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7091                                  M, DAG, Ops);
7092     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7093                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7094                                DAG);
7095   }
7096   case Intrinsic::amdgcn_buffer_atomic_swap:
7097   case Intrinsic::amdgcn_buffer_atomic_add:
7098   case Intrinsic::amdgcn_buffer_atomic_sub:
7099   case Intrinsic::amdgcn_buffer_atomic_csub:
7100   case Intrinsic::amdgcn_buffer_atomic_smin:
7101   case Intrinsic::amdgcn_buffer_atomic_umin:
7102   case Intrinsic::amdgcn_buffer_atomic_smax:
7103   case Intrinsic::amdgcn_buffer_atomic_umax:
7104   case Intrinsic::amdgcn_buffer_atomic_and:
7105   case Intrinsic::amdgcn_buffer_atomic_or:
7106   case Intrinsic::amdgcn_buffer_atomic_xor:
7107   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7108     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7109     unsigned IdxEn = 1;
7110     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7111       IdxEn = Idx->getZExtValue() != 0;
7112     SDValue Ops[] = {
7113       Op.getOperand(0), // Chain
7114       Op.getOperand(2), // vdata
7115       Op.getOperand(3), // rsrc
7116       Op.getOperand(4), // vindex
7117       SDValue(),        // voffset -- will be set by setBufferOffsets
7118       SDValue(),        // soffset -- will be set by setBufferOffsets
7119       SDValue(),        // offset -- will be set by setBufferOffsets
7120       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7121       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7122     };
7123     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7124     // We don't know the offset if vindex is non-zero, so clear it.
7125     if (IdxEn)
7126       Offset = 0;
7127     EVT VT = Op.getValueType();
7128 
7129     auto *M = cast<MemSDNode>(Op);
7130     M->getMemOperand()->setOffset(Offset);
7131     unsigned Opcode = 0;
7132 
7133     switch (IntrID) {
7134     case Intrinsic::amdgcn_buffer_atomic_swap:
7135       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7136       break;
7137     case Intrinsic::amdgcn_buffer_atomic_add:
7138       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7139       break;
7140     case Intrinsic::amdgcn_buffer_atomic_sub:
7141       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7142       break;
7143     case Intrinsic::amdgcn_buffer_atomic_csub:
7144       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7145       break;
7146     case Intrinsic::amdgcn_buffer_atomic_smin:
7147       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7148       break;
7149     case Intrinsic::amdgcn_buffer_atomic_umin:
7150       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7151       break;
7152     case Intrinsic::amdgcn_buffer_atomic_smax:
7153       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7154       break;
7155     case Intrinsic::amdgcn_buffer_atomic_umax:
7156       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7157       break;
7158     case Intrinsic::amdgcn_buffer_atomic_and:
7159       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7160       break;
7161     case Intrinsic::amdgcn_buffer_atomic_or:
7162       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7163       break;
7164     case Intrinsic::amdgcn_buffer_atomic_xor:
7165       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7166       break;
7167     case Intrinsic::amdgcn_buffer_atomic_fadd:
7168       if (!Op.getValue(0).use_empty()) {
7169         DiagnosticInfoUnsupported
7170           NoFpRet(DAG.getMachineFunction().getFunction(),
7171                   "return versions of fp atomics not supported",
7172                   DL.getDebugLoc(), DS_Error);
7173         DAG.getContext()->diagnose(NoFpRet);
7174         return SDValue();
7175       }
7176       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7177       break;
7178     default:
7179       llvm_unreachable("unhandled atomic opcode");
7180     }
7181 
7182     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7183                                    M->getMemOperand());
7184   }
7185   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7186     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7187   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7188     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7189   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7190     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7191   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7192     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7193   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7194     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7195   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7196     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7197   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7198     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7199   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7200     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7201   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7202     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7203   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7204     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7205   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7206     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7207   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7208     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7209   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7210     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7211   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7212     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7213   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7214     return lowerStructBufferAtomicIntrin(Op, DAG,
7215                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7216   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7217     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7218   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7219     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7220   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7221     return lowerStructBufferAtomicIntrin(Op, DAG,
7222                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7223   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7224     return lowerStructBufferAtomicIntrin(Op, DAG,
7225                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7226   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7227     return lowerStructBufferAtomicIntrin(Op, DAG,
7228                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7229   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7230     return lowerStructBufferAtomicIntrin(Op, DAG,
7231                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7232   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7233     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7234   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7235     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7236   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7237     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7238   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7239     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7240   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7241     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7242 
7243   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7244     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7245     unsigned IdxEn = 1;
7246     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
7247       IdxEn = Idx->getZExtValue() != 0;
7248     SDValue Ops[] = {
7249       Op.getOperand(0), // Chain
7250       Op.getOperand(2), // src
7251       Op.getOperand(3), // cmp
7252       Op.getOperand(4), // rsrc
7253       Op.getOperand(5), // vindex
7254       SDValue(),        // voffset -- will be set by setBufferOffsets
7255       SDValue(),        // soffset -- will be set by setBufferOffsets
7256       SDValue(),        // offset -- will be set by setBufferOffsets
7257       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7258       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7259     };
7260     unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7261     // We don't know the offset if vindex is non-zero, so clear it.
7262     if (IdxEn)
7263       Offset = 0;
7264     EVT VT = Op.getValueType();
7265     auto *M = cast<MemSDNode>(Op);
7266     M->getMemOperand()->setOffset(Offset);
7267 
7268     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7269                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7270   }
7271   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7272     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7273     SDValue Ops[] = {
7274       Op.getOperand(0), // Chain
7275       Op.getOperand(2), // src
7276       Op.getOperand(3), // cmp
7277       Op.getOperand(4), // rsrc
7278       DAG.getConstant(0, DL, MVT::i32), // vindex
7279       Offsets.first,    // voffset
7280       Op.getOperand(6), // soffset
7281       Offsets.second,   // offset
7282       Op.getOperand(7), // cachepolicy
7283       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7284     };
7285     EVT VT = Op.getValueType();
7286     auto *M = cast<MemSDNode>(Op);
7287     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7]));
7288 
7289     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7290                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7291   }
7292   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7293     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7294     SDValue Ops[] = {
7295       Op.getOperand(0), // Chain
7296       Op.getOperand(2), // src
7297       Op.getOperand(3), // cmp
7298       Op.getOperand(4), // rsrc
7299       Op.getOperand(5), // vindex
7300       Offsets.first,    // voffset
7301       Op.getOperand(7), // soffset
7302       Offsets.second,   // offset
7303       Op.getOperand(8), // cachepolicy
7304       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7305     };
7306     EVT VT = Op.getValueType();
7307     auto *M = cast<MemSDNode>(Op);
7308     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7],
7309                                                         Ops[4]));
7310 
7311     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7312                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7313   }
7314   case Intrinsic::amdgcn_global_atomic_fadd: {
7315     if (!Op.getValue(0).use_empty()) {
7316       DiagnosticInfoUnsupported
7317         NoFpRet(DAG.getMachineFunction().getFunction(),
7318                 "return versions of fp atomics not supported",
7319                 DL.getDebugLoc(), DS_Error);
7320       DAG.getContext()->diagnose(NoFpRet);
7321       return SDValue();
7322     }
7323     MemSDNode *M = cast<MemSDNode>(Op);
7324     SDValue Ops[] = {
7325       M->getOperand(0), // Chain
7326       M->getOperand(2), // Ptr
7327       M->getOperand(3)  // Value
7328     };
7329 
7330     EVT VT = Op.getOperand(3).getValueType();
7331     return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7332                          DAG.getVTList(VT, MVT::Other), Ops,
7333                          M->getMemOperand());
7334   }
7335   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7336     SDLoc DL(Op);
7337     MemSDNode *M = cast<MemSDNode>(Op);
7338     SDValue NodePtr = M->getOperand(2);
7339     SDValue RayExtent = M->getOperand(3);
7340     SDValue RayOrigin = M->getOperand(4);
7341     SDValue RayDir = M->getOperand(5);
7342     SDValue RayInvDir = M->getOperand(6);
7343     SDValue TDescr = M->getOperand(7);
7344 
7345     assert(NodePtr.getValueType() == MVT::i32 ||
7346            NodePtr.getValueType() == MVT::i64);
7347     assert(RayDir.getValueType() == MVT::v4f16 ||
7348            RayDir.getValueType() == MVT::v4f32);
7349 
7350     bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7351     bool Is64 = NodePtr.getValueType() == MVT::i64;
7352     unsigned Opcode = IsA16 ? Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa
7353                                    : AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa
7354                             : Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_nsa
7355                                    : AMDGPU::IMAGE_BVH_INTERSECT_RAY_nsa;
7356 
7357     SmallVector<SDValue, 16> Ops;
7358 
7359     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7360       SmallVector<SDValue, 3> Lanes;
7361       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7362       if (Lanes[0].getValueSizeInBits() == 32) {
7363         for (unsigned I = 0; I < 3; ++I)
7364           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7365       } else {
7366         if (IsAligned) {
7367           Ops.push_back(
7368             DAG.getBitcast(MVT::i32,
7369                            DAG.getBuildVector(MVT::v2f16, DL,
7370                                               { Lanes[0], Lanes[1] })));
7371           Ops.push_back(Lanes[2]);
7372         } else {
7373           SDValue Elt0 = Ops.pop_back_val();
7374           Ops.push_back(
7375             DAG.getBitcast(MVT::i32,
7376                            DAG.getBuildVector(MVT::v2f16, DL,
7377                                               { Elt0, Lanes[0] })));
7378           Ops.push_back(
7379             DAG.getBitcast(MVT::i32,
7380                            DAG.getBuildVector(MVT::v2f16, DL,
7381                                               { Lanes[1], Lanes[2] })));
7382         }
7383       }
7384     };
7385 
7386     if (Is64)
7387       DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7388     else
7389       Ops.push_back(NodePtr);
7390 
7391     Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7392     packLanes(RayOrigin, true);
7393     packLanes(RayDir, true);
7394     packLanes(RayInvDir, false);
7395     Ops.push_back(TDescr);
7396     if (IsA16)
7397       Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7398     Ops.push_back(M->getChain());
7399 
7400     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7401     MachineMemOperand *MemRef = M->getMemOperand();
7402     DAG.setNodeMemRefs(NewNode, {MemRef});
7403     return SDValue(NewNode, 0);
7404   }
7405   default:
7406     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7407             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7408       return lowerImage(Op, ImageDimIntr, DAG, true);
7409 
7410     return SDValue();
7411   }
7412 }
7413 
7414 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7415 // dwordx4 if on SI.
7416 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7417                                               SDVTList VTList,
7418                                               ArrayRef<SDValue> Ops, EVT MemVT,
7419                                               MachineMemOperand *MMO,
7420                                               SelectionDAG &DAG) const {
7421   EVT VT = VTList.VTs[0];
7422   EVT WidenedVT = VT;
7423   EVT WidenedMemVT = MemVT;
7424   if (!Subtarget->hasDwordx3LoadStores() &&
7425       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7426     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7427                                  WidenedVT.getVectorElementType(), 4);
7428     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7429                                     WidenedMemVT.getVectorElementType(), 4);
7430     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7431   }
7432 
7433   assert(VTList.NumVTs == 2);
7434   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7435 
7436   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7437                                        WidenedMemVT, MMO);
7438   if (WidenedVT != VT) {
7439     auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7440                                DAG.getVectorIdxConstant(0, DL));
7441     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7442   }
7443   return NewOp;
7444 }
7445 
7446 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7447                                          bool ImageStore) const {
7448   EVT StoreVT = VData.getValueType();
7449 
7450   // No change for f16 and legal vector D16 types.
7451   if (!StoreVT.isVector())
7452     return VData;
7453 
7454   SDLoc DL(VData);
7455   unsigned NumElements = StoreVT.getVectorNumElements();
7456 
7457   if (Subtarget->hasUnpackedD16VMem()) {
7458     // We need to unpack the packed data to store.
7459     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7460     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7461 
7462     EVT EquivStoreVT =
7463         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7464     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7465     return DAG.UnrollVectorOp(ZExt.getNode());
7466   }
7467 
7468   // The sq block of gfx8.1 does not estimate register use correctly for d16
7469   // image store instructions. The data operand is computed as if it were not a
7470   // d16 image instruction.
7471   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7472     // Bitcast to i16
7473     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7474     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7475 
7476     // Decompose into scalars
7477     SmallVector<SDValue, 4> Elts;
7478     DAG.ExtractVectorElements(IntVData, Elts);
7479 
7480     // Group pairs of i16 into v2i16 and bitcast to i32
7481     SmallVector<SDValue, 4> PackedElts;
7482     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7483       SDValue Pair =
7484           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7485       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7486       PackedElts.push_back(IntPair);
7487     }
7488     if ((NumElements % 2) == 1) {
7489       // Handle v3i16
7490       unsigned I = Elts.size() / 2;
7491       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7492                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7493       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7494       PackedElts.push_back(IntPair);
7495     }
7496 
7497     // Pad using UNDEF
7498     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7499 
7500     // Build final vector
7501     EVT VecVT =
7502         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7503     return DAG.getBuildVector(VecVT, DL, PackedElts);
7504   }
7505 
7506   if (NumElements == 3) {
7507     EVT IntStoreVT =
7508         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7509     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7510 
7511     EVT WidenedStoreVT = EVT::getVectorVT(
7512         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7513     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7514                                          WidenedStoreVT.getStoreSizeInBits());
7515     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7516     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7517   }
7518 
7519   assert(isTypeLegal(StoreVT));
7520   return VData;
7521 }
7522 
7523 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7524                                               SelectionDAG &DAG) const {
7525   SDLoc DL(Op);
7526   SDValue Chain = Op.getOperand(0);
7527   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7528   MachineFunction &MF = DAG.getMachineFunction();
7529 
7530   switch (IntrinsicID) {
7531   case Intrinsic::amdgcn_exp_compr: {
7532     SDValue Src0 = Op.getOperand(4);
7533     SDValue Src1 = Op.getOperand(5);
7534     // Hack around illegal type on SI by directly selecting it.
7535     if (isTypeLegal(Src0.getValueType()))
7536       return SDValue();
7537 
7538     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7539     SDValue Undef = DAG.getUNDEF(MVT::f32);
7540     const SDValue Ops[] = {
7541       Op.getOperand(2), // tgt
7542       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7543       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7544       Undef, // src2
7545       Undef, // src3
7546       Op.getOperand(7), // vm
7547       DAG.getTargetConstant(1, DL, MVT::i1), // compr
7548       Op.getOperand(3), // en
7549       Op.getOperand(0) // Chain
7550     };
7551 
7552     unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7553     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7554   }
7555   case Intrinsic::amdgcn_s_barrier: {
7556     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7557       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7558       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7559       if (WGSize <= ST.getWavefrontSize())
7560         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7561                                           Op.getOperand(0)), 0);
7562     }
7563     return SDValue();
7564   };
7565   case Intrinsic::amdgcn_tbuffer_store: {
7566     SDValue VData = Op.getOperand(2);
7567     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7568     if (IsD16)
7569       VData = handleD16VData(VData, DAG);
7570     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7571     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7572     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7573     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7574     unsigned IdxEn = 1;
7575     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7576       IdxEn = Idx->getZExtValue() != 0;
7577     SDValue Ops[] = {
7578       Chain,
7579       VData,             // vdata
7580       Op.getOperand(3),  // rsrc
7581       Op.getOperand(4),  // vindex
7582       Op.getOperand(5),  // voffset
7583       Op.getOperand(6),  // soffset
7584       Op.getOperand(7),  // offset
7585       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7586       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7587       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen
7588     };
7589     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7590                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7591     MemSDNode *M = cast<MemSDNode>(Op);
7592     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7593                                    M->getMemoryVT(), M->getMemOperand());
7594   }
7595 
7596   case Intrinsic::amdgcn_struct_tbuffer_store: {
7597     SDValue VData = Op.getOperand(2);
7598     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7599     if (IsD16)
7600       VData = handleD16VData(VData, DAG);
7601     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7602     SDValue Ops[] = {
7603       Chain,
7604       VData,             // vdata
7605       Op.getOperand(3),  // rsrc
7606       Op.getOperand(4),  // vindex
7607       Offsets.first,     // voffset
7608       Op.getOperand(6),  // soffset
7609       Offsets.second,    // offset
7610       Op.getOperand(7),  // format
7611       Op.getOperand(8),  // cachepolicy, swizzled buffer
7612       DAG.getTargetConstant(1, DL, MVT::i1), // idexen
7613     };
7614     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7615                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7616     MemSDNode *M = cast<MemSDNode>(Op);
7617     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7618                                    M->getMemoryVT(), M->getMemOperand());
7619   }
7620 
7621   case Intrinsic::amdgcn_raw_tbuffer_store: {
7622     SDValue VData = Op.getOperand(2);
7623     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7624     if (IsD16)
7625       VData = handleD16VData(VData, DAG);
7626     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7627     SDValue Ops[] = {
7628       Chain,
7629       VData,             // vdata
7630       Op.getOperand(3),  // rsrc
7631       DAG.getConstant(0, DL, MVT::i32), // vindex
7632       Offsets.first,     // voffset
7633       Op.getOperand(5),  // soffset
7634       Offsets.second,    // offset
7635       Op.getOperand(6),  // format
7636       Op.getOperand(7),  // cachepolicy, swizzled buffer
7637       DAG.getTargetConstant(0, DL, MVT::i1), // idexen
7638     };
7639     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7640                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7641     MemSDNode *M = cast<MemSDNode>(Op);
7642     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7643                                    M->getMemoryVT(), M->getMemOperand());
7644   }
7645 
7646   case Intrinsic::amdgcn_buffer_store:
7647   case Intrinsic::amdgcn_buffer_store_format: {
7648     SDValue VData = Op.getOperand(2);
7649     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7650     if (IsD16)
7651       VData = handleD16VData(VData, DAG);
7652     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7653     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7654     unsigned IdxEn = 1;
7655     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7656       IdxEn = Idx->getZExtValue() != 0;
7657     SDValue Ops[] = {
7658       Chain,
7659       VData,
7660       Op.getOperand(3), // rsrc
7661       Op.getOperand(4), // vindex
7662       SDValue(), // voffset -- will be set by setBufferOffsets
7663       SDValue(), // soffset -- will be set by setBufferOffsets
7664       SDValue(), // offset -- will be set by setBufferOffsets
7665       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7666       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7667     };
7668     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7669     // We don't know the offset if vindex is non-zero, so clear it.
7670     if (IdxEn)
7671       Offset = 0;
7672     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
7673                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7674     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7675     MemSDNode *M = cast<MemSDNode>(Op);
7676     M->getMemOperand()->setOffset(Offset);
7677 
7678     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7679     EVT VDataType = VData.getValueType().getScalarType();
7680     if (VDataType == MVT::i8 || VDataType == MVT::i16)
7681       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7682 
7683     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7684                                    M->getMemoryVT(), M->getMemOperand());
7685   }
7686 
7687   case Intrinsic::amdgcn_raw_buffer_store:
7688   case Intrinsic::amdgcn_raw_buffer_store_format: {
7689     const bool IsFormat =
7690         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
7691 
7692     SDValue VData = Op.getOperand(2);
7693     EVT VDataVT = VData.getValueType();
7694     EVT EltType = VDataVT.getScalarType();
7695     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7696     if (IsD16) {
7697       VData = handleD16VData(VData, DAG);
7698       VDataVT = VData.getValueType();
7699     }
7700 
7701     if (!isTypeLegal(VDataVT)) {
7702       VData =
7703           DAG.getNode(ISD::BITCAST, DL,
7704                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7705     }
7706 
7707     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7708     SDValue Ops[] = {
7709       Chain,
7710       VData,
7711       Op.getOperand(3), // rsrc
7712       DAG.getConstant(0, DL, MVT::i32), // vindex
7713       Offsets.first,    // voffset
7714       Op.getOperand(5), // soffset
7715       Offsets.second,   // offset
7716       Op.getOperand(6), // cachepolicy, swizzled buffer
7717       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7718     };
7719     unsigned Opc =
7720         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7721     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7722     MemSDNode *M = cast<MemSDNode>(Op);
7723     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
7724 
7725     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7726     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7727       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7728 
7729     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7730                                    M->getMemoryVT(), M->getMemOperand());
7731   }
7732 
7733   case Intrinsic::amdgcn_struct_buffer_store:
7734   case Intrinsic::amdgcn_struct_buffer_store_format: {
7735     const bool IsFormat =
7736         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7737 
7738     SDValue VData = Op.getOperand(2);
7739     EVT VDataVT = VData.getValueType();
7740     EVT EltType = VDataVT.getScalarType();
7741     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7742 
7743     if (IsD16) {
7744       VData = handleD16VData(VData, DAG);
7745       VDataVT = VData.getValueType();
7746     }
7747 
7748     if (!isTypeLegal(VDataVT)) {
7749       VData =
7750           DAG.getNode(ISD::BITCAST, DL,
7751                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7752     }
7753 
7754     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7755     SDValue Ops[] = {
7756       Chain,
7757       VData,
7758       Op.getOperand(3), // rsrc
7759       Op.getOperand(4), // vindex
7760       Offsets.first,    // voffset
7761       Op.getOperand(6), // soffset
7762       Offsets.second,   // offset
7763       Op.getOperand(7), // cachepolicy, swizzled buffer
7764       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7765     };
7766     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7767                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7768     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7769     MemSDNode *M = cast<MemSDNode>(Op);
7770     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
7771                                                         Ops[3]));
7772 
7773     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7774     EVT VDataType = VData.getValueType().getScalarType();
7775     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7776       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7777 
7778     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7779                                    M->getMemoryVT(), M->getMemOperand());
7780   }
7781   case Intrinsic::amdgcn_end_cf:
7782     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7783                                       Op->getOperand(2), Chain), 0);
7784 
7785   default: {
7786     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7787             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7788       return lowerImage(Op, ImageDimIntr, DAG, true);
7789 
7790     return Op;
7791   }
7792   }
7793 }
7794 
7795 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7796 // offset (the offset that is included in bounds checking and swizzling, to be
7797 // split between the instruction's voffset and immoffset fields) and soffset
7798 // (the offset that is excluded from bounds checking and swizzling, to go in
7799 // the instruction's soffset field).  This function takes the first kind of
7800 // offset and figures out how to split it between voffset and immoffset.
7801 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7802     SDValue Offset, SelectionDAG &DAG) const {
7803   SDLoc DL(Offset);
7804   const unsigned MaxImm = 4095;
7805   SDValue N0 = Offset;
7806   ConstantSDNode *C1 = nullptr;
7807 
7808   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7809     N0 = SDValue();
7810   else if (DAG.isBaseWithConstantOffset(N0)) {
7811     C1 = cast<ConstantSDNode>(N0.getOperand(1));
7812     N0 = N0.getOperand(0);
7813   }
7814 
7815   if (C1) {
7816     unsigned ImmOffset = C1->getZExtValue();
7817     // If the immediate value is too big for the immoffset field, put the value
7818     // and -4096 into the immoffset field so that the value that is copied/added
7819     // for the voffset field is a multiple of 4096, and it stands more chance
7820     // of being CSEd with the copy/add for another similar load/store.
7821     // However, do not do that rounding down to a multiple of 4096 if that is a
7822     // negative number, as it appears to be illegal to have a negative offset
7823     // in the vgpr, even if adding the immediate offset makes it positive.
7824     unsigned Overflow = ImmOffset & ~MaxImm;
7825     ImmOffset -= Overflow;
7826     if ((int32_t)Overflow < 0) {
7827       Overflow += ImmOffset;
7828       ImmOffset = 0;
7829     }
7830     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7831     if (Overflow) {
7832       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7833       if (!N0)
7834         N0 = OverflowVal;
7835       else {
7836         SDValue Ops[] = { N0, OverflowVal };
7837         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7838       }
7839     }
7840   }
7841   if (!N0)
7842     N0 = DAG.getConstant(0, DL, MVT::i32);
7843   if (!C1)
7844     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7845   return {N0, SDValue(C1, 0)};
7846 }
7847 
7848 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7849 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7850 // pointed to by Offsets.
7851 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7852                                             SelectionDAG &DAG, SDValue *Offsets,
7853                                             Align Alignment) const {
7854   SDLoc DL(CombinedOffset);
7855   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7856     uint32_t Imm = C->getZExtValue();
7857     uint32_t SOffset, ImmOffset;
7858     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
7859                                  Alignment)) {
7860       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7861       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7862       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7863       return SOffset + ImmOffset;
7864     }
7865   }
7866   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7867     SDValue N0 = CombinedOffset.getOperand(0);
7868     SDValue N1 = CombinedOffset.getOperand(1);
7869     uint32_t SOffset, ImmOffset;
7870     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7871     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7872                                                 Subtarget, Alignment)) {
7873       Offsets[0] = N0;
7874       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7875       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7876       return 0;
7877     }
7878   }
7879   Offsets[0] = CombinedOffset;
7880   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7881   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7882   return 0;
7883 }
7884 
7885 // Handle 8 bit and 16 bit buffer loads
7886 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7887                                                      EVT LoadVT, SDLoc DL,
7888                                                      ArrayRef<SDValue> Ops,
7889                                                      MemSDNode *M) const {
7890   EVT IntVT = LoadVT.changeTypeToInteger();
7891   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7892          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7893 
7894   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7895   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7896                                                Ops, IntVT,
7897                                                M->getMemOperand());
7898   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7899   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7900 
7901   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7902 }
7903 
7904 // Handle 8 bit and 16 bit buffer stores
7905 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7906                                                       EVT VDataType, SDLoc DL,
7907                                                       SDValue Ops[],
7908                                                       MemSDNode *M) const {
7909   if (VDataType == MVT::f16)
7910     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7911 
7912   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7913   Ops[1] = BufferStoreExt;
7914   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7915                                  AMDGPUISD::BUFFER_STORE_SHORT;
7916   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7917   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7918                                      M->getMemOperand());
7919 }
7920 
7921 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7922                                  ISD::LoadExtType ExtType, SDValue Op,
7923                                  const SDLoc &SL, EVT VT) {
7924   if (VT.bitsLT(Op.getValueType()))
7925     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7926 
7927   switch (ExtType) {
7928   case ISD::SEXTLOAD:
7929     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7930   case ISD::ZEXTLOAD:
7931     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7932   case ISD::EXTLOAD:
7933     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7934   case ISD::NON_EXTLOAD:
7935     return Op;
7936   }
7937 
7938   llvm_unreachable("invalid ext type");
7939 }
7940 
7941 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7942   SelectionDAG &DAG = DCI.DAG;
7943   if (Ld->getAlignment() < 4 || Ld->isDivergent())
7944     return SDValue();
7945 
7946   // FIXME: Constant loads should all be marked invariant.
7947   unsigned AS = Ld->getAddressSpace();
7948   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7949       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7950       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7951     return SDValue();
7952 
7953   // Don't do this early, since it may interfere with adjacent load merging for
7954   // illegal types. We can avoid losing alignment information for exotic types
7955   // pre-legalize.
7956   EVT MemVT = Ld->getMemoryVT();
7957   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7958       MemVT.getSizeInBits() >= 32)
7959     return SDValue();
7960 
7961   SDLoc SL(Ld);
7962 
7963   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
7964          "unexpected vector extload");
7965 
7966   // TODO: Drop only high part of range.
7967   SDValue Ptr = Ld->getBasePtr();
7968   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7969                                 MVT::i32, SL, Ld->getChain(), Ptr,
7970                                 Ld->getOffset(),
7971                                 Ld->getPointerInfo(), MVT::i32,
7972                                 Ld->getAlignment(),
7973                                 Ld->getMemOperand()->getFlags(),
7974                                 Ld->getAAInfo(),
7975                                 nullptr); // Drop ranges
7976 
7977   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7978   if (MemVT.isFloatingPoint()) {
7979     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
7980            "unexpected fp extload");
7981     TruncVT = MemVT.changeTypeToInteger();
7982   }
7983 
7984   SDValue Cvt = NewLoad;
7985   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7986     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7987                       DAG.getValueType(TruncVT));
7988   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
7989              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
7990     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
7991   } else {
7992     assert(Ld->getExtensionType() == ISD::EXTLOAD);
7993   }
7994 
7995   EVT VT = Ld->getValueType(0);
7996   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7997 
7998   DCI.AddToWorklist(Cvt.getNode());
7999 
8000   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8001   // the appropriate extension from the 32-bit load.
8002   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8003   DCI.AddToWorklist(Cvt.getNode());
8004 
8005   // Handle conversion back to floating point if necessary.
8006   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8007 
8008   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8009 }
8010 
8011 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8012   SDLoc DL(Op);
8013   LoadSDNode *Load = cast<LoadSDNode>(Op);
8014   ISD::LoadExtType ExtType = Load->getExtensionType();
8015   EVT MemVT = Load->getMemoryVT();
8016 
8017   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8018     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8019       return SDValue();
8020 
8021     // FIXME: Copied from PPC
8022     // First, load into 32 bits, then truncate to 1 bit.
8023 
8024     SDValue Chain = Load->getChain();
8025     SDValue BasePtr = Load->getBasePtr();
8026     MachineMemOperand *MMO = Load->getMemOperand();
8027 
8028     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8029 
8030     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8031                                    BasePtr, RealMemVT, MMO);
8032 
8033     if (!MemVT.isVector()) {
8034       SDValue Ops[] = {
8035         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8036         NewLD.getValue(1)
8037       };
8038 
8039       return DAG.getMergeValues(Ops, DL);
8040     }
8041 
8042     SmallVector<SDValue, 3> Elts;
8043     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8044       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8045                                 DAG.getConstant(I, DL, MVT::i32));
8046 
8047       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8048     }
8049 
8050     SDValue Ops[] = {
8051       DAG.getBuildVector(MemVT, DL, Elts),
8052       NewLD.getValue(1)
8053     };
8054 
8055     return DAG.getMergeValues(Ops, DL);
8056   }
8057 
8058   if (!MemVT.isVector())
8059     return SDValue();
8060 
8061   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8062          "Custom lowering for non-i32 vectors hasn't been implemented.");
8063 
8064   unsigned Alignment = Load->getAlignment();
8065   unsigned AS = Load->getAddressSpace();
8066   if (Subtarget->hasLDSMisalignedBug() &&
8067       AS == AMDGPUAS::FLAT_ADDRESS &&
8068       Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8069     return SplitVectorLoad(Op, DAG);
8070   }
8071 
8072   MachineFunction &MF = DAG.getMachineFunction();
8073   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8074   // If there is a possibilty that flat instruction access scratch memory
8075   // then we need to use the same legalization rules we use for private.
8076   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8077       !Subtarget->hasMultiDwordFlatScratchAddressing())
8078     AS = MFI->hasFlatScratchInit() ?
8079          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8080 
8081   unsigned NumElements = MemVT.getVectorNumElements();
8082 
8083   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8084       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8085     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
8086       if (MemVT.isPow2VectorType())
8087         return SDValue();
8088       return WidenOrSplitVectorLoad(Op, DAG);
8089     }
8090     // Non-uniform loads will be selected to MUBUF instructions, so they
8091     // have the same legalization requirements as global and private
8092     // loads.
8093     //
8094   }
8095 
8096   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8097       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8098       AS == AMDGPUAS::GLOBAL_ADDRESS) {
8099     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8100         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8101         Alignment >= 4 && NumElements < 32) {
8102       if (MemVT.isPow2VectorType())
8103         return SDValue();
8104       return WidenOrSplitVectorLoad(Op, DAG);
8105     }
8106     // Non-uniform loads will be selected to MUBUF instructions, so they
8107     // have the same legalization requirements as global and private
8108     // loads.
8109     //
8110   }
8111   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8112       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8113       AS == AMDGPUAS::GLOBAL_ADDRESS ||
8114       AS == AMDGPUAS::FLAT_ADDRESS) {
8115     if (NumElements > 4)
8116       return SplitVectorLoad(Op, DAG);
8117     // v3 loads not supported on SI.
8118     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8119       return WidenOrSplitVectorLoad(Op, DAG);
8120 
8121     // v3 and v4 loads are supported for private and global memory.
8122     return SDValue();
8123   }
8124   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8125     // Depending on the setting of the private_element_size field in the
8126     // resource descriptor, we can only make private accesses up to a certain
8127     // size.
8128     switch (Subtarget->getMaxPrivateElementSize()) {
8129     case 4: {
8130       SDValue Ops[2];
8131       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8132       return DAG.getMergeValues(Ops, DL);
8133     }
8134     case 8:
8135       if (NumElements > 2)
8136         return SplitVectorLoad(Op, DAG);
8137       return SDValue();
8138     case 16:
8139       // Same as global/flat
8140       if (NumElements > 4)
8141         return SplitVectorLoad(Op, DAG);
8142       // v3 loads not supported on SI.
8143       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8144         return WidenOrSplitVectorLoad(Op, DAG);
8145 
8146       return SDValue();
8147     default:
8148       llvm_unreachable("unsupported private_element_size");
8149     }
8150   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8151     // Use ds_read_b128 or ds_read_b96 when possible.
8152     if (Subtarget->hasDS96AndDS128() &&
8153         ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8154          MemVT.getStoreSize() == 12) &&
8155         allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8156                                            Load->getAlign()))
8157       return SDValue();
8158 
8159     if (NumElements > 2)
8160       return SplitVectorLoad(Op, DAG);
8161 
8162     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8163     // address is negative, then the instruction is incorrectly treated as
8164     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8165     // loads here to avoid emitting ds_read2_b32. We may re-combine the
8166     // load later in the SILoadStoreOptimizer.
8167     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8168         NumElements == 2 && MemVT.getStoreSize() == 8 &&
8169         Load->getAlignment() < 8) {
8170       return SplitVectorLoad(Op, DAG);
8171     }
8172   }
8173 
8174   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8175                                       MemVT, *Load->getMemOperand())) {
8176     SDValue Ops[2];
8177     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8178     return DAG.getMergeValues(Ops, DL);
8179   }
8180 
8181   return SDValue();
8182 }
8183 
8184 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8185   EVT VT = Op.getValueType();
8186   assert(VT.getSizeInBits() == 64);
8187 
8188   SDLoc DL(Op);
8189   SDValue Cond = Op.getOperand(0);
8190 
8191   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8192   SDValue One = DAG.getConstant(1, DL, MVT::i32);
8193 
8194   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8195   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8196 
8197   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8198   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8199 
8200   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8201 
8202   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8203   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8204 
8205   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8206 
8207   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8208   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8209 }
8210 
8211 // Catch division cases where we can use shortcuts with rcp and rsq
8212 // instructions.
8213 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8214                                               SelectionDAG &DAG) const {
8215   SDLoc SL(Op);
8216   SDValue LHS = Op.getOperand(0);
8217   SDValue RHS = Op.getOperand(1);
8218   EVT VT = Op.getValueType();
8219   const SDNodeFlags Flags = Op->getFlags();
8220 
8221   bool AllowInaccurateRcp = DAG.getTarget().Options.UnsafeFPMath ||
8222                             Flags.hasApproximateFuncs();
8223 
8224   // Without !fpmath accuracy information, we can't do more because we don't
8225   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8226   if (!AllowInaccurateRcp)
8227     return SDValue();
8228 
8229   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8230     if (CLHS->isExactlyValue(1.0)) {
8231       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8232       // the CI documentation has a worst case error of 1 ulp.
8233       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8234       // use it as long as we aren't trying to use denormals.
8235       //
8236       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8237 
8238       // 1.0 / sqrt(x) -> rsq(x)
8239 
8240       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8241       // error seems really high at 2^29 ULP.
8242       if (RHS.getOpcode() == ISD::FSQRT)
8243         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8244 
8245       // 1.0 / x -> rcp(x)
8246       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8247     }
8248 
8249     // Same as for 1.0, but expand the sign out of the constant.
8250     if (CLHS->isExactlyValue(-1.0)) {
8251       // -1.0 / x -> rcp (fneg x)
8252       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8253       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8254     }
8255   }
8256 
8257   // Turn into multiply by the reciprocal.
8258   // x / y -> x * (1.0 / y)
8259   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8260   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8261 }
8262 
8263 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8264                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8265                           SDNodeFlags Flags) {
8266   if (GlueChain->getNumValues() <= 1) {
8267     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8268   }
8269 
8270   assert(GlueChain->getNumValues() == 3);
8271 
8272   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8273   switch (Opcode) {
8274   default: llvm_unreachable("no chain equivalent for opcode");
8275   case ISD::FMUL:
8276     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8277     break;
8278   }
8279 
8280   return DAG.getNode(Opcode, SL, VTList,
8281                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8282                      Flags);
8283 }
8284 
8285 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8286                            EVT VT, SDValue A, SDValue B, SDValue C,
8287                            SDValue GlueChain, SDNodeFlags Flags) {
8288   if (GlueChain->getNumValues() <= 1) {
8289     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8290   }
8291 
8292   assert(GlueChain->getNumValues() == 3);
8293 
8294   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8295   switch (Opcode) {
8296   default: llvm_unreachable("no chain equivalent for opcode");
8297   case ISD::FMA:
8298     Opcode = AMDGPUISD::FMA_W_CHAIN;
8299     break;
8300   }
8301 
8302   return DAG.getNode(Opcode, SL, VTList,
8303                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8304                      Flags);
8305 }
8306 
8307 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8308   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8309     return FastLowered;
8310 
8311   SDLoc SL(Op);
8312   SDValue Src0 = Op.getOperand(0);
8313   SDValue Src1 = Op.getOperand(1);
8314 
8315   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8316   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8317 
8318   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8319   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8320 
8321   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8322   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8323 
8324   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8325 }
8326 
8327 // Faster 2.5 ULP division that does not support denormals.
8328 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8329   SDLoc SL(Op);
8330   SDValue LHS = Op.getOperand(1);
8331   SDValue RHS = Op.getOperand(2);
8332 
8333   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8334 
8335   const APFloat K0Val(BitsToFloat(0x6f800000));
8336   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8337 
8338   const APFloat K1Val(BitsToFloat(0x2f800000));
8339   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8340 
8341   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8342 
8343   EVT SetCCVT =
8344     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8345 
8346   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8347 
8348   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8349 
8350   // TODO: Should this propagate fast-math-flags?
8351   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8352 
8353   // rcp does not support denormals.
8354   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8355 
8356   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8357 
8358   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8359 }
8360 
8361 // Returns immediate value for setting the F32 denorm mode when using the
8362 // S_DENORM_MODE instruction.
8363 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8364                                           const SDLoc &SL, const GCNSubtarget *ST) {
8365   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8366   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8367                                 ? FP_DENORM_FLUSH_NONE
8368                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8369 
8370   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8371   return DAG.getTargetConstant(Mode, SL, MVT::i32);
8372 }
8373 
8374 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8375   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8376     return FastLowered;
8377 
8378   // The selection matcher assumes anything with a chain selecting to a
8379   // mayRaiseFPException machine instruction. Since we're introducing a chain
8380   // here, we need to explicitly report nofpexcept for the regular fdiv
8381   // lowering.
8382   SDNodeFlags Flags = Op->getFlags();
8383   Flags.setNoFPExcept(true);
8384 
8385   SDLoc SL(Op);
8386   SDValue LHS = Op.getOperand(0);
8387   SDValue RHS = Op.getOperand(1);
8388 
8389   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8390 
8391   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8392 
8393   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8394                                           {RHS, RHS, LHS}, Flags);
8395   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8396                                         {LHS, RHS, LHS}, Flags);
8397 
8398   // Denominator is scaled to not be denormal, so using rcp is ok.
8399   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8400                                   DenominatorScaled, Flags);
8401   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8402                                      DenominatorScaled, Flags);
8403 
8404   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8405                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8406                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8407   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8408 
8409   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8410 
8411   if (!HasFP32Denormals) {
8412     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8413     // lowering. The chain dependence is insufficient, and we need glue. We do
8414     // not need the glue variants in a strictfp function.
8415 
8416     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8417 
8418     SDNode *EnableDenorm;
8419     if (Subtarget->hasDenormModeInst()) {
8420       const SDValue EnableDenormValue =
8421           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8422 
8423       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8424                                  DAG.getEntryNode(), EnableDenormValue).getNode();
8425     } else {
8426       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
8427                                                         SL, MVT::i32);
8428       EnableDenorm =
8429           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8430                              {EnableDenormValue, BitField, DAG.getEntryNode()});
8431     }
8432 
8433     SDValue Ops[3] = {
8434       NegDivScale0,
8435       SDValue(EnableDenorm, 0),
8436       SDValue(EnableDenorm, 1)
8437     };
8438 
8439     NegDivScale0 = DAG.getMergeValues(Ops, SL);
8440   }
8441 
8442   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8443                              ApproxRcp, One, NegDivScale0, Flags);
8444 
8445   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8446                              ApproxRcp, Fma0, Flags);
8447 
8448   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8449                            Fma1, Fma1, Flags);
8450 
8451   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8452                              NumeratorScaled, Mul, Flags);
8453 
8454   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8455                              Fma2, Fma1, Mul, Fma2, Flags);
8456 
8457   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8458                              NumeratorScaled, Fma3, Flags);
8459 
8460   if (!HasFP32Denormals) {
8461     SDNode *DisableDenorm;
8462     if (Subtarget->hasDenormModeInst()) {
8463       const SDValue DisableDenormValue =
8464           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
8465 
8466       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8467                                   Fma4.getValue(1), DisableDenormValue,
8468                                   Fma4.getValue(2)).getNode();
8469     } else {
8470       const SDValue DisableDenormValue =
8471           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
8472 
8473       DisableDenorm = DAG.getMachineNode(
8474           AMDGPU::S_SETREG_B32, SL, MVT::Other,
8475           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8476     }
8477 
8478     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8479                                       SDValue(DisableDenorm, 0), DAG.getRoot());
8480     DAG.setRoot(OutputChain);
8481   }
8482 
8483   SDValue Scale = NumeratorScaled.getValue(1);
8484   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8485                              {Fma4, Fma1, Fma3, Scale}, Flags);
8486 
8487   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8488 }
8489 
8490 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8491   if (DAG.getTarget().Options.UnsafeFPMath)
8492     return lowerFastUnsafeFDIV(Op, DAG);
8493 
8494   SDLoc SL(Op);
8495   SDValue X = Op.getOperand(0);
8496   SDValue Y = Op.getOperand(1);
8497 
8498   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8499 
8500   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8501 
8502   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8503 
8504   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8505 
8506   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8507 
8508   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8509 
8510   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8511 
8512   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8513 
8514   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8515 
8516   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8517   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8518 
8519   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8520                              NegDivScale0, Mul, DivScale1);
8521 
8522   SDValue Scale;
8523 
8524   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8525     // Workaround a hardware bug on SI where the condition output from div_scale
8526     // is not usable.
8527 
8528     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8529 
8530     // Figure out if the scale to use for div_fmas.
8531     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8532     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8533     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8534     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8535 
8536     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8537     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8538 
8539     SDValue Scale0Hi
8540       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8541     SDValue Scale1Hi
8542       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8543 
8544     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8545     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8546     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8547   } else {
8548     Scale = DivScale1.getValue(1);
8549   }
8550 
8551   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8552                              Fma4, Fma3, Mul, Scale);
8553 
8554   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8555 }
8556 
8557 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8558   EVT VT = Op.getValueType();
8559 
8560   if (VT == MVT::f32)
8561     return LowerFDIV32(Op, DAG);
8562 
8563   if (VT == MVT::f64)
8564     return LowerFDIV64(Op, DAG);
8565 
8566   if (VT == MVT::f16)
8567     return LowerFDIV16(Op, DAG);
8568 
8569   llvm_unreachable("Unexpected type for fdiv");
8570 }
8571 
8572 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8573   SDLoc DL(Op);
8574   StoreSDNode *Store = cast<StoreSDNode>(Op);
8575   EVT VT = Store->getMemoryVT();
8576 
8577   if (VT == MVT::i1) {
8578     return DAG.getTruncStore(Store->getChain(), DL,
8579        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8580        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8581   }
8582 
8583   assert(VT.isVector() &&
8584          Store->getValue().getValueType().getScalarType() == MVT::i32);
8585 
8586   unsigned AS = Store->getAddressSpace();
8587   if (Subtarget->hasLDSMisalignedBug() &&
8588       AS == AMDGPUAS::FLAT_ADDRESS &&
8589       Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8590     return SplitVectorStore(Op, DAG);
8591   }
8592 
8593   MachineFunction &MF = DAG.getMachineFunction();
8594   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8595   // If there is a possibilty that flat instruction access scratch memory
8596   // then we need to use the same legalization rules we use for private.
8597   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8598       !Subtarget->hasMultiDwordFlatScratchAddressing())
8599     AS = MFI->hasFlatScratchInit() ?
8600          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8601 
8602   unsigned NumElements = VT.getVectorNumElements();
8603   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8604       AS == AMDGPUAS::FLAT_ADDRESS) {
8605     if (NumElements > 4)
8606       return SplitVectorStore(Op, DAG);
8607     // v3 stores not supported on SI.
8608     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8609       return SplitVectorStore(Op, DAG);
8610 
8611     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8612                                         VT, *Store->getMemOperand()))
8613       return expandUnalignedStore(Store, DAG);
8614 
8615     return SDValue();
8616   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8617     switch (Subtarget->getMaxPrivateElementSize()) {
8618     case 4:
8619       return scalarizeVectorStore(Store, DAG);
8620     case 8:
8621       if (NumElements > 2)
8622         return SplitVectorStore(Op, DAG);
8623       return SDValue();
8624     case 16:
8625       if (NumElements > 4 ||
8626           (NumElements == 3 && !Subtarget->enableFlatScratch()))
8627         return SplitVectorStore(Op, DAG);
8628       return SDValue();
8629     default:
8630       llvm_unreachable("unsupported private_element_size");
8631     }
8632   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8633     // Use ds_write_b128 or ds_write_b96 when possible.
8634     if (Subtarget->hasDS96AndDS128() &&
8635         ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
8636          (VT.getStoreSize() == 12)) &&
8637         allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
8638                                            Store->getAlign()))
8639       return SDValue();
8640 
8641     if (NumElements > 2)
8642       return SplitVectorStore(Op, DAG);
8643 
8644     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8645     // address is negative, then the instruction is incorrectly treated as
8646     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8647     // stores here to avoid emitting ds_write2_b32. We may re-combine the
8648     // store later in the SILoadStoreOptimizer.
8649     if (!Subtarget->hasUsableDSOffset() &&
8650         NumElements == 2 && VT.getStoreSize() == 8 &&
8651         Store->getAlignment() < 8) {
8652       return SplitVectorStore(Op, DAG);
8653     }
8654 
8655     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8656                                         VT, *Store->getMemOperand())) {
8657       if (VT.isVector())
8658         return SplitVectorStore(Op, DAG);
8659       return expandUnalignedStore(Store, DAG);
8660     }
8661 
8662     return SDValue();
8663   } else {
8664     llvm_unreachable("unhandled address space");
8665   }
8666 }
8667 
8668 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
8669   SDLoc DL(Op);
8670   EVT VT = Op.getValueType();
8671   SDValue Arg = Op.getOperand(0);
8672   SDValue TrigVal;
8673 
8674   // Propagate fast-math flags so that the multiply we introduce can be folded
8675   // if Arg is already the result of a multiply by constant.
8676   auto Flags = Op->getFlags();
8677 
8678   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
8679 
8680   if (Subtarget->hasTrigReducedRange()) {
8681     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8682     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
8683   } else {
8684     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8685   }
8686 
8687   switch (Op.getOpcode()) {
8688   case ISD::FCOS:
8689     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
8690   case ISD::FSIN:
8691     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
8692   default:
8693     llvm_unreachable("Wrong trig opcode");
8694   }
8695 }
8696 
8697 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8698   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8699   assert(AtomicNode->isCompareAndSwap());
8700   unsigned AS = AtomicNode->getAddressSpace();
8701 
8702   // No custom lowering required for local address space
8703   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
8704     return Op;
8705 
8706   // Non-local address space requires custom lowering for atomic compare
8707   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8708   SDLoc DL(Op);
8709   SDValue ChainIn = Op.getOperand(0);
8710   SDValue Addr = Op.getOperand(1);
8711   SDValue Old = Op.getOperand(2);
8712   SDValue New = Op.getOperand(3);
8713   EVT VT = Op.getValueType();
8714   MVT SimpleVT = VT.getSimpleVT();
8715   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8716 
8717   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8718   SDValue Ops[] = { ChainIn, Addr, NewOld };
8719 
8720   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8721                                  Ops, VT, AtomicNode->getMemOperand());
8722 }
8723 
8724 //===----------------------------------------------------------------------===//
8725 // Custom DAG optimizations
8726 //===----------------------------------------------------------------------===//
8727 
8728 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8729                                                      DAGCombinerInfo &DCI) const {
8730   EVT VT = N->getValueType(0);
8731   EVT ScalarVT = VT.getScalarType();
8732   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
8733     return SDValue();
8734 
8735   SelectionDAG &DAG = DCI.DAG;
8736   SDLoc DL(N);
8737 
8738   SDValue Src = N->getOperand(0);
8739   EVT SrcVT = Src.getValueType();
8740 
8741   // TODO: We could try to match extracting the higher bytes, which would be
8742   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8743   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8744   // about in practice.
8745   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8746     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8747       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
8748       DCI.AddToWorklist(Cvt.getNode());
8749 
8750       // For the f16 case, fold to a cast to f32 and then cast back to f16.
8751       if (ScalarVT != MVT::f32) {
8752         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
8753                           DAG.getTargetConstant(0, DL, MVT::i32));
8754       }
8755       return Cvt;
8756     }
8757   }
8758 
8759   return SDValue();
8760 }
8761 
8762 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8763 
8764 // This is a variant of
8765 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8766 //
8767 // The normal DAG combiner will do this, but only if the add has one use since
8768 // that would increase the number of instructions.
8769 //
8770 // This prevents us from seeing a constant offset that can be folded into a
8771 // memory instruction's addressing mode. If we know the resulting add offset of
8772 // a pointer can be folded into an addressing offset, we can replace the pointer
8773 // operand with the add of new constant offset. This eliminates one of the uses,
8774 // and may allow the remaining use to also be simplified.
8775 //
8776 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8777                                                unsigned AddrSpace,
8778                                                EVT MemVT,
8779                                                DAGCombinerInfo &DCI) const {
8780   SDValue N0 = N->getOperand(0);
8781   SDValue N1 = N->getOperand(1);
8782 
8783   // We only do this to handle cases where it's profitable when there are
8784   // multiple uses of the add, so defer to the standard combine.
8785   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8786       N0->hasOneUse())
8787     return SDValue();
8788 
8789   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8790   if (!CN1)
8791     return SDValue();
8792 
8793   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8794   if (!CAdd)
8795     return SDValue();
8796 
8797   // If the resulting offset is too large, we can't fold it into the addressing
8798   // mode offset.
8799   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8800   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8801 
8802   AddrMode AM;
8803   AM.HasBaseReg = true;
8804   AM.BaseOffs = Offset.getSExtValue();
8805   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8806     return SDValue();
8807 
8808   SelectionDAG &DAG = DCI.DAG;
8809   SDLoc SL(N);
8810   EVT VT = N->getValueType(0);
8811 
8812   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8813   SDValue COffset = DAG.getConstant(Offset, SL, VT);
8814 
8815   SDNodeFlags Flags;
8816   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8817                           (N0.getOpcode() == ISD::OR ||
8818                            N0->getFlags().hasNoUnsignedWrap()));
8819 
8820   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8821 }
8822 
8823 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
8824 /// by the chain and intrinsic ID. Theoretically we would also need to check the
8825 /// specific intrinsic, but they all place the pointer operand first.
8826 static unsigned getBasePtrIndex(const MemSDNode *N) {
8827   switch (N->getOpcode()) {
8828   case ISD::STORE:
8829   case ISD::INTRINSIC_W_CHAIN:
8830   case ISD::INTRINSIC_VOID:
8831     return 2;
8832   default:
8833     return 1;
8834   }
8835 }
8836 
8837 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8838                                                   DAGCombinerInfo &DCI) const {
8839   SelectionDAG &DAG = DCI.DAG;
8840   SDLoc SL(N);
8841 
8842   unsigned PtrIdx = getBasePtrIndex(N);
8843   SDValue Ptr = N->getOperand(PtrIdx);
8844 
8845   // TODO: We could also do this for multiplies.
8846   if (Ptr.getOpcode() == ISD::SHL) {
8847     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
8848                                           N->getMemoryVT(), DCI);
8849     if (NewPtr) {
8850       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8851 
8852       NewOps[PtrIdx] = NewPtr;
8853       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8854     }
8855   }
8856 
8857   return SDValue();
8858 }
8859 
8860 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8861   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8862          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8863          (Opc == ISD::XOR && Val == 0);
8864 }
8865 
8866 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8867 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8868 // integer combine opportunities since most 64-bit operations are decomposed
8869 // this way.  TODO: We won't want this for SALU especially if it is an inline
8870 // immediate.
8871 SDValue SITargetLowering::splitBinaryBitConstantOp(
8872   DAGCombinerInfo &DCI,
8873   const SDLoc &SL,
8874   unsigned Opc, SDValue LHS,
8875   const ConstantSDNode *CRHS) const {
8876   uint64_t Val = CRHS->getZExtValue();
8877   uint32_t ValLo = Lo_32(Val);
8878   uint32_t ValHi = Hi_32(Val);
8879   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8880 
8881     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8882          bitOpWithConstantIsReducible(Opc, ValHi)) ||
8883         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8884     // If we need to materialize a 64-bit immediate, it will be split up later
8885     // anyway. Avoid creating the harder to understand 64-bit immediate
8886     // materialization.
8887     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8888   }
8889 
8890   return SDValue();
8891 }
8892 
8893 // Returns true if argument is a boolean value which is not serialized into
8894 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
8895 static bool isBoolSGPR(SDValue V) {
8896   if (V.getValueType() != MVT::i1)
8897     return false;
8898   switch (V.getOpcode()) {
8899   default: break;
8900   case ISD::SETCC:
8901   case ISD::AND:
8902   case ISD::OR:
8903   case ISD::XOR:
8904   case AMDGPUISD::FP_CLASS:
8905     return true;
8906   }
8907   return false;
8908 }
8909 
8910 // If a constant has all zeroes or all ones within each byte return it.
8911 // Otherwise return 0.
8912 static uint32_t getConstantPermuteMask(uint32_t C) {
8913   // 0xff for any zero byte in the mask
8914   uint32_t ZeroByteMask = 0;
8915   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8916   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8917   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8918   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
8919   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
8920   if ((NonZeroByteMask & C) != NonZeroByteMask)
8921     return 0; // Partial bytes selected.
8922   return C;
8923 }
8924 
8925 // Check if a node selects whole bytes from its operand 0 starting at a byte
8926 // boundary while masking the rest. Returns select mask as in the v_perm_b32
8927 // or -1 if not succeeded.
8928 // Note byte select encoding:
8929 // value 0-3 selects corresponding source byte;
8930 // value 0xc selects zero;
8931 // value 0xff selects 0xff.
8932 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
8933   assert(V.getValueSizeInBits() == 32);
8934 
8935   if (V.getNumOperands() != 2)
8936     return ~0;
8937 
8938   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
8939   if (!N1)
8940     return ~0;
8941 
8942   uint32_t C = N1->getZExtValue();
8943 
8944   switch (V.getOpcode()) {
8945   default:
8946     break;
8947   case ISD::AND:
8948     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8949       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
8950     }
8951     break;
8952 
8953   case ISD::OR:
8954     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8955       return (0x03020100 & ~ConstMask) | ConstMask;
8956     }
8957     break;
8958 
8959   case ISD::SHL:
8960     if (C % 8)
8961       return ~0;
8962 
8963     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
8964 
8965   case ISD::SRL:
8966     if (C % 8)
8967       return ~0;
8968 
8969     return uint32_t(0x0c0c0c0c03020100ull >> C);
8970   }
8971 
8972   return ~0;
8973 }
8974 
8975 SDValue SITargetLowering::performAndCombine(SDNode *N,
8976                                             DAGCombinerInfo &DCI) const {
8977   if (DCI.isBeforeLegalize())
8978     return SDValue();
8979 
8980   SelectionDAG &DAG = DCI.DAG;
8981   EVT VT = N->getValueType(0);
8982   SDValue LHS = N->getOperand(0);
8983   SDValue RHS = N->getOperand(1);
8984 
8985 
8986   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8987   if (VT == MVT::i64 && CRHS) {
8988     if (SDValue Split
8989         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
8990       return Split;
8991   }
8992 
8993   if (CRHS && VT == MVT::i32) {
8994     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
8995     // nb = number of trailing zeroes in mask
8996     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
8997     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
8998     uint64_t Mask = CRHS->getZExtValue();
8999     unsigned Bits = countPopulation(Mask);
9000     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9001         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9002       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9003         unsigned Shift = CShift->getZExtValue();
9004         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9005         unsigned Offset = NB + Shift;
9006         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9007           SDLoc SL(N);
9008           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9009                                     LHS->getOperand(0),
9010                                     DAG.getConstant(Offset, SL, MVT::i32),
9011                                     DAG.getConstant(Bits, SL, MVT::i32));
9012           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9013           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9014                                     DAG.getValueType(NarrowVT));
9015           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9016                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9017           return Shl;
9018         }
9019       }
9020     }
9021 
9022     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9023     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9024         isa<ConstantSDNode>(LHS.getOperand(2))) {
9025       uint32_t Sel = getConstantPermuteMask(Mask);
9026       if (!Sel)
9027         return SDValue();
9028 
9029       // Select 0xc for all zero bytes
9030       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9031       SDLoc DL(N);
9032       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9033                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9034     }
9035   }
9036 
9037   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9038   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9039   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9040     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9041     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9042 
9043     SDValue X = LHS.getOperand(0);
9044     SDValue Y = RHS.getOperand(0);
9045     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9046       return SDValue();
9047 
9048     if (LCC == ISD::SETO) {
9049       if (X != LHS.getOperand(1))
9050         return SDValue();
9051 
9052       if (RCC == ISD::SETUNE) {
9053         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9054         if (!C1 || !C1->isInfinity() || C1->isNegative())
9055           return SDValue();
9056 
9057         const uint32_t Mask = SIInstrFlags::N_NORMAL |
9058                               SIInstrFlags::N_SUBNORMAL |
9059                               SIInstrFlags::N_ZERO |
9060                               SIInstrFlags::P_ZERO |
9061                               SIInstrFlags::P_SUBNORMAL |
9062                               SIInstrFlags::P_NORMAL;
9063 
9064         static_assert(((~(SIInstrFlags::S_NAN |
9065                           SIInstrFlags::Q_NAN |
9066                           SIInstrFlags::N_INFINITY |
9067                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9068                       "mask not equal");
9069 
9070         SDLoc DL(N);
9071         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9072                            X, DAG.getConstant(Mask, DL, MVT::i32));
9073       }
9074     }
9075   }
9076 
9077   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9078     std::swap(LHS, RHS);
9079 
9080   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9081       RHS.hasOneUse()) {
9082     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9083     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9084     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9085     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9086     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9087         (RHS.getOperand(0) == LHS.getOperand(0) &&
9088          LHS.getOperand(0) == LHS.getOperand(1))) {
9089       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9090       unsigned NewMask = LCC == ISD::SETO ?
9091         Mask->getZExtValue() & ~OrdMask :
9092         Mask->getZExtValue() & OrdMask;
9093 
9094       SDLoc DL(N);
9095       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9096                          DAG.getConstant(NewMask, DL, MVT::i32));
9097     }
9098   }
9099 
9100   if (VT == MVT::i32 &&
9101       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9102     // and x, (sext cc from i1) => select cc, x, 0
9103     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9104       std::swap(LHS, RHS);
9105     if (isBoolSGPR(RHS.getOperand(0)))
9106       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9107                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9108   }
9109 
9110   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9111   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9112   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9113       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
9114     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9115     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9116     if (LHSMask != ~0u && RHSMask != ~0u) {
9117       // Canonicalize the expression in an attempt to have fewer unique masks
9118       // and therefore fewer registers used to hold the masks.
9119       if (LHSMask > RHSMask) {
9120         std::swap(LHSMask, RHSMask);
9121         std::swap(LHS, RHS);
9122       }
9123 
9124       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9125       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9126       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9127       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9128 
9129       // Check of we need to combine values from two sources within a byte.
9130       if (!(LHSUsedLanes & RHSUsedLanes) &&
9131           // If we select high and lower word keep it for SDWA.
9132           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9133           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9134         // Each byte in each mask is either selector mask 0-3, or has higher
9135         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9136         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9137         // mask which is not 0xff wins. By anding both masks we have a correct
9138         // result except that 0x0c shall be corrected to give 0x0c only.
9139         uint32_t Mask = LHSMask & RHSMask;
9140         for (unsigned I = 0; I < 32; I += 8) {
9141           uint32_t ByteSel = 0xff << I;
9142           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9143             Mask &= (0x0c << I) & 0xffffffff;
9144         }
9145 
9146         // Add 4 to each active LHS lane. It will not affect any existing 0xff
9147         // or 0x0c.
9148         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9149         SDLoc DL(N);
9150 
9151         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9152                            LHS.getOperand(0), RHS.getOperand(0),
9153                            DAG.getConstant(Sel, DL, MVT::i32));
9154       }
9155     }
9156   }
9157 
9158   return SDValue();
9159 }
9160 
9161 SDValue SITargetLowering::performOrCombine(SDNode *N,
9162                                            DAGCombinerInfo &DCI) const {
9163   SelectionDAG &DAG = DCI.DAG;
9164   SDValue LHS = N->getOperand(0);
9165   SDValue RHS = N->getOperand(1);
9166 
9167   EVT VT = N->getValueType(0);
9168   if (VT == MVT::i1) {
9169     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9170     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9171         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9172       SDValue Src = LHS.getOperand(0);
9173       if (Src != RHS.getOperand(0))
9174         return SDValue();
9175 
9176       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9177       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9178       if (!CLHS || !CRHS)
9179         return SDValue();
9180 
9181       // Only 10 bits are used.
9182       static const uint32_t MaxMask = 0x3ff;
9183 
9184       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9185       SDLoc DL(N);
9186       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9187                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
9188     }
9189 
9190     return SDValue();
9191   }
9192 
9193   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9194   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9195       LHS.getOpcode() == AMDGPUISD::PERM &&
9196       isa<ConstantSDNode>(LHS.getOperand(2))) {
9197     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9198     if (!Sel)
9199       return SDValue();
9200 
9201     Sel |= LHS.getConstantOperandVal(2);
9202     SDLoc DL(N);
9203     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9204                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9205   }
9206 
9207   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9208   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9209   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9210       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
9211     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9212     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9213     if (LHSMask != ~0u && RHSMask != ~0u) {
9214       // Canonicalize the expression in an attempt to have fewer unique masks
9215       // and therefore fewer registers used to hold the masks.
9216       if (LHSMask > RHSMask) {
9217         std::swap(LHSMask, RHSMask);
9218         std::swap(LHS, RHS);
9219       }
9220 
9221       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9222       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9223       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9224       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9225 
9226       // Check of we need to combine values from two sources within a byte.
9227       if (!(LHSUsedLanes & RHSUsedLanes) &&
9228           // If we select high and lower word keep it for SDWA.
9229           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9230           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9231         // Kill zero bytes selected by other mask. Zero value is 0xc.
9232         LHSMask &= ~RHSUsedLanes;
9233         RHSMask &= ~LHSUsedLanes;
9234         // Add 4 to each active LHS lane
9235         LHSMask |= LHSUsedLanes & 0x04040404;
9236         // Combine masks
9237         uint32_t Sel = LHSMask | RHSMask;
9238         SDLoc DL(N);
9239 
9240         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9241                            LHS.getOperand(0), RHS.getOperand(0),
9242                            DAG.getConstant(Sel, DL, MVT::i32));
9243       }
9244     }
9245   }
9246 
9247   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9248     return SDValue();
9249 
9250   // TODO: This could be a generic combine with a predicate for extracting the
9251   // high half of an integer being free.
9252 
9253   // (or i64:x, (zero_extend i32:y)) ->
9254   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9255   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9256       RHS.getOpcode() != ISD::ZERO_EXTEND)
9257     std::swap(LHS, RHS);
9258 
9259   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9260     SDValue ExtSrc = RHS.getOperand(0);
9261     EVT SrcVT = ExtSrc.getValueType();
9262     if (SrcVT == MVT::i32) {
9263       SDLoc SL(N);
9264       SDValue LowLHS, HiBits;
9265       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9266       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9267 
9268       DCI.AddToWorklist(LowOr.getNode());
9269       DCI.AddToWorklist(HiBits.getNode());
9270 
9271       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9272                                 LowOr, HiBits);
9273       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9274     }
9275   }
9276 
9277   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9278   if (CRHS) {
9279     if (SDValue Split
9280           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
9281       return Split;
9282   }
9283 
9284   return SDValue();
9285 }
9286 
9287 SDValue SITargetLowering::performXorCombine(SDNode *N,
9288                                             DAGCombinerInfo &DCI) const {
9289   EVT VT = N->getValueType(0);
9290   if (VT != MVT::i64)
9291     return SDValue();
9292 
9293   SDValue LHS = N->getOperand(0);
9294   SDValue RHS = N->getOperand(1);
9295 
9296   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9297   if (CRHS) {
9298     if (SDValue Split
9299           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9300       return Split;
9301   }
9302 
9303   return SDValue();
9304 }
9305 
9306 // Instructions that will be lowered with a final instruction that zeros the
9307 // high result bits.
9308 // XXX - probably only need to list legal operations.
9309 static bool fp16SrcZerosHighBits(unsigned Opc) {
9310   switch (Opc) {
9311   case ISD::FADD:
9312   case ISD::FSUB:
9313   case ISD::FMUL:
9314   case ISD::FDIV:
9315   case ISD::FREM:
9316   case ISD::FMA:
9317   case ISD::FMAD:
9318   case ISD::FCANONICALIZE:
9319   case ISD::FP_ROUND:
9320   case ISD::UINT_TO_FP:
9321   case ISD::SINT_TO_FP:
9322   case ISD::FABS:
9323     // Fabs is lowered to a bit operation, but it's an and which will clear the
9324     // high bits anyway.
9325   case ISD::FSQRT:
9326   case ISD::FSIN:
9327   case ISD::FCOS:
9328   case ISD::FPOWI:
9329   case ISD::FPOW:
9330   case ISD::FLOG:
9331   case ISD::FLOG2:
9332   case ISD::FLOG10:
9333   case ISD::FEXP:
9334   case ISD::FEXP2:
9335   case ISD::FCEIL:
9336   case ISD::FTRUNC:
9337   case ISD::FRINT:
9338   case ISD::FNEARBYINT:
9339   case ISD::FROUND:
9340   case ISD::FFLOOR:
9341   case ISD::FMINNUM:
9342   case ISD::FMAXNUM:
9343   case AMDGPUISD::FRACT:
9344   case AMDGPUISD::CLAMP:
9345   case AMDGPUISD::COS_HW:
9346   case AMDGPUISD::SIN_HW:
9347   case AMDGPUISD::FMIN3:
9348   case AMDGPUISD::FMAX3:
9349   case AMDGPUISD::FMED3:
9350   case AMDGPUISD::FMAD_FTZ:
9351   case AMDGPUISD::RCP:
9352   case AMDGPUISD::RSQ:
9353   case AMDGPUISD::RCP_IFLAG:
9354   case AMDGPUISD::LDEXP:
9355     return true;
9356   default:
9357     // fcopysign, select and others may be lowered to 32-bit bit operations
9358     // which don't zero the high bits.
9359     return false;
9360   }
9361 }
9362 
9363 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9364                                                    DAGCombinerInfo &DCI) const {
9365   if (!Subtarget->has16BitInsts() ||
9366       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9367     return SDValue();
9368 
9369   EVT VT = N->getValueType(0);
9370   if (VT != MVT::i32)
9371     return SDValue();
9372 
9373   SDValue Src = N->getOperand(0);
9374   if (Src.getValueType() != MVT::i16)
9375     return SDValue();
9376 
9377   // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
9378   // FIXME: It is not universally true that the high bits are zeroed on gfx9.
9379   if (Src.getOpcode() == ISD::BITCAST) {
9380     SDValue BCSrc = Src.getOperand(0);
9381     if (BCSrc.getValueType() == MVT::f16 &&
9382         fp16SrcZerosHighBits(BCSrc.getOpcode()))
9383       return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
9384   }
9385 
9386   return SDValue();
9387 }
9388 
9389 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9390                                                         DAGCombinerInfo &DCI)
9391                                                         const {
9392   SDValue Src = N->getOperand(0);
9393   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9394 
9395   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9396       VTSign->getVT() == MVT::i8) ||
9397       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9398       VTSign->getVT() == MVT::i16)) &&
9399       Src.hasOneUse()) {
9400     auto *M = cast<MemSDNode>(Src);
9401     SDValue Ops[] = {
9402       Src.getOperand(0), // Chain
9403       Src.getOperand(1), // rsrc
9404       Src.getOperand(2), // vindex
9405       Src.getOperand(3), // voffset
9406       Src.getOperand(4), // soffset
9407       Src.getOperand(5), // offset
9408       Src.getOperand(6),
9409       Src.getOperand(7)
9410     };
9411     // replace with BUFFER_LOAD_BYTE/SHORT
9412     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9413                                          Src.getOperand(0).getValueType());
9414     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9415                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9416     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9417                                                           ResList,
9418                                                           Ops, M->getMemoryVT(),
9419                                                           M->getMemOperand());
9420     return DCI.DAG.getMergeValues({BufferLoadSignExt,
9421                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
9422   }
9423   return SDValue();
9424 }
9425 
9426 SDValue SITargetLowering::performClassCombine(SDNode *N,
9427                                               DAGCombinerInfo &DCI) const {
9428   SelectionDAG &DAG = DCI.DAG;
9429   SDValue Mask = N->getOperand(1);
9430 
9431   // fp_class x, 0 -> false
9432   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9433     if (CMask->isNullValue())
9434       return DAG.getConstant(0, SDLoc(N), MVT::i1);
9435   }
9436 
9437   if (N->getOperand(0).isUndef())
9438     return DAG.getUNDEF(MVT::i1);
9439 
9440   return SDValue();
9441 }
9442 
9443 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9444                                             DAGCombinerInfo &DCI) const {
9445   EVT VT = N->getValueType(0);
9446   SDValue N0 = N->getOperand(0);
9447 
9448   if (N0.isUndef())
9449     return N0;
9450 
9451   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9452                          N0.getOpcode() == ISD::SINT_TO_FP)) {
9453     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9454                            N->getFlags());
9455   }
9456 
9457   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9458     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9459                            N0.getOperand(0), N->getFlags());
9460   }
9461 
9462   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9463 }
9464 
9465 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9466                                        unsigned MaxDepth) const {
9467   unsigned Opcode = Op.getOpcode();
9468   if (Opcode == ISD::FCANONICALIZE)
9469     return true;
9470 
9471   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9472     auto F = CFP->getValueAPF();
9473     if (F.isNaN() && F.isSignaling())
9474       return false;
9475     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9476   }
9477 
9478   // If source is a result of another standard FP operation it is already in
9479   // canonical form.
9480   if (MaxDepth == 0)
9481     return false;
9482 
9483   switch (Opcode) {
9484   // These will flush denorms if required.
9485   case ISD::FADD:
9486   case ISD::FSUB:
9487   case ISD::FMUL:
9488   case ISD::FCEIL:
9489   case ISD::FFLOOR:
9490   case ISD::FMA:
9491   case ISD::FMAD:
9492   case ISD::FSQRT:
9493   case ISD::FDIV:
9494   case ISD::FREM:
9495   case ISD::FP_ROUND:
9496   case ISD::FP_EXTEND:
9497   case AMDGPUISD::FMUL_LEGACY:
9498   case AMDGPUISD::FMAD_FTZ:
9499   case AMDGPUISD::RCP:
9500   case AMDGPUISD::RSQ:
9501   case AMDGPUISD::RSQ_CLAMP:
9502   case AMDGPUISD::RCP_LEGACY:
9503   case AMDGPUISD::RCP_IFLAG:
9504   case AMDGPUISD::DIV_SCALE:
9505   case AMDGPUISD::DIV_FMAS:
9506   case AMDGPUISD::DIV_FIXUP:
9507   case AMDGPUISD::FRACT:
9508   case AMDGPUISD::LDEXP:
9509   case AMDGPUISD::CVT_PKRTZ_F16_F32:
9510   case AMDGPUISD::CVT_F32_UBYTE0:
9511   case AMDGPUISD::CVT_F32_UBYTE1:
9512   case AMDGPUISD::CVT_F32_UBYTE2:
9513   case AMDGPUISD::CVT_F32_UBYTE3:
9514     return true;
9515 
9516   // It can/will be lowered or combined as a bit operation.
9517   // Need to check their input recursively to handle.
9518   case ISD::FNEG:
9519   case ISD::FABS:
9520   case ISD::FCOPYSIGN:
9521     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9522 
9523   case ISD::FSIN:
9524   case ISD::FCOS:
9525   case ISD::FSINCOS:
9526     return Op.getValueType().getScalarType() != MVT::f16;
9527 
9528   case ISD::FMINNUM:
9529   case ISD::FMAXNUM:
9530   case ISD::FMINNUM_IEEE:
9531   case ISD::FMAXNUM_IEEE:
9532   case AMDGPUISD::CLAMP:
9533   case AMDGPUISD::FMED3:
9534   case AMDGPUISD::FMAX3:
9535   case AMDGPUISD::FMIN3: {
9536     // FIXME: Shouldn't treat the generic operations different based these.
9537     // However, we aren't really required to flush the result from
9538     // minnum/maxnum..
9539 
9540     // snans will be quieted, so we only need to worry about denormals.
9541     if (Subtarget->supportsMinMaxDenormModes() ||
9542         denormalsEnabledForType(DAG, Op.getValueType()))
9543       return true;
9544 
9545     // Flushing may be required.
9546     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9547     // targets need to check their input recursively.
9548 
9549     // FIXME: Does this apply with clamp? It's implemented with max.
9550     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9551       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9552         return false;
9553     }
9554 
9555     return true;
9556   }
9557   case ISD::SELECT: {
9558     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9559            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9560   }
9561   case ISD::BUILD_VECTOR: {
9562     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9563       SDValue SrcOp = Op.getOperand(i);
9564       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9565         return false;
9566     }
9567 
9568     return true;
9569   }
9570   case ISD::EXTRACT_VECTOR_ELT:
9571   case ISD::EXTRACT_SUBVECTOR: {
9572     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9573   }
9574   case ISD::INSERT_VECTOR_ELT: {
9575     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9576            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9577   }
9578   case ISD::UNDEF:
9579     // Could be anything.
9580     return false;
9581 
9582   case ISD::BITCAST: {
9583     // Hack round the mess we make when legalizing extract_vector_elt
9584     SDValue Src = Op.getOperand(0);
9585     if (Src.getValueType() == MVT::i16 &&
9586         Src.getOpcode() == ISD::TRUNCATE) {
9587       SDValue TruncSrc = Src.getOperand(0);
9588       if (TruncSrc.getValueType() == MVT::i32 &&
9589           TruncSrc.getOpcode() == ISD::BITCAST &&
9590           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9591         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9592       }
9593     }
9594 
9595     return false;
9596   }
9597   case ISD::INTRINSIC_WO_CHAIN: {
9598     unsigned IntrinsicID
9599       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9600     // TODO: Handle more intrinsics
9601     switch (IntrinsicID) {
9602     case Intrinsic::amdgcn_cvt_pkrtz:
9603     case Intrinsic::amdgcn_cubeid:
9604     case Intrinsic::amdgcn_frexp_mant:
9605     case Intrinsic::amdgcn_fdot2:
9606     case Intrinsic::amdgcn_rcp:
9607     case Intrinsic::amdgcn_rsq:
9608     case Intrinsic::amdgcn_rsq_clamp:
9609     case Intrinsic::amdgcn_rcp_legacy:
9610     case Intrinsic::amdgcn_rsq_legacy:
9611     case Intrinsic::amdgcn_trig_preop:
9612       return true;
9613     default:
9614       break;
9615     }
9616 
9617     LLVM_FALLTHROUGH;
9618   }
9619   default:
9620     return denormalsEnabledForType(DAG, Op.getValueType()) &&
9621            DAG.isKnownNeverSNaN(Op);
9622   }
9623 
9624   llvm_unreachable("invalid operation");
9625 }
9626 
9627 // Constant fold canonicalize.
9628 SDValue SITargetLowering::getCanonicalConstantFP(
9629   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9630   // Flush denormals to 0 if not enabled.
9631   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9632     return DAG.getConstantFP(0.0, SL, VT);
9633 
9634   if (C.isNaN()) {
9635     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9636     if (C.isSignaling()) {
9637       // Quiet a signaling NaN.
9638       // FIXME: Is this supposed to preserve payload bits?
9639       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9640     }
9641 
9642     // Make sure it is the canonical NaN bitpattern.
9643     //
9644     // TODO: Can we use -1 as the canonical NaN value since it's an inline
9645     // immediate?
9646     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9647       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9648   }
9649 
9650   // Already canonical.
9651   return DAG.getConstantFP(C, SL, VT);
9652 }
9653 
9654 static bool vectorEltWillFoldAway(SDValue Op) {
9655   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9656 }
9657 
9658 SDValue SITargetLowering::performFCanonicalizeCombine(
9659   SDNode *N,
9660   DAGCombinerInfo &DCI) const {
9661   SelectionDAG &DAG = DCI.DAG;
9662   SDValue N0 = N->getOperand(0);
9663   EVT VT = N->getValueType(0);
9664 
9665   // fcanonicalize undef -> qnan
9666   if (N0.isUndef()) {
9667     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
9668     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
9669   }
9670 
9671   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
9672     EVT VT = N->getValueType(0);
9673     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
9674   }
9675 
9676   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
9677   //                                                   (fcanonicalize k)
9678   //
9679   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
9680 
9681   // TODO: This could be better with wider vectors that will be split to v2f16,
9682   // and to consider uses since there aren't that many packed operations.
9683   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
9684       isTypeLegal(MVT::v2f16)) {
9685     SDLoc SL(N);
9686     SDValue NewElts[2];
9687     SDValue Lo = N0.getOperand(0);
9688     SDValue Hi = N0.getOperand(1);
9689     EVT EltVT = Lo.getValueType();
9690 
9691     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
9692       for (unsigned I = 0; I != 2; ++I) {
9693         SDValue Op = N0.getOperand(I);
9694         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9695           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
9696                                               CFP->getValueAPF());
9697         } else if (Op.isUndef()) {
9698           // Handled below based on what the other operand is.
9699           NewElts[I] = Op;
9700         } else {
9701           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
9702         }
9703       }
9704 
9705       // If one half is undef, and one is constant, perfer a splat vector rather
9706       // than the normal qNaN. If it's a register, prefer 0.0 since that's
9707       // cheaper to use and may be free with a packed operation.
9708       if (NewElts[0].isUndef()) {
9709         if (isa<ConstantFPSDNode>(NewElts[1]))
9710           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
9711             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
9712       }
9713 
9714       if (NewElts[1].isUndef()) {
9715         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
9716           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
9717       }
9718 
9719       return DAG.getBuildVector(VT, SL, NewElts);
9720     }
9721   }
9722 
9723   unsigned SrcOpc = N0.getOpcode();
9724 
9725   // If it's free to do so, push canonicalizes further up the source, which may
9726   // find a canonical source.
9727   //
9728   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9729   // sNaNs.
9730   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9731     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9732     if (CRHS && N0.hasOneUse()) {
9733       SDLoc SL(N);
9734       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9735                                    N0.getOperand(0));
9736       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9737       DCI.AddToWorklist(Canon0.getNode());
9738 
9739       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9740     }
9741   }
9742 
9743   return isCanonicalized(DAG, N0) ? N0 : SDValue();
9744 }
9745 
9746 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9747   switch (Opc) {
9748   case ISD::FMAXNUM:
9749   case ISD::FMAXNUM_IEEE:
9750     return AMDGPUISD::FMAX3;
9751   case ISD::SMAX:
9752     return AMDGPUISD::SMAX3;
9753   case ISD::UMAX:
9754     return AMDGPUISD::UMAX3;
9755   case ISD::FMINNUM:
9756   case ISD::FMINNUM_IEEE:
9757     return AMDGPUISD::FMIN3;
9758   case ISD::SMIN:
9759     return AMDGPUISD::SMIN3;
9760   case ISD::UMIN:
9761     return AMDGPUISD::UMIN3;
9762   default:
9763     llvm_unreachable("Not a min/max opcode");
9764   }
9765 }
9766 
9767 SDValue SITargetLowering::performIntMed3ImmCombine(
9768   SelectionDAG &DAG, const SDLoc &SL,
9769   SDValue Op0, SDValue Op1, bool Signed) const {
9770   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9771   if (!K1)
9772     return SDValue();
9773 
9774   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9775   if (!K0)
9776     return SDValue();
9777 
9778   if (Signed) {
9779     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9780       return SDValue();
9781   } else {
9782     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9783       return SDValue();
9784   }
9785 
9786   EVT VT = K0->getValueType(0);
9787   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9788   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9789     return DAG.getNode(Med3Opc, SL, VT,
9790                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9791   }
9792 
9793   // If there isn't a 16-bit med3 operation, convert to 32-bit.
9794   MVT NVT = MVT::i32;
9795   unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9796 
9797   SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9798   SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9799   SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9800 
9801   SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9802   return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9803 }
9804 
9805 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9806   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9807     return C;
9808 
9809   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9810     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9811       return C;
9812   }
9813 
9814   return nullptr;
9815 }
9816 
9817 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9818                                                   const SDLoc &SL,
9819                                                   SDValue Op0,
9820                                                   SDValue Op1) const {
9821   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9822   if (!K1)
9823     return SDValue();
9824 
9825   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9826   if (!K0)
9827     return SDValue();
9828 
9829   // Ordered >= (although NaN inputs should have folded away by now).
9830   if (K0->getValueAPF() > K1->getValueAPF())
9831     return SDValue();
9832 
9833   const MachineFunction &MF = DAG.getMachineFunction();
9834   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9835 
9836   // TODO: Check IEEE bit enabled?
9837   EVT VT = Op0.getValueType();
9838   if (Info->getMode().DX10Clamp) {
9839     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9840     // hardware fmed3 behavior converting to a min.
9841     // FIXME: Should this be allowing -0.0?
9842     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9843       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9844   }
9845 
9846   // med3 for f16 is only available on gfx9+, and not available for v2f16.
9847   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9848     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9849     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9850     // then give the other result, which is different from med3 with a NaN
9851     // input.
9852     SDValue Var = Op0.getOperand(0);
9853     if (!DAG.isKnownNeverSNaN(Var))
9854       return SDValue();
9855 
9856     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9857 
9858     if ((!K0->hasOneUse() ||
9859          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9860         (!K1->hasOneUse() ||
9861          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9862       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9863                          Var, SDValue(K0, 0), SDValue(K1, 0));
9864     }
9865   }
9866 
9867   return SDValue();
9868 }
9869 
9870 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9871                                                DAGCombinerInfo &DCI) const {
9872   SelectionDAG &DAG = DCI.DAG;
9873 
9874   EVT VT = N->getValueType(0);
9875   unsigned Opc = N->getOpcode();
9876   SDValue Op0 = N->getOperand(0);
9877   SDValue Op1 = N->getOperand(1);
9878 
9879   // Only do this if the inner op has one use since this will just increases
9880   // register pressure for no benefit.
9881 
9882   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9883       !VT.isVector() &&
9884       (VT == MVT::i32 || VT == MVT::f32 ||
9885        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9886     // max(max(a, b), c) -> max3(a, b, c)
9887     // min(min(a, b), c) -> min3(a, b, c)
9888     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9889       SDLoc DL(N);
9890       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9891                          DL,
9892                          N->getValueType(0),
9893                          Op0.getOperand(0),
9894                          Op0.getOperand(1),
9895                          Op1);
9896     }
9897 
9898     // Try commuted.
9899     // max(a, max(b, c)) -> max3(a, b, c)
9900     // min(a, min(b, c)) -> min3(a, b, c)
9901     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9902       SDLoc DL(N);
9903       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9904                          DL,
9905                          N->getValueType(0),
9906                          Op0,
9907                          Op1.getOperand(0),
9908                          Op1.getOperand(1));
9909     }
9910   }
9911 
9912   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9913   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9914     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9915       return Med3;
9916   }
9917 
9918   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9919     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9920       return Med3;
9921   }
9922 
9923   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9924   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9925        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9926        (Opc == AMDGPUISD::FMIN_LEGACY &&
9927         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9928       (VT == MVT::f32 || VT == MVT::f64 ||
9929        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9930        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9931       Op0.hasOneUse()) {
9932     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9933       return Res;
9934   }
9935 
9936   return SDValue();
9937 }
9938 
9939 static bool isClampZeroToOne(SDValue A, SDValue B) {
9940   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9941     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9942       // FIXME: Should this be allowing -0.0?
9943       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
9944              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
9945     }
9946   }
9947 
9948   return false;
9949 }
9950 
9951 // FIXME: Should only worry about snans for version with chain.
9952 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
9953                                               DAGCombinerInfo &DCI) const {
9954   EVT VT = N->getValueType(0);
9955   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
9956   // NaNs. With a NaN input, the order of the operands may change the result.
9957 
9958   SelectionDAG &DAG = DCI.DAG;
9959   SDLoc SL(N);
9960 
9961   SDValue Src0 = N->getOperand(0);
9962   SDValue Src1 = N->getOperand(1);
9963   SDValue Src2 = N->getOperand(2);
9964 
9965   if (isClampZeroToOne(Src0, Src1)) {
9966     // const_a, const_b, x -> clamp is safe in all cases including signaling
9967     // nans.
9968     // FIXME: Should this be allowing -0.0?
9969     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
9970   }
9971 
9972   const MachineFunction &MF = DAG.getMachineFunction();
9973   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9974 
9975   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
9976   // handling no dx10-clamp?
9977   if (Info->getMode().DX10Clamp) {
9978     // If NaNs is clamped to 0, we are free to reorder the inputs.
9979 
9980     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9981       std::swap(Src0, Src1);
9982 
9983     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
9984       std::swap(Src1, Src2);
9985 
9986     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9987       std::swap(Src0, Src1);
9988 
9989     if (isClampZeroToOne(Src1, Src2))
9990       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
9991   }
9992 
9993   return SDValue();
9994 }
9995 
9996 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
9997                                                  DAGCombinerInfo &DCI) const {
9998   SDValue Src0 = N->getOperand(0);
9999   SDValue Src1 = N->getOperand(1);
10000   if (Src0.isUndef() && Src1.isUndef())
10001     return DCI.DAG.getUNDEF(N->getValueType(0));
10002   return SDValue();
10003 }
10004 
10005 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10006 // expanded into a set of cmp/select instructions.
10007 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10008                                                 unsigned NumElem,
10009                                                 bool IsDivergentIdx) {
10010   if (UseDivergentRegisterIndexing)
10011     return false;
10012 
10013   unsigned VecSize = EltSize * NumElem;
10014 
10015   // Sub-dword vectors of size 2 dword or less have better implementation.
10016   if (VecSize <= 64 && EltSize < 32)
10017     return false;
10018 
10019   // Always expand the rest of sub-dword instructions, otherwise it will be
10020   // lowered via memory.
10021   if (EltSize < 32)
10022     return true;
10023 
10024   // Always do this if var-idx is divergent, otherwise it will become a loop.
10025   if (IsDivergentIdx)
10026     return true;
10027 
10028   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10029   unsigned NumInsts = NumElem /* Number of compares */ +
10030                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10031   return NumInsts <= 16;
10032 }
10033 
10034 static bool shouldExpandVectorDynExt(SDNode *N) {
10035   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10036   if (isa<ConstantSDNode>(Idx))
10037     return false;
10038 
10039   SDValue Vec = N->getOperand(0);
10040   EVT VecVT = Vec.getValueType();
10041   EVT EltVT = VecVT.getVectorElementType();
10042   unsigned EltSize = EltVT.getSizeInBits();
10043   unsigned NumElem = VecVT.getVectorNumElements();
10044 
10045   return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
10046                                                     Idx->isDivergent());
10047 }
10048 
10049 SDValue SITargetLowering::performExtractVectorEltCombine(
10050   SDNode *N, DAGCombinerInfo &DCI) const {
10051   SDValue Vec = N->getOperand(0);
10052   SelectionDAG &DAG = DCI.DAG;
10053 
10054   EVT VecVT = Vec.getValueType();
10055   EVT EltVT = VecVT.getVectorElementType();
10056 
10057   if ((Vec.getOpcode() == ISD::FNEG ||
10058        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10059     SDLoc SL(N);
10060     EVT EltVT = N->getValueType(0);
10061     SDValue Idx = N->getOperand(1);
10062     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10063                               Vec.getOperand(0), Idx);
10064     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10065   }
10066 
10067   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10068   //    =>
10069   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10070   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10071   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10072   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10073     SDLoc SL(N);
10074     EVT EltVT = N->getValueType(0);
10075     SDValue Idx = N->getOperand(1);
10076     unsigned Opc = Vec.getOpcode();
10077 
10078     switch(Opc) {
10079     default:
10080       break;
10081       // TODO: Support other binary operations.
10082     case ISD::FADD:
10083     case ISD::FSUB:
10084     case ISD::FMUL:
10085     case ISD::ADD:
10086     case ISD::UMIN:
10087     case ISD::UMAX:
10088     case ISD::SMIN:
10089     case ISD::SMAX:
10090     case ISD::FMAXNUM:
10091     case ISD::FMINNUM:
10092     case ISD::FMAXNUM_IEEE:
10093     case ISD::FMINNUM_IEEE: {
10094       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10095                                  Vec.getOperand(0), Idx);
10096       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10097                                  Vec.getOperand(1), Idx);
10098 
10099       DCI.AddToWorklist(Elt0.getNode());
10100       DCI.AddToWorklist(Elt1.getNode());
10101       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10102     }
10103     }
10104   }
10105 
10106   unsigned VecSize = VecVT.getSizeInBits();
10107   unsigned EltSize = EltVT.getSizeInBits();
10108 
10109   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10110   if (::shouldExpandVectorDynExt(N)) {
10111     SDLoc SL(N);
10112     SDValue Idx = N->getOperand(1);
10113     SDValue V;
10114     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10115       SDValue IC = DAG.getVectorIdxConstant(I, SL);
10116       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10117       if (I == 0)
10118         V = Elt;
10119       else
10120         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10121     }
10122     return V;
10123   }
10124 
10125   if (!DCI.isBeforeLegalize())
10126     return SDValue();
10127 
10128   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10129   // elements. This exposes more load reduction opportunities by replacing
10130   // multiple small extract_vector_elements with a single 32-bit extract.
10131   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10132   if (isa<MemSDNode>(Vec) &&
10133       EltSize <= 16 &&
10134       EltVT.isByteSized() &&
10135       VecSize > 32 &&
10136       VecSize % 32 == 0 &&
10137       Idx) {
10138     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10139 
10140     unsigned BitIndex = Idx->getZExtValue() * EltSize;
10141     unsigned EltIdx = BitIndex / 32;
10142     unsigned LeftoverBitIdx = BitIndex % 32;
10143     SDLoc SL(N);
10144 
10145     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10146     DCI.AddToWorklist(Cast.getNode());
10147 
10148     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10149                               DAG.getConstant(EltIdx, SL, MVT::i32));
10150     DCI.AddToWorklist(Elt.getNode());
10151     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10152                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10153     DCI.AddToWorklist(Srl.getNode());
10154 
10155     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10156     DCI.AddToWorklist(Trunc.getNode());
10157     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10158   }
10159 
10160   return SDValue();
10161 }
10162 
10163 SDValue
10164 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10165                                                 DAGCombinerInfo &DCI) const {
10166   SDValue Vec = N->getOperand(0);
10167   SDValue Idx = N->getOperand(2);
10168   EVT VecVT = Vec.getValueType();
10169   EVT EltVT = VecVT.getVectorElementType();
10170 
10171   // INSERT_VECTOR_ELT (<n x e>, var-idx)
10172   // => BUILD_VECTOR n x select (e, const-idx)
10173   if (!::shouldExpandVectorDynExt(N))
10174     return SDValue();
10175 
10176   SelectionDAG &DAG = DCI.DAG;
10177   SDLoc SL(N);
10178   SDValue Ins = N->getOperand(1);
10179   EVT IdxVT = Idx.getValueType();
10180 
10181   SmallVector<SDValue, 16> Ops;
10182   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10183     SDValue IC = DAG.getConstant(I, SL, IdxVT);
10184     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10185     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10186     Ops.push_back(V);
10187   }
10188 
10189   return DAG.getBuildVector(VecVT, SL, Ops);
10190 }
10191 
10192 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10193                                           const SDNode *N0,
10194                                           const SDNode *N1) const {
10195   EVT VT = N0->getValueType(0);
10196 
10197   // Only do this if we are not trying to support denormals. v_mad_f32 does not
10198   // support denormals ever.
10199   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10200        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10201         getSubtarget()->hasMadF16())) &&
10202        isOperationLegal(ISD::FMAD, VT))
10203     return ISD::FMAD;
10204 
10205   const TargetOptions &Options = DAG.getTarget().Options;
10206   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10207        (N0->getFlags().hasAllowContract() &&
10208         N1->getFlags().hasAllowContract())) &&
10209       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10210     return ISD::FMA;
10211   }
10212 
10213   return 0;
10214 }
10215 
10216 // For a reassociatable opcode perform:
10217 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10218 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10219                                                SelectionDAG &DAG) const {
10220   EVT VT = N->getValueType(0);
10221   if (VT != MVT::i32 && VT != MVT::i64)
10222     return SDValue();
10223 
10224   unsigned Opc = N->getOpcode();
10225   SDValue Op0 = N->getOperand(0);
10226   SDValue Op1 = N->getOperand(1);
10227 
10228   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10229     return SDValue();
10230 
10231   if (Op0->isDivergent())
10232     std::swap(Op0, Op1);
10233 
10234   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10235     return SDValue();
10236 
10237   SDValue Op2 = Op1.getOperand(1);
10238   Op1 = Op1.getOperand(0);
10239   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10240     return SDValue();
10241 
10242   if (Op1->isDivergent())
10243     std::swap(Op1, Op2);
10244 
10245   // If either operand is constant this will conflict with
10246   // DAGCombiner::ReassociateOps().
10247   if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
10248       DAG.isConstantIntBuildVectorOrConstantInt(Op1))
10249     return SDValue();
10250 
10251   SDLoc SL(N);
10252   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10253   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10254 }
10255 
10256 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10257                            EVT VT,
10258                            SDValue N0, SDValue N1, SDValue N2,
10259                            bool Signed) {
10260   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10261   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10262   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10263   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10264 }
10265 
10266 SDValue SITargetLowering::performAddCombine(SDNode *N,
10267                                             DAGCombinerInfo &DCI) const {
10268   SelectionDAG &DAG = DCI.DAG;
10269   EVT VT = N->getValueType(0);
10270   SDLoc SL(N);
10271   SDValue LHS = N->getOperand(0);
10272   SDValue RHS = N->getOperand(1);
10273 
10274   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10275       && Subtarget->hasMad64_32() &&
10276       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10277       VT.getScalarSizeInBits() <= 64) {
10278     if (LHS.getOpcode() != ISD::MUL)
10279       std::swap(LHS, RHS);
10280 
10281     SDValue MulLHS = LHS.getOperand(0);
10282     SDValue MulRHS = LHS.getOperand(1);
10283     SDValue AddRHS = RHS;
10284 
10285     // TODO: Maybe restrict if SGPR inputs.
10286     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10287         numBitsUnsigned(MulRHS, DAG) <= 32) {
10288       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10289       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10290       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10291       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10292     }
10293 
10294     if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
10295       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10296       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10297       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10298       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10299     }
10300 
10301     return SDValue();
10302   }
10303 
10304   if (SDValue V = reassociateScalarOps(N, DAG)) {
10305     return V;
10306   }
10307 
10308   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10309     return SDValue();
10310 
10311   // add x, zext (setcc) => addcarry x, 0, setcc
10312   // add x, sext (setcc) => subcarry x, 0, setcc
10313   unsigned Opc = LHS.getOpcode();
10314   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10315       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10316     std::swap(RHS, LHS);
10317 
10318   Opc = RHS.getOpcode();
10319   switch (Opc) {
10320   default: break;
10321   case ISD::ZERO_EXTEND:
10322   case ISD::SIGN_EXTEND:
10323   case ISD::ANY_EXTEND: {
10324     auto Cond = RHS.getOperand(0);
10325     // If this won't be a real VOPC output, we would still need to insert an
10326     // extra instruction anyway.
10327     if (!isBoolSGPR(Cond))
10328       break;
10329     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10330     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10331     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10332     return DAG.getNode(Opc, SL, VTList, Args);
10333   }
10334   case ISD::ADDCARRY: {
10335     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10336     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10337     if (!C || C->getZExtValue() != 0) break;
10338     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10339     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10340   }
10341   }
10342   return SDValue();
10343 }
10344 
10345 SDValue SITargetLowering::performSubCombine(SDNode *N,
10346                                             DAGCombinerInfo &DCI) const {
10347   SelectionDAG &DAG = DCI.DAG;
10348   EVT VT = N->getValueType(0);
10349 
10350   if (VT != MVT::i32)
10351     return SDValue();
10352 
10353   SDLoc SL(N);
10354   SDValue LHS = N->getOperand(0);
10355   SDValue RHS = N->getOperand(1);
10356 
10357   // sub x, zext (setcc) => subcarry x, 0, setcc
10358   // sub x, sext (setcc) => addcarry x, 0, setcc
10359   unsigned Opc = RHS.getOpcode();
10360   switch (Opc) {
10361   default: break;
10362   case ISD::ZERO_EXTEND:
10363   case ISD::SIGN_EXTEND:
10364   case ISD::ANY_EXTEND: {
10365     auto Cond = RHS.getOperand(0);
10366     // If this won't be a real VOPC output, we would still need to insert an
10367     // extra instruction anyway.
10368     if (!isBoolSGPR(Cond))
10369       break;
10370     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10371     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10372     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10373     return DAG.getNode(Opc, SL, VTList, Args);
10374   }
10375   }
10376 
10377   if (LHS.getOpcode() == ISD::SUBCARRY) {
10378     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10379     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10380     if (!C || !C->isNullValue())
10381       return SDValue();
10382     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10383     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10384   }
10385   return SDValue();
10386 }
10387 
10388 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10389   DAGCombinerInfo &DCI) const {
10390 
10391   if (N->getValueType(0) != MVT::i32)
10392     return SDValue();
10393 
10394   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10395   if (!C || C->getZExtValue() != 0)
10396     return SDValue();
10397 
10398   SelectionDAG &DAG = DCI.DAG;
10399   SDValue LHS = N->getOperand(0);
10400 
10401   // addcarry (add x, y), 0, cc => addcarry x, y, cc
10402   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10403   unsigned LHSOpc = LHS.getOpcode();
10404   unsigned Opc = N->getOpcode();
10405   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10406       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10407     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10408     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10409   }
10410   return SDValue();
10411 }
10412 
10413 SDValue SITargetLowering::performFAddCombine(SDNode *N,
10414                                              DAGCombinerInfo &DCI) const {
10415   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10416     return SDValue();
10417 
10418   SelectionDAG &DAG = DCI.DAG;
10419   EVT VT = N->getValueType(0);
10420 
10421   SDLoc SL(N);
10422   SDValue LHS = N->getOperand(0);
10423   SDValue RHS = N->getOperand(1);
10424 
10425   // These should really be instruction patterns, but writing patterns with
10426   // source modiifiers is a pain.
10427 
10428   // fadd (fadd (a, a), b) -> mad 2.0, a, b
10429   if (LHS.getOpcode() == ISD::FADD) {
10430     SDValue A = LHS.getOperand(0);
10431     if (A == LHS.getOperand(1)) {
10432       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10433       if (FusedOp != 0) {
10434         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10435         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10436       }
10437     }
10438   }
10439 
10440   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10441   if (RHS.getOpcode() == ISD::FADD) {
10442     SDValue A = RHS.getOperand(0);
10443     if (A == RHS.getOperand(1)) {
10444       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10445       if (FusedOp != 0) {
10446         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10447         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10448       }
10449     }
10450   }
10451 
10452   return SDValue();
10453 }
10454 
10455 SDValue SITargetLowering::performFSubCombine(SDNode *N,
10456                                              DAGCombinerInfo &DCI) const {
10457   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10458     return SDValue();
10459 
10460   SelectionDAG &DAG = DCI.DAG;
10461   SDLoc SL(N);
10462   EVT VT = N->getValueType(0);
10463   assert(!VT.isVector());
10464 
10465   // Try to get the fneg to fold into the source modifier. This undoes generic
10466   // DAG combines and folds them into the mad.
10467   //
10468   // Only do this if we are not trying to support denormals. v_mad_f32 does
10469   // not support denormals ever.
10470   SDValue LHS = N->getOperand(0);
10471   SDValue RHS = N->getOperand(1);
10472   if (LHS.getOpcode() == ISD::FADD) {
10473     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10474     SDValue A = LHS.getOperand(0);
10475     if (A == LHS.getOperand(1)) {
10476       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10477       if (FusedOp != 0){
10478         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10479         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10480 
10481         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10482       }
10483     }
10484   }
10485 
10486   if (RHS.getOpcode() == ISD::FADD) {
10487     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10488 
10489     SDValue A = RHS.getOperand(0);
10490     if (A == RHS.getOperand(1)) {
10491       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10492       if (FusedOp != 0){
10493         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10494         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10495       }
10496     }
10497   }
10498 
10499   return SDValue();
10500 }
10501 
10502 SDValue SITargetLowering::performFMACombine(SDNode *N,
10503                                             DAGCombinerInfo &DCI) const {
10504   SelectionDAG &DAG = DCI.DAG;
10505   EVT VT = N->getValueType(0);
10506   SDLoc SL(N);
10507 
10508   if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
10509     return SDValue();
10510 
10511   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10512   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10513   SDValue Op1 = N->getOperand(0);
10514   SDValue Op2 = N->getOperand(1);
10515   SDValue FMA = N->getOperand(2);
10516 
10517   if (FMA.getOpcode() != ISD::FMA ||
10518       Op1.getOpcode() != ISD::FP_EXTEND ||
10519       Op2.getOpcode() != ISD::FP_EXTEND)
10520     return SDValue();
10521 
10522   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10523   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10524   // is sufficient to allow generaing fdot2.
10525   const TargetOptions &Options = DAG.getTarget().Options;
10526   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10527       (N->getFlags().hasAllowContract() &&
10528        FMA->getFlags().hasAllowContract())) {
10529     Op1 = Op1.getOperand(0);
10530     Op2 = Op2.getOperand(0);
10531     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10532         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10533       return SDValue();
10534 
10535     SDValue Vec1 = Op1.getOperand(0);
10536     SDValue Idx1 = Op1.getOperand(1);
10537     SDValue Vec2 = Op2.getOperand(0);
10538 
10539     SDValue FMAOp1 = FMA.getOperand(0);
10540     SDValue FMAOp2 = FMA.getOperand(1);
10541     SDValue FMAAcc = FMA.getOperand(2);
10542 
10543     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10544         FMAOp2.getOpcode() != ISD::FP_EXTEND)
10545       return SDValue();
10546 
10547     FMAOp1 = FMAOp1.getOperand(0);
10548     FMAOp2 = FMAOp2.getOperand(0);
10549     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10550         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10551       return SDValue();
10552 
10553     SDValue Vec3 = FMAOp1.getOperand(0);
10554     SDValue Vec4 = FMAOp2.getOperand(0);
10555     SDValue Idx2 = FMAOp1.getOperand(1);
10556 
10557     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10558         // Idx1 and Idx2 cannot be the same.
10559         Idx1 == Idx2)
10560       return SDValue();
10561 
10562     if (Vec1 == Vec2 || Vec3 == Vec4)
10563       return SDValue();
10564 
10565     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10566       return SDValue();
10567 
10568     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10569         (Vec1 == Vec4 && Vec2 == Vec3)) {
10570       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10571                          DAG.getTargetConstant(0, SL, MVT::i1));
10572     }
10573   }
10574   return SDValue();
10575 }
10576 
10577 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10578                                               DAGCombinerInfo &DCI) const {
10579   SelectionDAG &DAG = DCI.DAG;
10580   SDLoc SL(N);
10581 
10582   SDValue LHS = N->getOperand(0);
10583   SDValue RHS = N->getOperand(1);
10584   EVT VT = LHS.getValueType();
10585   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10586 
10587   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10588   if (!CRHS) {
10589     CRHS = dyn_cast<ConstantSDNode>(LHS);
10590     if (CRHS) {
10591       std::swap(LHS, RHS);
10592       CC = getSetCCSwappedOperands(CC);
10593     }
10594   }
10595 
10596   if (CRHS) {
10597     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10598         isBoolSGPR(LHS.getOperand(0))) {
10599       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10600       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10601       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
10602       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
10603       if ((CRHS->isAllOnesValue() &&
10604            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10605           (CRHS->isNullValue() &&
10606            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10607         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10608                            DAG.getConstant(-1, SL, MVT::i1));
10609       if ((CRHS->isAllOnesValue() &&
10610            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10611           (CRHS->isNullValue() &&
10612            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10613         return LHS.getOperand(0);
10614     }
10615 
10616     uint64_t CRHSVal = CRHS->getZExtValue();
10617     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10618         LHS.getOpcode() == ISD::SELECT &&
10619         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10620         isa<ConstantSDNode>(LHS.getOperand(2)) &&
10621         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10622         isBoolSGPR(LHS.getOperand(0))) {
10623       // Given CT != FT:
10624       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10625       // setcc (select cc, CT, CF), CF, ne => cc
10626       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10627       // setcc (select cc, CT, CF), CT, eq => cc
10628       uint64_t CT = LHS.getConstantOperandVal(1);
10629       uint64_t CF = LHS.getConstantOperandVal(2);
10630 
10631       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10632           (CT == CRHSVal && CC == ISD::SETNE))
10633         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10634                            DAG.getConstant(-1, SL, MVT::i1));
10635       if ((CF == CRHSVal && CC == ISD::SETNE) ||
10636           (CT == CRHSVal && CC == ISD::SETEQ))
10637         return LHS.getOperand(0);
10638     }
10639   }
10640 
10641   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10642                                            VT != MVT::f16))
10643     return SDValue();
10644 
10645   // Match isinf/isfinite pattern
10646   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10647   // (fcmp one (fabs x), inf) -> (fp_class x,
10648   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10649   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10650     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10651     if (!CRHS)
10652       return SDValue();
10653 
10654     const APFloat &APF = CRHS->getValueAPF();
10655     if (APF.isInfinity() && !APF.isNegative()) {
10656       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10657                                  SIInstrFlags::N_INFINITY;
10658       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10659                                     SIInstrFlags::P_ZERO |
10660                                     SIInstrFlags::N_NORMAL |
10661                                     SIInstrFlags::P_NORMAL |
10662                                     SIInstrFlags::N_SUBNORMAL |
10663                                     SIInstrFlags::P_SUBNORMAL;
10664       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
10665       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
10666                          DAG.getConstant(Mask, SL, MVT::i32));
10667     }
10668   }
10669 
10670   return SDValue();
10671 }
10672 
10673 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
10674                                                      DAGCombinerInfo &DCI) const {
10675   SelectionDAG &DAG = DCI.DAG;
10676   SDLoc SL(N);
10677   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
10678 
10679   SDValue Src = N->getOperand(0);
10680   SDValue Shift = N->getOperand(0);
10681 
10682   // TODO: Extend type shouldn't matter (assuming legal types).
10683   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
10684     Shift = Shift.getOperand(0);
10685 
10686   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
10687     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
10688     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
10689     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
10690     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
10691     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
10692     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
10693       Shift = DAG.getZExtOrTrunc(Shift.getOperand(0),
10694                                  SDLoc(Shift.getOperand(0)), MVT::i32);
10695 
10696       unsigned ShiftOffset = 8 * Offset;
10697       if (Shift.getOpcode() == ISD::SHL)
10698         ShiftOffset -= C->getZExtValue();
10699       else
10700         ShiftOffset += C->getZExtValue();
10701 
10702       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
10703         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
10704                            MVT::f32, Shift);
10705       }
10706     }
10707   }
10708 
10709   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10710   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
10711   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
10712     // We simplified Src. If this node is not dead, visit it again so it is
10713     // folded properly.
10714     if (N->getOpcode() != ISD::DELETED_NODE)
10715       DCI.AddToWorklist(N);
10716     return SDValue(N, 0);
10717   }
10718 
10719   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
10720   if (SDValue DemandedSrc =
10721           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
10722     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
10723 
10724   return SDValue();
10725 }
10726 
10727 SDValue SITargetLowering::performClampCombine(SDNode *N,
10728                                               DAGCombinerInfo &DCI) const {
10729   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
10730   if (!CSrc)
10731     return SDValue();
10732 
10733   const MachineFunction &MF = DCI.DAG.getMachineFunction();
10734   const APFloat &F = CSrc->getValueAPF();
10735   APFloat Zero = APFloat::getZero(F.getSemantics());
10736   if (F < Zero ||
10737       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
10738     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
10739   }
10740 
10741   APFloat One(F.getSemantics(), "1.0");
10742   if (F > One)
10743     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
10744 
10745   return SDValue(CSrc, 0);
10746 }
10747 
10748 
10749 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
10750                                             DAGCombinerInfo &DCI) const {
10751   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
10752     return SDValue();
10753   switch (N->getOpcode()) {
10754   case ISD::ADD:
10755     return performAddCombine(N, DCI);
10756   case ISD::SUB:
10757     return performSubCombine(N, DCI);
10758   case ISD::ADDCARRY:
10759   case ISD::SUBCARRY:
10760     return performAddCarrySubCarryCombine(N, DCI);
10761   case ISD::FADD:
10762     return performFAddCombine(N, DCI);
10763   case ISD::FSUB:
10764     return performFSubCombine(N, DCI);
10765   case ISD::SETCC:
10766     return performSetCCCombine(N, DCI);
10767   case ISD::FMAXNUM:
10768   case ISD::FMINNUM:
10769   case ISD::FMAXNUM_IEEE:
10770   case ISD::FMINNUM_IEEE:
10771   case ISD::SMAX:
10772   case ISD::SMIN:
10773   case ISD::UMAX:
10774   case ISD::UMIN:
10775   case AMDGPUISD::FMIN_LEGACY:
10776   case AMDGPUISD::FMAX_LEGACY:
10777     return performMinMaxCombine(N, DCI);
10778   case ISD::FMA:
10779     return performFMACombine(N, DCI);
10780   case ISD::AND:
10781     return performAndCombine(N, DCI);
10782   case ISD::OR:
10783     return performOrCombine(N, DCI);
10784   case ISD::XOR:
10785     return performXorCombine(N, DCI);
10786   case ISD::ZERO_EXTEND:
10787     return performZeroExtendCombine(N, DCI);
10788   case ISD::SIGN_EXTEND_INREG:
10789     return performSignExtendInRegCombine(N , DCI);
10790   case AMDGPUISD::FP_CLASS:
10791     return performClassCombine(N, DCI);
10792   case ISD::FCANONICALIZE:
10793     return performFCanonicalizeCombine(N, DCI);
10794   case AMDGPUISD::RCP:
10795     return performRcpCombine(N, DCI);
10796   case AMDGPUISD::FRACT:
10797   case AMDGPUISD::RSQ:
10798   case AMDGPUISD::RCP_LEGACY:
10799   case AMDGPUISD::RCP_IFLAG:
10800   case AMDGPUISD::RSQ_CLAMP:
10801   case AMDGPUISD::LDEXP: {
10802     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
10803     SDValue Src = N->getOperand(0);
10804     if (Src.isUndef())
10805       return Src;
10806     break;
10807   }
10808   case ISD::SINT_TO_FP:
10809   case ISD::UINT_TO_FP:
10810     return performUCharToFloatCombine(N, DCI);
10811   case AMDGPUISD::CVT_F32_UBYTE0:
10812   case AMDGPUISD::CVT_F32_UBYTE1:
10813   case AMDGPUISD::CVT_F32_UBYTE2:
10814   case AMDGPUISD::CVT_F32_UBYTE3:
10815     return performCvtF32UByteNCombine(N, DCI);
10816   case AMDGPUISD::FMED3:
10817     return performFMed3Combine(N, DCI);
10818   case AMDGPUISD::CVT_PKRTZ_F16_F32:
10819     return performCvtPkRTZCombine(N, DCI);
10820   case AMDGPUISD::CLAMP:
10821     return performClampCombine(N, DCI);
10822   case ISD::SCALAR_TO_VECTOR: {
10823     SelectionDAG &DAG = DCI.DAG;
10824     EVT VT = N->getValueType(0);
10825 
10826     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10827     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10828       SDLoc SL(N);
10829       SDValue Src = N->getOperand(0);
10830       EVT EltVT = Src.getValueType();
10831       if (EltVT == MVT::f16)
10832         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10833 
10834       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10835       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10836     }
10837 
10838     break;
10839   }
10840   case ISD::EXTRACT_VECTOR_ELT:
10841     return performExtractVectorEltCombine(N, DCI);
10842   case ISD::INSERT_VECTOR_ELT:
10843     return performInsertVectorEltCombine(N, DCI);
10844   case ISD::LOAD: {
10845     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
10846       return Widended;
10847     LLVM_FALLTHROUGH;
10848   }
10849   default: {
10850     if (!DCI.isBeforeLegalize()) {
10851       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
10852         return performMemSDNodeCombine(MemNode, DCI);
10853     }
10854 
10855     break;
10856   }
10857   }
10858 
10859   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10860 }
10861 
10862 /// Helper function for adjustWritemask
10863 static unsigned SubIdx2Lane(unsigned Idx) {
10864   switch (Idx) {
10865   default: return ~0u;
10866   case AMDGPU::sub0: return 0;
10867   case AMDGPU::sub1: return 1;
10868   case AMDGPU::sub2: return 2;
10869   case AMDGPU::sub3: return 3;
10870   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10871   }
10872 }
10873 
10874 /// Adjust the writemask of MIMG instructions
10875 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10876                                           SelectionDAG &DAG) const {
10877   unsigned Opcode = Node->getMachineOpcode();
10878 
10879   // Subtract 1 because the vdata output is not a MachineSDNode operand.
10880   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10881   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10882     return Node; // not implemented for D16
10883 
10884   SDNode *Users[5] = { nullptr };
10885   unsigned Lane = 0;
10886   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10887   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10888   unsigned NewDmask = 0;
10889   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10890   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10891   bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
10892                   Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
10893   unsigned TFCLane = 0;
10894   bool HasChain = Node->getNumValues() > 1;
10895 
10896   if (OldDmask == 0) {
10897     // These are folded out, but on the chance it happens don't assert.
10898     return Node;
10899   }
10900 
10901   unsigned OldBitsSet = countPopulation(OldDmask);
10902   // Work out which is the TFE/LWE lane if that is enabled.
10903   if (UsesTFC) {
10904     TFCLane = OldBitsSet;
10905   }
10906 
10907   // Try to figure out the used register components
10908   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
10909        I != E; ++I) {
10910 
10911     // Don't look at users of the chain.
10912     if (I.getUse().getResNo() != 0)
10913       continue;
10914 
10915     // Abort if we can't understand the usage
10916     if (!I->isMachineOpcode() ||
10917         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10918       return Node;
10919 
10920     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10921     // Note that subregs are packed, i.e. Lane==0 is the first bit set
10922     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10923     // set, etc.
10924     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10925     if (Lane == ~0u)
10926       return Node;
10927 
10928     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10929     if (UsesTFC && Lane == TFCLane) {
10930       Users[Lane] = *I;
10931     } else {
10932       // Set which texture component corresponds to the lane.
10933       unsigned Comp;
10934       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10935         Comp = countTrailingZeros(Dmask);
10936         Dmask &= ~(1 << Comp);
10937       }
10938 
10939       // Abort if we have more than one user per component.
10940       if (Users[Lane])
10941         return Node;
10942 
10943       Users[Lane] = *I;
10944       NewDmask |= 1 << Comp;
10945     }
10946   }
10947 
10948   // Don't allow 0 dmask, as hardware assumes one channel enabled.
10949   bool NoChannels = !NewDmask;
10950   if (NoChannels) {
10951     if (!UsesTFC) {
10952       // No uses of the result and not using TFC. Then do nothing.
10953       return Node;
10954     }
10955     // If the original dmask has one channel - then nothing to do
10956     if (OldBitsSet == 1)
10957       return Node;
10958     // Use an arbitrary dmask - required for the instruction to work
10959     NewDmask = 1;
10960   }
10961   // Abort if there's no change
10962   if (NewDmask == OldDmask)
10963     return Node;
10964 
10965   unsigned BitsSet = countPopulation(NewDmask);
10966 
10967   // Check for TFE or LWE - increase the number of channels by one to account
10968   // for the extra return value
10969   // This will need adjustment for D16 if this is also included in
10970   // adjustWriteMask (this function) but at present D16 are excluded.
10971   unsigned NewChannels = BitsSet + UsesTFC;
10972 
10973   int NewOpcode =
10974       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
10975   assert(NewOpcode != -1 &&
10976          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
10977          "failed to find equivalent MIMG op");
10978 
10979   // Adjust the writemask in the node
10980   SmallVector<SDValue, 12> Ops;
10981   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
10982   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
10983   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
10984 
10985   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
10986 
10987   MVT ResultVT = NewChannels == 1 ?
10988     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
10989                            NewChannels == 5 ? 8 : NewChannels);
10990   SDVTList NewVTList = HasChain ?
10991     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
10992 
10993 
10994   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
10995                                               NewVTList, Ops);
10996 
10997   if (HasChain) {
10998     // Update chain.
10999     DAG.setNodeMemRefs(NewNode, Node->memoperands());
11000     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11001   }
11002 
11003   if (NewChannels == 1) {
11004     assert(Node->hasNUsesOfValue(1, 0));
11005     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11006                                       SDLoc(Node), Users[Lane]->getValueType(0),
11007                                       SDValue(NewNode, 0));
11008     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11009     return nullptr;
11010   }
11011 
11012   // Update the users of the node with the new indices
11013   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11014     SDNode *User = Users[i];
11015     if (!User) {
11016       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11017       // Users[0] is still nullptr because channel 0 doesn't really have a use.
11018       if (i || !NoChannels)
11019         continue;
11020     } else {
11021       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11022       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11023     }
11024 
11025     switch (Idx) {
11026     default: break;
11027     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11028     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11029     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11030     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11031     }
11032   }
11033 
11034   DAG.RemoveDeadNode(Node);
11035   return nullptr;
11036 }
11037 
11038 static bool isFrameIndexOp(SDValue Op) {
11039   if (Op.getOpcode() == ISD::AssertZext)
11040     Op = Op.getOperand(0);
11041 
11042   return isa<FrameIndexSDNode>(Op);
11043 }
11044 
11045 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11046 /// with frame index operands.
11047 /// LLVM assumes that inputs are to these instructions are registers.
11048 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11049                                                         SelectionDAG &DAG) const {
11050   if (Node->getOpcode() == ISD::CopyToReg) {
11051     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11052     SDValue SrcVal = Node->getOperand(2);
11053 
11054     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11055     // to try understanding copies to physical registers.
11056     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11057       SDLoc SL(Node);
11058       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11059       SDValue VReg = DAG.getRegister(
11060         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11061 
11062       SDNode *Glued = Node->getGluedNode();
11063       SDValue ToVReg
11064         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11065                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11066       SDValue ToResultReg
11067         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11068                            VReg, ToVReg.getValue(1));
11069       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11070       DAG.RemoveDeadNode(Node);
11071       return ToResultReg.getNode();
11072     }
11073   }
11074 
11075   SmallVector<SDValue, 8> Ops;
11076   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11077     if (!isFrameIndexOp(Node->getOperand(i))) {
11078       Ops.push_back(Node->getOperand(i));
11079       continue;
11080     }
11081 
11082     SDLoc DL(Node);
11083     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11084                                      Node->getOperand(i).getValueType(),
11085                                      Node->getOperand(i)), 0));
11086   }
11087 
11088   return DAG.UpdateNodeOperands(Node, Ops);
11089 }
11090 
11091 /// Fold the instructions after selecting them.
11092 /// Returns null if users were already updated.
11093 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11094                                           SelectionDAG &DAG) const {
11095   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11096   unsigned Opcode = Node->getMachineOpcode();
11097 
11098   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11099       !TII->isGather4(Opcode) &&
11100       AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11101     return adjustWritemask(Node, DAG);
11102   }
11103 
11104   if (Opcode == AMDGPU::INSERT_SUBREG ||
11105       Opcode == AMDGPU::REG_SEQUENCE) {
11106     legalizeTargetIndependentNode(Node, DAG);
11107     return Node;
11108   }
11109 
11110   switch (Opcode) {
11111   case AMDGPU::V_DIV_SCALE_F32:
11112   case AMDGPU::V_DIV_SCALE_F64: {
11113     // Satisfy the operand register constraint when one of the inputs is
11114     // undefined. Ordinarily each undef value will have its own implicit_def of
11115     // a vreg, so force these to use a single register.
11116     SDValue Src0 = Node->getOperand(1);
11117     SDValue Src1 = Node->getOperand(3);
11118     SDValue Src2 = Node->getOperand(5);
11119 
11120     if ((Src0.isMachineOpcode() &&
11121          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11122         (Src0 == Src1 || Src0 == Src2))
11123       break;
11124 
11125     MVT VT = Src0.getValueType().getSimpleVT();
11126     const TargetRegisterClass *RC =
11127         getRegClassFor(VT, Src0.getNode()->isDivergent());
11128 
11129     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11130     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11131 
11132     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11133                                       UndefReg, Src0, SDValue());
11134 
11135     // src0 must be the same register as src1 or src2, even if the value is
11136     // undefined, so make sure we don't violate this constraint.
11137     if (Src0.isMachineOpcode() &&
11138         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11139       if (Src1.isMachineOpcode() &&
11140           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11141         Src0 = Src1;
11142       else if (Src2.isMachineOpcode() &&
11143                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11144         Src0 = Src2;
11145       else {
11146         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11147         Src0 = UndefReg;
11148         Src1 = UndefReg;
11149       }
11150     } else
11151       break;
11152 
11153     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11154     Ops[1] = Src0;
11155     Ops[3] = Src1;
11156     Ops[5] = Src2;
11157     Ops.push_back(ImpDef.getValue(1));
11158     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11159   }
11160   default:
11161     break;
11162   }
11163 
11164   return Node;
11165 }
11166 
11167 /// Assign the register class depending on the number of
11168 /// bits set in the writemask
11169 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11170                                                      SDNode *Node) const {
11171   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11172 
11173   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11174 
11175   if (TII->isVOP3(MI.getOpcode())) {
11176     // Make sure constant bus requirements are respected.
11177     TII->legalizeOperandsVOP3(MRI, MI);
11178 
11179     // Prefer VGPRs over AGPRs in mAI instructions where possible.
11180     // This saves a chain-copy of registers and better ballance register
11181     // use between vgpr and agpr as agpr tuples tend to be big.
11182     if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
11183       unsigned Opc = MI.getOpcode();
11184       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11185       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11186                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11187         if (I == -1)
11188           break;
11189         MachineOperand &Op = MI.getOperand(I);
11190         if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
11191              OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
11192             !Op.getReg().isVirtual() || !TRI->isAGPR(MRI, Op.getReg()))
11193           continue;
11194         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11195         if (!Src || !Src->isCopy() ||
11196             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11197           continue;
11198         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11199         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11200         // All uses of agpr64 and agpr32 can also accept vgpr except for
11201         // v_accvgpr_read, but we do not produce agpr reads during selection,
11202         // so no use checks are needed.
11203         MRI.setRegClass(Op.getReg(), NewRC);
11204       }
11205     }
11206 
11207     return;
11208   }
11209 
11210   // Replace unused atomics with the no return version.
11211   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11212   if (NoRetAtomicOp != -1) {
11213     if (!Node->hasAnyUseOfValue(0)) {
11214       int Glc1Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
11215                                                AMDGPU::OpName::glc1);
11216       if (Glc1Idx != -1)
11217         MI.RemoveOperand(Glc1Idx);
11218       MI.RemoveOperand(0);
11219       MI.setDesc(TII->get(NoRetAtomicOp));
11220       return;
11221     }
11222 
11223     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11224     // instruction, because the return type of these instructions is a vec2 of
11225     // the memory type, so it can be tied to the input operand.
11226     // This means these instructions always have a use, so we need to add a
11227     // special case to check if the atomic has only one extract_subreg use,
11228     // which itself has no uses.
11229     if ((Node->hasNUsesOfValue(1, 0) &&
11230          Node->use_begin()->isMachineOpcode() &&
11231          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11232          !Node->use_begin()->hasAnyUseOfValue(0))) {
11233       Register Def = MI.getOperand(0).getReg();
11234 
11235       // Change this into a noret atomic.
11236       MI.setDesc(TII->get(NoRetAtomicOp));
11237       MI.RemoveOperand(0);
11238 
11239       // If we only remove the def operand from the atomic instruction, the
11240       // extract_subreg will be left with a use of a vreg without a def.
11241       // So we need to insert an implicit_def to avoid machine verifier
11242       // errors.
11243       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11244               TII->get(AMDGPU::IMPLICIT_DEF), Def);
11245     }
11246     return;
11247   }
11248 }
11249 
11250 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11251                               uint64_t Val) {
11252   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11253   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11254 }
11255 
11256 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11257                                                 const SDLoc &DL,
11258                                                 SDValue Ptr) const {
11259   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11260 
11261   // Build the half of the subregister with the constants before building the
11262   // full 128-bit register. If we are building multiple resource descriptors,
11263   // this will allow CSEing of the 2-component register.
11264   const SDValue Ops0[] = {
11265     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11266     buildSMovImm32(DAG, DL, 0),
11267     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11268     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11269     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11270   };
11271 
11272   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11273                                                 MVT::v2i32, Ops0), 0);
11274 
11275   // Combine the constants and the pointer.
11276   const SDValue Ops1[] = {
11277     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11278     Ptr,
11279     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11280     SubRegHi,
11281     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11282   };
11283 
11284   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11285 }
11286 
11287 /// Return a resource descriptor with the 'Add TID' bit enabled
11288 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11289 ///        of the resource descriptor) to create an offset, which is added to
11290 ///        the resource pointer.
11291 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11292                                            SDValue Ptr, uint32_t RsrcDword1,
11293                                            uint64_t RsrcDword2And3) const {
11294   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11295   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11296   if (RsrcDword1) {
11297     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11298                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11299                     0);
11300   }
11301 
11302   SDValue DataLo = buildSMovImm32(DAG, DL,
11303                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
11304   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11305 
11306   const SDValue Ops[] = {
11307     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11308     PtrLo,
11309     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11310     PtrHi,
11311     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11312     DataLo,
11313     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11314     DataHi,
11315     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11316   };
11317 
11318   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11319 }
11320 
11321 //===----------------------------------------------------------------------===//
11322 //                         SI Inline Assembly Support
11323 //===----------------------------------------------------------------------===//
11324 
11325 std::pair<unsigned, const TargetRegisterClass *>
11326 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11327                                                StringRef Constraint,
11328                                                MVT VT) const {
11329   const TargetRegisterClass *RC = nullptr;
11330   if (Constraint.size() == 1) {
11331     const unsigned BitWidth = VT.getSizeInBits();
11332     switch (Constraint[0]) {
11333     default:
11334       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11335     case 's':
11336     case 'r':
11337       switch (BitWidth) {
11338       case 16:
11339         RC = &AMDGPU::SReg_32RegClass;
11340         break;
11341       case 64:
11342         RC = &AMDGPU::SGPR_64RegClass;
11343         break;
11344       default:
11345         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11346         if (!RC)
11347           return std::make_pair(0U, nullptr);
11348         break;
11349       }
11350       break;
11351     case 'v':
11352       switch (BitWidth) {
11353       case 16:
11354         RC = &AMDGPU::VGPR_32RegClass;
11355         break;
11356       default:
11357         RC = SIRegisterInfo::getVGPRClassForBitWidth(BitWidth);
11358         if (!RC)
11359           return std::make_pair(0U, nullptr);
11360         break;
11361       }
11362       break;
11363     case 'a':
11364       if (!Subtarget->hasMAIInsts())
11365         break;
11366       switch (BitWidth) {
11367       case 16:
11368         RC = &AMDGPU::AGPR_32RegClass;
11369         break;
11370       default:
11371         RC = SIRegisterInfo::getAGPRClassForBitWidth(BitWidth);
11372         if (!RC)
11373           return std::make_pair(0U, nullptr);
11374         break;
11375       }
11376       break;
11377     }
11378     // We actually support i128, i16 and f16 as inline parameters
11379     // even if they are not reported as legal
11380     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11381                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11382       return std::make_pair(0U, RC);
11383   }
11384 
11385   if (Constraint.size() > 1) {
11386     if (Constraint[1] == 'v') {
11387       RC = &AMDGPU::VGPR_32RegClass;
11388     } else if (Constraint[1] == 's') {
11389       RC = &AMDGPU::SGPR_32RegClass;
11390     } else if (Constraint[1] == 'a') {
11391       RC = &AMDGPU::AGPR_32RegClass;
11392     }
11393 
11394     if (RC) {
11395       uint32_t Idx;
11396       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
11397       if (!Failed && Idx < RC->getNumRegs())
11398         return std::make_pair(RC->getRegister(Idx), RC);
11399     }
11400   }
11401 
11402   // FIXME: Returns VS_32 for physical SGPR constraints
11403   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11404 }
11405 
11406 static bool isImmConstraint(StringRef Constraint) {
11407   if (Constraint.size() == 1) {
11408     switch (Constraint[0]) {
11409     default: break;
11410     case 'I':
11411     case 'J':
11412     case 'A':
11413     case 'B':
11414     case 'C':
11415       return true;
11416     }
11417   } else if (Constraint == "DA" ||
11418              Constraint == "DB") {
11419     return true;
11420   }
11421   return false;
11422 }
11423 
11424 SITargetLowering::ConstraintType
11425 SITargetLowering::getConstraintType(StringRef Constraint) const {
11426   if (Constraint.size() == 1) {
11427     switch (Constraint[0]) {
11428     default: break;
11429     case 's':
11430     case 'v':
11431     case 'a':
11432       return C_RegisterClass;
11433     }
11434   }
11435   if (isImmConstraint(Constraint)) {
11436     return C_Other;
11437   }
11438   return TargetLowering::getConstraintType(Constraint);
11439 }
11440 
11441 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11442   if (!AMDGPU::isInlinableIntLiteral(Val)) {
11443     Val = Val & maskTrailingOnes<uint64_t>(Size);
11444   }
11445   return Val;
11446 }
11447 
11448 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11449                                                     std::string &Constraint,
11450                                                     std::vector<SDValue> &Ops,
11451                                                     SelectionDAG &DAG) const {
11452   if (isImmConstraint(Constraint)) {
11453     uint64_t Val;
11454     if (getAsmOperandConstVal(Op, Val) &&
11455         checkAsmConstraintVal(Op, Constraint, Val)) {
11456       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11457       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11458     }
11459   } else {
11460     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11461   }
11462 }
11463 
11464 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11465   unsigned Size = Op.getScalarValueSizeInBits();
11466   if (Size > 64)
11467     return false;
11468 
11469   if (Size == 16 && !Subtarget->has16BitInsts())
11470     return false;
11471 
11472   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11473     Val = C->getSExtValue();
11474     return true;
11475   }
11476   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11477     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11478     return true;
11479   }
11480   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11481     if (Size != 16 || Op.getNumOperands() != 2)
11482       return false;
11483     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11484       return false;
11485     if (ConstantSDNode *C = V->getConstantSplatNode()) {
11486       Val = C->getSExtValue();
11487       return true;
11488     }
11489     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11490       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11491       return true;
11492     }
11493   }
11494 
11495   return false;
11496 }
11497 
11498 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11499                                              const std::string &Constraint,
11500                                              uint64_t Val) const {
11501   if (Constraint.size() == 1) {
11502     switch (Constraint[0]) {
11503     case 'I':
11504       return AMDGPU::isInlinableIntLiteral(Val);
11505     case 'J':
11506       return isInt<16>(Val);
11507     case 'A':
11508       return checkAsmConstraintValA(Op, Val);
11509     case 'B':
11510       return isInt<32>(Val);
11511     case 'C':
11512       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11513              AMDGPU::isInlinableIntLiteral(Val);
11514     default:
11515       break;
11516     }
11517   } else if (Constraint.size() == 2) {
11518     if (Constraint == "DA") {
11519       int64_t HiBits = static_cast<int32_t>(Val >> 32);
11520       int64_t LoBits = static_cast<int32_t>(Val);
11521       return checkAsmConstraintValA(Op, HiBits, 32) &&
11522              checkAsmConstraintValA(Op, LoBits, 32);
11523     }
11524     if (Constraint == "DB") {
11525       return true;
11526     }
11527   }
11528   llvm_unreachable("Invalid asm constraint");
11529 }
11530 
11531 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11532                                               uint64_t Val,
11533                                               unsigned MaxSize) const {
11534   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11535   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11536   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11537       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11538       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
11539     return true;
11540   }
11541   return false;
11542 }
11543 
11544 // Figure out which registers should be reserved for stack access. Only after
11545 // the function is legalized do we know all of the non-spill stack objects or if
11546 // calls are present.
11547 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
11548   MachineRegisterInfo &MRI = MF.getRegInfo();
11549   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11550   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
11551   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11552 
11553   if (Info->isEntryFunction()) {
11554     // Callable functions have fixed registers used for stack access.
11555     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
11556   }
11557 
11558   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
11559                              Info->getStackPtrOffsetReg()));
11560   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
11561     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
11562 
11563   // We need to worry about replacing the default register with itself in case
11564   // of MIR testcases missing the MFI.
11565   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
11566     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
11567 
11568   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
11569     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
11570 
11571   Info->limitOccupancy(MF);
11572 
11573   if (ST.isWave32() && !MF.empty()) {
11574     const SIInstrInfo *TII = ST.getInstrInfo();
11575     for (auto &MBB : MF) {
11576       for (auto &MI : MBB) {
11577         TII->fixImplicitOperands(MI);
11578       }
11579     }
11580   }
11581 
11582   TargetLoweringBase::finalizeLowering(MF);
11583 
11584   // Allocate a VGPR for future SGPR Spill if
11585   // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used
11586   // FIXME: We won't need this hack if we split SGPR allocation from VGPR
11587   if (VGPRReserveforSGPRSpill && !Info->VGPRReservedForSGPRSpill &&
11588       !Info->isEntryFunction() && MF.getFrameInfo().hasStackObjects())
11589     Info->reserveVGPRforSGPRSpills(MF);
11590 }
11591 
11592 void SITargetLowering::computeKnownBitsForFrameIndex(
11593   const int FI, KnownBits &Known, const MachineFunction &MF) const {
11594   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
11595 
11596   // Set the high bits to zero based on the maximum allowed scratch size per
11597   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
11598   // calculation won't overflow, so assume the sign bit is never set.
11599   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
11600 }
11601 
11602 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
11603                                    KnownBits &Known, unsigned Dim) {
11604   unsigned MaxValue =
11605       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
11606   Known.Zero.setHighBits(countLeadingZeros(MaxValue));
11607 }
11608 
11609 void SITargetLowering::computeKnownBitsForTargetInstr(
11610     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
11611     const MachineRegisterInfo &MRI, unsigned Depth) const {
11612   const MachineInstr *MI = MRI.getVRegDef(R);
11613   switch (MI->getOpcode()) {
11614   case AMDGPU::G_INTRINSIC: {
11615     switch (MI->getIntrinsicID()) {
11616     case Intrinsic::amdgcn_workitem_id_x:
11617       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
11618       break;
11619     case Intrinsic::amdgcn_workitem_id_y:
11620       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
11621       break;
11622     case Intrinsic::amdgcn_workitem_id_z:
11623       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
11624       break;
11625     case Intrinsic::amdgcn_mbcnt_lo:
11626     case Intrinsic::amdgcn_mbcnt_hi: {
11627       // These return at most the wavefront size - 1.
11628       unsigned Size = MRI.getType(R).getSizeInBits();
11629       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
11630       break;
11631     }
11632     case Intrinsic::amdgcn_groupstaticsize: {
11633       // We can report everything over the maximum size as 0. We can't report
11634       // based on the actual size because we don't know if it's accurate or not
11635       // at any given point.
11636       Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
11637       break;
11638     }
11639     }
11640     break;
11641   }
11642   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
11643     Known.Zero.setHighBits(24);
11644     break;
11645   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
11646     Known.Zero.setHighBits(16);
11647     break;
11648   }
11649 }
11650 
11651 Align SITargetLowering::computeKnownAlignForTargetInstr(
11652   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
11653   unsigned Depth) const {
11654   const MachineInstr *MI = MRI.getVRegDef(R);
11655   switch (MI->getOpcode()) {
11656   case AMDGPU::G_INTRINSIC:
11657   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
11658     // FIXME: Can this move to generic code? What about the case where the call
11659     // site specifies a lower alignment?
11660     Intrinsic::ID IID = MI->getIntrinsicID();
11661     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
11662     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
11663     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
11664       return *RetAlign;
11665     return Align(1);
11666   }
11667   default:
11668     return Align(1);
11669   }
11670 }
11671 
11672 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11673   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
11674   const Align CacheLineAlign = Align(64);
11675 
11676   // Pre-GFX10 target did not benefit from loop alignment
11677   if (!ML || DisableLoopAlignment ||
11678       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
11679       getSubtarget()->hasInstFwdPrefetchBug())
11680     return PrefAlign;
11681 
11682   // On GFX10 I$ is 4 x 64 bytes cache lines.
11683   // By default prefetcher keeps one cache line behind and reads two ahead.
11684   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
11685   // behind and one ahead.
11686   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
11687   // If loop fits 64 bytes it always spans no more than two cache lines and
11688   // does not need an alignment.
11689   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
11690   // Else if loop is less or equal 192 bytes we need two lines behind.
11691 
11692   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11693   const MachineBasicBlock *Header = ML->getHeader();
11694   if (Header->getAlignment() != PrefAlign)
11695     return Header->getAlignment(); // Already processed.
11696 
11697   unsigned LoopSize = 0;
11698   for (const MachineBasicBlock *MBB : ML->blocks()) {
11699     // If inner loop block is aligned assume in average half of the alignment
11700     // size to be added as nops.
11701     if (MBB != Header)
11702       LoopSize += MBB->getAlignment().value() / 2;
11703 
11704     for (const MachineInstr &MI : *MBB) {
11705       LoopSize += TII->getInstSizeInBytes(MI);
11706       if (LoopSize > 192)
11707         return PrefAlign;
11708     }
11709   }
11710 
11711   if (LoopSize <= 64)
11712     return PrefAlign;
11713 
11714   if (LoopSize <= 128)
11715     return CacheLineAlign;
11716 
11717   // If any of parent loops is surrounded by prefetch instructions do not
11718   // insert new for inner loop, which would reset parent's settings.
11719   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
11720     if (MachineBasicBlock *Exit = P->getExitBlock()) {
11721       auto I = Exit->getFirstNonDebugInstr();
11722       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
11723         return CacheLineAlign;
11724     }
11725   }
11726 
11727   MachineBasicBlock *Pre = ML->getLoopPreheader();
11728   MachineBasicBlock *Exit = ML->getExitBlock();
11729 
11730   if (Pre && Exit) {
11731     BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
11732             TII->get(AMDGPU::S_INST_PREFETCH))
11733       .addImm(1); // prefetch 2 lines behind PC
11734 
11735     BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
11736             TII->get(AMDGPU::S_INST_PREFETCH))
11737       .addImm(2); // prefetch 1 line behind PC
11738   }
11739 
11740   return CacheLineAlign;
11741 }
11742 
11743 LLVM_ATTRIBUTE_UNUSED
11744 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
11745   assert(N->getOpcode() == ISD::CopyFromReg);
11746   do {
11747     // Follow the chain until we find an INLINEASM node.
11748     N = N->getOperand(0).getNode();
11749     if (N->getOpcode() == ISD::INLINEASM ||
11750         N->getOpcode() == ISD::INLINEASM_BR)
11751       return true;
11752   } while (N->getOpcode() == ISD::CopyFromReg);
11753   return false;
11754 }
11755 
11756 bool SITargetLowering::isSDNodeSourceOfDivergence(
11757     const SDNode *N, FunctionLoweringInfo *FLI,
11758     LegacyDivergenceAnalysis *KDA) const {
11759   switch (N->getOpcode()) {
11760   case ISD::CopyFromReg: {
11761     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
11762     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
11763     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11764     Register Reg = R->getReg();
11765 
11766     // FIXME: Why does this need to consider isLiveIn?
11767     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
11768       return !TRI->isSGPRReg(MRI, Reg);
11769 
11770     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
11771       return KDA->isDivergent(V);
11772 
11773     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
11774     return !TRI->isSGPRReg(MRI, Reg);
11775   }
11776   case ISD::LOAD: {
11777     const LoadSDNode *L = cast<LoadSDNode>(N);
11778     unsigned AS = L->getAddressSpace();
11779     // A flat load may access private memory.
11780     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
11781   }
11782   case ISD::CALLSEQ_END:
11783     return true;
11784   case ISD::INTRINSIC_WO_CHAIN:
11785     return AMDGPU::isIntrinsicSourceOfDivergence(
11786         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
11787   case ISD::INTRINSIC_W_CHAIN:
11788     return AMDGPU::isIntrinsicSourceOfDivergence(
11789         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
11790   }
11791   return false;
11792 }
11793 
11794 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
11795                                                EVT VT) const {
11796   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
11797   case MVT::f32:
11798     return hasFP32Denormals(DAG.getMachineFunction());
11799   case MVT::f64:
11800   case MVT::f16:
11801     return hasFP64FP16Denormals(DAG.getMachineFunction());
11802   default:
11803     return false;
11804   }
11805 }
11806 
11807 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
11808                                                     const SelectionDAG &DAG,
11809                                                     bool SNaN,
11810                                                     unsigned Depth) const {
11811   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
11812     const MachineFunction &MF = DAG.getMachineFunction();
11813     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11814 
11815     if (Info->getMode().DX10Clamp)
11816       return true; // Clamped to 0.
11817     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
11818   }
11819 
11820   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
11821                                                             SNaN, Depth);
11822 }
11823 
11824 // Global FP atomic instructions have a hardcoded FP mode and do not support
11825 // FP32 denormals, and only support v2f16 denormals.
11826 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
11827   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
11828   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
11829   if (&Flt == &APFloat::IEEEsingle())
11830     return DenormMode == DenormalMode::getPreserveSign();
11831   return DenormMode == DenormalMode::getIEEE();
11832 }
11833 
11834 TargetLowering::AtomicExpansionKind
11835 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
11836   switch (RMW->getOperation()) {
11837   case AtomicRMWInst::FAdd: {
11838     Type *Ty = RMW->getType();
11839 
11840     // We don't have a way to support 16-bit atomics now, so just leave them
11841     // as-is.
11842     if (Ty->isHalfTy())
11843       return AtomicExpansionKind::None;
11844 
11845     if (!Ty->isFloatTy())
11846       return AtomicExpansionKind::CmpXChg;
11847 
11848     // TODO: Do have these for flat. Older targets also had them for buffers.
11849     unsigned AS = RMW->getPointerAddressSpace();
11850 
11851     if (AS == AMDGPUAS::GLOBAL_ADDRESS && Subtarget->hasAtomicFaddInsts()) {
11852       if (!fpModeMatchesGlobalFPAtomicMode(RMW))
11853         return AtomicExpansionKind::CmpXChg;
11854 
11855       return RMW->use_empty() ? AtomicExpansionKind::None :
11856                                 AtomicExpansionKind::CmpXChg;
11857     }
11858 
11859     // DS FP atomics do repect the denormal mode, but the rounding mode is fixed
11860     // to round-to-nearest-even.
11861     return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
11862       AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
11863   }
11864   default:
11865     break;
11866   }
11867 
11868   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
11869 }
11870 
11871 const TargetRegisterClass *
11872 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
11873   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
11874   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11875   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
11876     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
11877                                                : &AMDGPU::SReg_32RegClass;
11878   if (!TRI->isSGPRClass(RC) && !isDivergent)
11879     return TRI->getEquivalentSGPRClass(RC);
11880   else if (TRI->isSGPRClass(RC) && isDivergent)
11881     return TRI->getEquivalentVGPRClass(RC);
11882 
11883   return RC;
11884 }
11885 
11886 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
11887 // uniform values (as produced by the mask results of control flow intrinsics)
11888 // used outside of divergent blocks. The phi users need to also be treated as
11889 // always uniform.
11890 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
11891                       unsigned WaveSize) {
11892   // FIXME: We asssume we never cast the mask results of a control flow
11893   // intrinsic.
11894   // Early exit if the type won't be consistent as a compile time hack.
11895   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
11896   if (!IT || IT->getBitWidth() != WaveSize)
11897     return false;
11898 
11899   if (!isa<Instruction>(V))
11900     return false;
11901   if (!Visited.insert(V).second)
11902     return false;
11903   bool Result = false;
11904   for (auto U : V->users()) {
11905     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
11906       if (V == U->getOperand(1)) {
11907         switch (Intrinsic->getIntrinsicID()) {
11908         default:
11909           Result = false;
11910           break;
11911         case Intrinsic::amdgcn_if_break:
11912         case Intrinsic::amdgcn_if:
11913         case Intrinsic::amdgcn_else:
11914           Result = true;
11915           break;
11916         }
11917       }
11918       if (V == U->getOperand(0)) {
11919         switch (Intrinsic->getIntrinsicID()) {
11920         default:
11921           Result = false;
11922           break;
11923         case Intrinsic::amdgcn_end_cf:
11924         case Intrinsic::amdgcn_loop:
11925           Result = true;
11926           break;
11927         }
11928       }
11929     } else {
11930       Result = hasCFUser(U, Visited, WaveSize);
11931     }
11932     if (Result)
11933       break;
11934   }
11935   return Result;
11936 }
11937 
11938 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
11939                                                const Value *V) const {
11940   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
11941     if (CI->isInlineAsm()) {
11942       // FIXME: This cannot give a correct answer. This should only trigger in
11943       // the case where inline asm returns mixed SGPR and VGPR results, used
11944       // outside the defining block. We don't have a specific result to
11945       // consider, so this assumes if any value is SGPR, the overall register
11946       // also needs to be SGPR.
11947       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
11948       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
11949           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
11950       for (auto &TC : TargetConstraints) {
11951         if (TC.Type == InlineAsm::isOutput) {
11952           ComputeConstraintToUse(TC, SDValue());
11953           unsigned AssignedReg;
11954           const TargetRegisterClass *RC;
11955           std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
11956               SIRI, TC.ConstraintCode, TC.ConstraintVT);
11957           if (RC) {
11958             MachineRegisterInfo &MRI = MF.getRegInfo();
11959             if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
11960               return true;
11961             else if (SIRI->isSGPRClass(RC))
11962               return true;
11963           }
11964         }
11965       }
11966     }
11967   }
11968   SmallPtrSet<const Value *, 16> Visited;
11969   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
11970 }
11971 
11972 std::pair<int, MVT>
11973 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
11974                                           Type *Ty) const {
11975   auto Cost = TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
11976   auto Size = DL.getTypeSizeInBits(Ty);
11977   // Maximum load or store can handle 8 dwords for scalar and 4 for
11978   // vector ALU. Let's assume anything above 8 dwords is expensive
11979   // even if legal.
11980   if (Size <= 256)
11981     return Cost;
11982 
11983   Cost.first = (Size + 255) / 256;
11984   return Cost;
11985 }
11986