1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Custom DAG lowering for SI
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifdef _MSC_VER
16 // Provide M_PI.
17 #define _USE_MATH_DEFINES
18 #endif
19 
20 #include "SIISelLowering.h"
21 #include "AMDGPU.h"
22 #include "AMDGPUIntrinsicInfo.h"
23 #include "AMDGPUSubtarget.h"
24 #include "AMDGPUTargetMachine.h"
25 #include "SIDefines.h"
26 #include "SIInstrInfo.h"
27 #include "SIMachineFunctionInfo.h"
28 #include "SIRegisterInfo.h"
29 #include "Utils/AMDGPUBaseInfo.h"
30 #include "llvm/ADT/APFloat.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/ADT/Twine.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/CallingConvLower.h"
41 #include "llvm/CodeGen/DAGCombine.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/TargetCallingConv.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugLoc.h"
60 #include "llvm/IR/DerivedTypes.h"
61 #include "llvm/IR/DiagnosticInfo.h"
62 #include "llvm/IR/Function.h"
63 #include "llvm/IR/GlobalValue.h"
64 #include "llvm/IR/InstrTypes.h"
65 #include "llvm/IR/Instruction.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/IntrinsicInst.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CodeGen.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/MachineValueType.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Target/TargetOptions.h"
78 #include <cassert>
79 #include <cmath>
80 #include <cstdint>
81 #include <iterator>
82 #include <tuple>
83 #include <utility>
84 #include <vector>
85 
86 using namespace llvm;
87 
88 #define DEBUG_TYPE "si-lower"
89 
90 STATISTIC(NumTailCalls, "Number of tail calls");
91 
92 static cl::opt<bool> EnableVGPRIndexMode(
93   "amdgpu-vgpr-index-mode",
94   cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
95   cl::init(false));
96 
97 static cl::opt<unsigned> AssumeFrameIndexHighZeroBits(
98   "amdgpu-frame-index-zero-bits",
99   cl::desc("High bits of frame index assumed to be zero"),
100   cl::init(5),
101   cl::ReallyHidden);
102 
103 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
104   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
105   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
106     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
107       return AMDGPU::SGPR0 + Reg;
108     }
109   }
110   llvm_unreachable("Cannot allocate sgpr");
111 }
112 
113 SITargetLowering::SITargetLowering(const TargetMachine &TM,
114                                    const SISubtarget &STI)
115     : AMDGPUTargetLowering(TM, STI) {
116   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
117   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
118 
119   addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
120   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
121 
122   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
123   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
124   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
125 
126   addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
127   addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
128 
129   addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
130   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
131 
132   addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
133   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
134 
135   addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
136   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
137 
138   if (Subtarget->has16BitInsts()) {
139     addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
140     addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
141   }
142 
143   if (Subtarget->hasVOP3PInsts()) {
144     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass);
145     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass);
146   }
147 
148   computeRegisterProperties(STI.getRegisterInfo());
149 
150   // We need to custom lower vector stores from local memory
151   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
152   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
153   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
154   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
155   setOperationAction(ISD::LOAD, MVT::i1, Custom);
156 
157   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
158   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
159   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
160   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
161   setOperationAction(ISD::STORE, MVT::i1, Custom);
162 
163   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
164   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
165   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
166   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
167   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
168   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
169   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
170   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
171   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
172   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
173 
174   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
175   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
176   setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
177 
178   setOperationAction(ISD::SELECT, MVT::i1, Promote);
179   setOperationAction(ISD::SELECT, MVT::i64, Custom);
180   setOperationAction(ISD::SELECT, MVT::f64, Promote);
181   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
182 
183   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
184   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
185   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
186   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
187   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
188 
189   setOperationAction(ISD::SETCC, MVT::i1, Promote);
190   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
191   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
192   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
193 
194   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
195   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
196 
197   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
198   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
199   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
200   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
202   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
203   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
204 
205   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
206   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
207   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
208   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
209   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
210 
211   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
212   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
213   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
214 
215   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
216   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
217   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
218   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
219 
220   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
221   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
222   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
223   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
224   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
225   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
226 
227   setOperationAction(ISD::UADDO, MVT::i32, Legal);
228   setOperationAction(ISD::USUBO, MVT::i32, Legal);
229 
230   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
231   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
232 
233 #if 0
234   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
235   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
236 #endif
237 
238   //setOperationAction(ISD::ADDC, MVT::i64, Expand);
239   //setOperationAction(ISD::SUBC, MVT::i64, Expand);
240 
241   // We only support LOAD/STORE and vector manipulation ops for vectors
242   // with > 4 elements.
243   for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
244         MVT::v2i64, MVT::v2f64}) {
245     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
246       switch (Op) {
247       case ISD::LOAD:
248       case ISD::STORE:
249       case ISD::BUILD_VECTOR:
250       case ISD::BITCAST:
251       case ISD::EXTRACT_VECTOR_ELT:
252       case ISD::INSERT_VECTOR_ELT:
253       case ISD::INSERT_SUBVECTOR:
254       case ISD::EXTRACT_SUBVECTOR:
255       case ISD::SCALAR_TO_VECTOR:
256         break;
257       case ISD::CONCAT_VECTORS:
258         setOperationAction(Op, VT, Custom);
259         break;
260       default:
261         setOperationAction(Op, VT, Expand);
262         break;
263       }
264     }
265   }
266 
267   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
268   // is expanded to avoid having two separate loops in case the index is a VGPR.
269 
270   // Most operations are naturally 32-bit vector operations. We only support
271   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
272   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
273     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
274     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
275 
276     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
277     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
278 
279     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
280     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
281 
282     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
283     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
284   }
285 
286   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
287   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
288   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
289   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
290 
291   // Avoid stack access for these.
292   // TODO: Generalize to more vector types.
293   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
294   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
295   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
296   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
297 
298   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
299   // and output demarshalling
300   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
301   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
302 
303   // We can't return success/failure, only the old value,
304   // let LLVM add the comparison
305   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
306   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
307 
308   if (getSubtarget()->hasFlatAddressSpace()) {
309     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
310     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
311   }
312 
313   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
314   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
315 
316   // On SI this is s_memtime and s_memrealtime on VI.
317   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
318   setOperationAction(ISD::TRAP, MVT::Other, Custom);
319   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
320 
321   setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
322   setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
323 
324   if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) {
325     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
326     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
327     setOperationAction(ISD::FRINT, MVT::f64, Legal);
328   }
329 
330   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
331 
332   setOperationAction(ISD::FSIN, MVT::f32, Custom);
333   setOperationAction(ISD::FCOS, MVT::f32, Custom);
334   setOperationAction(ISD::FDIV, MVT::f32, Custom);
335   setOperationAction(ISD::FDIV, MVT::f64, Custom);
336 
337   if (Subtarget->has16BitInsts()) {
338     setOperationAction(ISD::Constant, MVT::i16, Legal);
339 
340     setOperationAction(ISD::SMIN, MVT::i16, Legal);
341     setOperationAction(ISD::SMAX, MVT::i16, Legal);
342 
343     setOperationAction(ISD::UMIN, MVT::i16, Legal);
344     setOperationAction(ISD::UMAX, MVT::i16, Legal);
345 
346     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
347     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
348 
349     setOperationAction(ISD::ROTR, MVT::i16, Promote);
350     setOperationAction(ISD::ROTL, MVT::i16, Promote);
351 
352     setOperationAction(ISD::SDIV, MVT::i16, Promote);
353     setOperationAction(ISD::UDIV, MVT::i16, Promote);
354     setOperationAction(ISD::SREM, MVT::i16, Promote);
355     setOperationAction(ISD::UREM, MVT::i16, Promote);
356 
357     setOperationAction(ISD::BSWAP, MVT::i16, Promote);
358     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
359 
360     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
361     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
362     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
363     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
364     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
365 
366     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
367 
368     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
369 
370     setOperationAction(ISD::LOAD, MVT::i16, Custom);
371 
372     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
373 
374     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
375     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
376     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
377     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
378 
379     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
380     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
381     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
382     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
383 
384     // F16 - Constant Actions.
385     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
386 
387     // F16 - Load/Store Actions.
388     setOperationAction(ISD::LOAD, MVT::f16, Promote);
389     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
390     setOperationAction(ISD::STORE, MVT::f16, Promote);
391     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
392 
393     // F16 - VOP1 Actions.
394     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
395     setOperationAction(ISD::FCOS, MVT::f16, Promote);
396     setOperationAction(ISD::FSIN, MVT::f16, Promote);
397     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
398     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
399     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
400     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
401     setOperationAction(ISD::FROUND, MVT::f16, Custom);
402 
403     // F16 - VOP2 Actions.
404     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
405     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
406     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
407     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
408     setOperationAction(ISD::FDIV, MVT::f16, Custom);
409 
410     // F16 - VOP3 Actions.
411     setOperationAction(ISD::FMA, MVT::f16, Legal);
412     if (!Subtarget->hasFP16Denormals())
413       setOperationAction(ISD::FMAD, MVT::f16, Legal);
414   }
415 
416   if (Subtarget->hasVOP3PInsts()) {
417     for (MVT VT : {MVT::v2i16, MVT::v2f16}) {
418       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
419         switch (Op) {
420         case ISD::LOAD:
421         case ISD::STORE:
422         case ISD::BUILD_VECTOR:
423         case ISD::BITCAST:
424         case ISD::EXTRACT_VECTOR_ELT:
425         case ISD::INSERT_VECTOR_ELT:
426         case ISD::INSERT_SUBVECTOR:
427         case ISD::EXTRACT_SUBVECTOR:
428         case ISD::SCALAR_TO_VECTOR:
429           break;
430         case ISD::CONCAT_VECTORS:
431           setOperationAction(Op, VT, Custom);
432           break;
433         default:
434           setOperationAction(Op, VT, Expand);
435           break;
436         }
437       }
438     }
439 
440     // XXX - Do these do anything? Vector constants turn into build_vector.
441     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
442     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
443 
444     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
445     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
446     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
447     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
448 
449     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
450     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
451     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
452     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
453 
454     setOperationAction(ISD::AND, MVT::v2i16, Promote);
455     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
456     setOperationAction(ISD::OR, MVT::v2i16, Promote);
457     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
458     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
459     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
460     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
461     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
462     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
463     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
464 
465     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
466     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
467     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
468     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
469     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
470     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
471     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
472     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
473     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
474     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
475 
476     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
477     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
478     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
479     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
480     setOperationAction(ISD::FMINNUM, MVT::v2f16, Legal);
481     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Legal);
482 
483     // This isn't really legal, but this avoids the legalizer unrolling it (and
484     // allows matching fneg (fabs x) patterns)
485     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
486 
487     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
488     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
489 
490     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
491     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
492     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
493     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
494   } else {
495     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
496     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
497   }
498 
499   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
500     setOperationAction(ISD::SELECT, VT, Custom);
501   }
502 
503   setTargetDAGCombine(ISD::ADD);
504   setTargetDAGCombine(ISD::ADDCARRY);
505   setTargetDAGCombine(ISD::SUB);
506   setTargetDAGCombine(ISD::SUBCARRY);
507   setTargetDAGCombine(ISD::FADD);
508   setTargetDAGCombine(ISD::FSUB);
509   setTargetDAGCombine(ISD::FMINNUM);
510   setTargetDAGCombine(ISD::FMAXNUM);
511   setTargetDAGCombine(ISD::SMIN);
512   setTargetDAGCombine(ISD::SMAX);
513   setTargetDAGCombine(ISD::UMIN);
514   setTargetDAGCombine(ISD::UMAX);
515   setTargetDAGCombine(ISD::SETCC);
516   setTargetDAGCombine(ISD::AND);
517   setTargetDAGCombine(ISD::OR);
518   setTargetDAGCombine(ISD::XOR);
519   setTargetDAGCombine(ISD::SINT_TO_FP);
520   setTargetDAGCombine(ISD::UINT_TO_FP);
521   setTargetDAGCombine(ISD::FCANONICALIZE);
522   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
523   setTargetDAGCombine(ISD::ZERO_EXTEND);
524   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
525   setTargetDAGCombine(ISD::BUILD_VECTOR);
526 
527   // All memory operations. Some folding on the pointer operand is done to help
528   // matching the constant offsets in the addressing modes.
529   setTargetDAGCombine(ISD::LOAD);
530   setTargetDAGCombine(ISD::STORE);
531   setTargetDAGCombine(ISD::ATOMIC_LOAD);
532   setTargetDAGCombine(ISD::ATOMIC_STORE);
533   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
534   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
535   setTargetDAGCombine(ISD::ATOMIC_SWAP);
536   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
537   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
538   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
539   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
540   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
541   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
542   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
543   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
544   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
545   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
546 
547   setSchedulingPreference(Sched::RegPressure);
548 }
549 
550 const SISubtarget *SITargetLowering::getSubtarget() const {
551   return static_cast<const SISubtarget *>(Subtarget);
552 }
553 
554 //===----------------------------------------------------------------------===//
555 // TargetLowering queries
556 //===----------------------------------------------------------------------===//
557 
558 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
559   // SI has some legal vector types, but no legal vector operations. Say no
560   // shuffles are legal in order to prefer scalarizing some vector operations.
561   return false;
562 }
563 
564 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
565                                           const CallInst &CI,
566                                           MachineFunction &MF,
567                                           unsigned IntrID) const {
568   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
569           AMDGPU::lookupRsrcIntrinsicByIntr(IntrID)) {
570     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
571                                                   (Intrinsic::ID)IntrID);
572     if (Attr.hasFnAttribute(Attribute::ReadNone))
573       return false;
574 
575     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
576 
577     if (RsrcIntr->IsImage) {
578       Info.ptrVal = MFI->getImagePSV(
579         *MF.getSubtarget<SISubtarget>().getInstrInfo(),
580         CI.getArgOperand(RsrcIntr->RsrcArg));
581       Info.align = 0;
582     } else {
583       Info.ptrVal = MFI->getBufferPSV(
584         *MF.getSubtarget<SISubtarget>().getInstrInfo(),
585         CI.getArgOperand(RsrcIntr->RsrcArg));
586     }
587 
588     Info.flags = MachineMemOperand::MODereferenceable;
589     if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
590       Info.opc = ISD::INTRINSIC_W_CHAIN;
591       Info.memVT = MVT::getVT(CI.getType());
592       Info.flags |= MachineMemOperand::MOLoad;
593     } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
594       Info.opc = ISD::INTRINSIC_VOID;
595       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
596       Info.flags |= MachineMemOperand::MOStore;
597     } else {
598       // Atomic
599       Info.opc = ISD::INTRINSIC_W_CHAIN;
600       Info.memVT = MVT::getVT(CI.getType());
601       Info.flags = MachineMemOperand::MOLoad |
602                    MachineMemOperand::MOStore |
603                    MachineMemOperand::MODereferenceable;
604 
605       // XXX - Should this be volatile without known ordering?
606       Info.flags |= MachineMemOperand::MOVolatile;
607     }
608     return true;
609   }
610 
611   switch (IntrID) {
612   case Intrinsic::amdgcn_atomic_inc:
613   case Intrinsic::amdgcn_atomic_dec:
614   case Intrinsic::amdgcn_ds_fadd:
615   case Intrinsic::amdgcn_ds_fmin:
616   case Intrinsic::amdgcn_ds_fmax: {
617     Info.opc = ISD::INTRINSIC_W_CHAIN;
618     Info.memVT = MVT::getVT(CI.getType());
619     Info.ptrVal = CI.getOperand(0);
620     Info.align = 0;
621     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
622 
623     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
624     if (!Vol || !Vol->isZero())
625       Info.flags |= MachineMemOperand::MOVolatile;
626 
627     return true;
628   }
629 
630   default:
631     return false;
632   }
633 }
634 
635 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
636                                             SmallVectorImpl<Value*> &Ops,
637                                             Type *&AccessTy) const {
638   switch (II->getIntrinsicID()) {
639   case Intrinsic::amdgcn_atomic_inc:
640   case Intrinsic::amdgcn_atomic_dec:
641   case Intrinsic::amdgcn_ds_fadd:
642   case Intrinsic::amdgcn_ds_fmin:
643   case Intrinsic::amdgcn_ds_fmax: {
644     Value *Ptr = II->getArgOperand(0);
645     AccessTy = II->getType();
646     Ops.push_back(Ptr);
647     return true;
648   }
649   default:
650     return false;
651   }
652 }
653 
654 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
655   if (!Subtarget->hasFlatInstOffsets()) {
656     // Flat instructions do not have offsets, and only have the register
657     // address.
658     return AM.BaseOffs == 0 && AM.Scale == 0;
659   }
660 
661   // GFX9 added a 13-bit signed offset. When using regular flat instructions,
662   // the sign bit is ignored and is treated as a 12-bit unsigned offset.
663 
664   // Just r + i
665   return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
666 }
667 
668 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
669   if (Subtarget->hasFlatGlobalInsts())
670     return isInt<13>(AM.BaseOffs) && AM.Scale == 0;
671 
672   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
673       // Assume the we will use FLAT for all global memory accesses
674       // on VI.
675       // FIXME: This assumption is currently wrong.  On VI we still use
676       // MUBUF instructions for the r + i addressing mode.  As currently
677       // implemented, the MUBUF instructions only work on buffer < 4GB.
678       // It may be possible to support > 4GB buffers with MUBUF instructions,
679       // by setting the stride value in the resource descriptor which would
680       // increase the size limit to (stride * 4GB).  However, this is risky,
681       // because it has never been validated.
682     return isLegalFlatAddressingMode(AM);
683   }
684 
685   return isLegalMUBUFAddressingMode(AM);
686 }
687 
688 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
689   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
690   // additionally can do r + r + i with addr64. 32-bit has more addressing
691   // mode options. Depending on the resource constant, it can also do
692   // (i64 r0) + (i32 r1) * (i14 i).
693   //
694   // Private arrays end up using a scratch buffer most of the time, so also
695   // assume those use MUBUF instructions. Scratch loads / stores are currently
696   // implemented as mubuf instructions with offen bit set, so slightly
697   // different than the normal addr64.
698   if (!isUInt<12>(AM.BaseOffs))
699     return false;
700 
701   // FIXME: Since we can split immediate into soffset and immediate offset,
702   // would it make sense to allow any immediate?
703 
704   switch (AM.Scale) {
705   case 0: // r + i or just i, depending on HasBaseReg.
706     return true;
707   case 1:
708     return true; // We have r + r or r + i.
709   case 2:
710     if (AM.HasBaseReg) {
711       // Reject 2 * r + r.
712       return false;
713     }
714 
715     // Allow 2 * r as r + r
716     // Or  2 * r + i is allowed as r + r + i.
717     return true;
718   default: // Don't allow n * r
719     return false;
720   }
721 }
722 
723 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
724                                              const AddrMode &AM, Type *Ty,
725                                              unsigned AS, Instruction *I) const {
726   // No global is ever allowed as a base.
727   if (AM.BaseGV)
728     return false;
729 
730   if (AS == AMDGPUASI.GLOBAL_ADDRESS)
731     return isLegalGlobalAddressingMode(AM);
732 
733   if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
734       AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT) {
735     // If the offset isn't a multiple of 4, it probably isn't going to be
736     // correctly aligned.
737     // FIXME: Can we get the real alignment here?
738     if (AM.BaseOffs % 4 != 0)
739       return isLegalMUBUFAddressingMode(AM);
740 
741     // There are no SMRD extloads, so if we have to do a small type access we
742     // will use a MUBUF load.
743     // FIXME?: We also need to do this if unaligned, but we don't know the
744     // alignment here.
745     if (DL.getTypeStoreSize(Ty) < 4)
746       return isLegalGlobalAddressingMode(AM);
747 
748     if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
749       // SMRD instructions have an 8-bit, dword offset on SI.
750       if (!isUInt<8>(AM.BaseOffs / 4))
751         return false;
752     } else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) {
753       // On CI+, this can also be a 32-bit literal constant offset. If it fits
754       // in 8-bits, it can use a smaller encoding.
755       if (!isUInt<32>(AM.BaseOffs / 4))
756         return false;
757     } else if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
758       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
759       if (!isUInt<20>(AM.BaseOffs))
760         return false;
761     } else
762       llvm_unreachable("unhandled generation");
763 
764     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
765       return true;
766 
767     if (AM.Scale == 1 && AM.HasBaseReg)
768       return true;
769 
770     return false;
771 
772   } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
773     return isLegalMUBUFAddressingMode(AM);
774   } else if (AS == AMDGPUASI.LOCAL_ADDRESS ||
775              AS == AMDGPUASI.REGION_ADDRESS) {
776     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
777     // field.
778     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
779     // an 8-bit dword offset but we don't know the alignment here.
780     if (!isUInt<16>(AM.BaseOffs))
781       return false;
782 
783     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
784       return true;
785 
786     if (AM.Scale == 1 && AM.HasBaseReg)
787       return true;
788 
789     return false;
790   } else if (AS == AMDGPUASI.FLAT_ADDRESS ||
791              AS == AMDGPUASI.UNKNOWN_ADDRESS_SPACE) {
792     // For an unknown address space, this usually means that this is for some
793     // reason being used for pure arithmetic, and not based on some addressing
794     // computation. We don't have instructions that compute pointers with any
795     // addressing modes, so treat them as having no offset like flat
796     // instructions.
797     return isLegalFlatAddressingMode(AM);
798   } else {
799     llvm_unreachable("unhandled address space");
800   }
801 }
802 
803 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
804                                         const SelectionDAG &DAG) const {
805   if (AS == AMDGPUASI.GLOBAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) {
806     return (MemVT.getSizeInBits() <= 4 * 32);
807   } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
808     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
809     return (MemVT.getSizeInBits() <= MaxPrivateBits);
810   } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
811     return (MemVT.getSizeInBits() <= 2 * 32);
812   }
813   return true;
814 }
815 
816 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
817                                                       unsigned AddrSpace,
818                                                       unsigned Align,
819                                                       bool *IsFast) const {
820   if (IsFast)
821     *IsFast = false;
822 
823   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
824   // which isn't a simple VT.
825   // Until MVT is extended to handle this, simply check for the size and
826   // rely on the condition below: allow accesses if the size is a multiple of 4.
827   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
828                            VT.getStoreSize() > 16)) {
829     return false;
830   }
831 
832   if (AddrSpace == AMDGPUASI.LOCAL_ADDRESS ||
833       AddrSpace == AMDGPUASI.REGION_ADDRESS) {
834     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
835     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
836     // with adjacent offsets.
837     bool AlignedBy4 = (Align % 4 == 0);
838     if (IsFast)
839       *IsFast = AlignedBy4;
840 
841     return AlignedBy4;
842   }
843 
844   // FIXME: We have to be conservative here and assume that flat operations
845   // will access scratch.  If we had access to the IR function, then we
846   // could determine if any private memory was used in the function.
847   if (!Subtarget->hasUnalignedScratchAccess() &&
848       (AddrSpace == AMDGPUASI.PRIVATE_ADDRESS ||
849        AddrSpace == AMDGPUASI.FLAT_ADDRESS)) {
850     return false;
851   }
852 
853   if (Subtarget->hasUnalignedBufferAccess()) {
854     // If we have an uniform constant load, it still requires using a slow
855     // buffer instruction if unaligned.
856     if (IsFast) {
857       *IsFast = (AddrSpace == AMDGPUASI.CONSTANT_ADDRESS ||
858                  AddrSpace == AMDGPUASI.CONSTANT_ADDRESS_32BIT) ?
859         (Align % 4 == 0) : true;
860     }
861 
862     return true;
863   }
864 
865   // Smaller than dword value must be aligned.
866   if (VT.bitsLT(MVT::i32))
867     return false;
868 
869   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
870   // byte-address are ignored, thus forcing Dword alignment.
871   // This applies to private, global, and constant memory.
872   if (IsFast)
873     *IsFast = true;
874 
875   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
876 }
877 
878 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
879                                           unsigned SrcAlign, bool IsMemset,
880                                           bool ZeroMemset,
881                                           bool MemcpyStrSrc,
882                                           MachineFunction &MF) const {
883   // FIXME: Should account for address space here.
884 
885   // The default fallback uses the private pointer size as a guess for a type to
886   // use. Make sure we switch these to 64-bit accesses.
887 
888   if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
889     return MVT::v4i32;
890 
891   if (Size >= 8 && DstAlign >= 4)
892     return MVT::v2i32;
893 
894   // Use the default.
895   return MVT::Other;
896 }
897 
898 static bool isFlatGlobalAddrSpace(unsigned AS, AMDGPUAS AMDGPUASI) {
899   return AS == AMDGPUASI.GLOBAL_ADDRESS ||
900          AS == AMDGPUASI.FLAT_ADDRESS ||
901          AS == AMDGPUASI.CONSTANT_ADDRESS ||
902          AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT;
903 }
904 
905 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
906                                            unsigned DestAS) const {
907   return isFlatGlobalAddrSpace(SrcAS, AMDGPUASI) &&
908          isFlatGlobalAddrSpace(DestAS, AMDGPUASI);
909 }
910 
911 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
912   const MemSDNode *MemNode = cast<MemSDNode>(N);
913   const Value *Ptr = MemNode->getMemOperand()->getValue();
914   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
915   return I && I->getMetadata("amdgpu.noclobber");
916 }
917 
918 bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS,
919                                             unsigned DestAS) const {
920   // Flat -> private/local is a simple truncate.
921   // Flat -> global is no-op
922   if (SrcAS == AMDGPUASI.FLAT_ADDRESS)
923     return true;
924 
925   return isNoopAddrSpaceCast(SrcAS, DestAS);
926 }
927 
928 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
929   const MemSDNode *MemNode = cast<MemSDNode>(N);
930 
931   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
932 }
933 
934 TargetLoweringBase::LegalizeTypeAction
935 SITargetLowering::getPreferredVectorAction(EVT VT) const {
936   if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
937     return TypeSplitVector;
938 
939   return TargetLoweringBase::getPreferredVectorAction(VT);
940 }
941 
942 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
943                                                          Type *Ty) const {
944   // FIXME: Could be smarter if called for vector constants.
945   return true;
946 }
947 
948 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
949   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
950     switch (Op) {
951     case ISD::LOAD:
952     case ISD::STORE:
953 
954     // These operations are done with 32-bit instructions anyway.
955     case ISD::AND:
956     case ISD::OR:
957     case ISD::XOR:
958     case ISD::SELECT:
959       // TODO: Extensions?
960       return true;
961     default:
962       return false;
963     }
964   }
965 
966   // SimplifySetCC uses this function to determine whether or not it should
967   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
968   if (VT == MVT::i1 && Op == ISD::SETCC)
969     return false;
970 
971   return TargetLowering::isTypeDesirableForOp(Op, VT);
972 }
973 
974 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
975                                                    const SDLoc &SL,
976                                                    SDValue Chain,
977                                                    uint64_t Offset) const {
978   const DataLayout &DL = DAG.getDataLayout();
979   MachineFunction &MF = DAG.getMachineFunction();
980   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
981 
982   const ArgDescriptor *InputPtrReg;
983   const TargetRegisterClass *RC;
984 
985   std::tie(InputPtrReg, RC)
986     = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
987 
988   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
989   MVT PtrVT = getPointerTy(DL, AMDGPUASI.CONSTANT_ADDRESS);
990   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
991     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
992 
993   return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
994                      DAG.getConstant(Offset, SL, PtrVT));
995 }
996 
997 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
998                                             const SDLoc &SL) const {
999   auto MFI = DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
1000   uint64_t Offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT);
1001   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1002 }
1003 
1004 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1005                                          const SDLoc &SL, SDValue Val,
1006                                          bool Signed,
1007                                          const ISD::InputArg *Arg) const {
1008   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1009       VT.bitsLT(MemVT)) {
1010     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1011     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1012   }
1013 
1014   if (MemVT.isFloatingPoint())
1015     Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
1016   else if (Signed)
1017     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1018   else
1019     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1020 
1021   return Val;
1022 }
1023 
1024 SDValue SITargetLowering::lowerKernargMemParameter(
1025   SelectionDAG &DAG, EVT VT, EVT MemVT,
1026   const SDLoc &SL, SDValue Chain,
1027   uint64_t Offset, bool Signed,
1028   const ISD::InputArg *Arg) const {
1029   const DataLayout &DL = DAG.getDataLayout();
1030   Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
1031   PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS);
1032   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
1033 
1034   unsigned Align = DL.getABITypeAlignment(Ty);
1035 
1036   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1037   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
1038                              MachineMemOperand::MODereferenceable |
1039                              MachineMemOperand::MOInvariant);
1040 
1041   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1042   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1043 }
1044 
1045 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1046                                               const SDLoc &SL, SDValue Chain,
1047                                               const ISD::InputArg &Arg) const {
1048   MachineFunction &MF = DAG.getMachineFunction();
1049   MachineFrameInfo &MFI = MF.getFrameInfo();
1050 
1051   if (Arg.Flags.isByVal()) {
1052     unsigned Size = Arg.Flags.getByValSize();
1053     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1054     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1055   }
1056 
1057   unsigned ArgOffset = VA.getLocMemOffset();
1058   unsigned ArgSize = VA.getValVT().getStoreSize();
1059 
1060   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1061 
1062   // Create load nodes to retrieve arguments from the stack.
1063   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1064   SDValue ArgValue;
1065 
1066   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1067   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1068   MVT MemVT = VA.getValVT();
1069 
1070   switch (VA.getLocInfo()) {
1071   default:
1072     break;
1073   case CCValAssign::BCvt:
1074     MemVT = VA.getLocVT();
1075     break;
1076   case CCValAssign::SExt:
1077     ExtType = ISD::SEXTLOAD;
1078     break;
1079   case CCValAssign::ZExt:
1080     ExtType = ISD::ZEXTLOAD;
1081     break;
1082   case CCValAssign::AExt:
1083     ExtType = ISD::EXTLOAD;
1084     break;
1085   }
1086 
1087   ArgValue = DAG.getExtLoad(
1088     ExtType, SL, VA.getLocVT(), Chain, FIN,
1089     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1090     MemVT);
1091   return ArgValue;
1092 }
1093 
1094 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1095   const SIMachineFunctionInfo &MFI,
1096   EVT VT,
1097   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1098   const ArgDescriptor *Reg;
1099   const TargetRegisterClass *RC;
1100 
1101   std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
1102   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1103 }
1104 
1105 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1106                                    CallingConv::ID CallConv,
1107                                    ArrayRef<ISD::InputArg> Ins,
1108                                    BitVector &Skipped,
1109                                    FunctionType *FType,
1110                                    SIMachineFunctionInfo *Info) {
1111   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1112     const ISD::InputArg &Arg = Ins[I];
1113 
1114     // First check if it's a PS input addr.
1115     if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() &&
1116         !Arg.Flags.isByVal() && PSInputNum <= 15) {
1117 
1118       if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
1119         // We can safely skip PS inputs.
1120         Skipped.set(I);
1121         ++PSInputNum;
1122         continue;
1123       }
1124 
1125       Info->markPSInputAllocated(PSInputNum);
1126       if (Arg.Used)
1127         Info->markPSInputEnabled(PSInputNum);
1128 
1129       ++PSInputNum;
1130     }
1131 
1132     // Second split vertices into their elements.
1133     if (Arg.VT.isVector()) {
1134       ISD::InputArg NewArg = Arg;
1135       NewArg.Flags.setSplit();
1136       NewArg.VT = Arg.VT.getVectorElementType();
1137 
1138       // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
1139       // three or five element vertex only needs three or five registers,
1140       // NOT four or eight.
1141       Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
1142       unsigned NumElements = ParamType->getVectorNumElements();
1143 
1144       for (unsigned J = 0; J != NumElements; ++J) {
1145         Splits.push_back(NewArg);
1146         NewArg.PartOffset += NewArg.VT.getStoreSize();
1147       }
1148     } else {
1149       Splits.push_back(Arg);
1150     }
1151   }
1152 }
1153 
1154 // Allocate special inputs passed in VGPRs.
1155 static void allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1156                                            MachineFunction &MF,
1157                                            const SIRegisterInfo &TRI,
1158                                            SIMachineFunctionInfo &Info) {
1159   if (Info.hasWorkItemIDX()) {
1160     unsigned Reg = AMDGPU::VGPR0;
1161     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1162 
1163     CCInfo.AllocateReg(Reg);
1164     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1165   }
1166 
1167   if (Info.hasWorkItemIDY()) {
1168     unsigned Reg = AMDGPU::VGPR1;
1169     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1170 
1171     CCInfo.AllocateReg(Reg);
1172     Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1173   }
1174 
1175   if (Info.hasWorkItemIDZ()) {
1176     unsigned Reg = AMDGPU::VGPR2;
1177     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1178 
1179     CCInfo.AllocateReg(Reg);
1180     Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1181   }
1182 }
1183 
1184 // Try to allocate a VGPR at the end of the argument list, or if no argument
1185 // VGPRs are left allocating a stack slot.
1186 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo) {
1187   ArrayRef<MCPhysReg> ArgVGPRs
1188     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1189   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1190   if (RegIdx == ArgVGPRs.size()) {
1191     // Spill to stack required.
1192     int64_t Offset = CCInfo.AllocateStack(4, 4);
1193 
1194     return ArgDescriptor::createStack(Offset);
1195   }
1196 
1197   unsigned Reg = ArgVGPRs[RegIdx];
1198   Reg = CCInfo.AllocateReg(Reg);
1199   assert(Reg != AMDGPU::NoRegister);
1200 
1201   MachineFunction &MF = CCInfo.getMachineFunction();
1202   MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1203   return ArgDescriptor::createRegister(Reg);
1204 }
1205 
1206 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1207                                              const TargetRegisterClass *RC,
1208                                              unsigned NumArgRegs) {
1209   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1210   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1211   if (RegIdx == ArgSGPRs.size())
1212     report_fatal_error("ran out of SGPRs for arguments");
1213 
1214   unsigned Reg = ArgSGPRs[RegIdx];
1215   Reg = CCInfo.AllocateReg(Reg);
1216   assert(Reg != AMDGPU::NoRegister);
1217 
1218   MachineFunction &MF = CCInfo.getMachineFunction();
1219   MF.addLiveIn(Reg, RC);
1220   return ArgDescriptor::createRegister(Reg);
1221 }
1222 
1223 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1224   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1225 }
1226 
1227 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1228   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1229 }
1230 
1231 static void allocateSpecialInputVGPRs(CCState &CCInfo,
1232                                       MachineFunction &MF,
1233                                       const SIRegisterInfo &TRI,
1234                                       SIMachineFunctionInfo &Info) {
1235   if (Info.hasWorkItemIDX())
1236     Info.setWorkItemIDX(allocateVGPR32Input(CCInfo));
1237 
1238   if (Info.hasWorkItemIDY())
1239     Info.setWorkItemIDY(allocateVGPR32Input(CCInfo));
1240 
1241   if (Info.hasWorkItemIDZ())
1242     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo));
1243 }
1244 
1245 static void allocateSpecialInputSGPRs(CCState &CCInfo,
1246                                       MachineFunction &MF,
1247                                       const SIRegisterInfo &TRI,
1248                                       SIMachineFunctionInfo &Info) {
1249   auto &ArgInfo = Info.getArgInfo();
1250 
1251   // TODO: Unify handling with private memory pointers.
1252 
1253   if (Info.hasDispatchPtr())
1254     ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1255 
1256   if (Info.hasQueuePtr())
1257     ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1258 
1259   if (Info.hasKernargSegmentPtr())
1260     ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
1261 
1262   if (Info.hasDispatchID())
1263     ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1264 
1265   // flat_scratch_init is not applicable for non-kernel functions.
1266 
1267   if (Info.hasWorkGroupIDX())
1268     ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1269 
1270   if (Info.hasWorkGroupIDY())
1271     ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1272 
1273   if (Info.hasWorkGroupIDZ())
1274     ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1275 
1276   if (Info.hasImplicitArgPtr())
1277     ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1278 }
1279 
1280 // Allocate special inputs passed in user SGPRs.
1281 static void allocateHSAUserSGPRs(CCState &CCInfo,
1282                                  MachineFunction &MF,
1283                                  const SIRegisterInfo &TRI,
1284                                  SIMachineFunctionInfo &Info) {
1285   if (Info.hasImplicitBufferPtr()) {
1286     unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1287     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1288     CCInfo.AllocateReg(ImplicitBufferPtrReg);
1289   }
1290 
1291   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1292   if (Info.hasPrivateSegmentBuffer()) {
1293     unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1294     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1295     CCInfo.AllocateReg(PrivateSegmentBufferReg);
1296   }
1297 
1298   if (Info.hasDispatchPtr()) {
1299     unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
1300     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1301     CCInfo.AllocateReg(DispatchPtrReg);
1302   }
1303 
1304   if (Info.hasQueuePtr()) {
1305     unsigned QueuePtrReg = Info.addQueuePtr(TRI);
1306     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1307     CCInfo.AllocateReg(QueuePtrReg);
1308   }
1309 
1310   if (Info.hasKernargSegmentPtr()) {
1311     unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI);
1312     MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1313     CCInfo.AllocateReg(InputPtrReg);
1314   }
1315 
1316   if (Info.hasDispatchID()) {
1317     unsigned DispatchIDReg = Info.addDispatchID(TRI);
1318     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1319     CCInfo.AllocateReg(DispatchIDReg);
1320   }
1321 
1322   if (Info.hasFlatScratchInit()) {
1323     unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1324     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1325     CCInfo.AllocateReg(FlatScratchInitReg);
1326   }
1327 
1328   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1329   // these from the dispatch pointer.
1330 }
1331 
1332 // Allocate special input registers that are initialized per-wave.
1333 static void allocateSystemSGPRs(CCState &CCInfo,
1334                                 MachineFunction &MF,
1335                                 SIMachineFunctionInfo &Info,
1336                                 CallingConv::ID CallConv,
1337                                 bool IsShader) {
1338   if (Info.hasWorkGroupIDX()) {
1339     unsigned Reg = Info.addWorkGroupIDX();
1340     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1341     CCInfo.AllocateReg(Reg);
1342   }
1343 
1344   if (Info.hasWorkGroupIDY()) {
1345     unsigned Reg = Info.addWorkGroupIDY();
1346     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1347     CCInfo.AllocateReg(Reg);
1348   }
1349 
1350   if (Info.hasWorkGroupIDZ()) {
1351     unsigned Reg = Info.addWorkGroupIDZ();
1352     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1353     CCInfo.AllocateReg(Reg);
1354   }
1355 
1356   if (Info.hasWorkGroupInfo()) {
1357     unsigned Reg = Info.addWorkGroupInfo();
1358     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1359     CCInfo.AllocateReg(Reg);
1360   }
1361 
1362   if (Info.hasPrivateSegmentWaveByteOffset()) {
1363     // Scratch wave offset passed in system SGPR.
1364     unsigned PrivateSegmentWaveByteOffsetReg;
1365 
1366     if (IsShader) {
1367       PrivateSegmentWaveByteOffsetReg =
1368         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
1369 
1370       // This is true if the scratch wave byte offset doesn't have a fixed
1371       // location.
1372       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
1373         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1374         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1375       }
1376     } else
1377       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
1378 
1379     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1380     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1381   }
1382 }
1383 
1384 static void reservePrivateMemoryRegs(const TargetMachine &TM,
1385                                      MachineFunction &MF,
1386                                      const SIRegisterInfo &TRI,
1387                                      SIMachineFunctionInfo &Info) {
1388   // Now that we've figured out where the scratch register inputs are, see if
1389   // should reserve the arguments and use them directly.
1390   MachineFrameInfo &MFI = MF.getFrameInfo();
1391   bool HasStackObjects = MFI.hasStackObjects();
1392 
1393   // Record that we know we have non-spill stack objects so we don't need to
1394   // check all stack objects later.
1395   if (HasStackObjects)
1396     Info.setHasNonSpillStackObjects(true);
1397 
1398   // Everything live out of a block is spilled with fast regalloc, so it's
1399   // almost certain that spilling will be required.
1400   if (TM.getOptLevel() == CodeGenOpt::None)
1401     HasStackObjects = true;
1402 
1403   // For now assume stack access is needed in any callee functions, so we need
1404   // the scratch registers to pass in.
1405   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
1406 
1407   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
1408   if (ST.isAmdCodeObjectV2(MF)) {
1409     if (RequiresStackAccess) {
1410       // If we have stack objects, we unquestionably need the private buffer
1411       // resource. For the Code Object V2 ABI, this will be the first 4 user
1412       // SGPR inputs. We can reserve those and use them directly.
1413 
1414       unsigned PrivateSegmentBufferReg = Info.getPreloadedReg(
1415         AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
1416       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
1417 
1418       if (MFI.hasCalls()) {
1419         // If we have calls, we need to keep the frame register in a register
1420         // that won't be clobbered by a call, so ensure it is copied somewhere.
1421 
1422         // This is not a problem for the scratch wave offset, because the same
1423         // registers are reserved in all functions.
1424 
1425         // FIXME: Nothing is really ensuring this is a call preserved register,
1426         // it's just selected from the end so it happens to be.
1427         unsigned ReservedOffsetReg
1428           = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1429         Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1430       } else {
1431         unsigned PrivateSegmentWaveByteOffsetReg = Info.getPreloadedReg(
1432           AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1433         Info.setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
1434       }
1435     } else {
1436       unsigned ReservedBufferReg
1437         = TRI.reservedPrivateSegmentBufferReg(MF);
1438       unsigned ReservedOffsetReg
1439         = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1440 
1441       // We tentatively reserve the last registers (skipping the last two
1442       // which may contain VCC). After register allocation, we'll replace
1443       // these with the ones immediately after those which were really
1444       // allocated. In the prologue copies will be inserted from the argument
1445       // to these reserved registers.
1446       Info.setScratchRSrcReg(ReservedBufferReg);
1447       Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1448     }
1449   } else {
1450     unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
1451 
1452     // Without HSA, relocations are used for the scratch pointer and the
1453     // buffer resource setup is always inserted in the prologue. Scratch wave
1454     // offset is still in an input SGPR.
1455     Info.setScratchRSrcReg(ReservedBufferReg);
1456 
1457     if (HasStackObjects && !MFI.hasCalls()) {
1458       unsigned ScratchWaveOffsetReg = Info.getPreloadedReg(
1459         AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1460       Info.setScratchWaveOffsetReg(ScratchWaveOffsetReg);
1461     } else {
1462       unsigned ReservedOffsetReg
1463         = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1464       Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1465     }
1466   }
1467 }
1468 
1469 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
1470   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
1471   return !Info->isEntryFunction();
1472 }
1473 
1474 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
1475 
1476 }
1477 
1478 void SITargetLowering::insertCopiesSplitCSR(
1479   MachineBasicBlock *Entry,
1480   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
1481   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1482 
1483   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
1484   if (!IStart)
1485     return;
1486 
1487   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1488   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
1489   MachineBasicBlock::iterator MBBI = Entry->begin();
1490   for (const MCPhysReg *I = IStart; *I; ++I) {
1491     const TargetRegisterClass *RC = nullptr;
1492     if (AMDGPU::SReg_64RegClass.contains(*I))
1493       RC = &AMDGPU::SGPR_64RegClass;
1494     else if (AMDGPU::SReg_32RegClass.contains(*I))
1495       RC = &AMDGPU::SGPR_32RegClass;
1496     else
1497       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
1498 
1499     unsigned NewVR = MRI->createVirtualRegister(RC);
1500     // Create copy from CSR to a virtual register.
1501     Entry->addLiveIn(*I);
1502     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
1503       .addReg(*I);
1504 
1505     // Insert the copy-back instructions right before the terminator.
1506     for (auto *Exit : Exits)
1507       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
1508               TII->get(TargetOpcode::COPY), *I)
1509         .addReg(NewVR);
1510   }
1511 }
1512 
1513 SDValue SITargetLowering::LowerFormalArguments(
1514     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1515     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1516     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1517   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1518 
1519   MachineFunction &MF = DAG.getMachineFunction();
1520   FunctionType *FType = MF.getFunction().getFunctionType();
1521   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1522   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
1523 
1524   if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
1525     const Function &Fn = MF.getFunction();
1526     DiagnosticInfoUnsupported NoGraphicsHSA(
1527         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
1528     DAG.getContext()->diagnose(NoGraphicsHSA);
1529     return DAG.getEntryNode();
1530   }
1531 
1532   // Create stack objects that are used for emitting debugger prologue if
1533   // "amdgpu-debugger-emit-prologue" attribute was specified.
1534   if (ST.debuggerEmitPrologue())
1535     createDebuggerPrologueStackObjects(MF);
1536 
1537   SmallVector<ISD::InputArg, 16> Splits;
1538   SmallVector<CCValAssign, 16> ArgLocs;
1539   BitVector Skipped(Ins.size());
1540   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1541                  *DAG.getContext());
1542 
1543   bool IsShader = AMDGPU::isShader(CallConv);
1544   bool IsKernel = AMDGPU::isKernel(CallConv);
1545   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
1546 
1547   if (!IsEntryFunc) {
1548     // 4 bytes are reserved at offset 0 for the emergency stack slot. Skip over
1549     // this when allocating argument fixed offsets.
1550     CCInfo.AllocateStack(4, 4);
1551   }
1552 
1553   if (IsShader) {
1554     processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
1555 
1556     // At least one interpolation mode must be enabled or else the GPU will
1557     // hang.
1558     //
1559     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
1560     // set PSInputAddr, the user wants to enable some bits after the compilation
1561     // based on run-time states. Since we can't know what the final PSInputEna
1562     // will look like, so we shouldn't do anything here and the user should take
1563     // responsibility for the correct programming.
1564     //
1565     // Otherwise, the following restrictions apply:
1566     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
1567     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
1568     //   enabled too.
1569     if (CallConv == CallingConv::AMDGPU_PS) {
1570       if ((Info->getPSInputAddr() & 0x7F) == 0 ||
1571            ((Info->getPSInputAddr() & 0xF) == 0 &&
1572             Info->isPSInputAllocated(11))) {
1573         CCInfo.AllocateReg(AMDGPU::VGPR0);
1574         CCInfo.AllocateReg(AMDGPU::VGPR1);
1575         Info->markPSInputAllocated(0);
1576         Info->markPSInputEnabled(0);
1577       }
1578       if (Subtarget->isAmdPalOS()) {
1579         // For isAmdPalOS, the user does not enable some bits after compilation
1580         // based on run-time states; the register values being generated here are
1581         // the final ones set in hardware. Therefore we need to apply the
1582         // workaround to PSInputAddr and PSInputEnable together.  (The case where
1583         // a bit is set in PSInputAddr but not PSInputEnable is where the
1584         // frontend set up an input arg for a particular interpolation mode, but
1585         // nothing uses that input arg. Really we should have an earlier pass
1586         // that removes such an arg.)
1587         unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
1588         if ((PsInputBits & 0x7F) == 0 ||
1589             ((PsInputBits & 0xF) == 0 &&
1590              (PsInputBits >> 11 & 1)))
1591           Info->markPSInputEnabled(
1592               countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
1593       }
1594     }
1595 
1596     assert(!Info->hasDispatchPtr() &&
1597            !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
1598            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
1599            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
1600            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
1601            !Info->hasWorkItemIDZ());
1602   } else if (IsKernel) {
1603     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
1604   } else {
1605     Splits.append(Ins.begin(), Ins.end());
1606   }
1607 
1608   if (IsEntryFunc) {
1609     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
1610     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
1611   }
1612 
1613   if (IsKernel) {
1614     analyzeFormalArgumentsCompute(CCInfo, Ins);
1615   } else {
1616     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
1617     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
1618   }
1619 
1620   SmallVector<SDValue, 16> Chains;
1621 
1622   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
1623     const ISD::InputArg &Arg = Ins[i];
1624     if (Skipped[i]) {
1625       InVals.push_back(DAG.getUNDEF(Arg.VT));
1626       continue;
1627     }
1628 
1629     CCValAssign &VA = ArgLocs[ArgIdx++];
1630     MVT VT = VA.getLocVT();
1631 
1632     if (IsEntryFunc && VA.isMemLoc()) {
1633       VT = Ins[i].VT;
1634       EVT MemVT = VA.getLocVT();
1635 
1636       const uint64_t Offset = Subtarget->getExplicitKernelArgOffset(MF) +
1637         VA.getLocMemOffset();
1638       Info->setABIArgOffset(Offset + MemVT.getStoreSize());
1639 
1640       // The first 36 bytes of the input buffer contains information about
1641       // thread group and global sizes.
1642       SDValue Arg = lowerKernargMemParameter(
1643         DAG, VT, MemVT, DL, Chain, Offset, Ins[i].Flags.isSExt(), &Ins[i]);
1644       Chains.push_back(Arg.getValue(1));
1645 
1646       auto *ParamTy =
1647         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
1648       if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
1649           ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
1650         // On SI local pointers are just offsets into LDS, so they are always
1651         // less than 16-bits.  On CI and newer they could potentially be
1652         // real pointers, so we can't guarantee their size.
1653         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
1654                           DAG.getValueType(MVT::i16));
1655       }
1656 
1657       InVals.push_back(Arg);
1658       continue;
1659     } else if (!IsEntryFunc && VA.isMemLoc()) {
1660       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
1661       InVals.push_back(Val);
1662       if (!Arg.Flags.isByVal())
1663         Chains.push_back(Val.getValue(1));
1664       continue;
1665     }
1666 
1667     assert(VA.isRegLoc() && "Parameter must be in a register!");
1668 
1669     unsigned Reg = VA.getLocReg();
1670     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
1671     EVT ValVT = VA.getValVT();
1672 
1673     Reg = MF.addLiveIn(Reg, RC);
1674     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1675 
1676     if (Arg.Flags.isSRet() && !getSubtarget()->enableHugePrivateBuffer()) {
1677       // The return object should be reasonably addressable.
1678 
1679       // FIXME: This helps when the return is a real sret. If it is a
1680       // automatically inserted sret (i.e. CanLowerReturn returns false), an
1681       // extra copy is inserted in SelectionDAGBuilder which obscures this.
1682       unsigned NumBits = 32 - AssumeFrameIndexHighZeroBits;
1683       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
1684         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
1685     }
1686 
1687     // If this is an 8 or 16-bit value, it is really passed promoted
1688     // to 32 bits. Insert an assert[sz]ext to capture this, then
1689     // truncate to the right size.
1690     switch (VA.getLocInfo()) {
1691     case CCValAssign::Full:
1692       break;
1693     case CCValAssign::BCvt:
1694       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
1695       break;
1696     case CCValAssign::SExt:
1697       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
1698                         DAG.getValueType(ValVT));
1699       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
1700       break;
1701     case CCValAssign::ZExt:
1702       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
1703                         DAG.getValueType(ValVT));
1704       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
1705       break;
1706     case CCValAssign::AExt:
1707       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
1708       break;
1709     default:
1710       llvm_unreachable("Unknown loc info!");
1711     }
1712 
1713     if (IsShader && Arg.VT.isVector()) {
1714       // Build a vector from the registers
1715       Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
1716       unsigned NumElements = ParamType->getVectorNumElements();
1717 
1718       SmallVector<SDValue, 4> Regs;
1719       Regs.push_back(Val);
1720       for (unsigned j = 1; j != NumElements; ++j) {
1721         Reg = ArgLocs[ArgIdx++].getLocReg();
1722         Reg = MF.addLiveIn(Reg, RC);
1723 
1724         SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1725         Regs.push_back(Copy);
1726       }
1727 
1728       // Fill up the missing vector elements
1729       NumElements = Arg.VT.getVectorNumElements() - NumElements;
1730       Regs.append(NumElements, DAG.getUNDEF(VT));
1731 
1732       InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs));
1733       continue;
1734     }
1735 
1736     InVals.push_back(Val);
1737   }
1738 
1739   if (!IsEntryFunc) {
1740     // Special inputs come after user arguments.
1741     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
1742   }
1743 
1744   // Start adding system SGPRs.
1745   if (IsEntryFunc) {
1746     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
1747   } else {
1748     CCInfo.AllocateReg(Info->getScratchRSrcReg());
1749     CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
1750     CCInfo.AllocateReg(Info->getFrameOffsetReg());
1751     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
1752   }
1753 
1754   auto &ArgUsageInfo =
1755     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
1756   ArgUsageInfo.setFuncArgInfo(MF.getFunction(), Info->getArgInfo());
1757 
1758   unsigned StackArgSize = CCInfo.getNextStackOffset();
1759   Info->setBytesInStackArgArea(StackArgSize);
1760 
1761   return Chains.empty() ? Chain :
1762     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1763 }
1764 
1765 // TODO: If return values can't fit in registers, we should return as many as
1766 // possible in registers before passing on stack.
1767 bool SITargetLowering::CanLowerReturn(
1768   CallingConv::ID CallConv,
1769   MachineFunction &MF, bool IsVarArg,
1770   const SmallVectorImpl<ISD::OutputArg> &Outs,
1771   LLVMContext &Context) const {
1772   // Replacing returns with sret/stack usage doesn't make sense for shaders.
1773   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
1774   // for shaders. Vector types should be explicitly handled by CC.
1775   if (AMDGPU::isEntryFunctionCC(CallConv))
1776     return true;
1777 
1778   SmallVector<CCValAssign, 16> RVLocs;
1779   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
1780   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
1781 }
1782 
1783 SDValue
1784 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1785                               bool isVarArg,
1786                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1787                               const SmallVectorImpl<SDValue> &OutVals,
1788                               const SDLoc &DL, SelectionDAG &DAG) const {
1789   MachineFunction &MF = DAG.getMachineFunction();
1790   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1791 
1792   if (AMDGPU::isKernel(CallConv)) {
1793     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
1794                                              OutVals, DL, DAG);
1795   }
1796 
1797   bool IsShader = AMDGPU::isShader(CallConv);
1798 
1799   Info->setIfReturnsVoid(Outs.size() == 0);
1800   bool IsWaveEnd = Info->returnsVoid() && IsShader;
1801 
1802   SmallVector<ISD::OutputArg, 48> Splits;
1803   SmallVector<SDValue, 48> SplitVals;
1804 
1805   // Split vectors into their elements.
1806   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
1807     const ISD::OutputArg &Out = Outs[i];
1808 
1809     if (IsShader && Out.VT.isVector()) {
1810       MVT VT = Out.VT.getVectorElementType();
1811       ISD::OutputArg NewOut = Out;
1812       NewOut.Flags.setSplit();
1813       NewOut.VT = VT;
1814 
1815       // We want the original number of vector elements here, e.g.
1816       // three or five, not four or eight.
1817       unsigned NumElements = Out.ArgVT.getVectorNumElements();
1818 
1819       for (unsigned j = 0; j != NumElements; ++j) {
1820         SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
1821                                    DAG.getConstant(j, DL, MVT::i32));
1822         SplitVals.push_back(Elem);
1823         Splits.push_back(NewOut);
1824         NewOut.PartOffset += NewOut.VT.getStoreSize();
1825       }
1826     } else {
1827       SplitVals.push_back(OutVals[i]);
1828       Splits.push_back(Out);
1829     }
1830   }
1831 
1832   // CCValAssign - represent the assignment of the return value to a location.
1833   SmallVector<CCValAssign, 48> RVLocs;
1834 
1835   // CCState - Info about the registers and stack slots.
1836   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1837                  *DAG.getContext());
1838 
1839   // Analyze outgoing return values.
1840   CCInfo.AnalyzeReturn(Splits, CCAssignFnForReturn(CallConv, isVarArg));
1841 
1842   SDValue Flag;
1843   SmallVector<SDValue, 48> RetOps;
1844   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1845 
1846   // Add return address for callable functions.
1847   if (!Info->isEntryFunction()) {
1848     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1849     SDValue ReturnAddrReg = CreateLiveInRegister(
1850       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
1851 
1852     // FIXME: Should be able to use a vreg here, but need a way to prevent it
1853     // from being allcoated to a CSR.
1854 
1855     SDValue PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
1856                                                 MVT::i64);
1857 
1858     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, Flag);
1859     Flag = Chain.getValue(1);
1860 
1861     RetOps.push_back(PhysReturnAddrReg);
1862   }
1863 
1864   // Copy the result values into the output registers.
1865   for (unsigned i = 0, realRVLocIdx = 0;
1866        i != RVLocs.size();
1867        ++i, ++realRVLocIdx) {
1868     CCValAssign &VA = RVLocs[i];
1869     assert(VA.isRegLoc() && "Can only return in registers!");
1870     // TODO: Partially return in registers if return values don't fit.
1871 
1872     SDValue Arg = SplitVals[realRVLocIdx];
1873 
1874     // Copied from other backends.
1875     switch (VA.getLocInfo()) {
1876     case CCValAssign::Full:
1877       break;
1878     case CCValAssign::BCvt:
1879       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1880       break;
1881     case CCValAssign::SExt:
1882       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
1883       break;
1884     case CCValAssign::ZExt:
1885       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
1886       break;
1887     case CCValAssign::AExt:
1888       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
1889       break;
1890     default:
1891       llvm_unreachable("Unknown loc info!");
1892     }
1893 
1894     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
1895     Flag = Chain.getValue(1);
1896     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1897   }
1898 
1899   // FIXME: Does sret work properly?
1900   if (!Info->isEntryFunction()) {
1901     const SIRegisterInfo *TRI
1902       = static_cast<const SISubtarget *>(Subtarget)->getRegisterInfo();
1903     const MCPhysReg *I =
1904       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
1905     if (I) {
1906       for (; *I; ++I) {
1907         if (AMDGPU::SReg_64RegClass.contains(*I))
1908           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
1909         else if (AMDGPU::SReg_32RegClass.contains(*I))
1910           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
1911         else
1912           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
1913       }
1914     }
1915   }
1916 
1917   // Update chain and glue.
1918   RetOps[0] = Chain;
1919   if (Flag.getNode())
1920     RetOps.push_back(Flag);
1921 
1922   unsigned Opc = AMDGPUISD::ENDPGM;
1923   if (!IsWaveEnd)
1924     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
1925   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
1926 }
1927 
1928 SDValue SITargetLowering::LowerCallResult(
1929     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
1930     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1931     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
1932     SDValue ThisVal) const {
1933   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
1934 
1935   // Assign locations to each value returned by this call.
1936   SmallVector<CCValAssign, 16> RVLocs;
1937   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
1938                  *DAG.getContext());
1939   CCInfo.AnalyzeCallResult(Ins, RetCC);
1940 
1941   // Copy all of the result registers out of their specified physreg.
1942   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1943     CCValAssign VA = RVLocs[i];
1944     SDValue Val;
1945 
1946     if (VA.isRegLoc()) {
1947       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
1948       Chain = Val.getValue(1);
1949       InFlag = Val.getValue(2);
1950     } else if (VA.isMemLoc()) {
1951       report_fatal_error("TODO: return values in memory");
1952     } else
1953       llvm_unreachable("unknown argument location type");
1954 
1955     switch (VA.getLocInfo()) {
1956     case CCValAssign::Full:
1957       break;
1958     case CCValAssign::BCvt:
1959       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1960       break;
1961     case CCValAssign::ZExt:
1962       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
1963                         DAG.getValueType(VA.getValVT()));
1964       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
1965       break;
1966     case CCValAssign::SExt:
1967       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
1968                         DAG.getValueType(VA.getValVT()));
1969       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
1970       break;
1971     case CCValAssign::AExt:
1972       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
1973       break;
1974     default:
1975       llvm_unreachable("Unknown loc info!");
1976     }
1977 
1978     InVals.push_back(Val);
1979   }
1980 
1981   return Chain;
1982 }
1983 
1984 // Add code to pass special inputs required depending on used features separate
1985 // from the explicit user arguments present in the IR.
1986 void SITargetLowering::passSpecialInputs(
1987     CallLoweringInfo &CLI,
1988     const SIMachineFunctionInfo &Info,
1989     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
1990     SmallVectorImpl<SDValue> &MemOpChains,
1991     SDValue Chain,
1992     SDValue StackPtr) const {
1993   // If we don't have a call site, this was a call inserted by
1994   // legalization. These can never use special inputs.
1995   if (!CLI.CS)
1996     return;
1997 
1998   const Function *CalleeFunc = CLI.CS.getCalledFunction();
1999   assert(CalleeFunc);
2000 
2001   SelectionDAG &DAG = CLI.DAG;
2002   const SDLoc &DL = CLI.DL;
2003 
2004   const SISubtarget *ST = getSubtarget();
2005   const SIRegisterInfo *TRI = ST->getRegisterInfo();
2006 
2007   auto &ArgUsageInfo =
2008     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2009   const AMDGPUFunctionArgInfo &CalleeArgInfo
2010     = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2011 
2012   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2013 
2014   // TODO: Unify with private memory register handling. This is complicated by
2015   // the fact that at least in kernels, the input argument is not necessarily
2016   // in the same location as the input.
2017   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2018     AMDGPUFunctionArgInfo::DISPATCH_PTR,
2019     AMDGPUFunctionArgInfo::QUEUE_PTR,
2020     AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
2021     AMDGPUFunctionArgInfo::DISPATCH_ID,
2022     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2023     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2024     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
2025     AMDGPUFunctionArgInfo::WORKITEM_ID_X,
2026     AMDGPUFunctionArgInfo::WORKITEM_ID_Y,
2027     AMDGPUFunctionArgInfo::WORKITEM_ID_Z,
2028     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
2029   };
2030 
2031   for (auto InputID : InputRegs) {
2032     const ArgDescriptor *OutgoingArg;
2033     const TargetRegisterClass *ArgRC;
2034 
2035     std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
2036     if (!OutgoingArg)
2037       continue;
2038 
2039     const ArgDescriptor *IncomingArg;
2040     const TargetRegisterClass *IncomingArgRC;
2041     std::tie(IncomingArg, IncomingArgRC)
2042       = CallerArgInfo.getPreloadedValue(InputID);
2043     assert(IncomingArgRC == ArgRC);
2044 
2045     // All special arguments are ints for now.
2046     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2047     SDValue InputReg;
2048 
2049     if (IncomingArg) {
2050       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2051     } else {
2052       // The implicit arg ptr is special because it doesn't have a corresponding
2053       // input for kernels, and is computed from the kernarg segment pointer.
2054       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2055       InputReg = getImplicitArgPtr(DAG, DL);
2056     }
2057 
2058     if (OutgoingArg->isRegister()) {
2059       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2060     } else {
2061       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, StackPtr,
2062                                               InputReg,
2063                                               OutgoingArg->getStackOffset());
2064       MemOpChains.push_back(ArgStore);
2065     }
2066   }
2067 }
2068 
2069 static bool canGuaranteeTCO(CallingConv::ID CC) {
2070   return CC == CallingConv::Fast;
2071 }
2072 
2073 /// Return true if we might ever do TCO for calls with this calling convention.
2074 static bool mayTailCallThisCC(CallingConv::ID CC) {
2075   switch (CC) {
2076   case CallingConv::C:
2077     return true;
2078   default:
2079     return canGuaranteeTCO(CC);
2080   }
2081 }
2082 
2083 bool SITargetLowering::isEligibleForTailCallOptimization(
2084     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2085     const SmallVectorImpl<ISD::OutputArg> &Outs,
2086     const SmallVectorImpl<SDValue> &OutVals,
2087     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2088   if (!mayTailCallThisCC(CalleeCC))
2089     return false;
2090 
2091   MachineFunction &MF = DAG.getMachineFunction();
2092   const Function &CallerF = MF.getFunction();
2093   CallingConv::ID CallerCC = CallerF.getCallingConv();
2094   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2095   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2096 
2097   // Kernels aren't callable, and don't have a live in return address so it
2098   // doesn't make sense to do a tail call with entry functions.
2099   if (!CallerPreserved)
2100     return false;
2101 
2102   bool CCMatch = CallerCC == CalleeCC;
2103 
2104   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2105     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2106       return true;
2107     return false;
2108   }
2109 
2110   // TODO: Can we handle var args?
2111   if (IsVarArg)
2112     return false;
2113 
2114   for (const Argument &Arg : CallerF.args()) {
2115     if (Arg.hasByValAttr())
2116       return false;
2117   }
2118 
2119   LLVMContext &Ctx = *DAG.getContext();
2120 
2121   // Check that the call results are passed in the same way.
2122   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2123                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2124                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2125     return false;
2126 
2127   // The callee has to preserve all registers the caller needs to preserve.
2128   if (!CCMatch) {
2129     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2130     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2131       return false;
2132   }
2133 
2134   // Nothing more to check if the callee is taking no arguments.
2135   if (Outs.empty())
2136     return true;
2137 
2138   SmallVector<CCValAssign, 16> ArgLocs;
2139   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2140 
2141   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2142 
2143   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2144   // If the stack arguments for this call do not fit into our own save area then
2145   // the call cannot be made tail.
2146   // TODO: Is this really necessary?
2147   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2148     return false;
2149 
2150   const MachineRegisterInfo &MRI = MF.getRegInfo();
2151   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2152 }
2153 
2154 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2155   if (!CI->isTailCall())
2156     return false;
2157 
2158   const Function *ParentFn = CI->getParent()->getParent();
2159   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2160     return false;
2161 
2162   auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
2163   return (Attr.getValueAsString() != "true");
2164 }
2165 
2166 // The wave scratch offset register is used as the global base pointer.
2167 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2168                                     SmallVectorImpl<SDValue> &InVals) const {
2169   SelectionDAG &DAG = CLI.DAG;
2170   const SDLoc &DL = CLI.DL;
2171   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2172   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2173   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2174   SDValue Chain = CLI.Chain;
2175   SDValue Callee = CLI.Callee;
2176   bool &IsTailCall = CLI.IsTailCall;
2177   CallingConv::ID CallConv = CLI.CallConv;
2178   bool IsVarArg = CLI.IsVarArg;
2179   bool IsSibCall = false;
2180   bool IsThisReturn = false;
2181   MachineFunction &MF = DAG.getMachineFunction();
2182 
2183   if (IsVarArg) {
2184     return lowerUnhandledCall(CLI, InVals,
2185                               "unsupported call to variadic function ");
2186   }
2187 
2188   if (!CLI.CS.getCalledFunction()) {
2189     return lowerUnhandledCall(CLI, InVals,
2190                               "unsupported indirect call to function ");
2191   }
2192 
2193   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2194     return lowerUnhandledCall(CLI, InVals,
2195                               "unsupported required tail call to function ");
2196   }
2197 
2198   // The first 4 bytes are reserved for the callee's emergency stack slot.
2199   const unsigned CalleeUsableStackOffset = 4;
2200 
2201   if (IsTailCall) {
2202     IsTailCall = isEligibleForTailCallOptimization(
2203       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2204     if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
2205       report_fatal_error("failed to perform tail call elimination on a call "
2206                          "site marked musttail");
2207     }
2208 
2209     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2210 
2211     // A sibling call is one where we're under the usual C ABI and not planning
2212     // to change that but can still do a tail call:
2213     if (!TailCallOpt && IsTailCall)
2214       IsSibCall = true;
2215 
2216     if (IsTailCall)
2217       ++NumTailCalls;
2218   }
2219 
2220   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee)) {
2221     // FIXME: Remove this hack for function pointer types after removing
2222     // support of old address space mapping. In the new address space
2223     // mapping the pointer in default address space is 64 bit, therefore
2224     // does not need this hack.
2225     if (Callee.getValueType() == MVT::i32) {
2226       const GlobalValue *GV = GA->getGlobal();
2227       Callee = DAG.getGlobalAddress(GV, DL, MVT::i64, GA->getOffset(), false,
2228                                     GA->getTargetFlags());
2229     }
2230   }
2231   assert(Callee.getValueType() == MVT::i64);
2232 
2233   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2234 
2235   // Analyze operands of the call, assigning locations to each operand.
2236   SmallVector<CCValAssign, 16> ArgLocs;
2237   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2238   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2239   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2240 
2241   // Get a count of how many bytes are to be pushed on the stack.
2242   unsigned NumBytes = CCInfo.getNextStackOffset();
2243 
2244   if (IsSibCall) {
2245     // Since we're not changing the ABI to make this a tail call, the memory
2246     // operands are already available in the caller's incoming argument space.
2247     NumBytes = 0;
2248   }
2249 
2250   // FPDiff is the byte offset of the call's argument area from the callee's.
2251   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2252   // by this amount for a tail call. In a sibling call it must be 0 because the
2253   // caller will deallocate the entire stack and the callee still expects its
2254   // arguments to begin at SP+0. Completely unused for non-tail calls.
2255   int32_t FPDiff = 0;
2256   MachineFrameInfo &MFI = MF.getFrameInfo();
2257   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2258 
2259   SDValue CallerSavedFP;
2260 
2261   // Adjust the stack pointer for the new arguments...
2262   // These operations are automatically eliminated by the prolog/epilog pass
2263   if (!IsSibCall) {
2264     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2265 
2266     unsigned OffsetReg = Info->getScratchWaveOffsetReg();
2267 
2268     // In the HSA case, this should be an identity copy.
2269     SDValue ScratchRSrcReg
2270       = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2271     RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2272 
2273     // TODO: Don't hardcode these registers and get from the callee function.
2274     SDValue ScratchWaveOffsetReg
2275       = DAG.getCopyFromReg(Chain, DL, OffsetReg, MVT::i32);
2276     RegsToPass.emplace_back(AMDGPU::SGPR4, ScratchWaveOffsetReg);
2277 
2278     if (!Info->isEntryFunction()) {
2279       // Avoid clobbering this function's FP value. In the current convention
2280       // callee will overwrite this, so do save/restore around the call site.
2281       CallerSavedFP = DAG.getCopyFromReg(Chain, DL,
2282                                          Info->getFrameOffsetReg(), MVT::i32);
2283     }
2284   }
2285 
2286   // Stack pointer relative accesses are done by changing the offset SGPR. This
2287   // is just the VGPR offset component.
2288   SDValue StackPtr = DAG.getConstant(CalleeUsableStackOffset, DL, MVT::i32);
2289 
2290   SmallVector<SDValue, 8> MemOpChains;
2291   MVT PtrVT = MVT::i32;
2292 
2293   // Walk the register/memloc assignments, inserting copies/loads.
2294   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2295        ++i, ++realArgIdx) {
2296     CCValAssign &VA = ArgLocs[i];
2297     SDValue Arg = OutVals[realArgIdx];
2298 
2299     // Promote the value if needed.
2300     switch (VA.getLocInfo()) {
2301     case CCValAssign::Full:
2302       break;
2303     case CCValAssign::BCvt:
2304       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2305       break;
2306     case CCValAssign::ZExt:
2307       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2308       break;
2309     case CCValAssign::SExt:
2310       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2311       break;
2312     case CCValAssign::AExt:
2313       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2314       break;
2315     case CCValAssign::FPExt:
2316       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2317       break;
2318     default:
2319       llvm_unreachable("Unknown loc info!");
2320     }
2321 
2322     if (VA.isRegLoc()) {
2323       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2324     } else {
2325       assert(VA.isMemLoc());
2326 
2327       SDValue DstAddr;
2328       MachinePointerInfo DstInfo;
2329 
2330       unsigned LocMemOffset = VA.getLocMemOffset();
2331       int32_t Offset = LocMemOffset;
2332 
2333       SDValue PtrOff = DAG.getObjectPtrOffset(DL, StackPtr, Offset);
2334 
2335       if (IsTailCall) {
2336         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2337         unsigned OpSize = Flags.isByVal() ?
2338           Flags.getByValSize() : VA.getValVT().getStoreSize();
2339 
2340         Offset = Offset + FPDiff;
2341         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
2342 
2343         DstAddr = DAG.getObjectPtrOffset(DL, DAG.getFrameIndex(FI, PtrVT),
2344                                          StackPtr);
2345         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
2346 
2347         // Make sure any stack arguments overlapping with where we're storing
2348         // are loaded before this eventual operation. Otherwise they'll be
2349         // clobbered.
2350 
2351         // FIXME: Why is this really necessary? This seems to just result in a
2352         // lot of code to copy the stack and write them back to the same
2353         // locations, which are supposed to be immutable?
2354         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
2355       } else {
2356         DstAddr = PtrOff;
2357         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
2358       }
2359 
2360       if (Outs[i].Flags.isByVal()) {
2361         SDValue SizeNode =
2362             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
2363         SDValue Cpy = DAG.getMemcpy(
2364             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2365             /*isVol = */ false, /*AlwaysInline = */ true,
2366             /*isTailCall = */ false, DstInfo,
2367             MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
2368                 *DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS))));
2369 
2370         MemOpChains.push_back(Cpy);
2371       } else {
2372         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
2373         MemOpChains.push_back(Store);
2374       }
2375     }
2376   }
2377 
2378   // Copy special input registers after user input arguments.
2379   passSpecialInputs(CLI, *Info, RegsToPass, MemOpChains, Chain, StackPtr);
2380 
2381   if (!MemOpChains.empty())
2382     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2383 
2384   // Build a sequence of copy-to-reg nodes chained together with token chain
2385   // and flag operands which copy the outgoing args into the appropriate regs.
2386   SDValue InFlag;
2387   for (auto &RegToPass : RegsToPass) {
2388     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
2389                              RegToPass.second, InFlag);
2390     InFlag = Chain.getValue(1);
2391   }
2392 
2393 
2394   SDValue PhysReturnAddrReg;
2395   if (IsTailCall) {
2396     // Since the return is being combined with the call, we need to pass on the
2397     // return address.
2398 
2399     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2400     SDValue ReturnAddrReg = CreateLiveInRegister(
2401       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2402 
2403     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2404                                         MVT::i64);
2405     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
2406     InFlag = Chain.getValue(1);
2407   }
2408 
2409   // We don't usually want to end the call-sequence here because we would tidy
2410   // the frame up *after* the call, however in the ABI-changing tail-call case
2411   // we've carefully laid out the parameters so that when sp is reset they'll be
2412   // in the correct location.
2413   if (IsTailCall && !IsSibCall) {
2414     Chain = DAG.getCALLSEQ_END(Chain,
2415                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
2416                                DAG.getTargetConstant(0, DL, MVT::i32),
2417                                InFlag, DL);
2418     InFlag = Chain.getValue(1);
2419   }
2420 
2421   std::vector<SDValue> Ops;
2422   Ops.push_back(Chain);
2423   Ops.push_back(Callee);
2424 
2425   if (IsTailCall) {
2426     // Each tail call may have to adjust the stack by a different amount, so
2427     // this information must travel along with the operation for eventual
2428     // consumption by emitEpilogue.
2429     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
2430 
2431     Ops.push_back(PhysReturnAddrReg);
2432   }
2433 
2434   // Add argument registers to the end of the list so that they are known live
2435   // into the call.
2436   for (auto &RegToPass : RegsToPass) {
2437     Ops.push_back(DAG.getRegister(RegToPass.first,
2438                                   RegToPass.second.getValueType()));
2439   }
2440 
2441   // Add a register mask operand representing the call-preserved registers.
2442 
2443   const AMDGPURegisterInfo *TRI = Subtarget->getRegisterInfo();
2444   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2445   assert(Mask && "Missing call preserved mask for calling convention");
2446   Ops.push_back(DAG.getRegisterMask(Mask));
2447 
2448   if (InFlag.getNode())
2449     Ops.push_back(InFlag);
2450 
2451   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2452 
2453   // If we're doing a tall call, use a TC_RETURN here rather than an
2454   // actual call instruction.
2455   if (IsTailCall) {
2456     MFI.setHasTailCall();
2457     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
2458   }
2459 
2460   // Returns a chain and a flag for retval copy to use.
2461   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
2462   Chain = Call.getValue(0);
2463   InFlag = Call.getValue(1);
2464 
2465   if (CallerSavedFP) {
2466     SDValue FPReg = DAG.getRegister(Info->getFrameOffsetReg(), MVT::i32);
2467     Chain = DAG.getCopyToReg(Chain, DL, FPReg, CallerSavedFP, InFlag);
2468     InFlag = Chain.getValue(1);
2469   }
2470 
2471   uint64_t CalleePopBytes = NumBytes;
2472   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
2473                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
2474                              InFlag, DL);
2475   if (!Ins.empty())
2476     InFlag = Chain.getValue(1);
2477 
2478   // Handle result values, copying them out of physregs into vregs that we
2479   // return.
2480   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2481                          InVals, IsThisReturn,
2482                          IsThisReturn ? OutVals[0] : SDValue());
2483 }
2484 
2485 unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
2486                                              SelectionDAG &DAG) const {
2487   unsigned Reg = StringSwitch<unsigned>(RegName)
2488     .Case("m0", AMDGPU::M0)
2489     .Case("exec", AMDGPU::EXEC)
2490     .Case("exec_lo", AMDGPU::EXEC_LO)
2491     .Case("exec_hi", AMDGPU::EXEC_HI)
2492     .Case("flat_scratch", AMDGPU::FLAT_SCR)
2493     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
2494     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
2495     .Default(AMDGPU::NoRegister);
2496 
2497   if (Reg == AMDGPU::NoRegister) {
2498     report_fatal_error(Twine("invalid register name \""
2499                              + StringRef(RegName)  + "\"."));
2500 
2501   }
2502 
2503   if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
2504       Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
2505     report_fatal_error(Twine("invalid register \""
2506                              + StringRef(RegName)  + "\" for subtarget."));
2507   }
2508 
2509   switch (Reg) {
2510   case AMDGPU::M0:
2511   case AMDGPU::EXEC_LO:
2512   case AMDGPU::EXEC_HI:
2513   case AMDGPU::FLAT_SCR_LO:
2514   case AMDGPU::FLAT_SCR_HI:
2515     if (VT.getSizeInBits() == 32)
2516       return Reg;
2517     break;
2518   case AMDGPU::EXEC:
2519   case AMDGPU::FLAT_SCR:
2520     if (VT.getSizeInBits() == 64)
2521       return Reg;
2522     break;
2523   default:
2524     llvm_unreachable("missing register type checking");
2525   }
2526 
2527   report_fatal_error(Twine("invalid type for register \""
2528                            + StringRef(RegName) + "\"."));
2529 }
2530 
2531 // If kill is not the last instruction, split the block so kill is always a
2532 // proper terminator.
2533 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
2534                                                     MachineBasicBlock *BB) const {
2535   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
2536 
2537   MachineBasicBlock::iterator SplitPoint(&MI);
2538   ++SplitPoint;
2539 
2540   if (SplitPoint == BB->end()) {
2541     // Don't bother with a new block.
2542     MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
2543     return BB;
2544   }
2545 
2546   MachineFunction *MF = BB->getParent();
2547   MachineBasicBlock *SplitBB
2548     = MF->CreateMachineBasicBlock(BB->getBasicBlock());
2549 
2550   MF->insert(++MachineFunction::iterator(BB), SplitBB);
2551   SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
2552 
2553   SplitBB->transferSuccessorsAndUpdatePHIs(BB);
2554   BB->addSuccessor(SplitBB);
2555 
2556   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
2557   return SplitBB;
2558 }
2559 
2560 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
2561 // wavefront. If the value is uniform and just happens to be in a VGPR, this
2562 // will only do one iteration. In the worst case, this will loop 64 times.
2563 //
2564 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
2565 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
2566   const SIInstrInfo *TII,
2567   MachineRegisterInfo &MRI,
2568   MachineBasicBlock &OrigBB,
2569   MachineBasicBlock &LoopBB,
2570   const DebugLoc &DL,
2571   const MachineOperand &IdxReg,
2572   unsigned InitReg,
2573   unsigned ResultReg,
2574   unsigned PhiReg,
2575   unsigned InitSaveExecReg,
2576   int Offset,
2577   bool UseGPRIdxMode,
2578   bool IsIndirectSrc) {
2579   MachineBasicBlock::iterator I = LoopBB.begin();
2580 
2581   unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2582   unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2583   unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2584   unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2585 
2586   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
2587     .addReg(InitReg)
2588     .addMBB(&OrigBB)
2589     .addReg(ResultReg)
2590     .addMBB(&LoopBB);
2591 
2592   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
2593     .addReg(InitSaveExecReg)
2594     .addMBB(&OrigBB)
2595     .addReg(NewExec)
2596     .addMBB(&LoopBB);
2597 
2598   // Read the next variant <- also loop target.
2599   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
2600     .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
2601 
2602   // Compare the just read M0 value to all possible Idx values.
2603   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
2604     .addReg(CurrentIdxReg)
2605     .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
2606 
2607   // Update EXEC, save the original EXEC value to VCC.
2608   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec)
2609     .addReg(CondReg, RegState::Kill);
2610 
2611   MRI.setSimpleHint(NewExec, CondReg);
2612 
2613   if (UseGPRIdxMode) {
2614     unsigned IdxReg;
2615     if (Offset == 0) {
2616       IdxReg = CurrentIdxReg;
2617     } else {
2618       IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2619       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
2620         .addReg(CurrentIdxReg, RegState::Kill)
2621         .addImm(Offset);
2622     }
2623     unsigned IdxMode = IsIndirectSrc ?
2624       VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
2625     MachineInstr *SetOn =
2626       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
2627       .addReg(IdxReg, RegState::Kill)
2628       .addImm(IdxMode);
2629     SetOn->getOperand(3).setIsUndef();
2630   } else {
2631     // Move index from VCC into M0
2632     if (Offset == 0) {
2633       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
2634         .addReg(CurrentIdxReg, RegState::Kill);
2635     } else {
2636       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
2637         .addReg(CurrentIdxReg, RegState::Kill)
2638         .addImm(Offset);
2639     }
2640   }
2641 
2642   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
2643   MachineInstr *InsertPt =
2644     BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
2645     .addReg(AMDGPU::EXEC)
2646     .addReg(NewExec);
2647 
2648   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
2649   // s_cbranch_scc0?
2650 
2651   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
2652   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
2653     .addMBB(&LoopBB);
2654 
2655   return InsertPt->getIterator();
2656 }
2657 
2658 // This has slightly sub-optimal regalloc when the source vector is killed by
2659 // the read. The register allocator does not understand that the kill is
2660 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
2661 // subregister from it, using 1 more VGPR than necessary. This was saved when
2662 // this was expanded after register allocation.
2663 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
2664                                                   MachineBasicBlock &MBB,
2665                                                   MachineInstr &MI,
2666                                                   unsigned InitResultReg,
2667                                                   unsigned PhiReg,
2668                                                   int Offset,
2669                                                   bool UseGPRIdxMode,
2670                                                   bool IsIndirectSrc) {
2671   MachineFunction *MF = MBB.getParent();
2672   MachineRegisterInfo &MRI = MF->getRegInfo();
2673   const DebugLoc &DL = MI.getDebugLoc();
2674   MachineBasicBlock::iterator I(&MI);
2675 
2676   unsigned DstReg = MI.getOperand(0).getReg();
2677   unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
2678   unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
2679 
2680   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
2681 
2682   // Save the EXEC mask
2683   BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec)
2684     .addReg(AMDGPU::EXEC);
2685 
2686   // To insert the loop we need to split the block. Move everything after this
2687   // point to a new block, and insert a new empty block between the two.
2688   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
2689   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
2690   MachineFunction::iterator MBBI(MBB);
2691   ++MBBI;
2692 
2693   MF->insert(MBBI, LoopBB);
2694   MF->insert(MBBI, RemainderBB);
2695 
2696   LoopBB->addSuccessor(LoopBB);
2697   LoopBB->addSuccessor(RemainderBB);
2698 
2699   // Move the rest of the block into a new block.
2700   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
2701   RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
2702 
2703   MBB.addSuccessor(LoopBB);
2704 
2705   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
2706 
2707   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
2708                                       InitResultReg, DstReg, PhiReg, TmpExec,
2709                                       Offset, UseGPRIdxMode, IsIndirectSrc);
2710 
2711   MachineBasicBlock::iterator First = RemainderBB->begin();
2712   BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
2713     .addReg(SaveExec);
2714 
2715   return InsPt;
2716 }
2717 
2718 // Returns subreg index, offset
2719 static std::pair<unsigned, int>
2720 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
2721                             const TargetRegisterClass *SuperRC,
2722                             unsigned VecReg,
2723                             int Offset) {
2724   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
2725 
2726   // Skip out of bounds offsets, or else we would end up using an undefined
2727   // register.
2728   if (Offset >= NumElts || Offset < 0)
2729     return std::make_pair(AMDGPU::sub0, Offset);
2730 
2731   return std::make_pair(AMDGPU::sub0 + Offset, 0);
2732 }
2733 
2734 // Return true if the index is an SGPR and was set.
2735 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
2736                                  MachineRegisterInfo &MRI,
2737                                  MachineInstr &MI,
2738                                  int Offset,
2739                                  bool UseGPRIdxMode,
2740                                  bool IsIndirectSrc) {
2741   MachineBasicBlock *MBB = MI.getParent();
2742   const DebugLoc &DL = MI.getDebugLoc();
2743   MachineBasicBlock::iterator I(&MI);
2744 
2745   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
2746   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
2747 
2748   assert(Idx->getReg() != AMDGPU::NoRegister);
2749 
2750   if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
2751     return false;
2752 
2753   if (UseGPRIdxMode) {
2754     unsigned IdxMode = IsIndirectSrc ?
2755       VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
2756     if (Offset == 0) {
2757       MachineInstr *SetOn =
2758           BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
2759               .add(*Idx)
2760               .addImm(IdxMode);
2761 
2762       SetOn->getOperand(3).setIsUndef();
2763     } else {
2764       unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
2765       BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
2766           .add(*Idx)
2767           .addImm(Offset);
2768       MachineInstr *SetOn =
2769         BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
2770         .addReg(Tmp, RegState::Kill)
2771         .addImm(IdxMode);
2772 
2773       SetOn->getOperand(3).setIsUndef();
2774     }
2775 
2776     return true;
2777   }
2778 
2779   if (Offset == 0) {
2780     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
2781       .add(*Idx);
2782   } else {
2783     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
2784       .add(*Idx)
2785       .addImm(Offset);
2786   }
2787 
2788   return true;
2789 }
2790 
2791 // Control flow needs to be inserted if indexing with a VGPR.
2792 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
2793                                           MachineBasicBlock &MBB,
2794                                           const SISubtarget &ST) {
2795   const SIInstrInfo *TII = ST.getInstrInfo();
2796   const SIRegisterInfo &TRI = TII->getRegisterInfo();
2797   MachineFunction *MF = MBB.getParent();
2798   MachineRegisterInfo &MRI = MF->getRegInfo();
2799 
2800   unsigned Dst = MI.getOperand(0).getReg();
2801   unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
2802   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
2803 
2804   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
2805 
2806   unsigned SubReg;
2807   std::tie(SubReg, Offset)
2808     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
2809 
2810   bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
2811 
2812   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
2813     MachineBasicBlock::iterator I(&MI);
2814     const DebugLoc &DL = MI.getDebugLoc();
2815 
2816     if (UseGPRIdxMode) {
2817       // TODO: Look at the uses to avoid the copy. This may require rescheduling
2818       // to avoid interfering with other uses, so probably requires a new
2819       // optimization pass.
2820       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
2821         .addReg(SrcReg, RegState::Undef, SubReg)
2822         .addReg(SrcReg, RegState::Implicit)
2823         .addReg(AMDGPU::M0, RegState::Implicit);
2824       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
2825     } else {
2826       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
2827         .addReg(SrcReg, RegState::Undef, SubReg)
2828         .addReg(SrcReg, RegState::Implicit);
2829     }
2830 
2831     MI.eraseFromParent();
2832 
2833     return &MBB;
2834   }
2835 
2836   const DebugLoc &DL = MI.getDebugLoc();
2837   MachineBasicBlock::iterator I(&MI);
2838 
2839   unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2840   unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2841 
2842   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
2843 
2844   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
2845                               Offset, UseGPRIdxMode, true);
2846   MachineBasicBlock *LoopBB = InsPt->getParent();
2847 
2848   if (UseGPRIdxMode) {
2849     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
2850       .addReg(SrcReg, RegState::Undef, SubReg)
2851       .addReg(SrcReg, RegState::Implicit)
2852       .addReg(AMDGPU::M0, RegState::Implicit);
2853     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
2854   } else {
2855     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
2856       .addReg(SrcReg, RegState::Undef, SubReg)
2857       .addReg(SrcReg, RegState::Implicit);
2858   }
2859 
2860   MI.eraseFromParent();
2861 
2862   return LoopBB;
2863 }
2864 
2865 static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
2866                                  const TargetRegisterClass *VecRC) {
2867   switch (TRI.getRegSizeInBits(*VecRC)) {
2868   case 32: // 4 bytes
2869     return AMDGPU::V_MOVRELD_B32_V1;
2870   case 64: // 8 bytes
2871     return AMDGPU::V_MOVRELD_B32_V2;
2872   case 128: // 16 bytes
2873     return AMDGPU::V_MOVRELD_B32_V4;
2874   case 256: // 32 bytes
2875     return AMDGPU::V_MOVRELD_B32_V8;
2876   case 512: // 64 bytes
2877     return AMDGPU::V_MOVRELD_B32_V16;
2878   default:
2879     llvm_unreachable("unsupported size for MOVRELD pseudos");
2880   }
2881 }
2882 
2883 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
2884                                           MachineBasicBlock &MBB,
2885                                           const SISubtarget &ST) {
2886   const SIInstrInfo *TII = ST.getInstrInfo();
2887   const SIRegisterInfo &TRI = TII->getRegisterInfo();
2888   MachineFunction *MF = MBB.getParent();
2889   MachineRegisterInfo &MRI = MF->getRegInfo();
2890 
2891   unsigned Dst = MI.getOperand(0).getReg();
2892   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
2893   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
2894   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
2895   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
2896   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
2897 
2898   // This can be an immediate, but will be folded later.
2899   assert(Val->getReg());
2900 
2901   unsigned SubReg;
2902   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
2903                                                          SrcVec->getReg(),
2904                                                          Offset);
2905   bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
2906 
2907   if (Idx->getReg() == AMDGPU::NoRegister) {
2908     MachineBasicBlock::iterator I(&MI);
2909     const DebugLoc &DL = MI.getDebugLoc();
2910 
2911     assert(Offset == 0);
2912 
2913     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
2914         .add(*SrcVec)
2915         .add(*Val)
2916         .addImm(SubReg);
2917 
2918     MI.eraseFromParent();
2919     return &MBB;
2920   }
2921 
2922   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
2923     MachineBasicBlock::iterator I(&MI);
2924     const DebugLoc &DL = MI.getDebugLoc();
2925 
2926     if (UseGPRIdxMode) {
2927       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
2928           .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
2929           .add(*Val)
2930           .addReg(Dst, RegState::ImplicitDefine)
2931           .addReg(SrcVec->getReg(), RegState::Implicit)
2932           .addReg(AMDGPU::M0, RegState::Implicit);
2933 
2934       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
2935     } else {
2936       const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
2937 
2938       BuildMI(MBB, I, DL, MovRelDesc)
2939           .addReg(Dst, RegState::Define)
2940           .addReg(SrcVec->getReg())
2941           .add(*Val)
2942           .addImm(SubReg - AMDGPU::sub0);
2943     }
2944 
2945     MI.eraseFromParent();
2946     return &MBB;
2947   }
2948 
2949   if (Val->isReg())
2950     MRI.clearKillFlags(Val->getReg());
2951 
2952   const DebugLoc &DL = MI.getDebugLoc();
2953 
2954   unsigned PhiReg = MRI.createVirtualRegister(VecRC);
2955 
2956   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
2957                               Offset, UseGPRIdxMode, false);
2958   MachineBasicBlock *LoopBB = InsPt->getParent();
2959 
2960   if (UseGPRIdxMode) {
2961     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
2962         .addReg(PhiReg, RegState::Undef, SubReg) // vdst
2963         .add(*Val)                               // src0
2964         .addReg(Dst, RegState::ImplicitDefine)
2965         .addReg(PhiReg, RegState::Implicit)
2966         .addReg(AMDGPU::M0, RegState::Implicit);
2967     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
2968   } else {
2969     const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
2970 
2971     BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
2972         .addReg(Dst, RegState::Define)
2973         .addReg(PhiReg)
2974         .add(*Val)
2975         .addImm(SubReg - AMDGPU::sub0);
2976   }
2977 
2978   MI.eraseFromParent();
2979 
2980   return LoopBB;
2981 }
2982 
2983 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
2984   MachineInstr &MI, MachineBasicBlock *BB) const {
2985 
2986   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
2987   MachineFunction *MF = BB->getParent();
2988   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
2989 
2990   if (TII->isMIMG(MI)) {
2991     if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
2992       report_fatal_error("missing mem operand from MIMG instruction");
2993     }
2994     // Add a memoperand for mimg instructions so that they aren't assumed to
2995     // be ordered memory instuctions.
2996 
2997     return BB;
2998   }
2999 
3000   switch (MI.getOpcode()) {
3001   case AMDGPU::S_ADD_U64_PSEUDO:
3002   case AMDGPU::S_SUB_U64_PSEUDO: {
3003     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3004     const DebugLoc &DL = MI.getDebugLoc();
3005 
3006     MachineOperand &Dest = MI.getOperand(0);
3007     MachineOperand &Src0 = MI.getOperand(1);
3008     MachineOperand &Src1 = MI.getOperand(2);
3009 
3010     unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3011     unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3012 
3013     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3014      Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
3015      &AMDGPU::SReg_32_XM0RegClass);
3016     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3017       Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
3018       &AMDGPU::SReg_32_XM0RegClass);
3019 
3020     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3021       Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
3022       &AMDGPU::SReg_32_XM0RegClass);
3023     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3024       Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
3025       &AMDGPU::SReg_32_XM0RegClass);
3026 
3027     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3028 
3029     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3030     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3031     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3032       .add(Src0Sub0)
3033       .add(Src1Sub0);
3034     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3035       .add(Src0Sub1)
3036       .add(Src1Sub1);
3037     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3038       .addReg(DestSub0)
3039       .addImm(AMDGPU::sub0)
3040       .addReg(DestSub1)
3041       .addImm(AMDGPU::sub1);
3042     MI.eraseFromParent();
3043     return BB;
3044   }
3045   case AMDGPU::SI_INIT_M0: {
3046     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
3047             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3048         .add(MI.getOperand(0));
3049     MI.eraseFromParent();
3050     return BB;
3051   }
3052   case AMDGPU::SI_INIT_EXEC:
3053     // This should be before all vector instructions.
3054     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
3055             AMDGPU::EXEC)
3056         .addImm(MI.getOperand(0).getImm());
3057     MI.eraseFromParent();
3058     return BB;
3059 
3060   case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
3061     // Extract the thread count from an SGPR input and set EXEC accordingly.
3062     // Since BFM can't shift by 64, handle that case with CMP + CMOV.
3063     //
3064     // S_BFE_U32 count, input, {shift, 7}
3065     // S_BFM_B64 exec, count, 0
3066     // S_CMP_EQ_U32 count, 64
3067     // S_CMOV_B64 exec, -1
3068     MachineInstr *FirstMI = &*BB->begin();
3069     MachineRegisterInfo &MRI = MF->getRegInfo();
3070     unsigned InputReg = MI.getOperand(0).getReg();
3071     unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3072     bool Found = false;
3073 
3074     // Move the COPY of the input reg to the beginning, so that we can use it.
3075     for (auto I = BB->begin(); I != &MI; I++) {
3076       if (I->getOpcode() != TargetOpcode::COPY ||
3077           I->getOperand(0).getReg() != InputReg)
3078         continue;
3079 
3080       if (I == FirstMI) {
3081         FirstMI = &*++BB->begin();
3082       } else {
3083         I->removeFromParent();
3084         BB->insert(FirstMI, &*I);
3085       }
3086       Found = true;
3087       break;
3088     }
3089     assert(Found);
3090     (void)Found;
3091 
3092     // This should be before all vector instructions.
3093     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
3094         .addReg(InputReg)
3095         .addImm((MI.getOperand(1).getImm() & 0x7f) | 0x70000);
3096     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFM_B64),
3097             AMDGPU::EXEC)
3098         .addReg(CountReg)
3099         .addImm(0);
3100     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
3101         .addReg(CountReg, RegState::Kill)
3102         .addImm(64);
3103     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMOV_B64),
3104             AMDGPU::EXEC)
3105         .addImm(-1);
3106     MI.eraseFromParent();
3107     return BB;
3108   }
3109 
3110   case AMDGPU::GET_GROUPSTATICSIZE: {
3111     DebugLoc DL = MI.getDebugLoc();
3112     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
3113         .add(MI.getOperand(0))
3114         .addImm(MFI->getLDSSize());
3115     MI.eraseFromParent();
3116     return BB;
3117   }
3118   case AMDGPU::SI_INDIRECT_SRC_V1:
3119   case AMDGPU::SI_INDIRECT_SRC_V2:
3120   case AMDGPU::SI_INDIRECT_SRC_V4:
3121   case AMDGPU::SI_INDIRECT_SRC_V8:
3122   case AMDGPU::SI_INDIRECT_SRC_V16:
3123     return emitIndirectSrc(MI, *BB, *getSubtarget());
3124   case AMDGPU::SI_INDIRECT_DST_V1:
3125   case AMDGPU::SI_INDIRECT_DST_V2:
3126   case AMDGPU::SI_INDIRECT_DST_V4:
3127   case AMDGPU::SI_INDIRECT_DST_V8:
3128   case AMDGPU::SI_INDIRECT_DST_V16:
3129     return emitIndirectDst(MI, *BB, *getSubtarget());
3130   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
3131   case AMDGPU::SI_KILL_I1_PSEUDO:
3132     return splitKillBlock(MI, BB);
3133   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
3134     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3135 
3136     unsigned Dst = MI.getOperand(0).getReg();
3137     unsigned Src0 = MI.getOperand(1).getReg();
3138     unsigned Src1 = MI.getOperand(2).getReg();
3139     const DebugLoc &DL = MI.getDebugLoc();
3140     unsigned SrcCond = MI.getOperand(3).getReg();
3141 
3142     unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3143     unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3144     unsigned SrcCondCopy = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
3145 
3146     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
3147       .addReg(SrcCond);
3148     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
3149       .addReg(Src0, 0, AMDGPU::sub0)
3150       .addReg(Src1, 0, AMDGPU::sub0)
3151       .addReg(SrcCondCopy);
3152     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
3153       .addReg(Src0, 0, AMDGPU::sub1)
3154       .addReg(Src1, 0, AMDGPU::sub1)
3155       .addReg(SrcCondCopy);
3156 
3157     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
3158       .addReg(DstLo)
3159       .addImm(AMDGPU::sub0)
3160       .addReg(DstHi)
3161       .addImm(AMDGPU::sub1);
3162     MI.eraseFromParent();
3163     return BB;
3164   }
3165   case AMDGPU::SI_BR_UNDEF: {
3166     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3167     const DebugLoc &DL = MI.getDebugLoc();
3168     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3169                            .add(MI.getOperand(0));
3170     Br->getOperand(1).setIsUndef(true); // read undef SCC
3171     MI.eraseFromParent();
3172     return BB;
3173   }
3174   case AMDGPU::ADJCALLSTACKUP:
3175   case AMDGPU::ADJCALLSTACKDOWN: {
3176     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
3177     MachineInstrBuilder MIB(*MF, &MI);
3178 
3179     // Add an implicit use of the frame offset reg to prevent the restore copy
3180     // inserted after the call from being reorderd after stack operations in the
3181     // the caller's frame.
3182     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
3183         .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
3184         .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
3185     return BB;
3186   }
3187   case AMDGPU::SI_CALL_ISEL:
3188   case AMDGPU::SI_TCRETURN_ISEL: {
3189     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3190     const DebugLoc &DL = MI.getDebugLoc();
3191     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
3192 
3193     MachineRegisterInfo &MRI = MF->getRegInfo();
3194     unsigned GlobalAddrReg = MI.getOperand(0).getReg();
3195     MachineInstr *PCRel = MRI.getVRegDef(GlobalAddrReg);
3196     assert(PCRel->getOpcode() == AMDGPU::SI_PC_ADD_REL_OFFSET);
3197 
3198     const GlobalValue *G = PCRel->getOperand(1).getGlobal();
3199 
3200     MachineInstrBuilder MIB;
3201     if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) {
3202       MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg)
3203         .add(MI.getOperand(0))
3204         .addGlobalAddress(G);
3205     } else {
3206       MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_TCRETURN))
3207         .add(MI.getOperand(0))
3208         .addGlobalAddress(G);
3209 
3210       // There is an additional imm operand for tcreturn, but it should be in the
3211       // right place already.
3212     }
3213 
3214     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3215       MIB.add(MI.getOperand(I));
3216 
3217     MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
3218     MI.eraseFromParent();
3219     return BB;
3220   }
3221   default:
3222     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
3223   }
3224 }
3225 
3226 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
3227   return isTypeLegal(VT.getScalarType());
3228 }
3229 
3230 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
3231   // This currently forces unfolding various combinations of fsub into fma with
3232   // free fneg'd operands. As long as we have fast FMA (controlled by
3233   // isFMAFasterThanFMulAndFAdd), we should perform these.
3234 
3235   // When fma is quarter rate, for f64 where add / sub are at best half rate,
3236   // most of these combines appear to be cycle neutral but save on instruction
3237   // count / code size.
3238   return true;
3239 }
3240 
3241 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
3242                                          EVT VT) const {
3243   if (!VT.isVector()) {
3244     return MVT::i1;
3245   }
3246   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
3247 }
3248 
3249 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
3250   // TODO: Should i16 be used always if legal? For now it would force VALU
3251   // shifts.
3252   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
3253 }
3254 
3255 // Answering this is somewhat tricky and depends on the specific device which
3256 // have different rates for fma or all f64 operations.
3257 //
3258 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
3259 // regardless of which device (although the number of cycles differs between
3260 // devices), so it is always profitable for f64.
3261 //
3262 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
3263 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
3264 // which we can always do even without fused FP ops since it returns the same
3265 // result as the separate operations and since it is always full
3266 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
3267 // however does not support denormals, so we do report fma as faster if we have
3268 // a fast fma device and require denormals.
3269 //
3270 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3271   VT = VT.getScalarType();
3272 
3273   switch (VT.getSimpleVT().SimpleTy) {
3274   case MVT::f32:
3275     // This is as fast on some subtargets. However, we always have full rate f32
3276     // mad available which returns the same result as the separate operations
3277     // which we should prefer over fma. We can't use this if we want to support
3278     // denormals, so only report this in these cases.
3279     return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
3280   case MVT::f64:
3281     return true;
3282   case MVT::f16:
3283     return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
3284   default:
3285     break;
3286   }
3287 
3288   return false;
3289 }
3290 
3291 //===----------------------------------------------------------------------===//
3292 // Custom DAG Lowering Operations
3293 //===----------------------------------------------------------------------===//
3294 
3295 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3296   switch (Op.getOpcode()) {
3297   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
3298   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
3299   case ISD::LOAD: {
3300     SDValue Result = LowerLOAD(Op, DAG);
3301     assert((!Result.getNode() ||
3302             Result.getNode()->getNumValues() == 2) &&
3303            "Load should return a value and a chain");
3304     return Result;
3305   }
3306 
3307   case ISD::FSIN:
3308   case ISD::FCOS:
3309     return LowerTrig(Op, DAG);
3310   case ISD::SELECT: return LowerSELECT(Op, DAG);
3311   case ISD::FDIV: return LowerFDIV(Op, DAG);
3312   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
3313   case ISD::STORE: return LowerSTORE(Op, DAG);
3314   case ISD::GlobalAddress: {
3315     MachineFunction &MF = DAG.getMachineFunction();
3316     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
3317     return LowerGlobalAddress(MFI, Op, DAG);
3318   }
3319   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3320   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
3321   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
3322   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
3323   case ISD::INSERT_VECTOR_ELT:
3324     return lowerINSERT_VECTOR_ELT(Op, DAG);
3325   case ISD::EXTRACT_VECTOR_ELT:
3326     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3327   case ISD::FP_ROUND:
3328     return lowerFP_ROUND(Op, DAG);
3329   case ISD::TRAP:
3330   case ISD::DEBUGTRAP:
3331     return lowerTRAP(Op, DAG);
3332   }
3333   return SDValue();
3334 }
3335 
3336 static unsigned getImageOpcode(unsigned IID) {
3337   switch (IID) {
3338   case Intrinsic::amdgcn_image_load:
3339     return AMDGPUISD::IMAGE_LOAD;
3340   case Intrinsic::amdgcn_image_load_mip:
3341     return AMDGPUISD::IMAGE_LOAD_MIP;
3342 
3343   // Basic sample.
3344   case Intrinsic::amdgcn_image_sample:
3345     return AMDGPUISD::IMAGE_SAMPLE;
3346   case Intrinsic::amdgcn_image_sample_cl:
3347     return AMDGPUISD::IMAGE_SAMPLE_CL;
3348   case Intrinsic::amdgcn_image_sample_d:
3349     return AMDGPUISD::IMAGE_SAMPLE_D;
3350   case Intrinsic::amdgcn_image_sample_d_cl:
3351     return AMDGPUISD::IMAGE_SAMPLE_D_CL;
3352   case Intrinsic::amdgcn_image_sample_l:
3353     return AMDGPUISD::IMAGE_SAMPLE_L;
3354   case Intrinsic::amdgcn_image_sample_b:
3355     return AMDGPUISD::IMAGE_SAMPLE_B;
3356   case Intrinsic::amdgcn_image_sample_b_cl:
3357     return AMDGPUISD::IMAGE_SAMPLE_B_CL;
3358   case Intrinsic::amdgcn_image_sample_lz:
3359     return AMDGPUISD::IMAGE_SAMPLE_LZ;
3360   case Intrinsic::amdgcn_image_sample_cd:
3361     return AMDGPUISD::IMAGE_SAMPLE_CD;
3362   case Intrinsic::amdgcn_image_sample_cd_cl:
3363     return AMDGPUISD::IMAGE_SAMPLE_CD_CL;
3364 
3365   // Sample with comparison.
3366   case Intrinsic::amdgcn_image_sample_c:
3367     return AMDGPUISD::IMAGE_SAMPLE_C;
3368   case Intrinsic::amdgcn_image_sample_c_cl:
3369     return AMDGPUISD::IMAGE_SAMPLE_C_CL;
3370   case Intrinsic::amdgcn_image_sample_c_d:
3371     return AMDGPUISD::IMAGE_SAMPLE_C_D;
3372   case Intrinsic::amdgcn_image_sample_c_d_cl:
3373     return AMDGPUISD::IMAGE_SAMPLE_C_D_CL;
3374   case Intrinsic::amdgcn_image_sample_c_l:
3375     return AMDGPUISD::IMAGE_SAMPLE_C_L;
3376   case Intrinsic::amdgcn_image_sample_c_b:
3377     return AMDGPUISD::IMAGE_SAMPLE_C_B;
3378   case Intrinsic::amdgcn_image_sample_c_b_cl:
3379     return AMDGPUISD::IMAGE_SAMPLE_C_B_CL;
3380   case Intrinsic::amdgcn_image_sample_c_lz:
3381     return AMDGPUISD::IMAGE_SAMPLE_C_LZ;
3382   case Intrinsic::amdgcn_image_sample_c_cd:
3383     return AMDGPUISD::IMAGE_SAMPLE_C_CD;
3384   case Intrinsic::amdgcn_image_sample_c_cd_cl:
3385     return AMDGPUISD::IMAGE_SAMPLE_C_CD_CL;
3386 
3387   // Sample with offsets.
3388   case Intrinsic::amdgcn_image_sample_o:
3389     return AMDGPUISD::IMAGE_SAMPLE_O;
3390   case Intrinsic::amdgcn_image_sample_cl_o:
3391     return AMDGPUISD::IMAGE_SAMPLE_CL_O;
3392   case Intrinsic::amdgcn_image_sample_d_o:
3393     return AMDGPUISD::IMAGE_SAMPLE_D_O;
3394   case Intrinsic::amdgcn_image_sample_d_cl_o:
3395     return AMDGPUISD::IMAGE_SAMPLE_D_CL_O;
3396   case Intrinsic::amdgcn_image_sample_l_o:
3397     return AMDGPUISD::IMAGE_SAMPLE_L_O;
3398   case Intrinsic::amdgcn_image_sample_b_o:
3399     return AMDGPUISD::IMAGE_SAMPLE_B_O;
3400   case Intrinsic::amdgcn_image_sample_b_cl_o:
3401     return AMDGPUISD::IMAGE_SAMPLE_B_CL_O;
3402   case Intrinsic::amdgcn_image_sample_lz_o:
3403     return AMDGPUISD::IMAGE_SAMPLE_LZ_O;
3404   case Intrinsic::amdgcn_image_sample_cd_o:
3405     return AMDGPUISD::IMAGE_SAMPLE_CD_O;
3406   case Intrinsic::amdgcn_image_sample_cd_cl_o:
3407     return AMDGPUISD::IMAGE_SAMPLE_CD_CL_O;
3408 
3409   // Sample with comparison and offsets.
3410   case Intrinsic::amdgcn_image_sample_c_o:
3411     return AMDGPUISD::IMAGE_SAMPLE_C_O;
3412   case Intrinsic::amdgcn_image_sample_c_cl_o:
3413     return AMDGPUISD::IMAGE_SAMPLE_C_CL_O;
3414   case Intrinsic::amdgcn_image_sample_c_d_o:
3415     return AMDGPUISD::IMAGE_SAMPLE_C_D_O;
3416   case Intrinsic::amdgcn_image_sample_c_d_cl_o:
3417     return AMDGPUISD::IMAGE_SAMPLE_C_D_CL_O;
3418   case Intrinsic::amdgcn_image_sample_c_l_o:
3419     return AMDGPUISD::IMAGE_SAMPLE_C_L_O;
3420   case Intrinsic::amdgcn_image_sample_c_b_o:
3421     return AMDGPUISD::IMAGE_SAMPLE_C_B_O;
3422   case Intrinsic::amdgcn_image_sample_c_b_cl_o:
3423     return AMDGPUISD::IMAGE_SAMPLE_C_B_CL_O;
3424   case Intrinsic::amdgcn_image_sample_c_lz_o:
3425     return AMDGPUISD::IMAGE_SAMPLE_C_LZ_O;
3426   case Intrinsic::amdgcn_image_sample_c_cd_o:
3427     return AMDGPUISD::IMAGE_SAMPLE_C_CD_O;
3428   case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
3429     return AMDGPUISD::IMAGE_SAMPLE_C_CD_CL_O;
3430 
3431   // Basic gather4.
3432   case Intrinsic::amdgcn_image_gather4:
3433     return AMDGPUISD::IMAGE_GATHER4;
3434   case Intrinsic::amdgcn_image_gather4_cl:
3435     return AMDGPUISD::IMAGE_GATHER4_CL;
3436   case Intrinsic::amdgcn_image_gather4_l:
3437     return AMDGPUISD::IMAGE_GATHER4_L;
3438   case Intrinsic::amdgcn_image_gather4_b:
3439     return AMDGPUISD::IMAGE_GATHER4_B;
3440   case Intrinsic::amdgcn_image_gather4_b_cl:
3441     return AMDGPUISD::IMAGE_GATHER4_B_CL;
3442   case Intrinsic::amdgcn_image_gather4_lz:
3443     return AMDGPUISD::IMAGE_GATHER4_LZ;
3444 
3445   // Gather4 with comparison.
3446   case Intrinsic::amdgcn_image_gather4_c:
3447     return AMDGPUISD::IMAGE_GATHER4_C;
3448   case Intrinsic::amdgcn_image_gather4_c_cl:
3449     return AMDGPUISD::IMAGE_GATHER4_C_CL;
3450   case Intrinsic::amdgcn_image_gather4_c_l:
3451     return AMDGPUISD::IMAGE_GATHER4_C_L;
3452   case Intrinsic::amdgcn_image_gather4_c_b:
3453     return AMDGPUISD::IMAGE_GATHER4_C_B;
3454   case Intrinsic::amdgcn_image_gather4_c_b_cl:
3455     return AMDGPUISD::IMAGE_GATHER4_C_B_CL;
3456   case Intrinsic::amdgcn_image_gather4_c_lz:
3457     return AMDGPUISD::IMAGE_GATHER4_C_LZ;
3458 
3459   // Gather4 with offsets.
3460   case Intrinsic::amdgcn_image_gather4_o:
3461     return AMDGPUISD::IMAGE_GATHER4_O;
3462   case Intrinsic::amdgcn_image_gather4_cl_o:
3463     return AMDGPUISD::IMAGE_GATHER4_CL_O;
3464   case Intrinsic::amdgcn_image_gather4_l_o:
3465     return AMDGPUISD::IMAGE_GATHER4_L_O;
3466   case Intrinsic::amdgcn_image_gather4_b_o:
3467     return AMDGPUISD::IMAGE_GATHER4_B_O;
3468   case Intrinsic::amdgcn_image_gather4_b_cl_o:
3469     return AMDGPUISD::IMAGE_GATHER4_B_CL_O;
3470   case Intrinsic::amdgcn_image_gather4_lz_o:
3471     return AMDGPUISD::IMAGE_GATHER4_LZ_O;
3472 
3473   // Gather4 with comparison and offsets.
3474   case Intrinsic::amdgcn_image_gather4_c_o:
3475     return AMDGPUISD::IMAGE_GATHER4_C_O;
3476   case Intrinsic::amdgcn_image_gather4_c_cl_o:
3477     return AMDGPUISD::IMAGE_GATHER4_C_CL_O;
3478   case Intrinsic::amdgcn_image_gather4_c_l_o:
3479     return AMDGPUISD::IMAGE_GATHER4_C_L_O;
3480   case Intrinsic::amdgcn_image_gather4_c_b_o:
3481     return AMDGPUISD::IMAGE_GATHER4_C_B_O;
3482   case Intrinsic::amdgcn_image_gather4_c_b_cl_o:
3483     return AMDGPUISD::IMAGE_GATHER4_C_B_CL_O;
3484   case Intrinsic::amdgcn_image_gather4_c_lz_o:
3485     return AMDGPUISD::IMAGE_GATHER4_C_LZ_O;
3486 
3487   default:
3488     break;
3489   }
3490   return 0;
3491 }
3492 
3493 static SDValue adjustLoadValueType(SDValue Result, EVT LoadVT, SDLoc DL,
3494                                    SelectionDAG &DAG, bool Unpacked) {
3495   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
3496     // Truncate to v2i16/v4i16.
3497     EVT IntLoadVT = LoadVT.changeTypeToInteger();
3498     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, IntLoadVT, Result);
3499     // Bitcast to original type (v2f16/v4f16).
3500     return DAG.getNode(ISD::BITCAST, DL, LoadVT, Trunc);
3501   }
3502   // Cast back to the original packed type.
3503   return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
3504 }
3505 
3506 // This is to lower INTRINSIC_W_CHAIN with illegal result types.
3507 SDValue SITargetLowering::lowerIntrinsicWChain_IllegalReturnType(SDValue Op,
3508                                      SDValue &Chain, SelectionDAG &DAG) const {
3509   EVT LoadVT = Op.getValueType();
3510   // TODO: handle v3f16.
3511   if (LoadVT != MVT::v2f16 && LoadVT != MVT::v4f16)
3512     return SDValue();
3513 
3514   bool Unpacked = Subtarget->hasUnpackedD16VMem();
3515   EVT UnpackedLoadVT = (LoadVT == MVT::v2f16) ? MVT::v2i32 : MVT::v4i32;
3516   EVT EquivLoadVT = Unpacked ? UnpackedLoadVT :
3517                                getEquivalentMemType(*DAG.getContext(), LoadVT);
3518   // Change from v4f16/v2f16 to EquivLoadVT.
3519   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
3520 
3521   SDValue Res;
3522   SDLoc DL(Op);
3523   MemSDNode *M = cast<MemSDNode>(Op);
3524   unsigned IID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
3525   switch (IID) {
3526   case Intrinsic::amdgcn_tbuffer_load: {
3527     SDValue Ops[] = {
3528       Op.getOperand(0),  // Chain
3529       Op.getOperand(2),  // rsrc
3530       Op.getOperand(3),  // vindex
3531       Op.getOperand(4),  // voffset
3532       Op.getOperand(5),  // soffset
3533       Op.getOperand(6),  // offset
3534       Op.getOperand(7),  // dfmt
3535       Op.getOperand(8),  // nfmt
3536       Op.getOperand(9),  // glc
3537       Op.getOperand(10)  // slc
3538     };
3539     Res = DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, DL,
3540                                   VTList, Ops, M->getMemoryVT(),
3541                                   M->getMemOperand());
3542     Chain = Res.getValue(1);
3543     return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3544   }
3545   case Intrinsic::amdgcn_buffer_load_format: {
3546     SDValue Ops[] = {
3547       Op.getOperand(0), // Chain
3548       Op.getOperand(2), // rsrc
3549       Op.getOperand(3), // vindex
3550       Op.getOperand(4), // offset
3551       Op.getOperand(5), // glc
3552       Op.getOperand(6)  // slc
3553     };
3554     Res = DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
3555                                    DL, VTList, Ops, M->getMemoryVT(),
3556                                    M->getMemOperand());
3557     Chain = Res.getValue(1);
3558     return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3559   }
3560   case Intrinsic::amdgcn_image_load:
3561   case Intrinsic::amdgcn_image_load_mip: {
3562     SDValue Ops[] = {
3563         Op.getOperand(0),  // Chain
3564         Op.getOperand(2),  // vaddr
3565         Op.getOperand(3),  // rsrc
3566         Op.getOperand(4),  // dmask
3567         Op.getOperand(5),  // glc
3568         Op.getOperand(6),  // slc
3569         Op.getOperand(7),  // lwe
3570         Op.getOperand(8)   // da
3571     };
3572     unsigned Opc = getImageOpcode(IID);
3573     Res = DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, M->getMemoryVT(),
3574                                   M->getMemOperand());
3575     Chain = Res.getValue(1);
3576     return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3577   }
3578   // Basic sample.
3579   case Intrinsic::amdgcn_image_sample:
3580   case Intrinsic::amdgcn_image_sample_cl:
3581   case Intrinsic::amdgcn_image_sample_d:
3582   case Intrinsic::amdgcn_image_sample_d_cl:
3583   case Intrinsic::amdgcn_image_sample_l:
3584   case Intrinsic::amdgcn_image_sample_b:
3585   case Intrinsic::amdgcn_image_sample_b_cl:
3586   case Intrinsic::amdgcn_image_sample_lz:
3587   case Intrinsic::amdgcn_image_sample_cd:
3588   case Intrinsic::amdgcn_image_sample_cd_cl:
3589 
3590   // Sample with comparison.
3591   case Intrinsic::amdgcn_image_sample_c:
3592   case Intrinsic::amdgcn_image_sample_c_cl:
3593   case Intrinsic::amdgcn_image_sample_c_d:
3594   case Intrinsic::amdgcn_image_sample_c_d_cl:
3595   case Intrinsic::amdgcn_image_sample_c_l:
3596   case Intrinsic::amdgcn_image_sample_c_b:
3597   case Intrinsic::amdgcn_image_sample_c_b_cl:
3598   case Intrinsic::amdgcn_image_sample_c_lz:
3599   case Intrinsic::amdgcn_image_sample_c_cd:
3600   case Intrinsic::amdgcn_image_sample_c_cd_cl:
3601 
3602   // Sample with offsets.
3603   case Intrinsic::amdgcn_image_sample_o:
3604   case Intrinsic::amdgcn_image_sample_cl_o:
3605   case Intrinsic::amdgcn_image_sample_d_o:
3606   case Intrinsic::amdgcn_image_sample_d_cl_o:
3607   case Intrinsic::amdgcn_image_sample_l_o:
3608   case Intrinsic::amdgcn_image_sample_b_o:
3609   case Intrinsic::amdgcn_image_sample_b_cl_o:
3610   case Intrinsic::amdgcn_image_sample_lz_o:
3611   case Intrinsic::amdgcn_image_sample_cd_o:
3612   case Intrinsic::amdgcn_image_sample_cd_cl_o:
3613 
3614   // Sample with comparison and offsets.
3615   case Intrinsic::amdgcn_image_sample_c_o:
3616   case Intrinsic::amdgcn_image_sample_c_cl_o:
3617   case Intrinsic::amdgcn_image_sample_c_d_o:
3618   case Intrinsic::amdgcn_image_sample_c_d_cl_o:
3619   case Intrinsic::amdgcn_image_sample_c_l_o:
3620   case Intrinsic::amdgcn_image_sample_c_b_o:
3621   case Intrinsic::amdgcn_image_sample_c_b_cl_o:
3622   case Intrinsic::amdgcn_image_sample_c_lz_o:
3623   case Intrinsic::amdgcn_image_sample_c_cd_o:
3624   case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
3625 
3626   // Basic gather4
3627   case Intrinsic::amdgcn_image_gather4:
3628   case Intrinsic::amdgcn_image_gather4_cl:
3629   case Intrinsic::amdgcn_image_gather4_l:
3630   case Intrinsic::amdgcn_image_gather4_b:
3631   case Intrinsic::amdgcn_image_gather4_b_cl:
3632   case Intrinsic::amdgcn_image_gather4_lz:
3633 
3634   // Gather4 with comparison
3635   case Intrinsic::amdgcn_image_gather4_c:
3636   case Intrinsic::amdgcn_image_gather4_c_cl:
3637   case Intrinsic::amdgcn_image_gather4_c_l:
3638   case Intrinsic::amdgcn_image_gather4_c_b:
3639   case Intrinsic::amdgcn_image_gather4_c_b_cl:
3640   case Intrinsic::amdgcn_image_gather4_c_lz:
3641 
3642   // Gather4 with offsets
3643   case Intrinsic::amdgcn_image_gather4_o:
3644   case Intrinsic::amdgcn_image_gather4_cl_o:
3645   case Intrinsic::amdgcn_image_gather4_l_o:
3646   case Intrinsic::amdgcn_image_gather4_b_o:
3647   case Intrinsic::amdgcn_image_gather4_b_cl_o:
3648   case Intrinsic::amdgcn_image_gather4_lz_o:
3649 
3650   // Gather4 with comparison and offsets
3651   case Intrinsic::amdgcn_image_gather4_c_o:
3652   case Intrinsic::amdgcn_image_gather4_c_cl_o:
3653   case Intrinsic::amdgcn_image_gather4_c_l_o:
3654   case Intrinsic::amdgcn_image_gather4_c_b_o:
3655   case Intrinsic::amdgcn_image_gather4_c_b_cl_o:
3656   case Intrinsic::amdgcn_image_gather4_c_lz_o: {
3657     SDValue Ops[] = {
3658       Op.getOperand(0),  // Chain
3659       Op.getOperand(2),  // vaddr
3660       Op.getOperand(3),  // rsrc
3661       Op.getOperand(4),  // sampler
3662       Op.getOperand(5),  // dmask
3663       Op.getOperand(6),  // unorm
3664       Op.getOperand(7),  // glc
3665       Op.getOperand(8),  // slc
3666       Op.getOperand(9),  // lwe
3667       Op.getOperand(10)  // da
3668     };
3669     unsigned Opc = getImageOpcode(IID);
3670     Res = DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, M->getMemoryVT(),
3671                                    M->getMemOperand());
3672     Chain = Res.getValue(1);
3673     return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3674   }
3675   default: {
3676     const AMDGPU::D16ImageDimIntrinsic *D16ImageDimIntr =
3677         AMDGPU::lookupD16ImageDimIntrinsicByIntr(IID);
3678     if (D16ImageDimIntr) {
3679       SmallVector<SDValue, 20> Ops;
3680       for (auto Value : Op.getNode()->op_values())
3681         Ops.push_back(Value);
3682       Ops[1] = DAG.getConstant(D16ImageDimIntr->D16HelperIntr, DL, MVT::i32);
3683       Res = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTList, Ops,
3684                                     M->getMemoryVT(), M->getMemOperand());
3685       Chain = Res.getValue(1);
3686       return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3687     }
3688 
3689     return SDValue();
3690   }
3691   }
3692 }
3693 
3694 void SITargetLowering::ReplaceNodeResults(SDNode *N,
3695                                           SmallVectorImpl<SDValue> &Results,
3696                                           SelectionDAG &DAG) const {
3697   switch (N->getOpcode()) {
3698   case ISD::INSERT_VECTOR_ELT: {
3699     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
3700       Results.push_back(Res);
3701     return;
3702   }
3703   case ISD::EXTRACT_VECTOR_ELT: {
3704     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
3705       Results.push_back(Res);
3706     return;
3707   }
3708   case ISD::INTRINSIC_WO_CHAIN: {
3709     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3710     switch (IID) {
3711     case Intrinsic::amdgcn_cvt_pkrtz: {
3712       SDValue Src0 = N->getOperand(1);
3713       SDValue Src1 = N->getOperand(2);
3714       SDLoc SL(N);
3715       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
3716                                 Src0, Src1);
3717       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
3718       return;
3719     }
3720     case Intrinsic::amdgcn_cvt_pknorm_i16:
3721     case Intrinsic::amdgcn_cvt_pknorm_u16:
3722     case Intrinsic::amdgcn_cvt_pk_i16:
3723     case Intrinsic::amdgcn_cvt_pk_u16: {
3724       SDValue Src0 = N->getOperand(1);
3725       SDValue Src1 = N->getOperand(2);
3726       SDLoc SL(N);
3727       unsigned Opcode;
3728 
3729       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
3730         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
3731       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
3732         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
3733       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
3734         Opcode = AMDGPUISD::CVT_PK_I16_I32;
3735       else
3736         Opcode = AMDGPUISD::CVT_PK_U16_U32;
3737 
3738       SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
3739       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
3740       return;
3741     }
3742     }
3743     break;
3744   }
3745   case ISD::INTRINSIC_W_CHAIN: {
3746     SDValue Chain;
3747     if (SDValue Res = lowerIntrinsicWChain_IllegalReturnType(SDValue(N, 0),
3748                                                              Chain, DAG)) {
3749       Results.push_back(Res);
3750       Results.push_back(Chain);
3751       return;
3752     }
3753     break;
3754   }
3755   case ISD::SELECT: {
3756     SDLoc SL(N);
3757     EVT VT = N->getValueType(0);
3758     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3759     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
3760     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
3761 
3762     EVT SelectVT = NewVT;
3763     if (NewVT.bitsLT(MVT::i32)) {
3764       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
3765       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
3766       SelectVT = MVT::i32;
3767     }
3768 
3769     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
3770                                     N->getOperand(0), LHS, RHS);
3771 
3772     if (NewVT != SelectVT)
3773       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
3774     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
3775     return;
3776   }
3777   default:
3778     break;
3779   }
3780 }
3781 
3782 /// \brief Helper function for LowerBRCOND
3783 static SDNode *findUser(SDValue Value, unsigned Opcode) {
3784 
3785   SDNode *Parent = Value.getNode();
3786   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
3787        I != E; ++I) {
3788 
3789     if (I.getUse().get() != Value)
3790       continue;
3791 
3792     if (I->getOpcode() == Opcode)
3793       return *I;
3794   }
3795   return nullptr;
3796 }
3797 
3798 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
3799   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
3800     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
3801     case Intrinsic::amdgcn_if:
3802       return AMDGPUISD::IF;
3803     case Intrinsic::amdgcn_else:
3804       return AMDGPUISD::ELSE;
3805     case Intrinsic::amdgcn_loop:
3806       return AMDGPUISD::LOOP;
3807     case Intrinsic::amdgcn_end_cf:
3808       llvm_unreachable("should not occur");
3809     default:
3810       return 0;
3811     }
3812   }
3813 
3814   // break, if_break, else_break are all only used as inputs to loop, not
3815   // directly as branch conditions.
3816   return 0;
3817 }
3818 
3819 void SITargetLowering::createDebuggerPrologueStackObjects(
3820     MachineFunction &MF) const {
3821   // Create stack objects that are used for emitting debugger prologue.
3822   //
3823   // Debugger prologue writes work group IDs and work item IDs to scratch memory
3824   // at fixed location in the following format:
3825   //   offset 0:  work group ID x
3826   //   offset 4:  work group ID y
3827   //   offset 8:  work group ID z
3828   //   offset 16: work item ID x
3829   //   offset 20: work item ID y
3830   //   offset 24: work item ID z
3831   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3832   int ObjectIdx = 0;
3833 
3834   // For each dimension:
3835   for (unsigned i = 0; i < 3; ++i) {
3836     // Create fixed stack object for work group ID.
3837     ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true);
3838     Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx);
3839     // Create fixed stack object for work item ID.
3840     ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true);
3841     Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx);
3842   }
3843 }
3844 
3845 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
3846   const Triple &TT = getTargetMachine().getTargetTriple();
3847   return (GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
3848           GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
3849          AMDGPU::shouldEmitConstantsToTextSection(TT);
3850 }
3851 
3852 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
3853   return (GV->getType()->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS ||
3854           GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
3855           GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
3856          !shouldEmitFixup(GV) &&
3857          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3858 }
3859 
3860 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
3861   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
3862 }
3863 
3864 /// This transforms the control flow intrinsics to get the branch destination as
3865 /// last parameter, also switches branch target with BR if the need arise
3866 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
3867                                       SelectionDAG &DAG) const {
3868   SDLoc DL(BRCOND);
3869 
3870   SDNode *Intr = BRCOND.getOperand(1).getNode();
3871   SDValue Target = BRCOND.getOperand(2);
3872   SDNode *BR = nullptr;
3873   SDNode *SetCC = nullptr;
3874 
3875   if (Intr->getOpcode() == ISD::SETCC) {
3876     // As long as we negate the condition everything is fine
3877     SetCC = Intr;
3878     Intr = SetCC->getOperand(0).getNode();
3879 
3880   } else {
3881     // Get the target from BR if we don't negate the condition
3882     BR = findUser(BRCOND, ISD::BR);
3883     Target = BR->getOperand(1);
3884   }
3885 
3886   // FIXME: This changes the types of the intrinsics instead of introducing new
3887   // nodes with the correct types.
3888   // e.g. llvm.amdgcn.loop
3889 
3890   // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
3891   // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
3892 
3893   unsigned CFNode = isCFIntrinsic(Intr);
3894   if (CFNode == 0) {
3895     // This is a uniform branch so we don't need to legalize.
3896     return BRCOND;
3897   }
3898 
3899   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
3900                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
3901 
3902   assert(!SetCC ||
3903         (SetCC->getConstantOperandVal(1) == 1 &&
3904          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
3905                                                              ISD::SETNE));
3906 
3907   // operands of the new intrinsic call
3908   SmallVector<SDValue, 4> Ops;
3909   if (HaveChain)
3910     Ops.push_back(BRCOND.getOperand(0));
3911 
3912   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
3913   Ops.push_back(Target);
3914 
3915   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
3916 
3917   // build the new intrinsic call
3918   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
3919 
3920   if (!HaveChain) {
3921     SDValue Ops[] =  {
3922       SDValue(Result, 0),
3923       BRCOND.getOperand(0)
3924     };
3925 
3926     Result = DAG.getMergeValues(Ops, DL).getNode();
3927   }
3928 
3929   if (BR) {
3930     // Give the branch instruction our target
3931     SDValue Ops[] = {
3932       BR->getOperand(0),
3933       BRCOND.getOperand(2)
3934     };
3935     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
3936     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
3937     BR = NewBR.getNode();
3938   }
3939 
3940   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
3941 
3942   // Copy the intrinsic results to registers
3943   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
3944     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
3945     if (!CopyToReg)
3946       continue;
3947 
3948     Chain = DAG.getCopyToReg(
3949       Chain, DL,
3950       CopyToReg->getOperand(1),
3951       SDValue(Result, i - 1),
3952       SDValue());
3953 
3954     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
3955   }
3956 
3957   // Remove the old intrinsic from the chain
3958   DAG.ReplaceAllUsesOfValueWith(
3959     SDValue(Intr, Intr->getNumValues() - 1),
3960     Intr->getOperand(0));
3961 
3962   return Chain;
3963 }
3964 
3965 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
3966                                             SDValue Op,
3967                                             const SDLoc &DL,
3968                                             EVT VT) const {
3969   return Op.getValueType().bitsLE(VT) ?
3970       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
3971       DAG.getNode(ISD::FTRUNC, DL, VT, Op);
3972 }
3973 
3974 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
3975   assert(Op.getValueType() == MVT::f16 &&
3976          "Do not know how to custom lower FP_ROUND for non-f16 type");
3977 
3978   SDValue Src = Op.getOperand(0);
3979   EVT SrcVT = Src.getValueType();
3980   if (SrcVT != MVT::f64)
3981     return Op;
3982 
3983   SDLoc DL(Op);
3984 
3985   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
3986   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
3987   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
3988 }
3989 
3990 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
3991   SDLoc SL(Op);
3992   MachineFunction &MF = DAG.getMachineFunction();
3993   SDValue Chain = Op.getOperand(0);
3994 
3995   unsigned TrapID = Op.getOpcode() == ISD::DEBUGTRAP ?
3996     SISubtarget::TrapIDLLVMDebugTrap : SISubtarget::TrapIDLLVMTrap;
3997 
3998   if (Subtarget->getTrapHandlerAbi() == SISubtarget::TrapHandlerAbiHsa &&
3999       Subtarget->isTrapHandlerEnabled()) {
4000     SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4001     unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4002     assert(UserSGPR != AMDGPU::NoRegister);
4003 
4004     SDValue QueuePtr = CreateLiveInRegister(
4005       DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4006 
4007     SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
4008 
4009     SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
4010                                      QueuePtr, SDValue());
4011 
4012     SDValue Ops[] = {
4013       ToReg,
4014       DAG.getTargetConstant(TrapID, SL, MVT::i16),
4015       SGPR01,
4016       ToReg.getValue(1)
4017     };
4018 
4019     return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4020   }
4021 
4022   switch (TrapID) {
4023   case SISubtarget::TrapIDLLVMTrap:
4024     return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
4025   case SISubtarget::TrapIDLLVMDebugTrap: {
4026     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
4027                                      "debugtrap handler not supported",
4028                                      Op.getDebugLoc(),
4029                                      DS_Warning);
4030     LLVMContext &Ctx = MF.getFunction().getContext();
4031     Ctx.diagnose(NoTrap);
4032     return Chain;
4033   }
4034   default:
4035     llvm_unreachable("unsupported trap handler type!");
4036   }
4037 
4038   return Chain;
4039 }
4040 
4041 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
4042                                              SelectionDAG &DAG) const {
4043   // FIXME: Use inline constants (src_{shared, private}_base) instead.
4044   if (Subtarget->hasApertureRegs()) {
4045     unsigned Offset = AS == AMDGPUASI.LOCAL_ADDRESS ?
4046         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
4047         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
4048     unsigned WidthM1 = AS == AMDGPUASI.LOCAL_ADDRESS ?
4049         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
4050         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
4051     unsigned Encoding =
4052         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
4053         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
4054         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
4055 
4056     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
4057     SDValue ApertureReg = SDValue(
4058         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
4059     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
4060     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
4061   }
4062 
4063   MachineFunction &MF = DAG.getMachineFunction();
4064   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4065   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4066   assert(UserSGPR != AMDGPU::NoRegister);
4067 
4068   SDValue QueuePtr = CreateLiveInRegister(
4069     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4070 
4071   // Offset into amd_queue_t for group_segment_aperture_base_hi /
4072   // private_segment_aperture_base_hi.
4073   uint32_t StructOffset = (AS == AMDGPUASI.LOCAL_ADDRESS) ? 0x40 : 0x44;
4074 
4075   SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
4076 
4077   // TODO: Use custom target PseudoSourceValue.
4078   // TODO: We should use the value from the IR intrinsic call, but it might not
4079   // be available and how do we get it?
4080   Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
4081                                               AMDGPUASI.CONSTANT_ADDRESS));
4082 
4083   MachinePointerInfo PtrInfo(V, StructOffset);
4084   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
4085                      MinAlign(64, StructOffset),
4086                      MachineMemOperand::MODereferenceable |
4087                          MachineMemOperand::MOInvariant);
4088 }
4089 
4090 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
4091                                              SelectionDAG &DAG) const {
4092   SDLoc SL(Op);
4093   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
4094 
4095   SDValue Src = ASC->getOperand(0);
4096   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
4097 
4098   const AMDGPUTargetMachine &TM =
4099     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
4100 
4101   // flat -> local/private
4102   if (ASC->getSrcAddressSpace() == AMDGPUASI.FLAT_ADDRESS) {
4103     unsigned DestAS = ASC->getDestAddressSpace();
4104 
4105     if (DestAS == AMDGPUASI.LOCAL_ADDRESS ||
4106         DestAS == AMDGPUASI.PRIVATE_ADDRESS) {
4107       unsigned NullVal = TM.getNullPointerValue(DestAS);
4108       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4109       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
4110       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
4111 
4112       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
4113                          NonNull, Ptr, SegmentNullPtr);
4114     }
4115   }
4116 
4117   // local/private -> flat
4118   if (ASC->getDestAddressSpace() == AMDGPUASI.FLAT_ADDRESS) {
4119     unsigned SrcAS = ASC->getSrcAddressSpace();
4120 
4121     if (SrcAS == AMDGPUASI.LOCAL_ADDRESS ||
4122         SrcAS == AMDGPUASI.PRIVATE_ADDRESS) {
4123       unsigned NullVal = TM.getNullPointerValue(SrcAS);
4124       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4125 
4126       SDValue NonNull
4127         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
4128 
4129       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
4130       SDValue CvtPtr
4131         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
4132 
4133       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
4134                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
4135                          FlatNullPtr);
4136     }
4137   }
4138 
4139   // global <-> flat are no-ops and never emitted.
4140 
4141   const MachineFunction &MF = DAG.getMachineFunction();
4142   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
4143     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
4144   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
4145 
4146   return DAG.getUNDEF(ASC->getValueType(0));
4147 }
4148 
4149 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4150                                                  SelectionDAG &DAG) const {
4151   SDValue Idx = Op.getOperand(2);
4152   if (isa<ConstantSDNode>(Idx))
4153     return SDValue();
4154 
4155   // Avoid stack access for dynamic indexing.
4156   SDLoc SL(Op);
4157   SDValue Vec = Op.getOperand(0);
4158   SDValue Val = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Op.getOperand(1));
4159 
4160   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
4161   SDValue ExtVal = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Val);
4162 
4163   // Convert vector index to bit-index.
4164   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx,
4165                                   DAG.getConstant(16, SL, MVT::i32));
4166 
4167   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
4168 
4169   SDValue BFM = DAG.getNode(ISD::SHL, SL, MVT::i32,
4170                             DAG.getConstant(0xffff, SL, MVT::i32),
4171                             ScaledIdx);
4172 
4173   SDValue LHS = DAG.getNode(ISD::AND, SL, MVT::i32, BFM, ExtVal);
4174   SDValue RHS = DAG.getNode(ISD::AND, SL, MVT::i32,
4175                             DAG.getNOT(SL, BFM, MVT::i32), BCVec);
4176 
4177   SDValue BFI = DAG.getNode(ISD::OR, SL, MVT::i32, LHS, RHS);
4178   return DAG.getNode(ISD::BITCAST, SL, Op.getValueType(), BFI);
4179 }
4180 
4181 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4182                                                   SelectionDAG &DAG) const {
4183   SDLoc SL(Op);
4184 
4185   EVT ResultVT = Op.getValueType();
4186   SDValue Vec = Op.getOperand(0);
4187   SDValue Idx = Op.getOperand(1);
4188 
4189   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
4190 
4191   // Make sure we we do any optimizations that will make it easier to fold
4192   // source modifiers before obscuring it with bit operations.
4193 
4194   // XXX - Why doesn't this get called when vector_shuffle is expanded?
4195   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
4196     return Combined;
4197 
4198   if (const ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
4199     SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
4200 
4201     if (CIdx->getZExtValue() == 1) {
4202       Result = DAG.getNode(ISD::SRL, SL, MVT::i32, Result,
4203                            DAG.getConstant(16, SL, MVT::i32));
4204     } else {
4205       assert(CIdx->getZExtValue() == 0);
4206     }
4207 
4208     if (ResultVT.bitsLT(MVT::i32))
4209       Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result);
4210     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4211   }
4212 
4213   SDValue Sixteen = DAG.getConstant(16, SL, MVT::i32);
4214 
4215   // Convert vector index to bit-index.
4216   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, Sixteen);
4217 
4218   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
4219   SDValue Elt = DAG.getNode(ISD::SRL, SL, MVT::i32, BC, ScaledIdx);
4220 
4221   SDValue Result = Elt;
4222   if (ResultVT.bitsLT(MVT::i32))
4223     Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result);
4224 
4225   return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4226 }
4227 
4228 bool
4229 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4230   // We can fold offsets for anything that doesn't require a GOT relocation.
4231   return (GA->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS ||
4232           GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
4233           GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
4234          !shouldEmitGOTReloc(GA->getGlobal());
4235 }
4236 
4237 static SDValue
4238 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
4239                         const SDLoc &DL, unsigned Offset, EVT PtrVT,
4240                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
4241   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
4242   // lowered to the following code sequence:
4243   //
4244   // For constant address space:
4245   //   s_getpc_b64 s[0:1]
4246   //   s_add_u32 s0, s0, $symbol
4247   //   s_addc_u32 s1, s1, 0
4248   //
4249   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
4250   //   a fixup or relocation is emitted to replace $symbol with a literal
4251   //   constant, which is a pc-relative offset from the encoding of the $symbol
4252   //   operand to the global variable.
4253   //
4254   // For global address space:
4255   //   s_getpc_b64 s[0:1]
4256   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
4257   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
4258   //
4259   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
4260   //   fixups or relocations are emitted to replace $symbol@*@lo and
4261   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
4262   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
4263   //   operand to the global variable.
4264   //
4265   // What we want here is an offset from the value returned by s_getpc
4266   // (which is the address of the s_add_u32 instruction) to the global
4267   // variable, but since the encoding of $symbol starts 4 bytes after the start
4268   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
4269   // small. This requires us to add 4 to the global variable offset in order to
4270   // compute the correct address.
4271   SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
4272                                              GAFlags);
4273   SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
4274                                              GAFlags == SIInstrInfo::MO_NONE ?
4275                                              GAFlags : GAFlags + 1);
4276   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
4277 }
4278 
4279 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
4280                                              SDValue Op,
4281                                              SelectionDAG &DAG) const {
4282   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
4283   const GlobalValue *GV = GSD->getGlobal();
4284 
4285   if (GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS &&
4286       GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS_32BIT &&
4287       GSD->getAddressSpace() != AMDGPUASI.GLOBAL_ADDRESS &&
4288       // FIXME: It isn't correct to rely on the type of the pointer. This should
4289       // be removed when address space 0 is 64-bit.
4290       !GV->getType()->getElementType()->isFunctionTy())
4291     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
4292 
4293   SDLoc DL(GSD);
4294   EVT PtrVT = Op.getValueType();
4295 
4296   if (shouldEmitFixup(GV))
4297     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
4298   else if (shouldEmitPCReloc(GV))
4299     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
4300                                    SIInstrInfo::MO_REL32);
4301 
4302   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
4303                                             SIInstrInfo::MO_GOTPCREL32);
4304 
4305   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
4306   PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS);
4307   const DataLayout &DataLayout = DAG.getDataLayout();
4308   unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
4309   // FIXME: Use a PseudoSourceValue once those can be assigned an address space.
4310   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
4311 
4312   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
4313                      MachineMemOperand::MODereferenceable |
4314                          MachineMemOperand::MOInvariant);
4315 }
4316 
4317 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
4318                                    const SDLoc &DL, SDValue V) const {
4319   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
4320   // the destination register.
4321   //
4322   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
4323   // so we will end up with redundant moves to m0.
4324   //
4325   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
4326 
4327   // A Null SDValue creates a glue result.
4328   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
4329                                   V, Chain);
4330   return SDValue(M0, 0);
4331 }
4332 
4333 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
4334                                                  SDValue Op,
4335                                                  MVT VT,
4336                                                  unsigned Offset) const {
4337   SDLoc SL(Op);
4338   SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
4339                                            DAG.getEntryNode(), Offset, false);
4340   // The local size values will have the hi 16-bits as zero.
4341   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
4342                      DAG.getValueType(VT));
4343 }
4344 
4345 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
4346                                         EVT VT) {
4347   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
4348                                       "non-hsa intrinsic with hsa target",
4349                                       DL.getDebugLoc());
4350   DAG.getContext()->diagnose(BadIntrin);
4351   return DAG.getUNDEF(VT);
4352 }
4353 
4354 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
4355                                          EVT VT) {
4356   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
4357                                       "intrinsic not supported on subtarget",
4358                                       DL.getDebugLoc());
4359   DAG.getContext()->diagnose(BadIntrin);
4360   return DAG.getUNDEF(VT);
4361 }
4362 
4363 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4364                                                   SelectionDAG &DAG) const {
4365   MachineFunction &MF = DAG.getMachineFunction();
4366   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
4367 
4368   EVT VT = Op.getValueType();
4369   SDLoc DL(Op);
4370   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4371 
4372   // TODO: Should this propagate fast-math-flags?
4373 
4374   switch (IntrinsicID) {
4375   case Intrinsic::amdgcn_implicit_buffer_ptr: {
4376     if (getSubtarget()->isAmdCodeObjectV2(MF))
4377       return emitNonHSAIntrinsicError(DAG, DL, VT);
4378     return getPreloadedValue(DAG, *MFI, VT,
4379                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
4380   }
4381   case Intrinsic::amdgcn_dispatch_ptr:
4382   case Intrinsic::amdgcn_queue_ptr: {
4383     if (!Subtarget->isAmdCodeObjectV2(MF)) {
4384       DiagnosticInfoUnsupported BadIntrin(
4385           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
4386           DL.getDebugLoc());
4387       DAG.getContext()->diagnose(BadIntrin);
4388       return DAG.getUNDEF(VT);
4389     }
4390 
4391     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
4392       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
4393     return getPreloadedValue(DAG, *MFI, VT, RegID);
4394   }
4395   case Intrinsic::amdgcn_implicitarg_ptr: {
4396     if (MFI->isEntryFunction())
4397       return getImplicitArgPtr(DAG, DL);
4398     return getPreloadedValue(DAG, *MFI, VT,
4399                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
4400   }
4401   case Intrinsic::amdgcn_kernarg_segment_ptr: {
4402     return getPreloadedValue(DAG, *MFI, VT,
4403                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
4404   }
4405   case Intrinsic::amdgcn_dispatch_id: {
4406     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
4407   }
4408   case Intrinsic::amdgcn_rcp:
4409     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
4410   case Intrinsic::amdgcn_rsq:
4411     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
4412   case Intrinsic::amdgcn_rsq_legacy:
4413     if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
4414       return emitRemovedIntrinsicError(DAG, DL, VT);
4415 
4416     return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
4417   case Intrinsic::amdgcn_rcp_legacy:
4418     if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
4419       return emitRemovedIntrinsicError(DAG, DL, VT);
4420     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
4421   case Intrinsic::amdgcn_rsq_clamp: {
4422     if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
4423       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
4424 
4425     Type *Type = VT.getTypeForEVT(*DAG.getContext());
4426     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
4427     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
4428 
4429     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
4430     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
4431                               DAG.getConstantFP(Max, DL, VT));
4432     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
4433                        DAG.getConstantFP(Min, DL, VT));
4434   }
4435   case Intrinsic::r600_read_ngroups_x:
4436     if (Subtarget->isAmdHsaOS())
4437       return emitNonHSAIntrinsicError(DAG, DL, VT);
4438 
4439     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4440                                     SI::KernelInputOffsets::NGROUPS_X, false);
4441   case Intrinsic::r600_read_ngroups_y:
4442     if (Subtarget->isAmdHsaOS())
4443       return emitNonHSAIntrinsicError(DAG, DL, VT);
4444 
4445     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4446                                     SI::KernelInputOffsets::NGROUPS_Y, false);
4447   case Intrinsic::r600_read_ngroups_z:
4448     if (Subtarget->isAmdHsaOS())
4449       return emitNonHSAIntrinsicError(DAG, DL, VT);
4450 
4451     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4452                                     SI::KernelInputOffsets::NGROUPS_Z, false);
4453   case Intrinsic::r600_read_global_size_x:
4454     if (Subtarget->isAmdHsaOS())
4455       return emitNonHSAIntrinsicError(DAG, DL, VT);
4456 
4457     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4458                                     SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
4459   case Intrinsic::r600_read_global_size_y:
4460     if (Subtarget->isAmdHsaOS())
4461       return emitNonHSAIntrinsicError(DAG, DL, VT);
4462 
4463     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4464                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
4465   case Intrinsic::r600_read_global_size_z:
4466     if (Subtarget->isAmdHsaOS())
4467       return emitNonHSAIntrinsicError(DAG, DL, VT);
4468 
4469     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4470                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
4471   case Intrinsic::r600_read_local_size_x:
4472     if (Subtarget->isAmdHsaOS())
4473       return emitNonHSAIntrinsicError(DAG, DL, VT);
4474 
4475     return lowerImplicitZextParam(DAG, Op, MVT::i16,
4476                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
4477   case Intrinsic::r600_read_local_size_y:
4478     if (Subtarget->isAmdHsaOS())
4479       return emitNonHSAIntrinsicError(DAG, DL, VT);
4480 
4481     return lowerImplicitZextParam(DAG, Op, MVT::i16,
4482                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
4483   case Intrinsic::r600_read_local_size_z:
4484     if (Subtarget->isAmdHsaOS())
4485       return emitNonHSAIntrinsicError(DAG, DL, VT);
4486 
4487     return lowerImplicitZextParam(DAG, Op, MVT::i16,
4488                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
4489   case Intrinsic::amdgcn_workgroup_id_x:
4490   case Intrinsic::r600_read_tgid_x:
4491     return getPreloadedValue(DAG, *MFI, VT,
4492                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
4493   case Intrinsic::amdgcn_workgroup_id_y:
4494   case Intrinsic::r600_read_tgid_y:
4495     return getPreloadedValue(DAG, *MFI, VT,
4496                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
4497   case Intrinsic::amdgcn_workgroup_id_z:
4498   case Intrinsic::r600_read_tgid_z:
4499     return getPreloadedValue(DAG, *MFI, VT,
4500                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
4501   case Intrinsic::amdgcn_workitem_id_x: {
4502   case Intrinsic::r600_read_tidig_x:
4503     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
4504                           SDLoc(DAG.getEntryNode()),
4505                           MFI->getArgInfo().WorkItemIDX);
4506   }
4507   case Intrinsic::amdgcn_workitem_id_y:
4508   case Intrinsic::r600_read_tidig_y:
4509     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
4510                           SDLoc(DAG.getEntryNode()),
4511                           MFI->getArgInfo().WorkItemIDY);
4512   case Intrinsic::amdgcn_workitem_id_z:
4513   case Intrinsic::r600_read_tidig_z:
4514     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
4515                           SDLoc(DAG.getEntryNode()),
4516                           MFI->getArgInfo().WorkItemIDZ);
4517   case AMDGPUIntrinsic::SI_load_const: {
4518     SDValue Ops[] = {
4519       Op.getOperand(1),
4520       Op.getOperand(2)
4521     };
4522 
4523     MachineMemOperand *MMO = MF.getMachineMemOperand(
4524         MachinePointerInfo(),
4525         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
4526             MachineMemOperand::MOInvariant,
4527         VT.getStoreSize(), 4);
4528     return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
4529                                    Op->getVTList(), Ops, VT, MMO);
4530   }
4531   case Intrinsic::amdgcn_fdiv_fast:
4532     return lowerFDIV_FAST(Op, DAG);
4533   case Intrinsic::amdgcn_interp_mov: {
4534     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
4535     SDValue Glue = M0.getValue(1);
4536     return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
4537                        Op.getOperand(2), Op.getOperand(3), Glue);
4538   }
4539   case Intrinsic::amdgcn_interp_p1: {
4540     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
4541     SDValue Glue = M0.getValue(1);
4542     return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
4543                        Op.getOperand(2), Op.getOperand(3), Glue);
4544   }
4545   case Intrinsic::amdgcn_interp_p2: {
4546     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
4547     SDValue Glue = SDValue(M0.getNode(), 1);
4548     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
4549                        Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
4550                        Glue);
4551   }
4552   case Intrinsic::amdgcn_sin:
4553     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
4554 
4555   case Intrinsic::amdgcn_cos:
4556     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
4557 
4558   case Intrinsic::amdgcn_log_clamp: {
4559     if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
4560       return SDValue();
4561 
4562     DiagnosticInfoUnsupported BadIntrin(
4563       MF.getFunction(), "intrinsic not supported on subtarget",
4564       DL.getDebugLoc());
4565       DAG.getContext()->diagnose(BadIntrin);
4566       return DAG.getUNDEF(VT);
4567   }
4568   case Intrinsic::amdgcn_ldexp:
4569     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
4570                        Op.getOperand(1), Op.getOperand(2));
4571 
4572   case Intrinsic::amdgcn_fract:
4573     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
4574 
4575   case Intrinsic::amdgcn_class:
4576     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
4577                        Op.getOperand(1), Op.getOperand(2));
4578   case Intrinsic::amdgcn_div_fmas:
4579     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
4580                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
4581                        Op.getOperand(4));
4582 
4583   case Intrinsic::amdgcn_div_fixup:
4584     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
4585                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4586 
4587   case Intrinsic::amdgcn_trig_preop:
4588     return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
4589                        Op.getOperand(1), Op.getOperand(2));
4590   case Intrinsic::amdgcn_div_scale: {
4591     // 3rd parameter required to be a constant.
4592     const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4593     if (!Param)
4594       return DAG.getMergeValues({ DAG.getUNDEF(VT), DAG.getUNDEF(MVT::i1) }, DL);
4595 
4596     // Translate to the operands expected by the machine instruction. The
4597     // first parameter must be the same as the first instruction.
4598     SDValue Numerator = Op.getOperand(1);
4599     SDValue Denominator = Op.getOperand(2);
4600 
4601     // Note this order is opposite of the machine instruction's operations,
4602     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
4603     // intrinsic has the numerator as the first operand to match a normal
4604     // division operation.
4605 
4606     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
4607 
4608     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
4609                        Denominator, Numerator);
4610   }
4611   case Intrinsic::amdgcn_icmp: {
4612     const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4613     if (!CD)
4614       return DAG.getUNDEF(VT);
4615 
4616     int CondCode = CD->getSExtValue();
4617     if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
4618         CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
4619       return DAG.getUNDEF(VT);
4620 
4621     ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4622     ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4623     return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
4624                        Op.getOperand(2), DAG.getCondCode(CCOpcode));
4625   }
4626   case Intrinsic::amdgcn_fcmp: {
4627     const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4628     if (!CD)
4629       return DAG.getUNDEF(VT);
4630 
4631     int CondCode = CD->getSExtValue();
4632     if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
4633         CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE)
4634       return DAG.getUNDEF(VT);
4635 
4636     FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4637     ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4638     return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
4639                        Op.getOperand(2), DAG.getCondCode(CCOpcode));
4640   }
4641   case Intrinsic::amdgcn_fmed3:
4642     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
4643                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4644   case Intrinsic::amdgcn_fmul_legacy:
4645     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
4646                        Op.getOperand(1), Op.getOperand(2));
4647   case Intrinsic::amdgcn_sffbh:
4648     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
4649   case Intrinsic::amdgcn_sbfe:
4650     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
4651                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4652   case Intrinsic::amdgcn_ubfe:
4653     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
4654                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4655   case Intrinsic::amdgcn_cvt_pkrtz:
4656   case Intrinsic::amdgcn_cvt_pknorm_i16:
4657   case Intrinsic::amdgcn_cvt_pknorm_u16:
4658   case Intrinsic::amdgcn_cvt_pk_i16:
4659   case Intrinsic::amdgcn_cvt_pk_u16: {
4660     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
4661     EVT VT = Op.getValueType();
4662     unsigned Opcode;
4663 
4664     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
4665       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
4666     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
4667       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4668     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
4669       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4670     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
4671       Opcode = AMDGPUISD::CVT_PK_I16_I32;
4672     else
4673       Opcode = AMDGPUISD::CVT_PK_U16_U32;
4674 
4675     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
4676                                Op.getOperand(1), Op.getOperand(2));
4677     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
4678   }
4679   case Intrinsic::amdgcn_wqm: {
4680     SDValue Src = Op.getOperand(1);
4681     return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src),
4682                    0);
4683   }
4684   case Intrinsic::amdgcn_wwm: {
4685     SDValue Src = Op.getOperand(1);
4686     return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src),
4687                    0);
4688   }
4689   case Intrinsic::amdgcn_image_getlod:
4690   case Intrinsic::amdgcn_image_getresinfo: {
4691     unsigned Idx = (IntrinsicID == Intrinsic::amdgcn_image_getresinfo) ? 3 : 4;
4692 
4693     // Replace dmask with everything disabled with undef.
4694     const ConstantSDNode *DMask = dyn_cast<ConstantSDNode>(Op.getOperand(Idx));
4695     if (!DMask || DMask->isNullValue())
4696       return DAG.getUNDEF(Op.getValueType());
4697     return SDValue();
4698   }
4699   default:
4700     return Op;
4701   }
4702 }
4703 
4704 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4705                                                  SelectionDAG &DAG) const {
4706   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4707   SDLoc DL(Op);
4708 
4709   switch (IntrID) {
4710   case Intrinsic::amdgcn_atomic_inc:
4711   case Intrinsic::amdgcn_atomic_dec:
4712   case Intrinsic::amdgcn_ds_fadd:
4713   case Intrinsic::amdgcn_ds_fmin:
4714   case Intrinsic::amdgcn_ds_fmax: {
4715     MemSDNode *M = cast<MemSDNode>(Op);
4716     unsigned Opc;
4717     switch (IntrID) {
4718     case Intrinsic::amdgcn_atomic_inc:
4719       Opc = AMDGPUISD::ATOMIC_INC;
4720       break;
4721     case Intrinsic::amdgcn_atomic_dec:
4722       Opc = AMDGPUISD::ATOMIC_DEC;
4723       break;
4724     case Intrinsic::amdgcn_ds_fadd:
4725       Opc = AMDGPUISD::ATOMIC_LOAD_FADD;
4726       break;
4727     case Intrinsic::amdgcn_ds_fmin:
4728       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
4729       break;
4730     case Intrinsic::amdgcn_ds_fmax:
4731       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
4732       break;
4733     default:
4734       llvm_unreachable("Unknown intrinsic!");
4735     }
4736     SDValue Ops[] = {
4737       M->getOperand(0), // Chain
4738       M->getOperand(2), // Ptr
4739       M->getOperand(3)  // Value
4740     };
4741 
4742     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
4743                                    M->getMemoryVT(), M->getMemOperand());
4744   }
4745   case Intrinsic::amdgcn_buffer_load:
4746   case Intrinsic::amdgcn_buffer_load_format: {
4747     SDValue Ops[] = {
4748       Op.getOperand(0), // Chain
4749       Op.getOperand(2), // rsrc
4750       Op.getOperand(3), // vindex
4751       Op.getOperand(4), // offset
4752       Op.getOperand(5), // glc
4753       Op.getOperand(6)  // slc
4754     };
4755 
4756     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
4757         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
4758     EVT VT = Op.getValueType();
4759     EVT IntVT = VT.changeTypeToInteger();
4760 
4761     auto *M = cast<MemSDNode>(Op);
4762     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
4763                                    M->getMemOperand());
4764   }
4765   case Intrinsic::amdgcn_tbuffer_load: {
4766     MemSDNode *M = cast<MemSDNode>(Op);
4767     SDValue Ops[] = {
4768       Op.getOperand(0),  // Chain
4769       Op.getOperand(2),  // rsrc
4770       Op.getOperand(3),  // vindex
4771       Op.getOperand(4),  // voffset
4772       Op.getOperand(5),  // soffset
4773       Op.getOperand(6),  // offset
4774       Op.getOperand(7),  // dfmt
4775       Op.getOperand(8),  // nfmt
4776       Op.getOperand(9),  // glc
4777       Op.getOperand(10)   // slc
4778     };
4779 
4780     EVT VT = Op.getValueType();
4781 
4782     return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
4783                                    Op->getVTList(), Ops, VT, M->getMemOperand());
4784   }
4785   case Intrinsic::amdgcn_buffer_atomic_swap:
4786   case Intrinsic::amdgcn_buffer_atomic_add:
4787   case Intrinsic::amdgcn_buffer_atomic_sub:
4788   case Intrinsic::amdgcn_buffer_atomic_smin:
4789   case Intrinsic::amdgcn_buffer_atomic_umin:
4790   case Intrinsic::amdgcn_buffer_atomic_smax:
4791   case Intrinsic::amdgcn_buffer_atomic_umax:
4792   case Intrinsic::amdgcn_buffer_atomic_and:
4793   case Intrinsic::amdgcn_buffer_atomic_or:
4794   case Intrinsic::amdgcn_buffer_atomic_xor: {
4795     SDValue Ops[] = {
4796       Op.getOperand(0), // Chain
4797       Op.getOperand(2), // vdata
4798       Op.getOperand(3), // rsrc
4799       Op.getOperand(4), // vindex
4800       Op.getOperand(5), // offset
4801       Op.getOperand(6)  // slc
4802     };
4803     EVT VT = Op.getValueType();
4804 
4805     auto *M = cast<MemSDNode>(Op);
4806     unsigned Opcode = 0;
4807 
4808     switch (IntrID) {
4809     case Intrinsic::amdgcn_buffer_atomic_swap:
4810       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
4811       break;
4812     case Intrinsic::amdgcn_buffer_atomic_add:
4813       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
4814       break;
4815     case Intrinsic::amdgcn_buffer_atomic_sub:
4816       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
4817       break;
4818     case Intrinsic::amdgcn_buffer_atomic_smin:
4819       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
4820       break;
4821     case Intrinsic::amdgcn_buffer_atomic_umin:
4822       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
4823       break;
4824     case Intrinsic::amdgcn_buffer_atomic_smax:
4825       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
4826       break;
4827     case Intrinsic::amdgcn_buffer_atomic_umax:
4828       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
4829       break;
4830     case Intrinsic::amdgcn_buffer_atomic_and:
4831       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
4832       break;
4833     case Intrinsic::amdgcn_buffer_atomic_or:
4834       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
4835       break;
4836     case Intrinsic::amdgcn_buffer_atomic_xor:
4837       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
4838       break;
4839     default:
4840       llvm_unreachable("unhandled atomic opcode");
4841     }
4842 
4843     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
4844                                    M->getMemOperand());
4845   }
4846 
4847   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
4848     SDValue Ops[] = {
4849       Op.getOperand(0), // Chain
4850       Op.getOperand(2), // src
4851       Op.getOperand(3), // cmp
4852       Op.getOperand(4), // rsrc
4853       Op.getOperand(5), // vindex
4854       Op.getOperand(6), // offset
4855       Op.getOperand(7)  // slc
4856     };
4857     EVT VT = Op.getValueType();
4858     auto *M = cast<MemSDNode>(Op);
4859 
4860     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
4861                                    Op->getVTList(), Ops, VT, M->getMemOperand());
4862   }
4863 
4864   // Basic sample.
4865   case Intrinsic::amdgcn_image_sample:
4866   case Intrinsic::amdgcn_image_sample_cl:
4867   case Intrinsic::amdgcn_image_sample_d:
4868   case Intrinsic::amdgcn_image_sample_d_cl:
4869   case Intrinsic::amdgcn_image_sample_l:
4870   case Intrinsic::amdgcn_image_sample_b:
4871   case Intrinsic::amdgcn_image_sample_b_cl:
4872   case Intrinsic::amdgcn_image_sample_lz:
4873   case Intrinsic::amdgcn_image_sample_cd:
4874   case Intrinsic::amdgcn_image_sample_cd_cl:
4875 
4876   // Sample with comparison.
4877   case Intrinsic::amdgcn_image_sample_c:
4878   case Intrinsic::amdgcn_image_sample_c_cl:
4879   case Intrinsic::amdgcn_image_sample_c_d:
4880   case Intrinsic::amdgcn_image_sample_c_d_cl:
4881   case Intrinsic::amdgcn_image_sample_c_l:
4882   case Intrinsic::amdgcn_image_sample_c_b:
4883   case Intrinsic::amdgcn_image_sample_c_b_cl:
4884   case Intrinsic::amdgcn_image_sample_c_lz:
4885   case Intrinsic::amdgcn_image_sample_c_cd:
4886   case Intrinsic::amdgcn_image_sample_c_cd_cl:
4887 
4888   // Sample with offsets.
4889   case Intrinsic::amdgcn_image_sample_o:
4890   case Intrinsic::amdgcn_image_sample_cl_o:
4891   case Intrinsic::amdgcn_image_sample_d_o:
4892   case Intrinsic::amdgcn_image_sample_d_cl_o:
4893   case Intrinsic::amdgcn_image_sample_l_o:
4894   case Intrinsic::amdgcn_image_sample_b_o:
4895   case Intrinsic::amdgcn_image_sample_b_cl_o:
4896   case Intrinsic::amdgcn_image_sample_lz_o:
4897   case Intrinsic::amdgcn_image_sample_cd_o:
4898   case Intrinsic::amdgcn_image_sample_cd_cl_o:
4899 
4900   // Sample with comparison and offsets.
4901   case Intrinsic::amdgcn_image_sample_c_o:
4902   case Intrinsic::amdgcn_image_sample_c_cl_o:
4903   case Intrinsic::amdgcn_image_sample_c_d_o:
4904   case Intrinsic::amdgcn_image_sample_c_d_cl_o:
4905   case Intrinsic::amdgcn_image_sample_c_l_o:
4906   case Intrinsic::amdgcn_image_sample_c_b_o:
4907   case Intrinsic::amdgcn_image_sample_c_b_cl_o:
4908   case Intrinsic::amdgcn_image_sample_c_lz_o:
4909   case Intrinsic::amdgcn_image_sample_c_cd_o:
4910   case Intrinsic::amdgcn_image_sample_c_cd_cl_o: {
4911     // Replace dmask with everything disabled with undef.
4912     const ConstantSDNode *DMask = dyn_cast<ConstantSDNode>(Op.getOperand(5));
4913     if (!DMask || DMask->isNullValue()) {
4914       SDValue Undef = DAG.getUNDEF(Op.getValueType());
4915       return DAG.getMergeValues({ Undef, Op.getOperand(0) }, SDLoc(Op));
4916     }
4917 
4918     return SDValue();
4919   }
4920   default:
4921     return SDValue();
4922   }
4923 }
4924 
4925 SDValue SITargetLowering::handleD16VData(SDValue VData,
4926                                          SelectionDAG &DAG) const {
4927   EVT StoreVT = VData.getValueType();
4928   SDLoc DL(VData);
4929 
4930   if (StoreVT.isVector()) {
4931     assert ((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
4932     if (!Subtarget->hasUnpackedD16VMem()) {
4933       if (!isTypeLegal(StoreVT)) {
4934         // If Target supports packed vmem, we just need to workaround
4935         // the illegal type by casting to an equivalent one.
4936         EVT EquivStoreVT = getEquivalentMemType(*DAG.getContext(), StoreVT);
4937         return DAG.getNode(ISD::BITCAST, DL, EquivStoreVT, VData);
4938       }
4939     } else { // We need to unpack the packed data to store.
4940       EVT IntStoreVT = StoreVT.changeTypeToInteger();
4941       SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
4942       EVT EquivStoreVT = (StoreVT == MVT::v2f16) ? MVT::v2i32 : MVT::v4i32;
4943       return DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
4944     }
4945   }
4946   // No change for f16 and legal vector D16 types.
4947   return VData;
4948 }
4949 
4950 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4951                                               SelectionDAG &DAG) const {
4952   SDLoc DL(Op);
4953   SDValue Chain = Op.getOperand(0);
4954   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4955   MachineFunction &MF = DAG.getMachineFunction();
4956 
4957   switch (IntrinsicID) {
4958   case Intrinsic::amdgcn_exp: {
4959     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
4960     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
4961     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
4962     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
4963 
4964     const SDValue Ops[] = {
4965       Chain,
4966       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
4967       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
4968       Op.getOperand(4), // src0
4969       Op.getOperand(5), // src1
4970       Op.getOperand(6), // src2
4971       Op.getOperand(7), // src3
4972       DAG.getTargetConstant(0, DL, MVT::i1), // compr
4973       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
4974     };
4975 
4976     unsigned Opc = Done->isNullValue() ?
4977       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
4978     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
4979   }
4980   case Intrinsic::amdgcn_exp_compr: {
4981     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
4982     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
4983     SDValue Src0 = Op.getOperand(4);
4984     SDValue Src1 = Op.getOperand(5);
4985     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
4986     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
4987 
4988     SDValue Undef = DAG.getUNDEF(MVT::f32);
4989     const SDValue Ops[] = {
4990       Chain,
4991       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
4992       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
4993       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
4994       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
4995       Undef, // src2
4996       Undef, // src3
4997       DAG.getTargetConstant(1, DL, MVT::i1), // compr
4998       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
4999     };
5000 
5001     unsigned Opc = Done->isNullValue() ?
5002       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
5003     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
5004   }
5005   case Intrinsic::amdgcn_s_sendmsg:
5006   case Intrinsic::amdgcn_s_sendmsghalt: {
5007     unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ?
5008       AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT;
5009     Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
5010     SDValue Glue = Chain.getValue(1);
5011     return DAG.getNode(NodeOp, DL, MVT::Other, Chain,
5012                        Op.getOperand(2), Glue);
5013   }
5014   case Intrinsic::amdgcn_init_exec: {
5015     return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain,
5016                        Op.getOperand(2));
5017   }
5018   case Intrinsic::amdgcn_init_exec_from_input: {
5019     return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain,
5020                        Op.getOperand(2), Op.getOperand(3));
5021   }
5022   case AMDGPUIntrinsic::AMDGPU_kill: {
5023     SDValue Src = Op.getOperand(2);
5024     if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Src)) {
5025       if (!K->isNegative())
5026         return Chain;
5027 
5028       SDValue NegOne = DAG.getTargetConstant(FloatToBits(-1.0f), DL, MVT::i32);
5029       return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, NegOne);
5030     }
5031 
5032     SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Src);
5033     return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, Cast);
5034   }
5035   case Intrinsic::amdgcn_s_barrier: {
5036     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
5037       const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
5038       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
5039       if (WGSize <= ST.getWavefrontSize())
5040         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
5041                                           Op.getOperand(0)), 0);
5042     }
5043     return SDValue();
5044   };
5045   case AMDGPUIntrinsic::SI_tbuffer_store: {
5046 
5047     // Extract vindex and voffset from vaddr as appropriate
5048     const ConstantSDNode *OffEn = cast<ConstantSDNode>(Op.getOperand(10));
5049     const ConstantSDNode *IdxEn = cast<ConstantSDNode>(Op.getOperand(11));
5050     SDValue VAddr = Op.getOperand(5);
5051 
5052     SDValue Zero = DAG.getTargetConstant(0, DL, MVT::i32);
5053 
5054     assert(!(OffEn->isOne() && IdxEn->isOne()) &&
5055            "Legacy intrinsic doesn't support both offset and index - use new version");
5056 
5057     SDValue VIndex = IdxEn->isOne() ? VAddr : Zero;
5058     SDValue VOffset = OffEn->isOne() ? VAddr : Zero;
5059 
5060     // Deal with the vec-3 case
5061     const ConstantSDNode *NumChannels = cast<ConstantSDNode>(Op.getOperand(4));
5062     auto Opcode = NumChannels->getZExtValue() == 3 ?
5063       AMDGPUISD::TBUFFER_STORE_FORMAT_X3 : AMDGPUISD::TBUFFER_STORE_FORMAT;
5064 
5065     SDValue Ops[] = {
5066      Chain,
5067      Op.getOperand(3),  // vdata
5068      Op.getOperand(2),  // rsrc
5069      VIndex,
5070      VOffset,
5071      Op.getOperand(6),  // soffset
5072      Op.getOperand(7),  // inst_offset
5073      Op.getOperand(8),  // dfmt
5074      Op.getOperand(9),  // nfmt
5075      Op.getOperand(12), // glc
5076      Op.getOperand(13), // slc
5077     };
5078 
5079     assert((cast<ConstantSDNode>(Op.getOperand(14)))->getZExtValue() == 0 &&
5080            "Value of tfe other than zero is unsupported");
5081 
5082     EVT VT = Op.getOperand(3).getValueType();
5083     MachineMemOperand *MMO = MF.getMachineMemOperand(
5084       MachinePointerInfo(),
5085       MachineMemOperand::MOStore,
5086       VT.getStoreSize(), 4);
5087     return DAG.getMemIntrinsicNode(Opcode, DL,
5088                                    Op->getVTList(), Ops, VT, MMO);
5089   }
5090 
5091   case Intrinsic::amdgcn_tbuffer_store: {
5092     SDValue VData = Op.getOperand(2);
5093     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5094     if (IsD16)
5095       VData = handleD16VData(VData, DAG);
5096     SDValue Ops[] = {
5097       Chain,
5098       VData,             // vdata
5099       Op.getOperand(3),  // rsrc
5100       Op.getOperand(4),  // vindex
5101       Op.getOperand(5),  // voffset
5102       Op.getOperand(6),  // soffset
5103       Op.getOperand(7),  // offset
5104       Op.getOperand(8),  // dfmt
5105       Op.getOperand(9),  // nfmt
5106       Op.getOperand(10), // glc
5107       Op.getOperand(11)  // slc
5108     };
5109     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
5110                            AMDGPUISD::TBUFFER_STORE_FORMAT;
5111     MemSDNode *M = cast<MemSDNode>(Op);
5112     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5113                                    M->getMemoryVT(), M->getMemOperand());
5114   }
5115 
5116   case Intrinsic::amdgcn_buffer_store:
5117   case Intrinsic::amdgcn_buffer_store_format: {
5118     SDValue VData = Op.getOperand(2);
5119     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5120     if (IsD16)
5121       VData = handleD16VData(VData, DAG);
5122     SDValue Ops[] = {
5123       Chain,
5124       VData,            // vdata
5125       Op.getOperand(3), // rsrc
5126       Op.getOperand(4), // vindex
5127       Op.getOperand(5), // offset
5128       Op.getOperand(6), // glc
5129       Op.getOperand(7)  // slc
5130     };
5131     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
5132                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
5133     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
5134     MemSDNode *M = cast<MemSDNode>(Op);
5135     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5136                                    M->getMemoryVT(), M->getMemOperand());
5137   }
5138 
5139   case Intrinsic::amdgcn_image_store:
5140   case Intrinsic::amdgcn_image_store_mip: {
5141     SDValue VData = Op.getOperand(2);
5142     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5143     if (IsD16)
5144       VData = handleD16VData(VData, DAG);
5145     SDValue Ops[] = {
5146       Chain, // Chain
5147       VData, // vdata
5148       Op.getOperand(3), // vaddr
5149       Op.getOperand(4), // rsrc
5150       Op.getOperand(5), // dmask
5151       Op.getOperand(6), // glc
5152       Op.getOperand(7), // slc
5153       Op.getOperand(8), // lwe
5154       Op.getOperand(9)  // da
5155     };
5156     unsigned Opc = (IntrinsicID==Intrinsic::amdgcn_image_store) ?
5157                   AMDGPUISD::IMAGE_STORE : AMDGPUISD::IMAGE_STORE_MIP;
5158     MemSDNode *M = cast<MemSDNode>(Op);
5159     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5160                                    M->getMemoryVT(), M->getMemOperand());
5161   }
5162 
5163   default: {
5164     const AMDGPU::D16ImageDimIntrinsic *D16ImageDimIntr =
5165         AMDGPU::lookupD16ImageDimIntrinsicByIntr(IntrinsicID);
5166     if (D16ImageDimIntr) {
5167       SDValue VData = Op.getOperand(2);
5168       EVT StoreVT = VData.getValueType();
5169       if ((StoreVT == MVT::v2f16 && !isTypeLegal(StoreVT)) ||
5170           StoreVT == MVT::v4f16) {
5171         VData = handleD16VData(VData, DAG);
5172 
5173         SmallVector<SDValue, 12> Ops;
5174         for (auto Value : Op.getNode()->op_values())
5175           Ops.push_back(Value);
5176         Ops[1] = DAG.getConstant(D16ImageDimIntr->D16HelperIntr, DL, MVT::i32);
5177         Ops[2] = VData;
5178 
5179         MemSDNode *M = cast<MemSDNode>(Op);
5180         return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Op->getVTList(),
5181                                        Ops, M->getMemoryVT(),
5182                                        M->getMemOperand());
5183       }
5184     }
5185 
5186     return Op;
5187   }
5188   }
5189 }
5190 
5191 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
5192   SDLoc DL(Op);
5193   LoadSDNode *Load = cast<LoadSDNode>(Op);
5194   ISD::LoadExtType ExtType = Load->getExtensionType();
5195   EVT MemVT = Load->getMemoryVT();
5196 
5197   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
5198     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
5199       return SDValue();
5200 
5201     // FIXME: Copied from PPC
5202     // First, load into 32 bits, then truncate to 1 bit.
5203 
5204     SDValue Chain = Load->getChain();
5205     SDValue BasePtr = Load->getBasePtr();
5206     MachineMemOperand *MMO = Load->getMemOperand();
5207 
5208     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
5209 
5210     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
5211                                    BasePtr, RealMemVT, MMO);
5212 
5213     SDValue Ops[] = {
5214       DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
5215       NewLD.getValue(1)
5216     };
5217 
5218     return DAG.getMergeValues(Ops, DL);
5219   }
5220 
5221   if (!MemVT.isVector())
5222     return SDValue();
5223 
5224   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
5225          "Custom lowering for non-i32 vectors hasn't been implemented.");
5226 
5227   unsigned Alignment = Load->getAlignment();
5228   unsigned AS = Load->getAddressSpace();
5229   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
5230                           AS, Alignment)) {
5231     SDValue Ops[2];
5232     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
5233     return DAG.getMergeValues(Ops, DL);
5234   }
5235 
5236   MachineFunction &MF = DAG.getMachineFunction();
5237   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
5238   // If there is a possibilty that flat instruction access scratch memory
5239   // then we need to use the same legalization rules we use for private.
5240   if (AS == AMDGPUASI.FLAT_ADDRESS)
5241     AS = MFI->hasFlatScratchInit() ?
5242          AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS;
5243 
5244   unsigned NumElements = MemVT.getVectorNumElements();
5245 
5246   if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
5247       AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT) {
5248     if (!Op->isDivergent() && Alignment >= 4)
5249       return SDValue();
5250     // Non-uniform loads will be selected to MUBUF instructions, so they
5251     // have the same legalization requirements as global and private
5252     // loads.
5253     //
5254   }
5255 
5256   if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
5257       AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT ||
5258       AS == AMDGPUASI.GLOBAL_ADDRESS) {
5259     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
5260         !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
5261         Alignment >= 4)
5262       return SDValue();
5263     // Non-uniform loads will be selected to MUBUF instructions, so they
5264     // have the same legalization requirements as global and private
5265     // loads.
5266     //
5267   }
5268   if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
5269       AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT ||
5270       AS == AMDGPUASI.GLOBAL_ADDRESS ||
5271       AS == AMDGPUASI.FLAT_ADDRESS) {
5272     if (NumElements > 4)
5273       return SplitVectorLoad(Op, DAG);
5274     // v4 loads are supported for private and global memory.
5275     return SDValue();
5276   }
5277   if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
5278     // Depending on the setting of the private_element_size field in the
5279     // resource descriptor, we can only make private accesses up to a certain
5280     // size.
5281     switch (Subtarget->getMaxPrivateElementSize()) {
5282     case 4:
5283       return scalarizeVectorLoad(Load, DAG);
5284     case 8:
5285       if (NumElements > 2)
5286         return SplitVectorLoad(Op, DAG);
5287       return SDValue();
5288     case 16:
5289       // Same as global/flat
5290       if (NumElements > 4)
5291         return SplitVectorLoad(Op, DAG);
5292       return SDValue();
5293     default:
5294       llvm_unreachable("unsupported private_element_size");
5295     }
5296   } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
5297     // Use ds_read_b128 if possible.
5298     if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
5299         MemVT.getStoreSize() == 16)
5300       return SDValue();
5301 
5302     if (NumElements > 2)
5303       return SplitVectorLoad(Op, DAG);
5304   }
5305   return SDValue();
5306 }
5307 
5308 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
5309   if (Op.getValueType() != MVT::i64)
5310     return SDValue();
5311 
5312   SDLoc DL(Op);
5313   SDValue Cond = Op.getOperand(0);
5314 
5315   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
5316   SDValue One = DAG.getConstant(1, DL, MVT::i32);
5317 
5318   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
5319   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
5320 
5321   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
5322   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
5323 
5324   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
5325 
5326   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
5327   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
5328 
5329   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
5330 
5331   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
5332   return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
5333 }
5334 
5335 // Catch division cases where we can use shortcuts with rcp and rsq
5336 // instructions.
5337 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
5338                                               SelectionDAG &DAG) const {
5339   SDLoc SL(Op);
5340   SDValue LHS = Op.getOperand(0);
5341   SDValue RHS = Op.getOperand(1);
5342   EVT VT = Op.getValueType();
5343   const SDNodeFlags Flags = Op->getFlags();
5344   bool Unsafe = DAG.getTarget().Options.UnsafeFPMath ||
5345                 Flags.hasUnsafeAlgebra() || Flags.hasAllowReciprocal();
5346 
5347   if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
5348     return SDValue();
5349 
5350   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
5351     if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
5352       if (CLHS->isExactlyValue(1.0)) {
5353         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
5354         // the CI documentation has a worst case error of 1 ulp.
5355         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
5356         // use it as long as we aren't trying to use denormals.
5357         //
5358         // v_rcp_f16 and v_rsq_f16 DO support denormals.
5359 
5360         // 1.0 / sqrt(x) -> rsq(x)
5361 
5362         // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
5363         // error seems really high at 2^29 ULP.
5364         if (RHS.getOpcode() == ISD::FSQRT)
5365           return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
5366 
5367         // 1.0 / x -> rcp(x)
5368         return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
5369       }
5370 
5371       // Same as for 1.0, but expand the sign out of the constant.
5372       if (CLHS->isExactlyValue(-1.0)) {
5373         // -1.0 / x -> rcp (fneg x)
5374         SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
5375         return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
5376       }
5377     }
5378   }
5379 
5380   if (Unsafe) {
5381     // Turn into multiply by the reciprocal.
5382     // x / y -> x * (1.0 / y)
5383     SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
5384     return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
5385   }
5386 
5387   return SDValue();
5388 }
5389 
5390 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
5391                           EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
5392   if (GlueChain->getNumValues() <= 1) {
5393     return DAG.getNode(Opcode, SL, VT, A, B);
5394   }
5395 
5396   assert(GlueChain->getNumValues() == 3);
5397 
5398   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
5399   switch (Opcode) {
5400   default: llvm_unreachable("no chain equivalent for opcode");
5401   case ISD::FMUL:
5402     Opcode = AMDGPUISD::FMUL_W_CHAIN;
5403     break;
5404   }
5405 
5406   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
5407                      GlueChain.getValue(2));
5408 }
5409 
5410 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
5411                            EVT VT, SDValue A, SDValue B, SDValue C,
5412                            SDValue GlueChain) {
5413   if (GlueChain->getNumValues() <= 1) {
5414     return DAG.getNode(Opcode, SL, VT, A, B, C);
5415   }
5416 
5417   assert(GlueChain->getNumValues() == 3);
5418 
5419   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
5420   switch (Opcode) {
5421   default: llvm_unreachable("no chain equivalent for opcode");
5422   case ISD::FMA:
5423     Opcode = AMDGPUISD::FMA_W_CHAIN;
5424     break;
5425   }
5426 
5427   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
5428                      GlueChain.getValue(2));
5429 }
5430 
5431 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
5432   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
5433     return FastLowered;
5434 
5435   SDLoc SL(Op);
5436   SDValue Src0 = Op.getOperand(0);
5437   SDValue Src1 = Op.getOperand(1);
5438 
5439   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
5440   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
5441 
5442   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
5443   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
5444 
5445   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
5446   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
5447 
5448   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
5449 }
5450 
5451 // Faster 2.5 ULP division that does not support denormals.
5452 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
5453   SDLoc SL(Op);
5454   SDValue LHS = Op.getOperand(1);
5455   SDValue RHS = Op.getOperand(2);
5456 
5457   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
5458 
5459   const APFloat K0Val(BitsToFloat(0x6f800000));
5460   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
5461 
5462   const APFloat K1Val(BitsToFloat(0x2f800000));
5463   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
5464 
5465   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
5466 
5467   EVT SetCCVT =
5468     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
5469 
5470   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
5471 
5472   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
5473 
5474   // TODO: Should this propagate fast-math-flags?
5475   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
5476 
5477   // rcp does not support denormals.
5478   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
5479 
5480   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
5481 
5482   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
5483 }
5484 
5485 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
5486   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
5487     return FastLowered;
5488 
5489   SDLoc SL(Op);
5490   SDValue LHS = Op.getOperand(0);
5491   SDValue RHS = Op.getOperand(1);
5492 
5493   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
5494 
5495   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
5496 
5497   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
5498                                           RHS, RHS, LHS);
5499   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
5500                                         LHS, RHS, LHS);
5501 
5502   // Denominator is scaled to not be denormal, so using rcp is ok.
5503   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
5504                                   DenominatorScaled);
5505   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
5506                                      DenominatorScaled);
5507 
5508   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
5509                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
5510                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
5511 
5512   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
5513 
5514   if (!Subtarget->hasFP32Denormals()) {
5515     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
5516     const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
5517                                                       SL, MVT::i32);
5518     SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
5519                                        DAG.getEntryNode(),
5520                                        EnableDenormValue, BitField);
5521     SDValue Ops[3] = {
5522       NegDivScale0,
5523       EnableDenorm.getValue(0),
5524       EnableDenorm.getValue(1)
5525     };
5526 
5527     NegDivScale0 = DAG.getMergeValues(Ops, SL);
5528   }
5529 
5530   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
5531                              ApproxRcp, One, NegDivScale0);
5532 
5533   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
5534                              ApproxRcp, Fma0);
5535 
5536   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
5537                            Fma1, Fma1);
5538 
5539   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
5540                              NumeratorScaled, Mul);
5541 
5542   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
5543 
5544   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
5545                              NumeratorScaled, Fma3);
5546 
5547   if (!Subtarget->hasFP32Denormals()) {
5548     const SDValue DisableDenormValue =
5549         DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
5550     SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
5551                                         Fma4.getValue(1),
5552                                         DisableDenormValue,
5553                                         BitField,
5554                                         Fma4.getValue(2));
5555 
5556     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
5557                                       DisableDenorm, DAG.getRoot());
5558     DAG.setRoot(OutputChain);
5559   }
5560 
5561   SDValue Scale = NumeratorScaled.getValue(1);
5562   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
5563                              Fma4, Fma1, Fma3, Scale);
5564 
5565   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
5566 }
5567 
5568 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
5569   if (DAG.getTarget().Options.UnsafeFPMath)
5570     return lowerFastUnsafeFDIV(Op, DAG);
5571 
5572   SDLoc SL(Op);
5573   SDValue X = Op.getOperand(0);
5574   SDValue Y = Op.getOperand(1);
5575 
5576   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
5577 
5578   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
5579 
5580   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
5581 
5582   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
5583 
5584   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
5585 
5586   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
5587 
5588   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
5589 
5590   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
5591 
5592   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
5593 
5594   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
5595   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
5596 
5597   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
5598                              NegDivScale0, Mul, DivScale1);
5599 
5600   SDValue Scale;
5601 
5602   if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
5603     // Workaround a hardware bug on SI where the condition output from div_scale
5604     // is not usable.
5605 
5606     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
5607 
5608     // Figure out if the scale to use for div_fmas.
5609     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
5610     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
5611     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
5612     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
5613 
5614     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
5615     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
5616 
5617     SDValue Scale0Hi
5618       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
5619     SDValue Scale1Hi
5620       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
5621 
5622     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
5623     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
5624     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
5625   } else {
5626     Scale = DivScale1.getValue(1);
5627   }
5628 
5629   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
5630                              Fma4, Fma3, Mul, Scale);
5631 
5632   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
5633 }
5634 
5635 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
5636   EVT VT = Op.getValueType();
5637 
5638   if (VT == MVT::f32)
5639     return LowerFDIV32(Op, DAG);
5640 
5641   if (VT == MVT::f64)
5642     return LowerFDIV64(Op, DAG);
5643 
5644   if (VT == MVT::f16)
5645     return LowerFDIV16(Op, DAG);
5646 
5647   llvm_unreachable("Unexpected type for fdiv");
5648 }
5649 
5650 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
5651   SDLoc DL(Op);
5652   StoreSDNode *Store = cast<StoreSDNode>(Op);
5653   EVT VT = Store->getMemoryVT();
5654 
5655   if (VT == MVT::i1) {
5656     return DAG.getTruncStore(Store->getChain(), DL,
5657        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
5658        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
5659   }
5660 
5661   assert(VT.isVector() &&
5662          Store->getValue().getValueType().getScalarType() == MVT::i32);
5663 
5664   unsigned AS = Store->getAddressSpace();
5665   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
5666                           AS, Store->getAlignment())) {
5667     return expandUnalignedStore(Store, DAG);
5668   }
5669 
5670   MachineFunction &MF = DAG.getMachineFunction();
5671   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
5672   // If there is a possibilty that flat instruction access scratch memory
5673   // then we need to use the same legalization rules we use for private.
5674   if (AS == AMDGPUASI.FLAT_ADDRESS)
5675     AS = MFI->hasFlatScratchInit() ?
5676          AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS;
5677 
5678   unsigned NumElements = VT.getVectorNumElements();
5679   if (AS == AMDGPUASI.GLOBAL_ADDRESS ||
5680       AS == AMDGPUASI.FLAT_ADDRESS) {
5681     if (NumElements > 4)
5682       return SplitVectorStore(Op, DAG);
5683     return SDValue();
5684   } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
5685     switch (Subtarget->getMaxPrivateElementSize()) {
5686     case 4:
5687       return scalarizeVectorStore(Store, DAG);
5688     case 8:
5689       if (NumElements > 2)
5690         return SplitVectorStore(Op, DAG);
5691       return SDValue();
5692     case 16:
5693       if (NumElements > 4)
5694         return SplitVectorStore(Op, DAG);
5695       return SDValue();
5696     default:
5697       llvm_unreachable("unsupported private_element_size");
5698     }
5699   } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
5700     // Use ds_write_b128 if possible.
5701     if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
5702         VT.getStoreSize() == 16)
5703       return SDValue();
5704 
5705     if (NumElements > 2)
5706       return SplitVectorStore(Op, DAG);
5707     return SDValue();
5708   } else {
5709     llvm_unreachable("unhandled address space");
5710   }
5711 }
5712 
5713 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
5714   SDLoc DL(Op);
5715   EVT VT = Op.getValueType();
5716   SDValue Arg = Op.getOperand(0);
5717   // TODO: Should this propagate fast-math-flags?
5718   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
5719                                   DAG.getNode(ISD::FMUL, DL, VT, Arg,
5720                                               DAG.getConstantFP(0.5/M_PI, DL,
5721                                                                 VT)));
5722 
5723   switch (Op.getOpcode()) {
5724   case ISD::FCOS:
5725     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
5726   case ISD::FSIN:
5727     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
5728   default:
5729     llvm_unreachable("Wrong trig opcode");
5730   }
5731 }
5732 
5733 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
5734   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
5735   assert(AtomicNode->isCompareAndSwap());
5736   unsigned AS = AtomicNode->getAddressSpace();
5737 
5738   // No custom lowering required for local address space
5739   if (!isFlatGlobalAddrSpace(AS, AMDGPUASI))
5740     return Op;
5741 
5742   // Non-local address space requires custom lowering for atomic compare
5743   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
5744   SDLoc DL(Op);
5745   SDValue ChainIn = Op.getOperand(0);
5746   SDValue Addr = Op.getOperand(1);
5747   SDValue Old = Op.getOperand(2);
5748   SDValue New = Op.getOperand(3);
5749   EVT VT = Op.getValueType();
5750   MVT SimpleVT = VT.getSimpleVT();
5751   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
5752 
5753   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
5754   SDValue Ops[] = { ChainIn, Addr, NewOld };
5755 
5756   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
5757                                  Ops, VT, AtomicNode->getMemOperand());
5758 }
5759 
5760 //===----------------------------------------------------------------------===//
5761 // Custom DAG optimizations
5762 //===----------------------------------------------------------------------===//
5763 
5764 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
5765                                                      DAGCombinerInfo &DCI) const {
5766   EVT VT = N->getValueType(0);
5767   EVT ScalarVT = VT.getScalarType();
5768   if (ScalarVT != MVT::f32)
5769     return SDValue();
5770 
5771   SelectionDAG &DAG = DCI.DAG;
5772   SDLoc DL(N);
5773 
5774   SDValue Src = N->getOperand(0);
5775   EVT SrcVT = Src.getValueType();
5776 
5777   // TODO: We could try to match extracting the higher bytes, which would be
5778   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
5779   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
5780   // about in practice.
5781   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
5782     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
5783       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
5784       DCI.AddToWorklist(Cvt.getNode());
5785       return Cvt;
5786     }
5787   }
5788 
5789   return SDValue();
5790 }
5791 
5792 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
5793 
5794 // This is a variant of
5795 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
5796 //
5797 // The normal DAG combiner will do this, but only if the add has one use since
5798 // that would increase the number of instructions.
5799 //
5800 // This prevents us from seeing a constant offset that can be folded into a
5801 // memory instruction's addressing mode. If we know the resulting add offset of
5802 // a pointer can be folded into an addressing offset, we can replace the pointer
5803 // operand with the add of new constant offset. This eliminates one of the uses,
5804 // and may allow the remaining use to also be simplified.
5805 //
5806 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
5807                                                unsigned AddrSpace,
5808                                                EVT MemVT,
5809                                                DAGCombinerInfo &DCI) const {
5810   SDValue N0 = N->getOperand(0);
5811   SDValue N1 = N->getOperand(1);
5812 
5813   // We only do this to handle cases where it's profitable when there are
5814   // multiple uses of the add, so defer to the standard combine.
5815   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
5816       N0->hasOneUse())
5817     return SDValue();
5818 
5819   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
5820   if (!CN1)
5821     return SDValue();
5822 
5823   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5824   if (!CAdd)
5825     return SDValue();
5826 
5827   // If the resulting offset is too large, we can't fold it into the addressing
5828   // mode offset.
5829   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
5830   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
5831 
5832   AddrMode AM;
5833   AM.HasBaseReg = true;
5834   AM.BaseOffs = Offset.getSExtValue();
5835   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
5836     return SDValue();
5837 
5838   SelectionDAG &DAG = DCI.DAG;
5839   SDLoc SL(N);
5840   EVT VT = N->getValueType(0);
5841 
5842   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
5843   SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
5844 
5845   SDNodeFlags Flags;
5846   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
5847                           (N0.getOpcode() == ISD::OR ||
5848                            N0->getFlags().hasNoUnsignedWrap()));
5849 
5850   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
5851 }
5852 
5853 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
5854                                                   DAGCombinerInfo &DCI) const {
5855   SDValue Ptr = N->getBasePtr();
5856   SelectionDAG &DAG = DCI.DAG;
5857   SDLoc SL(N);
5858 
5859   // TODO: We could also do this for multiplies.
5860   if (Ptr.getOpcode() == ISD::SHL) {
5861     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
5862                                           N->getMemoryVT(), DCI);
5863     if (NewPtr) {
5864       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
5865 
5866       NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
5867       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
5868     }
5869   }
5870 
5871   return SDValue();
5872 }
5873 
5874 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
5875   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
5876          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
5877          (Opc == ISD::XOR && Val == 0);
5878 }
5879 
5880 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
5881 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
5882 // integer combine opportunities since most 64-bit operations are decomposed
5883 // this way.  TODO: We won't want this for SALU especially if it is an inline
5884 // immediate.
5885 SDValue SITargetLowering::splitBinaryBitConstantOp(
5886   DAGCombinerInfo &DCI,
5887   const SDLoc &SL,
5888   unsigned Opc, SDValue LHS,
5889   const ConstantSDNode *CRHS) const {
5890   uint64_t Val = CRHS->getZExtValue();
5891   uint32_t ValLo = Lo_32(Val);
5892   uint32_t ValHi = Hi_32(Val);
5893   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
5894 
5895     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
5896          bitOpWithConstantIsReducible(Opc, ValHi)) ||
5897         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
5898     // If we need to materialize a 64-bit immediate, it will be split up later
5899     // anyway. Avoid creating the harder to understand 64-bit immediate
5900     // materialization.
5901     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
5902   }
5903 
5904   return SDValue();
5905 }
5906 
5907 // Returns true if argument is a boolean value which is not serialized into
5908 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
5909 static bool isBoolSGPR(SDValue V) {
5910   if (V.getValueType() != MVT::i1)
5911     return false;
5912   switch (V.getOpcode()) {
5913   default: break;
5914   case ISD::SETCC:
5915   case ISD::AND:
5916   case ISD::OR:
5917   case ISD::XOR:
5918   case AMDGPUISD::FP_CLASS:
5919     return true;
5920   }
5921   return false;
5922 }
5923 
5924 SDValue SITargetLowering::performAndCombine(SDNode *N,
5925                                             DAGCombinerInfo &DCI) const {
5926   if (DCI.isBeforeLegalize())
5927     return SDValue();
5928 
5929   SelectionDAG &DAG = DCI.DAG;
5930   EVT VT = N->getValueType(0);
5931   SDValue LHS = N->getOperand(0);
5932   SDValue RHS = N->getOperand(1);
5933 
5934 
5935   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
5936   if (VT == MVT::i64 && CRHS) {
5937     if (SDValue Split
5938         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
5939       return Split;
5940   }
5941 
5942   if (CRHS && VT == MVT::i32) {
5943     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
5944     // nb = number of trailing zeroes in mask
5945     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
5946     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
5947     uint64_t Mask = CRHS->getZExtValue();
5948     unsigned Bits = countPopulation(Mask);
5949     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
5950         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
5951       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
5952         unsigned Shift = CShift->getZExtValue();
5953         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
5954         unsigned Offset = NB + Shift;
5955         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
5956           SDLoc SL(N);
5957           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
5958                                     LHS->getOperand(0),
5959                                     DAG.getConstant(Offset, SL, MVT::i32),
5960                                     DAG.getConstant(Bits, SL, MVT::i32));
5961           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
5962           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
5963                                     DAG.getValueType(NarrowVT));
5964           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
5965                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
5966           return Shl;
5967         }
5968       }
5969     }
5970   }
5971 
5972   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
5973   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
5974   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
5975     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5976     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
5977 
5978     SDValue X = LHS.getOperand(0);
5979     SDValue Y = RHS.getOperand(0);
5980     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
5981       return SDValue();
5982 
5983     if (LCC == ISD::SETO) {
5984       if (X != LHS.getOperand(1))
5985         return SDValue();
5986 
5987       if (RCC == ISD::SETUNE) {
5988         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
5989         if (!C1 || !C1->isInfinity() || C1->isNegative())
5990           return SDValue();
5991 
5992         const uint32_t Mask = SIInstrFlags::N_NORMAL |
5993                               SIInstrFlags::N_SUBNORMAL |
5994                               SIInstrFlags::N_ZERO |
5995                               SIInstrFlags::P_ZERO |
5996                               SIInstrFlags::P_SUBNORMAL |
5997                               SIInstrFlags::P_NORMAL;
5998 
5999         static_assert(((~(SIInstrFlags::S_NAN |
6000                           SIInstrFlags::Q_NAN |
6001                           SIInstrFlags::N_INFINITY |
6002                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
6003                       "mask not equal");
6004 
6005         SDLoc DL(N);
6006         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
6007                            X, DAG.getConstant(Mask, DL, MVT::i32));
6008       }
6009     }
6010   }
6011 
6012   if (VT == MVT::i32 &&
6013       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
6014     // and x, (sext cc from i1) => select cc, x, 0
6015     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
6016       std::swap(LHS, RHS);
6017     if (isBoolSGPR(RHS.getOperand(0)))
6018       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
6019                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
6020   }
6021 
6022   return SDValue();
6023 }
6024 
6025 SDValue SITargetLowering::performOrCombine(SDNode *N,
6026                                            DAGCombinerInfo &DCI) const {
6027   SelectionDAG &DAG = DCI.DAG;
6028   SDValue LHS = N->getOperand(0);
6029   SDValue RHS = N->getOperand(1);
6030 
6031   EVT VT = N->getValueType(0);
6032   if (VT == MVT::i1) {
6033     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
6034     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
6035         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
6036       SDValue Src = LHS.getOperand(0);
6037       if (Src != RHS.getOperand(0))
6038         return SDValue();
6039 
6040       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
6041       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
6042       if (!CLHS || !CRHS)
6043         return SDValue();
6044 
6045       // Only 10 bits are used.
6046       static const uint32_t MaxMask = 0x3ff;
6047 
6048       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
6049       SDLoc DL(N);
6050       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
6051                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
6052     }
6053 
6054     return SDValue();
6055   }
6056 
6057   if (VT != MVT::i64)
6058     return SDValue();
6059 
6060   // TODO: This could be a generic combine with a predicate for extracting the
6061   // high half of an integer being free.
6062 
6063   // (or i64:x, (zero_extend i32:y)) ->
6064   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
6065   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
6066       RHS.getOpcode() != ISD::ZERO_EXTEND)
6067     std::swap(LHS, RHS);
6068 
6069   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
6070     SDValue ExtSrc = RHS.getOperand(0);
6071     EVT SrcVT = ExtSrc.getValueType();
6072     if (SrcVT == MVT::i32) {
6073       SDLoc SL(N);
6074       SDValue LowLHS, HiBits;
6075       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
6076       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
6077 
6078       DCI.AddToWorklist(LowOr.getNode());
6079       DCI.AddToWorklist(HiBits.getNode());
6080 
6081       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
6082                                 LowOr, HiBits);
6083       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
6084     }
6085   }
6086 
6087   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
6088   if (CRHS) {
6089     if (SDValue Split
6090           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
6091       return Split;
6092   }
6093 
6094   return SDValue();
6095 }
6096 
6097 SDValue SITargetLowering::performXorCombine(SDNode *N,
6098                                             DAGCombinerInfo &DCI) const {
6099   EVT VT = N->getValueType(0);
6100   if (VT != MVT::i64)
6101     return SDValue();
6102 
6103   SDValue LHS = N->getOperand(0);
6104   SDValue RHS = N->getOperand(1);
6105 
6106   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
6107   if (CRHS) {
6108     if (SDValue Split
6109           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
6110       return Split;
6111   }
6112 
6113   return SDValue();
6114 }
6115 
6116 // Instructions that will be lowered with a final instruction that zeros the
6117 // high result bits.
6118 // XXX - probably only need to list legal operations.
6119 static bool fp16SrcZerosHighBits(unsigned Opc) {
6120   switch (Opc) {
6121   case ISD::FADD:
6122   case ISD::FSUB:
6123   case ISD::FMUL:
6124   case ISD::FDIV:
6125   case ISD::FREM:
6126   case ISD::FMA:
6127   case ISD::FMAD:
6128   case ISD::FCANONICALIZE:
6129   case ISD::FP_ROUND:
6130   case ISD::UINT_TO_FP:
6131   case ISD::SINT_TO_FP:
6132   case ISD::FABS:
6133     // Fabs is lowered to a bit operation, but it's an and which will clear the
6134     // high bits anyway.
6135   case ISD::FSQRT:
6136   case ISD::FSIN:
6137   case ISD::FCOS:
6138   case ISD::FPOWI:
6139   case ISD::FPOW:
6140   case ISD::FLOG:
6141   case ISD::FLOG2:
6142   case ISD::FLOG10:
6143   case ISD::FEXP:
6144   case ISD::FEXP2:
6145   case ISD::FCEIL:
6146   case ISD::FTRUNC:
6147   case ISD::FRINT:
6148   case ISD::FNEARBYINT:
6149   case ISD::FROUND:
6150   case ISD::FFLOOR:
6151   case ISD::FMINNUM:
6152   case ISD::FMAXNUM:
6153   case AMDGPUISD::FRACT:
6154   case AMDGPUISD::CLAMP:
6155   case AMDGPUISD::COS_HW:
6156   case AMDGPUISD::SIN_HW:
6157   case AMDGPUISD::FMIN3:
6158   case AMDGPUISD::FMAX3:
6159   case AMDGPUISD::FMED3:
6160   case AMDGPUISD::FMAD_FTZ:
6161   case AMDGPUISD::RCP:
6162   case AMDGPUISD::RSQ:
6163   case AMDGPUISD::LDEXP:
6164     return true;
6165   default:
6166     // fcopysign, select and others may be lowered to 32-bit bit operations
6167     // which don't zero the high bits.
6168     return false;
6169   }
6170 }
6171 
6172 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
6173                                                    DAGCombinerInfo &DCI) const {
6174   if (!Subtarget->has16BitInsts() ||
6175       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
6176     return SDValue();
6177 
6178   EVT VT = N->getValueType(0);
6179   if (VT != MVT::i32)
6180     return SDValue();
6181 
6182   SDValue Src = N->getOperand(0);
6183   if (Src.getValueType() != MVT::i16)
6184     return SDValue();
6185 
6186   // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
6187   // FIXME: It is not universally true that the high bits are zeroed on gfx9.
6188   if (Src.getOpcode() == ISD::BITCAST) {
6189     SDValue BCSrc = Src.getOperand(0);
6190     if (BCSrc.getValueType() == MVT::f16 &&
6191         fp16SrcZerosHighBits(BCSrc.getOpcode()))
6192       return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
6193   }
6194 
6195   return SDValue();
6196 }
6197 
6198 SDValue SITargetLowering::performClassCombine(SDNode *N,
6199                                               DAGCombinerInfo &DCI) const {
6200   SelectionDAG &DAG = DCI.DAG;
6201   SDValue Mask = N->getOperand(1);
6202 
6203   // fp_class x, 0 -> false
6204   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
6205     if (CMask->isNullValue())
6206       return DAG.getConstant(0, SDLoc(N), MVT::i1);
6207   }
6208 
6209   if (N->getOperand(0).isUndef())
6210     return DAG.getUNDEF(MVT::i1);
6211 
6212   return SDValue();
6213 }
6214 
6215 static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
6216   if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
6217     return true;
6218 
6219   return DAG.isKnownNeverNaN(Op);
6220 }
6221 
6222 static bool isCanonicalized(SelectionDAG &DAG, SDValue Op,
6223                             const SISubtarget *ST, unsigned MaxDepth=5) {
6224   // If source is a result of another standard FP operation it is already in
6225   // canonical form.
6226 
6227   switch (Op.getOpcode()) {
6228   default:
6229     break;
6230 
6231   // These will flush denorms if required.
6232   case ISD::FADD:
6233   case ISD::FSUB:
6234   case ISD::FMUL:
6235   case ISD::FSQRT:
6236   case ISD::FCEIL:
6237   case ISD::FFLOOR:
6238   case ISD::FMA:
6239   case ISD::FMAD:
6240 
6241   case ISD::FCANONICALIZE:
6242     return true;
6243 
6244   case ISD::FP_ROUND:
6245     return Op.getValueType().getScalarType() != MVT::f16 ||
6246            ST->hasFP16Denormals();
6247 
6248   case ISD::FP_EXTEND:
6249     return Op.getOperand(0).getValueType().getScalarType() != MVT::f16 ||
6250            ST->hasFP16Denormals();
6251 
6252   case ISD::FP16_TO_FP:
6253   case ISD::FP_TO_FP16:
6254     return ST->hasFP16Denormals();
6255 
6256   // It can/will be lowered or combined as a bit operation.
6257   // Need to check their input recursively to handle.
6258   case ISD::FNEG:
6259   case ISD::FABS:
6260     return (MaxDepth > 0) &&
6261            isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1);
6262 
6263   case ISD::FSIN:
6264   case ISD::FCOS:
6265   case ISD::FSINCOS:
6266     return Op.getValueType().getScalarType() != MVT::f16;
6267 
6268   // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms.
6269   // For such targets need to check their input recursively.
6270   case ISD::FMINNUM:
6271   case ISD::FMAXNUM:
6272   case ISD::FMINNAN:
6273   case ISD::FMAXNAN:
6274 
6275     if (ST->supportsMinMaxDenormModes() &&
6276         DAG.isKnownNeverNaN(Op.getOperand(0)) &&
6277         DAG.isKnownNeverNaN(Op.getOperand(1)))
6278       return true;
6279 
6280     return (MaxDepth > 0) &&
6281            isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1) &&
6282            isCanonicalized(DAG, Op.getOperand(1), ST, MaxDepth - 1);
6283 
6284   case ISD::ConstantFP: {
6285     auto F = cast<ConstantFPSDNode>(Op)->getValueAPF();
6286     return !F.isDenormal() && !(F.isNaN() && F.isSignaling());
6287   }
6288   }
6289   return false;
6290 }
6291 
6292 // Constant fold canonicalize.
6293 SDValue SITargetLowering::performFCanonicalizeCombine(
6294   SDNode *N,
6295   DAGCombinerInfo &DCI) const {
6296   SelectionDAG &DAG = DCI.DAG;
6297   ConstantFPSDNode *CFP = isConstOrConstSplatFP(N->getOperand(0));
6298 
6299   if (!CFP) {
6300     SDValue N0 = N->getOperand(0);
6301     EVT VT = N0.getValueType().getScalarType();
6302     auto ST = getSubtarget();
6303 
6304     if (((VT == MVT::f32 && ST->hasFP32Denormals()) ||
6305          (VT == MVT::f64 && ST->hasFP64Denormals()) ||
6306          (VT == MVT::f16 && ST->hasFP16Denormals())) &&
6307         DAG.isKnownNeverNaN(N0))
6308       return N0;
6309 
6310     bool IsIEEEMode = Subtarget->enableIEEEBit(DAG.getMachineFunction());
6311 
6312     if ((IsIEEEMode || isKnownNeverSNan(DAG, N0)) &&
6313         isCanonicalized(DAG, N0, ST))
6314       return N0;
6315 
6316     return SDValue();
6317   }
6318 
6319   const APFloat &C = CFP->getValueAPF();
6320 
6321   // Flush denormals to 0 if not enabled.
6322   if (C.isDenormal()) {
6323     EVT VT = N->getValueType(0);
6324     EVT SVT = VT.getScalarType();
6325     if (SVT == MVT::f32 && !Subtarget->hasFP32Denormals())
6326       return DAG.getConstantFP(0.0, SDLoc(N), VT);
6327 
6328     if (SVT == MVT::f64 && !Subtarget->hasFP64Denormals())
6329       return DAG.getConstantFP(0.0, SDLoc(N), VT);
6330 
6331     if (SVT == MVT::f16 && !Subtarget->hasFP16Denormals())
6332       return DAG.getConstantFP(0.0, SDLoc(N), VT);
6333   }
6334 
6335   if (C.isNaN()) {
6336     EVT VT = N->getValueType(0);
6337     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
6338     if (C.isSignaling()) {
6339       // Quiet a signaling NaN.
6340       return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
6341     }
6342 
6343     // Make sure it is the canonical NaN bitpattern.
6344     //
6345     // TODO: Can we use -1 as the canonical NaN value since it's an inline
6346     // immediate?
6347     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
6348       return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
6349   }
6350 
6351   return N->getOperand(0);
6352 }
6353 
6354 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
6355   switch (Opc) {
6356   case ISD::FMAXNUM:
6357     return AMDGPUISD::FMAX3;
6358   case ISD::SMAX:
6359     return AMDGPUISD::SMAX3;
6360   case ISD::UMAX:
6361     return AMDGPUISD::UMAX3;
6362   case ISD::FMINNUM:
6363     return AMDGPUISD::FMIN3;
6364   case ISD::SMIN:
6365     return AMDGPUISD::SMIN3;
6366   case ISD::UMIN:
6367     return AMDGPUISD::UMIN3;
6368   default:
6369     llvm_unreachable("Not a min/max opcode");
6370   }
6371 }
6372 
6373 SDValue SITargetLowering::performIntMed3ImmCombine(
6374   SelectionDAG &DAG, const SDLoc &SL,
6375   SDValue Op0, SDValue Op1, bool Signed) const {
6376   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
6377   if (!K1)
6378     return SDValue();
6379 
6380   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
6381   if (!K0)
6382     return SDValue();
6383 
6384   if (Signed) {
6385     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
6386       return SDValue();
6387   } else {
6388     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
6389       return SDValue();
6390   }
6391 
6392   EVT VT = K0->getValueType(0);
6393   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
6394   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
6395     return DAG.getNode(Med3Opc, SL, VT,
6396                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
6397   }
6398 
6399   // If there isn't a 16-bit med3 operation, convert to 32-bit.
6400   MVT NVT = MVT::i32;
6401   unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6402 
6403   SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
6404   SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
6405   SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
6406 
6407   SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
6408   return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
6409 }
6410 
6411 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
6412   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
6413     return C;
6414 
6415   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
6416     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
6417       return C;
6418   }
6419 
6420   return nullptr;
6421 }
6422 
6423 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
6424                                                   const SDLoc &SL,
6425                                                   SDValue Op0,
6426                                                   SDValue Op1) const {
6427   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
6428   if (!K1)
6429     return SDValue();
6430 
6431   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
6432   if (!K0)
6433     return SDValue();
6434 
6435   // Ordered >= (although NaN inputs should have folded away by now).
6436   APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
6437   if (Cmp == APFloat::cmpGreaterThan)
6438     return SDValue();
6439 
6440   // TODO: Check IEEE bit enabled?
6441   EVT VT = Op0.getValueType();
6442   if (Subtarget->enableDX10Clamp()) {
6443     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
6444     // hardware fmed3 behavior converting to a min.
6445     // FIXME: Should this be allowing -0.0?
6446     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
6447       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
6448   }
6449 
6450   // med3 for f16 is only available on gfx9+, and not available for v2f16.
6451   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
6452     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
6453     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
6454     // then give the other result, which is different from med3 with a NaN
6455     // input.
6456     SDValue Var = Op0.getOperand(0);
6457     if (!isKnownNeverSNan(DAG, Var))
6458       return SDValue();
6459 
6460     return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
6461                        Var, SDValue(K0, 0), SDValue(K1, 0));
6462   }
6463 
6464   return SDValue();
6465 }
6466 
6467 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
6468                                                DAGCombinerInfo &DCI) const {
6469   SelectionDAG &DAG = DCI.DAG;
6470 
6471   EVT VT = N->getValueType(0);
6472   unsigned Opc = N->getOpcode();
6473   SDValue Op0 = N->getOperand(0);
6474   SDValue Op1 = N->getOperand(1);
6475 
6476   // Only do this if the inner op has one use since this will just increases
6477   // register pressure for no benefit.
6478 
6479 
6480   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
6481       !VT.isVector() && VT != MVT::f64 &&
6482       ((VT != MVT::f16 && VT != MVT::i16) || Subtarget->hasMin3Max3_16())) {
6483     // max(max(a, b), c) -> max3(a, b, c)
6484     // min(min(a, b), c) -> min3(a, b, c)
6485     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
6486       SDLoc DL(N);
6487       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
6488                          DL,
6489                          N->getValueType(0),
6490                          Op0.getOperand(0),
6491                          Op0.getOperand(1),
6492                          Op1);
6493     }
6494 
6495     // Try commuted.
6496     // max(a, max(b, c)) -> max3(a, b, c)
6497     // min(a, min(b, c)) -> min3(a, b, c)
6498     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
6499       SDLoc DL(N);
6500       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
6501                          DL,
6502                          N->getValueType(0),
6503                          Op0,
6504                          Op1.getOperand(0),
6505                          Op1.getOperand(1));
6506     }
6507   }
6508 
6509   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
6510   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
6511     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
6512       return Med3;
6513   }
6514 
6515   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
6516     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
6517       return Med3;
6518   }
6519 
6520   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
6521   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
6522        (Opc == AMDGPUISD::FMIN_LEGACY &&
6523         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
6524       (VT == MVT::f32 || VT == MVT::f64 ||
6525        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
6526        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
6527       Op0.hasOneUse()) {
6528     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
6529       return Res;
6530   }
6531 
6532   return SDValue();
6533 }
6534 
6535 static bool isClampZeroToOne(SDValue A, SDValue B) {
6536   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
6537     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
6538       // FIXME: Should this be allowing -0.0?
6539       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
6540              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
6541     }
6542   }
6543 
6544   return false;
6545 }
6546 
6547 // FIXME: Should only worry about snans for version with chain.
6548 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
6549                                               DAGCombinerInfo &DCI) const {
6550   EVT VT = N->getValueType(0);
6551   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
6552   // NaNs. With a NaN input, the order of the operands may change the result.
6553 
6554   SelectionDAG &DAG = DCI.DAG;
6555   SDLoc SL(N);
6556 
6557   SDValue Src0 = N->getOperand(0);
6558   SDValue Src1 = N->getOperand(1);
6559   SDValue Src2 = N->getOperand(2);
6560 
6561   if (isClampZeroToOne(Src0, Src1)) {
6562     // const_a, const_b, x -> clamp is safe in all cases including signaling
6563     // nans.
6564     // FIXME: Should this be allowing -0.0?
6565     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
6566   }
6567 
6568   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
6569   // handling no dx10-clamp?
6570   if (Subtarget->enableDX10Clamp()) {
6571     // If NaNs is clamped to 0, we are free to reorder the inputs.
6572 
6573     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
6574       std::swap(Src0, Src1);
6575 
6576     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
6577       std::swap(Src1, Src2);
6578 
6579     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
6580       std::swap(Src0, Src1);
6581 
6582     if (isClampZeroToOne(Src1, Src2))
6583       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
6584   }
6585 
6586   return SDValue();
6587 }
6588 
6589 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
6590                                                  DAGCombinerInfo &DCI) const {
6591   SDValue Src0 = N->getOperand(0);
6592   SDValue Src1 = N->getOperand(1);
6593   if (Src0.isUndef() && Src1.isUndef())
6594     return DCI.DAG.getUNDEF(N->getValueType(0));
6595   return SDValue();
6596 }
6597 
6598 SDValue SITargetLowering::performExtractVectorEltCombine(
6599   SDNode *N, DAGCombinerInfo &DCI) const {
6600   SDValue Vec = N->getOperand(0);
6601 
6602   SelectionDAG &DAG = DCI.DAG;
6603   if (Vec.getOpcode() == ISD::FNEG && allUsesHaveSourceMods(N)) {
6604     SDLoc SL(N);
6605     EVT EltVT = N->getValueType(0);
6606     SDValue Idx = N->getOperand(1);
6607     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
6608                               Vec.getOperand(0), Idx);
6609     return DAG.getNode(ISD::FNEG, SL, EltVT, Elt);
6610   }
6611 
6612   return SDValue();
6613 }
6614 
6615 static bool convertBuildVectorCastElt(SelectionDAG &DAG,
6616                                       SDValue &Lo, SDValue &Hi) {
6617   if (Hi.getOpcode() == ISD::BITCAST &&
6618       Hi.getOperand(0).getValueType() == MVT::f16 &&
6619       (isa<ConstantSDNode>(Lo) || Lo.isUndef())) {
6620     Lo = DAG.getNode(ISD::BITCAST, SDLoc(Lo), MVT::f16, Lo);
6621     Hi = Hi.getOperand(0);
6622     return true;
6623   }
6624 
6625   return false;
6626 }
6627 
6628 SDValue SITargetLowering::performBuildVectorCombine(
6629   SDNode *N, DAGCombinerInfo &DCI) const {
6630   SDLoc SL(N);
6631 
6632   if (!isTypeLegal(MVT::v2i16))
6633     return SDValue();
6634   SelectionDAG &DAG = DCI.DAG;
6635   EVT VT = N->getValueType(0);
6636 
6637   if (VT == MVT::v2i16) {
6638     SDValue Lo = N->getOperand(0);
6639     SDValue Hi = N->getOperand(1);
6640 
6641     // v2i16 build_vector (const|undef), (bitcast f16:$x)
6642     // -> bitcast (v2f16 build_vector const|undef, $x
6643     if (convertBuildVectorCastElt(DAG, Lo, Hi)) {
6644       SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Lo, Hi  });
6645       return DAG.getNode(ISD::BITCAST, SL, VT, NewVec);
6646     }
6647 
6648     if (convertBuildVectorCastElt(DAG, Hi, Lo)) {
6649       SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Hi, Lo  });
6650       return DAG.getNode(ISD::BITCAST, SL, VT, NewVec);
6651     }
6652   }
6653 
6654   return SDValue();
6655 }
6656 
6657 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
6658                                           const SDNode *N0,
6659                                           const SDNode *N1) const {
6660   EVT VT = N0->getValueType(0);
6661 
6662   // Only do this if we are not trying to support denormals. v_mad_f32 does not
6663   // support denormals ever.
6664   if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
6665       (VT == MVT::f16 && !Subtarget->hasFP16Denormals()))
6666     return ISD::FMAD;
6667 
6668   const TargetOptions &Options = DAG.getTarget().Options;
6669   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
6670        (N0->getFlags().hasUnsafeAlgebra() &&
6671         N1->getFlags().hasUnsafeAlgebra())) &&
6672       isFMAFasterThanFMulAndFAdd(VT)) {
6673     return ISD::FMA;
6674   }
6675 
6676   return 0;
6677 }
6678 
6679 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
6680                            EVT VT,
6681                            SDValue N0, SDValue N1, SDValue N2,
6682                            bool Signed) {
6683   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
6684   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
6685   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
6686   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
6687 }
6688 
6689 SDValue SITargetLowering::performAddCombine(SDNode *N,
6690                                             DAGCombinerInfo &DCI) const {
6691   SelectionDAG &DAG = DCI.DAG;
6692   EVT VT = N->getValueType(0);
6693   SDLoc SL(N);
6694   SDValue LHS = N->getOperand(0);
6695   SDValue RHS = N->getOperand(1);
6696 
6697   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
6698       && Subtarget->hasMad64_32() &&
6699       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
6700       VT.getScalarSizeInBits() <= 64) {
6701     if (LHS.getOpcode() != ISD::MUL)
6702       std::swap(LHS, RHS);
6703 
6704     SDValue MulLHS = LHS.getOperand(0);
6705     SDValue MulRHS = LHS.getOperand(1);
6706     SDValue AddRHS = RHS;
6707 
6708     // TODO: Maybe restrict if SGPR inputs.
6709     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
6710         numBitsUnsigned(MulRHS, DAG) <= 32) {
6711       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
6712       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
6713       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
6714       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
6715     }
6716 
6717     if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
6718       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
6719       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
6720       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
6721       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
6722     }
6723 
6724     return SDValue();
6725   }
6726 
6727   if (VT != MVT::i32)
6728     return SDValue();
6729 
6730   // add x, zext (setcc) => addcarry x, 0, setcc
6731   // add x, sext (setcc) => subcarry x, 0, setcc
6732   unsigned Opc = LHS.getOpcode();
6733   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
6734       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
6735     std::swap(RHS, LHS);
6736 
6737   Opc = RHS.getOpcode();
6738   switch (Opc) {
6739   default: break;
6740   case ISD::ZERO_EXTEND:
6741   case ISD::SIGN_EXTEND:
6742   case ISD::ANY_EXTEND: {
6743     auto Cond = RHS.getOperand(0);
6744     if (!isBoolSGPR(Cond))
6745       break;
6746     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
6747     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
6748     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
6749     return DAG.getNode(Opc, SL, VTList, Args);
6750   }
6751   case ISD::ADDCARRY: {
6752     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
6753     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
6754     if (!C || C->getZExtValue() != 0) break;
6755     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
6756     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
6757   }
6758   }
6759   return SDValue();
6760 }
6761 
6762 SDValue SITargetLowering::performSubCombine(SDNode *N,
6763                                             DAGCombinerInfo &DCI) const {
6764   SelectionDAG &DAG = DCI.DAG;
6765   EVT VT = N->getValueType(0);
6766 
6767   if (VT != MVT::i32)
6768     return SDValue();
6769 
6770   SDLoc SL(N);
6771   SDValue LHS = N->getOperand(0);
6772   SDValue RHS = N->getOperand(1);
6773 
6774   unsigned Opc = LHS.getOpcode();
6775   if (Opc != ISD::SUBCARRY)
6776     std::swap(RHS, LHS);
6777 
6778   if (LHS.getOpcode() == ISD::SUBCARRY) {
6779     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
6780     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
6781     if (!C || C->getZExtValue() != 0)
6782       return SDValue();
6783     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
6784     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
6785   }
6786   return SDValue();
6787 }
6788 
6789 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
6790   DAGCombinerInfo &DCI) const {
6791 
6792   if (N->getValueType(0) != MVT::i32)
6793     return SDValue();
6794 
6795   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6796   if (!C || C->getZExtValue() != 0)
6797     return SDValue();
6798 
6799   SelectionDAG &DAG = DCI.DAG;
6800   SDValue LHS = N->getOperand(0);
6801 
6802   // addcarry (add x, y), 0, cc => addcarry x, y, cc
6803   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
6804   unsigned LHSOpc = LHS.getOpcode();
6805   unsigned Opc = N->getOpcode();
6806   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
6807       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
6808     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
6809     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
6810   }
6811   return SDValue();
6812 }
6813 
6814 SDValue SITargetLowering::performFAddCombine(SDNode *N,
6815                                              DAGCombinerInfo &DCI) const {
6816   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
6817     return SDValue();
6818 
6819   SelectionDAG &DAG = DCI.DAG;
6820   EVT VT = N->getValueType(0);
6821 
6822   SDLoc SL(N);
6823   SDValue LHS = N->getOperand(0);
6824   SDValue RHS = N->getOperand(1);
6825 
6826   // These should really be instruction patterns, but writing patterns with
6827   // source modiifiers is a pain.
6828 
6829   // fadd (fadd (a, a), b) -> mad 2.0, a, b
6830   if (LHS.getOpcode() == ISD::FADD) {
6831     SDValue A = LHS.getOperand(0);
6832     if (A == LHS.getOperand(1)) {
6833       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
6834       if (FusedOp != 0) {
6835         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
6836         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
6837       }
6838     }
6839   }
6840 
6841   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
6842   if (RHS.getOpcode() == ISD::FADD) {
6843     SDValue A = RHS.getOperand(0);
6844     if (A == RHS.getOperand(1)) {
6845       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
6846       if (FusedOp != 0) {
6847         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
6848         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
6849       }
6850     }
6851   }
6852 
6853   return SDValue();
6854 }
6855 
6856 SDValue SITargetLowering::performFSubCombine(SDNode *N,
6857                                              DAGCombinerInfo &DCI) const {
6858   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
6859     return SDValue();
6860 
6861   SelectionDAG &DAG = DCI.DAG;
6862   SDLoc SL(N);
6863   EVT VT = N->getValueType(0);
6864   assert(!VT.isVector());
6865 
6866   // Try to get the fneg to fold into the source modifier. This undoes generic
6867   // DAG combines and folds them into the mad.
6868   //
6869   // Only do this if we are not trying to support denormals. v_mad_f32 does
6870   // not support denormals ever.
6871   SDValue LHS = N->getOperand(0);
6872   SDValue RHS = N->getOperand(1);
6873   if (LHS.getOpcode() == ISD::FADD) {
6874     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
6875     SDValue A = LHS.getOperand(0);
6876     if (A == LHS.getOperand(1)) {
6877       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
6878       if (FusedOp != 0){
6879         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
6880         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
6881 
6882         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
6883       }
6884     }
6885   }
6886 
6887   if (RHS.getOpcode() == ISD::FADD) {
6888     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
6889 
6890     SDValue A = RHS.getOperand(0);
6891     if (A == RHS.getOperand(1)) {
6892       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
6893       if (FusedOp != 0){
6894         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
6895         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
6896       }
6897     }
6898   }
6899 
6900   return SDValue();
6901 }
6902 
6903 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
6904                                               DAGCombinerInfo &DCI) const {
6905   SelectionDAG &DAG = DCI.DAG;
6906   SDLoc SL(N);
6907 
6908   SDValue LHS = N->getOperand(0);
6909   SDValue RHS = N->getOperand(1);
6910   EVT VT = LHS.getValueType();
6911   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
6912 
6913   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
6914   if (!CRHS) {
6915     CRHS = dyn_cast<ConstantSDNode>(LHS);
6916     if (CRHS) {
6917       std::swap(LHS, RHS);
6918       CC = getSetCCSwappedOperands(CC);
6919     }
6920   }
6921 
6922   if (CRHS && VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
6923       isBoolSGPR(LHS.getOperand(0))) {
6924     // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
6925     // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
6926     // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
6927     // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
6928     if ((CRHS->isAllOnesValue() &&
6929          (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
6930         (CRHS->isNullValue() &&
6931          (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
6932       return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
6933                          DAG.getConstant(-1, SL, MVT::i1));
6934     if ((CRHS->isAllOnesValue() &&
6935          (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
6936         (CRHS->isNullValue() &&
6937          (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
6938       return LHS.getOperand(0);
6939   }
6940 
6941   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
6942                                            VT != MVT::f16))
6943     return SDValue();
6944 
6945   // Match isinf pattern
6946   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
6947   if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
6948     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
6949     if (!CRHS)
6950       return SDValue();
6951 
6952     const APFloat &APF = CRHS->getValueAPF();
6953     if (APF.isInfinity() && !APF.isNegative()) {
6954       unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
6955       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
6956                          DAG.getConstant(Mask, SL, MVT::i32));
6957     }
6958   }
6959 
6960   return SDValue();
6961 }
6962 
6963 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
6964                                                      DAGCombinerInfo &DCI) const {
6965   SelectionDAG &DAG = DCI.DAG;
6966   SDLoc SL(N);
6967   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
6968 
6969   SDValue Src = N->getOperand(0);
6970   SDValue Srl = N->getOperand(0);
6971   if (Srl.getOpcode() == ISD::ZERO_EXTEND)
6972     Srl = Srl.getOperand(0);
6973 
6974   // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
6975   if (Srl.getOpcode() == ISD::SRL) {
6976     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
6977     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
6978     // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
6979 
6980     if (const ConstantSDNode *C =
6981         dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
6982       Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
6983                                EVT(MVT::i32));
6984 
6985       unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
6986       if (SrcOffset < 32 && SrcOffset % 8 == 0) {
6987         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
6988                            MVT::f32, Srl);
6989       }
6990     }
6991   }
6992 
6993   APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
6994 
6995   KnownBits Known;
6996   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
6997                                         !DCI.isBeforeLegalizeOps());
6998   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6999   if (TLI.ShrinkDemandedConstant(Src, Demanded, TLO) ||
7000       TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
7001     DCI.CommitTargetLoweringOpt(TLO);
7002   }
7003 
7004   return SDValue();
7005 }
7006 
7007 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
7008                                             DAGCombinerInfo &DCI) const {
7009   switch (N->getOpcode()) {
7010   default:
7011     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
7012   case ISD::ADD:
7013     return performAddCombine(N, DCI);
7014   case ISD::SUB:
7015     return performSubCombine(N, DCI);
7016   case ISD::ADDCARRY:
7017   case ISD::SUBCARRY:
7018     return performAddCarrySubCarryCombine(N, DCI);
7019   case ISD::FADD:
7020     return performFAddCombine(N, DCI);
7021   case ISD::FSUB:
7022     return performFSubCombine(N, DCI);
7023   case ISD::SETCC:
7024     return performSetCCCombine(N, DCI);
7025   case ISD::FMAXNUM:
7026   case ISD::FMINNUM:
7027   case ISD::SMAX:
7028   case ISD::SMIN:
7029   case ISD::UMAX:
7030   case ISD::UMIN:
7031   case AMDGPUISD::FMIN_LEGACY:
7032   case AMDGPUISD::FMAX_LEGACY: {
7033     if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
7034         getTargetMachine().getOptLevel() > CodeGenOpt::None)
7035       return performMinMaxCombine(N, DCI);
7036     break;
7037   }
7038   case ISD::LOAD:
7039   case ISD::STORE:
7040   case ISD::ATOMIC_LOAD:
7041   case ISD::ATOMIC_STORE:
7042   case ISD::ATOMIC_CMP_SWAP:
7043   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
7044   case ISD::ATOMIC_SWAP:
7045   case ISD::ATOMIC_LOAD_ADD:
7046   case ISD::ATOMIC_LOAD_SUB:
7047   case ISD::ATOMIC_LOAD_AND:
7048   case ISD::ATOMIC_LOAD_OR:
7049   case ISD::ATOMIC_LOAD_XOR:
7050   case ISD::ATOMIC_LOAD_NAND:
7051   case ISD::ATOMIC_LOAD_MIN:
7052   case ISD::ATOMIC_LOAD_MAX:
7053   case ISD::ATOMIC_LOAD_UMIN:
7054   case ISD::ATOMIC_LOAD_UMAX:
7055   case AMDGPUISD::ATOMIC_INC:
7056   case AMDGPUISD::ATOMIC_DEC:
7057   case AMDGPUISD::ATOMIC_LOAD_FADD:
7058   case AMDGPUISD::ATOMIC_LOAD_FMIN:
7059   case AMDGPUISD::ATOMIC_LOAD_FMAX:  // TODO: Target mem intrinsics.
7060     if (DCI.isBeforeLegalize())
7061       break;
7062     return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
7063   case ISD::AND:
7064     return performAndCombine(N, DCI);
7065   case ISD::OR:
7066     return performOrCombine(N, DCI);
7067   case ISD::XOR:
7068     return performXorCombine(N, DCI);
7069   case ISD::ZERO_EXTEND:
7070     return performZeroExtendCombine(N, DCI);
7071   case AMDGPUISD::FP_CLASS:
7072     return performClassCombine(N, DCI);
7073   case ISD::FCANONICALIZE:
7074     return performFCanonicalizeCombine(N, DCI);
7075   case AMDGPUISD::FRACT:
7076   case AMDGPUISD::RCP:
7077   case AMDGPUISD::RSQ:
7078   case AMDGPUISD::RCP_LEGACY:
7079   case AMDGPUISD::RSQ_LEGACY:
7080   case AMDGPUISD::RSQ_CLAMP:
7081   case AMDGPUISD::LDEXP: {
7082     SDValue Src = N->getOperand(0);
7083     if (Src.isUndef())
7084       return Src;
7085     break;
7086   }
7087   case ISD::SINT_TO_FP:
7088   case ISD::UINT_TO_FP:
7089     return performUCharToFloatCombine(N, DCI);
7090   case AMDGPUISD::CVT_F32_UBYTE0:
7091   case AMDGPUISD::CVT_F32_UBYTE1:
7092   case AMDGPUISD::CVT_F32_UBYTE2:
7093   case AMDGPUISD::CVT_F32_UBYTE3:
7094     return performCvtF32UByteNCombine(N, DCI);
7095   case AMDGPUISD::FMED3:
7096     return performFMed3Combine(N, DCI);
7097   case AMDGPUISD::CVT_PKRTZ_F16_F32:
7098     return performCvtPkRTZCombine(N, DCI);
7099   case ISD::SCALAR_TO_VECTOR: {
7100     SelectionDAG &DAG = DCI.DAG;
7101     EVT VT = N->getValueType(0);
7102 
7103     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
7104     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
7105       SDLoc SL(N);
7106       SDValue Src = N->getOperand(0);
7107       EVT EltVT = Src.getValueType();
7108       if (EltVT == MVT::f16)
7109         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
7110 
7111       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
7112       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
7113     }
7114 
7115     break;
7116   }
7117   case ISD::EXTRACT_VECTOR_ELT:
7118     return performExtractVectorEltCombine(N, DCI);
7119   case ISD::BUILD_VECTOR:
7120     return performBuildVectorCombine(N, DCI);
7121   }
7122   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
7123 }
7124 
7125 /// \brief Helper function for adjustWritemask
7126 static unsigned SubIdx2Lane(unsigned Idx) {
7127   switch (Idx) {
7128   default: return 0;
7129   case AMDGPU::sub0: return 0;
7130   case AMDGPU::sub1: return 1;
7131   case AMDGPU::sub2: return 2;
7132   case AMDGPU::sub3: return 3;
7133   }
7134 }
7135 
7136 /// \brief Adjust the writemask of MIMG instructions
7137 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
7138                                           SelectionDAG &DAG) const {
7139   SDNode *Users[4] = { nullptr };
7140   unsigned Lane = 0;
7141   unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3;
7142   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
7143   unsigned NewDmask = 0;
7144   bool HasChain = Node->getNumValues() > 1;
7145 
7146   if (OldDmask == 0) {
7147     // These are folded out, but on the chance it happens don't assert.
7148     return Node;
7149   }
7150 
7151   // Try to figure out the used register components
7152   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
7153        I != E; ++I) {
7154 
7155     // Don't look at users of the chain.
7156     if (I.getUse().getResNo() != 0)
7157       continue;
7158 
7159     // Abort if we can't understand the usage
7160     if (!I->isMachineOpcode() ||
7161         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
7162       return Node;
7163 
7164     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
7165     // Note that subregs are packed, i.e. Lane==0 is the first bit set
7166     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
7167     // set, etc.
7168     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
7169 
7170     // Set which texture component corresponds to the lane.
7171     unsigned Comp;
7172     for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
7173       Comp = countTrailingZeros(Dmask);
7174       Dmask &= ~(1 << Comp);
7175     }
7176 
7177     // Abort if we have more than one user per component
7178     if (Users[Lane])
7179       return Node;
7180 
7181     Users[Lane] = *I;
7182     NewDmask |= 1 << Comp;
7183   }
7184 
7185   // Abort if there's no change
7186   if (NewDmask == OldDmask)
7187     return Node;
7188 
7189   unsigned BitsSet = countPopulation(NewDmask);
7190 
7191   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7192   int NewOpcode = AMDGPU::getMaskedMIMGOp(*TII,
7193                                           Node->getMachineOpcode(), BitsSet);
7194   assert(NewOpcode != -1 &&
7195          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
7196          "failed to find equivalent MIMG op");
7197 
7198   // Adjust the writemask in the node
7199   SmallVector<SDValue, 12> Ops;
7200   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
7201   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
7202   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
7203 
7204   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
7205 
7206   MVT ResultVT = BitsSet == 1 ?
7207     SVT : MVT::getVectorVT(SVT, BitsSet == 3 ? 4 : BitsSet);
7208   SDVTList NewVTList = HasChain ?
7209     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
7210 
7211 
7212   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
7213                                               NewVTList, Ops);
7214 
7215   if (HasChain) {
7216     // Update chain.
7217     NewNode->setMemRefs(Node->memoperands_begin(), Node->memoperands_end());
7218     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
7219   }
7220 
7221   if (BitsSet == 1) {
7222     assert(Node->hasNUsesOfValue(1, 0));
7223     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
7224                                       SDLoc(Node), Users[Lane]->getValueType(0),
7225                                       SDValue(NewNode, 0));
7226     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
7227     return nullptr;
7228   }
7229 
7230   // Update the users of the node with the new indices
7231   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
7232     SDNode *User = Users[i];
7233     if (!User)
7234       continue;
7235 
7236     SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
7237     DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
7238 
7239     switch (Idx) {
7240     default: break;
7241     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
7242     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
7243     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
7244     }
7245   }
7246 
7247   DAG.RemoveDeadNode(Node);
7248   return nullptr;
7249 }
7250 
7251 static bool isFrameIndexOp(SDValue Op) {
7252   if (Op.getOpcode() == ISD::AssertZext)
7253     Op = Op.getOperand(0);
7254 
7255   return isa<FrameIndexSDNode>(Op);
7256 }
7257 
7258 /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
7259 /// with frame index operands.
7260 /// LLVM assumes that inputs are to these instructions are registers.
7261 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
7262                                                         SelectionDAG &DAG) const {
7263   if (Node->getOpcode() == ISD::CopyToReg) {
7264     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
7265     SDValue SrcVal = Node->getOperand(2);
7266 
7267     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
7268     // to try understanding copies to physical registers.
7269     if (SrcVal.getValueType() == MVT::i1 &&
7270         TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) {
7271       SDLoc SL(Node);
7272       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
7273       SDValue VReg = DAG.getRegister(
7274         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
7275 
7276       SDNode *Glued = Node->getGluedNode();
7277       SDValue ToVReg
7278         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
7279                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
7280       SDValue ToResultReg
7281         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
7282                            VReg, ToVReg.getValue(1));
7283       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
7284       DAG.RemoveDeadNode(Node);
7285       return ToResultReg.getNode();
7286     }
7287   }
7288 
7289   SmallVector<SDValue, 8> Ops;
7290   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
7291     if (!isFrameIndexOp(Node->getOperand(i))) {
7292       Ops.push_back(Node->getOperand(i));
7293       continue;
7294     }
7295 
7296     SDLoc DL(Node);
7297     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
7298                                      Node->getOperand(i).getValueType(),
7299                                      Node->getOperand(i)), 0));
7300   }
7301 
7302   return DAG.UpdateNodeOperands(Node, Ops);
7303 }
7304 
7305 /// \brief Fold the instructions after selecting them.
7306 /// Returns null if users were already updated.
7307 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
7308                                           SelectionDAG &DAG) const {
7309   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7310   unsigned Opcode = Node->getMachineOpcode();
7311 
7312   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
7313       !TII->isGather4(Opcode) && !TII->isD16(Opcode)) {
7314     return adjustWritemask(Node, DAG);
7315   }
7316 
7317   if (Opcode == AMDGPU::INSERT_SUBREG ||
7318       Opcode == AMDGPU::REG_SEQUENCE) {
7319     legalizeTargetIndependentNode(Node, DAG);
7320     return Node;
7321   }
7322 
7323   switch (Opcode) {
7324   case AMDGPU::V_DIV_SCALE_F32:
7325   case AMDGPU::V_DIV_SCALE_F64: {
7326     // Satisfy the operand register constraint when one of the inputs is
7327     // undefined. Ordinarily each undef value will have its own implicit_def of
7328     // a vreg, so force these to use a single register.
7329     SDValue Src0 = Node->getOperand(0);
7330     SDValue Src1 = Node->getOperand(1);
7331     SDValue Src2 = Node->getOperand(2);
7332 
7333     if ((Src0.isMachineOpcode() &&
7334          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
7335         (Src0 == Src1 || Src0 == Src2))
7336       break;
7337 
7338     MVT VT = Src0.getValueType().getSimpleVT();
7339     const TargetRegisterClass *RC = getRegClassFor(VT);
7340 
7341     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
7342     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
7343 
7344     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
7345                                       UndefReg, Src0, SDValue());
7346 
7347     // src0 must be the same register as src1 or src2, even if the value is
7348     // undefined, so make sure we don't violate this constraint.
7349     if (Src0.isMachineOpcode() &&
7350         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
7351       if (Src1.isMachineOpcode() &&
7352           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
7353         Src0 = Src1;
7354       else if (Src2.isMachineOpcode() &&
7355                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
7356         Src0 = Src2;
7357       else {
7358         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
7359         Src0 = UndefReg;
7360         Src1 = UndefReg;
7361       }
7362     } else
7363       break;
7364 
7365     SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
7366     for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
7367       Ops.push_back(Node->getOperand(I));
7368 
7369     Ops.push_back(ImpDef.getValue(1));
7370     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
7371   }
7372   default:
7373     break;
7374   }
7375 
7376   return Node;
7377 }
7378 
7379 /// \brief Assign the register class depending on the number of
7380 /// bits set in the writemask
7381 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
7382                                                      SDNode *Node) const {
7383   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7384 
7385   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
7386 
7387   if (TII->isVOP3(MI.getOpcode())) {
7388     // Make sure constant bus requirements are respected.
7389     TII->legalizeOperandsVOP3(MRI, MI);
7390     return;
7391   }
7392 
7393   // Replace unused atomics with the no return version.
7394   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
7395   if (NoRetAtomicOp != -1) {
7396     if (!Node->hasAnyUseOfValue(0)) {
7397       MI.setDesc(TII->get(NoRetAtomicOp));
7398       MI.RemoveOperand(0);
7399       return;
7400     }
7401 
7402     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
7403     // instruction, because the return type of these instructions is a vec2 of
7404     // the memory type, so it can be tied to the input operand.
7405     // This means these instructions always have a use, so we need to add a
7406     // special case to check if the atomic has only one extract_subreg use,
7407     // which itself has no uses.
7408     if ((Node->hasNUsesOfValue(1, 0) &&
7409          Node->use_begin()->isMachineOpcode() &&
7410          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
7411          !Node->use_begin()->hasAnyUseOfValue(0))) {
7412       unsigned Def = MI.getOperand(0).getReg();
7413 
7414       // Change this into a noret atomic.
7415       MI.setDesc(TII->get(NoRetAtomicOp));
7416       MI.RemoveOperand(0);
7417 
7418       // If we only remove the def operand from the atomic instruction, the
7419       // extract_subreg will be left with a use of a vreg without a def.
7420       // So we need to insert an implicit_def to avoid machine verifier
7421       // errors.
7422       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
7423               TII->get(AMDGPU::IMPLICIT_DEF), Def);
7424     }
7425     return;
7426   }
7427 }
7428 
7429 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
7430                               uint64_t Val) {
7431   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
7432   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
7433 }
7434 
7435 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
7436                                                 const SDLoc &DL,
7437                                                 SDValue Ptr) const {
7438   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7439 
7440   // Build the half of the subregister with the constants before building the
7441   // full 128-bit register. If we are building multiple resource descriptors,
7442   // this will allow CSEing of the 2-component register.
7443   const SDValue Ops0[] = {
7444     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
7445     buildSMovImm32(DAG, DL, 0),
7446     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
7447     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
7448     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
7449   };
7450 
7451   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
7452                                                 MVT::v2i32, Ops0), 0);
7453 
7454   // Combine the constants and the pointer.
7455   const SDValue Ops1[] = {
7456     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
7457     Ptr,
7458     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
7459     SubRegHi,
7460     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
7461   };
7462 
7463   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
7464 }
7465 
7466 /// \brief Return a resource descriptor with the 'Add TID' bit enabled
7467 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
7468 ///        of the resource descriptor) to create an offset, which is added to
7469 ///        the resource pointer.
7470 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
7471                                            SDValue Ptr, uint32_t RsrcDword1,
7472                                            uint64_t RsrcDword2And3) const {
7473   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
7474   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
7475   if (RsrcDword1) {
7476     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
7477                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
7478                     0);
7479   }
7480 
7481   SDValue DataLo = buildSMovImm32(DAG, DL,
7482                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
7483   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
7484 
7485   const SDValue Ops[] = {
7486     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
7487     PtrLo,
7488     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
7489     PtrHi,
7490     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
7491     DataLo,
7492     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
7493     DataHi,
7494     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
7495   };
7496 
7497   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
7498 }
7499 
7500 //===----------------------------------------------------------------------===//
7501 //                         SI Inline Assembly Support
7502 //===----------------------------------------------------------------------===//
7503 
7504 std::pair<unsigned, const TargetRegisterClass *>
7505 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
7506                                                StringRef Constraint,
7507                                                MVT VT) const {
7508   if (!isTypeLegal(VT))
7509     return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
7510 
7511   if (Constraint.size() == 1) {
7512     switch (Constraint[0]) {
7513     case 's':
7514     case 'r':
7515       switch (VT.getSizeInBits()) {
7516       default:
7517         return std::make_pair(0U, nullptr);
7518       case 32:
7519       case 16:
7520         return std::make_pair(0U, &AMDGPU::SReg_32_XM0RegClass);
7521       case 64:
7522         return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
7523       case 128:
7524         return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
7525       case 256:
7526         return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
7527       case 512:
7528         return std::make_pair(0U, &AMDGPU::SReg_512RegClass);
7529       }
7530 
7531     case 'v':
7532       switch (VT.getSizeInBits()) {
7533       default:
7534         return std::make_pair(0U, nullptr);
7535       case 32:
7536       case 16:
7537         return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
7538       case 64:
7539         return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
7540       case 96:
7541         return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
7542       case 128:
7543         return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
7544       case 256:
7545         return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
7546       case 512:
7547         return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
7548       }
7549     }
7550   }
7551 
7552   if (Constraint.size() > 1) {
7553     const TargetRegisterClass *RC = nullptr;
7554     if (Constraint[1] == 'v') {
7555       RC = &AMDGPU::VGPR_32RegClass;
7556     } else if (Constraint[1] == 's') {
7557       RC = &AMDGPU::SGPR_32RegClass;
7558     }
7559 
7560     if (RC) {
7561       uint32_t Idx;
7562       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
7563       if (!Failed && Idx < RC->getNumRegs())
7564         return std::make_pair(RC->getRegister(Idx), RC);
7565     }
7566   }
7567   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
7568 }
7569 
7570 SITargetLowering::ConstraintType
7571 SITargetLowering::getConstraintType(StringRef Constraint) const {
7572   if (Constraint.size() == 1) {
7573     switch (Constraint[0]) {
7574     default: break;
7575     case 's':
7576     case 'v':
7577       return C_RegisterClass;
7578     }
7579   }
7580   return TargetLowering::getConstraintType(Constraint);
7581 }
7582 
7583 // Figure out which registers should be reserved for stack access. Only after
7584 // the function is legalized do we know all of the non-spill stack objects or if
7585 // calls are present.
7586 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
7587   MachineRegisterInfo &MRI = MF.getRegInfo();
7588   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
7589   const MachineFrameInfo &MFI = MF.getFrameInfo();
7590   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
7591   const SIRegisterInfo *TRI = ST.getRegisterInfo();
7592 
7593   if (Info->isEntryFunction()) {
7594     // Callable functions have fixed registers used for stack access.
7595     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
7596   }
7597 
7598   // We have to assume the SP is needed in case there are calls in the function
7599   // during lowering. Calls are only detected after the function is
7600   // lowered. We're about to reserve registers, so don't bother using it if we
7601   // aren't really going to use it.
7602   bool NeedSP = !Info->isEntryFunction() ||
7603     MFI.hasVarSizedObjects() ||
7604     MFI.hasCalls();
7605 
7606   if (NeedSP) {
7607     unsigned ReservedStackPtrOffsetReg = TRI->reservedStackPtrOffsetReg(MF);
7608     Info->setStackPtrOffsetReg(ReservedStackPtrOffsetReg);
7609 
7610     assert(Info->getStackPtrOffsetReg() != Info->getFrameOffsetReg());
7611     assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
7612                                Info->getStackPtrOffsetReg()));
7613     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
7614   }
7615 
7616   MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
7617   MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
7618   MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
7619                      Info->getScratchWaveOffsetReg());
7620 
7621   TargetLoweringBase::finalizeLowering(MF);
7622 }
7623 
7624 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
7625                                                      KnownBits &Known,
7626                                                      const APInt &DemandedElts,
7627                                                      const SelectionDAG &DAG,
7628                                                      unsigned Depth) const {
7629   TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
7630                                                 DAG, Depth);
7631 
7632   if (getSubtarget()->enableHugePrivateBuffer())
7633     return;
7634 
7635   // Technically it may be possible to have a dispatch with a single workitem
7636   // that uses the full private memory size, but that's not really useful. We
7637   // can't use vaddr in MUBUF instructions if we don't know the address
7638   // calculation won't overflow, so assume the sign bit is never set.
7639   Known.Zero.setHighBits(AssumeFrameIndexHighZeroBits);
7640 }
7641