1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIISelLowering.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "SIMachineFunctionInfo.h" 19 #include "SIRegisterInfo.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/BinaryFormat/ELF.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 27 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/IntrinsicsAMDGPU.h" 33 #include "llvm/IR/IntrinsicsR600.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/KnownBits.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "si-lower" 40 41 STATISTIC(NumTailCalls, "Number of tail calls"); 42 43 static cl::opt<bool> DisableLoopAlignment( 44 "amdgpu-disable-loop-alignment", 45 cl::desc("Do not align and prefetch loops"), 46 cl::init(false)); 47 48 static cl::opt<bool> UseDivergentRegisterIndexing( 49 "amdgpu-use-divergent-register-indexing", 50 cl::Hidden, 51 cl::desc("Use indirect register addressing for divergent indexes"), 52 cl::init(false)); 53 54 static bool hasFP32Denormals(const MachineFunction &MF) { 55 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 56 return Info->getMode().allFP32Denormals(); 57 } 58 59 static bool hasFP64FP16Denormals(const MachineFunction &MF) { 60 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 61 return Info->getMode().allFP64FP16Denormals(); 62 } 63 64 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 65 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 66 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 67 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 68 return AMDGPU::SGPR0 + Reg; 69 } 70 } 71 llvm_unreachable("Cannot allocate sgpr"); 72 } 73 74 SITargetLowering::SITargetLowering(const TargetMachine &TM, 75 const GCNSubtarget &STI) 76 : AMDGPUTargetLowering(TM, STI), 77 Subtarget(&STI) { 78 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 79 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 80 81 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 82 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 83 84 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 85 86 const SIRegisterInfo *TRI = STI.getRegisterInfo(); 87 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); 88 89 addRegisterClass(MVT::f64, V64RegClass); 90 addRegisterClass(MVT::v2f32, V64RegClass); 91 92 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 93 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); 94 95 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); 96 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); 97 98 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); 99 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); 100 101 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 102 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); 103 104 addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); 105 addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); 106 107 addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); 108 addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); 109 110 addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); 111 addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); 112 113 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); 114 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); 115 116 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); 117 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); 118 119 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); 120 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); 121 122 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); 123 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); 124 125 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); 126 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); 127 128 if (Subtarget->has16BitInsts()) { 129 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); 130 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); 131 132 // Unless there are also VOP3P operations, not operations are really legal. 133 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); 134 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); 135 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 136 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 137 addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass); 138 addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass); 139 } 140 141 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 142 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); 143 144 computeRegisterProperties(Subtarget->getRegisterInfo()); 145 146 // The boolean content concept here is too inflexible. Compares only ever 147 // really produce a 1-bit result. Any copy/extend from these will turn into a 148 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as 149 // it's what most targets use. 150 setBooleanContents(ZeroOrOneBooleanContent); 151 setBooleanVectorContents(ZeroOrOneBooleanContent); 152 153 // We need to custom lower vector stores from local memory 154 setOperationAction(ISD::LOAD, MVT::v2i32, Custom); 155 setOperationAction(ISD::LOAD, MVT::v3i32, Custom); 156 setOperationAction(ISD::LOAD, MVT::v4i32, Custom); 157 setOperationAction(ISD::LOAD, MVT::v5i32, Custom); 158 setOperationAction(ISD::LOAD, MVT::v6i32, Custom); 159 setOperationAction(ISD::LOAD, MVT::v7i32, Custom); 160 setOperationAction(ISD::LOAD, MVT::v8i32, Custom); 161 setOperationAction(ISD::LOAD, MVT::v16i32, Custom); 162 setOperationAction(ISD::LOAD, MVT::i1, Custom); 163 setOperationAction(ISD::LOAD, MVT::v32i32, Custom); 164 165 setOperationAction(ISD::STORE, MVT::v2i32, Custom); 166 setOperationAction(ISD::STORE, MVT::v3i32, Custom); 167 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 168 setOperationAction(ISD::STORE, MVT::v5i32, Custom); 169 setOperationAction(ISD::STORE, MVT::v6i32, Custom); 170 setOperationAction(ISD::STORE, MVT::v7i32, Custom); 171 setOperationAction(ISD::STORE, MVT::v8i32, Custom); 172 setOperationAction(ISD::STORE, MVT::v16i32, Custom); 173 setOperationAction(ISD::STORE, MVT::i1, Custom); 174 setOperationAction(ISD::STORE, MVT::v32i32, Custom); 175 176 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 177 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 178 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 179 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 180 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 181 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 182 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 183 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 184 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 185 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 186 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 187 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); 188 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); 189 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); 190 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); 191 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); 192 193 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 194 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 195 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); 196 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); 197 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); 198 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); 199 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); 200 201 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 202 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 203 204 setOperationAction(ISD::SELECT, MVT::i1, Promote); 205 setOperationAction(ISD::SELECT, MVT::i64, Custom); 206 setOperationAction(ISD::SELECT, MVT::f64, Promote); 207 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 208 209 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 210 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 211 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 212 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 213 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); 214 215 setOperationAction(ISD::SETCC, MVT::i1, Promote); 216 setOperationAction(ISD::SETCC, MVT::v2i1, Expand); 217 setOperationAction(ISD::SETCC, MVT::v4i1, Expand); 218 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 219 220 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); 221 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); 222 setOperationAction(ISD::TRUNCATE, MVT::v3i32, Expand); 223 setOperationAction(ISD::FP_ROUND, MVT::v3f32, Expand); 224 setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand); 225 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand); 226 setOperationAction(ISD::TRUNCATE, MVT::v5i32, Expand); 227 setOperationAction(ISD::FP_ROUND, MVT::v5f32, Expand); 228 setOperationAction(ISD::TRUNCATE, MVT::v6i32, Expand); 229 setOperationAction(ISD::FP_ROUND, MVT::v6f32, Expand); 230 setOperationAction(ISD::TRUNCATE, MVT::v7i32, Expand); 231 setOperationAction(ISD::FP_ROUND, MVT::v7f32, Expand); 232 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand); 233 setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand); 234 setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand); 235 setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand); 236 237 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); 238 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); 239 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 240 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); 241 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 242 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom); 243 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); 244 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); 245 246 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 247 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 248 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 249 setOperationAction(ISD::BR_CC, MVT::i64, Expand); 250 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 251 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 252 253 setOperationAction(ISD::UADDO, MVT::i32, Legal); 254 setOperationAction(ISD::USUBO, MVT::i32, Legal); 255 256 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); 257 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); 258 259 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 260 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 261 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 262 263 #if 0 264 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); 265 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); 266 #endif 267 268 // We only support LOAD/STORE and vector manipulation ops for vectors 269 // with > 4 elements. 270 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, 271 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, 272 MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32, 273 MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, 274 MVT::v8i16, MVT::v8f16, MVT::v16i64, MVT::v16f64, 275 MVT::v32i32, MVT::v32f32 }) { 276 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 277 switch (Op) { 278 case ISD::LOAD: 279 case ISD::STORE: 280 case ISD::BUILD_VECTOR: 281 case ISD::BITCAST: 282 case ISD::EXTRACT_VECTOR_ELT: 283 case ISD::INSERT_VECTOR_ELT: 284 case ISD::EXTRACT_SUBVECTOR: 285 case ISD::SCALAR_TO_VECTOR: 286 break; 287 case ISD::INSERT_SUBVECTOR: 288 case ISD::CONCAT_VECTORS: 289 setOperationAction(Op, VT, Custom); 290 break; 291 default: 292 setOperationAction(Op, VT, Expand); 293 break; 294 } 295 } 296 } 297 298 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 299 300 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 301 // is expanded to avoid having two separate loops in case the index is a VGPR. 302 303 // Most operations are naturally 32-bit vector operations. We only support 304 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 305 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 306 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 307 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 308 309 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 310 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 311 312 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 313 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 314 315 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 316 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 317 } 318 319 for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { 320 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 321 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); 322 323 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 324 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); 325 326 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 327 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); 328 329 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 330 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); 331 } 332 333 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { 334 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 335 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); 336 337 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 338 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); 339 340 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 341 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); 342 343 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 344 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); 345 } 346 347 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { 348 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 349 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); 350 351 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 352 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); 353 354 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 355 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); 356 357 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 358 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); 359 } 360 361 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { 362 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 363 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); 364 365 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 366 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); 367 368 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 369 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); 370 371 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 372 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); 373 } 374 375 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); 376 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); 377 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); 378 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); 379 380 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom); 381 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); 382 383 // Avoid stack access for these. 384 // TODO: Generalize to more vector types. 385 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 386 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 387 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); 388 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); 389 390 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom); 391 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); 392 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom); 393 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom); 394 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); 395 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom); 396 397 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom); 398 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom); 399 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 400 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 401 402 // Deal with vec3 vector operations when widened to vec4. 403 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom); 404 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom); 405 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom); 406 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom); 407 408 // Deal with vec5/6/7 vector operations when widened to vec8. 409 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom); 410 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom); 411 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6i32, Custom); 412 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6f32, Custom); 413 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7i32, Custom); 414 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7f32, Custom); 415 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom); 416 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom); 417 418 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 419 // and output demarshalling 420 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 421 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); 422 423 // We can't return success/failure, only the old value, 424 // let LLVM add the comparison 425 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); 426 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); 427 428 if (Subtarget->hasFlatAddressSpace()) { 429 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); 430 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); 431 } 432 433 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 434 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 435 436 // FIXME: This should be narrowed to i32, but that only happens if i64 is 437 // illegal. 438 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. 439 setOperationAction(ISD::BSWAP, MVT::i64, Legal); 440 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 441 442 // On SI this is s_memtime and s_memrealtime on VI. 443 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 444 setOperationAction(ISD::TRAP, MVT::Other, Custom); 445 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); 446 447 if (Subtarget->has16BitInsts()) { 448 setOperationAction(ISD::FPOW, MVT::f16, Promote); 449 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 450 setOperationAction(ISD::FLOG, MVT::f16, Custom); 451 setOperationAction(ISD::FEXP, MVT::f16, Custom); 452 setOperationAction(ISD::FLOG10, MVT::f16, Custom); 453 } 454 455 if (Subtarget->hasMadMacF32Insts()) 456 setOperationAction(ISD::FMAD, MVT::f32, Legal); 457 458 if (!Subtarget->hasBFI()) { 459 // fcopysign can be done in a single instruction with BFI. 460 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 461 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 462 } 463 464 if (!Subtarget->hasBCNT(32)) 465 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 466 467 if (!Subtarget->hasBCNT(64)) 468 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 469 470 if (Subtarget->hasFFBH()) { 471 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 472 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 473 } 474 475 if (Subtarget->hasFFBL()) { 476 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 477 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 478 } 479 480 // We only really have 32-bit BFE instructions (and 16-bit on VI). 481 // 482 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 483 // effort to match them now. We want this to be false for i64 cases when the 484 // extraction isn't restricted to the upper or lower half. Ideally we would 485 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 486 // span the midpoint are probably relatively rare, so don't worry about them 487 // for now. 488 if (Subtarget->hasBFE()) 489 setHasExtractBitsInsn(true); 490 491 // Clamp modifier on add/sub 492 if (Subtarget->hasIntClamp()) { 493 setOperationAction(ISD::UADDSAT, MVT::i32, Legal); 494 setOperationAction(ISD::USUBSAT, MVT::i32, Legal); 495 } 496 497 if (Subtarget->hasAddNoCarry()) { 498 setOperationAction(ISD::SADDSAT, MVT::i16, Legal); 499 setOperationAction(ISD::SSUBSAT, MVT::i16, Legal); 500 setOperationAction(ISD::SADDSAT, MVT::i32, Legal); 501 setOperationAction(ISD::SSUBSAT, MVT::i32, Legal); 502 } 503 504 setOperationAction(ISD::FMINNUM, MVT::f32, Custom); 505 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom); 506 setOperationAction(ISD::FMINNUM, MVT::f64, Custom); 507 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom); 508 509 510 // These are really only legal for ieee_mode functions. We should be avoiding 511 // them for functions that don't have ieee_mode enabled, so just say they are 512 // legal. 513 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 514 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 515 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 516 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 517 518 519 if (Subtarget->haveRoundOpsF64()) { 520 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 521 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 522 setOperationAction(ISD::FRINT, MVT::f64, Legal); 523 } else { 524 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 525 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 526 setOperationAction(ISD::FRINT, MVT::f64, Custom); 527 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 528 } 529 530 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 531 532 setOperationAction(ISD::FSIN, MVT::f32, Custom); 533 setOperationAction(ISD::FCOS, MVT::f32, Custom); 534 setOperationAction(ISD::FDIV, MVT::f32, Custom); 535 setOperationAction(ISD::FDIV, MVT::f64, Custom); 536 537 if (Subtarget->has16BitInsts()) { 538 setOperationAction(ISD::Constant, MVT::i16, Legal); 539 540 setOperationAction(ISD::SMIN, MVT::i16, Legal); 541 setOperationAction(ISD::SMAX, MVT::i16, Legal); 542 543 setOperationAction(ISD::UMIN, MVT::i16, Legal); 544 setOperationAction(ISD::UMAX, MVT::i16, Legal); 545 546 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); 547 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 548 549 setOperationAction(ISD::ROTR, MVT::i16, Expand); 550 setOperationAction(ISD::ROTL, MVT::i16, Expand); 551 552 setOperationAction(ISD::SDIV, MVT::i16, Promote); 553 setOperationAction(ISD::UDIV, MVT::i16, Promote); 554 setOperationAction(ISD::SREM, MVT::i16, Promote); 555 setOperationAction(ISD::UREM, MVT::i16, Promote); 556 setOperationAction(ISD::UADDSAT, MVT::i16, Legal); 557 setOperationAction(ISD::USUBSAT, MVT::i16, Legal); 558 559 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); 560 561 setOperationAction(ISD::CTTZ, MVT::i16, Promote); 562 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); 563 setOperationAction(ISD::CTLZ, MVT::i16, Promote); 564 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); 565 setOperationAction(ISD::CTPOP, MVT::i16, Promote); 566 567 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); 568 569 setOperationAction(ISD::BR_CC, MVT::i16, Expand); 570 571 setOperationAction(ISD::LOAD, MVT::i16, Custom); 572 573 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 574 575 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 576 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 577 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 578 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 579 580 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Custom); 581 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Custom); 582 583 // F16 - Constant Actions. 584 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 585 586 // F16 - Load/Store Actions. 587 setOperationAction(ISD::LOAD, MVT::f16, Promote); 588 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 589 setOperationAction(ISD::STORE, MVT::f16, Promote); 590 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 591 592 // F16 - VOP1 Actions. 593 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); 594 setOperationAction(ISD::FCOS, MVT::f16, Custom); 595 setOperationAction(ISD::FSIN, MVT::f16, Custom); 596 597 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom); 598 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom); 599 600 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); 601 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); 602 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); 603 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); 604 setOperationAction(ISD::FROUND, MVT::f16, Custom); 605 606 // F16 - VOP2 Actions. 607 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 608 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 609 610 setOperationAction(ISD::FDIV, MVT::f16, Custom); 611 612 // F16 - VOP3 Actions. 613 setOperationAction(ISD::FMA, MVT::f16, Legal); 614 if (STI.hasMadF16()) 615 setOperationAction(ISD::FMAD, MVT::f16, Legal); 616 617 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16, 618 MVT::v8f16}) { 619 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 620 switch (Op) { 621 case ISD::LOAD: 622 case ISD::STORE: 623 case ISD::BUILD_VECTOR: 624 case ISD::BITCAST: 625 case ISD::EXTRACT_VECTOR_ELT: 626 case ISD::INSERT_VECTOR_ELT: 627 case ISD::INSERT_SUBVECTOR: 628 case ISD::EXTRACT_SUBVECTOR: 629 case ISD::SCALAR_TO_VECTOR: 630 break; 631 case ISD::CONCAT_VECTORS: 632 setOperationAction(Op, VT, Custom); 633 break; 634 default: 635 setOperationAction(Op, VT, Expand); 636 break; 637 } 638 } 639 } 640 641 // v_perm_b32 can handle either of these. 642 setOperationAction(ISD::BSWAP, MVT::i16, Legal); 643 setOperationAction(ISD::BSWAP, MVT::v2i16, Legal); 644 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); 645 646 // XXX - Do these do anything? Vector constants turn into build_vector. 647 setOperationAction(ISD::Constant, MVT::v2i16, Legal); 648 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); 649 650 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal); 651 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal); 652 653 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 654 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 655 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 656 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 657 658 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 659 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 660 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 661 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 662 663 setOperationAction(ISD::AND, MVT::v2i16, Promote); 664 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 665 setOperationAction(ISD::OR, MVT::v2i16, Promote); 666 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 667 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 668 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 669 670 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 671 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 672 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 673 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 674 675 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 676 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 677 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 678 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 679 680 setOperationAction(ISD::LOAD, MVT::v8i16, Promote); 681 AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32); 682 setOperationAction(ISD::LOAD, MVT::v8f16, Promote); 683 AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32); 684 685 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 686 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 687 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 688 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 689 690 setOperationAction(ISD::STORE, MVT::v8i16, Promote); 691 AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32); 692 setOperationAction(ISD::STORE, MVT::v8f16, Promote); 693 AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32); 694 695 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); 696 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); 697 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); 698 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 699 700 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand); 701 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand); 702 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand); 703 704 setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Expand); 705 setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Expand); 706 setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Expand); 707 708 if (!Subtarget->hasVOP3PInsts()) { 709 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); 710 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); 711 } 712 713 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 714 // This isn't really legal, but this avoids the legalizer unrolling it (and 715 // allows matching fneg (fabs x) patterns) 716 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 717 718 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom); 719 setOperationAction(ISD::FMINNUM, MVT::f16, Custom); 720 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal); 721 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal); 722 723 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom); 724 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom); 725 setOperationAction(ISD::FMINNUM_IEEE, MVT::v8f16, Custom); 726 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v8f16, Custom); 727 728 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand); 729 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand); 730 setOperationAction(ISD::FMINNUM, MVT::v8f16, Expand); 731 setOperationAction(ISD::FMAXNUM, MVT::v8f16, Expand); 732 733 for (MVT Vec16 : { MVT::v8i16, MVT::v8f16 }) { 734 setOperationAction(ISD::BUILD_VECTOR, Vec16, Custom); 735 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec16, Custom); 736 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand); 737 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec16, Expand); 738 } 739 } 740 741 if (Subtarget->hasVOP3PInsts()) { 742 setOperationAction(ISD::ADD, MVT::v2i16, Legal); 743 setOperationAction(ISD::SUB, MVT::v2i16, Legal); 744 setOperationAction(ISD::MUL, MVT::v2i16, Legal); 745 setOperationAction(ISD::SHL, MVT::v2i16, Legal); 746 setOperationAction(ISD::SRL, MVT::v2i16, Legal); 747 setOperationAction(ISD::SRA, MVT::v2i16, Legal); 748 setOperationAction(ISD::SMIN, MVT::v2i16, Legal); 749 setOperationAction(ISD::UMIN, MVT::v2i16, Legal); 750 setOperationAction(ISD::SMAX, MVT::v2i16, Legal); 751 setOperationAction(ISD::UMAX, MVT::v2i16, Legal); 752 753 setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal); 754 setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal); 755 setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal); 756 setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal); 757 758 setOperationAction(ISD::FADD, MVT::v2f16, Legal); 759 setOperationAction(ISD::FMUL, MVT::v2f16, Legal); 760 setOperationAction(ISD::FMA, MVT::v2f16, Legal); 761 762 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal); 763 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal); 764 765 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal); 766 767 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 768 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 769 770 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom); 771 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 772 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f16, Custom); 773 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom); 774 775 for (MVT VT : { MVT::v4i16, MVT::v8i16 }) { 776 // Split vector operations. 777 setOperationAction(ISD::SHL, VT, Custom); 778 setOperationAction(ISD::SRA, VT, Custom); 779 setOperationAction(ISD::SRL, VT, Custom); 780 setOperationAction(ISD::ADD, VT, Custom); 781 setOperationAction(ISD::SUB, VT, Custom); 782 setOperationAction(ISD::MUL, VT, Custom); 783 784 setOperationAction(ISD::SMIN, VT, Custom); 785 setOperationAction(ISD::SMAX, VT, Custom); 786 setOperationAction(ISD::UMIN, VT, Custom); 787 setOperationAction(ISD::UMAX, VT, Custom); 788 789 setOperationAction(ISD::UADDSAT, VT, Custom); 790 setOperationAction(ISD::SADDSAT, VT, Custom); 791 setOperationAction(ISD::USUBSAT, VT, Custom); 792 setOperationAction(ISD::SSUBSAT, VT, Custom); 793 } 794 795 for (MVT VT : { MVT::v4f16, MVT::v8f16 }) { 796 // Split vector operations. 797 setOperationAction(ISD::FADD, VT, Custom); 798 setOperationAction(ISD::FMUL, VT, Custom); 799 setOperationAction(ISD::FMA, VT, Custom); 800 setOperationAction(ISD::FCANONICALIZE, VT, Custom); 801 } 802 803 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom); 804 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom); 805 806 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom); 807 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom); 808 809 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 810 setOperationAction(ISD::SELECT, MVT::v4i16, Custom); 811 setOperationAction(ISD::SELECT, MVT::v4f16, Custom); 812 813 if (Subtarget->hasPackedFP32Ops()) { 814 setOperationAction(ISD::FADD, MVT::v2f32, Legal); 815 setOperationAction(ISD::FMUL, MVT::v2f32, Legal); 816 setOperationAction(ISD::FMA, MVT::v2f32, Legal); 817 setOperationAction(ISD::FNEG, MVT::v2f32, Legal); 818 819 for (MVT VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32 }) { 820 setOperationAction(ISD::FADD, VT, Custom); 821 setOperationAction(ISD::FMUL, VT, Custom); 822 setOperationAction(ISD::FMA, VT, Custom); 823 } 824 } 825 } 826 827 setOperationAction(ISD::FNEG, MVT::v4f16, Custom); 828 setOperationAction(ISD::FABS, MVT::v4f16, Custom); 829 830 if (Subtarget->has16BitInsts()) { 831 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 832 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 833 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 834 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 835 } else { 836 // Legalization hack. 837 setOperationAction(ISD::SELECT, MVT::v2i16, Custom); 838 setOperationAction(ISD::SELECT, MVT::v2f16, Custom); 839 840 setOperationAction(ISD::FNEG, MVT::v2f16, Custom); 841 setOperationAction(ISD::FABS, MVT::v2f16, Custom); 842 } 843 844 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, 845 MVT::v8i16, MVT::v8f16 }) { 846 setOperationAction(ISD::SELECT, VT, Custom); 847 } 848 849 setOperationAction(ISD::SMULO, MVT::i64, Custom); 850 setOperationAction(ISD::UMULO, MVT::i64, Custom); 851 852 if (Subtarget->hasMad64_32()) { 853 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); 854 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); 855 } 856 857 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 858 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); 859 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 860 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 861 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom); 862 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom); 863 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); 864 865 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom); 866 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom); 867 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom); 868 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom); 869 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom); 870 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom); 871 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom); 872 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 873 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom); 874 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 875 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 876 877 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 878 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); 879 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); 880 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom); 881 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom); 882 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom); 883 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom); 884 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom); 885 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 886 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 887 888 setTargetDAGCombine(ISD::ADD); 889 setTargetDAGCombine(ISD::ADDCARRY); 890 setTargetDAGCombine(ISD::SUB); 891 setTargetDAGCombine(ISD::SUBCARRY); 892 setTargetDAGCombine(ISD::FADD); 893 setTargetDAGCombine(ISD::FSUB); 894 setTargetDAGCombine(ISD::FMINNUM); 895 setTargetDAGCombine(ISD::FMAXNUM); 896 setTargetDAGCombine(ISD::FMINNUM_IEEE); 897 setTargetDAGCombine(ISD::FMAXNUM_IEEE); 898 setTargetDAGCombine(ISD::FMA); 899 setTargetDAGCombine(ISD::SMIN); 900 setTargetDAGCombine(ISD::SMAX); 901 setTargetDAGCombine(ISD::UMIN); 902 setTargetDAGCombine(ISD::UMAX); 903 setTargetDAGCombine(ISD::SETCC); 904 setTargetDAGCombine(ISD::AND); 905 setTargetDAGCombine(ISD::OR); 906 setTargetDAGCombine(ISD::XOR); 907 setTargetDAGCombine(ISD::SINT_TO_FP); 908 setTargetDAGCombine(ISD::UINT_TO_FP); 909 setTargetDAGCombine(ISD::FCANONICALIZE); 910 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); 911 setTargetDAGCombine(ISD::ZERO_EXTEND); 912 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 913 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 914 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 915 916 // All memory operations. Some folding on the pointer operand is done to help 917 // matching the constant offsets in the addressing modes. 918 setTargetDAGCombine(ISD::LOAD); 919 setTargetDAGCombine(ISD::STORE); 920 setTargetDAGCombine(ISD::ATOMIC_LOAD); 921 setTargetDAGCombine(ISD::ATOMIC_STORE); 922 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); 923 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 924 setTargetDAGCombine(ISD::ATOMIC_SWAP); 925 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); 926 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); 927 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); 928 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); 929 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); 930 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); 931 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); 932 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); 933 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); 934 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); 935 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD); 936 setTargetDAGCombine(ISD::INTRINSIC_VOID); 937 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 938 939 // FIXME: In other contexts we pretend this is a per-function property. 940 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); 941 942 setSchedulingPreference(Sched::RegPressure); 943 } 944 945 const GCNSubtarget *SITargetLowering::getSubtarget() const { 946 return Subtarget; 947 } 948 949 //===----------------------------------------------------------------------===// 950 // TargetLowering queries 951 //===----------------------------------------------------------------------===// 952 953 // v_mad_mix* support a conversion from f16 to f32. 954 // 955 // There is only one special case when denormals are enabled we don't currently, 956 // where this is OK to use. 957 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, 958 EVT DestVT, EVT SrcVT) const { 959 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 960 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 961 DestVT.getScalarType() == MVT::f32 && 962 SrcVT.getScalarType() == MVT::f16 && 963 // TODO: This probably only requires no input flushing? 964 !hasFP32Denormals(DAG.getMachineFunction()); 965 } 966 967 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, 968 LLT DestTy, LLT SrcTy) const { 969 return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) || 970 (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) && 971 DestTy.getScalarSizeInBits() == 32 && 972 SrcTy.getScalarSizeInBits() == 16 && 973 // TODO: This probably only requires no input flushing? 974 !hasFP32Denormals(*MI.getMF()); 975 } 976 977 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 978 // SI has some legal vector types, but no legal vector operations. Say no 979 // shuffles are legal in order to prefer scalarizing some vector operations. 980 return false; 981 } 982 983 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 984 CallingConv::ID CC, 985 EVT VT) const { 986 if (CC == CallingConv::AMDGPU_KERNEL) 987 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 988 989 if (VT.isVector()) { 990 EVT ScalarVT = VT.getScalarType(); 991 unsigned Size = ScalarVT.getSizeInBits(); 992 if (Size == 16) { 993 if (Subtarget->has16BitInsts()) 994 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 995 return VT.isInteger() ? MVT::i32 : MVT::f32; 996 } 997 998 if (Size < 16) 999 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; 1000 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; 1001 } 1002 1003 if (VT.getSizeInBits() > 32) 1004 return MVT::i32; 1005 1006 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1007 } 1008 1009 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1010 CallingConv::ID CC, 1011 EVT VT) const { 1012 if (CC == CallingConv::AMDGPU_KERNEL) 1013 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1014 1015 if (VT.isVector()) { 1016 unsigned NumElts = VT.getVectorNumElements(); 1017 EVT ScalarVT = VT.getScalarType(); 1018 unsigned Size = ScalarVT.getSizeInBits(); 1019 1020 // FIXME: Should probably promote 8-bit vectors to i16. 1021 if (Size == 16 && Subtarget->has16BitInsts()) 1022 return (NumElts + 1) / 2; 1023 1024 if (Size <= 32) 1025 return NumElts; 1026 1027 if (Size > 32) 1028 return NumElts * ((Size + 31) / 32); 1029 } else if (VT.getSizeInBits() > 32) 1030 return (VT.getSizeInBits() + 31) / 32; 1031 1032 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1033 } 1034 1035 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 1036 LLVMContext &Context, CallingConv::ID CC, 1037 EVT VT, EVT &IntermediateVT, 1038 unsigned &NumIntermediates, MVT &RegisterVT) const { 1039 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 1040 unsigned NumElts = VT.getVectorNumElements(); 1041 EVT ScalarVT = VT.getScalarType(); 1042 unsigned Size = ScalarVT.getSizeInBits(); 1043 // FIXME: We should fix the ABI to be the same on targets without 16-bit 1044 // support, but unless we can properly handle 3-vectors, it will be still be 1045 // inconsistent. 1046 if (Size == 16 && Subtarget->has16BitInsts()) { 1047 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 1048 IntermediateVT = RegisterVT; 1049 NumIntermediates = (NumElts + 1) / 2; 1050 return NumIntermediates; 1051 } 1052 1053 if (Size == 32) { 1054 RegisterVT = ScalarVT.getSimpleVT(); 1055 IntermediateVT = RegisterVT; 1056 NumIntermediates = NumElts; 1057 return NumIntermediates; 1058 } 1059 1060 if (Size < 16 && Subtarget->has16BitInsts()) { 1061 // FIXME: Should probably form v2i16 pieces 1062 RegisterVT = MVT::i16; 1063 IntermediateVT = ScalarVT; 1064 NumIntermediates = NumElts; 1065 return NumIntermediates; 1066 } 1067 1068 1069 if (Size != 16 && Size <= 32) { 1070 RegisterVT = MVT::i32; 1071 IntermediateVT = ScalarVT; 1072 NumIntermediates = NumElts; 1073 return NumIntermediates; 1074 } 1075 1076 if (Size > 32) { 1077 RegisterVT = MVT::i32; 1078 IntermediateVT = RegisterVT; 1079 NumIntermediates = NumElts * ((Size + 31) / 32); 1080 return NumIntermediates; 1081 } 1082 } 1083 1084 return TargetLowering::getVectorTypeBreakdownForCallingConv( 1085 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 1086 } 1087 1088 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) { 1089 assert(DMaskLanes != 0); 1090 1091 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1092 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements()); 1093 return EVT::getVectorVT(Ty->getContext(), 1094 EVT::getEVT(VT->getElementType()), 1095 NumElts); 1096 } 1097 1098 return EVT::getEVT(Ty); 1099 } 1100 1101 // Peek through TFE struct returns to only use the data size. 1102 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) { 1103 auto *ST = dyn_cast<StructType>(Ty); 1104 if (!ST) 1105 return memVTFromImageData(Ty, DMaskLanes); 1106 1107 // Some intrinsics return an aggregate type - special case to work out the 1108 // correct memVT. 1109 // 1110 // Only limited forms of aggregate type currently expected. 1111 if (ST->getNumContainedTypes() != 2 || 1112 !ST->getContainedType(1)->isIntegerTy(32)) 1113 return EVT(); 1114 return memVTFromImageData(ST->getContainedType(0), DMaskLanes); 1115 } 1116 1117 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1118 const CallInst &CI, 1119 MachineFunction &MF, 1120 unsigned IntrID) const { 1121 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 1122 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 1123 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 1124 (Intrinsic::ID)IntrID); 1125 if (Attr.hasFnAttr(Attribute::ReadNone)) 1126 return false; 1127 1128 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1129 1130 if (RsrcIntr->IsImage) { 1131 Info.ptrVal = 1132 MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1133 Info.align.reset(); 1134 } else { 1135 Info.ptrVal = 1136 MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1137 } 1138 1139 Info.flags = MachineMemOperand::MODereferenceable; 1140 if (Attr.hasFnAttr(Attribute::ReadOnly)) { 1141 unsigned DMaskLanes = 4; 1142 1143 if (RsrcIntr->IsImage) { 1144 const AMDGPU::ImageDimIntrinsicInfo *Intr 1145 = AMDGPU::getImageDimIntrinsicInfo(IntrID); 1146 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1147 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 1148 1149 if (!BaseOpcode->Gather4) { 1150 // If this isn't a gather, we may have excess loaded elements in the 1151 // IR type. Check the dmask for the real number of elements loaded. 1152 unsigned DMask 1153 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); 1154 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1155 } 1156 1157 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes); 1158 } else 1159 Info.memVT = EVT::getEVT(CI.getType()); 1160 1161 // FIXME: What does alignment mean for an image? 1162 Info.opc = ISD::INTRINSIC_W_CHAIN; 1163 Info.flags |= MachineMemOperand::MOLoad; 1164 } else if (Attr.hasFnAttr(Attribute::WriteOnly)) { 1165 Info.opc = ISD::INTRINSIC_VOID; 1166 1167 Type *DataTy = CI.getArgOperand(0)->getType(); 1168 if (RsrcIntr->IsImage) { 1169 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); 1170 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1171 Info.memVT = memVTFromImageData(DataTy, DMaskLanes); 1172 } else 1173 Info.memVT = EVT::getEVT(DataTy); 1174 1175 Info.flags |= MachineMemOperand::MOStore; 1176 } else { 1177 // Atomic 1178 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : 1179 ISD::INTRINSIC_W_CHAIN; 1180 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); 1181 Info.flags = MachineMemOperand::MOLoad | 1182 MachineMemOperand::MOStore | 1183 MachineMemOperand::MODereferenceable; 1184 1185 // XXX - Should this be volatile without known ordering? 1186 Info.flags |= MachineMemOperand::MOVolatile; 1187 } 1188 return true; 1189 } 1190 1191 switch (IntrID) { 1192 case Intrinsic::amdgcn_atomic_inc: 1193 case Intrinsic::amdgcn_atomic_dec: 1194 case Intrinsic::amdgcn_ds_ordered_add: 1195 case Intrinsic::amdgcn_ds_ordered_swap: 1196 case Intrinsic::amdgcn_ds_fadd: 1197 case Intrinsic::amdgcn_ds_fmin: 1198 case Intrinsic::amdgcn_ds_fmax: { 1199 Info.opc = ISD::INTRINSIC_W_CHAIN; 1200 Info.memVT = MVT::getVT(CI.getType()); 1201 Info.ptrVal = CI.getOperand(0); 1202 Info.align.reset(); 1203 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1204 1205 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 1206 if (!Vol->isZero()) 1207 Info.flags |= MachineMemOperand::MOVolatile; 1208 1209 return true; 1210 } 1211 case Intrinsic::amdgcn_buffer_atomic_fadd: { 1212 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1213 1214 Info.opc = ISD::INTRINSIC_W_CHAIN; 1215 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1216 Info.ptrVal = 1217 MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1218 Info.align.reset(); 1219 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1220 1221 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 1222 if (!Vol || !Vol->isZero()) 1223 Info.flags |= MachineMemOperand::MOVolatile; 1224 1225 return true; 1226 } 1227 case Intrinsic::amdgcn_ds_append: 1228 case Intrinsic::amdgcn_ds_consume: { 1229 Info.opc = ISD::INTRINSIC_W_CHAIN; 1230 Info.memVT = MVT::getVT(CI.getType()); 1231 Info.ptrVal = CI.getOperand(0); 1232 Info.align.reset(); 1233 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1234 1235 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1236 if (!Vol->isZero()) 1237 Info.flags |= MachineMemOperand::MOVolatile; 1238 1239 return true; 1240 } 1241 case Intrinsic::amdgcn_global_atomic_csub: { 1242 Info.opc = ISD::INTRINSIC_W_CHAIN; 1243 Info.memVT = MVT::getVT(CI.getType()); 1244 Info.ptrVal = CI.getOperand(0); 1245 Info.align.reset(); 1246 Info.flags = MachineMemOperand::MOLoad | 1247 MachineMemOperand::MOStore | 1248 MachineMemOperand::MOVolatile; 1249 return true; 1250 } 1251 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 1252 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1253 Info.opc = ISD::INTRINSIC_W_CHAIN; 1254 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? 1255 Info.ptrVal = 1256 MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1257 Info.align.reset(); 1258 Info.flags = MachineMemOperand::MOLoad | 1259 MachineMemOperand::MODereferenceable; 1260 return true; 1261 } 1262 case Intrinsic::amdgcn_global_atomic_fadd: 1263 case Intrinsic::amdgcn_global_atomic_fmin: 1264 case Intrinsic::amdgcn_global_atomic_fmax: 1265 case Intrinsic::amdgcn_flat_atomic_fadd: 1266 case Intrinsic::amdgcn_flat_atomic_fmin: 1267 case Intrinsic::amdgcn_flat_atomic_fmax: { 1268 Info.opc = ISD::INTRINSIC_W_CHAIN; 1269 Info.memVT = MVT::getVT(CI.getType()); 1270 Info.ptrVal = CI.getOperand(0); 1271 Info.align.reset(); 1272 Info.flags = MachineMemOperand::MOLoad | 1273 MachineMemOperand::MOStore | 1274 MachineMemOperand::MODereferenceable | 1275 MachineMemOperand::MOVolatile; 1276 return true; 1277 } 1278 case Intrinsic::amdgcn_ds_gws_init: 1279 case Intrinsic::amdgcn_ds_gws_barrier: 1280 case Intrinsic::amdgcn_ds_gws_sema_v: 1281 case Intrinsic::amdgcn_ds_gws_sema_br: 1282 case Intrinsic::amdgcn_ds_gws_sema_p: 1283 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1284 Info.opc = ISD::INTRINSIC_VOID; 1285 1286 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1287 Info.ptrVal = 1288 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1289 1290 // This is an abstract access, but we need to specify a type and size. 1291 Info.memVT = MVT::i32; 1292 Info.size = 4; 1293 Info.align = Align(4); 1294 1295 Info.flags = MachineMemOperand::MOStore; 1296 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1297 Info.flags = MachineMemOperand::MOLoad; 1298 return true; 1299 } 1300 default: 1301 return false; 1302 } 1303 } 1304 1305 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1306 SmallVectorImpl<Value*> &Ops, 1307 Type *&AccessTy) const { 1308 switch (II->getIntrinsicID()) { 1309 case Intrinsic::amdgcn_atomic_inc: 1310 case Intrinsic::amdgcn_atomic_dec: 1311 case Intrinsic::amdgcn_ds_ordered_add: 1312 case Intrinsic::amdgcn_ds_ordered_swap: 1313 case Intrinsic::amdgcn_ds_append: 1314 case Intrinsic::amdgcn_ds_consume: 1315 case Intrinsic::amdgcn_ds_fadd: 1316 case Intrinsic::amdgcn_ds_fmin: 1317 case Intrinsic::amdgcn_ds_fmax: 1318 case Intrinsic::amdgcn_global_atomic_fadd: 1319 case Intrinsic::amdgcn_flat_atomic_fadd: 1320 case Intrinsic::amdgcn_flat_atomic_fmin: 1321 case Intrinsic::amdgcn_flat_atomic_fmax: 1322 case Intrinsic::amdgcn_global_atomic_csub: { 1323 Value *Ptr = II->getArgOperand(0); 1324 AccessTy = II->getType(); 1325 Ops.push_back(Ptr); 1326 return true; 1327 } 1328 default: 1329 return false; 1330 } 1331 } 1332 1333 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 1334 if (!Subtarget->hasFlatInstOffsets()) { 1335 // Flat instructions do not have offsets, and only have the register 1336 // address. 1337 return AM.BaseOffs == 0 && AM.Scale == 0; 1338 } 1339 1340 return AM.Scale == 0 && 1341 (AM.BaseOffs == 0 || 1342 Subtarget->getInstrInfo()->isLegalFLATOffset( 1343 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT)); 1344 } 1345 1346 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1347 if (Subtarget->hasFlatGlobalInsts()) 1348 return AM.Scale == 0 && 1349 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1350 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, 1351 SIInstrFlags::FlatGlobal)); 1352 1353 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1354 // Assume the we will use FLAT for all global memory accesses 1355 // on VI. 1356 // FIXME: This assumption is currently wrong. On VI we still use 1357 // MUBUF instructions for the r + i addressing mode. As currently 1358 // implemented, the MUBUF instructions only work on buffer < 4GB. 1359 // It may be possible to support > 4GB buffers with MUBUF instructions, 1360 // by setting the stride value in the resource descriptor which would 1361 // increase the size limit to (stride * 4GB). However, this is risky, 1362 // because it has never been validated. 1363 return isLegalFlatAddressingMode(AM); 1364 } 1365 1366 return isLegalMUBUFAddressingMode(AM); 1367 } 1368 1369 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1370 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1371 // additionally can do r + r + i with addr64. 32-bit has more addressing 1372 // mode options. Depending on the resource constant, it can also do 1373 // (i64 r0) + (i32 r1) * (i14 i). 1374 // 1375 // Private arrays end up using a scratch buffer most of the time, so also 1376 // assume those use MUBUF instructions. Scratch loads / stores are currently 1377 // implemented as mubuf instructions with offen bit set, so slightly 1378 // different than the normal addr64. 1379 if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs)) 1380 return false; 1381 1382 // FIXME: Since we can split immediate into soffset and immediate offset, 1383 // would it make sense to allow any immediate? 1384 1385 switch (AM.Scale) { 1386 case 0: // r + i or just i, depending on HasBaseReg. 1387 return true; 1388 case 1: 1389 return true; // We have r + r or r + i. 1390 case 2: 1391 if (AM.HasBaseReg) { 1392 // Reject 2 * r + r. 1393 return false; 1394 } 1395 1396 // Allow 2 * r as r + r 1397 // Or 2 * r + i is allowed as r + r + i. 1398 return true; 1399 default: // Don't allow n * r 1400 return false; 1401 } 1402 } 1403 1404 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1405 const AddrMode &AM, Type *Ty, 1406 unsigned AS, Instruction *I) const { 1407 // No global is ever allowed as a base. 1408 if (AM.BaseGV) 1409 return false; 1410 1411 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1412 return isLegalGlobalAddressingMode(AM); 1413 1414 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1415 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1416 AS == AMDGPUAS::BUFFER_FAT_POINTER) { 1417 // If the offset isn't a multiple of 4, it probably isn't going to be 1418 // correctly aligned. 1419 // FIXME: Can we get the real alignment here? 1420 if (AM.BaseOffs % 4 != 0) 1421 return isLegalMUBUFAddressingMode(AM); 1422 1423 // There are no SMRD extloads, so if we have to do a small type access we 1424 // will use a MUBUF load. 1425 // FIXME?: We also need to do this if unaligned, but we don't know the 1426 // alignment here. 1427 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1428 return isLegalGlobalAddressingMode(AM); 1429 1430 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1431 // SMRD instructions have an 8-bit, dword offset on SI. 1432 if (!isUInt<8>(AM.BaseOffs / 4)) 1433 return false; 1434 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1435 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1436 // in 8-bits, it can use a smaller encoding. 1437 if (!isUInt<32>(AM.BaseOffs / 4)) 1438 return false; 1439 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 1440 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1441 if (!isUInt<20>(AM.BaseOffs)) 1442 return false; 1443 } else 1444 llvm_unreachable("unhandled generation"); 1445 1446 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1447 return true; 1448 1449 if (AM.Scale == 1 && AM.HasBaseReg) 1450 return true; 1451 1452 return false; 1453 1454 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1455 return isLegalMUBUFAddressingMode(AM); 1456 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 1457 AS == AMDGPUAS::REGION_ADDRESS) { 1458 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1459 // field. 1460 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1461 // an 8-bit dword offset but we don't know the alignment here. 1462 if (!isUInt<16>(AM.BaseOffs)) 1463 return false; 1464 1465 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1466 return true; 1467 1468 if (AM.Scale == 1 && AM.HasBaseReg) 1469 return true; 1470 1471 return false; 1472 } else if (AS == AMDGPUAS::FLAT_ADDRESS || 1473 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1474 // For an unknown address space, this usually means that this is for some 1475 // reason being used for pure arithmetic, and not based on some addressing 1476 // computation. We don't have instructions that compute pointers with any 1477 // addressing modes, so treat them as having no offset like flat 1478 // instructions. 1479 return isLegalFlatAddressingMode(AM); 1480 } 1481 1482 // Assume a user alias of global for unknown address spaces. 1483 return isLegalGlobalAddressingMode(AM); 1484 } 1485 1486 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1487 const MachineFunction &MF) const { 1488 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1489 return (MemVT.getSizeInBits() <= 4 * 32); 1490 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1491 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1492 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1493 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1494 return (MemVT.getSizeInBits() <= 2 * 32); 1495 } 1496 return true; 1497 } 1498 1499 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1500 unsigned Size, unsigned AddrSpace, Align Alignment, 1501 MachineMemOperand::Flags Flags, bool *IsFast) const { 1502 if (IsFast) 1503 *IsFast = false; 1504 1505 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1506 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1507 // Check if alignment requirements for ds_read/write instructions are 1508 // disabled. 1509 if (Subtarget->hasUnalignedDSAccessEnabled() && 1510 !Subtarget->hasLDSMisalignedBug()) { 1511 if (IsFast) 1512 *IsFast = Alignment != Align(2); 1513 return true; 1514 } 1515 1516 // Either, the alignment requirements are "enabled", or there is an 1517 // unaligned LDS access related hardware bug though alignment requirements 1518 // are "disabled". In either case, we need to check for proper alignment 1519 // requirements. 1520 // 1521 if (Size == 64) { 1522 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we 1523 // can do a 4 byte aligned, 8 byte access in a single operation using 1524 // ds_read2/write2_b32 with adjacent offsets. 1525 bool AlignedBy4 = Alignment >= Align(4); 1526 if (IsFast) 1527 *IsFast = AlignedBy4; 1528 1529 return AlignedBy4; 1530 } 1531 if (Size == 96) { 1532 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on 1533 // gfx8 and older. 1534 bool AlignedBy16 = Alignment >= Align(16); 1535 if (IsFast) 1536 *IsFast = AlignedBy16; 1537 1538 return AlignedBy16; 1539 } 1540 if (Size == 128) { 1541 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on 1542 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a 1543 // single operation using ds_read2/write2_b64. 1544 bool AlignedBy8 = Alignment >= Align(8); 1545 if (IsFast) 1546 *IsFast = AlignedBy8; 1547 1548 return AlignedBy8; 1549 } 1550 } 1551 1552 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 1553 bool AlignedBy4 = Alignment >= Align(4); 1554 if (IsFast) 1555 *IsFast = AlignedBy4; 1556 1557 return AlignedBy4 || 1558 Subtarget->enableFlatScratch() || 1559 Subtarget->hasUnalignedScratchAccess(); 1560 } 1561 1562 // FIXME: We have to be conservative here and assume that flat operations 1563 // will access scratch. If we had access to the IR function, then we 1564 // could determine if any private memory was used in the function. 1565 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && 1566 !Subtarget->hasUnalignedScratchAccess()) { 1567 bool AlignedBy4 = Alignment >= Align(4); 1568 if (IsFast) 1569 *IsFast = AlignedBy4; 1570 1571 return AlignedBy4; 1572 } 1573 1574 if (Subtarget->hasUnalignedBufferAccessEnabled() && 1575 !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1576 AddrSpace == AMDGPUAS::REGION_ADDRESS)) { 1577 // If we have an uniform constant load, it still requires using a slow 1578 // buffer instruction if unaligned. 1579 if (IsFast) { 1580 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so 1581 // 2-byte alignment is worse than 1 unless doing a 2-byte accesss. 1582 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 1583 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? 1584 Alignment >= Align(4) : Alignment != Align(2); 1585 } 1586 1587 return true; 1588 } 1589 1590 // Smaller than dword value must be aligned. 1591 if (Size < 32) 1592 return false; 1593 1594 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1595 // byte-address are ignored, thus forcing Dword alignment. 1596 // This applies to private, global, and constant memory. 1597 if (IsFast) 1598 *IsFast = true; 1599 1600 return Size >= 32 && Alignment >= Align(4); 1601 } 1602 1603 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1604 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 1605 bool *IsFast) const { 1606 if (IsFast) 1607 *IsFast = false; 1608 1609 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, 1610 // which isn't a simple VT. 1611 // Until MVT is extended to handle this, simply check for the size and 1612 // rely on the condition below: allow accesses if the size is a multiple of 4. 1613 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && 1614 VT.getStoreSize() > 16)) { 1615 return false; 1616 } 1617 1618 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1619 Alignment, Flags, IsFast); 1620 } 1621 1622 EVT SITargetLowering::getOptimalMemOpType( 1623 const MemOp &Op, const AttributeList &FuncAttributes) const { 1624 // FIXME: Should account for address space here. 1625 1626 // The default fallback uses the private pointer size as a guess for a type to 1627 // use. Make sure we switch these to 64-bit accesses. 1628 1629 if (Op.size() >= 16 && 1630 Op.isDstAligned(Align(4))) // XXX: Should only do for global 1631 return MVT::v4i32; 1632 1633 if (Op.size() >= 8 && Op.isDstAligned(Align(4))) 1634 return MVT::v2i32; 1635 1636 // Use the default. 1637 return MVT::Other; 1638 } 1639 1640 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1641 const MemSDNode *MemNode = cast<MemSDNode>(N); 1642 const Value *Ptr = MemNode->getMemOperand()->getValue(); 1643 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr); 1644 return I && I->getMetadata("amdgpu.noclobber"); 1645 } 1646 1647 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { 1648 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || 1649 AS == AMDGPUAS::PRIVATE_ADDRESS; 1650 } 1651 1652 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1653 unsigned DestAS) const { 1654 // Flat -> private/local is a simple truncate. 1655 // Flat -> global is no-op 1656 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1657 return true; 1658 1659 const GCNTargetMachine &TM = 1660 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1661 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 1662 } 1663 1664 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1665 const MemSDNode *MemNode = cast<MemSDNode>(N); 1666 1667 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1668 } 1669 1670 TargetLoweringBase::LegalizeTypeAction 1671 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1672 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && 1673 VT.getScalarType().bitsLE(MVT::i16)) 1674 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1675 return TargetLoweringBase::getPreferredVectorAction(VT); 1676 } 1677 1678 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1679 Type *Ty) const { 1680 // FIXME: Could be smarter if called for vector constants. 1681 return true; 1682 } 1683 1684 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1685 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1686 switch (Op) { 1687 case ISD::LOAD: 1688 case ISD::STORE: 1689 1690 // These operations are done with 32-bit instructions anyway. 1691 case ISD::AND: 1692 case ISD::OR: 1693 case ISD::XOR: 1694 case ISD::SELECT: 1695 // TODO: Extensions? 1696 return true; 1697 default: 1698 return false; 1699 } 1700 } 1701 1702 // SimplifySetCC uses this function to determine whether or not it should 1703 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1704 if (VT == MVT::i1 && Op == ISD::SETCC) 1705 return false; 1706 1707 return TargetLowering::isTypeDesirableForOp(Op, VT); 1708 } 1709 1710 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1711 const SDLoc &SL, 1712 SDValue Chain, 1713 uint64_t Offset) const { 1714 const DataLayout &DL = DAG.getDataLayout(); 1715 MachineFunction &MF = DAG.getMachineFunction(); 1716 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1717 1718 const ArgDescriptor *InputPtrReg; 1719 const TargetRegisterClass *RC; 1720 LLT ArgTy; 1721 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1722 1723 std::tie(InputPtrReg, RC, ArgTy) = 1724 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1725 1726 // We may not have the kernarg segment argument if we have no kernel 1727 // arguments. 1728 if (!InputPtrReg) 1729 return DAG.getConstant(0, SL, PtrVT); 1730 1731 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1732 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1733 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1734 1735 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset)); 1736 } 1737 1738 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1739 const SDLoc &SL) const { 1740 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1741 FIRST_IMPLICIT); 1742 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1743 } 1744 1745 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1746 const SDLoc &SL, SDValue Val, 1747 bool Signed, 1748 const ISD::InputArg *Arg) const { 1749 // First, if it is a widened vector, narrow it. 1750 if (VT.isVector() && 1751 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1752 EVT NarrowedVT = 1753 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1754 VT.getVectorNumElements()); 1755 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1756 DAG.getConstant(0, SL, MVT::i32)); 1757 } 1758 1759 // Then convert the vector elements or scalar value. 1760 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1761 VT.bitsLT(MemVT)) { 1762 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1763 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1764 } 1765 1766 if (MemVT.isFloatingPoint()) 1767 Val = getFPExtOrFPRound(DAG, Val, SL, VT); 1768 else if (Signed) 1769 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1770 else 1771 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1772 1773 return Val; 1774 } 1775 1776 SDValue SITargetLowering::lowerKernargMemParameter( 1777 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, 1778 uint64_t Offset, Align Alignment, bool Signed, 1779 const ISD::InputArg *Arg) const { 1780 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1781 1782 // Try to avoid using an extload by loading earlier than the argument address, 1783 // and extracting the relevant bits. The load should hopefully be merged with 1784 // the previous argument. 1785 if (MemVT.getStoreSize() < 4 && Alignment < 4) { 1786 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1787 int64_t AlignDownOffset = alignDown(Offset, 4); 1788 int64_t OffsetDiff = Offset - AlignDownOffset; 1789 1790 EVT IntVT = MemVT.changeTypeToInteger(); 1791 1792 // TODO: If we passed in the base kernel offset we could have a better 1793 // alignment than 4, but we don't really need it. 1794 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1795 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), 1796 MachineMemOperand::MODereferenceable | 1797 MachineMemOperand::MOInvariant); 1798 1799 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1800 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1801 1802 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1803 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1804 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1805 1806 1807 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1808 } 1809 1810 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 1811 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, 1812 MachineMemOperand::MODereferenceable | 1813 MachineMemOperand::MOInvariant); 1814 1815 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 1816 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 1817 } 1818 1819 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 1820 const SDLoc &SL, SDValue Chain, 1821 const ISD::InputArg &Arg) const { 1822 MachineFunction &MF = DAG.getMachineFunction(); 1823 MachineFrameInfo &MFI = MF.getFrameInfo(); 1824 1825 if (Arg.Flags.isByVal()) { 1826 unsigned Size = Arg.Flags.getByValSize(); 1827 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 1828 return DAG.getFrameIndex(FrameIdx, MVT::i32); 1829 } 1830 1831 unsigned ArgOffset = VA.getLocMemOffset(); 1832 unsigned ArgSize = VA.getValVT().getStoreSize(); 1833 1834 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 1835 1836 // Create load nodes to retrieve arguments from the stack. 1837 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1838 SDValue ArgValue; 1839 1840 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 1841 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 1842 MVT MemVT = VA.getValVT(); 1843 1844 switch (VA.getLocInfo()) { 1845 default: 1846 break; 1847 case CCValAssign::BCvt: 1848 MemVT = VA.getLocVT(); 1849 break; 1850 case CCValAssign::SExt: 1851 ExtType = ISD::SEXTLOAD; 1852 break; 1853 case CCValAssign::ZExt: 1854 ExtType = ISD::ZEXTLOAD; 1855 break; 1856 case CCValAssign::AExt: 1857 ExtType = ISD::EXTLOAD; 1858 break; 1859 } 1860 1861 ArgValue = DAG.getExtLoad( 1862 ExtType, SL, VA.getLocVT(), Chain, FIN, 1863 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 1864 MemVT); 1865 return ArgValue; 1866 } 1867 1868 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 1869 const SIMachineFunctionInfo &MFI, 1870 EVT VT, 1871 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 1872 const ArgDescriptor *Reg; 1873 const TargetRegisterClass *RC; 1874 LLT Ty; 1875 1876 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); 1877 if (!Reg) { 1878 if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) { 1879 // It's possible for a kernarg intrinsic call to appear in a kernel with 1880 // no allocated segment, in which case we do not add the user sgpr 1881 // argument, so just return null. 1882 return DAG.getConstant(0, SDLoc(), VT); 1883 } 1884 1885 // It's undefined behavior if a function marked with the amdgpu-no-* 1886 // attributes uses the corresponding intrinsic. 1887 return DAG.getUNDEF(VT); 1888 } 1889 1890 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); 1891 } 1892 1893 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 1894 CallingConv::ID CallConv, 1895 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, 1896 FunctionType *FType, 1897 SIMachineFunctionInfo *Info) { 1898 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 1899 const ISD::InputArg *Arg = &Ins[I]; 1900 1901 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 1902 "vector type argument should have been split"); 1903 1904 // First check if it's a PS input addr. 1905 if (CallConv == CallingConv::AMDGPU_PS && 1906 !Arg->Flags.isInReg() && PSInputNum <= 15) { 1907 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 1908 1909 // Inconveniently only the first part of the split is marked as isSplit, 1910 // so skip to the end. We only want to increment PSInputNum once for the 1911 // entire split argument. 1912 if (Arg->Flags.isSplit()) { 1913 while (!Arg->Flags.isSplitEnd()) { 1914 assert((!Arg->VT.isVector() || 1915 Arg->VT.getScalarSizeInBits() == 16) && 1916 "unexpected vector split in ps argument type"); 1917 if (!SkipArg) 1918 Splits.push_back(*Arg); 1919 Arg = &Ins[++I]; 1920 } 1921 } 1922 1923 if (SkipArg) { 1924 // We can safely skip PS inputs. 1925 Skipped.set(Arg->getOrigArgIndex()); 1926 ++PSInputNum; 1927 continue; 1928 } 1929 1930 Info->markPSInputAllocated(PSInputNum); 1931 if (Arg->Used) 1932 Info->markPSInputEnabled(PSInputNum); 1933 1934 ++PSInputNum; 1935 } 1936 1937 Splits.push_back(*Arg); 1938 } 1939 } 1940 1941 // Allocate special inputs passed in VGPRs. 1942 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 1943 MachineFunction &MF, 1944 const SIRegisterInfo &TRI, 1945 SIMachineFunctionInfo &Info) const { 1946 const LLT S32 = LLT::scalar(32); 1947 MachineRegisterInfo &MRI = MF.getRegInfo(); 1948 1949 if (Info.hasWorkItemIDX()) { 1950 Register Reg = AMDGPU::VGPR0; 1951 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1952 1953 CCInfo.AllocateReg(Reg); 1954 unsigned Mask = (Subtarget->hasPackedTID() && 1955 Info.hasWorkItemIDY()) ? 0x3ff : ~0u; 1956 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 1957 } 1958 1959 if (Info.hasWorkItemIDY()) { 1960 assert(Info.hasWorkItemIDX()); 1961 if (Subtarget->hasPackedTID()) { 1962 Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, 1963 0x3ff << 10)); 1964 } else { 1965 unsigned Reg = AMDGPU::VGPR1; 1966 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1967 1968 CCInfo.AllocateReg(Reg); 1969 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 1970 } 1971 } 1972 1973 if (Info.hasWorkItemIDZ()) { 1974 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY()); 1975 if (Subtarget->hasPackedTID()) { 1976 Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, 1977 0x3ff << 20)); 1978 } else { 1979 unsigned Reg = AMDGPU::VGPR2; 1980 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1981 1982 CCInfo.AllocateReg(Reg); 1983 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 1984 } 1985 } 1986 } 1987 1988 // Try to allocate a VGPR at the end of the argument list, or if no argument 1989 // VGPRs are left allocating a stack slot. 1990 // If \p Mask is is given it indicates bitfield position in the register. 1991 // If \p Arg is given use it with new ]p Mask instead of allocating new. 1992 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 1993 ArgDescriptor Arg = ArgDescriptor()) { 1994 if (Arg.isSet()) 1995 return ArgDescriptor::createArg(Arg, Mask); 1996 1997 ArrayRef<MCPhysReg> ArgVGPRs 1998 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 1999 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 2000 if (RegIdx == ArgVGPRs.size()) { 2001 // Spill to stack required. 2002 int64_t Offset = CCInfo.AllocateStack(4, Align(4)); 2003 2004 return ArgDescriptor::createStack(Offset, Mask); 2005 } 2006 2007 unsigned Reg = ArgVGPRs[RegIdx]; 2008 Reg = CCInfo.AllocateReg(Reg); 2009 assert(Reg != AMDGPU::NoRegister); 2010 2011 MachineFunction &MF = CCInfo.getMachineFunction(); 2012 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 2013 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 2014 return ArgDescriptor::createRegister(Reg, Mask); 2015 } 2016 2017 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 2018 const TargetRegisterClass *RC, 2019 unsigned NumArgRegs) { 2020 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); 2021 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 2022 if (RegIdx == ArgSGPRs.size()) 2023 report_fatal_error("ran out of SGPRs for arguments"); 2024 2025 unsigned Reg = ArgSGPRs[RegIdx]; 2026 Reg = CCInfo.AllocateReg(Reg); 2027 assert(Reg != AMDGPU::NoRegister); 2028 2029 MachineFunction &MF = CCInfo.getMachineFunction(); 2030 MF.addLiveIn(Reg, RC); 2031 return ArgDescriptor::createRegister(Reg); 2032 } 2033 2034 // If this has a fixed position, we still should allocate the register in the 2035 // CCInfo state. Technically we could get away with this for values passed 2036 // outside of the normal argument range. 2037 static void allocateFixedSGPRInputImpl(CCState &CCInfo, 2038 const TargetRegisterClass *RC, 2039 MCRegister Reg) { 2040 Reg = CCInfo.AllocateReg(Reg); 2041 assert(Reg != AMDGPU::NoRegister); 2042 MachineFunction &MF = CCInfo.getMachineFunction(); 2043 MF.addLiveIn(Reg, RC); 2044 } 2045 2046 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { 2047 if (Arg) { 2048 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 2049 Arg.getRegister()); 2050 } else 2051 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 2052 } 2053 2054 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { 2055 if (Arg) { 2056 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 2057 Arg.getRegister()); 2058 } else 2059 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 2060 } 2061 2062 /// Allocate implicit function VGPR arguments at the end of allocated user 2063 /// arguments. 2064 void SITargetLowering::allocateSpecialInputVGPRs( 2065 CCState &CCInfo, MachineFunction &MF, 2066 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2067 const unsigned Mask = 0x3ff; 2068 ArgDescriptor Arg; 2069 2070 if (Info.hasWorkItemIDX()) { 2071 Arg = allocateVGPR32Input(CCInfo, Mask); 2072 Info.setWorkItemIDX(Arg); 2073 } 2074 2075 if (Info.hasWorkItemIDY()) { 2076 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 2077 Info.setWorkItemIDY(Arg); 2078 } 2079 2080 if (Info.hasWorkItemIDZ()) 2081 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 2082 } 2083 2084 /// Allocate implicit function VGPR arguments in fixed registers. 2085 void SITargetLowering::allocateSpecialInputVGPRsFixed( 2086 CCState &CCInfo, MachineFunction &MF, 2087 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2088 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); 2089 if (!Reg) 2090 report_fatal_error("failed to allocated VGPR for implicit arguments"); 2091 2092 const unsigned Mask = 0x3ff; 2093 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 2094 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); 2095 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); 2096 } 2097 2098 void SITargetLowering::allocateSpecialInputSGPRs( 2099 CCState &CCInfo, 2100 MachineFunction &MF, 2101 const SIRegisterInfo &TRI, 2102 SIMachineFunctionInfo &Info) const { 2103 auto &ArgInfo = Info.getArgInfo(); 2104 2105 // TODO: Unify handling with private memory pointers. 2106 if (Info.hasDispatchPtr()) 2107 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); 2108 2109 if (Info.hasQueuePtr()) 2110 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); 2111 2112 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a 2113 // constant offset from the kernarg segment. 2114 if (Info.hasImplicitArgPtr()) 2115 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); 2116 2117 if (Info.hasDispatchID()) 2118 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); 2119 2120 // flat_scratch_init is not applicable for non-kernel functions. 2121 2122 if (Info.hasWorkGroupIDX()) 2123 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); 2124 2125 if (Info.hasWorkGroupIDY()) 2126 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); 2127 2128 if (Info.hasWorkGroupIDZ()) 2129 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); 2130 } 2131 2132 // Allocate special inputs passed in user SGPRs. 2133 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 2134 MachineFunction &MF, 2135 const SIRegisterInfo &TRI, 2136 SIMachineFunctionInfo &Info) const { 2137 if (Info.hasImplicitBufferPtr()) { 2138 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 2139 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 2140 CCInfo.AllocateReg(ImplicitBufferPtrReg); 2141 } 2142 2143 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 2144 if (Info.hasPrivateSegmentBuffer()) { 2145 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 2146 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 2147 CCInfo.AllocateReg(PrivateSegmentBufferReg); 2148 } 2149 2150 if (Info.hasDispatchPtr()) { 2151 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 2152 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 2153 CCInfo.AllocateReg(DispatchPtrReg); 2154 } 2155 2156 if (Info.hasQueuePtr()) { 2157 Register QueuePtrReg = Info.addQueuePtr(TRI); 2158 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 2159 CCInfo.AllocateReg(QueuePtrReg); 2160 } 2161 2162 if (Info.hasKernargSegmentPtr()) { 2163 MachineRegisterInfo &MRI = MF.getRegInfo(); 2164 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 2165 CCInfo.AllocateReg(InputPtrReg); 2166 2167 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 2168 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 2169 } 2170 2171 if (Info.hasDispatchID()) { 2172 Register DispatchIDReg = Info.addDispatchID(TRI); 2173 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 2174 CCInfo.AllocateReg(DispatchIDReg); 2175 } 2176 2177 if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { 2178 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 2179 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 2180 CCInfo.AllocateReg(FlatScratchInitReg); 2181 } 2182 2183 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 2184 // these from the dispatch pointer. 2185 } 2186 2187 // Allocate special input registers that are initialized per-wave. 2188 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 2189 MachineFunction &MF, 2190 SIMachineFunctionInfo &Info, 2191 CallingConv::ID CallConv, 2192 bool IsShader) const { 2193 if (Info.hasWorkGroupIDX()) { 2194 Register Reg = Info.addWorkGroupIDX(); 2195 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2196 CCInfo.AllocateReg(Reg); 2197 } 2198 2199 if (Info.hasWorkGroupIDY()) { 2200 Register Reg = Info.addWorkGroupIDY(); 2201 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2202 CCInfo.AllocateReg(Reg); 2203 } 2204 2205 if (Info.hasWorkGroupIDZ()) { 2206 Register Reg = Info.addWorkGroupIDZ(); 2207 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2208 CCInfo.AllocateReg(Reg); 2209 } 2210 2211 if (Info.hasWorkGroupInfo()) { 2212 Register Reg = Info.addWorkGroupInfo(); 2213 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2214 CCInfo.AllocateReg(Reg); 2215 } 2216 2217 if (Info.hasPrivateSegmentWaveByteOffset()) { 2218 // Scratch wave offset passed in system SGPR. 2219 unsigned PrivateSegmentWaveByteOffsetReg; 2220 2221 if (IsShader) { 2222 PrivateSegmentWaveByteOffsetReg = 2223 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 2224 2225 // This is true if the scratch wave byte offset doesn't have a fixed 2226 // location. 2227 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 2228 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 2229 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 2230 } 2231 } else 2232 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 2233 2234 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 2235 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 2236 } 2237 } 2238 2239 static void reservePrivateMemoryRegs(const TargetMachine &TM, 2240 MachineFunction &MF, 2241 const SIRegisterInfo &TRI, 2242 SIMachineFunctionInfo &Info) { 2243 // Now that we've figured out where the scratch register inputs are, see if 2244 // should reserve the arguments and use them directly. 2245 MachineFrameInfo &MFI = MF.getFrameInfo(); 2246 bool HasStackObjects = MFI.hasStackObjects(); 2247 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 2248 2249 // Record that we know we have non-spill stack objects so we don't need to 2250 // check all stack objects later. 2251 if (HasStackObjects) 2252 Info.setHasNonSpillStackObjects(true); 2253 2254 // Everything live out of a block is spilled with fast regalloc, so it's 2255 // almost certain that spilling will be required. 2256 if (TM.getOptLevel() == CodeGenOpt::None) 2257 HasStackObjects = true; 2258 2259 // For now assume stack access is needed in any callee functions, so we need 2260 // the scratch registers to pass in. 2261 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 2262 2263 if (!ST.enableFlatScratch()) { 2264 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 2265 // If we have stack objects, we unquestionably need the private buffer 2266 // resource. For the Code Object V2 ABI, this will be the first 4 user 2267 // SGPR inputs. We can reserve those and use them directly. 2268 2269 Register PrivateSegmentBufferReg = 2270 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 2271 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 2272 } else { 2273 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 2274 // We tentatively reserve the last registers (skipping the last registers 2275 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 2276 // we'll replace these with the ones immediately after those which were 2277 // really allocated. In the prologue copies will be inserted from the 2278 // argument to these reserved registers. 2279 2280 // Without HSA, relocations are used for the scratch pointer and the 2281 // buffer resource setup is always inserted in the prologue. Scratch wave 2282 // offset is still in an input SGPR. 2283 Info.setScratchRSrcReg(ReservedBufferReg); 2284 } 2285 } 2286 2287 MachineRegisterInfo &MRI = MF.getRegInfo(); 2288 2289 // For entry functions we have to set up the stack pointer if we use it, 2290 // whereas non-entry functions get this "for free". This means there is no 2291 // intrinsic advantage to using S32 over S34 in cases where we do not have 2292 // calls but do need a frame pointer (i.e. if we are requested to have one 2293 // because frame pointer elimination is disabled). To keep things simple we 2294 // only ever use S32 as the call ABI stack pointer, and so using it does not 2295 // imply we need a separate frame pointer. 2296 // 2297 // Try to use s32 as the SP, but move it if it would interfere with input 2298 // arguments. This won't work with calls though. 2299 // 2300 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 2301 // registers. 2302 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 2303 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 2304 } else { 2305 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 2306 2307 if (MFI.hasCalls()) 2308 report_fatal_error("call in graphics shader with too many input SGPRs"); 2309 2310 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 2311 if (!MRI.isLiveIn(Reg)) { 2312 Info.setStackPtrOffsetReg(Reg); 2313 break; 2314 } 2315 } 2316 2317 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 2318 report_fatal_error("failed to find register for SP"); 2319 } 2320 2321 // hasFP should be accurate for entry functions even before the frame is 2322 // finalized, because it does not rely on the known stack size, only 2323 // properties like whether variable sized objects are present. 2324 if (ST.getFrameLowering()->hasFP(MF)) { 2325 Info.setFrameOffsetReg(AMDGPU::SGPR33); 2326 } 2327 } 2328 2329 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 2330 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2331 return !Info->isEntryFunction(); 2332 } 2333 2334 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 2335 2336 } 2337 2338 void SITargetLowering::insertCopiesSplitCSR( 2339 MachineBasicBlock *Entry, 2340 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2341 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2342 2343 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 2344 if (!IStart) 2345 return; 2346 2347 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2348 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 2349 MachineBasicBlock::iterator MBBI = Entry->begin(); 2350 for (const MCPhysReg *I = IStart; *I; ++I) { 2351 const TargetRegisterClass *RC = nullptr; 2352 if (AMDGPU::SReg_64RegClass.contains(*I)) 2353 RC = &AMDGPU::SGPR_64RegClass; 2354 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2355 RC = &AMDGPU::SGPR_32RegClass; 2356 else 2357 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2358 2359 Register NewVR = MRI->createVirtualRegister(RC); 2360 // Create copy from CSR to a virtual register. 2361 Entry->addLiveIn(*I); 2362 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2363 .addReg(*I); 2364 2365 // Insert the copy-back instructions right before the terminator. 2366 for (auto *Exit : Exits) 2367 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2368 TII->get(TargetOpcode::COPY), *I) 2369 .addReg(NewVR); 2370 } 2371 } 2372 2373 SDValue SITargetLowering::LowerFormalArguments( 2374 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2375 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2376 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2377 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2378 2379 MachineFunction &MF = DAG.getMachineFunction(); 2380 const Function &Fn = MF.getFunction(); 2381 FunctionType *FType = MF.getFunction().getFunctionType(); 2382 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2383 2384 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { 2385 DiagnosticInfoUnsupported NoGraphicsHSA( 2386 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2387 DAG.getContext()->diagnose(NoGraphicsHSA); 2388 return DAG.getEntryNode(); 2389 } 2390 2391 Info->allocateModuleLDSGlobal(Fn.getParent()); 2392 2393 SmallVector<ISD::InputArg, 16> Splits; 2394 SmallVector<CCValAssign, 16> ArgLocs; 2395 BitVector Skipped(Ins.size()); 2396 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2397 *DAG.getContext()); 2398 2399 bool IsGraphics = AMDGPU::isGraphics(CallConv); 2400 bool IsKernel = AMDGPU::isKernel(CallConv); 2401 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2402 2403 if (IsGraphics) { 2404 assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && 2405 (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && 2406 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2407 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && 2408 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && 2409 !Info->hasWorkItemIDZ()); 2410 } 2411 2412 if (CallConv == CallingConv::AMDGPU_PS) { 2413 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2414 2415 // At least one interpolation mode must be enabled or else the GPU will 2416 // hang. 2417 // 2418 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2419 // set PSInputAddr, the user wants to enable some bits after the compilation 2420 // based on run-time states. Since we can't know what the final PSInputEna 2421 // will look like, so we shouldn't do anything here and the user should take 2422 // responsibility for the correct programming. 2423 // 2424 // Otherwise, the following restrictions apply: 2425 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2426 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2427 // enabled too. 2428 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2429 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { 2430 CCInfo.AllocateReg(AMDGPU::VGPR0); 2431 CCInfo.AllocateReg(AMDGPU::VGPR1); 2432 Info->markPSInputAllocated(0); 2433 Info->markPSInputEnabled(0); 2434 } 2435 if (Subtarget->isAmdPalOS()) { 2436 // For isAmdPalOS, the user does not enable some bits after compilation 2437 // based on run-time states; the register values being generated here are 2438 // the final ones set in hardware. Therefore we need to apply the 2439 // workaround to PSInputAddr and PSInputEnable together. (The case where 2440 // a bit is set in PSInputAddr but not PSInputEnable is where the 2441 // frontend set up an input arg for a particular interpolation mode, but 2442 // nothing uses that input arg. Really we should have an earlier pass 2443 // that removes such an arg.) 2444 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2445 if ((PsInputBits & 0x7F) == 0 || 2446 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) 2447 Info->markPSInputEnabled( 2448 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 2449 } 2450 } else if (IsKernel) { 2451 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2452 } else { 2453 Splits.append(Ins.begin(), Ins.end()); 2454 } 2455 2456 if (IsEntryFunc) { 2457 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2458 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2459 } else if (!IsGraphics) { 2460 // For the fixed ABI, pass workitem IDs in the last argument register. 2461 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 2462 } 2463 2464 if (IsKernel) { 2465 analyzeFormalArgumentsCompute(CCInfo, Ins); 2466 } else { 2467 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2468 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2469 } 2470 2471 SmallVector<SDValue, 16> Chains; 2472 2473 // FIXME: This is the minimum kernel argument alignment. We should improve 2474 // this to the maximum alignment of the arguments. 2475 // 2476 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2477 // kern arg offset. 2478 const Align KernelArgBaseAlign = Align(16); 2479 2480 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2481 const ISD::InputArg &Arg = Ins[i]; 2482 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2483 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2484 continue; 2485 } 2486 2487 CCValAssign &VA = ArgLocs[ArgIdx++]; 2488 MVT VT = VA.getLocVT(); 2489 2490 if (IsEntryFunc && VA.isMemLoc()) { 2491 VT = Ins[i].VT; 2492 EVT MemVT = VA.getLocVT(); 2493 2494 const uint64_t Offset = VA.getLocMemOffset(); 2495 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); 2496 2497 if (Arg.Flags.isByRef()) { 2498 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); 2499 2500 const GCNTargetMachine &TM = 2501 static_cast<const GCNTargetMachine &>(getTargetMachine()); 2502 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, 2503 Arg.Flags.getPointerAddrSpace())) { 2504 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, 2505 Arg.Flags.getPointerAddrSpace()); 2506 } 2507 2508 InVals.push_back(Ptr); 2509 continue; 2510 } 2511 2512 SDValue Arg = lowerKernargMemParameter( 2513 DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]); 2514 Chains.push_back(Arg.getValue(1)); 2515 2516 auto *ParamTy = 2517 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2518 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2519 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2520 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2521 // On SI local pointers are just offsets into LDS, so they are always 2522 // less than 16-bits. On CI and newer they could potentially be 2523 // real pointers, so we can't guarantee their size. 2524 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 2525 DAG.getValueType(MVT::i16)); 2526 } 2527 2528 InVals.push_back(Arg); 2529 continue; 2530 } else if (!IsEntryFunc && VA.isMemLoc()) { 2531 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2532 InVals.push_back(Val); 2533 if (!Arg.Flags.isByVal()) 2534 Chains.push_back(Val.getValue(1)); 2535 continue; 2536 } 2537 2538 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2539 2540 Register Reg = VA.getLocReg(); 2541 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2542 EVT ValVT = VA.getValVT(); 2543 2544 Reg = MF.addLiveIn(Reg, RC); 2545 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2546 2547 if (Arg.Flags.isSRet()) { 2548 // The return object should be reasonably addressable. 2549 2550 // FIXME: This helps when the return is a real sret. If it is a 2551 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2552 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2553 unsigned NumBits 2554 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 2555 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2556 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 2557 } 2558 2559 // If this is an 8 or 16-bit value, it is really passed promoted 2560 // to 32 bits. Insert an assert[sz]ext to capture this, then 2561 // truncate to the right size. 2562 switch (VA.getLocInfo()) { 2563 case CCValAssign::Full: 2564 break; 2565 case CCValAssign::BCvt: 2566 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2567 break; 2568 case CCValAssign::SExt: 2569 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 2570 DAG.getValueType(ValVT)); 2571 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2572 break; 2573 case CCValAssign::ZExt: 2574 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2575 DAG.getValueType(ValVT)); 2576 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2577 break; 2578 case CCValAssign::AExt: 2579 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2580 break; 2581 default: 2582 llvm_unreachable("Unknown loc info!"); 2583 } 2584 2585 InVals.push_back(Val); 2586 } 2587 2588 // Start adding system SGPRs. 2589 if (IsEntryFunc) { 2590 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); 2591 } else { 2592 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2593 if (!IsGraphics) 2594 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2595 } 2596 2597 auto &ArgUsageInfo = 2598 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2599 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 2600 2601 unsigned StackArgSize = CCInfo.getNextStackOffset(); 2602 Info->setBytesInStackArgArea(StackArgSize); 2603 2604 return Chains.empty() ? Chain : 2605 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2606 } 2607 2608 // TODO: If return values can't fit in registers, we should return as many as 2609 // possible in registers before passing on stack. 2610 bool SITargetLowering::CanLowerReturn( 2611 CallingConv::ID CallConv, 2612 MachineFunction &MF, bool IsVarArg, 2613 const SmallVectorImpl<ISD::OutputArg> &Outs, 2614 LLVMContext &Context) const { 2615 // Replacing returns with sret/stack usage doesn't make sense for shaders. 2616 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 2617 // for shaders. Vector types should be explicitly handled by CC. 2618 if (AMDGPU::isEntryFunctionCC(CallConv)) 2619 return true; 2620 2621 SmallVector<CCValAssign, 16> RVLocs; 2622 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2623 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); 2624 } 2625 2626 SDValue 2627 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2628 bool isVarArg, 2629 const SmallVectorImpl<ISD::OutputArg> &Outs, 2630 const SmallVectorImpl<SDValue> &OutVals, 2631 const SDLoc &DL, SelectionDAG &DAG) const { 2632 MachineFunction &MF = DAG.getMachineFunction(); 2633 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2634 2635 if (AMDGPU::isKernel(CallConv)) { 2636 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 2637 OutVals, DL, DAG); 2638 } 2639 2640 bool IsShader = AMDGPU::isShader(CallConv); 2641 2642 Info->setIfReturnsVoid(Outs.empty()); 2643 bool IsWaveEnd = Info->returnsVoid() && IsShader; 2644 2645 // CCValAssign - represent the assignment of the return value to a location. 2646 SmallVector<CCValAssign, 48> RVLocs; 2647 SmallVector<ISD::OutputArg, 48> Splits; 2648 2649 // CCState - Info about the registers and stack slots. 2650 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2651 *DAG.getContext()); 2652 2653 // Analyze outgoing return values. 2654 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 2655 2656 SDValue Flag; 2657 SmallVector<SDValue, 48> RetOps; 2658 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2659 2660 // Add return address for callable functions. 2661 if (!Info->isEntryFunction()) { 2662 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2663 SDValue ReturnAddrReg = CreateLiveInRegister( 2664 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 2665 2666 SDValue ReturnAddrVirtualReg = 2667 DAG.getRegister(MF.getRegInfo().createVirtualRegister( 2668 CallConv != CallingConv::AMDGPU_Gfx 2669 ? &AMDGPU::CCR_SGPR_64RegClass 2670 : &AMDGPU::Gfx_CCR_SGPR_64RegClass), 2671 MVT::i64); 2672 Chain = 2673 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag); 2674 Flag = Chain.getValue(1); 2675 RetOps.push_back(ReturnAddrVirtualReg); 2676 } 2677 2678 // Copy the result values into the output registers. 2679 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 2680 ++I, ++RealRVLocIdx) { 2681 CCValAssign &VA = RVLocs[I]; 2682 assert(VA.isRegLoc() && "Can only return in registers!"); 2683 // TODO: Partially return in registers if return values don't fit. 2684 SDValue Arg = OutVals[RealRVLocIdx]; 2685 2686 // Copied from other backends. 2687 switch (VA.getLocInfo()) { 2688 case CCValAssign::Full: 2689 break; 2690 case CCValAssign::BCvt: 2691 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2692 break; 2693 case CCValAssign::SExt: 2694 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2695 break; 2696 case CCValAssign::ZExt: 2697 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2698 break; 2699 case CCValAssign::AExt: 2700 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2701 break; 2702 default: 2703 llvm_unreachable("Unknown loc info!"); 2704 } 2705 2706 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 2707 Flag = Chain.getValue(1); 2708 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2709 } 2710 2711 // FIXME: Does sret work properly? 2712 if (!Info->isEntryFunction()) { 2713 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2714 const MCPhysReg *I = 2715 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 2716 if (I) { 2717 for (; *I; ++I) { 2718 if (AMDGPU::SReg_64RegClass.contains(*I)) 2719 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 2720 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2721 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 2722 else 2723 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2724 } 2725 } 2726 } 2727 2728 // Update chain and glue. 2729 RetOps[0] = Chain; 2730 if (Flag.getNode()) 2731 RetOps.push_back(Flag); 2732 2733 unsigned Opc = AMDGPUISD::ENDPGM; 2734 if (!IsWaveEnd) { 2735 if (IsShader) 2736 Opc = AMDGPUISD::RETURN_TO_EPILOG; 2737 else if (CallConv == CallingConv::AMDGPU_Gfx) 2738 Opc = AMDGPUISD::RET_GFX_FLAG; 2739 else 2740 Opc = AMDGPUISD::RET_FLAG; 2741 } 2742 2743 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 2744 } 2745 2746 SDValue SITargetLowering::LowerCallResult( 2747 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2748 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2749 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 2750 SDValue ThisVal) const { 2751 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 2752 2753 // Assign locations to each value returned by this call. 2754 SmallVector<CCValAssign, 16> RVLocs; 2755 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2756 *DAG.getContext()); 2757 CCInfo.AnalyzeCallResult(Ins, RetCC); 2758 2759 // Copy all of the result registers out of their specified physreg. 2760 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2761 CCValAssign VA = RVLocs[i]; 2762 SDValue Val; 2763 2764 if (VA.isRegLoc()) { 2765 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 2766 Chain = Val.getValue(1); 2767 InFlag = Val.getValue(2); 2768 } else if (VA.isMemLoc()) { 2769 report_fatal_error("TODO: return values in memory"); 2770 } else 2771 llvm_unreachable("unknown argument location type"); 2772 2773 switch (VA.getLocInfo()) { 2774 case CCValAssign::Full: 2775 break; 2776 case CCValAssign::BCvt: 2777 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2778 break; 2779 case CCValAssign::ZExt: 2780 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2781 DAG.getValueType(VA.getValVT())); 2782 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2783 break; 2784 case CCValAssign::SExt: 2785 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2786 DAG.getValueType(VA.getValVT())); 2787 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2788 break; 2789 case CCValAssign::AExt: 2790 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2791 break; 2792 default: 2793 llvm_unreachable("Unknown loc info!"); 2794 } 2795 2796 InVals.push_back(Val); 2797 } 2798 2799 return Chain; 2800 } 2801 2802 // Add code to pass special inputs required depending on used features separate 2803 // from the explicit user arguments present in the IR. 2804 void SITargetLowering::passSpecialInputs( 2805 CallLoweringInfo &CLI, 2806 CCState &CCInfo, 2807 const SIMachineFunctionInfo &Info, 2808 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 2809 SmallVectorImpl<SDValue> &MemOpChains, 2810 SDValue Chain) const { 2811 // If we don't have a call site, this was a call inserted by 2812 // legalization. These can never use special inputs. 2813 if (!CLI.CB) 2814 return; 2815 2816 SelectionDAG &DAG = CLI.DAG; 2817 const SDLoc &DL = CLI.DL; 2818 const Function &F = DAG.getMachineFunction().getFunction(); 2819 2820 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2821 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 2822 2823 const AMDGPUFunctionArgInfo *CalleeArgInfo 2824 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 2825 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { 2826 auto &ArgUsageInfo = 2827 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2828 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 2829 } 2830 2831 // TODO: Unify with private memory register handling. This is complicated by 2832 // the fact that at least in kernels, the input argument is not necessarily 2833 // in the same location as the input. 2834 static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue, 2835 StringLiteral> ImplicitAttrs[] = { 2836 {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, 2837 {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" }, 2838 {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, 2839 {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"}, 2840 {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, 2841 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"}, 2842 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"} 2843 }; 2844 2845 for (auto Attr : ImplicitAttrs) { 2846 const ArgDescriptor *OutgoingArg; 2847 const TargetRegisterClass *ArgRC; 2848 LLT ArgTy; 2849 2850 AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first; 2851 2852 // If the callee does not use the attribute value, skip copying the value. 2853 if (CLI.CB->hasFnAttr(Attr.second)) 2854 continue; 2855 2856 std::tie(OutgoingArg, ArgRC, ArgTy) = 2857 CalleeArgInfo->getPreloadedValue(InputID); 2858 if (!OutgoingArg) 2859 continue; 2860 2861 const ArgDescriptor *IncomingArg; 2862 const TargetRegisterClass *IncomingArgRC; 2863 LLT Ty; 2864 std::tie(IncomingArg, IncomingArgRC, Ty) = 2865 CallerArgInfo.getPreloadedValue(InputID); 2866 assert(IncomingArgRC == ArgRC); 2867 2868 // All special arguments are ints for now. 2869 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 2870 SDValue InputReg; 2871 2872 if (IncomingArg) { 2873 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 2874 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { 2875 // The implicit arg ptr is special because it doesn't have a corresponding 2876 // input for kernels, and is computed from the kernarg segment pointer. 2877 InputReg = getImplicitArgPtr(DAG, DL); 2878 } else { 2879 // We may have proven the input wasn't needed, although the ABI is 2880 // requiring it. We just need to allocate the register appropriately. 2881 InputReg = DAG.getUNDEF(ArgVT); 2882 } 2883 2884 if (OutgoingArg->isRegister()) { 2885 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2886 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 2887 report_fatal_error("failed to allocate implicit input argument"); 2888 } else { 2889 unsigned SpecialArgOffset = 2890 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); 2891 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2892 SpecialArgOffset); 2893 MemOpChains.push_back(ArgStore); 2894 } 2895 } 2896 2897 // Pack workitem IDs into a single register or pass it as is if already 2898 // packed. 2899 const ArgDescriptor *OutgoingArg; 2900 const TargetRegisterClass *ArgRC; 2901 LLT Ty; 2902 2903 std::tie(OutgoingArg, ArgRC, Ty) = 2904 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 2905 if (!OutgoingArg) 2906 std::tie(OutgoingArg, ArgRC, Ty) = 2907 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 2908 if (!OutgoingArg) 2909 std::tie(OutgoingArg, ArgRC, Ty) = 2910 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 2911 if (!OutgoingArg) 2912 return; 2913 2914 const ArgDescriptor *IncomingArgX = std::get<0>( 2915 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); 2916 const ArgDescriptor *IncomingArgY = std::get<0>( 2917 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); 2918 const ArgDescriptor *IncomingArgZ = std::get<0>( 2919 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); 2920 2921 SDValue InputReg; 2922 SDLoc SL; 2923 2924 const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x"); 2925 const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y"); 2926 const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z"); 2927 2928 // If incoming ids are not packed we need to pack them. 2929 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && 2930 NeedWorkItemIDX) { 2931 if (Subtarget->getMaxWorkitemID(F, 0) != 0) { 2932 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 2933 } else { 2934 InputReg = DAG.getConstant(0, DL, MVT::i32); 2935 } 2936 } 2937 2938 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && 2939 NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) { 2940 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 2941 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 2942 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 2943 InputReg = InputReg.getNode() ? 2944 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 2945 } 2946 2947 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && 2948 NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) { 2949 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 2950 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 2951 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 2952 InputReg = InputReg.getNode() ? 2953 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 2954 } 2955 2956 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { 2957 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { 2958 // We're in a situation where the outgoing function requires the workitem 2959 // ID, but the calling function does not have it (e.g a graphics function 2960 // calling a C calling convention function). This is illegal, but we need 2961 // to produce something. 2962 InputReg = DAG.getUNDEF(MVT::i32); 2963 } else { 2964 // Workitem ids are already packed, any of present incoming arguments 2965 // will carry all required fields. 2966 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 2967 IncomingArgX ? *IncomingArgX : 2968 IncomingArgY ? *IncomingArgY : 2969 *IncomingArgZ, ~0u); 2970 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 2971 } 2972 } 2973 2974 if (OutgoingArg->isRegister()) { 2975 if (InputReg) 2976 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2977 2978 CCInfo.AllocateReg(OutgoingArg->getRegister()); 2979 } else { 2980 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); 2981 if (InputReg) { 2982 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2983 SpecialArgOffset); 2984 MemOpChains.push_back(ArgStore); 2985 } 2986 } 2987 } 2988 2989 static bool canGuaranteeTCO(CallingConv::ID CC) { 2990 return CC == CallingConv::Fast; 2991 } 2992 2993 /// Return true if we might ever do TCO for calls with this calling convention. 2994 static bool mayTailCallThisCC(CallingConv::ID CC) { 2995 switch (CC) { 2996 case CallingConv::C: 2997 case CallingConv::AMDGPU_Gfx: 2998 return true; 2999 default: 3000 return canGuaranteeTCO(CC); 3001 } 3002 } 3003 3004 bool SITargetLowering::isEligibleForTailCallOptimization( 3005 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 3006 const SmallVectorImpl<ISD::OutputArg> &Outs, 3007 const SmallVectorImpl<SDValue> &OutVals, 3008 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 3009 if (!mayTailCallThisCC(CalleeCC)) 3010 return false; 3011 3012 // For a divergent call target, we need to do a waterfall loop over the 3013 // possible callees which precludes us from using a simple jump. 3014 if (Callee->isDivergent()) 3015 return false; 3016 3017 MachineFunction &MF = DAG.getMachineFunction(); 3018 const Function &CallerF = MF.getFunction(); 3019 CallingConv::ID CallerCC = CallerF.getCallingConv(); 3020 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 3021 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3022 3023 // Kernels aren't callable, and don't have a live in return address so it 3024 // doesn't make sense to do a tail call with entry functions. 3025 if (!CallerPreserved) 3026 return false; 3027 3028 bool CCMatch = CallerCC == CalleeCC; 3029 3030 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 3031 if (canGuaranteeTCO(CalleeCC) && CCMatch) 3032 return true; 3033 return false; 3034 } 3035 3036 // TODO: Can we handle var args? 3037 if (IsVarArg) 3038 return false; 3039 3040 for (const Argument &Arg : CallerF.args()) { 3041 if (Arg.hasByValAttr()) 3042 return false; 3043 } 3044 3045 LLVMContext &Ctx = *DAG.getContext(); 3046 3047 // Check that the call results are passed in the same way. 3048 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 3049 CCAssignFnForCall(CalleeCC, IsVarArg), 3050 CCAssignFnForCall(CallerCC, IsVarArg))) 3051 return false; 3052 3053 // The callee has to preserve all registers the caller needs to preserve. 3054 if (!CCMatch) { 3055 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3056 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3057 return false; 3058 } 3059 3060 // Nothing more to check if the callee is taking no arguments. 3061 if (Outs.empty()) 3062 return true; 3063 3064 SmallVector<CCValAssign, 16> ArgLocs; 3065 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 3066 3067 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 3068 3069 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 3070 // If the stack arguments for this call do not fit into our own save area then 3071 // the call cannot be made tail. 3072 // TODO: Is this really necessary? 3073 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 3074 return false; 3075 3076 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3077 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 3078 } 3079 3080 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3081 if (!CI->isTailCall()) 3082 return false; 3083 3084 const Function *ParentFn = CI->getParent()->getParent(); 3085 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 3086 return false; 3087 return true; 3088 } 3089 3090 // The wave scratch offset register is used as the global base pointer. 3091 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 3092 SmallVectorImpl<SDValue> &InVals) const { 3093 SelectionDAG &DAG = CLI.DAG; 3094 const SDLoc &DL = CLI.DL; 3095 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 3096 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 3097 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 3098 SDValue Chain = CLI.Chain; 3099 SDValue Callee = CLI.Callee; 3100 bool &IsTailCall = CLI.IsTailCall; 3101 CallingConv::ID CallConv = CLI.CallConv; 3102 bool IsVarArg = CLI.IsVarArg; 3103 bool IsSibCall = false; 3104 bool IsThisReturn = false; 3105 MachineFunction &MF = DAG.getMachineFunction(); 3106 3107 if (Callee.isUndef() || isNullConstant(Callee)) { 3108 if (!CLI.IsTailCall) { 3109 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 3110 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 3111 } 3112 3113 return Chain; 3114 } 3115 3116 if (IsVarArg) { 3117 return lowerUnhandledCall(CLI, InVals, 3118 "unsupported call to variadic function "); 3119 } 3120 3121 if (!CLI.CB) 3122 report_fatal_error("unsupported libcall legalization"); 3123 3124 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 3125 return lowerUnhandledCall(CLI, InVals, 3126 "unsupported required tail call to function "); 3127 } 3128 3129 if (AMDGPU::isShader(CallConv)) { 3130 // Note the issue is with the CC of the called function, not of the call 3131 // itself. 3132 return lowerUnhandledCall(CLI, InVals, 3133 "unsupported call to a shader function "); 3134 } 3135 3136 if (AMDGPU::isShader(MF.getFunction().getCallingConv()) && 3137 CallConv != CallingConv::AMDGPU_Gfx) { 3138 // Only allow calls with specific calling conventions. 3139 return lowerUnhandledCall(CLI, InVals, 3140 "unsupported calling convention for call from " 3141 "graphics shader of function "); 3142 } 3143 3144 if (IsTailCall) { 3145 IsTailCall = isEligibleForTailCallOptimization( 3146 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 3147 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { 3148 report_fatal_error("failed to perform tail call elimination on a call " 3149 "site marked musttail"); 3150 } 3151 3152 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 3153 3154 // A sibling call is one where we're under the usual C ABI and not planning 3155 // to change that but can still do a tail call: 3156 if (!TailCallOpt && IsTailCall) 3157 IsSibCall = true; 3158 3159 if (IsTailCall) 3160 ++NumTailCalls; 3161 } 3162 3163 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3164 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3165 SmallVector<SDValue, 8> MemOpChains; 3166 3167 // Analyze operands of the call, assigning locations to each operand. 3168 SmallVector<CCValAssign, 16> ArgLocs; 3169 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3170 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 3171 3172 if (CallConv != CallingConv::AMDGPU_Gfx) { 3173 // With a fixed ABI, allocate fixed registers before user arguments. 3174 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 3175 } 3176 3177 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 3178 3179 // Get a count of how many bytes are to be pushed on the stack. 3180 unsigned NumBytes = CCInfo.getNextStackOffset(); 3181 3182 if (IsSibCall) { 3183 // Since we're not changing the ABI to make this a tail call, the memory 3184 // operands are already available in the caller's incoming argument space. 3185 NumBytes = 0; 3186 } 3187 3188 // FPDiff is the byte offset of the call's argument area from the callee's. 3189 // Stores to callee stack arguments will be placed in FixedStackSlots offset 3190 // by this amount for a tail call. In a sibling call it must be 0 because the 3191 // caller will deallocate the entire stack and the callee still expects its 3192 // arguments to begin at SP+0. Completely unused for non-tail calls. 3193 int32_t FPDiff = 0; 3194 MachineFrameInfo &MFI = MF.getFrameInfo(); 3195 3196 // Adjust the stack pointer for the new arguments... 3197 // These operations are automatically eliminated by the prolog/epilog pass 3198 if (!IsSibCall) { 3199 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 3200 3201 if (!Subtarget->enableFlatScratch()) { 3202 SmallVector<SDValue, 4> CopyFromChains; 3203 3204 // In the HSA case, this should be an identity copy. 3205 SDValue ScratchRSrcReg 3206 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 3207 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 3208 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 3209 Chain = DAG.getTokenFactor(DL, CopyFromChains); 3210 } 3211 } 3212 3213 MVT PtrVT = MVT::i32; 3214 3215 // Walk the register/memloc assignments, inserting copies/loads. 3216 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3217 CCValAssign &VA = ArgLocs[i]; 3218 SDValue Arg = OutVals[i]; 3219 3220 // Promote the value if needed. 3221 switch (VA.getLocInfo()) { 3222 case CCValAssign::Full: 3223 break; 3224 case CCValAssign::BCvt: 3225 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 3226 break; 3227 case CCValAssign::ZExt: 3228 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 3229 break; 3230 case CCValAssign::SExt: 3231 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 3232 break; 3233 case CCValAssign::AExt: 3234 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 3235 break; 3236 case CCValAssign::FPExt: 3237 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 3238 break; 3239 default: 3240 llvm_unreachable("Unknown loc info!"); 3241 } 3242 3243 if (VA.isRegLoc()) { 3244 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3245 } else { 3246 assert(VA.isMemLoc()); 3247 3248 SDValue DstAddr; 3249 MachinePointerInfo DstInfo; 3250 3251 unsigned LocMemOffset = VA.getLocMemOffset(); 3252 int32_t Offset = LocMemOffset; 3253 3254 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 3255 MaybeAlign Alignment; 3256 3257 if (IsTailCall) { 3258 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3259 unsigned OpSize = Flags.isByVal() ? 3260 Flags.getByValSize() : VA.getValVT().getStoreSize(); 3261 3262 // FIXME: We can have better than the minimum byval required alignment. 3263 Alignment = 3264 Flags.isByVal() 3265 ? Flags.getNonZeroByValAlign() 3266 : commonAlignment(Subtarget->getStackAlignment(), Offset); 3267 3268 Offset = Offset + FPDiff; 3269 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 3270 3271 DstAddr = DAG.getFrameIndex(FI, PtrVT); 3272 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 3273 3274 // Make sure any stack arguments overlapping with where we're storing 3275 // are loaded before this eventual operation. Otherwise they'll be 3276 // clobbered. 3277 3278 // FIXME: Why is this really necessary? This seems to just result in a 3279 // lot of code to copy the stack and write them back to the same 3280 // locations, which are supposed to be immutable? 3281 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 3282 } else { 3283 // Stores to the argument stack area are relative to the stack pointer. 3284 SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), 3285 MVT::i32); 3286 DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); 3287 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 3288 Alignment = 3289 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); 3290 } 3291 3292 if (Outs[i].Flags.isByVal()) { 3293 SDValue SizeNode = 3294 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 3295 SDValue Cpy = 3296 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, 3297 Outs[i].Flags.getNonZeroByValAlign(), 3298 /*isVol = */ false, /*AlwaysInline = */ true, 3299 /*isTailCall = */ false, DstInfo, 3300 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); 3301 3302 MemOpChains.push_back(Cpy); 3303 } else { 3304 SDValue Store = 3305 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); 3306 MemOpChains.push_back(Store); 3307 } 3308 } 3309 } 3310 3311 if (!MemOpChains.empty()) 3312 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3313 3314 // Build a sequence of copy-to-reg nodes chained together with token chain 3315 // and flag operands which copy the outgoing args into the appropriate regs. 3316 SDValue InFlag; 3317 for (auto &RegToPass : RegsToPass) { 3318 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 3319 RegToPass.second, InFlag); 3320 InFlag = Chain.getValue(1); 3321 } 3322 3323 3324 SDValue PhysReturnAddrReg; 3325 if (IsTailCall) { 3326 // Since the return is being combined with the call, we need to pass on the 3327 // return address. 3328 3329 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 3330 SDValue ReturnAddrReg = CreateLiveInRegister( 3331 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 3332 3333 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), 3334 MVT::i64); 3335 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); 3336 InFlag = Chain.getValue(1); 3337 } 3338 3339 // We don't usually want to end the call-sequence here because we would tidy 3340 // the frame up *after* the call, however in the ABI-changing tail-call case 3341 // we've carefully laid out the parameters so that when sp is reset they'll be 3342 // in the correct location. 3343 if (IsTailCall && !IsSibCall) { 3344 Chain = DAG.getCALLSEQ_END(Chain, 3345 DAG.getTargetConstant(NumBytes, DL, MVT::i32), 3346 DAG.getTargetConstant(0, DL, MVT::i32), 3347 InFlag, DL); 3348 InFlag = Chain.getValue(1); 3349 } 3350 3351 std::vector<SDValue> Ops; 3352 Ops.push_back(Chain); 3353 Ops.push_back(Callee); 3354 // Add a redundant copy of the callee global which will not be legalized, as 3355 // we need direct access to the callee later. 3356 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { 3357 const GlobalValue *GV = GSD->getGlobal(); 3358 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 3359 } else { 3360 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); 3361 } 3362 3363 if (IsTailCall) { 3364 // Each tail call may have to adjust the stack by a different amount, so 3365 // this information must travel along with the operation for eventual 3366 // consumption by emitEpilogue. 3367 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 3368 3369 Ops.push_back(PhysReturnAddrReg); 3370 } 3371 3372 // Add argument registers to the end of the list so that they are known live 3373 // into the call. 3374 for (auto &RegToPass : RegsToPass) { 3375 Ops.push_back(DAG.getRegister(RegToPass.first, 3376 RegToPass.second.getValueType())); 3377 } 3378 3379 // Add a register mask operand representing the call-preserved registers. 3380 3381 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 3382 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3383 assert(Mask && "Missing call preserved mask for calling convention"); 3384 Ops.push_back(DAG.getRegisterMask(Mask)); 3385 3386 if (InFlag.getNode()) 3387 Ops.push_back(InFlag); 3388 3389 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3390 3391 // If we're doing a tall call, use a TC_RETURN here rather than an 3392 // actual call instruction. 3393 if (IsTailCall) { 3394 MFI.setHasTailCall(); 3395 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); 3396 } 3397 3398 // Returns a chain and a flag for retval copy to use. 3399 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 3400 Chain = Call.getValue(0); 3401 InFlag = Call.getValue(1); 3402 3403 uint64_t CalleePopBytes = NumBytes; 3404 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), 3405 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), 3406 InFlag, DL); 3407 if (!Ins.empty()) 3408 InFlag = Chain.getValue(1); 3409 3410 // Handle result values, copying them out of physregs into vregs that we 3411 // return. 3412 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 3413 InVals, IsThisReturn, 3414 IsThisReturn ? OutVals[0] : SDValue()); 3415 } 3416 3417 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, 3418 // except for applying the wave size scale to the increment amount. 3419 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( 3420 SDValue Op, SelectionDAG &DAG) const { 3421 const MachineFunction &MF = DAG.getMachineFunction(); 3422 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3423 3424 SDLoc dl(Op); 3425 EVT VT = Op.getValueType(); 3426 SDValue Tmp1 = Op; 3427 SDValue Tmp2 = Op.getValue(1); 3428 SDValue Tmp3 = Op.getOperand(2); 3429 SDValue Chain = Tmp1.getOperand(0); 3430 3431 Register SPReg = Info->getStackPtrOffsetReg(); 3432 3433 // Chain the dynamic stack allocation so that it doesn't modify the stack 3434 // pointer when other instructions are using the stack. 3435 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 3436 3437 SDValue Size = Tmp2.getOperand(1); 3438 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 3439 Chain = SP.getValue(1); 3440 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); 3441 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 3442 const TargetFrameLowering *TFL = ST.getFrameLowering(); 3443 unsigned Opc = 3444 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 3445 ISD::ADD : ISD::SUB; 3446 3447 SDValue ScaledSize = DAG.getNode( 3448 ISD::SHL, dl, VT, Size, 3449 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); 3450 3451 Align StackAlign = TFL->getStackAlign(); 3452 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value 3453 if (Alignment && *Alignment > StackAlign) { 3454 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 3455 DAG.getConstant(-(uint64_t)Alignment->value() 3456 << ST.getWavefrontSizeLog2(), 3457 dl, VT)); 3458 } 3459 3460 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 3461 Tmp2 = DAG.getCALLSEQ_END( 3462 Chain, DAG.getIntPtrConstant(0, dl, true), 3463 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 3464 3465 return DAG.getMergeValues({Tmp1, Tmp2}, dl); 3466 } 3467 3468 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3469 SelectionDAG &DAG) const { 3470 // We only handle constant sizes here to allow non-entry block, static sized 3471 // allocas. A truly dynamic value is more difficult to support because we 3472 // don't know if the size value is uniform or not. If the size isn't uniform, 3473 // we would need to do a wave reduction to get the maximum size to know how 3474 // much to increment the uniform stack pointer. 3475 SDValue Size = Op.getOperand(1); 3476 if (isa<ConstantSDNode>(Size)) 3477 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. 3478 3479 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); 3480 } 3481 3482 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, 3483 const MachineFunction &MF) const { 3484 Register Reg = StringSwitch<Register>(RegName) 3485 .Case("m0", AMDGPU::M0) 3486 .Case("exec", AMDGPU::EXEC) 3487 .Case("exec_lo", AMDGPU::EXEC_LO) 3488 .Case("exec_hi", AMDGPU::EXEC_HI) 3489 .Case("flat_scratch", AMDGPU::FLAT_SCR) 3490 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 3491 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 3492 .Default(Register()); 3493 3494 if (Reg == AMDGPU::NoRegister) { 3495 report_fatal_error(Twine("invalid register name \"" 3496 + StringRef(RegName) + "\".")); 3497 3498 } 3499 3500 if (!Subtarget->hasFlatScrRegister() && 3501 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 3502 report_fatal_error(Twine("invalid register \"" 3503 + StringRef(RegName) + "\" for subtarget.")); 3504 } 3505 3506 switch (Reg) { 3507 case AMDGPU::M0: 3508 case AMDGPU::EXEC_LO: 3509 case AMDGPU::EXEC_HI: 3510 case AMDGPU::FLAT_SCR_LO: 3511 case AMDGPU::FLAT_SCR_HI: 3512 if (VT.getSizeInBits() == 32) 3513 return Reg; 3514 break; 3515 case AMDGPU::EXEC: 3516 case AMDGPU::FLAT_SCR: 3517 if (VT.getSizeInBits() == 64) 3518 return Reg; 3519 break; 3520 default: 3521 llvm_unreachable("missing register type checking"); 3522 } 3523 3524 report_fatal_error(Twine("invalid type for register \"" 3525 + StringRef(RegName) + "\".")); 3526 } 3527 3528 // If kill is not the last instruction, split the block so kill is always a 3529 // proper terminator. 3530 MachineBasicBlock * 3531 SITargetLowering::splitKillBlock(MachineInstr &MI, 3532 MachineBasicBlock *BB) const { 3533 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); 3534 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3535 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3536 return SplitBB; 3537 } 3538 3539 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 3540 // \p MI will be the only instruction in the loop body block. Otherwise, it will 3541 // be the first instruction in the remainder block. 3542 // 3543 /// \returns { LoopBody, Remainder } 3544 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 3545 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 3546 MachineFunction *MF = MBB.getParent(); 3547 MachineBasicBlock::iterator I(&MI); 3548 3549 // To insert the loop we need to split the block. Move everything after this 3550 // point to a new block, and insert a new empty block between the two. 3551 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 3552 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 3553 MachineFunction::iterator MBBI(MBB); 3554 ++MBBI; 3555 3556 MF->insert(MBBI, LoopBB); 3557 MF->insert(MBBI, RemainderBB); 3558 3559 LoopBB->addSuccessor(LoopBB); 3560 LoopBB->addSuccessor(RemainderBB); 3561 3562 // Move the rest of the block into a new block. 3563 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 3564 3565 if (InstInLoop) { 3566 auto Next = std::next(I); 3567 3568 // Move instruction to loop body. 3569 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 3570 3571 // Move the rest of the block. 3572 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 3573 } else { 3574 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 3575 } 3576 3577 MBB.addSuccessor(LoopBB); 3578 3579 return std::make_pair(LoopBB, RemainderBB); 3580 } 3581 3582 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 3583 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 3584 MachineBasicBlock *MBB = MI.getParent(); 3585 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3586 auto I = MI.getIterator(); 3587 auto E = std::next(I); 3588 3589 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 3590 .addImm(0); 3591 3592 MIBundleBuilder Bundler(*MBB, I, E); 3593 finalizeBundle(*MBB, Bundler.begin()); 3594 } 3595 3596 MachineBasicBlock * 3597 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 3598 MachineBasicBlock *BB) const { 3599 const DebugLoc &DL = MI.getDebugLoc(); 3600 3601 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3602 3603 MachineBasicBlock *LoopBB; 3604 MachineBasicBlock *RemainderBB; 3605 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3606 3607 // Apparently kill flags are only valid if the def is in the same block? 3608 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 3609 Src->setIsKill(false); 3610 3611 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 3612 3613 MachineBasicBlock::iterator I = LoopBB->end(); 3614 3615 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 3616 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 3617 3618 // Clear TRAP_STS.MEM_VIOL 3619 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 3620 .addImm(0) 3621 .addImm(EncodedReg); 3622 3623 bundleInstWithWaitcnt(MI); 3624 3625 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3626 3627 // Load and check TRAP_STS.MEM_VIOL 3628 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 3629 .addImm(EncodedReg); 3630 3631 // FIXME: Do we need to use an isel pseudo that may clobber scc? 3632 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 3633 .addReg(Reg, RegState::Kill) 3634 .addImm(0); 3635 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3636 .addMBB(LoopBB); 3637 3638 return RemainderBB; 3639 } 3640 3641 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 3642 // wavefront. If the value is uniform and just happens to be in a VGPR, this 3643 // will only do one iteration. In the worst case, this will loop 64 times. 3644 // 3645 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 3646 static MachineBasicBlock::iterator 3647 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, 3648 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, 3649 const DebugLoc &DL, const MachineOperand &Idx, 3650 unsigned InitReg, unsigned ResultReg, unsigned PhiReg, 3651 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, 3652 Register &SGPRIdxReg) { 3653 3654 MachineFunction *MF = OrigBB.getParent(); 3655 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3656 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3657 MachineBasicBlock::iterator I = LoopBB.begin(); 3658 3659 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3660 Register PhiExec = MRI.createVirtualRegister(BoolRC); 3661 Register NewExec = MRI.createVirtualRegister(BoolRC); 3662 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3663 Register CondReg = MRI.createVirtualRegister(BoolRC); 3664 3665 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 3666 .addReg(InitReg) 3667 .addMBB(&OrigBB) 3668 .addReg(ResultReg) 3669 .addMBB(&LoopBB); 3670 3671 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 3672 .addReg(InitSaveExecReg) 3673 .addMBB(&OrigBB) 3674 .addReg(NewExec) 3675 .addMBB(&LoopBB); 3676 3677 // Read the next variant <- also loop target. 3678 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 3679 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); 3680 3681 // Compare the just read M0 value to all possible Idx values. 3682 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 3683 .addReg(CurrentIdxReg) 3684 .addReg(Idx.getReg(), 0, Idx.getSubReg()); 3685 3686 // Update EXEC, save the original EXEC value to VCC. 3687 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 3688 : AMDGPU::S_AND_SAVEEXEC_B64), 3689 NewExec) 3690 .addReg(CondReg, RegState::Kill); 3691 3692 MRI.setSimpleHint(NewExec, CondReg); 3693 3694 if (UseGPRIdxMode) { 3695 if (Offset == 0) { 3696 SGPRIdxReg = CurrentIdxReg; 3697 } else { 3698 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3699 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) 3700 .addReg(CurrentIdxReg, RegState::Kill) 3701 .addImm(Offset); 3702 } 3703 } else { 3704 // Move index from VCC into M0 3705 if (Offset == 0) { 3706 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3707 .addReg(CurrentIdxReg, RegState::Kill); 3708 } else { 3709 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3710 .addReg(CurrentIdxReg, RegState::Kill) 3711 .addImm(Offset); 3712 } 3713 } 3714 3715 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 3716 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3717 MachineInstr *InsertPt = 3718 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 3719 : AMDGPU::S_XOR_B64_term), Exec) 3720 .addReg(Exec) 3721 .addReg(NewExec); 3722 3723 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 3724 // s_cbranch_scc0? 3725 3726 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 3727 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 3728 .addMBB(&LoopBB); 3729 3730 return InsertPt->getIterator(); 3731 } 3732 3733 // This has slightly sub-optimal regalloc when the source vector is killed by 3734 // the read. The register allocator does not understand that the kill is 3735 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 3736 // subregister from it, using 1 more VGPR than necessary. This was saved when 3737 // this was expanded after register allocation. 3738 static MachineBasicBlock::iterator 3739 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, 3740 unsigned InitResultReg, unsigned PhiReg, int Offset, 3741 bool UseGPRIdxMode, Register &SGPRIdxReg) { 3742 MachineFunction *MF = MBB.getParent(); 3743 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3744 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3745 MachineRegisterInfo &MRI = MF->getRegInfo(); 3746 const DebugLoc &DL = MI.getDebugLoc(); 3747 MachineBasicBlock::iterator I(&MI); 3748 3749 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3750 Register DstReg = MI.getOperand(0).getReg(); 3751 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 3752 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 3753 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3754 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 3755 3756 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 3757 3758 // Save the EXEC mask 3759 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 3760 .addReg(Exec); 3761 3762 MachineBasicBlock *LoopBB; 3763 MachineBasicBlock *RemainderBB; 3764 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 3765 3766 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3767 3768 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 3769 InitResultReg, DstReg, PhiReg, TmpExec, 3770 Offset, UseGPRIdxMode, SGPRIdxReg); 3771 3772 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); 3773 MachineFunction::iterator MBBI(LoopBB); 3774 ++MBBI; 3775 MF->insert(MBBI, LandingPad); 3776 LoopBB->removeSuccessor(RemainderBB); 3777 LandingPad->addSuccessor(RemainderBB); 3778 LoopBB->addSuccessor(LandingPad); 3779 MachineBasicBlock::iterator First = LandingPad->begin(); 3780 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) 3781 .addReg(SaveExec); 3782 3783 return InsPt; 3784 } 3785 3786 // Returns subreg index, offset 3787 static std::pair<unsigned, int> 3788 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 3789 const TargetRegisterClass *SuperRC, 3790 unsigned VecReg, 3791 int Offset) { 3792 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 3793 3794 // Skip out of bounds offsets, or else we would end up using an undefined 3795 // register. 3796 if (Offset >= NumElts || Offset < 0) 3797 return std::make_pair(AMDGPU::sub0, Offset); 3798 3799 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); 3800 } 3801 3802 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, 3803 MachineRegisterInfo &MRI, MachineInstr &MI, 3804 int Offset) { 3805 MachineBasicBlock *MBB = MI.getParent(); 3806 const DebugLoc &DL = MI.getDebugLoc(); 3807 MachineBasicBlock::iterator I(&MI); 3808 3809 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3810 3811 assert(Idx->getReg() != AMDGPU::NoRegister); 3812 3813 if (Offset == 0) { 3814 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); 3815 } else { 3816 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3817 .add(*Idx) 3818 .addImm(Offset); 3819 } 3820 } 3821 3822 static Register getIndirectSGPRIdx(const SIInstrInfo *TII, 3823 MachineRegisterInfo &MRI, MachineInstr &MI, 3824 int Offset) { 3825 MachineBasicBlock *MBB = MI.getParent(); 3826 const DebugLoc &DL = MI.getDebugLoc(); 3827 MachineBasicBlock::iterator I(&MI); 3828 3829 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3830 3831 if (Offset == 0) 3832 return Idx->getReg(); 3833 3834 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3835 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 3836 .add(*Idx) 3837 .addImm(Offset); 3838 return Tmp; 3839 } 3840 3841 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 3842 MachineBasicBlock &MBB, 3843 const GCNSubtarget &ST) { 3844 const SIInstrInfo *TII = ST.getInstrInfo(); 3845 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3846 MachineFunction *MF = MBB.getParent(); 3847 MachineRegisterInfo &MRI = MF->getRegInfo(); 3848 3849 Register Dst = MI.getOperand(0).getReg(); 3850 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3851 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 3852 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3853 3854 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 3855 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3856 3857 unsigned SubReg; 3858 std::tie(SubReg, Offset) 3859 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 3860 3861 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3862 3863 // Check for a SGPR index. 3864 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3865 MachineBasicBlock::iterator I(&MI); 3866 const DebugLoc &DL = MI.getDebugLoc(); 3867 3868 if (UseGPRIdxMode) { 3869 // TODO: Look at the uses to avoid the copy. This may require rescheduling 3870 // to avoid interfering with other uses, so probably requires a new 3871 // optimization pass. 3872 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3873 3874 const MCInstrDesc &GPRIDXDesc = 3875 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3876 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3877 .addReg(SrcReg) 3878 .addReg(Idx) 3879 .addImm(SubReg); 3880 } else { 3881 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3882 3883 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3884 .addReg(SrcReg, 0, SubReg) 3885 .addReg(SrcReg, RegState::Implicit); 3886 } 3887 3888 MI.eraseFromParent(); 3889 3890 return &MBB; 3891 } 3892 3893 // Control flow needs to be inserted if indexing with a VGPR. 3894 const DebugLoc &DL = MI.getDebugLoc(); 3895 MachineBasicBlock::iterator I(&MI); 3896 3897 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3898 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3899 3900 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 3901 3902 Register SGPRIdxReg; 3903 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, 3904 UseGPRIdxMode, SGPRIdxReg); 3905 3906 MachineBasicBlock *LoopBB = InsPt->getParent(); 3907 3908 if (UseGPRIdxMode) { 3909 const MCInstrDesc &GPRIDXDesc = 3910 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3911 3912 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 3913 .addReg(SrcReg) 3914 .addReg(SGPRIdxReg) 3915 .addImm(SubReg); 3916 } else { 3917 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3918 .addReg(SrcReg, 0, SubReg) 3919 .addReg(SrcReg, RegState::Implicit); 3920 } 3921 3922 MI.eraseFromParent(); 3923 3924 return LoopBB; 3925 } 3926 3927 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 3928 MachineBasicBlock &MBB, 3929 const GCNSubtarget &ST) { 3930 const SIInstrInfo *TII = ST.getInstrInfo(); 3931 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3932 MachineFunction *MF = MBB.getParent(); 3933 MachineRegisterInfo &MRI = MF->getRegInfo(); 3934 3935 Register Dst = MI.getOperand(0).getReg(); 3936 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 3937 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3938 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 3939 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3940 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 3941 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3942 3943 // This can be an immediate, but will be folded later. 3944 assert(Val->getReg()); 3945 3946 unsigned SubReg; 3947 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 3948 SrcVec->getReg(), 3949 Offset); 3950 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3951 3952 if (Idx->getReg() == AMDGPU::NoRegister) { 3953 MachineBasicBlock::iterator I(&MI); 3954 const DebugLoc &DL = MI.getDebugLoc(); 3955 3956 assert(Offset == 0); 3957 3958 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 3959 .add(*SrcVec) 3960 .add(*Val) 3961 .addImm(SubReg); 3962 3963 MI.eraseFromParent(); 3964 return &MBB; 3965 } 3966 3967 // Check for a SGPR index. 3968 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3969 MachineBasicBlock::iterator I(&MI); 3970 const DebugLoc &DL = MI.getDebugLoc(); 3971 3972 if (UseGPRIdxMode) { 3973 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3974 3975 const MCInstrDesc &GPRIDXDesc = 3976 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 3977 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3978 .addReg(SrcVec->getReg()) 3979 .add(*Val) 3980 .addReg(Idx) 3981 .addImm(SubReg); 3982 } else { 3983 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3984 3985 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 3986 TRI.getRegSizeInBits(*VecRC), 32, false); 3987 BuildMI(MBB, I, DL, MovRelDesc, Dst) 3988 .addReg(SrcVec->getReg()) 3989 .add(*Val) 3990 .addImm(SubReg); 3991 } 3992 MI.eraseFromParent(); 3993 return &MBB; 3994 } 3995 3996 // Control flow needs to be inserted if indexing with a VGPR. 3997 if (Val->isReg()) 3998 MRI.clearKillFlags(Val->getReg()); 3999 4000 const DebugLoc &DL = MI.getDebugLoc(); 4001 4002 Register PhiReg = MRI.createVirtualRegister(VecRC); 4003 4004 Register SGPRIdxReg; 4005 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, 4006 UseGPRIdxMode, SGPRIdxReg); 4007 MachineBasicBlock *LoopBB = InsPt->getParent(); 4008 4009 if (UseGPRIdxMode) { 4010 const MCInstrDesc &GPRIDXDesc = 4011 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 4012 4013 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 4014 .addReg(PhiReg) 4015 .add(*Val) 4016 .addReg(SGPRIdxReg) 4017 .addImm(AMDGPU::sub0); 4018 } else { 4019 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 4020 TRI.getRegSizeInBits(*VecRC), 32, false); 4021 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) 4022 .addReg(PhiReg) 4023 .add(*Val) 4024 .addImm(AMDGPU::sub0); 4025 } 4026 4027 MI.eraseFromParent(); 4028 return LoopBB; 4029 } 4030 4031 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 4032 MachineInstr &MI, MachineBasicBlock *BB) const { 4033 4034 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4035 MachineFunction *MF = BB->getParent(); 4036 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 4037 4038 switch (MI.getOpcode()) { 4039 case AMDGPU::S_UADDO_PSEUDO: 4040 case AMDGPU::S_USUBO_PSEUDO: { 4041 const DebugLoc &DL = MI.getDebugLoc(); 4042 MachineOperand &Dest0 = MI.getOperand(0); 4043 MachineOperand &Dest1 = MI.getOperand(1); 4044 MachineOperand &Src0 = MI.getOperand(2); 4045 MachineOperand &Src1 = MI.getOperand(3); 4046 4047 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 4048 ? AMDGPU::S_ADD_I32 4049 : AMDGPU::S_SUB_I32; 4050 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); 4051 4052 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) 4053 .addImm(1) 4054 .addImm(0); 4055 4056 MI.eraseFromParent(); 4057 return BB; 4058 } 4059 case AMDGPU::S_ADD_U64_PSEUDO: 4060 case AMDGPU::S_SUB_U64_PSEUDO: { 4061 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4062 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4063 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4064 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 4065 const DebugLoc &DL = MI.getDebugLoc(); 4066 4067 MachineOperand &Dest = MI.getOperand(0); 4068 MachineOperand &Src0 = MI.getOperand(1); 4069 MachineOperand &Src1 = MI.getOperand(2); 4070 4071 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4072 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4073 4074 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 4075 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4076 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 4077 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4078 4079 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 4080 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4081 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 4082 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4083 4084 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 4085 4086 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 4087 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 4088 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); 4089 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); 4090 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4091 .addReg(DestSub0) 4092 .addImm(AMDGPU::sub0) 4093 .addReg(DestSub1) 4094 .addImm(AMDGPU::sub1); 4095 MI.eraseFromParent(); 4096 return BB; 4097 } 4098 case AMDGPU::V_ADD_U64_PSEUDO: 4099 case AMDGPU::V_SUB_U64_PSEUDO: { 4100 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4101 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4102 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4103 const DebugLoc &DL = MI.getDebugLoc(); 4104 4105 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); 4106 4107 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4108 4109 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4110 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4111 4112 Register CarryReg = MRI.createVirtualRegister(CarryRC); 4113 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 4114 4115 MachineOperand &Dest = MI.getOperand(0); 4116 MachineOperand &Src0 = MI.getOperand(1); 4117 MachineOperand &Src1 = MI.getOperand(2); 4118 4119 const TargetRegisterClass *Src0RC = Src0.isReg() 4120 ? MRI.getRegClass(Src0.getReg()) 4121 : &AMDGPU::VReg_64RegClass; 4122 const TargetRegisterClass *Src1RC = Src1.isReg() 4123 ? MRI.getRegClass(Src1.getReg()) 4124 : &AMDGPU::VReg_64RegClass; 4125 4126 const TargetRegisterClass *Src0SubRC = 4127 TRI->getSubRegClass(Src0RC, AMDGPU::sub0); 4128 const TargetRegisterClass *Src1SubRC = 4129 TRI->getSubRegClass(Src1RC, AMDGPU::sub1); 4130 4131 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( 4132 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 4133 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( 4134 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 4135 4136 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( 4137 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 4138 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( 4139 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 4140 4141 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 4142 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 4143 .addReg(CarryReg, RegState::Define) 4144 .add(SrcReg0Sub0) 4145 .add(SrcReg1Sub0) 4146 .addImm(0); // clamp bit 4147 4148 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 4149 MachineInstr *HiHalf = 4150 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 4151 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 4152 .add(SrcReg0Sub1) 4153 .add(SrcReg1Sub1) 4154 .addReg(CarryReg, RegState::Kill) 4155 .addImm(0); // clamp bit 4156 4157 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4158 .addReg(DestSub0) 4159 .addImm(AMDGPU::sub0) 4160 .addReg(DestSub1) 4161 .addImm(AMDGPU::sub1); 4162 TII->legalizeOperands(*LoHalf); 4163 TII->legalizeOperands(*HiHalf); 4164 MI.eraseFromParent(); 4165 return BB; 4166 } 4167 case AMDGPU::S_ADD_CO_PSEUDO: 4168 case AMDGPU::S_SUB_CO_PSEUDO: { 4169 // This pseudo has a chance to be selected 4170 // only from uniform add/subcarry node. All the VGPR operands 4171 // therefore assumed to be splat vectors. 4172 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4173 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4174 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4175 MachineBasicBlock::iterator MII = MI; 4176 const DebugLoc &DL = MI.getDebugLoc(); 4177 MachineOperand &Dest = MI.getOperand(0); 4178 MachineOperand &CarryDest = MI.getOperand(1); 4179 MachineOperand &Src0 = MI.getOperand(2); 4180 MachineOperand &Src1 = MI.getOperand(3); 4181 MachineOperand &Src2 = MI.getOperand(4); 4182 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 4183 ? AMDGPU::S_ADDC_U32 4184 : AMDGPU::S_SUBB_U32; 4185 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { 4186 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4187 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) 4188 .addReg(Src0.getReg()); 4189 Src0.setReg(RegOp0); 4190 } 4191 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { 4192 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4193 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) 4194 .addReg(Src1.getReg()); 4195 Src1.setReg(RegOp1); 4196 } 4197 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4198 if (TRI->isVectorRegister(MRI, Src2.getReg())) { 4199 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) 4200 .addReg(Src2.getReg()); 4201 Src2.setReg(RegOp2); 4202 } 4203 4204 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); 4205 unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC); 4206 assert(WaveSize == 64 || WaveSize == 32); 4207 4208 if (WaveSize == 64) { 4209 if (ST.hasScalarCompareEq64()) { 4210 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) 4211 .addReg(Src2.getReg()) 4212 .addImm(0); 4213 } else { 4214 const TargetRegisterClass *SubRC = 4215 TRI->getSubRegClass(Src2RC, AMDGPU::sub0); 4216 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( 4217 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); 4218 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( 4219 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); 4220 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4221 4222 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) 4223 .add(Src2Sub0) 4224 .add(Src2Sub1); 4225 4226 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4227 .addReg(Src2_32, RegState::Kill) 4228 .addImm(0); 4229 } 4230 } else { 4231 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32)) 4232 .addReg(Src2.getReg()) 4233 .addImm(0); 4234 } 4235 4236 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); 4237 4238 unsigned SelOpc = 4239 (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; 4240 4241 BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg()) 4242 .addImm(-1) 4243 .addImm(0); 4244 4245 MI.eraseFromParent(); 4246 return BB; 4247 } 4248 case AMDGPU::SI_INIT_M0: { 4249 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 4250 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 4251 .add(MI.getOperand(0)); 4252 MI.eraseFromParent(); 4253 return BB; 4254 } 4255 case AMDGPU::GET_GROUPSTATICSIZE: { 4256 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 4257 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 4258 DebugLoc DL = MI.getDebugLoc(); 4259 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 4260 .add(MI.getOperand(0)) 4261 .addImm(MFI->getLDSSize()); 4262 MI.eraseFromParent(); 4263 return BB; 4264 } 4265 case AMDGPU::SI_INDIRECT_SRC_V1: 4266 case AMDGPU::SI_INDIRECT_SRC_V2: 4267 case AMDGPU::SI_INDIRECT_SRC_V4: 4268 case AMDGPU::SI_INDIRECT_SRC_V8: 4269 case AMDGPU::SI_INDIRECT_SRC_V16: 4270 case AMDGPU::SI_INDIRECT_SRC_V32: 4271 return emitIndirectSrc(MI, *BB, *getSubtarget()); 4272 case AMDGPU::SI_INDIRECT_DST_V1: 4273 case AMDGPU::SI_INDIRECT_DST_V2: 4274 case AMDGPU::SI_INDIRECT_DST_V4: 4275 case AMDGPU::SI_INDIRECT_DST_V8: 4276 case AMDGPU::SI_INDIRECT_DST_V16: 4277 case AMDGPU::SI_INDIRECT_DST_V32: 4278 return emitIndirectDst(MI, *BB, *getSubtarget()); 4279 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 4280 case AMDGPU::SI_KILL_I1_PSEUDO: 4281 return splitKillBlock(MI, BB); 4282 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 4283 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4284 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4285 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4286 4287 Register Dst = MI.getOperand(0).getReg(); 4288 Register Src0 = MI.getOperand(1).getReg(); 4289 Register Src1 = MI.getOperand(2).getReg(); 4290 const DebugLoc &DL = MI.getDebugLoc(); 4291 Register SrcCond = MI.getOperand(3).getReg(); 4292 4293 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4294 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4295 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4296 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 4297 4298 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 4299 .addReg(SrcCond); 4300 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 4301 .addImm(0) 4302 .addReg(Src0, 0, AMDGPU::sub0) 4303 .addImm(0) 4304 .addReg(Src1, 0, AMDGPU::sub0) 4305 .addReg(SrcCondCopy); 4306 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 4307 .addImm(0) 4308 .addReg(Src0, 0, AMDGPU::sub1) 4309 .addImm(0) 4310 .addReg(Src1, 0, AMDGPU::sub1) 4311 .addReg(SrcCondCopy); 4312 4313 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 4314 .addReg(DstLo) 4315 .addImm(AMDGPU::sub0) 4316 .addReg(DstHi) 4317 .addImm(AMDGPU::sub1); 4318 MI.eraseFromParent(); 4319 return BB; 4320 } 4321 case AMDGPU::SI_BR_UNDEF: { 4322 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4323 const DebugLoc &DL = MI.getDebugLoc(); 4324 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4325 .add(MI.getOperand(0)); 4326 Br->getOperand(1).setIsUndef(true); // read undef SCC 4327 MI.eraseFromParent(); 4328 return BB; 4329 } 4330 case AMDGPU::ADJCALLSTACKUP: 4331 case AMDGPU::ADJCALLSTACKDOWN: { 4332 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 4333 MachineInstrBuilder MIB(*MF, &MI); 4334 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 4335 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); 4336 return BB; 4337 } 4338 case AMDGPU::SI_CALL_ISEL: { 4339 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4340 const DebugLoc &DL = MI.getDebugLoc(); 4341 4342 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 4343 4344 MachineInstrBuilder MIB; 4345 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 4346 4347 for (const MachineOperand &MO : MI.operands()) 4348 MIB.add(MO); 4349 4350 MIB.cloneMemRefs(MI); 4351 MI.eraseFromParent(); 4352 return BB; 4353 } 4354 case AMDGPU::V_ADD_CO_U32_e32: 4355 case AMDGPU::V_SUB_CO_U32_e32: 4356 case AMDGPU::V_SUBREV_CO_U32_e32: { 4357 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 4358 const DebugLoc &DL = MI.getDebugLoc(); 4359 unsigned Opc = MI.getOpcode(); 4360 4361 bool NeedClampOperand = false; 4362 if (TII->pseudoToMCOpcode(Opc) == -1) { 4363 Opc = AMDGPU::getVOPe64(Opc); 4364 NeedClampOperand = true; 4365 } 4366 4367 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 4368 if (TII->isVOP3(*I)) { 4369 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4370 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4371 I.addReg(TRI->getVCC(), RegState::Define); 4372 } 4373 I.add(MI.getOperand(1)) 4374 .add(MI.getOperand(2)); 4375 if (NeedClampOperand) 4376 I.addImm(0); // clamp bit for e64 encoding 4377 4378 TII->legalizeOperands(*I); 4379 4380 MI.eraseFromParent(); 4381 return BB; 4382 } 4383 case AMDGPU::V_ADDC_U32_e32: 4384 case AMDGPU::V_SUBB_U32_e32: 4385 case AMDGPU::V_SUBBREV_U32_e32: 4386 // These instructions have an implicit use of vcc which counts towards the 4387 // constant bus limit. 4388 TII->legalizeOperands(MI); 4389 return BB; 4390 case AMDGPU::DS_GWS_INIT: 4391 case AMDGPU::DS_GWS_SEMA_BR: 4392 case AMDGPU::DS_GWS_BARRIER: 4393 if (Subtarget->needsAlignedVGPRs()) { 4394 // Add implicit aligned super-reg to force alignment on the data operand. 4395 const DebugLoc &DL = MI.getDebugLoc(); 4396 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4397 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 4398 MachineOperand *Op = TII->getNamedOperand(MI, AMDGPU::OpName::data0); 4399 Register DataReg = Op->getReg(); 4400 bool IsAGPR = TRI->isAGPR(MRI, DataReg); 4401 Register Undef = MRI.createVirtualRegister( 4402 IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass); 4403 BuildMI(*BB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), Undef); 4404 Register NewVR = 4405 MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass 4406 : &AMDGPU::VReg_64_Align2RegClass); 4407 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), NewVR) 4408 .addReg(DataReg, 0, Op->getSubReg()) 4409 .addImm(AMDGPU::sub0) 4410 .addReg(Undef) 4411 .addImm(AMDGPU::sub1); 4412 Op->setReg(NewVR); 4413 Op->setSubReg(AMDGPU::sub0); 4414 MI.addOperand(MachineOperand::CreateReg(NewVR, false, true)); 4415 } 4416 LLVM_FALLTHROUGH; 4417 case AMDGPU::DS_GWS_SEMA_V: 4418 case AMDGPU::DS_GWS_SEMA_P: 4419 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 4420 // A s_waitcnt 0 is required to be the instruction immediately following. 4421 if (getSubtarget()->hasGWSAutoReplay()) { 4422 bundleInstWithWaitcnt(MI); 4423 return BB; 4424 } 4425 4426 return emitGWSMemViolTestLoop(MI, BB); 4427 case AMDGPU::S_SETREG_B32: { 4428 // Try to optimize cases that only set the denormal mode or rounding mode. 4429 // 4430 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or 4431 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode 4432 // instead. 4433 // 4434 // FIXME: This could be predicates on the immediate, but tablegen doesn't 4435 // allow you to have a no side effect instruction in the output of a 4436 // sideeffecting pattern. 4437 unsigned ID, Offset, Width; 4438 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); 4439 if (ID != AMDGPU::Hwreg::ID_MODE) 4440 return BB; 4441 4442 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); 4443 const unsigned SetMask = WidthMask << Offset; 4444 4445 if (getSubtarget()->hasDenormModeInst()) { 4446 unsigned SetDenormOp = 0; 4447 unsigned SetRoundOp = 0; 4448 4449 // The dedicated instructions can only set the whole denorm or round mode 4450 // at once, not a subset of bits in either. 4451 if (SetMask == 4452 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { 4453 // If this fully sets both the round and denorm mode, emit the two 4454 // dedicated instructions for these. 4455 SetRoundOp = AMDGPU::S_ROUND_MODE; 4456 SetDenormOp = AMDGPU::S_DENORM_MODE; 4457 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { 4458 SetRoundOp = AMDGPU::S_ROUND_MODE; 4459 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { 4460 SetDenormOp = AMDGPU::S_DENORM_MODE; 4461 } 4462 4463 if (SetRoundOp || SetDenormOp) { 4464 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4465 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); 4466 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { 4467 unsigned ImmVal = Def->getOperand(1).getImm(); 4468 if (SetRoundOp) { 4469 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) 4470 .addImm(ImmVal & 0xf); 4471 4472 // If we also have the denorm mode, get just the denorm mode bits. 4473 ImmVal >>= 4; 4474 } 4475 4476 if (SetDenormOp) { 4477 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) 4478 .addImm(ImmVal & 0xf); 4479 } 4480 4481 MI.eraseFromParent(); 4482 return BB; 4483 } 4484 } 4485 } 4486 4487 // If only FP bits are touched, used the no side effects pseudo. 4488 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | 4489 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) 4490 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); 4491 4492 return BB; 4493 } 4494 default: 4495 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 4496 } 4497 } 4498 4499 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { 4500 return isTypeLegal(VT.getScalarType()); 4501 } 4502 4503 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 4504 // This currently forces unfolding various combinations of fsub into fma with 4505 // free fneg'd operands. As long as we have fast FMA (controlled by 4506 // isFMAFasterThanFMulAndFAdd), we should perform these. 4507 4508 // When fma is quarter rate, for f64 where add / sub are at best half rate, 4509 // most of these combines appear to be cycle neutral but save on instruction 4510 // count / code size. 4511 return true; 4512 } 4513 4514 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; } 4515 4516 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 4517 EVT VT) const { 4518 if (!VT.isVector()) { 4519 return MVT::i1; 4520 } 4521 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 4522 } 4523 4524 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 4525 // TODO: Should i16 be used always if legal? For now it would force VALU 4526 // shifts. 4527 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 4528 } 4529 4530 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { 4531 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) 4532 ? Ty.changeElementSize(16) 4533 : Ty.changeElementSize(32); 4534 } 4535 4536 // Answering this is somewhat tricky and depends on the specific device which 4537 // have different rates for fma or all f64 operations. 4538 // 4539 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 4540 // regardless of which device (although the number of cycles differs between 4541 // devices), so it is always profitable for f64. 4542 // 4543 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 4544 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 4545 // which we can always do even without fused FP ops since it returns the same 4546 // result as the separate operations and since it is always full 4547 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 4548 // however does not support denormals, so we do report fma as faster if we have 4549 // a fast fma device and require denormals. 4550 // 4551 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4552 EVT VT) const { 4553 VT = VT.getScalarType(); 4554 4555 switch (VT.getSimpleVT().SimpleTy) { 4556 case MVT::f32: { 4557 // If mad is not available this depends only on if f32 fma is full rate. 4558 if (!Subtarget->hasMadMacF32Insts()) 4559 return Subtarget->hasFastFMAF32(); 4560 4561 // Otherwise f32 mad is always full rate and returns the same result as 4562 // the separate operations so should be preferred over fma. 4563 // However does not support denomals. 4564 if (hasFP32Denormals(MF)) 4565 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 4566 4567 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 4568 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 4569 } 4570 case MVT::f64: 4571 return true; 4572 case MVT::f16: 4573 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); 4574 default: 4575 break; 4576 } 4577 4578 return false; 4579 } 4580 4581 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4582 LLT Ty) const { 4583 switch (Ty.getScalarSizeInBits()) { 4584 case 16: 4585 return isFMAFasterThanFMulAndFAdd(MF, MVT::f16); 4586 case 32: 4587 return isFMAFasterThanFMulAndFAdd(MF, MVT::f32); 4588 case 64: 4589 return isFMAFasterThanFMulAndFAdd(MF, MVT::f64); 4590 default: 4591 break; 4592 } 4593 4594 return false; 4595 } 4596 4597 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const { 4598 if (!Ty.isScalar()) 4599 return false; 4600 4601 if (Ty.getScalarSizeInBits() == 16) 4602 return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF()); 4603 if (Ty.getScalarSizeInBits() == 32) 4604 return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF()); 4605 4606 return false; 4607 } 4608 4609 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, 4610 const SDNode *N) const { 4611 // TODO: Check future ftz flag 4612 // v_mad_f32/v_mac_f32 do not support denormals. 4613 EVT VT = N->getValueType(0); 4614 if (VT == MVT::f32) 4615 return Subtarget->hasMadMacF32Insts() && 4616 !hasFP32Denormals(DAG.getMachineFunction()); 4617 if (VT == MVT::f16) { 4618 return Subtarget->hasMadF16() && 4619 !hasFP64FP16Denormals(DAG.getMachineFunction()); 4620 } 4621 4622 return false; 4623 } 4624 4625 //===----------------------------------------------------------------------===// 4626 // Custom DAG Lowering Operations 4627 //===----------------------------------------------------------------------===// 4628 4629 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4630 // wider vector type is legal. 4631 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 4632 SelectionDAG &DAG) const { 4633 unsigned Opc = Op.getOpcode(); 4634 EVT VT = Op.getValueType(); 4635 assert(VT == MVT::v4f16 || VT == MVT::v4i16); 4636 4637 SDValue Lo, Hi; 4638 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4639 4640 SDLoc SL(Op); 4641 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 4642 Op->getFlags()); 4643 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 4644 Op->getFlags()); 4645 4646 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4647 } 4648 4649 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4650 // wider vector type is legal. 4651 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 4652 SelectionDAG &DAG) const { 4653 unsigned Opc = Op.getOpcode(); 4654 EVT VT = Op.getValueType(); 4655 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || 4656 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8f32 || 4657 VT == MVT::v16f32 || VT == MVT::v32f32); 4658 4659 SDValue Lo0, Hi0; 4660 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4661 SDValue Lo1, Hi1; 4662 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4663 4664 SDLoc SL(Op); 4665 4666 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 4667 Op->getFlags()); 4668 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 4669 Op->getFlags()); 4670 4671 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4672 } 4673 4674 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 4675 SelectionDAG &DAG) const { 4676 unsigned Opc = Op.getOpcode(); 4677 EVT VT = Op.getValueType(); 4678 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || 4679 VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v8f32 || 4680 VT == MVT::v16f32 || VT == MVT::v32f32); 4681 4682 SDValue Lo0, Hi0; 4683 SDValue Op0 = Op.getOperand(0); 4684 std::tie(Lo0, Hi0) = Op0.getValueType().isVector() 4685 ? DAG.SplitVectorOperand(Op.getNode(), 0) 4686 : std::make_pair(Op0, Op0); 4687 SDValue Lo1, Hi1; 4688 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4689 SDValue Lo2, Hi2; 4690 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 4691 4692 SDLoc SL(Op); 4693 auto ResVT = DAG.GetSplitDestVTs(VT); 4694 4695 SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, 4696 Op->getFlags()); 4697 SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, 4698 Op->getFlags()); 4699 4700 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4701 } 4702 4703 4704 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4705 switch (Op.getOpcode()) { 4706 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 4707 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 4708 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4709 case ISD::LOAD: { 4710 SDValue Result = LowerLOAD(Op, DAG); 4711 assert((!Result.getNode() || 4712 Result.getNode()->getNumValues() == 2) && 4713 "Load should return a value and a chain"); 4714 return Result; 4715 } 4716 4717 case ISD::FSIN: 4718 case ISD::FCOS: 4719 return LowerTrig(Op, DAG); 4720 case ISD::SELECT: return LowerSELECT(Op, DAG); 4721 case ISD::FDIV: return LowerFDIV(Op, DAG); 4722 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 4723 case ISD::STORE: return LowerSTORE(Op, DAG); 4724 case ISD::GlobalAddress: { 4725 MachineFunction &MF = DAG.getMachineFunction(); 4726 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 4727 return LowerGlobalAddress(MFI, Op, DAG); 4728 } 4729 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4730 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 4731 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 4732 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 4733 case ISD::INSERT_SUBVECTOR: 4734 return lowerINSERT_SUBVECTOR(Op, DAG); 4735 case ISD::INSERT_VECTOR_ELT: 4736 return lowerINSERT_VECTOR_ELT(Op, DAG); 4737 case ISD::EXTRACT_VECTOR_ELT: 4738 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4739 case ISD::VECTOR_SHUFFLE: 4740 return lowerVECTOR_SHUFFLE(Op, DAG); 4741 case ISD::BUILD_VECTOR: 4742 return lowerBUILD_VECTOR(Op, DAG); 4743 case ISD::FP_ROUND: 4744 return lowerFP_ROUND(Op, DAG); 4745 case ISD::TRAP: 4746 return lowerTRAP(Op, DAG); 4747 case ISD::DEBUGTRAP: 4748 return lowerDEBUGTRAP(Op, DAG); 4749 case ISD::FABS: 4750 case ISD::FNEG: 4751 case ISD::FCANONICALIZE: 4752 case ISD::BSWAP: 4753 return splitUnaryVectorOp(Op, DAG); 4754 case ISD::FMINNUM: 4755 case ISD::FMAXNUM: 4756 return lowerFMINNUM_FMAXNUM(Op, DAG); 4757 case ISD::FMA: 4758 return splitTernaryVectorOp(Op, DAG); 4759 case ISD::FP_TO_SINT: 4760 case ISD::FP_TO_UINT: 4761 return LowerFP_TO_INT(Op, DAG); 4762 case ISD::SHL: 4763 case ISD::SRA: 4764 case ISD::SRL: 4765 case ISD::ADD: 4766 case ISD::SUB: 4767 case ISD::MUL: 4768 case ISD::SMIN: 4769 case ISD::SMAX: 4770 case ISD::UMIN: 4771 case ISD::UMAX: 4772 case ISD::FADD: 4773 case ISD::FMUL: 4774 case ISD::FMINNUM_IEEE: 4775 case ISD::FMAXNUM_IEEE: 4776 case ISD::UADDSAT: 4777 case ISD::USUBSAT: 4778 case ISD::SADDSAT: 4779 case ISD::SSUBSAT: 4780 return splitBinaryVectorOp(Op, DAG); 4781 case ISD::SMULO: 4782 case ISD::UMULO: 4783 return lowerXMULO(Op, DAG); 4784 case ISD::SMUL_LOHI: 4785 case ISD::UMUL_LOHI: 4786 return lowerXMUL_LOHI(Op, DAG); 4787 case ISD::DYNAMIC_STACKALLOC: 4788 return LowerDYNAMIC_STACKALLOC(Op, DAG); 4789 } 4790 return SDValue(); 4791 } 4792 4793 // Used for D16: Casts the result of an instruction into the right vector, 4794 // packs values if loads return unpacked values. 4795 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 4796 const SDLoc &DL, 4797 SelectionDAG &DAG, bool Unpacked) { 4798 if (!LoadVT.isVector()) 4799 return Result; 4800 4801 // Cast back to the original packed type or to a larger type that is a 4802 // multiple of 32 bit for D16. Widening the return type is a required for 4803 // legalization. 4804 EVT FittingLoadVT = LoadVT; 4805 if ((LoadVT.getVectorNumElements() % 2) == 1) { 4806 FittingLoadVT = 4807 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 4808 LoadVT.getVectorNumElements() + 1); 4809 } 4810 4811 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 4812 // Truncate to v2i16/v4i16. 4813 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); 4814 4815 // Workaround legalizer not scalarizing truncate after vector op 4816 // legalization but not creating intermediate vector trunc. 4817 SmallVector<SDValue, 4> Elts; 4818 DAG.ExtractVectorElements(Result, Elts); 4819 for (SDValue &Elt : Elts) 4820 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 4821 4822 // Pad illegal v1i16/v3fi6 to v4i16 4823 if ((LoadVT.getVectorNumElements() % 2) == 1) 4824 Elts.push_back(DAG.getUNDEF(MVT::i16)); 4825 4826 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 4827 4828 // Bitcast to original type (v2f16/v4f16). 4829 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 4830 } 4831 4832 // Cast back to the original packed type. 4833 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 4834 } 4835 4836 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 4837 MemSDNode *M, 4838 SelectionDAG &DAG, 4839 ArrayRef<SDValue> Ops, 4840 bool IsIntrinsic) const { 4841 SDLoc DL(M); 4842 4843 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 4844 EVT LoadVT = M->getValueType(0); 4845 4846 EVT EquivLoadVT = LoadVT; 4847 if (LoadVT.isVector()) { 4848 if (Unpacked) { 4849 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 4850 LoadVT.getVectorNumElements()); 4851 } else if ((LoadVT.getVectorNumElements() % 2) == 1) { 4852 // Widen v3f16 to legal type 4853 EquivLoadVT = 4854 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 4855 LoadVT.getVectorNumElements() + 1); 4856 } 4857 } 4858 4859 // Change from v4f16/v2f16 to EquivLoadVT. 4860 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 4861 4862 SDValue Load 4863 = DAG.getMemIntrinsicNode( 4864 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 4865 VTList, Ops, M->getMemoryVT(), 4866 M->getMemOperand()); 4867 4868 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 4869 4870 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 4871 } 4872 4873 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 4874 SelectionDAG &DAG, 4875 ArrayRef<SDValue> Ops) const { 4876 SDLoc DL(M); 4877 EVT LoadVT = M->getValueType(0); 4878 EVT EltType = LoadVT.getScalarType(); 4879 EVT IntVT = LoadVT.changeTypeToInteger(); 4880 4881 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 4882 4883 unsigned Opc = 4884 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD; 4885 4886 if (IsD16) { 4887 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 4888 } 4889 4890 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 4891 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 4892 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 4893 4894 if (isTypeLegal(LoadVT)) { 4895 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 4896 M->getMemOperand(), DAG); 4897 } 4898 4899 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 4900 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 4901 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 4902 M->getMemOperand(), DAG); 4903 return DAG.getMergeValues( 4904 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 4905 DL); 4906 } 4907 4908 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 4909 SDNode *N, SelectionDAG &DAG) { 4910 EVT VT = N->getValueType(0); 4911 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4912 unsigned CondCode = CD->getZExtValue(); 4913 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) 4914 return DAG.getUNDEF(VT); 4915 4916 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 4917 4918 SDValue LHS = N->getOperand(1); 4919 SDValue RHS = N->getOperand(2); 4920 4921 SDLoc DL(N); 4922 4923 EVT CmpVT = LHS.getValueType(); 4924 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 4925 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 4926 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4927 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 4928 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 4929 } 4930 4931 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 4932 4933 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4934 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4935 4936 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 4937 DAG.getCondCode(CCOpcode)); 4938 if (VT.bitsEq(CCVT)) 4939 return SetCC; 4940 return DAG.getZExtOrTrunc(SetCC, DL, VT); 4941 } 4942 4943 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 4944 SDNode *N, SelectionDAG &DAG) { 4945 EVT VT = N->getValueType(0); 4946 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4947 4948 unsigned CondCode = CD->getZExtValue(); 4949 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) 4950 return DAG.getUNDEF(VT); 4951 4952 SDValue Src0 = N->getOperand(1); 4953 SDValue Src1 = N->getOperand(2); 4954 EVT CmpVT = Src0.getValueType(); 4955 SDLoc SL(N); 4956 4957 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 4958 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 4959 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 4960 } 4961 4962 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 4963 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 4964 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4965 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4966 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 4967 Src1, DAG.getCondCode(CCOpcode)); 4968 if (VT.bitsEq(CCVT)) 4969 return SetCC; 4970 return DAG.getZExtOrTrunc(SetCC, SL, VT); 4971 } 4972 4973 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, 4974 SelectionDAG &DAG) { 4975 EVT VT = N->getValueType(0); 4976 SDValue Src = N->getOperand(1); 4977 SDLoc SL(N); 4978 4979 if (Src.getOpcode() == ISD::SETCC) { 4980 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) 4981 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), 4982 Src.getOperand(1), Src.getOperand(2)); 4983 } 4984 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { 4985 // (ballot 0) -> 0 4986 if (Arg->isZero()) 4987 return DAG.getConstant(0, SL, VT); 4988 4989 // (ballot 1) -> EXEC/EXEC_LO 4990 if (Arg->isOne()) { 4991 Register Exec; 4992 if (VT.getScalarSizeInBits() == 32) 4993 Exec = AMDGPU::EXEC_LO; 4994 else if (VT.getScalarSizeInBits() == 64) 4995 Exec = AMDGPU::EXEC; 4996 else 4997 return SDValue(); 4998 4999 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); 5000 } 5001 } 5002 5003 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) 5004 // ISD::SETNE) 5005 return DAG.getNode( 5006 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), 5007 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); 5008 } 5009 5010 void SITargetLowering::ReplaceNodeResults(SDNode *N, 5011 SmallVectorImpl<SDValue> &Results, 5012 SelectionDAG &DAG) const { 5013 switch (N->getOpcode()) { 5014 case ISD::INSERT_VECTOR_ELT: { 5015 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 5016 Results.push_back(Res); 5017 return; 5018 } 5019 case ISD::EXTRACT_VECTOR_ELT: { 5020 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 5021 Results.push_back(Res); 5022 return; 5023 } 5024 case ISD::INTRINSIC_WO_CHAIN: { 5025 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5026 switch (IID) { 5027 case Intrinsic::amdgcn_cvt_pkrtz: { 5028 SDValue Src0 = N->getOperand(1); 5029 SDValue Src1 = N->getOperand(2); 5030 SDLoc SL(N); 5031 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 5032 Src0, Src1); 5033 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 5034 return; 5035 } 5036 case Intrinsic::amdgcn_cvt_pknorm_i16: 5037 case Intrinsic::amdgcn_cvt_pknorm_u16: 5038 case Intrinsic::amdgcn_cvt_pk_i16: 5039 case Intrinsic::amdgcn_cvt_pk_u16: { 5040 SDValue Src0 = N->getOperand(1); 5041 SDValue Src1 = N->getOperand(2); 5042 SDLoc SL(N); 5043 unsigned Opcode; 5044 5045 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 5046 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 5047 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 5048 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 5049 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 5050 Opcode = AMDGPUISD::CVT_PK_I16_I32; 5051 else 5052 Opcode = AMDGPUISD::CVT_PK_U16_U32; 5053 5054 EVT VT = N->getValueType(0); 5055 if (isTypeLegal(VT)) 5056 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 5057 else { 5058 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 5059 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 5060 } 5061 return; 5062 } 5063 } 5064 break; 5065 } 5066 case ISD::INTRINSIC_W_CHAIN: { 5067 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 5068 if (Res.getOpcode() == ISD::MERGE_VALUES) { 5069 // FIXME: Hacky 5070 for (unsigned I = 0; I < Res.getNumOperands(); I++) { 5071 Results.push_back(Res.getOperand(I)); 5072 } 5073 } else { 5074 Results.push_back(Res); 5075 Results.push_back(Res.getValue(1)); 5076 } 5077 return; 5078 } 5079 5080 break; 5081 } 5082 case ISD::SELECT: { 5083 SDLoc SL(N); 5084 EVT VT = N->getValueType(0); 5085 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 5086 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 5087 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 5088 5089 EVT SelectVT = NewVT; 5090 if (NewVT.bitsLT(MVT::i32)) { 5091 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 5092 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 5093 SelectVT = MVT::i32; 5094 } 5095 5096 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 5097 N->getOperand(0), LHS, RHS); 5098 5099 if (NewVT != SelectVT) 5100 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 5101 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 5102 return; 5103 } 5104 case ISD::FNEG: { 5105 if (N->getValueType(0) != MVT::v2f16) 5106 break; 5107 5108 SDLoc SL(N); 5109 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 5110 5111 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 5112 BC, 5113 DAG.getConstant(0x80008000, SL, MVT::i32)); 5114 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 5115 return; 5116 } 5117 case ISD::FABS: { 5118 if (N->getValueType(0) != MVT::v2f16) 5119 break; 5120 5121 SDLoc SL(N); 5122 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 5123 5124 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 5125 BC, 5126 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 5127 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 5128 return; 5129 } 5130 default: 5131 break; 5132 } 5133 } 5134 5135 /// Helper function for LowerBRCOND 5136 static SDNode *findUser(SDValue Value, unsigned Opcode) { 5137 5138 SDNode *Parent = Value.getNode(); 5139 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 5140 I != E; ++I) { 5141 5142 if (I.getUse().get() != Value) 5143 continue; 5144 5145 if (I->getOpcode() == Opcode) 5146 return *I; 5147 } 5148 return nullptr; 5149 } 5150 5151 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 5152 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 5153 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { 5154 case Intrinsic::amdgcn_if: 5155 return AMDGPUISD::IF; 5156 case Intrinsic::amdgcn_else: 5157 return AMDGPUISD::ELSE; 5158 case Intrinsic::amdgcn_loop: 5159 return AMDGPUISD::LOOP; 5160 case Intrinsic::amdgcn_end_cf: 5161 llvm_unreachable("should not occur"); 5162 default: 5163 return 0; 5164 } 5165 } 5166 5167 // break, if_break, else_break are all only used as inputs to loop, not 5168 // directly as branch conditions. 5169 return 0; 5170 } 5171 5172 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 5173 const Triple &TT = getTargetMachine().getTargetTriple(); 5174 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5175 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5176 AMDGPU::shouldEmitConstantsToTextSection(TT); 5177 } 5178 5179 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 5180 // FIXME: Either avoid relying on address space here or change the default 5181 // address space for functions to avoid the explicit check. 5182 return (GV->getValueType()->isFunctionTy() || 5183 !isNonGlobalAddrSpace(GV->getAddressSpace())) && 5184 !shouldEmitFixup(GV) && 5185 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 5186 } 5187 5188 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 5189 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 5190 } 5191 5192 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { 5193 if (!GV->hasExternalLinkage()) 5194 return true; 5195 5196 const auto OS = getTargetMachine().getTargetTriple().getOS(); 5197 return OS == Triple::AMDHSA || OS == Triple::AMDPAL; 5198 } 5199 5200 /// This transforms the control flow intrinsics to get the branch destination as 5201 /// last parameter, also switches branch target with BR if the need arise 5202 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 5203 SelectionDAG &DAG) const { 5204 SDLoc DL(BRCOND); 5205 5206 SDNode *Intr = BRCOND.getOperand(1).getNode(); 5207 SDValue Target = BRCOND.getOperand(2); 5208 SDNode *BR = nullptr; 5209 SDNode *SetCC = nullptr; 5210 5211 if (Intr->getOpcode() == ISD::SETCC) { 5212 // As long as we negate the condition everything is fine 5213 SetCC = Intr; 5214 Intr = SetCC->getOperand(0).getNode(); 5215 5216 } else { 5217 // Get the target from BR if we don't negate the condition 5218 BR = findUser(BRCOND, ISD::BR); 5219 assert(BR && "brcond missing unconditional branch user"); 5220 Target = BR->getOperand(1); 5221 } 5222 5223 unsigned CFNode = isCFIntrinsic(Intr); 5224 if (CFNode == 0) { 5225 // This is a uniform branch so we don't need to legalize. 5226 return BRCOND; 5227 } 5228 5229 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 5230 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 5231 5232 assert(!SetCC || 5233 (SetCC->getConstantOperandVal(1) == 1 && 5234 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 5235 ISD::SETNE)); 5236 5237 // operands of the new intrinsic call 5238 SmallVector<SDValue, 4> Ops; 5239 if (HaveChain) 5240 Ops.push_back(BRCOND.getOperand(0)); 5241 5242 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 5243 Ops.push_back(Target); 5244 5245 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 5246 5247 // build the new intrinsic call 5248 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 5249 5250 if (!HaveChain) { 5251 SDValue Ops[] = { 5252 SDValue(Result, 0), 5253 BRCOND.getOperand(0) 5254 }; 5255 5256 Result = DAG.getMergeValues(Ops, DL).getNode(); 5257 } 5258 5259 if (BR) { 5260 // Give the branch instruction our target 5261 SDValue Ops[] = { 5262 BR->getOperand(0), 5263 BRCOND.getOperand(2) 5264 }; 5265 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 5266 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 5267 } 5268 5269 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 5270 5271 // Copy the intrinsic results to registers 5272 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 5273 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 5274 if (!CopyToReg) 5275 continue; 5276 5277 Chain = DAG.getCopyToReg( 5278 Chain, DL, 5279 CopyToReg->getOperand(1), 5280 SDValue(Result, i - 1), 5281 SDValue()); 5282 5283 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 5284 } 5285 5286 // Remove the old intrinsic from the chain 5287 DAG.ReplaceAllUsesOfValueWith( 5288 SDValue(Intr, Intr->getNumValues() - 1), 5289 Intr->getOperand(0)); 5290 5291 return Chain; 5292 } 5293 5294 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 5295 SelectionDAG &DAG) const { 5296 MVT VT = Op.getSimpleValueType(); 5297 SDLoc DL(Op); 5298 // Checking the depth 5299 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) 5300 return DAG.getConstant(0, DL, VT); 5301 5302 MachineFunction &MF = DAG.getMachineFunction(); 5303 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5304 // Check for kernel and shader functions 5305 if (Info->isEntryFunction()) 5306 return DAG.getConstant(0, DL, VT); 5307 5308 MachineFrameInfo &MFI = MF.getFrameInfo(); 5309 // There is a call to @llvm.returnaddress in this function 5310 MFI.setReturnAddressIsTaken(true); 5311 5312 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 5313 // Get the return address reg and mark it as an implicit live-in 5314 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 5315 5316 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 5317 } 5318 5319 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, 5320 SDValue Op, 5321 const SDLoc &DL, 5322 EVT VT) const { 5323 return Op.getValueType().bitsLE(VT) ? 5324 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 5325 DAG.getNode(ISD::FP_ROUND, DL, VT, Op, 5326 DAG.getTargetConstant(0, DL, MVT::i32)); 5327 } 5328 5329 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 5330 assert(Op.getValueType() == MVT::f16 && 5331 "Do not know how to custom lower FP_ROUND for non-f16 type"); 5332 5333 SDValue Src = Op.getOperand(0); 5334 EVT SrcVT = Src.getValueType(); 5335 if (SrcVT != MVT::f64) 5336 return Op; 5337 5338 SDLoc DL(Op); 5339 5340 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 5341 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 5342 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 5343 } 5344 5345 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 5346 SelectionDAG &DAG) const { 5347 EVT VT = Op.getValueType(); 5348 const MachineFunction &MF = DAG.getMachineFunction(); 5349 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5350 bool IsIEEEMode = Info->getMode().IEEE; 5351 5352 // FIXME: Assert during selection that this is only selected for 5353 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 5354 // mode functions, but this happens to be OK since it's only done in cases 5355 // where there is known no sNaN. 5356 if (IsIEEEMode) 5357 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 5358 5359 if (VT == MVT::v4f16 || VT == MVT::v8f16) 5360 return splitBinaryVectorOp(Op, DAG); 5361 return Op; 5362 } 5363 5364 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { 5365 EVT VT = Op.getValueType(); 5366 SDLoc SL(Op); 5367 SDValue LHS = Op.getOperand(0); 5368 SDValue RHS = Op.getOperand(1); 5369 bool isSigned = Op.getOpcode() == ISD::SMULO; 5370 5371 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5372 const APInt &C = RHSC->getAPIntValue(); 5373 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5374 if (C.isPowerOf2()) { 5375 // smulo(x, signed_min) is same as umulo(x, signed_min). 5376 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5377 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); 5378 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); 5379 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, 5380 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5381 SL, VT, Result, ShiftAmt), 5382 LHS, ISD::SETNE); 5383 return DAG.getMergeValues({ Result, Overflow }, SL); 5384 } 5385 } 5386 5387 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); 5388 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, 5389 SL, VT, LHS, RHS); 5390 5391 SDValue Sign = isSigned 5392 ? DAG.getNode(ISD::SRA, SL, VT, Result, 5393 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) 5394 : DAG.getConstant(0, SL, VT); 5395 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); 5396 5397 return DAG.getMergeValues({ Result, Overflow }, SL); 5398 } 5399 5400 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { 5401 if (Op->isDivergent()) { 5402 // Select to V_MAD_[IU]64_[IU]32. 5403 return Op; 5404 } 5405 if (Subtarget->hasSMulHi()) { 5406 // Expand to S_MUL_I32 + S_MUL_HI_[IU]32. 5407 return SDValue(); 5408 } 5409 // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to 5410 // calculate the high part, so we might as well do the whole thing with 5411 // V_MAD_[IU]64_[IU]32. 5412 return Op; 5413 } 5414 5415 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 5416 if (!Subtarget->isTrapHandlerEnabled() || 5417 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) 5418 return lowerTrapEndpgm(Op, DAG); 5419 5420 if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) { 5421 switch (*HsaAbiVer) { 5422 case ELF::ELFABIVERSION_AMDGPU_HSA_V2: 5423 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 5424 return lowerTrapHsaQueuePtr(Op, DAG); 5425 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 5426 return Subtarget->supportsGetDoorbellID() ? 5427 lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG); 5428 } 5429 } 5430 5431 llvm_unreachable("Unknown trap handler"); 5432 } 5433 5434 SDValue SITargetLowering::lowerTrapEndpgm( 5435 SDValue Op, SelectionDAG &DAG) const { 5436 SDLoc SL(Op); 5437 SDValue Chain = Op.getOperand(0); 5438 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); 5439 } 5440 5441 SDValue SITargetLowering::lowerTrapHsaQueuePtr( 5442 SDValue Op, SelectionDAG &DAG) const { 5443 SDLoc SL(Op); 5444 SDValue Chain = Op.getOperand(0); 5445 5446 MachineFunction &MF = DAG.getMachineFunction(); 5447 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5448 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5449 5450 SDValue QueuePtr; 5451 if (UserSGPR == AMDGPU::NoRegister) { 5452 // We probably are in a function incorrectly marked with 5453 // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the trap, 5454 // so just use a null pointer. 5455 QueuePtr = DAG.getConstant(0, SL, MVT::i64); 5456 } else { 5457 QueuePtr = CreateLiveInRegister( 5458 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5459 } 5460 5461 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 5462 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 5463 QueuePtr, SDValue()); 5464 5465 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 5466 SDValue Ops[] = { 5467 ToReg, 5468 DAG.getTargetConstant(TrapID, SL, MVT::i16), 5469 SGPR01, 5470 ToReg.getValue(1) 5471 }; 5472 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5473 } 5474 5475 SDValue SITargetLowering::lowerTrapHsa( 5476 SDValue Op, SelectionDAG &DAG) const { 5477 SDLoc SL(Op); 5478 SDValue Chain = Op.getOperand(0); 5479 5480 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 5481 SDValue Ops[] = { 5482 Chain, 5483 DAG.getTargetConstant(TrapID, SL, MVT::i16) 5484 }; 5485 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5486 } 5487 5488 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 5489 SDLoc SL(Op); 5490 SDValue Chain = Op.getOperand(0); 5491 MachineFunction &MF = DAG.getMachineFunction(); 5492 5493 if (!Subtarget->isTrapHandlerEnabled() || 5494 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { 5495 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 5496 "debugtrap handler not supported", 5497 Op.getDebugLoc(), 5498 DS_Warning); 5499 LLVMContext &Ctx = MF.getFunction().getContext(); 5500 Ctx.diagnose(NoTrap); 5501 return Chain; 5502 } 5503 5504 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); 5505 SDValue Ops[] = { 5506 Chain, 5507 DAG.getTargetConstant(TrapID, SL, MVT::i16) 5508 }; 5509 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5510 } 5511 5512 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 5513 SelectionDAG &DAG) const { 5514 // FIXME: Use inline constants (src_{shared, private}_base) instead. 5515 if (Subtarget->hasApertureRegs()) { 5516 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 5517 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 5518 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 5519 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 5520 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 5521 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 5522 unsigned Encoding = 5523 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 5524 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 5525 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 5526 5527 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); 5528 SDValue ApertureReg = SDValue( 5529 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); 5530 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); 5531 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); 5532 } 5533 5534 MachineFunction &MF = DAG.getMachineFunction(); 5535 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5536 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5537 if (UserSGPR == AMDGPU::NoRegister) { 5538 // We probably are in a function incorrectly marked with 5539 // amdgpu-no-queue-ptr. This is undefined. 5540 return DAG.getUNDEF(MVT::i32); 5541 } 5542 5543 SDValue QueuePtr = CreateLiveInRegister( 5544 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5545 5546 // Offset into amd_queue_t for group_segment_aperture_base_hi / 5547 // private_segment_aperture_base_hi. 5548 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 5549 5550 SDValue Ptr = 5551 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset)); 5552 5553 // TODO: Use custom target PseudoSourceValue. 5554 // TODO: We should use the value from the IR intrinsic call, but it might not 5555 // be available and how do we get it? 5556 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5557 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 5558 commonAlignment(Align(64), StructOffset), 5559 MachineMemOperand::MODereferenceable | 5560 MachineMemOperand::MOInvariant); 5561 } 5562 5563 /// Return true if the value is a known valid address, such that a null check is 5564 /// not necessary. 5565 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG, 5566 const AMDGPUTargetMachine &TM, unsigned AddrSpace) { 5567 if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) || 5568 isa<BasicBlockSDNode>(Val)) 5569 return true; 5570 5571 if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val)) 5572 return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace); 5573 5574 // TODO: Search through arithmetic, handle arguments and loads 5575 // marked nonnull. 5576 return false; 5577 } 5578 5579 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 5580 SelectionDAG &DAG) const { 5581 SDLoc SL(Op); 5582 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 5583 5584 SDValue Src = ASC->getOperand(0); 5585 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 5586 unsigned SrcAS = ASC->getSrcAddressSpace(); 5587 5588 const AMDGPUTargetMachine &TM = 5589 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 5590 5591 // flat -> local/private 5592 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { 5593 unsigned DestAS = ASC->getDestAddressSpace(); 5594 5595 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 5596 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 5597 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5598 5599 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 5600 return Ptr; 5601 5602 unsigned NullVal = TM.getNullPointerValue(DestAS); 5603 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5604 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 5605 5606 return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, 5607 SegmentNullPtr); 5608 } 5609 } 5610 5611 // local/private -> flat 5612 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5613 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 5614 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 5615 5616 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 5617 SDValue CvtPtr = 5618 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 5619 CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); 5620 5621 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 5622 return CvtPtr; 5623 5624 unsigned NullVal = TM.getNullPointerValue(SrcAS); 5625 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5626 5627 SDValue NonNull 5628 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 5629 5630 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr, 5631 FlatNullPtr); 5632 } 5633 } 5634 5635 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5636 Src.getValueType() == MVT::i64) 5637 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5638 5639 // global <-> flat are no-ops and never emitted. 5640 5641 const MachineFunction &MF = DAG.getMachineFunction(); 5642 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 5643 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 5644 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 5645 5646 return DAG.getUNDEF(ASC->getValueType(0)); 5647 } 5648 5649 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 5650 // the small vector and inserting them into the big vector. That is better than 5651 // the default expansion of doing it via a stack slot. Even though the use of 5652 // the stack slot would be optimized away afterwards, the stack slot itself 5653 // remains. 5654 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5655 SelectionDAG &DAG) const { 5656 SDValue Vec = Op.getOperand(0); 5657 SDValue Ins = Op.getOperand(1); 5658 SDValue Idx = Op.getOperand(2); 5659 EVT VecVT = Vec.getValueType(); 5660 EVT InsVT = Ins.getValueType(); 5661 EVT EltVT = VecVT.getVectorElementType(); 5662 unsigned InsNumElts = InsVT.getVectorNumElements(); 5663 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); 5664 SDLoc SL(Op); 5665 5666 for (unsigned I = 0; I != InsNumElts; ++I) { 5667 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 5668 DAG.getConstant(I, SL, MVT::i32)); 5669 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 5670 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 5671 } 5672 return Vec; 5673 } 5674 5675 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5676 SelectionDAG &DAG) const { 5677 SDValue Vec = Op.getOperand(0); 5678 SDValue InsVal = Op.getOperand(1); 5679 SDValue Idx = Op.getOperand(2); 5680 EVT VecVT = Vec.getValueType(); 5681 EVT EltVT = VecVT.getVectorElementType(); 5682 unsigned VecSize = VecVT.getSizeInBits(); 5683 unsigned EltSize = EltVT.getSizeInBits(); 5684 5685 5686 assert(VecSize <= 64); 5687 5688 unsigned NumElts = VecVT.getVectorNumElements(); 5689 SDLoc SL(Op); 5690 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 5691 5692 if (NumElts == 4 && EltSize == 16 && KIdx) { 5693 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 5694 5695 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5696 DAG.getConstant(0, SL, MVT::i32)); 5697 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5698 DAG.getConstant(1, SL, MVT::i32)); 5699 5700 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 5701 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 5702 5703 unsigned Idx = KIdx->getZExtValue(); 5704 bool InsertLo = Idx < 2; 5705 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 5706 InsertLo ? LoVec : HiVec, 5707 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 5708 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 5709 5710 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 5711 5712 SDValue Concat = InsertLo ? 5713 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 5714 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 5715 5716 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 5717 } 5718 5719 if (isa<ConstantSDNode>(Idx)) 5720 return SDValue(); 5721 5722 MVT IntVT = MVT::getIntegerVT(VecSize); 5723 5724 // Avoid stack access for dynamic indexing. 5725 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 5726 5727 // Create a congruent vector with the target value in each element so that 5728 // the required element can be masked and ORed into the target vector. 5729 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 5730 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 5731 5732 assert(isPowerOf2_32(EltSize)); 5733 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5734 5735 // Convert vector index to bit-index. 5736 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5737 5738 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5739 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 5740 DAG.getConstant(0xffff, SL, IntVT), 5741 ScaledIdx); 5742 5743 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 5744 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 5745 DAG.getNOT(SL, BFM, IntVT), BCVec); 5746 5747 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 5748 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 5749 } 5750 5751 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5752 SelectionDAG &DAG) const { 5753 SDLoc SL(Op); 5754 5755 EVT ResultVT = Op.getValueType(); 5756 SDValue Vec = Op.getOperand(0); 5757 SDValue Idx = Op.getOperand(1); 5758 EVT VecVT = Vec.getValueType(); 5759 unsigned VecSize = VecVT.getSizeInBits(); 5760 EVT EltVT = VecVT.getVectorElementType(); 5761 5762 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 5763 5764 // Make sure we do any optimizations that will make it easier to fold 5765 // source modifiers before obscuring it with bit operations. 5766 5767 // XXX - Why doesn't this get called when vector_shuffle is expanded? 5768 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 5769 return Combined; 5770 5771 if (VecSize == 128) { 5772 SDValue Lo, Hi; 5773 EVT LoVT, HiVT; 5774 SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec); 5775 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5776 Lo = 5777 DAG.getBitcast(LoVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, 5778 V2, DAG.getConstant(0, SL, MVT::i32))); 5779 Hi = 5780 DAG.getBitcast(HiVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, 5781 V2, DAG.getConstant(1, SL, MVT::i32))); 5782 EVT IdxVT = Idx.getValueType(); 5783 unsigned NElem = VecVT.getVectorNumElements(); 5784 assert(isPowerOf2_32(NElem)); 5785 SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT); 5786 SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask); 5787 SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT); 5788 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx); 5789 } 5790 5791 assert(VecSize <= 64); 5792 5793 unsigned EltSize = EltVT.getSizeInBits(); 5794 assert(isPowerOf2_32(EltSize)); 5795 5796 MVT IntVT = MVT::getIntegerVT(VecSize); 5797 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5798 5799 // Convert vector index to bit-index (* EltSize) 5800 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5801 5802 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5803 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 5804 5805 if (ResultVT == MVT::f16) { 5806 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 5807 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 5808 } 5809 5810 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 5811 } 5812 5813 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 5814 assert(Elt % 2 == 0); 5815 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 5816 } 5817 5818 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5819 SelectionDAG &DAG) const { 5820 SDLoc SL(Op); 5821 EVT ResultVT = Op.getValueType(); 5822 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 5823 5824 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 5825 EVT EltVT = PackVT.getVectorElementType(); 5826 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 5827 5828 // vector_shuffle <0,1,6,7> lhs, rhs 5829 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 5830 // 5831 // vector_shuffle <6,7,2,3> lhs, rhs 5832 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 5833 // 5834 // vector_shuffle <6,7,0,1> lhs, rhs 5835 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 5836 5837 // Avoid scalarizing when both halves are reading from consecutive elements. 5838 SmallVector<SDValue, 4> Pieces; 5839 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 5840 if (elementPairIsContiguous(SVN->getMask(), I)) { 5841 const int Idx = SVN->getMaskElt(I); 5842 int VecIdx = Idx < SrcNumElts ? 0 : 1; 5843 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 5844 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 5845 PackVT, SVN->getOperand(VecIdx), 5846 DAG.getConstant(EltIdx, SL, MVT::i32)); 5847 Pieces.push_back(SubVec); 5848 } else { 5849 const int Idx0 = SVN->getMaskElt(I); 5850 const int Idx1 = SVN->getMaskElt(I + 1); 5851 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 5852 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 5853 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 5854 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 5855 5856 SDValue Vec0 = SVN->getOperand(VecIdx0); 5857 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5858 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 5859 5860 SDValue Vec1 = SVN->getOperand(VecIdx1); 5861 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5862 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 5863 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 5864 } 5865 } 5866 5867 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 5868 } 5869 5870 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 5871 SelectionDAG &DAG) const { 5872 SDLoc SL(Op); 5873 EVT VT = Op.getValueType(); 5874 5875 if (VT == MVT::v4i16 || VT == MVT::v4f16 || 5876 VT == MVT::v8i16 || VT == MVT::v8f16) { 5877 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 5878 VT.getVectorNumElements() / 2); 5879 MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits()); 5880 5881 // Turn into pair of packed build_vectors. 5882 // TODO: Special case for constants that can be materialized with s_mov_b64. 5883 SmallVector<SDValue, 4> LoOps, HiOps; 5884 for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) { 5885 LoOps.push_back(Op.getOperand(I)); 5886 HiOps.push_back(Op.getOperand(I + E)); 5887 } 5888 SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps); 5889 SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps); 5890 5891 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo); 5892 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi); 5893 5894 SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL, 5895 { CastLo, CastHi }); 5896 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 5897 } 5898 5899 assert(VT == MVT::v2f16 || VT == MVT::v2i16); 5900 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 5901 5902 SDValue Lo = Op.getOperand(0); 5903 SDValue Hi = Op.getOperand(1); 5904 5905 // Avoid adding defined bits with the zero_extend. 5906 if (Hi.isUndef()) { 5907 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5908 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 5909 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 5910 } 5911 5912 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 5913 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 5914 5915 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 5916 DAG.getConstant(16, SL, MVT::i32)); 5917 if (Lo.isUndef()) 5918 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 5919 5920 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5921 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 5922 5923 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 5924 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 5925 } 5926 5927 bool 5928 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5929 // We can fold offsets for anything that doesn't require a GOT relocation. 5930 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 5931 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5932 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5933 !shouldEmitGOTReloc(GA->getGlobal()); 5934 } 5935 5936 static SDValue 5937 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 5938 const SDLoc &DL, int64_t Offset, EVT PtrVT, 5939 unsigned GAFlags = SIInstrInfo::MO_NONE) { 5940 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 5941 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 5942 // lowered to the following code sequence: 5943 // 5944 // For constant address space: 5945 // s_getpc_b64 s[0:1] 5946 // s_add_u32 s0, s0, $symbol 5947 // s_addc_u32 s1, s1, 0 5948 // 5949 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5950 // a fixup or relocation is emitted to replace $symbol with a literal 5951 // constant, which is a pc-relative offset from the encoding of the $symbol 5952 // operand to the global variable. 5953 // 5954 // For global address space: 5955 // s_getpc_b64 s[0:1] 5956 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 5957 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 5958 // 5959 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5960 // fixups or relocations are emitted to replace $symbol@*@lo and 5961 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 5962 // which is a 64-bit pc-relative offset from the encoding of the $symbol 5963 // operand to the global variable. 5964 // 5965 // What we want here is an offset from the value returned by s_getpc 5966 // (which is the address of the s_add_u32 instruction) to the global 5967 // variable, but since the encoding of $symbol starts 4 bytes after the start 5968 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 5969 // small. This requires us to add 4 to the global variable offset in order to 5970 // compute the correct address. Similarly for the s_addc_u32 instruction, the 5971 // encoding of $symbol starts 12 bytes after the start of the s_add_u32 5972 // instruction. 5973 SDValue PtrLo = 5974 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); 5975 SDValue PtrHi; 5976 if (GAFlags == SIInstrInfo::MO_NONE) { 5977 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 5978 } else { 5979 PtrHi = 5980 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1); 5981 } 5982 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 5983 } 5984 5985 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 5986 SDValue Op, 5987 SelectionDAG &DAG) const { 5988 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 5989 SDLoc DL(GSD); 5990 EVT PtrVT = Op.getValueType(); 5991 5992 const GlobalValue *GV = GSD->getGlobal(); 5993 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 5994 shouldUseLDSConstAddress(GV)) || 5995 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 5996 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { 5997 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 5998 GV->hasExternalLinkage()) { 5999 Type *Ty = GV->getValueType(); 6000 // HIP uses an unsized array `extern __shared__ T s[]` or similar 6001 // zero-sized type in other languages to declare the dynamic shared 6002 // memory which size is not known at the compile time. They will be 6003 // allocated by the runtime and placed directly after the static 6004 // allocated ones. They all share the same offset. 6005 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { 6006 assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); 6007 // Adjust alignment for that dynamic shared memory array. 6008 MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV)); 6009 return SDValue( 6010 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); 6011 } 6012 } 6013 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 6014 } 6015 6016 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 6017 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 6018 SIInstrInfo::MO_ABS32_LO); 6019 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 6020 } 6021 6022 if (shouldEmitFixup(GV)) 6023 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 6024 else if (shouldEmitPCReloc(GV)) 6025 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 6026 SIInstrInfo::MO_REL32); 6027 6028 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 6029 SIInstrInfo::MO_GOTPCREL32); 6030 6031 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 6032 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 6033 const DataLayout &DataLayout = DAG.getDataLayout(); 6034 Align Alignment = DataLayout.getABITypeAlign(PtrTy); 6035 MachinePointerInfo PtrInfo 6036 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 6037 6038 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, 6039 MachineMemOperand::MODereferenceable | 6040 MachineMemOperand::MOInvariant); 6041 } 6042 6043 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 6044 const SDLoc &DL, SDValue V) const { 6045 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 6046 // the destination register. 6047 // 6048 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 6049 // so we will end up with redundant moves to m0. 6050 // 6051 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 6052 6053 // A Null SDValue creates a glue result. 6054 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 6055 V, Chain); 6056 return SDValue(M0, 0); 6057 } 6058 6059 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 6060 SDValue Op, 6061 MVT VT, 6062 unsigned Offset) const { 6063 SDLoc SL(Op); 6064 SDValue Param = lowerKernargMemParameter( 6065 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); 6066 // The local size values will have the hi 16-bits as zero. 6067 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 6068 DAG.getValueType(VT)); 6069 } 6070 6071 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 6072 EVT VT) { 6073 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 6074 "non-hsa intrinsic with hsa target", 6075 DL.getDebugLoc()); 6076 DAG.getContext()->diagnose(BadIntrin); 6077 return DAG.getUNDEF(VT); 6078 } 6079 6080 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 6081 EVT VT) { 6082 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 6083 "intrinsic not supported on subtarget", 6084 DL.getDebugLoc()); 6085 DAG.getContext()->diagnose(BadIntrin); 6086 return DAG.getUNDEF(VT); 6087 } 6088 6089 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 6090 ArrayRef<SDValue> Elts) { 6091 assert(!Elts.empty()); 6092 MVT Type; 6093 unsigned NumElts = Elts.size(); 6094 6095 if (NumElts <= 8) { 6096 Type = MVT::getVectorVT(MVT::f32, NumElts); 6097 } else { 6098 assert(Elts.size() <= 16); 6099 Type = MVT::v16f32; 6100 NumElts = 16; 6101 } 6102 6103 SmallVector<SDValue, 16> VecElts(NumElts); 6104 for (unsigned i = 0; i < Elts.size(); ++i) { 6105 SDValue Elt = Elts[i]; 6106 if (Elt.getValueType() != MVT::f32) 6107 Elt = DAG.getBitcast(MVT::f32, Elt); 6108 VecElts[i] = Elt; 6109 } 6110 for (unsigned i = Elts.size(); i < NumElts; ++i) 6111 VecElts[i] = DAG.getUNDEF(MVT::f32); 6112 6113 if (NumElts == 1) 6114 return VecElts[0]; 6115 return DAG.getBuildVector(Type, DL, VecElts); 6116 } 6117 6118 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, 6119 SDValue Src, int ExtraElts) { 6120 EVT SrcVT = Src.getValueType(); 6121 6122 SmallVector<SDValue, 8> Elts; 6123 6124 if (SrcVT.isVector()) 6125 DAG.ExtractVectorElements(Src, Elts); 6126 else 6127 Elts.push_back(Src); 6128 6129 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); 6130 while (ExtraElts--) 6131 Elts.push_back(Undef); 6132 6133 return DAG.getBuildVector(CastVT, DL, Elts); 6134 } 6135 6136 // Re-construct the required return value for a image load intrinsic. 6137 // This is more complicated due to the optional use TexFailCtrl which means the required 6138 // return type is an aggregate 6139 static SDValue constructRetValue(SelectionDAG &DAG, 6140 MachineSDNode *Result, 6141 ArrayRef<EVT> ResultTypes, 6142 bool IsTexFail, bool Unpacked, bool IsD16, 6143 int DMaskPop, int NumVDataDwords, 6144 const SDLoc &DL) { 6145 // Determine the required return type. This is the same regardless of IsTexFail flag 6146 EVT ReqRetVT = ResultTypes[0]; 6147 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 6148 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? 6149 ReqRetNumElts : (ReqRetNumElts + 1) / 2; 6150 6151 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? 6152 DMaskPop : (DMaskPop + 1) / 2; 6153 6154 MVT DataDwordVT = NumDataDwords == 1 ? 6155 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); 6156 6157 MVT MaskPopVT = MaskPopDwords == 1 ? 6158 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); 6159 6160 SDValue Data(Result, 0); 6161 SDValue TexFail; 6162 6163 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { 6164 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); 6165 if (MaskPopVT.isVector()) { 6166 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, 6167 SDValue(Result, 0), ZeroIdx); 6168 } else { 6169 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, 6170 SDValue(Result, 0), ZeroIdx); 6171 } 6172 } 6173 6174 if (DataDwordVT.isVector()) 6175 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, 6176 NumDataDwords - MaskPopDwords); 6177 6178 if (IsD16) 6179 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); 6180 6181 EVT LegalReqRetVT = ReqRetVT; 6182 if (!ReqRetVT.isVector()) { 6183 if (!Data.getValueType().isInteger()) 6184 Data = DAG.getNode(ISD::BITCAST, DL, 6185 Data.getValueType().changeTypeToInteger(), Data); 6186 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); 6187 } else { 6188 // We need to widen the return vector to a legal type 6189 if ((ReqRetVT.getVectorNumElements() % 2) == 1 && 6190 ReqRetVT.getVectorElementType().getSizeInBits() == 16) { 6191 LegalReqRetVT = 6192 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), 6193 ReqRetVT.getVectorNumElements() + 1); 6194 } 6195 } 6196 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); 6197 6198 if (IsTexFail) { 6199 TexFail = 6200 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), 6201 DAG.getConstant(MaskPopDwords, DL, MVT::i32)); 6202 6203 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); 6204 } 6205 6206 if (Result->getNumValues() == 1) 6207 return Data; 6208 6209 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); 6210 } 6211 6212 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 6213 SDValue *LWE, bool &IsTexFail) { 6214 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 6215 6216 uint64_t Value = TexFailCtrlConst->getZExtValue(); 6217 if (Value) { 6218 IsTexFail = true; 6219 } 6220 6221 SDLoc DL(TexFailCtrlConst); 6222 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 6223 Value &= ~(uint64_t)0x1; 6224 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 6225 Value &= ~(uint64_t)0x2; 6226 6227 return Value == 0; 6228 } 6229 6230 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, 6231 MVT PackVectorVT, 6232 SmallVectorImpl<SDValue> &PackedAddrs, 6233 unsigned DimIdx, unsigned EndIdx, 6234 unsigned NumGradients) { 6235 SDLoc DL(Op); 6236 for (unsigned I = DimIdx; I < EndIdx; I++) { 6237 SDValue Addr = Op.getOperand(I); 6238 6239 // Gradients are packed with undef for each coordinate. 6240 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: 6241 // 1D: undef,dx/dh; undef,dx/dv 6242 // 2D: dy/dh,dx/dh; dy/dv,dx/dv 6243 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv 6244 if (((I + 1) >= EndIdx) || 6245 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || 6246 I == DimIdx + NumGradients - 1))) { 6247 if (Addr.getValueType() != MVT::i16) 6248 Addr = DAG.getBitcast(MVT::i16, Addr); 6249 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); 6250 } else { 6251 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); 6252 I++; 6253 } 6254 Addr = DAG.getBitcast(MVT::f32, Addr); 6255 PackedAddrs.push_back(Addr); 6256 } 6257 } 6258 6259 SDValue SITargetLowering::lowerImage(SDValue Op, 6260 const AMDGPU::ImageDimIntrinsicInfo *Intr, 6261 SelectionDAG &DAG, bool WithChain) const { 6262 SDLoc DL(Op); 6263 MachineFunction &MF = DAG.getMachineFunction(); 6264 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 6265 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 6266 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 6267 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 6268 unsigned IntrOpcode = Intr->BaseOpcode; 6269 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); 6270 6271 SmallVector<EVT, 3> ResultTypes(Op->values()); 6272 SmallVector<EVT, 3> OrigResultTypes(Op->values()); 6273 bool IsD16 = false; 6274 bool IsG16 = false; 6275 bool IsA16 = false; 6276 SDValue VData; 6277 int NumVDataDwords; 6278 bool AdjustRetType = false; 6279 6280 // Offset of intrinsic arguments 6281 const unsigned ArgOffset = WithChain ? 2 : 1; 6282 6283 unsigned DMask; 6284 unsigned DMaskLanes = 0; 6285 6286 if (BaseOpcode->Atomic) { 6287 VData = Op.getOperand(2); 6288 6289 bool Is64Bit = VData.getValueType() == MVT::i64; 6290 if (BaseOpcode->AtomicX2) { 6291 SDValue VData2 = Op.getOperand(3); 6292 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 6293 {VData, VData2}); 6294 if (Is64Bit) 6295 VData = DAG.getBitcast(MVT::v4i32, VData); 6296 6297 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 6298 DMask = Is64Bit ? 0xf : 0x3; 6299 NumVDataDwords = Is64Bit ? 4 : 2; 6300 } else { 6301 DMask = Is64Bit ? 0x3 : 0x1; 6302 NumVDataDwords = Is64Bit ? 2 : 1; 6303 } 6304 } else { 6305 auto *DMaskConst = 6306 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex)); 6307 DMask = DMaskConst->getZExtValue(); 6308 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); 6309 6310 if (BaseOpcode->Store) { 6311 VData = Op.getOperand(2); 6312 6313 MVT StoreVT = VData.getSimpleValueType(); 6314 if (StoreVT.getScalarType() == MVT::f16) { 6315 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 6316 return Op; // D16 is unsupported for this instruction 6317 6318 IsD16 = true; 6319 VData = handleD16VData(VData, DAG, true); 6320 } 6321 6322 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 6323 } else { 6324 // Work out the num dwords based on the dmask popcount and underlying type 6325 // and whether packing is supported. 6326 MVT LoadVT = ResultTypes[0].getSimpleVT(); 6327 if (LoadVT.getScalarType() == MVT::f16) { 6328 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 6329 return Op; // D16 is unsupported for this instruction 6330 6331 IsD16 = true; 6332 } 6333 6334 // Confirm that the return type is large enough for the dmask specified 6335 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 6336 (!LoadVT.isVector() && DMaskLanes > 1)) 6337 return Op; 6338 6339 // The sq block of gfx8 and gfx9 do not estimate register use correctly 6340 // for d16 image_gather4, image_gather4_l, and image_gather4_lz 6341 // instructions. 6342 if (IsD16 && !Subtarget->hasUnpackedD16VMem() && 6343 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) 6344 NumVDataDwords = (DMaskLanes + 1) / 2; 6345 else 6346 NumVDataDwords = DMaskLanes; 6347 6348 AdjustRetType = true; 6349 } 6350 } 6351 6352 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; 6353 SmallVector<SDValue, 4> VAddrs; 6354 6355 // Check for 16 bit addresses or derivatives and pack if true. 6356 MVT VAddrVT = 6357 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); 6358 MVT VAddrScalarVT = VAddrVT.getScalarType(); 6359 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 6360 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6361 6362 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); 6363 VAddrScalarVT = VAddrVT.getScalarType(); 6364 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 6365 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6366 6367 // Push back extra arguments. 6368 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) { 6369 if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) { 6370 assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument"); 6371 // Special handling of bias when A16 is on. Bias is of type half but 6372 // occupies full 32-bit. 6373 SDValue Bias = DAG.getBuildVector( 6374 MVT::v2f16, DL, 6375 {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)}); 6376 VAddrs.push_back(Bias); 6377 } else { 6378 assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && 6379 "Bias needs to be converted to 16 bit in A16 mode"); 6380 VAddrs.push_back(Op.getOperand(ArgOffset + I)); 6381 } 6382 } 6383 6384 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { 6385 // 16 bit gradients are supported, but are tied to the A16 control 6386 // so both gradients and addresses must be 16 bit 6387 LLVM_DEBUG( 6388 dbgs() << "Failed to lower image intrinsic: 16 bit addresses " 6389 "require 16 bit args for both gradients and addresses"); 6390 return Op; 6391 } 6392 6393 if (IsA16) { 6394 if (!ST->hasA16()) { 6395 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 6396 "support 16 bit addresses\n"); 6397 return Op; 6398 } 6399 } 6400 6401 // We've dealt with incorrect input so we know that if IsA16, IsG16 6402 // are set then we have to compress/pack operands (either address, 6403 // gradient or both) 6404 // In the case where a16 and gradients are tied (no G16 support) then we 6405 // have already verified that both IsA16 and IsG16 are true 6406 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { 6407 // Activate g16 6408 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = 6409 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); 6410 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 6411 } 6412 6413 // Add gradients (packed or unpacked) 6414 if (IsG16) { 6415 // Pack the gradients 6416 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); 6417 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, 6418 ArgOffset + Intr->GradientStart, 6419 ArgOffset + Intr->CoordStart, Intr->NumGradients); 6420 } else { 6421 for (unsigned I = ArgOffset + Intr->GradientStart; 6422 I < ArgOffset + Intr->CoordStart; I++) 6423 VAddrs.push_back(Op.getOperand(I)); 6424 } 6425 6426 // Add addresses (packed or unpacked) 6427 if (IsA16) { 6428 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, 6429 ArgOffset + Intr->CoordStart, VAddrEnd, 6430 0 /* No gradients */); 6431 } else { 6432 // Add uncompressed address 6433 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) 6434 VAddrs.push_back(Op.getOperand(I)); 6435 } 6436 6437 // If the register allocator cannot place the address registers contiguously 6438 // without introducing moves, then using the non-sequential address encoding 6439 // is always preferable, since it saves VALU instructions and is usually a 6440 // wash in terms of code size or even better. 6441 // 6442 // However, we currently have no way of hinting to the register allocator that 6443 // MIMG addresses should be placed contiguously when it is possible to do so, 6444 // so force non-NSA for the common 2-address case as a heuristic. 6445 // 6446 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 6447 // allocation when possible. 6448 bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) && 6449 VAddrs.size() >= 3 && 6450 VAddrs.size() <= (unsigned)ST->getNSAMaxSize(); 6451 SDValue VAddr; 6452 if (!UseNSA) 6453 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 6454 6455 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 6456 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 6457 SDValue Unorm; 6458 if (!BaseOpcode->Sampler) { 6459 Unorm = True; 6460 } else { 6461 auto UnormConst = 6462 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex)); 6463 6464 Unorm = UnormConst->getZExtValue() ? True : False; 6465 } 6466 6467 SDValue TFE; 6468 SDValue LWE; 6469 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); 6470 bool IsTexFail = false; 6471 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 6472 return Op; 6473 6474 if (IsTexFail) { 6475 if (!DMaskLanes) { 6476 // Expecting to get an error flag since TFC is on - and dmask is 0 6477 // Force dmask to be at least 1 otherwise the instruction will fail 6478 DMask = 0x1; 6479 DMaskLanes = 1; 6480 NumVDataDwords = 1; 6481 } 6482 NumVDataDwords += 1; 6483 AdjustRetType = true; 6484 } 6485 6486 // Has something earlier tagged that the return type needs adjusting 6487 // This happens if the instruction is a load or has set TexFailCtrl flags 6488 if (AdjustRetType) { 6489 // NumVDataDwords reflects the true number of dwords required in the return type 6490 if (DMaskLanes == 0 && !BaseOpcode->Store) { 6491 // This is a no-op load. This can be eliminated 6492 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 6493 if (isa<MemSDNode>(Op)) 6494 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 6495 return Undef; 6496 } 6497 6498 EVT NewVT = NumVDataDwords > 1 ? 6499 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) 6500 : MVT::i32; 6501 6502 ResultTypes[0] = NewVT; 6503 if (ResultTypes.size() == 3) { 6504 // Original result was aggregate type used for TexFailCtrl results 6505 // The actual instruction returns as a vector type which has now been 6506 // created. Remove the aggregate result. 6507 ResultTypes.erase(&ResultTypes[1]); 6508 } 6509 } 6510 6511 unsigned CPol = cast<ConstantSDNode>( 6512 Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue(); 6513 if (BaseOpcode->Atomic) 6514 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization 6515 if (CPol & ~AMDGPU::CPol::ALL) 6516 return Op; 6517 6518 SmallVector<SDValue, 26> Ops; 6519 if (BaseOpcode->Store || BaseOpcode->Atomic) 6520 Ops.push_back(VData); // vdata 6521 if (UseNSA) 6522 append_range(Ops, VAddrs); 6523 else 6524 Ops.push_back(VAddr); 6525 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); 6526 if (BaseOpcode->Sampler) 6527 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); 6528 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 6529 if (IsGFX10Plus) 6530 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 6531 Ops.push_back(Unorm); 6532 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); 6533 Ops.push_back(IsA16 && // r128, a16 for gfx9 6534 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 6535 if (IsGFX10Plus) 6536 Ops.push_back(IsA16 ? True : False); 6537 if (!Subtarget->hasGFX90AInsts()) { 6538 Ops.push_back(TFE); //tfe 6539 } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) { 6540 report_fatal_error("TFE is not supported on this GPU"); 6541 } 6542 Ops.push_back(LWE); // lwe 6543 if (!IsGFX10Plus) 6544 Ops.push_back(DimInfo->DA ? True : False); 6545 if (BaseOpcode->HasD16) 6546 Ops.push_back(IsD16 ? True : False); 6547 if (isa<MemSDNode>(Op)) 6548 Ops.push_back(Op.getOperand(0)); // chain 6549 6550 int NumVAddrDwords = 6551 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 6552 int Opcode = -1; 6553 6554 if (IsGFX10Plus) { 6555 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 6556 UseNSA ? AMDGPU::MIMGEncGfx10NSA 6557 : AMDGPU::MIMGEncGfx10Default, 6558 NumVDataDwords, NumVAddrDwords); 6559 } else { 6560 if (Subtarget->hasGFX90AInsts()) { 6561 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, 6562 NumVDataDwords, NumVAddrDwords); 6563 if (Opcode == -1) 6564 report_fatal_error( 6565 "requested image instruction is not supported on this GPU"); 6566 } 6567 if (Opcode == -1 && 6568 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6569 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 6570 NumVDataDwords, NumVAddrDwords); 6571 if (Opcode == -1) 6572 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 6573 NumVDataDwords, NumVAddrDwords); 6574 } 6575 assert(Opcode != -1); 6576 6577 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 6578 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 6579 MachineMemOperand *MemRef = MemOp->getMemOperand(); 6580 DAG.setNodeMemRefs(NewNode, {MemRef}); 6581 } 6582 6583 if (BaseOpcode->AtomicX2) { 6584 SmallVector<SDValue, 1> Elt; 6585 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 6586 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 6587 } 6588 if (BaseOpcode->Store) 6589 return SDValue(NewNode, 0); 6590 return constructRetValue(DAG, NewNode, 6591 OrigResultTypes, IsTexFail, 6592 Subtarget->hasUnpackedD16VMem(), IsD16, 6593 DMaskLanes, NumVDataDwords, DL); 6594 } 6595 6596 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 6597 SDValue Offset, SDValue CachePolicy, 6598 SelectionDAG &DAG) const { 6599 MachineFunction &MF = DAG.getMachineFunction(); 6600 6601 const DataLayout &DataLayout = DAG.getDataLayout(); 6602 Align Alignment = 6603 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); 6604 6605 MachineMemOperand *MMO = MF.getMachineMemOperand( 6606 MachinePointerInfo(), 6607 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 6608 MachineMemOperand::MOInvariant, 6609 VT.getStoreSize(), Alignment); 6610 6611 if (!Offset->isDivergent()) { 6612 SDValue Ops[] = { 6613 Rsrc, 6614 Offset, // Offset 6615 CachePolicy 6616 }; 6617 6618 // Widen vec3 load to vec4. 6619 if (VT.isVector() && VT.getVectorNumElements() == 3) { 6620 EVT WidenedVT = 6621 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 6622 auto WidenedOp = DAG.getMemIntrinsicNode( 6623 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, 6624 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); 6625 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, 6626 DAG.getVectorIdxConstant(0, DL)); 6627 return Subvector; 6628 } 6629 6630 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 6631 DAG.getVTList(VT), Ops, VT, MMO); 6632 } 6633 6634 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 6635 // assume that the buffer is unswizzled. 6636 SmallVector<SDValue, 4> Loads; 6637 unsigned NumLoads = 1; 6638 MVT LoadVT = VT.getSimpleVT(); 6639 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 6640 assert((LoadVT.getScalarType() == MVT::i32 || 6641 LoadVT.getScalarType() == MVT::f32)); 6642 6643 if (NumElts == 8 || NumElts == 16) { 6644 NumLoads = NumElts / 4; 6645 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); 6646 } 6647 6648 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 6649 SDValue Ops[] = { 6650 DAG.getEntryNode(), // Chain 6651 Rsrc, // rsrc 6652 DAG.getConstant(0, DL, MVT::i32), // vindex 6653 {}, // voffset 6654 {}, // soffset 6655 {}, // offset 6656 CachePolicy, // cachepolicy 6657 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6658 }; 6659 6660 // Use the alignment to ensure that the required offsets will fit into the 6661 // immediate offsets. 6662 setBufferOffsets(Offset, DAG, &Ops[3], 6663 NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); 6664 6665 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); 6666 for (unsigned i = 0; i < NumLoads; ++i) { 6667 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 6668 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, 6669 LoadVT, MMO, DAG)); 6670 } 6671 6672 if (NumElts == 8 || NumElts == 16) 6673 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 6674 6675 return Loads[0]; 6676 } 6677 6678 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 6679 SelectionDAG &DAG) const { 6680 MachineFunction &MF = DAG.getMachineFunction(); 6681 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 6682 6683 EVT VT = Op.getValueType(); 6684 SDLoc DL(Op); 6685 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6686 6687 // TODO: Should this propagate fast-math-flags? 6688 6689 switch (IntrinsicID) { 6690 case Intrinsic::amdgcn_implicit_buffer_ptr: { 6691 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 6692 return emitNonHSAIntrinsicError(DAG, DL, VT); 6693 return getPreloadedValue(DAG, *MFI, VT, 6694 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 6695 } 6696 case Intrinsic::amdgcn_dispatch_ptr: 6697 case Intrinsic::amdgcn_queue_ptr: { 6698 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 6699 DiagnosticInfoUnsupported BadIntrin( 6700 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 6701 DL.getDebugLoc()); 6702 DAG.getContext()->diagnose(BadIntrin); 6703 return DAG.getUNDEF(VT); 6704 } 6705 6706 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 6707 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 6708 return getPreloadedValue(DAG, *MFI, VT, RegID); 6709 } 6710 case Intrinsic::amdgcn_implicitarg_ptr: { 6711 if (MFI->isEntryFunction()) 6712 return getImplicitArgPtr(DAG, DL); 6713 return getPreloadedValue(DAG, *MFI, VT, 6714 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 6715 } 6716 case Intrinsic::amdgcn_kernarg_segment_ptr: { 6717 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { 6718 // This only makes sense to call in a kernel, so just lower to null. 6719 return DAG.getConstant(0, DL, VT); 6720 } 6721 6722 return getPreloadedValue(DAG, *MFI, VT, 6723 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 6724 } 6725 case Intrinsic::amdgcn_dispatch_id: { 6726 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 6727 } 6728 case Intrinsic::amdgcn_rcp: 6729 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 6730 case Intrinsic::amdgcn_rsq: 6731 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6732 case Intrinsic::amdgcn_rsq_legacy: 6733 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6734 return emitRemovedIntrinsicError(DAG, DL, VT); 6735 return SDValue(); 6736 case Intrinsic::amdgcn_rcp_legacy: 6737 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6738 return emitRemovedIntrinsicError(DAG, DL, VT); 6739 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 6740 case Intrinsic::amdgcn_rsq_clamp: { 6741 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6742 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 6743 6744 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 6745 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 6746 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 6747 6748 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6749 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 6750 DAG.getConstantFP(Max, DL, VT)); 6751 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 6752 DAG.getConstantFP(Min, DL, VT)); 6753 } 6754 case Intrinsic::r600_read_ngroups_x: 6755 if (Subtarget->isAmdHsaOS()) 6756 return emitNonHSAIntrinsicError(DAG, DL, VT); 6757 6758 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6759 SI::KernelInputOffsets::NGROUPS_X, Align(4), 6760 false); 6761 case Intrinsic::r600_read_ngroups_y: 6762 if (Subtarget->isAmdHsaOS()) 6763 return emitNonHSAIntrinsicError(DAG, DL, VT); 6764 6765 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6766 SI::KernelInputOffsets::NGROUPS_Y, Align(4), 6767 false); 6768 case Intrinsic::r600_read_ngroups_z: 6769 if (Subtarget->isAmdHsaOS()) 6770 return emitNonHSAIntrinsicError(DAG, DL, VT); 6771 6772 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6773 SI::KernelInputOffsets::NGROUPS_Z, Align(4), 6774 false); 6775 case Intrinsic::r600_read_global_size_x: 6776 if (Subtarget->isAmdHsaOS()) 6777 return emitNonHSAIntrinsicError(DAG, DL, VT); 6778 6779 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6780 SI::KernelInputOffsets::GLOBAL_SIZE_X, 6781 Align(4), false); 6782 case Intrinsic::r600_read_global_size_y: 6783 if (Subtarget->isAmdHsaOS()) 6784 return emitNonHSAIntrinsicError(DAG, DL, VT); 6785 6786 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6787 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 6788 Align(4), false); 6789 case Intrinsic::r600_read_global_size_z: 6790 if (Subtarget->isAmdHsaOS()) 6791 return emitNonHSAIntrinsicError(DAG, DL, VT); 6792 6793 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6794 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 6795 Align(4), false); 6796 case Intrinsic::r600_read_local_size_x: 6797 if (Subtarget->isAmdHsaOS()) 6798 return emitNonHSAIntrinsicError(DAG, DL, VT); 6799 6800 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6801 SI::KernelInputOffsets::LOCAL_SIZE_X); 6802 case Intrinsic::r600_read_local_size_y: 6803 if (Subtarget->isAmdHsaOS()) 6804 return emitNonHSAIntrinsicError(DAG, DL, VT); 6805 6806 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6807 SI::KernelInputOffsets::LOCAL_SIZE_Y); 6808 case Intrinsic::r600_read_local_size_z: 6809 if (Subtarget->isAmdHsaOS()) 6810 return emitNonHSAIntrinsicError(DAG, DL, VT); 6811 6812 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6813 SI::KernelInputOffsets::LOCAL_SIZE_Z); 6814 case Intrinsic::amdgcn_workgroup_id_x: 6815 return getPreloadedValue(DAG, *MFI, VT, 6816 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 6817 case Intrinsic::amdgcn_workgroup_id_y: 6818 return getPreloadedValue(DAG, *MFI, VT, 6819 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 6820 case Intrinsic::amdgcn_workgroup_id_z: 6821 return getPreloadedValue(DAG, *MFI, VT, 6822 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 6823 case Intrinsic::amdgcn_workitem_id_x: 6824 if (Subtarget->getMaxWorkitemID(MF.getFunction(), 0) == 0) 6825 return DAG.getConstant(0, DL, MVT::i32); 6826 6827 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6828 SDLoc(DAG.getEntryNode()), 6829 MFI->getArgInfo().WorkItemIDX); 6830 case Intrinsic::amdgcn_workitem_id_y: 6831 if (Subtarget->getMaxWorkitemID(MF.getFunction(), 1) == 0) 6832 return DAG.getConstant(0, DL, MVT::i32); 6833 6834 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6835 SDLoc(DAG.getEntryNode()), 6836 MFI->getArgInfo().WorkItemIDY); 6837 case Intrinsic::amdgcn_workitem_id_z: 6838 if (Subtarget->getMaxWorkitemID(MF.getFunction(), 2) == 0) 6839 return DAG.getConstant(0, DL, MVT::i32); 6840 6841 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6842 SDLoc(DAG.getEntryNode()), 6843 MFI->getArgInfo().WorkItemIDZ); 6844 case Intrinsic::amdgcn_wavefrontsize: 6845 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 6846 SDLoc(Op), MVT::i32); 6847 case Intrinsic::amdgcn_s_buffer_load: { 6848 unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6849 if (CPol & ~AMDGPU::CPol::ALL) 6850 return Op; 6851 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6852 DAG); 6853 } 6854 case Intrinsic::amdgcn_fdiv_fast: 6855 return lowerFDIV_FAST(Op, DAG); 6856 case Intrinsic::amdgcn_sin: 6857 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 6858 6859 case Intrinsic::amdgcn_cos: 6860 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 6861 6862 case Intrinsic::amdgcn_mul_u24: 6863 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6864 case Intrinsic::amdgcn_mul_i24: 6865 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6866 6867 case Intrinsic::amdgcn_log_clamp: { 6868 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6869 return SDValue(); 6870 6871 return emitRemovedIntrinsicError(DAG, DL, VT); 6872 } 6873 case Intrinsic::amdgcn_ldexp: 6874 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, 6875 Op.getOperand(1), Op.getOperand(2)); 6876 6877 case Intrinsic::amdgcn_fract: 6878 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 6879 6880 case Intrinsic::amdgcn_class: 6881 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 6882 Op.getOperand(1), Op.getOperand(2)); 6883 case Intrinsic::amdgcn_div_fmas: 6884 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 6885 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6886 Op.getOperand(4)); 6887 6888 case Intrinsic::amdgcn_div_fixup: 6889 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 6890 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6891 6892 case Intrinsic::amdgcn_div_scale: { 6893 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 6894 6895 // Translate to the operands expected by the machine instruction. The 6896 // first parameter must be the same as the first instruction. 6897 SDValue Numerator = Op.getOperand(1); 6898 SDValue Denominator = Op.getOperand(2); 6899 6900 // Note this order is opposite of the machine instruction's operations, 6901 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 6902 // intrinsic has the numerator as the first operand to match a normal 6903 // division operation. 6904 6905 SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator; 6906 6907 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 6908 Denominator, Numerator); 6909 } 6910 case Intrinsic::amdgcn_icmp: { 6911 // There is a Pat that handles this variant, so return it as-is. 6912 if (Op.getOperand(1).getValueType() == MVT::i1 && 6913 Op.getConstantOperandVal(2) == 0 && 6914 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 6915 return Op; 6916 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 6917 } 6918 case Intrinsic::amdgcn_fcmp: { 6919 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 6920 } 6921 case Intrinsic::amdgcn_ballot: 6922 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); 6923 case Intrinsic::amdgcn_fmed3: 6924 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 6925 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6926 case Intrinsic::amdgcn_fdot2: 6927 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 6928 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6929 Op.getOperand(4)); 6930 case Intrinsic::amdgcn_fmul_legacy: 6931 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 6932 Op.getOperand(1), Op.getOperand(2)); 6933 case Intrinsic::amdgcn_sffbh: 6934 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 6935 case Intrinsic::amdgcn_sbfe: 6936 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 6937 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6938 case Intrinsic::amdgcn_ubfe: 6939 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 6940 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6941 case Intrinsic::amdgcn_cvt_pkrtz: 6942 case Intrinsic::amdgcn_cvt_pknorm_i16: 6943 case Intrinsic::amdgcn_cvt_pknorm_u16: 6944 case Intrinsic::amdgcn_cvt_pk_i16: 6945 case Intrinsic::amdgcn_cvt_pk_u16: { 6946 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 6947 EVT VT = Op.getValueType(); 6948 unsigned Opcode; 6949 6950 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 6951 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 6952 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 6953 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 6954 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 6955 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 6956 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 6957 Opcode = AMDGPUISD::CVT_PK_I16_I32; 6958 else 6959 Opcode = AMDGPUISD::CVT_PK_U16_U32; 6960 6961 if (isTypeLegal(VT)) 6962 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6963 6964 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 6965 Op.getOperand(1), Op.getOperand(2)); 6966 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 6967 } 6968 case Intrinsic::amdgcn_fmad_ftz: 6969 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 6970 Op.getOperand(2), Op.getOperand(3)); 6971 6972 case Intrinsic::amdgcn_if_break: 6973 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 6974 Op->getOperand(1), Op->getOperand(2)), 0); 6975 6976 case Intrinsic::amdgcn_groupstaticsize: { 6977 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 6978 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 6979 return Op; 6980 6981 const Module *M = MF.getFunction().getParent(); 6982 const GlobalValue *GV = 6983 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 6984 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 6985 SIInstrInfo::MO_ABS32_LO); 6986 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 6987 } 6988 case Intrinsic::amdgcn_is_shared: 6989 case Intrinsic::amdgcn_is_private: { 6990 SDLoc SL(Op); 6991 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 6992 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 6993 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 6994 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 6995 Op.getOperand(1)); 6996 6997 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 6998 DAG.getConstant(1, SL, MVT::i32)); 6999 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 7000 } 7001 case Intrinsic::amdgcn_perm: 7002 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), 7003 Op.getOperand(2), Op.getOperand(3)); 7004 case Intrinsic::amdgcn_reloc_constant: { 7005 Module *M = const_cast<Module *>(MF.getFunction().getParent()); 7006 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); 7007 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); 7008 auto RelocSymbol = cast<GlobalVariable>( 7009 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); 7010 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, 7011 SIInstrInfo::MO_ABS32_LO); 7012 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 7013 } 7014 default: 7015 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7016 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 7017 return lowerImage(Op, ImageDimIntr, DAG, false); 7018 7019 return Op; 7020 } 7021 } 7022 7023 /// Update \p MMO based on the offset inputs to an intrinsic. 7024 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset, 7025 SDValue SOffset, SDValue Offset, 7026 SDValue VIndex = SDValue()) { 7027 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) || 7028 !isa<ConstantSDNode>(Offset)) { 7029 // The combined offset is not known to be constant, so we cannot represent 7030 // it in the MMO. Give up. 7031 MMO->setValue((Value *)nullptr); 7032 return; 7033 } 7034 7035 if (VIndex && (!isa<ConstantSDNode>(VIndex) || 7036 !cast<ConstantSDNode>(VIndex)->isZero())) { 7037 // The strided index component of the address is not known to be zero, so we 7038 // cannot represent it in the MMO. Give up. 7039 MMO->setValue((Value *)nullptr); 7040 return; 7041 } 7042 7043 MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() + 7044 cast<ConstantSDNode>(SOffset)->getSExtValue() + 7045 cast<ConstantSDNode>(Offset)->getSExtValue()); 7046 } 7047 7048 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, 7049 SelectionDAG &DAG, 7050 unsigned NewOpcode) const { 7051 SDLoc DL(Op); 7052 7053 SDValue VData = Op.getOperand(2); 7054 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7055 SDValue Ops[] = { 7056 Op.getOperand(0), // Chain 7057 VData, // vdata 7058 Op.getOperand(3), // rsrc 7059 DAG.getConstant(0, DL, MVT::i32), // vindex 7060 Offsets.first, // voffset 7061 Op.getOperand(5), // soffset 7062 Offsets.second, // offset 7063 Op.getOperand(6), // cachepolicy 7064 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7065 }; 7066 7067 auto *M = cast<MemSDNode>(Op); 7068 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); 7069 7070 EVT MemVT = VData.getValueType(); 7071 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 7072 M->getMemOperand()); 7073 } 7074 7075 // Return a value to use for the idxen operand by examining the vindex operand. 7076 static unsigned getIdxEn(SDValue VIndex) { 7077 if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex)) 7078 // No need to set idxen if vindex is known to be zero. 7079 return VIndexC->getZExtValue() != 0; 7080 return 1; 7081 } 7082 7083 SDValue 7084 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, 7085 unsigned NewOpcode) const { 7086 SDLoc DL(Op); 7087 7088 SDValue VData = Op.getOperand(2); 7089 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7090 SDValue Ops[] = { 7091 Op.getOperand(0), // Chain 7092 VData, // vdata 7093 Op.getOperand(3), // rsrc 7094 Op.getOperand(4), // vindex 7095 Offsets.first, // voffset 7096 Op.getOperand(6), // soffset 7097 Offsets.second, // offset 7098 Op.getOperand(7), // cachepolicy 7099 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7100 }; 7101 7102 auto *M = cast<MemSDNode>(Op); 7103 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 7104 7105 EVT MemVT = VData.getValueType(); 7106 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 7107 M->getMemOperand()); 7108 } 7109 7110 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 7111 SelectionDAG &DAG) const { 7112 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7113 SDLoc DL(Op); 7114 7115 switch (IntrID) { 7116 case Intrinsic::amdgcn_ds_ordered_add: 7117 case Intrinsic::amdgcn_ds_ordered_swap: { 7118 MemSDNode *M = cast<MemSDNode>(Op); 7119 SDValue Chain = M->getOperand(0); 7120 SDValue M0 = M->getOperand(2); 7121 SDValue Value = M->getOperand(3); 7122 unsigned IndexOperand = M->getConstantOperandVal(7); 7123 unsigned WaveRelease = M->getConstantOperandVal(8); 7124 unsigned WaveDone = M->getConstantOperandVal(9); 7125 7126 unsigned OrderedCountIndex = IndexOperand & 0x3f; 7127 IndexOperand &= ~0x3f; 7128 unsigned CountDw = 0; 7129 7130 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 7131 CountDw = (IndexOperand >> 24) & 0xf; 7132 IndexOperand &= ~(0xf << 24); 7133 7134 if (CountDw < 1 || CountDw > 4) { 7135 report_fatal_error( 7136 "ds_ordered_count: dword count must be between 1 and 4"); 7137 } 7138 } 7139 7140 if (IndexOperand) 7141 report_fatal_error("ds_ordered_count: bad index operand"); 7142 7143 if (WaveDone && !WaveRelease) 7144 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 7145 7146 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; 7147 unsigned ShaderType = 7148 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); 7149 unsigned Offset0 = OrderedCountIndex << 2; 7150 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) | 7151 (Instruction << 4); 7152 7153 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 7154 Offset1 |= (CountDw - 1) << 6; 7155 7156 unsigned Offset = Offset0 | (Offset1 << 8); 7157 7158 SDValue Ops[] = { 7159 Chain, 7160 Value, 7161 DAG.getTargetConstant(Offset, DL, MVT::i16), 7162 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 7163 }; 7164 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 7165 M->getVTList(), Ops, M->getMemoryVT(), 7166 M->getMemOperand()); 7167 } 7168 case Intrinsic::amdgcn_ds_fadd: { 7169 MemSDNode *M = cast<MemSDNode>(Op); 7170 unsigned Opc; 7171 switch (IntrID) { 7172 case Intrinsic::amdgcn_ds_fadd: 7173 Opc = ISD::ATOMIC_LOAD_FADD; 7174 break; 7175 } 7176 7177 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 7178 M->getOperand(0), M->getOperand(2), M->getOperand(3), 7179 M->getMemOperand()); 7180 } 7181 case Intrinsic::amdgcn_atomic_inc: 7182 case Intrinsic::amdgcn_atomic_dec: 7183 case Intrinsic::amdgcn_ds_fmin: 7184 case Intrinsic::amdgcn_ds_fmax: { 7185 MemSDNode *M = cast<MemSDNode>(Op); 7186 unsigned Opc; 7187 switch (IntrID) { 7188 case Intrinsic::amdgcn_atomic_inc: 7189 Opc = AMDGPUISD::ATOMIC_INC; 7190 break; 7191 case Intrinsic::amdgcn_atomic_dec: 7192 Opc = AMDGPUISD::ATOMIC_DEC; 7193 break; 7194 case Intrinsic::amdgcn_ds_fmin: 7195 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 7196 break; 7197 case Intrinsic::amdgcn_ds_fmax: 7198 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 7199 break; 7200 default: 7201 llvm_unreachable("Unknown intrinsic!"); 7202 } 7203 SDValue Ops[] = { 7204 M->getOperand(0), // Chain 7205 M->getOperand(2), // Ptr 7206 M->getOperand(3) // Value 7207 }; 7208 7209 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 7210 M->getMemoryVT(), M->getMemOperand()); 7211 } 7212 case Intrinsic::amdgcn_buffer_load: 7213 case Intrinsic::amdgcn_buffer_load_format: { 7214 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 7215 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7216 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 7217 SDValue Ops[] = { 7218 Op.getOperand(0), // Chain 7219 Op.getOperand(2), // rsrc 7220 Op.getOperand(3), // vindex 7221 SDValue(), // voffset -- will be set by setBufferOffsets 7222 SDValue(), // soffset -- will be set by setBufferOffsets 7223 SDValue(), // offset -- will be set by setBufferOffsets 7224 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7225 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7226 }; 7227 setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 7228 7229 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 7230 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 7231 7232 EVT VT = Op.getValueType(); 7233 EVT IntVT = VT.changeTypeToInteger(); 7234 auto *M = cast<MemSDNode>(Op); 7235 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); 7236 EVT LoadVT = Op.getValueType(); 7237 7238 if (LoadVT.getScalarType() == MVT::f16) 7239 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 7240 M, DAG, Ops); 7241 7242 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 7243 if (LoadVT.getScalarType() == MVT::i8 || 7244 LoadVT.getScalarType() == MVT::i16) 7245 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 7246 7247 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 7248 M->getMemOperand(), DAG); 7249 } 7250 case Intrinsic::amdgcn_raw_buffer_load: 7251 case Intrinsic::amdgcn_raw_buffer_load_format: { 7252 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; 7253 7254 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 7255 SDValue Ops[] = { 7256 Op.getOperand(0), // Chain 7257 Op.getOperand(2), // rsrc 7258 DAG.getConstant(0, DL, MVT::i32), // vindex 7259 Offsets.first, // voffset 7260 Op.getOperand(4), // soffset 7261 Offsets.second, // offset 7262 Op.getOperand(5), // cachepolicy, swizzled buffer 7263 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7264 }; 7265 7266 auto *M = cast<MemSDNode>(Op); 7267 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]); 7268 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); 7269 } 7270 case Intrinsic::amdgcn_struct_buffer_load: 7271 case Intrinsic::amdgcn_struct_buffer_load_format: { 7272 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; 7273 7274 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7275 SDValue Ops[] = { 7276 Op.getOperand(0), // Chain 7277 Op.getOperand(2), // rsrc 7278 Op.getOperand(3), // vindex 7279 Offsets.first, // voffset 7280 Op.getOperand(5), // soffset 7281 Offsets.second, // offset 7282 Op.getOperand(6), // cachepolicy, swizzled buffer 7283 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7284 }; 7285 7286 auto *M = cast<MemSDNode>(Op); 7287 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); 7288 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 7289 } 7290 case Intrinsic::amdgcn_tbuffer_load: { 7291 MemSDNode *M = cast<MemSDNode>(Op); 7292 EVT LoadVT = Op.getValueType(); 7293 7294 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7295 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 7296 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 7297 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 7298 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 7299 SDValue Ops[] = { 7300 Op.getOperand(0), // Chain 7301 Op.getOperand(2), // rsrc 7302 Op.getOperand(3), // vindex 7303 Op.getOperand(4), // voffset 7304 Op.getOperand(5), // soffset 7305 Op.getOperand(6), // offset 7306 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 7307 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7308 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 7309 }; 7310 7311 if (LoadVT.getScalarType() == MVT::f16) 7312 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7313 M, DAG, Ops); 7314 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7315 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7316 DAG); 7317 } 7318 case Intrinsic::amdgcn_raw_tbuffer_load: { 7319 MemSDNode *M = cast<MemSDNode>(Op); 7320 EVT LoadVT = Op.getValueType(); 7321 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 7322 7323 SDValue Ops[] = { 7324 Op.getOperand(0), // Chain 7325 Op.getOperand(2), // rsrc 7326 DAG.getConstant(0, DL, MVT::i32), // vindex 7327 Offsets.first, // voffset 7328 Op.getOperand(4), // soffset 7329 Offsets.second, // offset 7330 Op.getOperand(5), // format 7331 Op.getOperand(6), // cachepolicy, swizzled buffer 7332 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7333 }; 7334 7335 if (LoadVT.getScalarType() == MVT::f16) 7336 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7337 M, DAG, Ops); 7338 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7339 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7340 DAG); 7341 } 7342 case Intrinsic::amdgcn_struct_tbuffer_load: { 7343 MemSDNode *M = cast<MemSDNode>(Op); 7344 EVT LoadVT = Op.getValueType(); 7345 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7346 7347 SDValue Ops[] = { 7348 Op.getOperand(0), // Chain 7349 Op.getOperand(2), // rsrc 7350 Op.getOperand(3), // vindex 7351 Offsets.first, // voffset 7352 Op.getOperand(5), // soffset 7353 Offsets.second, // offset 7354 Op.getOperand(6), // format 7355 Op.getOperand(7), // cachepolicy, swizzled buffer 7356 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7357 }; 7358 7359 if (LoadVT.getScalarType() == MVT::f16) 7360 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7361 M, DAG, Ops); 7362 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7363 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7364 DAG); 7365 } 7366 case Intrinsic::amdgcn_buffer_atomic_swap: 7367 case Intrinsic::amdgcn_buffer_atomic_add: 7368 case Intrinsic::amdgcn_buffer_atomic_sub: 7369 case Intrinsic::amdgcn_buffer_atomic_csub: 7370 case Intrinsic::amdgcn_buffer_atomic_smin: 7371 case Intrinsic::amdgcn_buffer_atomic_umin: 7372 case Intrinsic::amdgcn_buffer_atomic_smax: 7373 case Intrinsic::amdgcn_buffer_atomic_umax: 7374 case Intrinsic::amdgcn_buffer_atomic_and: 7375 case Intrinsic::amdgcn_buffer_atomic_or: 7376 case Intrinsic::amdgcn_buffer_atomic_xor: 7377 case Intrinsic::amdgcn_buffer_atomic_fadd: { 7378 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7379 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 7380 SDValue Ops[] = { 7381 Op.getOperand(0), // Chain 7382 Op.getOperand(2), // vdata 7383 Op.getOperand(3), // rsrc 7384 Op.getOperand(4), // vindex 7385 SDValue(), // voffset -- will be set by setBufferOffsets 7386 SDValue(), // soffset -- will be set by setBufferOffsets 7387 SDValue(), // offset -- will be set by setBufferOffsets 7388 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7389 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7390 }; 7391 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7392 7393 EVT VT = Op.getValueType(); 7394 7395 auto *M = cast<MemSDNode>(Op); 7396 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 7397 unsigned Opcode = 0; 7398 7399 switch (IntrID) { 7400 case Intrinsic::amdgcn_buffer_atomic_swap: 7401 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 7402 break; 7403 case Intrinsic::amdgcn_buffer_atomic_add: 7404 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 7405 break; 7406 case Intrinsic::amdgcn_buffer_atomic_sub: 7407 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 7408 break; 7409 case Intrinsic::amdgcn_buffer_atomic_csub: 7410 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; 7411 break; 7412 case Intrinsic::amdgcn_buffer_atomic_smin: 7413 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 7414 break; 7415 case Intrinsic::amdgcn_buffer_atomic_umin: 7416 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 7417 break; 7418 case Intrinsic::amdgcn_buffer_atomic_smax: 7419 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 7420 break; 7421 case Intrinsic::amdgcn_buffer_atomic_umax: 7422 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 7423 break; 7424 case Intrinsic::amdgcn_buffer_atomic_and: 7425 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 7426 break; 7427 case Intrinsic::amdgcn_buffer_atomic_or: 7428 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 7429 break; 7430 case Intrinsic::amdgcn_buffer_atomic_xor: 7431 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 7432 break; 7433 case Intrinsic::amdgcn_buffer_atomic_fadd: 7434 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) { 7435 DiagnosticInfoUnsupported 7436 NoFpRet(DAG.getMachineFunction().getFunction(), 7437 "return versions of fp atomics not supported", 7438 DL.getDebugLoc(), DS_Error); 7439 DAG.getContext()->diagnose(NoFpRet); 7440 return SDValue(); 7441 } 7442 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD; 7443 break; 7444 default: 7445 llvm_unreachable("unhandled atomic opcode"); 7446 } 7447 7448 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7449 M->getMemOperand()); 7450 } 7451 case Intrinsic::amdgcn_raw_buffer_atomic_fadd: 7452 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7453 case Intrinsic::amdgcn_struct_buffer_atomic_fadd: 7454 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7455 case Intrinsic::amdgcn_raw_buffer_atomic_fmin: 7456 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 7457 case Intrinsic::amdgcn_struct_buffer_atomic_fmin: 7458 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 7459 case Intrinsic::amdgcn_raw_buffer_atomic_fmax: 7460 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 7461 case Intrinsic::amdgcn_struct_buffer_atomic_fmax: 7462 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 7463 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 7464 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); 7465 case Intrinsic::amdgcn_raw_buffer_atomic_add: 7466 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7467 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 7468 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7469 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 7470 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); 7471 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 7472 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); 7473 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 7474 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); 7475 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 7476 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); 7477 case Intrinsic::amdgcn_raw_buffer_atomic_and: 7478 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7479 case Intrinsic::amdgcn_raw_buffer_atomic_or: 7480 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7481 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 7482 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7483 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 7484 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7485 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 7486 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7487 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 7488 return lowerStructBufferAtomicIntrin(Op, DAG, 7489 AMDGPUISD::BUFFER_ATOMIC_SWAP); 7490 case Intrinsic::amdgcn_struct_buffer_atomic_add: 7491 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7492 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 7493 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7494 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 7495 return lowerStructBufferAtomicIntrin(Op, DAG, 7496 AMDGPUISD::BUFFER_ATOMIC_SMIN); 7497 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 7498 return lowerStructBufferAtomicIntrin(Op, DAG, 7499 AMDGPUISD::BUFFER_ATOMIC_UMIN); 7500 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 7501 return lowerStructBufferAtomicIntrin(Op, DAG, 7502 AMDGPUISD::BUFFER_ATOMIC_SMAX); 7503 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 7504 return lowerStructBufferAtomicIntrin(Op, DAG, 7505 AMDGPUISD::BUFFER_ATOMIC_UMAX); 7506 case Intrinsic::amdgcn_struct_buffer_atomic_and: 7507 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7508 case Intrinsic::amdgcn_struct_buffer_atomic_or: 7509 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7510 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 7511 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7512 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 7513 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7514 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 7515 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7516 7517 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 7518 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7519 unsigned IdxEn = getIdxEn(Op.getOperand(5)); 7520 SDValue Ops[] = { 7521 Op.getOperand(0), // Chain 7522 Op.getOperand(2), // src 7523 Op.getOperand(3), // cmp 7524 Op.getOperand(4), // rsrc 7525 Op.getOperand(5), // vindex 7526 SDValue(), // voffset -- will be set by setBufferOffsets 7527 SDValue(), // soffset -- will be set by setBufferOffsets 7528 SDValue(), // offset -- will be set by setBufferOffsets 7529 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7530 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7531 }; 7532 setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 7533 7534 EVT VT = Op.getValueType(); 7535 auto *M = cast<MemSDNode>(Op); 7536 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); 7537 7538 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7539 Op->getVTList(), Ops, VT, M->getMemOperand()); 7540 } 7541 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { 7542 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7543 SDValue Ops[] = { 7544 Op.getOperand(0), // Chain 7545 Op.getOperand(2), // src 7546 Op.getOperand(3), // cmp 7547 Op.getOperand(4), // rsrc 7548 DAG.getConstant(0, DL, MVT::i32), // vindex 7549 Offsets.first, // voffset 7550 Op.getOperand(6), // soffset 7551 Offsets.second, // offset 7552 Op.getOperand(7), // cachepolicy 7553 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7554 }; 7555 EVT VT = Op.getValueType(); 7556 auto *M = cast<MemSDNode>(Op); 7557 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]); 7558 7559 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7560 Op->getVTList(), Ops, VT, M->getMemOperand()); 7561 } 7562 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { 7563 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 7564 SDValue Ops[] = { 7565 Op.getOperand(0), // Chain 7566 Op.getOperand(2), // src 7567 Op.getOperand(3), // cmp 7568 Op.getOperand(4), // rsrc 7569 Op.getOperand(5), // vindex 7570 Offsets.first, // voffset 7571 Op.getOperand(7), // soffset 7572 Offsets.second, // offset 7573 Op.getOperand(8), // cachepolicy 7574 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7575 }; 7576 EVT VT = Op.getValueType(); 7577 auto *M = cast<MemSDNode>(Op); 7578 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); 7579 7580 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7581 Op->getVTList(), Ops, VT, M->getMemOperand()); 7582 } 7583 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 7584 MemSDNode *M = cast<MemSDNode>(Op); 7585 SDValue NodePtr = M->getOperand(2); 7586 SDValue RayExtent = M->getOperand(3); 7587 SDValue RayOrigin = M->getOperand(4); 7588 SDValue RayDir = M->getOperand(5); 7589 SDValue RayInvDir = M->getOperand(6); 7590 SDValue TDescr = M->getOperand(7); 7591 7592 assert(NodePtr.getValueType() == MVT::i32 || 7593 NodePtr.getValueType() == MVT::i64); 7594 assert(RayDir.getValueType() == MVT::v3f16 || 7595 RayDir.getValueType() == MVT::v3f32); 7596 7597 if (!Subtarget->hasGFX10_AEncoding()) { 7598 emitRemovedIntrinsicError(DAG, DL, Op.getValueType()); 7599 return SDValue(); 7600 } 7601 7602 const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; 7603 const bool Is64 = NodePtr.getValueType() == MVT::i64; 7604 const unsigned NumVDataDwords = 4; 7605 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11); 7606 const bool UseNSA = Subtarget->hasNSAEncoding() && 7607 NumVAddrDwords <= Subtarget->getNSAMaxSize(); 7608 const unsigned BaseOpcodes[2][2] = { 7609 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16}, 7610 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY, 7611 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}}; 7612 int Opcode; 7613 if (UseNSA) { 7614 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 7615 AMDGPU::MIMGEncGfx10NSA, NumVDataDwords, 7616 NumVAddrDwords); 7617 } else { 7618 Opcode = AMDGPU::getMIMGOpcode( 7619 BaseOpcodes[Is64][IsA16], AMDGPU::MIMGEncGfx10Default, NumVDataDwords, 7620 PowerOf2Ceil(NumVAddrDwords)); 7621 } 7622 assert(Opcode != -1); 7623 7624 SmallVector<SDValue, 16> Ops; 7625 7626 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { 7627 SmallVector<SDValue, 3> Lanes; 7628 DAG.ExtractVectorElements(Op, Lanes, 0, 3); 7629 if (Lanes[0].getValueSizeInBits() == 32) { 7630 for (unsigned I = 0; I < 3; ++I) 7631 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); 7632 } else { 7633 if (IsAligned) { 7634 Ops.push_back( 7635 DAG.getBitcast(MVT::i32, 7636 DAG.getBuildVector(MVT::v2f16, DL, 7637 { Lanes[0], Lanes[1] }))); 7638 Ops.push_back(Lanes[2]); 7639 } else { 7640 SDValue Elt0 = Ops.pop_back_val(); 7641 Ops.push_back( 7642 DAG.getBitcast(MVT::i32, 7643 DAG.getBuildVector(MVT::v2f16, DL, 7644 { Elt0, Lanes[0] }))); 7645 Ops.push_back( 7646 DAG.getBitcast(MVT::i32, 7647 DAG.getBuildVector(MVT::v2f16, DL, 7648 { Lanes[1], Lanes[2] }))); 7649 } 7650 } 7651 }; 7652 7653 if (Is64) 7654 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2); 7655 else 7656 Ops.push_back(NodePtr); 7657 7658 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 7659 packLanes(RayOrigin, true); 7660 packLanes(RayDir, true); 7661 packLanes(RayInvDir, false); 7662 7663 if (!UseNSA) { 7664 // Build a single vector containing all the operands so far prepared. 7665 if (NumVAddrDwords > 8) { 7666 SDValue Undef = DAG.getUNDEF(MVT::i32); 7667 Ops.append(16 - Ops.size(), Undef); 7668 } 7669 assert(Ops.size() == 8 || Ops.size() == 16); 7670 SDValue MergedOps = DAG.getBuildVector( 7671 Ops.size() == 16 ? MVT::v16i32 : MVT::v8i32, DL, Ops); 7672 Ops.clear(); 7673 Ops.push_back(MergedOps); 7674 } 7675 7676 Ops.push_back(TDescr); 7677 if (IsA16) 7678 Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1)); 7679 Ops.push_back(M->getChain()); 7680 7681 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); 7682 MachineMemOperand *MemRef = M->getMemOperand(); 7683 DAG.setNodeMemRefs(NewNode, {MemRef}); 7684 return SDValue(NewNode, 0); 7685 } 7686 case Intrinsic::amdgcn_global_atomic_fadd: 7687 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) { 7688 DiagnosticInfoUnsupported 7689 NoFpRet(DAG.getMachineFunction().getFunction(), 7690 "return versions of fp atomics not supported", 7691 DL.getDebugLoc(), DS_Error); 7692 DAG.getContext()->diagnose(NoFpRet); 7693 return SDValue(); 7694 } 7695 LLVM_FALLTHROUGH; 7696 case Intrinsic::amdgcn_global_atomic_fmin: 7697 case Intrinsic::amdgcn_global_atomic_fmax: 7698 case Intrinsic::amdgcn_flat_atomic_fadd: 7699 case Intrinsic::amdgcn_flat_atomic_fmin: 7700 case Intrinsic::amdgcn_flat_atomic_fmax: { 7701 MemSDNode *M = cast<MemSDNode>(Op); 7702 SDValue Ops[] = { 7703 M->getOperand(0), // Chain 7704 M->getOperand(2), // Ptr 7705 M->getOperand(3) // Value 7706 }; 7707 unsigned Opcode = 0; 7708 switch (IntrID) { 7709 case Intrinsic::amdgcn_global_atomic_fadd: 7710 case Intrinsic::amdgcn_flat_atomic_fadd: { 7711 EVT VT = Op.getOperand(3).getValueType(); 7712 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT, 7713 DAG.getVTList(VT, MVT::Other), Ops, 7714 M->getMemOperand()); 7715 } 7716 case Intrinsic::amdgcn_global_atomic_fmin: 7717 case Intrinsic::amdgcn_flat_atomic_fmin: { 7718 Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN; 7719 break; 7720 } 7721 case Intrinsic::amdgcn_global_atomic_fmax: 7722 case Intrinsic::amdgcn_flat_atomic_fmax: { 7723 Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX; 7724 break; 7725 } 7726 default: 7727 llvm_unreachable("unhandled atomic opcode"); 7728 } 7729 return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op), 7730 M->getVTList(), Ops, M->getMemoryVT(), 7731 M->getMemOperand()); 7732 } 7733 default: 7734 7735 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7736 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 7737 return lowerImage(Op, ImageDimIntr, DAG, true); 7738 7739 return SDValue(); 7740 } 7741 } 7742 7743 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 7744 // dwordx4 if on SI. 7745 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 7746 SDVTList VTList, 7747 ArrayRef<SDValue> Ops, EVT MemVT, 7748 MachineMemOperand *MMO, 7749 SelectionDAG &DAG) const { 7750 EVT VT = VTList.VTs[0]; 7751 EVT WidenedVT = VT; 7752 EVT WidenedMemVT = MemVT; 7753 if (!Subtarget->hasDwordx3LoadStores() && 7754 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { 7755 WidenedVT = EVT::getVectorVT(*DAG.getContext(), 7756 WidenedVT.getVectorElementType(), 4); 7757 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), 7758 WidenedMemVT.getVectorElementType(), 4); 7759 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); 7760 } 7761 7762 assert(VTList.NumVTs == 2); 7763 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 7764 7765 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 7766 WidenedMemVT, MMO); 7767 if (WidenedVT != VT) { 7768 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, 7769 DAG.getVectorIdxConstant(0, DL)); 7770 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); 7771 } 7772 return NewOp; 7773 } 7774 7775 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, 7776 bool ImageStore) const { 7777 EVT StoreVT = VData.getValueType(); 7778 7779 // No change for f16 and legal vector D16 types. 7780 if (!StoreVT.isVector()) 7781 return VData; 7782 7783 SDLoc DL(VData); 7784 unsigned NumElements = StoreVT.getVectorNumElements(); 7785 7786 if (Subtarget->hasUnpackedD16VMem()) { 7787 // We need to unpack the packed data to store. 7788 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7789 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7790 7791 EVT EquivStoreVT = 7792 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); 7793 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 7794 return DAG.UnrollVectorOp(ZExt.getNode()); 7795 } 7796 7797 // The sq block of gfx8.1 does not estimate register use correctly for d16 7798 // image store instructions. The data operand is computed as if it were not a 7799 // d16 image instruction. 7800 if (ImageStore && Subtarget->hasImageStoreD16Bug()) { 7801 // Bitcast to i16 7802 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7803 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7804 7805 // Decompose into scalars 7806 SmallVector<SDValue, 4> Elts; 7807 DAG.ExtractVectorElements(IntVData, Elts); 7808 7809 // Group pairs of i16 into v2i16 and bitcast to i32 7810 SmallVector<SDValue, 4> PackedElts; 7811 for (unsigned I = 0; I < Elts.size() / 2; I += 1) { 7812 SDValue Pair = 7813 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); 7814 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 7815 PackedElts.push_back(IntPair); 7816 } 7817 if ((NumElements % 2) == 1) { 7818 // Handle v3i16 7819 unsigned I = Elts.size() / 2; 7820 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, 7821 {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); 7822 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 7823 PackedElts.push_back(IntPair); 7824 } 7825 7826 // Pad using UNDEF 7827 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); 7828 7829 // Build final vector 7830 EVT VecVT = 7831 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); 7832 return DAG.getBuildVector(VecVT, DL, PackedElts); 7833 } 7834 7835 if (NumElements == 3) { 7836 EVT IntStoreVT = 7837 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); 7838 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7839 7840 EVT WidenedStoreVT = EVT::getVectorVT( 7841 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); 7842 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), 7843 WidenedStoreVT.getStoreSizeInBits()); 7844 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); 7845 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); 7846 } 7847 7848 assert(isTypeLegal(StoreVT)); 7849 return VData; 7850 } 7851 7852 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 7853 SelectionDAG &DAG) const { 7854 SDLoc DL(Op); 7855 SDValue Chain = Op.getOperand(0); 7856 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7857 MachineFunction &MF = DAG.getMachineFunction(); 7858 7859 switch (IntrinsicID) { 7860 case Intrinsic::amdgcn_exp_compr: { 7861 SDValue Src0 = Op.getOperand(4); 7862 SDValue Src1 = Op.getOperand(5); 7863 // Hack around illegal type on SI by directly selecting it. 7864 if (isTypeLegal(Src0.getValueType())) 7865 return SDValue(); 7866 7867 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 7868 SDValue Undef = DAG.getUNDEF(MVT::f32); 7869 const SDValue Ops[] = { 7870 Op.getOperand(2), // tgt 7871 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 7872 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 7873 Undef, // src2 7874 Undef, // src3 7875 Op.getOperand(7), // vm 7876 DAG.getTargetConstant(1, DL, MVT::i1), // compr 7877 Op.getOperand(3), // en 7878 Op.getOperand(0) // Chain 7879 }; 7880 7881 unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE; 7882 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); 7883 } 7884 case Intrinsic::amdgcn_s_barrier: { 7885 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { 7886 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 7887 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 7888 if (WGSize <= ST.getWavefrontSize()) 7889 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 7890 Op.getOperand(0)), 0); 7891 } 7892 return SDValue(); 7893 }; 7894 case Intrinsic::amdgcn_tbuffer_store: { 7895 SDValue VData = Op.getOperand(2); 7896 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7897 if (IsD16) 7898 VData = handleD16VData(VData, DAG); 7899 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 7900 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 7901 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 7902 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); 7903 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 7904 SDValue Ops[] = { 7905 Chain, 7906 VData, // vdata 7907 Op.getOperand(3), // rsrc 7908 Op.getOperand(4), // vindex 7909 Op.getOperand(5), // voffset 7910 Op.getOperand(6), // soffset 7911 Op.getOperand(7), // offset 7912 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 7913 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7914 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7915 }; 7916 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7917 AMDGPUISD::TBUFFER_STORE_FORMAT; 7918 MemSDNode *M = cast<MemSDNode>(Op); 7919 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7920 M->getMemoryVT(), M->getMemOperand()); 7921 } 7922 7923 case Intrinsic::amdgcn_struct_tbuffer_store: { 7924 SDValue VData = Op.getOperand(2); 7925 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7926 if (IsD16) 7927 VData = handleD16VData(VData, DAG); 7928 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7929 SDValue Ops[] = { 7930 Chain, 7931 VData, // vdata 7932 Op.getOperand(3), // rsrc 7933 Op.getOperand(4), // vindex 7934 Offsets.first, // voffset 7935 Op.getOperand(6), // soffset 7936 Offsets.second, // offset 7937 Op.getOperand(7), // format 7938 Op.getOperand(8), // cachepolicy, swizzled buffer 7939 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7940 }; 7941 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7942 AMDGPUISD::TBUFFER_STORE_FORMAT; 7943 MemSDNode *M = cast<MemSDNode>(Op); 7944 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7945 M->getMemoryVT(), M->getMemOperand()); 7946 } 7947 7948 case Intrinsic::amdgcn_raw_tbuffer_store: { 7949 SDValue VData = Op.getOperand(2); 7950 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7951 if (IsD16) 7952 VData = handleD16VData(VData, DAG); 7953 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7954 SDValue Ops[] = { 7955 Chain, 7956 VData, // vdata 7957 Op.getOperand(3), // rsrc 7958 DAG.getConstant(0, DL, MVT::i32), // vindex 7959 Offsets.first, // voffset 7960 Op.getOperand(5), // soffset 7961 Offsets.second, // offset 7962 Op.getOperand(6), // format 7963 Op.getOperand(7), // cachepolicy, swizzled buffer 7964 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7965 }; 7966 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7967 AMDGPUISD::TBUFFER_STORE_FORMAT; 7968 MemSDNode *M = cast<MemSDNode>(Op); 7969 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7970 M->getMemoryVT(), M->getMemOperand()); 7971 } 7972 7973 case Intrinsic::amdgcn_buffer_store: 7974 case Intrinsic::amdgcn_buffer_store_format: { 7975 SDValue VData = Op.getOperand(2); 7976 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7977 if (IsD16) 7978 VData = handleD16VData(VData, DAG); 7979 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7980 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7981 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 7982 SDValue Ops[] = { 7983 Chain, 7984 VData, 7985 Op.getOperand(3), // rsrc 7986 Op.getOperand(4), // vindex 7987 SDValue(), // voffset -- will be set by setBufferOffsets 7988 SDValue(), // soffset -- will be set by setBufferOffsets 7989 SDValue(), // offset -- will be set by setBufferOffsets 7990 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7991 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7992 }; 7993 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7994 7995 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 7996 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 7997 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7998 MemSDNode *M = cast<MemSDNode>(Op); 7999 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 8000 8001 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8002 EVT VDataType = VData.getValueType().getScalarType(); 8003 if (VDataType == MVT::i8 || VDataType == MVT::i16) 8004 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 8005 8006 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8007 M->getMemoryVT(), M->getMemOperand()); 8008 } 8009 8010 case Intrinsic::amdgcn_raw_buffer_store: 8011 case Intrinsic::amdgcn_raw_buffer_store_format: { 8012 const bool IsFormat = 8013 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; 8014 8015 SDValue VData = Op.getOperand(2); 8016 EVT VDataVT = VData.getValueType(); 8017 EVT EltType = VDataVT.getScalarType(); 8018 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 8019 if (IsD16) { 8020 VData = handleD16VData(VData, DAG); 8021 VDataVT = VData.getValueType(); 8022 } 8023 8024 if (!isTypeLegal(VDataVT)) { 8025 VData = 8026 DAG.getNode(ISD::BITCAST, DL, 8027 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 8028 } 8029 8030 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8031 SDValue Ops[] = { 8032 Chain, 8033 VData, 8034 Op.getOperand(3), // rsrc 8035 DAG.getConstant(0, DL, MVT::i32), // vindex 8036 Offsets.first, // voffset 8037 Op.getOperand(5), // soffset 8038 Offsets.second, // offset 8039 Op.getOperand(6), // cachepolicy, swizzled buffer 8040 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8041 }; 8042 unsigned Opc = 8043 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 8044 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8045 MemSDNode *M = cast<MemSDNode>(Op); 8046 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); 8047 8048 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8049 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 8050 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 8051 8052 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8053 M->getMemoryVT(), M->getMemOperand()); 8054 } 8055 8056 case Intrinsic::amdgcn_struct_buffer_store: 8057 case Intrinsic::amdgcn_struct_buffer_store_format: { 8058 const bool IsFormat = 8059 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; 8060 8061 SDValue VData = Op.getOperand(2); 8062 EVT VDataVT = VData.getValueType(); 8063 EVT EltType = VDataVT.getScalarType(); 8064 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 8065 8066 if (IsD16) { 8067 VData = handleD16VData(VData, DAG); 8068 VDataVT = VData.getValueType(); 8069 } 8070 8071 if (!isTypeLegal(VDataVT)) { 8072 VData = 8073 DAG.getNode(ISD::BITCAST, DL, 8074 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 8075 } 8076 8077 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8078 SDValue Ops[] = { 8079 Chain, 8080 VData, 8081 Op.getOperand(3), // rsrc 8082 Op.getOperand(4), // vindex 8083 Offsets.first, // voffset 8084 Op.getOperand(6), // soffset 8085 Offsets.second, // offset 8086 Op.getOperand(7), // cachepolicy, swizzled buffer 8087 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8088 }; 8089 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? 8090 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 8091 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 8092 MemSDNode *M = cast<MemSDNode>(Op); 8093 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); 8094 8095 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 8096 EVT VDataType = VData.getValueType().getScalarType(); 8097 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 8098 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 8099 8100 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 8101 M->getMemoryVT(), M->getMemOperand()); 8102 } 8103 case Intrinsic::amdgcn_end_cf: 8104 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 8105 Op->getOperand(2), Chain), 0); 8106 8107 default: { 8108 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 8109 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 8110 return lowerImage(Op, ImageDimIntr, DAG, true); 8111 8112 return Op; 8113 } 8114 } 8115 } 8116 8117 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 8118 // offset (the offset that is included in bounds checking and swizzling, to be 8119 // split between the instruction's voffset and immoffset fields) and soffset 8120 // (the offset that is excluded from bounds checking and swizzling, to go in 8121 // the instruction's soffset field). This function takes the first kind of 8122 // offset and figures out how to split it between voffset and immoffset. 8123 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 8124 SDValue Offset, SelectionDAG &DAG) const { 8125 SDLoc DL(Offset); 8126 const unsigned MaxImm = 4095; 8127 SDValue N0 = Offset; 8128 ConstantSDNode *C1 = nullptr; 8129 8130 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 8131 N0 = SDValue(); 8132 else if (DAG.isBaseWithConstantOffset(N0)) { 8133 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 8134 N0 = N0.getOperand(0); 8135 } 8136 8137 if (C1) { 8138 unsigned ImmOffset = C1->getZExtValue(); 8139 // If the immediate value is too big for the immoffset field, put the value 8140 // and -4096 into the immoffset field so that the value that is copied/added 8141 // for the voffset field is a multiple of 4096, and it stands more chance 8142 // of being CSEd with the copy/add for another similar load/store. 8143 // However, do not do that rounding down to a multiple of 4096 if that is a 8144 // negative number, as it appears to be illegal to have a negative offset 8145 // in the vgpr, even if adding the immediate offset makes it positive. 8146 unsigned Overflow = ImmOffset & ~MaxImm; 8147 ImmOffset -= Overflow; 8148 if ((int32_t)Overflow < 0) { 8149 Overflow += ImmOffset; 8150 ImmOffset = 0; 8151 } 8152 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 8153 if (Overflow) { 8154 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 8155 if (!N0) 8156 N0 = OverflowVal; 8157 else { 8158 SDValue Ops[] = { N0, OverflowVal }; 8159 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 8160 } 8161 } 8162 } 8163 if (!N0) 8164 N0 = DAG.getConstant(0, DL, MVT::i32); 8165 if (!C1) 8166 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 8167 return {N0, SDValue(C1, 0)}; 8168 } 8169 8170 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 8171 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 8172 // pointed to by Offsets. 8173 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 8174 SelectionDAG &DAG, SDValue *Offsets, 8175 Align Alignment) const { 8176 SDLoc DL(CombinedOffset); 8177 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 8178 uint32_t Imm = C->getZExtValue(); 8179 uint32_t SOffset, ImmOffset; 8180 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, 8181 Alignment)) { 8182 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 8183 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 8184 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 8185 return; 8186 } 8187 } 8188 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 8189 SDValue N0 = CombinedOffset.getOperand(0); 8190 SDValue N1 = CombinedOffset.getOperand(1); 8191 uint32_t SOffset, ImmOffset; 8192 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 8193 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, 8194 Subtarget, Alignment)) { 8195 Offsets[0] = N0; 8196 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 8197 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 8198 return; 8199 } 8200 } 8201 Offsets[0] = CombinedOffset; 8202 Offsets[1] = DAG.getConstant(0, DL, MVT::i32); 8203 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 8204 } 8205 8206 // Handle 8 bit and 16 bit buffer loads 8207 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, 8208 EVT LoadVT, SDLoc DL, 8209 ArrayRef<SDValue> Ops, 8210 MemSDNode *M) const { 8211 EVT IntVT = LoadVT.changeTypeToInteger(); 8212 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 8213 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 8214 8215 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 8216 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, 8217 Ops, IntVT, 8218 M->getMemOperand()); 8219 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 8220 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 8221 8222 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 8223 } 8224 8225 // Handle 8 bit and 16 bit buffer stores 8226 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 8227 EVT VDataType, SDLoc DL, 8228 SDValue Ops[], 8229 MemSDNode *M) const { 8230 if (VDataType == MVT::f16) 8231 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 8232 8233 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 8234 Ops[1] = BufferStoreExt; 8235 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 8236 AMDGPUISD::BUFFER_STORE_SHORT; 8237 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); 8238 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 8239 M->getMemOperand()); 8240 } 8241 8242 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 8243 ISD::LoadExtType ExtType, SDValue Op, 8244 const SDLoc &SL, EVT VT) { 8245 if (VT.bitsLT(Op.getValueType())) 8246 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 8247 8248 switch (ExtType) { 8249 case ISD::SEXTLOAD: 8250 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 8251 case ISD::ZEXTLOAD: 8252 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 8253 case ISD::EXTLOAD: 8254 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 8255 case ISD::NON_EXTLOAD: 8256 return Op; 8257 } 8258 8259 llvm_unreachable("invalid ext type"); 8260 } 8261 8262 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 8263 SelectionDAG &DAG = DCI.DAG; 8264 if (Ld->getAlignment() < 4 || Ld->isDivergent()) 8265 return SDValue(); 8266 8267 // FIXME: Constant loads should all be marked invariant. 8268 unsigned AS = Ld->getAddressSpace(); 8269 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 8270 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 8271 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 8272 return SDValue(); 8273 8274 // Don't do this early, since it may interfere with adjacent load merging for 8275 // illegal types. We can avoid losing alignment information for exotic types 8276 // pre-legalize. 8277 EVT MemVT = Ld->getMemoryVT(); 8278 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 8279 MemVT.getSizeInBits() >= 32) 8280 return SDValue(); 8281 8282 SDLoc SL(Ld); 8283 8284 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 8285 "unexpected vector extload"); 8286 8287 // TODO: Drop only high part of range. 8288 SDValue Ptr = Ld->getBasePtr(); 8289 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 8290 MVT::i32, SL, Ld->getChain(), Ptr, 8291 Ld->getOffset(), 8292 Ld->getPointerInfo(), MVT::i32, 8293 Ld->getAlignment(), 8294 Ld->getMemOperand()->getFlags(), 8295 Ld->getAAInfo(), 8296 nullptr); // Drop ranges 8297 8298 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 8299 if (MemVT.isFloatingPoint()) { 8300 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 8301 "unexpected fp extload"); 8302 TruncVT = MemVT.changeTypeToInteger(); 8303 } 8304 8305 SDValue Cvt = NewLoad; 8306 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 8307 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 8308 DAG.getValueType(TruncVT)); 8309 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 8310 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 8311 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 8312 } else { 8313 assert(Ld->getExtensionType() == ISD::EXTLOAD); 8314 } 8315 8316 EVT VT = Ld->getValueType(0); 8317 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8318 8319 DCI.AddToWorklist(Cvt.getNode()); 8320 8321 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 8322 // the appropriate extension from the 32-bit load. 8323 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 8324 DCI.AddToWorklist(Cvt.getNode()); 8325 8326 // Handle conversion back to floating point if necessary. 8327 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 8328 8329 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 8330 } 8331 8332 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 8333 SDLoc DL(Op); 8334 LoadSDNode *Load = cast<LoadSDNode>(Op); 8335 ISD::LoadExtType ExtType = Load->getExtensionType(); 8336 EVT MemVT = Load->getMemoryVT(); 8337 8338 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 8339 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 8340 return SDValue(); 8341 8342 // FIXME: Copied from PPC 8343 // First, load into 32 bits, then truncate to 1 bit. 8344 8345 SDValue Chain = Load->getChain(); 8346 SDValue BasePtr = Load->getBasePtr(); 8347 MachineMemOperand *MMO = Load->getMemOperand(); 8348 8349 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 8350 8351 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 8352 BasePtr, RealMemVT, MMO); 8353 8354 if (!MemVT.isVector()) { 8355 SDValue Ops[] = { 8356 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 8357 NewLD.getValue(1) 8358 }; 8359 8360 return DAG.getMergeValues(Ops, DL); 8361 } 8362 8363 SmallVector<SDValue, 3> Elts; 8364 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 8365 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 8366 DAG.getConstant(I, DL, MVT::i32)); 8367 8368 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 8369 } 8370 8371 SDValue Ops[] = { 8372 DAG.getBuildVector(MemVT, DL, Elts), 8373 NewLD.getValue(1) 8374 }; 8375 8376 return DAG.getMergeValues(Ops, DL); 8377 } 8378 8379 if (!MemVT.isVector()) 8380 return SDValue(); 8381 8382 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 8383 "Custom lowering for non-i32 vectors hasn't been implemented."); 8384 8385 unsigned Alignment = Load->getAlignment(); 8386 unsigned AS = Load->getAddressSpace(); 8387 if (Subtarget->hasLDSMisalignedBug() && 8388 AS == AMDGPUAS::FLAT_ADDRESS && 8389 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 8390 return SplitVectorLoad(Op, DAG); 8391 } 8392 8393 MachineFunction &MF = DAG.getMachineFunction(); 8394 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 8395 // If there is a possibilty that flat instruction access scratch memory 8396 // then we need to use the same legalization rules we use for private. 8397 if (AS == AMDGPUAS::FLAT_ADDRESS && 8398 !Subtarget->hasMultiDwordFlatScratchAddressing()) 8399 AS = MFI->hasFlatScratchInit() ? 8400 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 8401 8402 unsigned NumElements = MemVT.getVectorNumElements(); 8403 8404 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8405 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 8406 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) { 8407 if (MemVT.isPow2VectorType()) 8408 return SDValue(); 8409 return WidenOrSplitVectorLoad(Op, DAG); 8410 } 8411 // Non-uniform loads will be selected to MUBUF instructions, so they 8412 // have the same legalization requirements as global and private 8413 // loads. 8414 // 8415 } 8416 8417 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8418 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 8419 AS == AMDGPUAS::GLOBAL_ADDRESS) { 8420 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 8421 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && 8422 Alignment >= 4 && NumElements < 32) { 8423 if (MemVT.isPow2VectorType()) 8424 return SDValue(); 8425 return WidenOrSplitVectorLoad(Op, DAG); 8426 } 8427 // Non-uniform loads will be selected to MUBUF instructions, so they 8428 // have the same legalization requirements as global and private 8429 // loads. 8430 // 8431 } 8432 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8433 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 8434 AS == AMDGPUAS::GLOBAL_ADDRESS || 8435 AS == AMDGPUAS::FLAT_ADDRESS) { 8436 if (NumElements > 4) 8437 return SplitVectorLoad(Op, DAG); 8438 // v3 loads not supported on SI. 8439 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8440 return WidenOrSplitVectorLoad(Op, DAG); 8441 8442 // v3 and v4 loads are supported for private and global memory. 8443 return SDValue(); 8444 } 8445 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 8446 // Depending on the setting of the private_element_size field in the 8447 // resource descriptor, we can only make private accesses up to a certain 8448 // size. 8449 switch (Subtarget->getMaxPrivateElementSize()) { 8450 case 4: { 8451 SDValue Ops[2]; 8452 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 8453 return DAG.getMergeValues(Ops, DL); 8454 } 8455 case 8: 8456 if (NumElements > 2) 8457 return SplitVectorLoad(Op, DAG); 8458 return SDValue(); 8459 case 16: 8460 // Same as global/flat 8461 if (NumElements > 4) 8462 return SplitVectorLoad(Op, DAG); 8463 // v3 loads not supported on SI. 8464 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8465 return WidenOrSplitVectorLoad(Op, DAG); 8466 8467 return SDValue(); 8468 default: 8469 llvm_unreachable("unsupported private_element_size"); 8470 } 8471 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 8472 // Use ds_read_b128 or ds_read_b96 when possible. 8473 if (Subtarget->hasDS96AndDS128() && 8474 ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) || 8475 MemVT.getStoreSize() == 12) && 8476 allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, 8477 Load->getAlign())) 8478 return SDValue(); 8479 8480 if (NumElements > 2) 8481 return SplitVectorLoad(Op, DAG); 8482 8483 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 8484 // address is negative, then the instruction is incorrectly treated as 8485 // out-of-bounds even if base + offsets is in bounds. Split vectorized 8486 // loads here to avoid emitting ds_read2_b32. We may re-combine the 8487 // load later in the SILoadStoreOptimizer. 8488 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 8489 NumElements == 2 && MemVT.getStoreSize() == 8 && 8490 Load->getAlignment() < 8) { 8491 return SplitVectorLoad(Op, DAG); 8492 } 8493 } 8494 8495 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8496 MemVT, *Load->getMemOperand())) { 8497 SDValue Ops[2]; 8498 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 8499 return DAG.getMergeValues(Ops, DL); 8500 } 8501 8502 return SDValue(); 8503 } 8504 8505 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 8506 EVT VT = Op.getValueType(); 8507 if (VT.getSizeInBits() == 128) 8508 return splitTernaryVectorOp(Op, DAG); 8509 8510 assert(VT.getSizeInBits() == 64); 8511 8512 SDLoc DL(Op); 8513 SDValue Cond = Op.getOperand(0); 8514 8515 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 8516 SDValue One = DAG.getConstant(1, DL, MVT::i32); 8517 8518 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 8519 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 8520 8521 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 8522 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 8523 8524 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 8525 8526 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 8527 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 8528 8529 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 8530 8531 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 8532 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 8533 } 8534 8535 // Catch division cases where we can use shortcuts with rcp and rsq 8536 // instructions. 8537 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 8538 SelectionDAG &DAG) const { 8539 SDLoc SL(Op); 8540 SDValue LHS = Op.getOperand(0); 8541 SDValue RHS = Op.getOperand(1); 8542 EVT VT = Op.getValueType(); 8543 const SDNodeFlags Flags = Op->getFlags(); 8544 8545 bool AllowInaccurateRcp = Flags.hasApproximateFuncs(); 8546 8547 // Without !fpmath accuracy information, we can't do more because we don't 8548 // know exactly whether rcp is accurate enough to meet !fpmath requirement. 8549 if (!AllowInaccurateRcp) 8550 return SDValue(); 8551 8552 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 8553 if (CLHS->isExactlyValue(1.0)) { 8554 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 8555 // the CI documentation has a worst case error of 1 ulp. 8556 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 8557 // use it as long as we aren't trying to use denormals. 8558 // 8559 // v_rcp_f16 and v_rsq_f16 DO support denormals. 8560 8561 // 1.0 / sqrt(x) -> rsq(x) 8562 8563 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 8564 // error seems really high at 2^29 ULP. 8565 if (RHS.getOpcode() == ISD::FSQRT) 8566 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 8567 8568 // 1.0 / x -> rcp(x) 8569 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8570 } 8571 8572 // Same as for 1.0, but expand the sign out of the constant. 8573 if (CLHS->isExactlyValue(-1.0)) { 8574 // -1.0 / x -> rcp (fneg x) 8575 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 8576 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 8577 } 8578 } 8579 8580 // Turn into multiply by the reciprocal. 8581 // x / y -> x * (1.0 / y) 8582 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8583 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 8584 } 8585 8586 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, 8587 SelectionDAG &DAG) const { 8588 SDLoc SL(Op); 8589 SDValue X = Op.getOperand(0); 8590 SDValue Y = Op.getOperand(1); 8591 EVT VT = Op.getValueType(); 8592 const SDNodeFlags Flags = Op->getFlags(); 8593 8594 bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || 8595 DAG.getTarget().Options.UnsafeFPMath; 8596 if (!AllowInaccurateDiv) 8597 return SDValue(); 8598 8599 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); 8600 SDValue One = DAG.getConstantFP(1.0, SL, VT); 8601 8602 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); 8603 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 8604 8605 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); 8606 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 8607 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); 8608 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); 8609 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); 8610 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); 8611 } 8612 8613 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8614 EVT VT, SDValue A, SDValue B, SDValue GlueChain, 8615 SDNodeFlags Flags) { 8616 if (GlueChain->getNumValues() <= 1) { 8617 return DAG.getNode(Opcode, SL, VT, A, B, Flags); 8618 } 8619 8620 assert(GlueChain->getNumValues() == 3); 8621 8622 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8623 switch (Opcode) { 8624 default: llvm_unreachable("no chain equivalent for opcode"); 8625 case ISD::FMUL: 8626 Opcode = AMDGPUISD::FMUL_W_CHAIN; 8627 break; 8628 } 8629 8630 return DAG.getNode(Opcode, SL, VTList, 8631 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, 8632 Flags); 8633 } 8634 8635 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8636 EVT VT, SDValue A, SDValue B, SDValue C, 8637 SDValue GlueChain, SDNodeFlags Flags) { 8638 if (GlueChain->getNumValues() <= 1) { 8639 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); 8640 } 8641 8642 assert(GlueChain->getNumValues() == 3); 8643 8644 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8645 switch (Opcode) { 8646 default: llvm_unreachable("no chain equivalent for opcode"); 8647 case ISD::FMA: 8648 Opcode = AMDGPUISD::FMA_W_CHAIN; 8649 break; 8650 } 8651 8652 return DAG.getNode(Opcode, SL, VTList, 8653 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, 8654 Flags); 8655 } 8656 8657 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 8658 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8659 return FastLowered; 8660 8661 SDLoc SL(Op); 8662 SDValue Src0 = Op.getOperand(0); 8663 SDValue Src1 = Op.getOperand(1); 8664 8665 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 8666 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 8667 8668 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 8669 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 8670 8671 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 8672 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 8673 8674 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 8675 } 8676 8677 // Faster 2.5 ULP division that does not support denormals. 8678 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 8679 SDLoc SL(Op); 8680 SDValue LHS = Op.getOperand(1); 8681 SDValue RHS = Op.getOperand(2); 8682 8683 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); 8684 8685 const APFloat K0Val(BitsToFloat(0x6f800000)); 8686 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 8687 8688 const APFloat K1Val(BitsToFloat(0x2f800000)); 8689 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 8690 8691 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8692 8693 EVT SetCCVT = 8694 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 8695 8696 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 8697 8698 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); 8699 8700 // TODO: Should this propagate fast-math-flags? 8701 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); 8702 8703 // rcp does not support denormals. 8704 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); 8705 8706 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); 8707 8708 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); 8709 } 8710 8711 // Returns immediate value for setting the F32 denorm mode when using the 8712 // S_DENORM_MODE instruction. 8713 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, 8714 const SDLoc &SL, const GCNSubtarget *ST) { 8715 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 8716 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction()) 8717 ? FP_DENORM_FLUSH_NONE 8718 : FP_DENORM_FLUSH_IN_FLUSH_OUT; 8719 8720 int Mode = SPDenormMode | (DPDenormModeDefault << 2); 8721 return DAG.getTargetConstant(Mode, SL, MVT::i32); 8722 } 8723 8724 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 8725 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8726 return FastLowered; 8727 8728 // The selection matcher assumes anything with a chain selecting to a 8729 // mayRaiseFPException machine instruction. Since we're introducing a chain 8730 // here, we need to explicitly report nofpexcept for the regular fdiv 8731 // lowering. 8732 SDNodeFlags Flags = Op->getFlags(); 8733 Flags.setNoFPExcept(true); 8734 8735 SDLoc SL(Op); 8736 SDValue LHS = Op.getOperand(0); 8737 SDValue RHS = Op.getOperand(1); 8738 8739 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8740 8741 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 8742 8743 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 8744 {RHS, RHS, LHS}, Flags); 8745 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 8746 {LHS, RHS, LHS}, Flags); 8747 8748 // Denominator is scaled to not be denormal, so using rcp is ok. 8749 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 8750 DenominatorScaled, Flags); 8751 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 8752 DenominatorScaled, Flags); 8753 8754 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 8755 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 8756 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 8757 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); 8758 8759 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction()); 8760 8761 if (!HasFP32Denormals) { 8762 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV 8763 // lowering. The chain dependence is insufficient, and we need glue. We do 8764 // not need the glue variants in a strictfp function. 8765 8766 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 8767 8768 SDNode *EnableDenorm; 8769 if (Subtarget->hasDenormModeInst()) { 8770 const SDValue EnableDenormValue = 8771 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget); 8772 8773 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, 8774 DAG.getEntryNode(), EnableDenormValue).getNode(); 8775 } else { 8776 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 8777 SL, MVT::i32); 8778 EnableDenorm = 8779 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, 8780 {EnableDenormValue, BitField, DAG.getEntryNode()}); 8781 } 8782 8783 SDValue Ops[3] = { 8784 NegDivScale0, 8785 SDValue(EnableDenorm, 0), 8786 SDValue(EnableDenorm, 1) 8787 }; 8788 8789 NegDivScale0 = DAG.getMergeValues(Ops, SL); 8790 } 8791 8792 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 8793 ApproxRcp, One, NegDivScale0, Flags); 8794 8795 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 8796 ApproxRcp, Fma0, Flags); 8797 8798 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 8799 Fma1, Fma1, Flags); 8800 8801 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 8802 NumeratorScaled, Mul, Flags); 8803 8804 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, 8805 Fma2, Fma1, Mul, Fma2, Flags); 8806 8807 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 8808 NumeratorScaled, Fma3, Flags); 8809 8810 if (!HasFP32Denormals) { 8811 SDNode *DisableDenorm; 8812 if (Subtarget->hasDenormModeInst()) { 8813 const SDValue DisableDenormValue = 8814 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget); 8815 8816 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 8817 Fma4.getValue(1), DisableDenormValue, 8818 Fma4.getValue(2)).getNode(); 8819 } else { 8820 const SDValue DisableDenormValue = 8821 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 8822 8823 DisableDenorm = DAG.getMachineNode( 8824 AMDGPU::S_SETREG_B32, SL, MVT::Other, 8825 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); 8826 } 8827 8828 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 8829 SDValue(DisableDenorm, 0), DAG.getRoot()); 8830 DAG.setRoot(OutputChain); 8831 } 8832 8833 SDValue Scale = NumeratorScaled.getValue(1); 8834 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 8835 {Fma4, Fma1, Fma3, Scale}, Flags); 8836 8837 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); 8838 } 8839 8840 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 8841 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) 8842 return FastLowered; 8843 8844 SDLoc SL(Op); 8845 SDValue X = Op.getOperand(0); 8846 SDValue Y = Op.getOperand(1); 8847 8848 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 8849 8850 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 8851 8852 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 8853 8854 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 8855 8856 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 8857 8858 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 8859 8860 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 8861 8862 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 8863 8864 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 8865 8866 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 8867 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 8868 8869 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 8870 NegDivScale0, Mul, DivScale1); 8871 8872 SDValue Scale; 8873 8874 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 8875 // Workaround a hardware bug on SI where the condition output from div_scale 8876 // is not usable. 8877 8878 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 8879 8880 // Figure out if the scale to use for div_fmas. 8881 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 8882 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 8883 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 8884 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 8885 8886 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 8887 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 8888 8889 SDValue Scale0Hi 8890 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 8891 SDValue Scale1Hi 8892 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 8893 8894 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 8895 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 8896 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 8897 } else { 8898 Scale = DivScale1.getValue(1); 8899 } 8900 8901 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 8902 Fma4, Fma3, Mul, Scale); 8903 8904 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 8905 } 8906 8907 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 8908 EVT VT = Op.getValueType(); 8909 8910 if (VT == MVT::f32) 8911 return LowerFDIV32(Op, DAG); 8912 8913 if (VT == MVT::f64) 8914 return LowerFDIV64(Op, DAG); 8915 8916 if (VT == MVT::f16) 8917 return LowerFDIV16(Op, DAG); 8918 8919 llvm_unreachable("Unexpected type for fdiv"); 8920 } 8921 8922 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 8923 SDLoc DL(Op); 8924 StoreSDNode *Store = cast<StoreSDNode>(Op); 8925 EVT VT = Store->getMemoryVT(); 8926 8927 if (VT == MVT::i1) { 8928 return DAG.getTruncStore(Store->getChain(), DL, 8929 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 8930 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 8931 } 8932 8933 assert(VT.isVector() && 8934 Store->getValue().getValueType().getScalarType() == MVT::i32); 8935 8936 unsigned AS = Store->getAddressSpace(); 8937 if (Subtarget->hasLDSMisalignedBug() && 8938 AS == AMDGPUAS::FLAT_ADDRESS && 8939 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 8940 return SplitVectorStore(Op, DAG); 8941 } 8942 8943 MachineFunction &MF = DAG.getMachineFunction(); 8944 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 8945 // If there is a possibilty that flat instruction access scratch memory 8946 // then we need to use the same legalization rules we use for private. 8947 if (AS == AMDGPUAS::FLAT_ADDRESS && 8948 !Subtarget->hasMultiDwordFlatScratchAddressing()) 8949 AS = MFI->hasFlatScratchInit() ? 8950 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 8951 8952 unsigned NumElements = VT.getVectorNumElements(); 8953 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 8954 AS == AMDGPUAS::FLAT_ADDRESS) { 8955 if (NumElements > 4) 8956 return SplitVectorStore(Op, DAG); 8957 // v3 stores not supported on SI. 8958 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8959 return SplitVectorStore(Op, DAG); 8960 8961 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8962 VT, *Store->getMemOperand())) 8963 return expandUnalignedStore(Store, DAG); 8964 8965 return SDValue(); 8966 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 8967 switch (Subtarget->getMaxPrivateElementSize()) { 8968 case 4: 8969 return scalarizeVectorStore(Store, DAG); 8970 case 8: 8971 if (NumElements > 2) 8972 return SplitVectorStore(Op, DAG); 8973 return SDValue(); 8974 case 16: 8975 if (NumElements > 4 || 8976 (NumElements == 3 && !Subtarget->enableFlatScratch())) 8977 return SplitVectorStore(Op, DAG); 8978 return SDValue(); 8979 default: 8980 llvm_unreachable("unsupported private_element_size"); 8981 } 8982 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 8983 // Use ds_write_b128 or ds_write_b96 when possible. 8984 if (Subtarget->hasDS96AndDS128() && 8985 ((Subtarget->useDS128() && VT.getStoreSize() == 16) || 8986 (VT.getStoreSize() == 12)) && 8987 allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, 8988 Store->getAlign())) 8989 return SDValue(); 8990 8991 if (NumElements > 2) 8992 return SplitVectorStore(Op, DAG); 8993 8994 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 8995 // address is negative, then the instruction is incorrectly treated as 8996 // out-of-bounds even if base + offsets is in bounds. Split vectorized 8997 // stores here to avoid emitting ds_write2_b32. We may re-combine the 8998 // store later in the SILoadStoreOptimizer. 8999 if (!Subtarget->hasUsableDSOffset() && 9000 NumElements == 2 && VT.getStoreSize() == 8 && 9001 Store->getAlignment() < 8) { 9002 return SplitVectorStore(Op, DAG); 9003 } 9004 9005 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 9006 VT, *Store->getMemOperand())) { 9007 if (VT.isVector()) 9008 return SplitVectorStore(Op, DAG); 9009 return expandUnalignedStore(Store, DAG); 9010 } 9011 9012 return SDValue(); 9013 } else { 9014 llvm_unreachable("unhandled address space"); 9015 } 9016 } 9017 9018 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 9019 SDLoc DL(Op); 9020 EVT VT = Op.getValueType(); 9021 SDValue Arg = Op.getOperand(0); 9022 SDValue TrigVal; 9023 9024 // Propagate fast-math flags so that the multiply we introduce can be folded 9025 // if Arg is already the result of a multiply by constant. 9026 auto Flags = Op->getFlags(); 9027 9028 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); 9029 9030 if (Subtarget->hasTrigReducedRange()) { 9031 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 9032 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); 9033 } else { 9034 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 9035 } 9036 9037 switch (Op.getOpcode()) { 9038 case ISD::FCOS: 9039 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); 9040 case ISD::FSIN: 9041 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); 9042 default: 9043 llvm_unreachable("Wrong trig opcode"); 9044 } 9045 } 9046 9047 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 9048 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 9049 assert(AtomicNode->isCompareAndSwap()); 9050 unsigned AS = AtomicNode->getAddressSpace(); 9051 9052 // No custom lowering required for local address space 9053 if (!AMDGPU::isFlatGlobalAddrSpace(AS)) 9054 return Op; 9055 9056 // Non-local address space requires custom lowering for atomic compare 9057 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 9058 SDLoc DL(Op); 9059 SDValue ChainIn = Op.getOperand(0); 9060 SDValue Addr = Op.getOperand(1); 9061 SDValue Old = Op.getOperand(2); 9062 SDValue New = Op.getOperand(3); 9063 EVT VT = Op.getValueType(); 9064 MVT SimpleVT = VT.getSimpleVT(); 9065 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 9066 9067 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 9068 SDValue Ops[] = { ChainIn, Addr, NewOld }; 9069 9070 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 9071 Ops, VT, AtomicNode->getMemOperand()); 9072 } 9073 9074 //===----------------------------------------------------------------------===// 9075 // Custom DAG optimizations 9076 //===----------------------------------------------------------------------===// 9077 9078 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 9079 DAGCombinerInfo &DCI) const { 9080 EVT VT = N->getValueType(0); 9081 EVT ScalarVT = VT.getScalarType(); 9082 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) 9083 return SDValue(); 9084 9085 SelectionDAG &DAG = DCI.DAG; 9086 SDLoc DL(N); 9087 9088 SDValue Src = N->getOperand(0); 9089 EVT SrcVT = Src.getValueType(); 9090 9091 // TODO: We could try to match extracting the higher bytes, which would be 9092 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 9093 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 9094 // about in practice. 9095 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 9096 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 9097 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); 9098 DCI.AddToWorklist(Cvt.getNode()); 9099 9100 // For the f16 case, fold to a cast to f32 and then cast back to f16. 9101 if (ScalarVT != MVT::f32) { 9102 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, 9103 DAG.getTargetConstant(0, DL, MVT::i32)); 9104 } 9105 return Cvt; 9106 } 9107 } 9108 9109 return SDValue(); 9110 } 9111 9112 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 9113 9114 // This is a variant of 9115 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 9116 // 9117 // The normal DAG combiner will do this, but only if the add has one use since 9118 // that would increase the number of instructions. 9119 // 9120 // This prevents us from seeing a constant offset that can be folded into a 9121 // memory instruction's addressing mode. If we know the resulting add offset of 9122 // a pointer can be folded into an addressing offset, we can replace the pointer 9123 // operand with the add of new constant offset. This eliminates one of the uses, 9124 // and may allow the remaining use to also be simplified. 9125 // 9126 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 9127 unsigned AddrSpace, 9128 EVT MemVT, 9129 DAGCombinerInfo &DCI) const { 9130 SDValue N0 = N->getOperand(0); 9131 SDValue N1 = N->getOperand(1); 9132 9133 // We only do this to handle cases where it's profitable when there are 9134 // multiple uses of the add, so defer to the standard combine. 9135 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 9136 N0->hasOneUse()) 9137 return SDValue(); 9138 9139 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 9140 if (!CN1) 9141 return SDValue(); 9142 9143 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 9144 if (!CAdd) 9145 return SDValue(); 9146 9147 // If the resulting offset is too large, we can't fold it into the addressing 9148 // mode offset. 9149 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 9150 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 9151 9152 AddrMode AM; 9153 AM.HasBaseReg = true; 9154 AM.BaseOffs = Offset.getSExtValue(); 9155 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 9156 return SDValue(); 9157 9158 SelectionDAG &DAG = DCI.DAG; 9159 SDLoc SL(N); 9160 EVT VT = N->getValueType(0); 9161 9162 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 9163 SDValue COffset = DAG.getConstant(Offset, SL, VT); 9164 9165 SDNodeFlags Flags; 9166 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 9167 (N0.getOpcode() == ISD::OR || 9168 N0->getFlags().hasNoUnsignedWrap())); 9169 9170 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 9171 } 9172 9173 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset 9174 /// by the chain and intrinsic ID. Theoretically we would also need to check the 9175 /// specific intrinsic, but they all place the pointer operand first. 9176 static unsigned getBasePtrIndex(const MemSDNode *N) { 9177 switch (N->getOpcode()) { 9178 case ISD::STORE: 9179 case ISD::INTRINSIC_W_CHAIN: 9180 case ISD::INTRINSIC_VOID: 9181 return 2; 9182 default: 9183 return 1; 9184 } 9185 } 9186 9187 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 9188 DAGCombinerInfo &DCI) const { 9189 SelectionDAG &DAG = DCI.DAG; 9190 SDLoc SL(N); 9191 9192 unsigned PtrIdx = getBasePtrIndex(N); 9193 SDValue Ptr = N->getOperand(PtrIdx); 9194 9195 // TODO: We could also do this for multiplies. 9196 if (Ptr.getOpcode() == ISD::SHL) { 9197 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 9198 N->getMemoryVT(), DCI); 9199 if (NewPtr) { 9200 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 9201 9202 NewOps[PtrIdx] = NewPtr; 9203 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 9204 } 9205 } 9206 9207 return SDValue(); 9208 } 9209 9210 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 9211 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 9212 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 9213 (Opc == ISD::XOR && Val == 0); 9214 } 9215 9216 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 9217 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 9218 // integer combine opportunities since most 64-bit operations are decomposed 9219 // this way. TODO: We won't want this for SALU especially if it is an inline 9220 // immediate. 9221 SDValue SITargetLowering::splitBinaryBitConstantOp( 9222 DAGCombinerInfo &DCI, 9223 const SDLoc &SL, 9224 unsigned Opc, SDValue LHS, 9225 const ConstantSDNode *CRHS) const { 9226 uint64_t Val = CRHS->getZExtValue(); 9227 uint32_t ValLo = Lo_32(Val); 9228 uint32_t ValHi = Hi_32(Val); 9229 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9230 9231 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 9232 bitOpWithConstantIsReducible(Opc, ValHi)) || 9233 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 9234 // If we need to materialize a 64-bit immediate, it will be split up later 9235 // anyway. Avoid creating the harder to understand 64-bit immediate 9236 // materialization. 9237 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 9238 } 9239 9240 return SDValue(); 9241 } 9242 9243 // Returns true if argument is a boolean value which is not serialized into 9244 // memory or argument and does not require v_cndmask_b32 to be deserialized. 9245 static bool isBoolSGPR(SDValue V) { 9246 if (V.getValueType() != MVT::i1) 9247 return false; 9248 switch (V.getOpcode()) { 9249 default: 9250 break; 9251 case ISD::SETCC: 9252 case AMDGPUISD::FP_CLASS: 9253 return true; 9254 case ISD::AND: 9255 case ISD::OR: 9256 case ISD::XOR: 9257 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); 9258 } 9259 return false; 9260 } 9261 9262 // If a constant has all zeroes or all ones within each byte return it. 9263 // Otherwise return 0. 9264 static uint32_t getConstantPermuteMask(uint32_t C) { 9265 // 0xff for any zero byte in the mask 9266 uint32_t ZeroByteMask = 0; 9267 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 9268 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 9269 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 9270 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 9271 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 9272 if ((NonZeroByteMask & C) != NonZeroByteMask) 9273 return 0; // Partial bytes selected. 9274 return C; 9275 } 9276 9277 // Check if a node selects whole bytes from its operand 0 starting at a byte 9278 // boundary while masking the rest. Returns select mask as in the v_perm_b32 9279 // or -1 if not succeeded. 9280 // Note byte select encoding: 9281 // value 0-3 selects corresponding source byte; 9282 // value 0xc selects zero; 9283 // value 0xff selects 0xff. 9284 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { 9285 assert(V.getValueSizeInBits() == 32); 9286 9287 if (V.getNumOperands() != 2) 9288 return ~0; 9289 9290 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 9291 if (!N1) 9292 return ~0; 9293 9294 uint32_t C = N1->getZExtValue(); 9295 9296 switch (V.getOpcode()) { 9297 default: 9298 break; 9299 case ISD::AND: 9300 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 9301 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 9302 } 9303 break; 9304 9305 case ISD::OR: 9306 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 9307 return (0x03020100 & ~ConstMask) | ConstMask; 9308 } 9309 break; 9310 9311 case ISD::SHL: 9312 if (C % 8) 9313 return ~0; 9314 9315 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 9316 9317 case ISD::SRL: 9318 if (C % 8) 9319 return ~0; 9320 9321 return uint32_t(0x0c0c0c0c03020100ull >> C); 9322 } 9323 9324 return ~0; 9325 } 9326 9327 SDValue SITargetLowering::performAndCombine(SDNode *N, 9328 DAGCombinerInfo &DCI) const { 9329 if (DCI.isBeforeLegalize()) 9330 return SDValue(); 9331 9332 SelectionDAG &DAG = DCI.DAG; 9333 EVT VT = N->getValueType(0); 9334 SDValue LHS = N->getOperand(0); 9335 SDValue RHS = N->getOperand(1); 9336 9337 9338 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 9339 if (VT == MVT::i64 && CRHS) { 9340 if (SDValue Split 9341 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 9342 return Split; 9343 } 9344 9345 if (CRHS && VT == MVT::i32) { 9346 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 9347 // nb = number of trailing zeroes in mask 9348 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 9349 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 9350 uint64_t Mask = CRHS->getZExtValue(); 9351 unsigned Bits = countPopulation(Mask); 9352 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 9353 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 9354 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 9355 unsigned Shift = CShift->getZExtValue(); 9356 unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); 9357 unsigned Offset = NB + Shift; 9358 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 9359 SDLoc SL(N); 9360 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 9361 LHS->getOperand(0), 9362 DAG.getConstant(Offset, SL, MVT::i32), 9363 DAG.getConstant(Bits, SL, MVT::i32)); 9364 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9365 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 9366 DAG.getValueType(NarrowVT)); 9367 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 9368 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 9369 return Shl; 9370 } 9371 } 9372 } 9373 9374 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 9375 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 9376 isa<ConstantSDNode>(LHS.getOperand(2))) { 9377 uint32_t Sel = getConstantPermuteMask(Mask); 9378 if (!Sel) 9379 return SDValue(); 9380 9381 // Select 0xc for all zero bytes 9382 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 9383 SDLoc DL(N); 9384 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 9385 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 9386 } 9387 } 9388 9389 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 9390 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 9391 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 9392 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 9393 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 9394 9395 SDValue X = LHS.getOperand(0); 9396 SDValue Y = RHS.getOperand(0); 9397 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) 9398 return SDValue(); 9399 9400 if (LCC == ISD::SETO) { 9401 if (X != LHS.getOperand(1)) 9402 return SDValue(); 9403 9404 if (RCC == ISD::SETUNE) { 9405 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 9406 if (!C1 || !C1->isInfinity() || C1->isNegative()) 9407 return SDValue(); 9408 9409 const uint32_t Mask = SIInstrFlags::N_NORMAL | 9410 SIInstrFlags::N_SUBNORMAL | 9411 SIInstrFlags::N_ZERO | 9412 SIInstrFlags::P_ZERO | 9413 SIInstrFlags::P_SUBNORMAL | 9414 SIInstrFlags::P_NORMAL; 9415 9416 static_assert(((~(SIInstrFlags::S_NAN | 9417 SIInstrFlags::Q_NAN | 9418 SIInstrFlags::N_INFINITY | 9419 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 9420 "mask not equal"); 9421 9422 SDLoc DL(N); 9423 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 9424 X, DAG.getConstant(Mask, DL, MVT::i32)); 9425 } 9426 } 9427 } 9428 9429 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 9430 std::swap(LHS, RHS); 9431 9432 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 9433 RHS.hasOneUse()) { 9434 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 9435 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 9436 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 9437 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9438 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 9439 (RHS.getOperand(0) == LHS.getOperand(0) && 9440 LHS.getOperand(0) == LHS.getOperand(1))) { 9441 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 9442 unsigned NewMask = LCC == ISD::SETO ? 9443 Mask->getZExtValue() & ~OrdMask : 9444 Mask->getZExtValue() & OrdMask; 9445 9446 SDLoc DL(N); 9447 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 9448 DAG.getConstant(NewMask, DL, MVT::i32)); 9449 } 9450 } 9451 9452 if (VT == MVT::i32 && 9453 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 9454 // and x, (sext cc from i1) => select cc, x, 0 9455 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 9456 std::swap(LHS, RHS); 9457 if (isBoolSGPR(RHS.getOperand(0))) 9458 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 9459 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 9460 } 9461 9462 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 9463 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9464 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 9465 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 9466 uint32_t LHSMask = getPermuteMask(DAG, LHS); 9467 uint32_t RHSMask = getPermuteMask(DAG, RHS); 9468 if (LHSMask != ~0u && RHSMask != ~0u) { 9469 // Canonicalize the expression in an attempt to have fewer unique masks 9470 // and therefore fewer registers used to hold the masks. 9471 if (LHSMask > RHSMask) { 9472 std::swap(LHSMask, RHSMask); 9473 std::swap(LHS, RHS); 9474 } 9475 9476 // Select 0xc for each lane used from source operand. Zero has 0xc mask 9477 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 9478 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9479 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9480 9481 // Check of we need to combine values from two sources within a byte. 9482 if (!(LHSUsedLanes & RHSUsedLanes) && 9483 // If we select high and lower word keep it for SDWA. 9484 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 9485 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 9486 // Each byte in each mask is either selector mask 0-3, or has higher 9487 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 9488 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 9489 // mask which is not 0xff wins. By anding both masks we have a correct 9490 // result except that 0x0c shall be corrected to give 0x0c only. 9491 uint32_t Mask = LHSMask & RHSMask; 9492 for (unsigned I = 0; I < 32; I += 8) { 9493 uint32_t ByteSel = 0xff << I; 9494 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 9495 Mask &= (0x0c << I) & 0xffffffff; 9496 } 9497 9498 // Add 4 to each active LHS lane. It will not affect any existing 0xff 9499 // or 0x0c. 9500 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 9501 SDLoc DL(N); 9502 9503 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 9504 LHS.getOperand(0), RHS.getOperand(0), 9505 DAG.getConstant(Sel, DL, MVT::i32)); 9506 } 9507 } 9508 } 9509 9510 return SDValue(); 9511 } 9512 9513 SDValue SITargetLowering::performOrCombine(SDNode *N, 9514 DAGCombinerInfo &DCI) const { 9515 SelectionDAG &DAG = DCI.DAG; 9516 SDValue LHS = N->getOperand(0); 9517 SDValue RHS = N->getOperand(1); 9518 9519 EVT VT = N->getValueType(0); 9520 if (VT == MVT::i1) { 9521 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 9522 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 9523 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 9524 SDValue Src = LHS.getOperand(0); 9525 if (Src != RHS.getOperand(0)) 9526 return SDValue(); 9527 9528 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 9529 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9530 if (!CLHS || !CRHS) 9531 return SDValue(); 9532 9533 // Only 10 bits are used. 9534 static const uint32_t MaxMask = 0x3ff; 9535 9536 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 9537 SDLoc DL(N); 9538 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 9539 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 9540 } 9541 9542 return SDValue(); 9543 } 9544 9545 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 9546 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 9547 LHS.getOpcode() == AMDGPUISD::PERM && 9548 isa<ConstantSDNode>(LHS.getOperand(2))) { 9549 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 9550 if (!Sel) 9551 return SDValue(); 9552 9553 Sel |= LHS.getConstantOperandVal(2); 9554 SDLoc DL(N); 9555 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 9556 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 9557 } 9558 9559 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 9560 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9561 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 9562 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 9563 uint32_t LHSMask = getPermuteMask(DAG, LHS); 9564 uint32_t RHSMask = getPermuteMask(DAG, RHS); 9565 if (LHSMask != ~0u && RHSMask != ~0u) { 9566 // Canonicalize the expression in an attempt to have fewer unique masks 9567 // and therefore fewer registers used to hold the masks. 9568 if (LHSMask > RHSMask) { 9569 std::swap(LHSMask, RHSMask); 9570 std::swap(LHS, RHS); 9571 } 9572 9573 // Select 0xc for each lane used from source operand. Zero has 0xc mask 9574 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 9575 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9576 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9577 9578 // Check of we need to combine values from two sources within a byte. 9579 if (!(LHSUsedLanes & RHSUsedLanes) && 9580 // If we select high and lower word keep it for SDWA. 9581 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 9582 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 9583 // Kill zero bytes selected by other mask. Zero value is 0xc. 9584 LHSMask &= ~RHSUsedLanes; 9585 RHSMask &= ~LHSUsedLanes; 9586 // Add 4 to each active LHS lane 9587 LHSMask |= LHSUsedLanes & 0x04040404; 9588 // Combine masks 9589 uint32_t Sel = LHSMask | RHSMask; 9590 SDLoc DL(N); 9591 9592 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 9593 LHS.getOperand(0), RHS.getOperand(0), 9594 DAG.getConstant(Sel, DL, MVT::i32)); 9595 } 9596 } 9597 } 9598 9599 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) 9600 return SDValue(); 9601 9602 // TODO: This could be a generic combine with a predicate for extracting the 9603 // high half of an integer being free. 9604 9605 // (or i64:x, (zero_extend i32:y)) -> 9606 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 9607 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 9608 RHS.getOpcode() != ISD::ZERO_EXTEND) 9609 std::swap(LHS, RHS); 9610 9611 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 9612 SDValue ExtSrc = RHS.getOperand(0); 9613 EVT SrcVT = ExtSrc.getValueType(); 9614 if (SrcVT == MVT::i32) { 9615 SDLoc SL(N); 9616 SDValue LowLHS, HiBits; 9617 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 9618 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 9619 9620 DCI.AddToWorklist(LowOr.getNode()); 9621 DCI.AddToWorklist(HiBits.getNode()); 9622 9623 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 9624 LowOr, HiBits); 9625 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 9626 } 9627 } 9628 9629 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9630 if (CRHS) { 9631 if (SDValue Split 9632 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, 9633 N->getOperand(0), CRHS)) 9634 return Split; 9635 } 9636 9637 return SDValue(); 9638 } 9639 9640 SDValue SITargetLowering::performXorCombine(SDNode *N, 9641 DAGCombinerInfo &DCI) const { 9642 EVT VT = N->getValueType(0); 9643 if (VT != MVT::i64) 9644 return SDValue(); 9645 9646 SDValue LHS = N->getOperand(0); 9647 SDValue RHS = N->getOperand(1); 9648 9649 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 9650 if (CRHS) { 9651 if (SDValue Split 9652 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 9653 return Split; 9654 } 9655 9656 return SDValue(); 9657 } 9658 9659 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 9660 DAGCombinerInfo &DCI) const { 9661 if (!Subtarget->has16BitInsts() || 9662 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 9663 return SDValue(); 9664 9665 EVT VT = N->getValueType(0); 9666 if (VT != MVT::i32) 9667 return SDValue(); 9668 9669 SDValue Src = N->getOperand(0); 9670 if (Src.getValueType() != MVT::i16) 9671 return SDValue(); 9672 9673 return SDValue(); 9674 } 9675 9676 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, 9677 DAGCombinerInfo &DCI) 9678 const { 9679 SDValue Src = N->getOperand(0); 9680 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 9681 9682 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 9683 VTSign->getVT() == MVT::i8) || 9684 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 9685 VTSign->getVT() == MVT::i16)) && 9686 Src.hasOneUse()) { 9687 auto *M = cast<MemSDNode>(Src); 9688 SDValue Ops[] = { 9689 Src.getOperand(0), // Chain 9690 Src.getOperand(1), // rsrc 9691 Src.getOperand(2), // vindex 9692 Src.getOperand(3), // voffset 9693 Src.getOperand(4), // soffset 9694 Src.getOperand(5), // offset 9695 Src.getOperand(6), 9696 Src.getOperand(7) 9697 }; 9698 // replace with BUFFER_LOAD_BYTE/SHORT 9699 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 9700 Src.getOperand(0).getValueType()); 9701 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 9702 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 9703 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 9704 ResList, 9705 Ops, M->getMemoryVT(), 9706 M->getMemOperand()); 9707 return DCI.DAG.getMergeValues({BufferLoadSignExt, 9708 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 9709 } 9710 return SDValue(); 9711 } 9712 9713 SDValue SITargetLowering::performClassCombine(SDNode *N, 9714 DAGCombinerInfo &DCI) const { 9715 SelectionDAG &DAG = DCI.DAG; 9716 SDValue Mask = N->getOperand(1); 9717 9718 // fp_class x, 0 -> false 9719 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 9720 if (CMask->isZero()) 9721 return DAG.getConstant(0, SDLoc(N), MVT::i1); 9722 } 9723 9724 if (N->getOperand(0).isUndef()) 9725 return DAG.getUNDEF(MVT::i1); 9726 9727 return SDValue(); 9728 } 9729 9730 SDValue SITargetLowering::performRcpCombine(SDNode *N, 9731 DAGCombinerInfo &DCI) const { 9732 EVT VT = N->getValueType(0); 9733 SDValue N0 = N->getOperand(0); 9734 9735 if (N0.isUndef()) 9736 return N0; 9737 9738 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 9739 N0.getOpcode() == ISD::SINT_TO_FP)) { 9740 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 9741 N->getFlags()); 9742 } 9743 9744 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) { 9745 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, 9746 N0.getOperand(0), N->getFlags()); 9747 } 9748 9749 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 9750 } 9751 9752 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 9753 unsigned MaxDepth) const { 9754 unsigned Opcode = Op.getOpcode(); 9755 if (Opcode == ISD::FCANONICALIZE) 9756 return true; 9757 9758 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 9759 auto F = CFP->getValueAPF(); 9760 if (F.isNaN() && F.isSignaling()) 9761 return false; 9762 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType()); 9763 } 9764 9765 // If source is a result of another standard FP operation it is already in 9766 // canonical form. 9767 if (MaxDepth == 0) 9768 return false; 9769 9770 switch (Opcode) { 9771 // These will flush denorms if required. 9772 case ISD::FADD: 9773 case ISD::FSUB: 9774 case ISD::FMUL: 9775 case ISD::FCEIL: 9776 case ISD::FFLOOR: 9777 case ISD::FMA: 9778 case ISD::FMAD: 9779 case ISD::FSQRT: 9780 case ISD::FDIV: 9781 case ISD::FREM: 9782 case ISD::FP_ROUND: 9783 case ISD::FP_EXTEND: 9784 case AMDGPUISD::FMUL_LEGACY: 9785 case AMDGPUISD::FMAD_FTZ: 9786 case AMDGPUISD::RCP: 9787 case AMDGPUISD::RSQ: 9788 case AMDGPUISD::RSQ_CLAMP: 9789 case AMDGPUISD::RCP_LEGACY: 9790 case AMDGPUISD::RCP_IFLAG: 9791 case AMDGPUISD::DIV_SCALE: 9792 case AMDGPUISD::DIV_FMAS: 9793 case AMDGPUISD::DIV_FIXUP: 9794 case AMDGPUISD::FRACT: 9795 case AMDGPUISD::LDEXP: 9796 case AMDGPUISD::CVT_PKRTZ_F16_F32: 9797 case AMDGPUISD::CVT_F32_UBYTE0: 9798 case AMDGPUISD::CVT_F32_UBYTE1: 9799 case AMDGPUISD::CVT_F32_UBYTE2: 9800 case AMDGPUISD::CVT_F32_UBYTE3: 9801 return true; 9802 9803 // It can/will be lowered or combined as a bit operation. 9804 // Need to check their input recursively to handle. 9805 case ISD::FNEG: 9806 case ISD::FABS: 9807 case ISD::FCOPYSIGN: 9808 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 9809 9810 case ISD::FSIN: 9811 case ISD::FCOS: 9812 case ISD::FSINCOS: 9813 return Op.getValueType().getScalarType() != MVT::f16; 9814 9815 case ISD::FMINNUM: 9816 case ISD::FMAXNUM: 9817 case ISD::FMINNUM_IEEE: 9818 case ISD::FMAXNUM_IEEE: 9819 case AMDGPUISD::CLAMP: 9820 case AMDGPUISD::FMED3: 9821 case AMDGPUISD::FMAX3: 9822 case AMDGPUISD::FMIN3: { 9823 // FIXME: Shouldn't treat the generic operations different based these. 9824 // However, we aren't really required to flush the result from 9825 // minnum/maxnum.. 9826 9827 // snans will be quieted, so we only need to worry about denormals. 9828 if (Subtarget->supportsMinMaxDenormModes() || 9829 denormalsEnabledForType(DAG, Op.getValueType())) 9830 return true; 9831 9832 // Flushing may be required. 9833 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 9834 // targets need to check their input recursively. 9835 9836 // FIXME: Does this apply with clamp? It's implemented with max. 9837 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 9838 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 9839 return false; 9840 } 9841 9842 return true; 9843 } 9844 case ISD::SELECT: { 9845 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 9846 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 9847 } 9848 case ISD::BUILD_VECTOR: { 9849 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 9850 SDValue SrcOp = Op.getOperand(i); 9851 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 9852 return false; 9853 } 9854 9855 return true; 9856 } 9857 case ISD::EXTRACT_VECTOR_ELT: 9858 case ISD::EXTRACT_SUBVECTOR: { 9859 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 9860 } 9861 case ISD::INSERT_VECTOR_ELT: { 9862 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 9863 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 9864 } 9865 case ISD::UNDEF: 9866 // Could be anything. 9867 return false; 9868 9869 case ISD::BITCAST: 9870 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 9871 case ISD::TRUNCATE: { 9872 // Hack round the mess we make when legalizing extract_vector_elt 9873 if (Op.getValueType() == MVT::i16) { 9874 SDValue TruncSrc = Op.getOperand(0); 9875 if (TruncSrc.getValueType() == MVT::i32 && 9876 TruncSrc.getOpcode() == ISD::BITCAST && 9877 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 9878 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 9879 } 9880 } 9881 return false; 9882 } 9883 case ISD::INTRINSIC_WO_CHAIN: { 9884 unsigned IntrinsicID 9885 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9886 // TODO: Handle more intrinsics 9887 switch (IntrinsicID) { 9888 case Intrinsic::amdgcn_cvt_pkrtz: 9889 case Intrinsic::amdgcn_cubeid: 9890 case Intrinsic::amdgcn_frexp_mant: 9891 case Intrinsic::amdgcn_fdot2: 9892 case Intrinsic::amdgcn_rcp: 9893 case Intrinsic::amdgcn_rsq: 9894 case Intrinsic::amdgcn_rsq_clamp: 9895 case Intrinsic::amdgcn_rcp_legacy: 9896 case Intrinsic::amdgcn_rsq_legacy: 9897 case Intrinsic::amdgcn_trig_preop: 9898 return true; 9899 default: 9900 break; 9901 } 9902 9903 LLVM_FALLTHROUGH; 9904 } 9905 default: 9906 return denormalsEnabledForType(DAG, Op.getValueType()) && 9907 DAG.isKnownNeverSNaN(Op); 9908 } 9909 9910 llvm_unreachable("invalid operation"); 9911 } 9912 9913 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF, 9914 unsigned MaxDepth) const { 9915 MachineRegisterInfo &MRI = MF.getRegInfo(); 9916 MachineInstr *MI = MRI.getVRegDef(Reg); 9917 unsigned Opcode = MI->getOpcode(); 9918 9919 if (Opcode == AMDGPU::G_FCANONICALIZE) 9920 return true; 9921 9922 Optional<FPValueAndVReg> FCR; 9923 // Constant splat (can be padded with undef) or scalar constant. 9924 if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) { 9925 if (FCR->Value.isSignaling()) 9926 return false; 9927 return !FCR->Value.isDenormal() || 9928 denormalsEnabledForType(MRI.getType(FCR->VReg), MF); 9929 } 9930 9931 if (MaxDepth == 0) 9932 return false; 9933 9934 switch (Opcode) { 9935 case AMDGPU::G_FMINNUM_IEEE: 9936 case AMDGPU::G_FMAXNUM_IEEE: { 9937 if (Subtarget->supportsMinMaxDenormModes() || 9938 denormalsEnabledForType(MRI.getType(Reg), MF)) 9939 return true; 9940 for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) 9941 if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1)) 9942 return false; 9943 return true; 9944 } 9945 default: 9946 return denormalsEnabledForType(MRI.getType(Reg), MF) && 9947 isKnownNeverSNaN(Reg, MRI); 9948 } 9949 9950 llvm_unreachable("invalid operation"); 9951 } 9952 9953 // Constant fold canonicalize. 9954 SDValue SITargetLowering::getCanonicalConstantFP( 9955 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 9956 // Flush denormals to 0 if not enabled. 9957 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) 9958 return DAG.getConstantFP(0.0, SL, VT); 9959 9960 if (C.isNaN()) { 9961 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 9962 if (C.isSignaling()) { 9963 // Quiet a signaling NaN. 9964 // FIXME: Is this supposed to preserve payload bits? 9965 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 9966 } 9967 9968 // Make sure it is the canonical NaN bitpattern. 9969 // 9970 // TODO: Can we use -1 as the canonical NaN value since it's an inline 9971 // immediate? 9972 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 9973 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 9974 } 9975 9976 // Already canonical. 9977 return DAG.getConstantFP(C, SL, VT); 9978 } 9979 9980 static bool vectorEltWillFoldAway(SDValue Op) { 9981 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 9982 } 9983 9984 SDValue SITargetLowering::performFCanonicalizeCombine( 9985 SDNode *N, 9986 DAGCombinerInfo &DCI) const { 9987 SelectionDAG &DAG = DCI.DAG; 9988 SDValue N0 = N->getOperand(0); 9989 EVT VT = N->getValueType(0); 9990 9991 // fcanonicalize undef -> qnan 9992 if (N0.isUndef()) { 9993 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 9994 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 9995 } 9996 9997 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 9998 EVT VT = N->getValueType(0); 9999 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 10000 } 10001 10002 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 10003 // (fcanonicalize k) 10004 // 10005 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 10006 10007 // TODO: This could be better with wider vectors that will be split to v2f16, 10008 // and to consider uses since there aren't that many packed operations. 10009 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 10010 isTypeLegal(MVT::v2f16)) { 10011 SDLoc SL(N); 10012 SDValue NewElts[2]; 10013 SDValue Lo = N0.getOperand(0); 10014 SDValue Hi = N0.getOperand(1); 10015 EVT EltVT = Lo.getValueType(); 10016 10017 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 10018 for (unsigned I = 0; I != 2; ++I) { 10019 SDValue Op = N0.getOperand(I); 10020 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 10021 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 10022 CFP->getValueAPF()); 10023 } else if (Op.isUndef()) { 10024 // Handled below based on what the other operand is. 10025 NewElts[I] = Op; 10026 } else { 10027 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 10028 } 10029 } 10030 10031 // If one half is undef, and one is constant, perfer a splat vector rather 10032 // than the normal qNaN. If it's a register, prefer 0.0 since that's 10033 // cheaper to use and may be free with a packed operation. 10034 if (NewElts[0].isUndef()) { 10035 if (isa<ConstantFPSDNode>(NewElts[1])) 10036 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 10037 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 10038 } 10039 10040 if (NewElts[1].isUndef()) { 10041 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 10042 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 10043 } 10044 10045 return DAG.getBuildVector(VT, SL, NewElts); 10046 } 10047 } 10048 10049 unsigned SrcOpc = N0.getOpcode(); 10050 10051 // If it's free to do so, push canonicalizes further up the source, which may 10052 // find a canonical source. 10053 // 10054 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for 10055 // sNaNs. 10056 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 10057 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 10058 if (CRHS && N0.hasOneUse()) { 10059 SDLoc SL(N); 10060 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 10061 N0.getOperand(0)); 10062 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 10063 DCI.AddToWorklist(Canon0.getNode()); 10064 10065 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 10066 } 10067 } 10068 10069 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 10070 } 10071 10072 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 10073 switch (Opc) { 10074 case ISD::FMAXNUM: 10075 case ISD::FMAXNUM_IEEE: 10076 return AMDGPUISD::FMAX3; 10077 case ISD::SMAX: 10078 return AMDGPUISD::SMAX3; 10079 case ISD::UMAX: 10080 return AMDGPUISD::UMAX3; 10081 case ISD::FMINNUM: 10082 case ISD::FMINNUM_IEEE: 10083 return AMDGPUISD::FMIN3; 10084 case ISD::SMIN: 10085 return AMDGPUISD::SMIN3; 10086 case ISD::UMIN: 10087 return AMDGPUISD::UMIN3; 10088 default: 10089 llvm_unreachable("Not a min/max opcode"); 10090 } 10091 } 10092 10093 SDValue SITargetLowering::performIntMed3ImmCombine( 10094 SelectionDAG &DAG, const SDLoc &SL, 10095 SDValue Op0, SDValue Op1, bool Signed) const { 10096 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); 10097 if (!K1) 10098 return SDValue(); 10099 10100 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 10101 if (!K0) 10102 return SDValue(); 10103 10104 if (Signed) { 10105 if (K0->getAPIntValue().sge(K1->getAPIntValue())) 10106 return SDValue(); 10107 } else { 10108 if (K0->getAPIntValue().uge(K1->getAPIntValue())) 10109 return SDValue(); 10110 } 10111 10112 EVT VT = K0->getValueType(0); 10113 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 10114 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { 10115 return DAG.getNode(Med3Opc, SL, VT, 10116 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); 10117 } 10118 10119 // If there isn't a 16-bit med3 operation, convert to 32-bit. 10120 if (VT == MVT::i16) { 10121 MVT NVT = MVT::i32; 10122 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10123 10124 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); 10125 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); 10126 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); 10127 10128 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); 10129 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); 10130 } 10131 10132 return SDValue(); 10133 } 10134 10135 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 10136 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 10137 return C; 10138 10139 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 10140 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 10141 return C; 10142 } 10143 10144 return nullptr; 10145 } 10146 10147 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 10148 const SDLoc &SL, 10149 SDValue Op0, 10150 SDValue Op1) const { 10151 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 10152 if (!K1) 10153 return SDValue(); 10154 10155 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 10156 if (!K0) 10157 return SDValue(); 10158 10159 // Ordered >= (although NaN inputs should have folded away by now). 10160 if (K0->getValueAPF() > K1->getValueAPF()) 10161 return SDValue(); 10162 10163 const MachineFunction &MF = DAG.getMachineFunction(); 10164 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10165 10166 // TODO: Check IEEE bit enabled? 10167 EVT VT = Op0.getValueType(); 10168 if (Info->getMode().DX10Clamp) { 10169 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 10170 // hardware fmed3 behavior converting to a min. 10171 // FIXME: Should this be allowing -0.0? 10172 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 10173 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 10174 } 10175 10176 // med3 for f16 is only available on gfx9+, and not available for v2f16. 10177 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 10178 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 10179 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 10180 // then give the other result, which is different from med3 with a NaN 10181 // input. 10182 SDValue Var = Op0.getOperand(0); 10183 if (!DAG.isKnownNeverSNaN(Var)) 10184 return SDValue(); 10185 10186 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 10187 10188 if ((!K0->hasOneUse() || 10189 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 10190 (!K1->hasOneUse() || 10191 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 10192 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 10193 Var, SDValue(K0, 0), SDValue(K1, 0)); 10194 } 10195 } 10196 10197 return SDValue(); 10198 } 10199 10200 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 10201 DAGCombinerInfo &DCI) const { 10202 SelectionDAG &DAG = DCI.DAG; 10203 10204 EVT VT = N->getValueType(0); 10205 unsigned Opc = N->getOpcode(); 10206 SDValue Op0 = N->getOperand(0); 10207 SDValue Op1 = N->getOperand(1); 10208 10209 // Only do this if the inner op has one use since this will just increases 10210 // register pressure for no benefit. 10211 10212 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 10213 !VT.isVector() && 10214 (VT == MVT::i32 || VT == MVT::f32 || 10215 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 10216 // max(max(a, b), c) -> max3(a, b, c) 10217 // min(min(a, b), c) -> min3(a, b, c) 10218 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 10219 SDLoc DL(N); 10220 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 10221 DL, 10222 N->getValueType(0), 10223 Op0.getOperand(0), 10224 Op0.getOperand(1), 10225 Op1); 10226 } 10227 10228 // Try commuted. 10229 // max(a, max(b, c)) -> max3(a, b, c) 10230 // min(a, min(b, c)) -> min3(a, b, c) 10231 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 10232 SDLoc DL(N); 10233 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 10234 DL, 10235 N->getValueType(0), 10236 Op0, 10237 Op1.getOperand(0), 10238 Op1.getOperand(1)); 10239 } 10240 } 10241 10242 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 10243 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 10244 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) 10245 return Med3; 10246 } 10247 10248 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 10249 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) 10250 return Med3; 10251 } 10252 10253 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 10254 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 10255 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 10256 (Opc == AMDGPUISD::FMIN_LEGACY && 10257 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 10258 (VT == MVT::f32 || VT == MVT::f64 || 10259 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 10260 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 10261 Op0.hasOneUse()) { 10262 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 10263 return Res; 10264 } 10265 10266 return SDValue(); 10267 } 10268 10269 static bool isClampZeroToOne(SDValue A, SDValue B) { 10270 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 10271 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 10272 // FIXME: Should this be allowing -0.0? 10273 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 10274 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 10275 } 10276 } 10277 10278 return false; 10279 } 10280 10281 // FIXME: Should only worry about snans for version with chain. 10282 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 10283 DAGCombinerInfo &DCI) const { 10284 EVT VT = N->getValueType(0); 10285 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 10286 // NaNs. With a NaN input, the order of the operands may change the result. 10287 10288 SelectionDAG &DAG = DCI.DAG; 10289 SDLoc SL(N); 10290 10291 SDValue Src0 = N->getOperand(0); 10292 SDValue Src1 = N->getOperand(1); 10293 SDValue Src2 = N->getOperand(2); 10294 10295 if (isClampZeroToOne(Src0, Src1)) { 10296 // const_a, const_b, x -> clamp is safe in all cases including signaling 10297 // nans. 10298 // FIXME: Should this be allowing -0.0? 10299 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 10300 } 10301 10302 const MachineFunction &MF = DAG.getMachineFunction(); 10303 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10304 10305 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 10306 // handling no dx10-clamp? 10307 if (Info->getMode().DX10Clamp) { 10308 // If NaNs is clamped to 0, we are free to reorder the inputs. 10309 10310 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 10311 std::swap(Src0, Src1); 10312 10313 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 10314 std::swap(Src1, Src2); 10315 10316 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 10317 std::swap(Src0, Src1); 10318 10319 if (isClampZeroToOne(Src1, Src2)) 10320 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 10321 } 10322 10323 return SDValue(); 10324 } 10325 10326 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 10327 DAGCombinerInfo &DCI) const { 10328 SDValue Src0 = N->getOperand(0); 10329 SDValue Src1 = N->getOperand(1); 10330 if (Src0.isUndef() && Src1.isUndef()) 10331 return DCI.DAG.getUNDEF(N->getValueType(0)); 10332 return SDValue(); 10333 } 10334 10335 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be 10336 // expanded into a set of cmp/select instructions. 10337 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, 10338 unsigned NumElem, 10339 bool IsDivergentIdx) { 10340 if (UseDivergentRegisterIndexing) 10341 return false; 10342 10343 unsigned VecSize = EltSize * NumElem; 10344 10345 // Sub-dword vectors of size 2 dword or less have better implementation. 10346 if (VecSize <= 64 && EltSize < 32) 10347 return false; 10348 10349 // Always expand the rest of sub-dword instructions, otherwise it will be 10350 // lowered via memory. 10351 if (EltSize < 32) 10352 return true; 10353 10354 // Always do this if var-idx is divergent, otherwise it will become a loop. 10355 if (IsDivergentIdx) 10356 return true; 10357 10358 // Large vectors would yield too many compares and v_cndmask_b32 instructions. 10359 unsigned NumInsts = NumElem /* Number of compares */ + 10360 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; 10361 return NumInsts <= 16; 10362 } 10363 10364 static bool shouldExpandVectorDynExt(SDNode *N) { 10365 SDValue Idx = N->getOperand(N->getNumOperands() - 1); 10366 if (isa<ConstantSDNode>(Idx)) 10367 return false; 10368 10369 SDValue Vec = N->getOperand(0); 10370 EVT VecVT = Vec.getValueType(); 10371 EVT EltVT = VecVT.getVectorElementType(); 10372 unsigned EltSize = EltVT.getSizeInBits(); 10373 unsigned NumElem = VecVT.getVectorNumElements(); 10374 10375 return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem, 10376 Idx->isDivergent()); 10377 } 10378 10379 SDValue SITargetLowering::performExtractVectorEltCombine( 10380 SDNode *N, DAGCombinerInfo &DCI) const { 10381 SDValue Vec = N->getOperand(0); 10382 SelectionDAG &DAG = DCI.DAG; 10383 10384 EVT VecVT = Vec.getValueType(); 10385 EVT EltVT = VecVT.getVectorElementType(); 10386 10387 if ((Vec.getOpcode() == ISD::FNEG || 10388 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 10389 SDLoc SL(N); 10390 EVT EltVT = N->getValueType(0); 10391 SDValue Idx = N->getOperand(1); 10392 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10393 Vec.getOperand(0), Idx); 10394 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); 10395 } 10396 10397 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 10398 // => 10399 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 10400 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 10401 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 10402 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { 10403 SDLoc SL(N); 10404 EVT EltVT = N->getValueType(0); 10405 SDValue Idx = N->getOperand(1); 10406 unsigned Opc = Vec.getOpcode(); 10407 10408 switch(Opc) { 10409 default: 10410 break; 10411 // TODO: Support other binary operations. 10412 case ISD::FADD: 10413 case ISD::FSUB: 10414 case ISD::FMUL: 10415 case ISD::ADD: 10416 case ISD::UMIN: 10417 case ISD::UMAX: 10418 case ISD::SMIN: 10419 case ISD::SMAX: 10420 case ISD::FMAXNUM: 10421 case ISD::FMINNUM: 10422 case ISD::FMAXNUM_IEEE: 10423 case ISD::FMINNUM_IEEE: { 10424 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10425 Vec.getOperand(0), Idx); 10426 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10427 Vec.getOperand(1), Idx); 10428 10429 DCI.AddToWorklist(Elt0.getNode()); 10430 DCI.AddToWorklist(Elt1.getNode()); 10431 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); 10432 } 10433 } 10434 } 10435 10436 unsigned VecSize = VecVT.getSizeInBits(); 10437 unsigned EltSize = EltVT.getSizeInBits(); 10438 10439 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 10440 if (::shouldExpandVectorDynExt(N)) { 10441 SDLoc SL(N); 10442 SDValue Idx = N->getOperand(1); 10443 SDValue V; 10444 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 10445 SDValue IC = DAG.getVectorIdxConstant(I, SL); 10446 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 10447 if (I == 0) 10448 V = Elt; 10449 else 10450 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 10451 } 10452 return V; 10453 } 10454 10455 if (!DCI.isBeforeLegalize()) 10456 return SDValue(); 10457 10458 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 10459 // elements. This exposes more load reduction opportunities by replacing 10460 // multiple small extract_vector_elements with a single 32-bit extract. 10461 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10462 if (isa<MemSDNode>(Vec) && 10463 EltSize <= 16 && 10464 EltVT.isByteSized() && 10465 VecSize > 32 && 10466 VecSize % 32 == 0 && 10467 Idx) { 10468 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 10469 10470 unsigned BitIndex = Idx->getZExtValue() * EltSize; 10471 unsigned EltIdx = BitIndex / 32; 10472 unsigned LeftoverBitIdx = BitIndex % 32; 10473 SDLoc SL(N); 10474 10475 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 10476 DCI.AddToWorklist(Cast.getNode()); 10477 10478 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 10479 DAG.getConstant(EltIdx, SL, MVT::i32)); 10480 DCI.AddToWorklist(Elt.getNode()); 10481 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 10482 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 10483 DCI.AddToWorklist(Srl.getNode()); 10484 10485 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); 10486 DCI.AddToWorklist(Trunc.getNode()); 10487 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); 10488 } 10489 10490 return SDValue(); 10491 } 10492 10493 SDValue 10494 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 10495 DAGCombinerInfo &DCI) const { 10496 SDValue Vec = N->getOperand(0); 10497 SDValue Idx = N->getOperand(2); 10498 EVT VecVT = Vec.getValueType(); 10499 EVT EltVT = VecVT.getVectorElementType(); 10500 10501 // INSERT_VECTOR_ELT (<n x e>, var-idx) 10502 // => BUILD_VECTOR n x select (e, const-idx) 10503 if (!::shouldExpandVectorDynExt(N)) 10504 return SDValue(); 10505 10506 SelectionDAG &DAG = DCI.DAG; 10507 SDLoc SL(N); 10508 SDValue Ins = N->getOperand(1); 10509 EVT IdxVT = Idx.getValueType(); 10510 10511 SmallVector<SDValue, 16> Ops; 10512 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 10513 SDValue IC = DAG.getConstant(I, SL, IdxVT); 10514 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 10515 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 10516 Ops.push_back(V); 10517 } 10518 10519 return DAG.getBuildVector(VecVT, SL, Ops); 10520 } 10521 10522 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 10523 const SDNode *N0, 10524 const SDNode *N1) const { 10525 EVT VT = N0->getValueType(0); 10526 10527 // Only do this if we are not trying to support denormals. v_mad_f32 does not 10528 // support denormals ever. 10529 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) || 10530 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) && 10531 getSubtarget()->hasMadF16())) && 10532 isOperationLegal(ISD::FMAD, VT)) 10533 return ISD::FMAD; 10534 10535 const TargetOptions &Options = DAG.getTarget().Options; 10536 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 10537 (N0->getFlags().hasAllowContract() && 10538 N1->getFlags().hasAllowContract())) && 10539 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 10540 return ISD::FMA; 10541 } 10542 10543 return 0; 10544 } 10545 10546 // For a reassociatable opcode perform: 10547 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 10548 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 10549 SelectionDAG &DAG) const { 10550 EVT VT = N->getValueType(0); 10551 if (VT != MVT::i32 && VT != MVT::i64) 10552 return SDValue(); 10553 10554 unsigned Opc = N->getOpcode(); 10555 SDValue Op0 = N->getOperand(0); 10556 SDValue Op1 = N->getOperand(1); 10557 10558 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 10559 return SDValue(); 10560 10561 if (Op0->isDivergent()) 10562 std::swap(Op0, Op1); 10563 10564 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 10565 return SDValue(); 10566 10567 SDValue Op2 = Op1.getOperand(1); 10568 Op1 = Op1.getOperand(0); 10569 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 10570 return SDValue(); 10571 10572 if (Op1->isDivergent()) 10573 std::swap(Op1, Op2); 10574 10575 // If either operand is constant this will conflict with 10576 // DAGCombiner::ReassociateOps(). 10577 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 10578 DAG.isConstantIntBuildVectorOrConstantInt(Op1)) 10579 return SDValue(); 10580 10581 SDLoc SL(N); 10582 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 10583 return DAG.getNode(Opc, SL, VT, Add1, Op2); 10584 } 10585 10586 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 10587 EVT VT, 10588 SDValue N0, SDValue N1, SDValue N2, 10589 bool Signed) { 10590 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 10591 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 10592 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 10593 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 10594 } 10595 10596 SDValue SITargetLowering::performAddCombine(SDNode *N, 10597 DAGCombinerInfo &DCI) const { 10598 SelectionDAG &DAG = DCI.DAG; 10599 EVT VT = N->getValueType(0); 10600 SDLoc SL(N); 10601 SDValue LHS = N->getOperand(0); 10602 SDValue RHS = N->getOperand(1); 10603 10604 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) 10605 && Subtarget->hasMad64_32() && 10606 !VT.isVector() && VT.getScalarSizeInBits() > 32 && 10607 VT.getScalarSizeInBits() <= 64) { 10608 if (LHS.getOpcode() != ISD::MUL) 10609 std::swap(LHS, RHS); 10610 10611 SDValue MulLHS = LHS.getOperand(0); 10612 SDValue MulRHS = LHS.getOperand(1); 10613 SDValue AddRHS = RHS; 10614 10615 // TODO: Maybe restrict if SGPR inputs. 10616 if (numBitsUnsigned(MulLHS, DAG) <= 32 && 10617 numBitsUnsigned(MulRHS, DAG) <= 32) { 10618 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); 10619 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); 10620 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); 10621 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); 10622 } 10623 10624 if (numBitsSigned(MulLHS, DAG) <= 32 && numBitsSigned(MulRHS, DAG) <= 32) { 10625 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); 10626 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); 10627 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); 10628 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); 10629 } 10630 10631 return SDValue(); 10632 } 10633 10634 if (SDValue V = reassociateScalarOps(N, DAG)) { 10635 return V; 10636 } 10637 10638 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 10639 return SDValue(); 10640 10641 // add x, zext (setcc) => addcarry x, 0, setcc 10642 // add x, sext (setcc) => subcarry x, 0, setcc 10643 unsigned Opc = LHS.getOpcode(); 10644 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 10645 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) 10646 std::swap(RHS, LHS); 10647 10648 Opc = RHS.getOpcode(); 10649 switch (Opc) { 10650 default: break; 10651 case ISD::ZERO_EXTEND: 10652 case ISD::SIGN_EXTEND: 10653 case ISD::ANY_EXTEND: { 10654 auto Cond = RHS.getOperand(0); 10655 // If this won't be a real VOPC output, we would still need to insert an 10656 // extra instruction anyway. 10657 if (!isBoolSGPR(Cond)) 10658 break; 10659 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 10660 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 10661 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; 10662 return DAG.getNode(Opc, SL, VTList, Args); 10663 } 10664 case ISD::ADDCARRY: { 10665 // add x, (addcarry y, 0, cc) => addcarry x, y, cc 10666 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 10667 if (!C || C->getZExtValue() != 0) break; 10668 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 10669 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); 10670 } 10671 } 10672 return SDValue(); 10673 } 10674 10675 SDValue SITargetLowering::performSubCombine(SDNode *N, 10676 DAGCombinerInfo &DCI) const { 10677 SelectionDAG &DAG = DCI.DAG; 10678 EVT VT = N->getValueType(0); 10679 10680 if (VT != MVT::i32) 10681 return SDValue(); 10682 10683 SDLoc SL(N); 10684 SDValue LHS = N->getOperand(0); 10685 SDValue RHS = N->getOperand(1); 10686 10687 // sub x, zext (setcc) => subcarry x, 0, setcc 10688 // sub x, sext (setcc) => addcarry x, 0, setcc 10689 unsigned Opc = RHS.getOpcode(); 10690 switch (Opc) { 10691 default: break; 10692 case ISD::ZERO_EXTEND: 10693 case ISD::SIGN_EXTEND: 10694 case ISD::ANY_EXTEND: { 10695 auto Cond = RHS.getOperand(0); 10696 // If this won't be a real VOPC output, we would still need to insert an 10697 // extra instruction anyway. 10698 if (!isBoolSGPR(Cond)) 10699 break; 10700 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 10701 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 10702 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY; 10703 return DAG.getNode(Opc, SL, VTList, Args); 10704 } 10705 } 10706 10707 if (LHS.getOpcode() == ISD::SUBCARRY) { 10708 // sub (subcarry x, 0, cc), y => subcarry x, y, cc 10709 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 10710 if (!C || !C->isZero()) 10711 return SDValue(); 10712 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 10713 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); 10714 } 10715 return SDValue(); 10716 } 10717 10718 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 10719 DAGCombinerInfo &DCI) const { 10720 10721 if (N->getValueType(0) != MVT::i32) 10722 return SDValue(); 10723 10724 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10725 if (!C || C->getZExtValue() != 0) 10726 return SDValue(); 10727 10728 SelectionDAG &DAG = DCI.DAG; 10729 SDValue LHS = N->getOperand(0); 10730 10731 // addcarry (add x, y), 0, cc => addcarry x, y, cc 10732 // subcarry (sub x, y), 0, cc => subcarry x, y, cc 10733 unsigned LHSOpc = LHS.getOpcode(); 10734 unsigned Opc = N->getOpcode(); 10735 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || 10736 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { 10737 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 10738 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 10739 } 10740 return SDValue(); 10741 } 10742 10743 SDValue SITargetLowering::performFAddCombine(SDNode *N, 10744 DAGCombinerInfo &DCI) const { 10745 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 10746 return SDValue(); 10747 10748 SelectionDAG &DAG = DCI.DAG; 10749 EVT VT = N->getValueType(0); 10750 10751 SDLoc SL(N); 10752 SDValue LHS = N->getOperand(0); 10753 SDValue RHS = N->getOperand(1); 10754 10755 // These should really be instruction patterns, but writing patterns with 10756 // source modiifiers is a pain. 10757 10758 // fadd (fadd (a, a), b) -> mad 2.0, a, b 10759 if (LHS.getOpcode() == ISD::FADD) { 10760 SDValue A = LHS.getOperand(0); 10761 if (A == LHS.getOperand(1)) { 10762 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 10763 if (FusedOp != 0) { 10764 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10765 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 10766 } 10767 } 10768 } 10769 10770 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 10771 if (RHS.getOpcode() == ISD::FADD) { 10772 SDValue A = RHS.getOperand(0); 10773 if (A == RHS.getOperand(1)) { 10774 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 10775 if (FusedOp != 0) { 10776 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10777 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 10778 } 10779 } 10780 } 10781 10782 return SDValue(); 10783 } 10784 10785 SDValue SITargetLowering::performFSubCombine(SDNode *N, 10786 DAGCombinerInfo &DCI) const { 10787 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 10788 return SDValue(); 10789 10790 SelectionDAG &DAG = DCI.DAG; 10791 SDLoc SL(N); 10792 EVT VT = N->getValueType(0); 10793 assert(!VT.isVector()); 10794 10795 // Try to get the fneg to fold into the source modifier. This undoes generic 10796 // DAG combines and folds them into the mad. 10797 // 10798 // Only do this if we are not trying to support denormals. v_mad_f32 does 10799 // not support denormals ever. 10800 SDValue LHS = N->getOperand(0); 10801 SDValue RHS = N->getOperand(1); 10802 if (LHS.getOpcode() == ISD::FADD) { 10803 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 10804 SDValue A = LHS.getOperand(0); 10805 if (A == LHS.getOperand(1)) { 10806 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 10807 if (FusedOp != 0){ 10808 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10809 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 10810 10811 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 10812 } 10813 } 10814 } 10815 10816 if (RHS.getOpcode() == ISD::FADD) { 10817 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 10818 10819 SDValue A = RHS.getOperand(0); 10820 if (A == RHS.getOperand(1)) { 10821 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 10822 if (FusedOp != 0){ 10823 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 10824 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 10825 } 10826 } 10827 } 10828 10829 return SDValue(); 10830 } 10831 10832 SDValue SITargetLowering::performFMACombine(SDNode *N, 10833 DAGCombinerInfo &DCI) const { 10834 SelectionDAG &DAG = DCI.DAG; 10835 EVT VT = N->getValueType(0); 10836 SDLoc SL(N); 10837 10838 if (!Subtarget->hasDot7Insts() || VT != MVT::f32) 10839 return SDValue(); 10840 10841 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 10842 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 10843 SDValue Op1 = N->getOperand(0); 10844 SDValue Op2 = N->getOperand(1); 10845 SDValue FMA = N->getOperand(2); 10846 10847 if (FMA.getOpcode() != ISD::FMA || 10848 Op1.getOpcode() != ISD::FP_EXTEND || 10849 Op2.getOpcode() != ISD::FP_EXTEND) 10850 return SDValue(); 10851 10852 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 10853 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract 10854 // is sufficient to allow generaing fdot2. 10855 const TargetOptions &Options = DAG.getTarget().Options; 10856 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 10857 (N->getFlags().hasAllowContract() && 10858 FMA->getFlags().hasAllowContract())) { 10859 Op1 = Op1.getOperand(0); 10860 Op2 = Op2.getOperand(0); 10861 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10862 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10863 return SDValue(); 10864 10865 SDValue Vec1 = Op1.getOperand(0); 10866 SDValue Idx1 = Op1.getOperand(1); 10867 SDValue Vec2 = Op2.getOperand(0); 10868 10869 SDValue FMAOp1 = FMA.getOperand(0); 10870 SDValue FMAOp2 = FMA.getOperand(1); 10871 SDValue FMAAcc = FMA.getOperand(2); 10872 10873 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 10874 FMAOp2.getOpcode() != ISD::FP_EXTEND) 10875 return SDValue(); 10876 10877 FMAOp1 = FMAOp1.getOperand(0); 10878 FMAOp2 = FMAOp2.getOperand(0); 10879 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10880 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10881 return SDValue(); 10882 10883 SDValue Vec3 = FMAOp1.getOperand(0); 10884 SDValue Vec4 = FMAOp2.getOperand(0); 10885 SDValue Idx2 = FMAOp1.getOperand(1); 10886 10887 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 10888 // Idx1 and Idx2 cannot be the same. 10889 Idx1 == Idx2) 10890 return SDValue(); 10891 10892 if (Vec1 == Vec2 || Vec3 == Vec4) 10893 return SDValue(); 10894 10895 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 10896 return SDValue(); 10897 10898 if ((Vec1 == Vec3 && Vec2 == Vec4) || 10899 (Vec1 == Vec4 && Vec2 == Vec3)) { 10900 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 10901 DAG.getTargetConstant(0, SL, MVT::i1)); 10902 } 10903 } 10904 return SDValue(); 10905 } 10906 10907 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 10908 DAGCombinerInfo &DCI) const { 10909 SelectionDAG &DAG = DCI.DAG; 10910 SDLoc SL(N); 10911 10912 SDValue LHS = N->getOperand(0); 10913 SDValue RHS = N->getOperand(1); 10914 EVT VT = LHS.getValueType(); 10915 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 10916 10917 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 10918 if (!CRHS) { 10919 CRHS = dyn_cast<ConstantSDNode>(LHS); 10920 if (CRHS) { 10921 std::swap(LHS, RHS); 10922 CC = getSetCCSwappedOperands(CC); 10923 } 10924 } 10925 10926 if (CRHS) { 10927 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 10928 isBoolSGPR(LHS.getOperand(0))) { 10929 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 10930 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 10931 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 10932 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 10933 if ((CRHS->isAllOnes() && 10934 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 10935 (CRHS->isZero() && 10936 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 10937 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 10938 DAG.getConstant(-1, SL, MVT::i1)); 10939 if ((CRHS->isAllOnes() && 10940 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 10941 (CRHS->isZero() && 10942 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 10943 return LHS.getOperand(0); 10944 } 10945 10946 const APInt &CRHSVal = CRHS->getAPIntValue(); 10947 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 10948 LHS.getOpcode() == ISD::SELECT && 10949 isa<ConstantSDNode>(LHS.getOperand(1)) && 10950 isa<ConstantSDNode>(LHS.getOperand(2)) && 10951 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 10952 isBoolSGPR(LHS.getOperand(0))) { 10953 // Given CT != FT: 10954 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 10955 // setcc (select cc, CT, CF), CF, ne => cc 10956 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 10957 // setcc (select cc, CT, CF), CT, eq => cc 10958 const APInt &CT = LHS.getConstantOperandAPInt(1); 10959 const APInt &CF = LHS.getConstantOperandAPInt(2); 10960 10961 if ((CF == CRHSVal && CC == ISD::SETEQ) || 10962 (CT == CRHSVal && CC == ISD::SETNE)) 10963 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 10964 DAG.getConstant(-1, SL, MVT::i1)); 10965 if ((CF == CRHSVal && CC == ISD::SETNE) || 10966 (CT == CRHSVal && CC == ISD::SETEQ)) 10967 return LHS.getOperand(0); 10968 } 10969 } 10970 10971 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && 10972 VT != MVT::f16)) 10973 return SDValue(); 10974 10975 // Match isinf/isfinite pattern 10976 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 10977 // (fcmp one (fabs x), inf) -> (fp_class x, 10978 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 10979 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 10980 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 10981 if (!CRHS) 10982 return SDValue(); 10983 10984 const APFloat &APF = CRHS->getValueAPF(); 10985 if (APF.isInfinity() && !APF.isNegative()) { 10986 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 10987 SIInstrFlags::N_INFINITY; 10988 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 10989 SIInstrFlags::P_ZERO | 10990 SIInstrFlags::N_NORMAL | 10991 SIInstrFlags::P_NORMAL | 10992 SIInstrFlags::N_SUBNORMAL | 10993 SIInstrFlags::P_SUBNORMAL; 10994 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 10995 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 10996 DAG.getConstant(Mask, SL, MVT::i32)); 10997 } 10998 } 10999 11000 return SDValue(); 11001 } 11002 11003 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 11004 DAGCombinerInfo &DCI) const { 11005 SelectionDAG &DAG = DCI.DAG; 11006 SDLoc SL(N); 11007 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 11008 11009 SDValue Src = N->getOperand(0); 11010 SDValue Shift = N->getOperand(0); 11011 11012 // TODO: Extend type shouldn't matter (assuming legal types). 11013 if (Shift.getOpcode() == ISD::ZERO_EXTEND) 11014 Shift = Shift.getOperand(0); 11015 11016 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { 11017 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x 11018 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x 11019 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 11020 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 11021 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 11022 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { 11023 SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0), 11024 SDLoc(Shift.getOperand(0)), MVT::i32); 11025 11026 unsigned ShiftOffset = 8 * Offset; 11027 if (Shift.getOpcode() == ISD::SHL) 11028 ShiftOffset -= C->getZExtValue(); 11029 else 11030 ShiftOffset += C->getZExtValue(); 11031 11032 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { 11033 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, 11034 MVT::f32, Shifted); 11035 } 11036 } 11037 } 11038 11039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11040 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 11041 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { 11042 // We simplified Src. If this node is not dead, visit it again so it is 11043 // folded properly. 11044 if (N->getOpcode() != ISD::DELETED_NODE) 11045 DCI.AddToWorklist(N); 11046 return SDValue(N, 0); 11047 } 11048 11049 // Handle (or x, (srl y, 8)) pattern when known bits are zero. 11050 if (SDValue DemandedSrc = 11051 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) 11052 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); 11053 11054 return SDValue(); 11055 } 11056 11057 SDValue SITargetLowering::performClampCombine(SDNode *N, 11058 DAGCombinerInfo &DCI) const { 11059 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 11060 if (!CSrc) 11061 return SDValue(); 11062 11063 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 11064 const APFloat &F = CSrc->getValueAPF(); 11065 APFloat Zero = APFloat::getZero(F.getSemantics()); 11066 if (F < Zero || 11067 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 11068 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 11069 } 11070 11071 APFloat One(F.getSemantics(), "1.0"); 11072 if (F > One) 11073 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 11074 11075 return SDValue(CSrc, 0); 11076 } 11077 11078 11079 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 11080 DAGCombinerInfo &DCI) const { 11081 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 11082 return SDValue(); 11083 switch (N->getOpcode()) { 11084 case ISD::ADD: 11085 return performAddCombine(N, DCI); 11086 case ISD::SUB: 11087 return performSubCombine(N, DCI); 11088 case ISD::ADDCARRY: 11089 case ISD::SUBCARRY: 11090 return performAddCarrySubCarryCombine(N, DCI); 11091 case ISD::FADD: 11092 return performFAddCombine(N, DCI); 11093 case ISD::FSUB: 11094 return performFSubCombine(N, DCI); 11095 case ISD::SETCC: 11096 return performSetCCCombine(N, DCI); 11097 case ISD::FMAXNUM: 11098 case ISD::FMINNUM: 11099 case ISD::FMAXNUM_IEEE: 11100 case ISD::FMINNUM_IEEE: 11101 case ISD::SMAX: 11102 case ISD::SMIN: 11103 case ISD::UMAX: 11104 case ISD::UMIN: 11105 case AMDGPUISD::FMIN_LEGACY: 11106 case AMDGPUISD::FMAX_LEGACY: 11107 return performMinMaxCombine(N, DCI); 11108 case ISD::FMA: 11109 return performFMACombine(N, DCI); 11110 case ISD::AND: 11111 return performAndCombine(N, DCI); 11112 case ISD::OR: 11113 return performOrCombine(N, DCI); 11114 case ISD::XOR: 11115 return performXorCombine(N, DCI); 11116 case ISD::ZERO_EXTEND: 11117 return performZeroExtendCombine(N, DCI); 11118 case ISD::SIGN_EXTEND_INREG: 11119 return performSignExtendInRegCombine(N , DCI); 11120 case AMDGPUISD::FP_CLASS: 11121 return performClassCombine(N, DCI); 11122 case ISD::FCANONICALIZE: 11123 return performFCanonicalizeCombine(N, DCI); 11124 case AMDGPUISD::RCP: 11125 return performRcpCombine(N, DCI); 11126 case AMDGPUISD::FRACT: 11127 case AMDGPUISD::RSQ: 11128 case AMDGPUISD::RCP_LEGACY: 11129 case AMDGPUISD::RCP_IFLAG: 11130 case AMDGPUISD::RSQ_CLAMP: 11131 case AMDGPUISD::LDEXP: { 11132 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 11133 SDValue Src = N->getOperand(0); 11134 if (Src.isUndef()) 11135 return Src; 11136 break; 11137 } 11138 case ISD::SINT_TO_FP: 11139 case ISD::UINT_TO_FP: 11140 return performUCharToFloatCombine(N, DCI); 11141 case AMDGPUISD::CVT_F32_UBYTE0: 11142 case AMDGPUISD::CVT_F32_UBYTE1: 11143 case AMDGPUISD::CVT_F32_UBYTE2: 11144 case AMDGPUISD::CVT_F32_UBYTE3: 11145 return performCvtF32UByteNCombine(N, DCI); 11146 case AMDGPUISD::FMED3: 11147 return performFMed3Combine(N, DCI); 11148 case AMDGPUISD::CVT_PKRTZ_F16_F32: 11149 return performCvtPkRTZCombine(N, DCI); 11150 case AMDGPUISD::CLAMP: 11151 return performClampCombine(N, DCI); 11152 case ISD::SCALAR_TO_VECTOR: { 11153 SelectionDAG &DAG = DCI.DAG; 11154 EVT VT = N->getValueType(0); 11155 11156 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 11157 if (VT == MVT::v2i16 || VT == MVT::v2f16) { 11158 SDLoc SL(N); 11159 SDValue Src = N->getOperand(0); 11160 EVT EltVT = Src.getValueType(); 11161 if (EltVT == MVT::f16) 11162 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 11163 11164 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 11165 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 11166 } 11167 11168 break; 11169 } 11170 case ISD::EXTRACT_VECTOR_ELT: 11171 return performExtractVectorEltCombine(N, DCI); 11172 case ISD::INSERT_VECTOR_ELT: 11173 return performInsertVectorEltCombine(N, DCI); 11174 case ISD::LOAD: { 11175 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 11176 return Widended; 11177 LLVM_FALLTHROUGH; 11178 } 11179 default: { 11180 if (!DCI.isBeforeLegalize()) { 11181 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N)) 11182 return performMemSDNodeCombine(MemNode, DCI); 11183 } 11184 11185 break; 11186 } 11187 } 11188 11189 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 11190 } 11191 11192 /// Helper function for adjustWritemask 11193 static unsigned SubIdx2Lane(unsigned Idx) { 11194 switch (Idx) { 11195 default: return ~0u; 11196 case AMDGPU::sub0: return 0; 11197 case AMDGPU::sub1: return 1; 11198 case AMDGPU::sub2: return 2; 11199 case AMDGPU::sub3: return 3; 11200 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 11201 } 11202 } 11203 11204 /// Adjust the writemask of MIMG instructions 11205 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 11206 SelectionDAG &DAG) const { 11207 unsigned Opcode = Node->getMachineOpcode(); 11208 11209 // Subtract 1 because the vdata output is not a MachineSDNode operand. 11210 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 11211 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 11212 return Node; // not implemented for D16 11213 11214 SDNode *Users[5] = { nullptr }; 11215 unsigned Lane = 0; 11216 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 11217 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 11218 unsigned NewDmask = 0; 11219 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 11220 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 11221 bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || 11222 Node->getConstantOperandVal(LWEIdx)) 11223 ? true 11224 : false; 11225 unsigned TFCLane = 0; 11226 bool HasChain = Node->getNumValues() > 1; 11227 11228 if (OldDmask == 0) { 11229 // These are folded out, but on the chance it happens don't assert. 11230 return Node; 11231 } 11232 11233 unsigned OldBitsSet = countPopulation(OldDmask); 11234 // Work out which is the TFE/LWE lane if that is enabled. 11235 if (UsesTFC) { 11236 TFCLane = OldBitsSet; 11237 } 11238 11239 // Try to figure out the used register components 11240 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 11241 I != E; ++I) { 11242 11243 // Don't look at users of the chain. 11244 if (I.getUse().getResNo() != 0) 11245 continue; 11246 11247 // Abort if we can't understand the usage 11248 if (!I->isMachineOpcode() || 11249 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 11250 return Node; 11251 11252 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 11253 // Note that subregs are packed, i.e. Lane==0 is the first bit set 11254 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 11255 // set, etc. 11256 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 11257 if (Lane == ~0u) 11258 return Node; 11259 11260 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 11261 if (UsesTFC && Lane == TFCLane) { 11262 Users[Lane] = *I; 11263 } else { 11264 // Set which texture component corresponds to the lane. 11265 unsigned Comp; 11266 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 11267 Comp = countTrailingZeros(Dmask); 11268 Dmask &= ~(1 << Comp); 11269 } 11270 11271 // Abort if we have more than one user per component. 11272 if (Users[Lane]) 11273 return Node; 11274 11275 Users[Lane] = *I; 11276 NewDmask |= 1 << Comp; 11277 } 11278 } 11279 11280 // Don't allow 0 dmask, as hardware assumes one channel enabled. 11281 bool NoChannels = !NewDmask; 11282 if (NoChannels) { 11283 if (!UsesTFC) { 11284 // No uses of the result and not using TFC. Then do nothing. 11285 return Node; 11286 } 11287 // If the original dmask has one channel - then nothing to do 11288 if (OldBitsSet == 1) 11289 return Node; 11290 // Use an arbitrary dmask - required for the instruction to work 11291 NewDmask = 1; 11292 } 11293 // Abort if there's no change 11294 if (NewDmask == OldDmask) 11295 return Node; 11296 11297 unsigned BitsSet = countPopulation(NewDmask); 11298 11299 // Check for TFE or LWE - increase the number of channels by one to account 11300 // for the extra return value 11301 // This will need adjustment for D16 if this is also included in 11302 // adjustWriteMask (this function) but at present D16 are excluded. 11303 unsigned NewChannels = BitsSet + UsesTFC; 11304 11305 int NewOpcode = 11306 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 11307 assert(NewOpcode != -1 && 11308 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 11309 "failed to find equivalent MIMG op"); 11310 11311 // Adjust the writemask in the node 11312 SmallVector<SDValue, 12> Ops; 11313 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 11314 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 11315 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 11316 11317 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 11318 11319 MVT ResultVT = NewChannels == 1 ? 11320 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 11321 NewChannels == 5 ? 8 : NewChannels); 11322 SDVTList NewVTList = HasChain ? 11323 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 11324 11325 11326 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 11327 NewVTList, Ops); 11328 11329 if (HasChain) { 11330 // Update chain. 11331 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 11332 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 11333 } 11334 11335 if (NewChannels == 1) { 11336 assert(Node->hasNUsesOfValue(1, 0)); 11337 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 11338 SDLoc(Node), Users[Lane]->getValueType(0), 11339 SDValue(NewNode, 0)); 11340 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 11341 return nullptr; 11342 } 11343 11344 // Update the users of the node with the new indices 11345 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 11346 SDNode *User = Users[i]; 11347 if (!User) { 11348 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 11349 // Users[0] is still nullptr because channel 0 doesn't really have a use. 11350 if (i || !NoChannels) 11351 continue; 11352 } else { 11353 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 11354 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 11355 } 11356 11357 switch (Idx) { 11358 default: break; 11359 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 11360 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 11361 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 11362 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 11363 } 11364 } 11365 11366 DAG.RemoveDeadNode(Node); 11367 return nullptr; 11368 } 11369 11370 static bool isFrameIndexOp(SDValue Op) { 11371 if (Op.getOpcode() == ISD::AssertZext) 11372 Op = Op.getOperand(0); 11373 11374 return isa<FrameIndexSDNode>(Op); 11375 } 11376 11377 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 11378 /// with frame index operands. 11379 /// LLVM assumes that inputs are to these instructions are registers. 11380 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 11381 SelectionDAG &DAG) const { 11382 if (Node->getOpcode() == ISD::CopyToReg) { 11383 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 11384 SDValue SrcVal = Node->getOperand(2); 11385 11386 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 11387 // to try understanding copies to physical registers. 11388 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { 11389 SDLoc SL(Node); 11390 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11391 SDValue VReg = DAG.getRegister( 11392 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 11393 11394 SDNode *Glued = Node->getGluedNode(); 11395 SDValue ToVReg 11396 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 11397 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 11398 SDValue ToResultReg 11399 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 11400 VReg, ToVReg.getValue(1)); 11401 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 11402 DAG.RemoveDeadNode(Node); 11403 return ToResultReg.getNode(); 11404 } 11405 } 11406 11407 SmallVector<SDValue, 8> Ops; 11408 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 11409 if (!isFrameIndexOp(Node->getOperand(i))) { 11410 Ops.push_back(Node->getOperand(i)); 11411 continue; 11412 } 11413 11414 SDLoc DL(Node); 11415 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 11416 Node->getOperand(i).getValueType(), 11417 Node->getOperand(i)), 0)); 11418 } 11419 11420 return DAG.UpdateNodeOperands(Node, Ops); 11421 } 11422 11423 /// Fold the instructions after selecting them. 11424 /// Returns null if users were already updated. 11425 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 11426 SelectionDAG &DAG) const { 11427 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11428 unsigned Opcode = Node->getMachineOpcode(); 11429 11430 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && 11431 !TII->isGather4(Opcode) && 11432 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) { 11433 return adjustWritemask(Node, DAG); 11434 } 11435 11436 if (Opcode == AMDGPU::INSERT_SUBREG || 11437 Opcode == AMDGPU::REG_SEQUENCE) { 11438 legalizeTargetIndependentNode(Node, DAG); 11439 return Node; 11440 } 11441 11442 switch (Opcode) { 11443 case AMDGPU::V_DIV_SCALE_F32_e64: 11444 case AMDGPU::V_DIV_SCALE_F64_e64: { 11445 // Satisfy the operand register constraint when one of the inputs is 11446 // undefined. Ordinarily each undef value will have its own implicit_def of 11447 // a vreg, so force these to use a single register. 11448 SDValue Src0 = Node->getOperand(1); 11449 SDValue Src1 = Node->getOperand(3); 11450 SDValue Src2 = Node->getOperand(5); 11451 11452 if ((Src0.isMachineOpcode() && 11453 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 11454 (Src0 == Src1 || Src0 == Src2)) 11455 break; 11456 11457 MVT VT = Src0.getValueType().getSimpleVT(); 11458 const TargetRegisterClass *RC = 11459 getRegClassFor(VT, Src0.getNode()->isDivergent()); 11460 11461 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11462 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 11463 11464 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 11465 UndefReg, Src0, SDValue()); 11466 11467 // src0 must be the same register as src1 or src2, even if the value is 11468 // undefined, so make sure we don't violate this constraint. 11469 if (Src0.isMachineOpcode() && 11470 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 11471 if (Src1.isMachineOpcode() && 11472 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 11473 Src0 = Src1; 11474 else if (Src2.isMachineOpcode() && 11475 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 11476 Src0 = Src2; 11477 else { 11478 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 11479 Src0 = UndefReg; 11480 Src1 = UndefReg; 11481 } 11482 } else 11483 break; 11484 11485 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end()); 11486 Ops[1] = Src0; 11487 Ops[3] = Src1; 11488 Ops[5] = Src2; 11489 Ops.push_back(ImpDef.getValue(1)); 11490 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 11491 } 11492 default: 11493 break; 11494 } 11495 11496 return Node; 11497 } 11498 11499 // Any MIMG instructions that use tfe or lwe require an initialization of the 11500 // result register that will be written in the case of a memory access failure. 11501 // The required code is also added to tie this init code to the result of the 11502 // img instruction. 11503 void SITargetLowering::AddIMGInit(MachineInstr &MI) const { 11504 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11505 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 11506 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 11507 MachineBasicBlock &MBB = *MI.getParent(); 11508 11509 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); 11510 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); 11511 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); 11512 11513 if (!TFE && !LWE) // intersect_ray 11514 return; 11515 11516 unsigned TFEVal = TFE ? TFE->getImm() : 0; 11517 unsigned LWEVal = LWE->getImm(); 11518 unsigned D16Val = D16 ? D16->getImm() : 0; 11519 11520 if (!TFEVal && !LWEVal) 11521 return; 11522 11523 // At least one of TFE or LWE are non-zero 11524 // We have to insert a suitable initialization of the result value and 11525 // tie this to the dest of the image instruction. 11526 11527 const DebugLoc &DL = MI.getDebugLoc(); 11528 11529 int DstIdx = 11530 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); 11531 11532 // Calculate which dword we have to initialize to 0. 11533 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); 11534 11535 // check that dmask operand is found. 11536 assert(MO_Dmask && "Expected dmask operand in instruction"); 11537 11538 unsigned dmask = MO_Dmask->getImm(); 11539 // Determine the number of active lanes taking into account the 11540 // Gather4 special case 11541 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask); 11542 11543 bool Packed = !Subtarget->hasUnpackedD16VMem(); 11544 11545 unsigned InitIdx = 11546 D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; 11547 11548 // Abandon attempt if the dst size isn't large enough 11549 // - this is in fact an error but this is picked up elsewhere and 11550 // reported correctly. 11551 uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; 11552 if (DstSize < InitIdx) 11553 return; 11554 11555 // Create a register for the intialization value. 11556 Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 11557 unsigned NewDst = 0; // Final initialized value will be in here 11558 11559 // If PRTStrictNull feature is enabled (the default) then initialize 11560 // all the result registers to 0, otherwise just the error indication 11561 // register (VGPRn+1) 11562 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; 11563 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); 11564 11565 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); 11566 for (; SizeLeft; SizeLeft--, CurrIdx++) { 11567 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 11568 // Initialize dword 11569 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 11570 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) 11571 .addImm(0); 11572 // Insert into the super-reg 11573 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) 11574 .addReg(PrevDst) 11575 .addReg(SubReg) 11576 .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); 11577 11578 PrevDst = NewDst; 11579 } 11580 11581 // Add as an implicit operand 11582 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); 11583 11584 // Tie the just added implicit operand to the dst 11585 MI.tieOperands(DstIdx, MI.getNumOperands() - 1); 11586 } 11587 11588 /// Assign the register class depending on the number of 11589 /// bits set in the writemask 11590 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 11591 SDNode *Node) const { 11592 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11593 11594 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 11595 11596 if (TII->isVOP3(MI.getOpcode())) { 11597 // Make sure constant bus requirements are respected. 11598 TII->legalizeOperandsVOP3(MRI, MI); 11599 11600 // Prefer VGPRs over AGPRs in mAI instructions where possible. 11601 // This saves a chain-copy of registers and better ballance register 11602 // use between vgpr and agpr as agpr tuples tend to be big. 11603 if (MI.getDesc().OpInfo) { 11604 unsigned Opc = MI.getOpcode(); 11605 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11606 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 11607 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { 11608 if (I == -1) 11609 break; 11610 MachineOperand &Op = MI.getOperand(I); 11611 if (!Op.isReg() || !Op.getReg().isVirtual()) 11612 continue; 11613 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 11614 if (!TRI->hasAGPRs(RC)) 11615 continue; 11616 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 11617 if (!Src || !Src->isCopy() || 11618 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 11619 continue; 11620 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 11621 // All uses of agpr64 and agpr32 can also accept vgpr except for 11622 // v_accvgpr_read, but we do not produce agpr reads during selection, 11623 // so no use checks are needed. 11624 MRI.setRegClass(Op.getReg(), NewRC); 11625 } 11626 } 11627 11628 return; 11629 } 11630 11631 // Replace unused atomics with the no return version. 11632 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); 11633 if (NoRetAtomicOp != -1) { 11634 if (!Node->hasAnyUseOfValue(0)) { 11635 int CPolIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 11636 AMDGPU::OpName::cpol); 11637 if (CPolIdx != -1) { 11638 MachineOperand &CPol = MI.getOperand(CPolIdx); 11639 CPol.setImm(CPol.getImm() & ~AMDGPU::CPol::GLC); 11640 } 11641 MI.RemoveOperand(0); 11642 MI.setDesc(TII->get(NoRetAtomicOp)); 11643 return; 11644 } 11645 11646 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg 11647 // instruction, because the return type of these instructions is a vec2 of 11648 // the memory type, so it can be tied to the input operand. 11649 // This means these instructions always have a use, so we need to add a 11650 // special case to check if the atomic has only one extract_subreg use, 11651 // which itself has no uses. 11652 if ((Node->hasNUsesOfValue(1, 0) && 11653 Node->use_begin()->isMachineOpcode() && 11654 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && 11655 !Node->use_begin()->hasAnyUseOfValue(0))) { 11656 Register Def = MI.getOperand(0).getReg(); 11657 11658 // Change this into a noret atomic. 11659 MI.setDesc(TII->get(NoRetAtomicOp)); 11660 MI.RemoveOperand(0); 11661 11662 // If we only remove the def operand from the atomic instruction, the 11663 // extract_subreg will be left with a use of a vreg without a def. 11664 // So we need to insert an implicit_def to avoid machine verifier 11665 // errors. 11666 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 11667 TII->get(AMDGPU::IMPLICIT_DEF), Def); 11668 } 11669 return; 11670 } 11671 11672 if (TII->isMIMG(MI) && !MI.mayStore()) 11673 AddIMGInit(MI); 11674 } 11675 11676 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 11677 uint64_t Val) { 11678 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 11679 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 11680 } 11681 11682 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 11683 const SDLoc &DL, 11684 SDValue Ptr) const { 11685 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11686 11687 // Build the half of the subregister with the constants before building the 11688 // full 128-bit register. If we are building multiple resource descriptors, 11689 // this will allow CSEing of the 2-component register. 11690 const SDValue Ops0[] = { 11691 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 11692 buildSMovImm32(DAG, DL, 0), 11693 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 11694 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 11695 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 11696 }; 11697 11698 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 11699 MVT::v2i32, Ops0), 0); 11700 11701 // Combine the constants and the pointer. 11702 const SDValue Ops1[] = { 11703 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 11704 Ptr, 11705 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 11706 SubRegHi, 11707 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 11708 }; 11709 11710 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 11711 } 11712 11713 /// Return a resource descriptor with the 'Add TID' bit enabled 11714 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 11715 /// of the resource descriptor) to create an offset, which is added to 11716 /// the resource pointer. 11717 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 11718 SDValue Ptr, uint32_t RsrcDword1, 11719 uint64_t RsrcDword2And3) const { 11720 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 11721 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 11722 if (RsrcDword1) { 11723 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 11724 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 11725 0); 11726 } 11727 11728 SDValue DataLo = buildSMovImm32(DAG, DL, 11729 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 11730 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 11731 11732 const SDValue Ops[] = { 11733 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 11734 PtrLo, 11735 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 11736 PtrHi, 11737 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 11738 DataLo, 11739 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 11740 DataHi, 11741 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 11742 }; 11743 11744 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 11745 } 11746 11747 //===----------------------------------------------------------------------===// 11748 // SI Inline Assembly Support 11749 //===----------------------------------------------------------------------===// 11750 11751 std::pair<unsigned, const TargetRegisterClass *> 11752 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, 11753 StringRef Constraint, 11754 MVT VT) const { 11755 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_); 11756 11757 const TargetRegisterClass *RC = nullptr; 11758 if (Constraint.size() == 1) { 11759 const unsigned BitWidth = VT.getSizeInBits(); 11760 switch (Constraint[0]) { 11761 default: 11762 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11763 case 's': 11764 case 'r': 11765 switch (BitWidth) { 11766 case 16: 11767 RC = &AMDGPU::SReg_32RegClass; 11768 break; 11769 case 64: 11770 RC = &AMDGPU::SGPR_64RegClass; 11771 break; 11772 default: 11773 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); 11774 if (!RC) 11775 return std::make_pair(0U, nullptr); 11776 break; 11777 } 11778 break; 11779 case 'v': 11780 switch (BitWidth) { 11781 case 16: 11782 RC = &AMDGPU::VGPR_32RegClass; 11783 break; 11784 default: 11785 RC = TRI->getVGPRClassForBitWidth(BitWidth); 11786 if (!RC) 11787 return std::make_pair(0U, nullptr); 11788 break; 11789 } 11790 break; 11791 case 'a': 11792 if (!Subtarget->hasMAIInsts()) 11793 break; 11794 switch (BitWidth) { 11795 case 16: 11796 RC = &AMDGPU::AGPR_32RegClass; 11797 break; 11798 default: 11799 RC = TRI->getAGPRClassForBitWidth(BitWidth); 11800 if (!RC) 11801 return std::make_pair(0U, nullptr); 11802 break; 11803 } 11804 break; 11805 } 11806 // We actually support i128, i16 and f16 as inline parameters 11807 // even if they are not reported as legal 11808 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 11809 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 11810 return std::make_pair(0U, RC); 11811 } 11812 11813 if (Constraint.startswith("{") && Constraint.endswith("}")) { 11814 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 11815 if (RegName.consume_front("v")) { 11816 RC = &AMDGPU::VGPR_32RegClass; 11817 } else if (RegName.consume_front("s")) { 11818 RC = &AMDGPU::SGPR_32RegClass; 11819 } else if (RegName.consume_front("a")) { 11820 RC = &AMDGPU::AGPR_32RegClass; 11821 } 11822 11823 if (RC) { 11824 uint32_t Idx; 11825 if (RegName.consume_front("[")) { 11826 uint32_t End; 11827 bool Failed = RegName.consumeInteger(10, Idx); 11828 Failed |= !RegName.consume_front(":"); 11829 Failed |= RegName.consumeInteger(10, End); 11830 Failed |= !RegName.consume_back("]"); 11831 if (!Failed) { 11832 uint32_t Width = (End - Idx + 1) * 32; 11833 MCRegister Reg = RC->getRegister(Idx); 11834 if (SIRegisterInfo::isVGPRClass(RC)) 11835 RC = TRI->getVGPRClassForBitWidth(Width); 11836 else if (SIRegisterInfo::isSGPRClass(RC)) 11837 RC = TRI->getSGPRClassForBitWidth(Width); 11838 else if (SIRegisterInfo::isAGPRClass(RC)) 11839 RC = TRI->getAGPRClassForBitWidth(Width); 11840 if (RC) { 11841 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC); 11842 return std::make_pair(Reg, RC); 11843 } 11844 } 11845 } else { 11846 bool Failed = RegName.getAsInteger(10, Idx); 11847 if (!Failed && Idx < RC->getNumRegs()) 11848 return std::make_pair(RC->getRegister(Idx), RC); 11849 } 11850 } 11851 } 11852 11853 auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11854 if (Ret.first) 11855 Ret.second = TRI->getPhysRegClass(Ret.first); 11856 11857 return Ret; 11858 } 11859 11860 static bool isImmConstraint(StringRef Constraint) { 11861 if (Constraint.size() == 1) { 11862 switch (Constraint[0]) { 11863 default: break; 11864 case 'I': 11865 case 'J': 11866 case 'A': 11867 case 'B': 11868 case 'C': 11869 return true; 11870 } 11871 } else if (Constraint == "DA" || 11872 Constraint == "DB") { 11873 return true; 11874 } 11875 return false; 11876 } 11877 11878 SITargetLowering::ConstraintType 11879 SITargetLowering::getConstraintType(StringRef Constraint) const { 11880 if (Constraint.size() == 1) { 11881 switch (Constraint[0]) { 11882 default: break; 11883 case 's': 11884 case 'v': 11885 case 'a': 11886 return C_RegisterClass; 11887 } 11888 } 11889 if (isImmConstraint(Constraint)) { 11890 return C_Other; 11891 } 11892 return TargetLowering::getConstraintType(Constraint); 11893 } 11894 11895 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { 11896 if (!AMDGPU::isInlinableIntLiteral(Val)) { 11897 Val = Val & maskTrailingOnes<uint64_t>(Size); 11898 } 11899 return Val; 11900 } 11901 11902 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, 11903 std::string &Constraint, 11904 std::vector<SDValue> &Ops, 11905 SelectionDAG &DAG) const { 11906 if (isImmConstraint(Constraint)) { 11907 uint64_t Val; 11908 if (getAsmOperandConstVal(Op, Val) && 11909 checkAsmConstraintVal(Op, Constraint, Val)) { 11910 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); 11911 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); 11912 } 11913 } else { 11914 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11915 } 11916 } 11917 11918 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { 11919 unsigned Size = Op.getScalarValueSizeInBits(); 11920 if (Size > 64) 11921 return false; 11922 11923 if (Size == 16 && !Subtarget->has16BitInsts()) 11924 return false; 11925 11926 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 11927 Val = C->getSExtValue(); 11928 return true; 11929 } 11930 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 11931 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 11932 return true; 11933 } 11934 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { 11935 if (Size != 16 || Op.getNumOperands() != 2) 11936 return false; 11937 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) 11938 return false; 11939 if (ConstantSDNode *C = V->getConstantSplatNode()) { 11940 Val = C->getSExtValue(); 11941 return true; 11942 } 11943 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { 11944 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 11945 return true; 11946 } 11947 } 11948 11949 return false; 11950 } 11951 11952 bool SITargetLowering::checkAsmConstraintVal(SDValue Op, 11953 const std::string &Constraint, 11954 uint64_t Val) const { 11955 if (Constraint.size() == 1) { 11956 switch (Constraint[0]) { 11957 case 'I': 11958 return AMDGPU::isInlinableIntLiteral(Val); 11959 case 'J': 11960 return isInt<16>(Val); 11961 case 'A': 11962 return checkAsmConstraintValA(Op, Val); 11963 case 'B': 11964 return isInt<32>(Val); 11965 case 'C': 11966 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || 11967 AMDGPU::isInlinableIntLiteral(Val); 11968 default: 11969 break; 11970 } 11971 } else if (Constraint.size() == 2) { 11972 if (Constraint == "DA") { 11973 int64_t HiBits = static_cast<int32_t>(Val >> 32); 11974 int64_t LoBits = static_cast<int32_t>(Val); 11975 return checkAsmConstraintValA(Op, HiBits, 32) && 11976 checkAsmConstraintValA(Op, LoBits, 32); 11977 } 11978 if (Constraint == "DB") { 11979 return true; 11980 } 11981 } 11982 llvm_unreachable("Invalid asm constraint"); 11983 } 11984 11985 bool SITargetLowering::checkAsmConstraintValA(SDValue Op, 11986 uint64_t Val, 11987 unsigned MaxSize) const { 11988 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); 11989 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); 11990 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || 11991 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || 11992 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { 11993 return true; 11994 } 11995 return false; 11996 } 11997 11998 static int getAlignedAGPRClassID(unsigned UnalignedClassID) { 11999 switch (UnalignedClassID) { 12000 case AMDGPU::VReg_64RegClassID: 12001 return AMDGPU::VReg_64_Align2RegClassID; 12002 case AMDGPU::VReg_96RegClassID: 12003 return AMDGPU::VReg_96_Align2RegClassID; 12004 case AMDGPU::VReg_128RegClassID: 12005 return AMDGPU::VReg_128_Align2RegClassID; 12006 case AMDGPU::VReg_160RegClassID: 12007 return AMDGPU::VReg_160_Align2RegClassID; 12008 case AMDGPU::VReg_192RegClassID: 12009 return AMDGPU::VReg_192_Align2RegClassID; 12010 case AMDGPU::VReg_224RegClassID: 12011 return AMDGPU::VReg_224_Align2RegClassID; 12012 case AMDGPU::VReg_256RegClassID: 12013 return AMDGPU::VReg_256_Align2RegClassID; 12014 case AMDGPU::VReg_512RegClassID: 12015 return AMDGPU::VReg_512_Align2RegClassID; 12016 case AMDGPU::VReg_1024RegClassID: 12017 return AMDGPU::VReg_1024_Align2RegClassID; 12018 case AMDGPU::AReg_64RegClassID: 12019 return AMDGPU::AReg_64_Align2RegClassID; 12020 case AMDGPU::AReg_96RegClassID: 12021 return AMDGPU::AReg_96_Align2RegClassID; 12022 case AMDGPU::AReg_128RegClassID: 12023 return AMDGPU::AReg_128_Align2RegClassID; 12024 case AMDGPU::AReg_160RegClassID: 12025 return AMDGPU::AReg_160_Align2RegClassID; 12026 case AMDGPU::AReg_192RegClassID: 12027 return AMDGPU::AReg_192_Align2RegClassID; 12028 case AMDGPU::AReg_256RegClassID: 12029 return AMDGPU::AReg_256_Align2RegClassID; 12030 case AMDGPU::AReg_512RegClassID: 12031 return AMDGPU::AReg_512_Align2RegClassID; 12032 case AMDGPU::AReg_1024RegClassID: 12033 return AMDGPU::AReg_1024_Align2RegClassID; 12034 default: 12035 return -1; 12036 } 12037 } 12038 12039 // Figure out which registers should be reserved for stack access. Only after 12040 // the function is legalized do we know all of the non-spill stack objects or if 12041 // calls are present. 12042 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 12043 MachineRegisterInfo &MRI = MF.getRegInfo(); 12044 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12045 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 12046 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12047 const SIInstrInfo *TII = ST.getInstrInfo(); 12048 12049 if (Info->isEntryFunction()) { 12050 // Callable functions have fixed registers used for stack access. 12051 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 12052 } 12053 12054 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 12055 Info->getStackPtrOffsetReg())); 12056 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 12057 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 12058 12059 // We need to worry about replacing the default register with itself in case 12060 // of MIR testcases missing the MFI. 12061 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 12062 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 12063 12064 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 12065 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 12066 12067 Info->limitOccupancy(MF); 12068 12069 if (ST.isWave32() && !MF.empty()) { 12070 for (auto &MBB : MF) { 12071 for (auto &MI : MBB) { 12072 TII->fixImplicitOperands(MI); 12073 } 12074 } 12075 } 12076 12077 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned 12078 // classes if required. Ideally the register class constraints would differ 12079 // per-subtarget, but there's no easy way to achieve that right now. This is 12080 // not a problem for VGPRs because the correctly aligned VGPR class is implied 12081 // from using them as the register class for legal types. 12082 if (ST.needsAlignedVGPRs()) { 12083 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 12084 const Register Reg = Register::index2VirtReg(I); 12085 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); 12086 if (!RC) 12087 continue; 12088 int NewClassID = getAlignedAGPRClassID(RC->getID()); 12089 if (NewClassID != -1) 12090 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); 12091 } 12092 } 12093 12094 TargetLoweringBase::finalizeLowering(MF); 12095 } 12096 12097 void SITargetLowering::computeKnownBitsForFrameIndex( 12098 const int FI, KnownBits &Known, const MachineFunction &MF) const { 12099 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); 12100 12101 // Set the high bits to zero based on the maximum allowed scratch size per 12102 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 12103 // calculation won't overflow, so assume the sign bit is never set. 12104 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 12105 } 12106 12107 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, 12108 KnownBits &Known, unsigned Dim) { 12109 unsigned MaxValue = 12110 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); 12111 Known.Zero.setHighBits(countLeadingZeros(MaxValue)); 12112 } 12113 12114 void SITargetLowering::computeKnownBitsForTargetInstr( 12115 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, 12116 const MachineRegisterInfo &MRI, unsigned Depth) const { 12117 const MachineInstr *MI = MRI.getVRegDef(R); 12118 switch (MI->getOpcode()) { 12119 case AMDGPU::G_INTRINSIC: { 12120 switch (MI->getIntrinsicID()) { 12121 case Intrinsic::amdgcn_workitem_id_x: 12122 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); 12123 break; 12124 case Intrinsic::amdgcn_workitem_id_y: 12125 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); 12126 break; 12127 case Intrinsic::amdgcn_workitem_id_z: 12128 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); 12129 break; 12130 case Intrinsic::amdgcn_mbcnt_lo: 12131 case Intrinsic::amdgcn_mbcnt_hi: { 12132 // These return at most the wavefront size - 1. 12133 unsigned Size = MRI.getType(R).getSizeInBits(); 12134 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); 12135 break; 12136 } 12137 case Intrinsic::amdgcn_groupstaticsize: { 12138 // We can report everything over the maximum size as 0. We can't report 12139 // based on the actual size because we don't know if it's accurate or not 12140 // at any given point. 12141 Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize())); 12142 break; 12143 } 12144 } 12145 break; 12146 } 12147 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 12148 Known.Zero.setHighBits(24); 12149 break; 12150 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 12151 Known.Zero.setHighBits(16); 12152 break; 12153 } 12154 } 12155 12156 Align SITargetLowering::computeKnownAlignForTargetInstr( 12157 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, 12158 unsigned Depth) const { 12159 const MachineInstr *MI = MRI.getVRegDef(R); 12160 switch (MI->getOpcode()) { 12161 case AMDGPU::G_INTRINSIC: 12162 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { 12163 // FIXME: Can this move to generic code? What about the case where the call 12164 // site specifies a lower alignment? 12165 Intrinsic::ID IID = MI->getIntrinsicID(); 12166 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); 12167 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); 12168 if (MaybeAlign RetAlign = Attrs.getRetAlignment()) 12169 return *RetAlign; 12170 return Align(1); 12171 } 12172 default: 12173 return Align(1); 12174 } 12175 } 12176 12177 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 12178 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 12179 const Align CacheLineAlign = Align(64); 12180 12181 // Pre-GFX10 target did not benefit from loop alignment 12182 if (!ML || DisableLoopAlignment || 12183 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || 12184 getSubtarget()->hasInstFwdPrefetchBug()) 12185 return PrefAlign; 12186 12187 // On GFX10 I$ is 4 x 64 bytes cache lines. 12188 // By default prefetcher keeps one cache line behind and reads two ahead. 12189 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 12190 // behind and one ahead. 12191 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 12192 // If loop fits 64 bytes it always spans no more than two cache lines and 12193 // does not need an alignment. 12194 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 12195 // Else if loop is less or equal 192 bytes we need two lines behind. 12196 12197 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 12198 const MachineBasicBlock *Header = ML->getHeader(); 12199 if (Header->getAlignment() != PrefAlign) 12200 return Header->getAlignment(); // Already processed. 12201 12202 unsigned LoopSize = 0; 12203 for (const MachineBasicBlock *MBB : ML->blocks()) { 12204 // If inner loop block is aligned assume in average half of the alignment 12205 // size to be added as nops. 12206 if (MBB != Header) 12207 LoopSize += MBB->getAlignment().value() / 2; 12208 12209 for (const MachineInstr &MI : *MBB) { 12210 LoopSize += TII->getInstSizeInBytes(MI); 12211 if (LoopSize > 192) 12212 return PrefAlign; 12213 } 12214 } 12215 12216 if (LoopSize <= 64) 12217 return PrefAlign; 12218 12219 if (LoopSize <= 128) 12220 return CacheLineAlign; 12221 12222 // If any of parent loops is surrounded by prefetch instructions do not 12223 // insert new for inner loop, which would reset parent's settings. 12224 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 12225 if (MachineBasicBlock *Exit = P->getExitBlock()) { 12226 auto I = Exit->getFirstNonDebugInstr(); 12227 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 12228 return CacheLineAlign; 12229 } 12230 } 12231 12232 MachineBasicBlock *Pre = ML->getLoopPreheader(); 12233 MachineBasicBlock *Exit = ML->getExitBlock(); 12234 12235 if (Pre && Exit) { 12236 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(), 12237 TII->get(AMDGPU::S_INST_PREFETCH)) 12238 .addImm(1); // prefetch 2 lines behind PC 12239 12240 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(), 12241 TII->get(AMDGPU::S_INST_PREFETCH)) 12242 .addImm(2); // prefetch 1 line behind PC 12243 } 12244 12245 return CacheLineAlign; 12246 } 12247 12248 LLVM_ATTRIBUTE_UNUSED 12249 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 12250 assert(N->getOpcode() == ISD::CopyFromReg); 12251 do { 12252 // Follow the chain until we find an INLINEASM node. 12253 N = N->getOperand(0).getNode(); 12254 if (N->getOpcode() == ISD::INLINEASM || 12255 N->getOpcode() == ISD::INLINEASM_BR) 12256 return true; 12257 } while (N->getOpcode() == ISD::CopyFromReg); 12258 return false; 12259 } 12260 12261 bool SITargetLowering::isSDNodeSourceOfDivergence( 12262 const SDNode *N, FunctionLoweringInfo *FLI, 12263 LegacyDivergenceAnalysis *KDA) const { 12264 switch (N->getOpcode()) { 12265 case ISD::CopyFromReg: { 12266 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 12267 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); 12268 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12269 Register Reg = R->getReg(); 12270 12271 // FIXME: Why does this need to consider isLiveIn? 12272 if (Reg.isPhysical() || MRI.isLiveIn(Reg)) 12273 return !TRI->isSGPRReg(MRI, Reg); 12274 12275 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) 12276 return KDA->isDivergent(V); 12277 12278 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 12279 return !TRI->isSGPRReg(MRI, Reg); 12280 } 12281 case ISD::LOAD: { 12282 const LoadSDNode *L = cast<LoadSDNode>(N); 12283 unsigned AS = L->getAddressSpace(); 12284 // A flat load may access private memory. 12285 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 12286 } 12287 case ISD::CALLSEQ_END: 12288 return true; 12289 case ISD::INTRINSIC_WO_CHAIN: 12290 return AMDGPU::isIntrinsicSourceOfDivergence( 12291 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 12292 case ISD::INTRINSIC_W_CHAIN: 12293 return AMDGPU::isIntrinsicSourceOfDivergence( 12294 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 12295 case AMDGPUISD::ATOMIC_CMP_SWAP: 12296 case AMDGPUISD::ATOMIC_INC: 12297 case AMDGPUISD::ATOMIC_DEC: 12298 case AMDGPUISD::ATOMIC_LOAD_FMIN: 12299 case AMDGPUISD::ATOMIC_LOAD_FMAX: 12300 case AMDGPUISD::BUFFER_ATOMIC_SWAP: 12301 case AMDGPUISD::BUFFER_ATOMIC_ADD: 12302 case AMDGPUISD::BUFFER_ATOMIC_SUB: 12303 case AMDGPUISD::BUFFER_ATOMIC_SMIN: 12304 case AMDGPUISD::BUFFER_ATOMIC_UMIN: 12305 case AMDGPUISD::BUFFER_ATOMIC_SMAX: 12306 case AMDGPUISD::BUFFER_ATOMIC_UMAX: 12307 case AMDGPUISD::BUFFER_ATOMIC_AND: 12308 case AMDGPUISD::BUFFER_ATOMIC_OR: 12309 case AMDGPUISD::BUFFER_ATOMIC_XOR: 12310 case AMDGPUISD::BUFFER_ATOMIC_INC: 12311 case AMDGPUISD::BUFFER_ATOMIC_DEC: 12312 case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: 12313 case AMDGPUISD::BUFFER_ATOMIC_CSUB: 12314 case AMDGPUISD::BUFFER_ATOMIC_FADD: 12315 case AMDGPUISD::BUFFER_ATOMIC_FMIN: 12316 case AMDGPUISD::BUFFER_ATOMIC_FMAX: 12317 // Target-specific read-modify-write atomics are sources of divergence. 12318 return true; 12319 default: 12320 if (auto *A = dyn_cast<AtomicSDNode>(N)) { 12321 // Generic read-modify-write atomics are sources of divergence. 12322 return A->readMem() && A->writeMem(); 12323 } 12324 return false; 12325 } 12326 } 12327 12328 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, 12329 EVT VT) const { 12330 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 12331 case MVT::f32: 12332 return hasFP32Denormals(DAG.getMachineFunction()); 12333 case MVT::f64: 12334 case MVT::f16: 12335 return hasFP64FP16Denormals(DAG.getMachineFunction()); 12336 default: 12337 return false; 12338 } 12339 } 12340 12341 bool SITargetLowering::denormalsEnabledForType(LLT Ty, 12342 MachineFunction &MF) const { 12343 switch (Ty.getScalarSizeInBits()) { 12344 case 32: 12345 return hasFP32Denormals(MF); 12346 case 64: 12347 case 16: 12348 return hasFP64FP16Denormals(MF); 12349 default: 12350 return false; 12351 } 12352 } 12353 12354 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 12355 const SelectionDAG &DAG, 12356 bool SNaN, 12357 unsigned Depth) const { 12358 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 12359 const MachineFunction &MF = DAG.getMachineFunction(); 12360 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12361 12362 if (Info->getMode().DX10Clamp) 12363 return true; // Clamped to 0. 12364 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 12365 } 12366 12367 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 12368 SNaN, Depth); 12369 } 12370 12371 // Global FP atomic instructions have a hardcoded FP mode and do not support 12372 // FP32 denormals, and only support v2f16 denormals. 12373 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { 12374 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); 12375 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); 12376 if (&Flt == &APFloat::IEEEsingle()) 12377 return DenormMode == DenormalMode::getPreserveSign(); 12378 return DenormMode == DenormalMode::getIEEE(); 12379 } 12380 12381 TargetLowering::AtomicExpansionKind 12382 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 12383 12384 auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) { 12385 OptimizationRemarkEmitter ORE(RMW->getFunction()); 12386 LLVMContext &Ctx = RMW->getFunction()->getContext(); 12387 SmallVector<StringRef> SSNs; 12388 Ctx.getSyncScopeNames(SSNs); 12389 auto MemScope = SSNs[RMW->getSyncScopeID()].empty() 12390 ? "system" 12391 : SSNs[RMW->getSyncScopeID()]; 12392 ORE.emit([&]() { 12393 return OptimizationRemark(DEBUG_TYPE, "Passed", RMW) 12394 << "Hardware instruction generated for atomic " 12395 << RMW->getOperationName(RMW->getOperation()) 12396 << " operation at memory scope " << MemScope 12397 << " due to an unsafe request."; 12398 }); 12399 return Kind; 12400 }; 12401 12402 switch (RMW->getOperation()) { 12403 case AtomicRMWInst::FAdd: { 12404 Type *Ty = RMW->getType(); 12405 12406 // We don't have a way to support 16-bit atomics now, so just leave them 12407 // as-is. 12408 if (Ty->isHalfTy()) 12409 return AtomicExpansionKind::None; 12410 12411 if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy())) 12412 return AtomicExpansionKind::CmpXChg; 12413 12414 unsigned AS = RMW->getPointerAddressSpace(); 12415 12416 if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) && 12417 Subtarget->hasAtomicFaddInsts()) { 12418 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe 12419 // floating point atomic instructions. May generate more efficient code, 12420 // but may not respect rounding and denormal modes, and may give incorrect 12421 // results for certain memory destinations. 12422 if (RMW->getFunction() 12423 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 12424 .getValueAsString() != "true") 12425 return AtomicExpansionKind::CmpXChg; 12426 12427 if (Subtarget->hasGFX90AInsts()) { 12428 if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS) 12429 return AtomicExpansionKind::CmpXChg; 12430 12431 auto SSID = RMW->getSyncScopeID(); 12432 if (SSID == SyncScope::System || 12433 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as")) 12434 return AtomicExpansionKind::CmpXChg; 12435 12436 return ReportUnsafeHWInst(AtomicExpansionKind::None); 12437 } 12438 12439 if (AS == AMDGPUAS::FLAT_ADDRESS) 12440 return AtomicExpansionKind::CmpXChg; 12441 12442 return RMW->use_empty() ? ReportUnsafeHWInst(AtomicExpansionKind::None) 12443 : AtomicExpansionKind::CmpXChg; 12444 } 12445 12446 // DS FP atomics do repect the denormal mode, but the rounding mode is fixed 12447 // to round-to-nearest-even. 12448 // The only exception is DS_ADD_F64 which never flushes regardless of mode. 12449 if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) { 12450 if (!Ty->isDoubleTy()) 12451 return AtomicExpansionKind::None; 12452 12453 if (fpModeMatchesGlobalFPAtomicMode(RMW)) 12454 return AtomicExpansionKind::None; 12455 12456 return RMW->getFunction() 12457 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 12458 .getValueAsString() == "true" 12459 ? ReportUnsafeHWInst(AtomicExpansionKind::None) 12460 : AtomicExpansionKind::CmpXChg; 12461 } 12462 12463 return AtomicExpansionKind::CmpXChg; 12464 } 12465 default: 12466 break; 12467 } 12468 12469 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 12470 } 12471 12472 const TargetRegisterClass * 12473 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 12474 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); 12475 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12476 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) 12477 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass 12478 : &AMDGPU::SReg_32RegClass; 12479 if (!TRI->isSGPRClass(RC) && !isDivergent) 12480 return TRI->getEquivalentSGPRClass(RC); 12481 else if (TRI->isSGPRClass(RC) && isDivergent) 12482 return TRI->getEquivalentVGPRClass(RC); 12483 12484 return RC; 12485 } 12486 12487 // FIXME: This is a workaround for DivergenceAnalysis not understanding always 12488 // uniform values (as produced by the mask results of control flow intrinsics) 12489 // used outside of divergent blocks. The phi users need to also be treated as 12490 // always uniform. 12491 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, 12492 unsigned WaveSize) { 12493 // FIXME: We asssume we never cast the mask results of a control flow 12494 // intrinsic. 12495 // Early exit if the type won't be consistent as a compile time hack. 12496 IntegerType *IT = dyn_cast<IntegerType>(V->getType()); 12497 if (!IT || IT->getBitWidth() != WaveSize) 12498 return false; 12499 12500 if (!isa<Instruction>(V)) 12501 return false; 12502 if (!Visited.insert(V).second) 12503 return false; 12504 bool Result = false; 12505 for (auto U : V->users()) { 12506 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { 12507 if (V == U->getOperand(1)) { 12508 switch (Intrinsic->getIntrinsicID()) { 12509 default: 12510 Result = false; 12511 break; 12512 case Intrinsic::amdgcn_if_break: 12513 case Intrinsic::amdgcn_if: 12514 case Intrinsic::amdgcn_else: 12515 Result = true; 12516 break; 12517 } 12518 } 12519 if (V == U->getOperand(0)) { 12520 switch (Intrinsic->getIntrinsicID()) { 12521 default: 12522 Result = false; 12523 break; 12524 case Intrinsic::amdgcn_end_cf: 12525 case Intrinsic::amdgcn_loop: 12526 Result = true; 12527 break; 12528 } 12529 } 12530 } else { 12531 Result = hasCFUser(U, Visited, WaveSize); 12532 } 12533 if (Result) 12534 break; 12535 } 12536 return Result; 12537 } 12538 12539 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, 12540 const Value *V) const { 12541 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 12542 if (CI->isInlineAsm()) { 12543 // FIXME: This cannot give a correct answer. This should only trigger in 12544 // the case where inline asm returns mixed SGPR and VGPR results, used 12545 // outside the defining block. We don't have a specific result to 12546 // consider, so this assumes if any value is SGPR, the overall register 12547 // also needs to be SGPR. 12548 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); 12549 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( 12550 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); 12551 for (auto &TC : TargetConstraints) { 12552 if (TC.Type == InlineAsm::isOutput) { 12553 ComputeConstraintToUse(TC, SDValue()); 12554 const TargetRegisterClass *RC = getRegForInlineAsmConstraint( 12555 SIRI, TC.ConstraintCode, TC.ConstraintVT).second; 12556 if (RC && SIRI->isSGPRClass(RC)) 12557 return true; 12558 } 12559 } 12560 } 12561 } 12562 SmallPtrSet<const Value *, 16> Visited; 12563 return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); 12564 } 12565 12566 std::pair<InstructionCost, MVT> 12567 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL, 12568 Type *Ty) const { 12569 std::pair<InstructionCost, MVT> Cost = 12570 TargetLoweringBase::getTypeLegalizationCost(DL, Ty); 12571 auto Size = DL.getTypeSizeInBits(Ty); 12572 // Maximum load or store can handle 8 dwords for scalar and 4 for 12573 // vector ALU. Let's assume anything above 8 dwords is expensive 12574 // even if legal. 12575 if (Size <= 256) 12576 return Cost; 12577 12578 Cost.first += (Size + 255) / 256; 12579 return Cost; 12580 } 12581