1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief Custom DAG lowering for SI 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifdef _MSC_VER 16 // Provide M_PI. 17 #define _USE_MATH_DEFINES 18 #include <cmath> 19 #endif 20 21 #include "SIISelLowering.h" 22 #include "AMDGPU.h" 23 #include "AMDGPUIntrinsicInfo.h" 24 #include "AMDGPUSubtarget.h" 25 #include "SIInstrInfo.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "SIRegisterInfo.h" 28 #include "llvm/ADT/BitVector.h" 29 #include "llvm/CodeGen/CallingConvLower.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/ADT/SmallString.h" 35 36 using namespace llvm; 37 38 SITargetLowering::SITargetLowering(TargetMachine &TM, 39 const AMDGPUSubtarget &STI) 40 : AMDGPUTargetLowering(TM, STI) { 41 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 42 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 43 44 addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass); 45 addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass); 46 47 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 48 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 49 50 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); 51 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 52 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); 53 54 addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); 55 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); 56 57 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); 58 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); 59 60 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass); 61 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); 62 63 computeRegisterProperties(STI.getRegisterInfo()); 64 65 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); 66 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); 67 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); 68 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); 69 70 setOperationAction(ISD::ADD, MVT::i32, Legal); 71 setOperationAction(ISD::ADDC, MVT::i32, Legal); 72 setOperationAction(ISD::ADDE, MVT::i32, Legal); 73 setOperationAction(ISD::SUBC, MVT::i32, Legal); 74 setOperationAction(ISD::SUBE, MVT::i32, Legal); 75 76 setOperationAction(ISD::FSIN, MVT::f32, Custom); 77 setOperationAction(ISD::FCOS, MVT::f32, Custom); 78 79 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 80 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 81 82 // We need to custom lower vector stores from local memory 83 setOperationAction(ISD::LOAD, MVT::v4i32, Custom); 84 setOperationAction(ISD::LOAD, MVT::v8i32, Custom); 85 setOperationAction(ISD::LOAD, MVT::v16i32, Custom); 86 87 setOperationAction(ISD::STORE, MVT::v8i32, Custom); 88 setOperationAction(ISD::STORE, MVT::v16i32, Custom); 89 90 setOperationAction(ISD::STORE, MVT::i1, Custom); 91 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 92 93 setOperationAction(ISD::SELECT, MVT::i64, Custom); 94 setOperationAction(ISD::SELECT, MVT::f64, Promote); 95 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 96 97 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 98 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 99 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 100 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 101 102 setOperationAction(ISD::SETCC, MVT::v2i1, Expand); 103 setOperationAction(ISD::SETCC, MVT::v4i1, Expand); 104 105 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 106 107 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal); 108 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); 109 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); 110 111 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal); 112 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 113 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); 114 115 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal); 116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 117 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); 118 119 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); 120 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); 121 122 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 123 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); 124 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom); 125 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 126 127 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 128 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 129 130 for (MVT VT : MVT::integer_valuetypes()) { 131 if (VT == MVT::i64) 132 continue; 133 134 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 135 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 137 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 138 139 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 141 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 142 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 143 144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 145 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 146 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 148 } 149 150 for (MVT VT : MVT::integer_vector_valuetypes()) { 151 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand); 152 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand); 153 } 154 155 for (MVT VT : MVT::fp_valuetypes()) 156 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 157 158 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 159 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 160 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 161 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 162 163 setOperationAction(ISD::LOAD, MVT::i1, Custom); 164 165 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 166 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 167 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 168 169 // These should use UDIVREM, so set them to expand 170 setOperationAction(ISD::UDIV, MVT::i64, Expand); 171 setOperationAction(ISD::UREM, MVT::i64, Expand); 172 173 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); 174 setOperationAction(ISD::SELECT, MVT::i1, Promote); 175 176 // We only support LOAD/STORE and vector manipulation ops for vectors 177 // with > 4 elements. 178 for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}) { 179 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 180 switch(Op) { 181 case ISD::LOAD: 182 case ISD::STORE: 183 case ISD::BUILD_VECTOR: 184 case ISD::BITCAST: 185 case ISD::EXTRACT_VECTOR_ELT: 186 case ISD::INSERT_VECTOR_ELT: 187 case ISD::INSERT_SUBVECTOR: 188 case ISD::EXTRACT_SUBVECTOR: 189 break; 190 case ISD::CONCAT_VECTORS: 191 setOperationAction(Op, VT, Custom); 192 break; 193 default: 194 setOperationAction(Op, VT, Expand); 195 break; 196 } 197 } 198 } 199 200 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { 201 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 202 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 203 setOperationAction(ISD::FRINT, MVT::f64, Legal); 204 } 205 206 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 207 setOperationAction(ISD::FDIV, MVT::f32, Custom); 208 setOperationAction(ISD::FDIV, MVT::f64, Custom); 209 210 setTargetDAGCombine(ISD::FADD); 211 setTargetDAGCombine(ISD::FSUB); 212 setTargetDAGCombine(ISD::FMINNUM); 213 setTargetDAGCombine(ISD::FMAXNUM); 214 setTargetDAGCombine(ISD::SMIN); 215 setTargetDAGCombine(ISD::SMAX); 216 setTargetDAGCombine(ISD::UMIN); 217 setTargetDAGCombine(ISD::UMAX); 218 setTargetDAGCombine(ISD::SELECT_CC); 219 setTargetDAGCombine(ISD::SETCC); 220 setTargetDAGCombine(ISD::AND); 221 setTargetDAGCombine(ISD::OR); 222 setTargetDAGCombine(ISD::UINT_TO_FP); 223 224 // All memory operations. Some folding on the pointer operand is done to help 225 // matching the constant offsets in the addressing modes. 226 setTargetDAGCombine(ISD::LOAD); 227 setTargetDAGCombine(ISD::STORE); 228 setTargetDAGCombine(ISD::ATOMIC_LOAD); 229 setTargetDAGCombine(ISD::ATOMIC_STORE); 230 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); 231 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 232 setTargetDAGCombine(ISD::ATOMIC_SWAP); 233 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); 234 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); 235 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); 236 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); 237 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); 238 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); 239 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); 240 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); 241 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); 242 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); 243 244 setSchedulingPreference(Sched::RegPressure); 245 } 246 247 //===----------------------------------------------------------------------===// 248 // TargetLowering queries 249 //===----------------------------------------------------------------------===// 250 251 bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &, 252 EVT) const { 253 // SI has some legal vector types, but no legal vector operations. Say no 254 // shuffles are legal in order to prefer scalarizing some vector operations. 255 return false; 256 } 257 258 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 259 // Flat instructions do not have offsets, and only have the register 260 // address. 261 return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1); 262 } 263 264 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 265 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 266 // additionally can do r + r + i with addr64. 32-bit has more addressing 267 // mode options. Depending on the resource constant, it can also do 268 // (i64 r0) + (i32 r1) * (i14 i). 269 // 270 // Private arrays end up using a scratch buffer most of the time, so also 271 // assume those use MUBUF instructions. Scratch loads / stores are currently 272 // implemented as mubuf instructions with offen bit set, so slightly 273 // different than the normal addr64. 274 if (!isUInt<12>(AM.BaseOffs)) 275 return false; 276 277 // FIXME: Since we can split immediate into soffset and immediate offset, 278 // would it make sense to allow any immediate? 279 280 switch (AM.Scale) { 281 case 0: // r + i or just i, depending on HasBaseReg. 282 return true; 283 case 1: 284 return true; // We have r + r or r + i. 285 case 2: 286 if (AM.HasBaseReg) { 287 // Reject 2 * r + r. 288 return false; 289 } 290 291 // Allow 2 * r as r + r 292 // Or 2 * r + i is allowed as r + r + i. 293 return true; 294 default: // Don't allow n * r 295 return false; 296 } 297 } 298 299 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 300 const AddrMode &AM, Type *Ty, 301 unsigned AS) const { 302 // No global is ever allowed as a base. 303 if (AM.BaseGV) 304 return false; 305 306 switch (AS) { 307 case AMDGPUAS::GLOBAL_ADDRESS: { 308 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 309 // Assume the we will use FLAT for all global memory accesses 310 // on VI. 311 // FIXME: This assumption is currently wrong. On VI we still use 312 // MUBUF instructions for the r + i addressing mode. As currently 313 // implemented, the MUBUF instructions only work on buffer < 4GB. 314 // It may be possible to support > 4GB buffers with MUBUF instructions, 315 // by setting the stride value in the resource descriptor which would 316 // increase the size limit to (stride * 4GB). However, this is risky, 317 // because it has never been validated. 318 return isLegalFlatAddressingMode(AM); 319 } 320 321 return isLegalMUBUFAddressingMode(AM); 322 } 323 case AMDGPUAS::CONSTANT_ADDRESS: { 324 // If the offset isn't a multiple of 4, it probably isn't going to be 325 // correctly aligned. 326 if (AM.BaseOffs % 4 != 0) 327 return isLegalMUBUFAddressingMode(AM); 328 329 // There are no SMRD extloads, so if we have to do a small type access we 330 // will use a MUBUF load. 331 // FIXME?: We also need to do this if unaligned, but we don't know the 332 // alignment here. 333 if (DL.getTypeStoreSize(Ty) < 4) 334 return isLegalMUBUFAddressingMode(AM); 335 336 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 337 // SMRD instructions have an 8-bit, dword offset on SI. 338 if (!isUInt<8>(AM.BaseOffs / 4)) 339 return false; 340 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 341 // On CI+, this can also be a 32-bit literal constant offset. If it fits 342 // in 8-bits, it can use a smaller encoding. 343 if (!isUInt<32>(AM.BaseOffs / 4)) 344 return false; 345 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) { 346 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 347 if (!isUInt<20>(AM.BaseOffs)) 348 return false; 349 } else 350 llvm_unreachable("unhandled generation"); 351 352 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 353 return true; 354 355 if (AM.Scale == 1 && AM.HasBaseReg) 356 return true; 357 358 return false; 359 } 360 361 case AMDGPUAS::PRIVATE_ADDRESS: 362 case AMDGPUAS::UNKNOWN_ADDRESS_SPACE: 363 return isLegalMUBUFAddressingMode(AM); 364 365 case AMDGPUAS::LOCAL_ADDRESS: 366 case AMDGPUAS::REGION_ADDRESS: { 367 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 368 // field. 369 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 370 // an 8-bit dword offset but we don't know the alignment here. 371 if (!isUInt<16>(AM.BaseOffs)) 372 return false; 373 374 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 375 return true; 376 377 if (AM.Scale == 1 && AM.HasBaseReg) 378 return true; 379 380 return false; 381 } 382 case AMDGPUAS::FLAT_ADDRESS: 383 return isLegalFlatAddressingMode(AM); 384 385 default: 386 llvm_unreachable("unhandled address space"); 387 } 388 } 389 390 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 391 unsigned AddrSpace, 392 unsigned Align, 393 bool *IsFast) const { 394 if (IsFast) 395 *IsFast = false; 396 397 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, 398 // which isn't a simple VT. 399 if (!VT.isSimple() || VT == MVT::Other) 400 return false; 401 402 // TODO - CI+ supports unaligned memory accesses, but this requires driver 403 // support. 404 405 // XXX - The only mention I see of this in the ISA manual is for LDS direct 406 // reads the "byte address and must be dword aligned". Is it also true for the 407 // normal loads and stores? 408 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) { 409 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte 410 // aligned, 8 byte access in a single operation using ds_read2/write2_b32 411 // with adjacent offsets. 412 bool AlignedBy4 = (Align % 4 == 0); 413 if (IsFast) 414 *IsFast = AlignedBy4; 415 return AlignedBy4; 416 } 417 418 // Smaller than dword value must be aligned. 419 // FIXME: This should be allowed on CI+ 420 if (VT.bitsLT(MVT::i32)) 421 return false; 422 423 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 424 // byte-address are ignored, thus forcing Dword alignment. 425 // This applies to private, global, and constant memory. 426 if (IsFast) 427 *IsFast = true; 428 429 return VT.bitsGT(MVT::i32) && Align % 4 == 0; 430 } 431 432 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, 433 unsigned SrcAlign, bool IsMemset, 434 bool ZeroMemset, 435 bool MemcpyStrSrc, 436 MachineFunction &MF) const { 437 // FIXME: Should account for address space here. 438 439 // The default fallback uses the private pointer size as a guess for a type to 440 // use. Make sure we switch these to 64-bit accesses. 441 442 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global 443 return MVT::v4i32; 444 445 if (Size >= 8 && DstAlign >= 4) 446 return MVT::v2i32; 447 448 // Use the default. 449 return MVT::Other; 450 } 451 452 TargetLoweringBase::LegalizeTypeAction 453 SITargetLowering::getPreferredVectorAction(EVT VT) const { 454 if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) 455 return TypeSplitVector; 456 457 return TargetLoweringBase::getPreferredVectorAction(VT); 458 } 459 460 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 461 Type *Ty) const { 462 const SIInstrInfo *TII = 463 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 464 return TII->isInlineConstant(Imm); 465 } 466 467 SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT, 468 SDLoc SL, SDValue Chain, 469 unsigned Offset, bool Signed) const { 470 const DataLayout &DL = DAG.getDataLayout(); 471 MachineFunction &MF = DAG.getMachineFunction(); 472 const SIRegisterInfo *TRI = 473 static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 474 unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR); 475 476 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 477 478 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 479 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 480 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 481 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 482 MRI.getLiveInVirtReg(InputPtrReg), PtrVT); 483 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 484 DAG.getConstant(Offset, SL, PtrVT)); 485 SDValue PtrOffset = DAG.getUNDEF(PtrVT); 486 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); 487 488 unsigned Align = DL.getABITypeAlignment(Ty); 489 490 ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 491 if (MemVT.isFloatingPoint()) 492 ExtTy = ISD::EXTLOAD; 493 494 return DAG.getLoad(ISD::UNINDEXED, ExtTy, 495 VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT, 496 false, // isVolatile 497 true, // isNonTemporal 498 true, // isInvariant 499 Align); // Alignment 500 } 501 502 SDValue SITargetLowering::LowerFormalArguments( 503 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 504 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, 505 SmallVectorImpl<SDValue> &InVals) const { 506 const SIRegisterInfo *TRI = 507 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 508 509 MachineFunction &MF = DAG.getMachineFunction(); 510 FunctionType *FType = MF.getFunction()->getFunctionType(); 511 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 512 513 // FIXME: We currently assume all calling conventions are kernels. 514 515 SmallVector<ISD::InputArg, 16> Splits; 516 BitVector Skipped(Ins.size()); 517 518 for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) { 519 const ISD::InputArg &Arg = Ins[i]; 520 521 // First check if it's a PS input addr 522 if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() && 523 !Arg.Flags.isByVal()) { 524 525 assert((PSInputNum <= 15) && "Too many PS inputs!"); 526 527 if (!Arg.Used) { 528 // We can safely skip PS inputs 529 Skipped.set(i); 530 ++PSInputNum; 531 continue; 532 } 533 534 Info->PSInputAddr |= 1 << PSInputNum++; 535 } 536 537 // Second split vertices into their elements 538 if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) { 539 ISD::InputArg NewArg = Arg; 540 NewArg.Flags.setSplit(); 541 NewArg.VT = Arg.VT.getVectorElementType(); 542 543 // We REALLY want the ORIGINAL number of vertex elements here, e.g. a 544 // three or five element vertex only needs three or five registers, 545 // NOT four or eight. 546 Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); 547 unsigned NumElements = ParamType->getVectorNumElements(); 548 549 for (unsigned j = 0; j != NumElements; ++j) { 550 Splits.push_back(NewArg); 551 NewArg.PartOffset += NewArg.VT.getStoreSize(); 552 } 553 554 } else if (Info->getShaderType() != ShaderType::COMPUTE) { 555 Splits.push_back(Arg); 556 } 557 } 558 559 SmallVector<CCValAssign, 16> ArgLocs; 560 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 561 *DAG.getContext()); 562 563 // At least one interpolation mode must be enabled or else the GPU will hang. 564 if (Info->getShaderType() == ShaderType::PIXEL && 565 (Info->PSInputAddr & 0x7F) == 0) { 566 Info->PSInputAddr |= 1; 567 CCInfo.AllocateReg(AMDGPU::VGPR0); 568 CCInfo.AllocateReg(AMDGPU::VGPR1); 569 } 570 571 // The pointer to the list of arguments is stored in SGPR0, SGPR1 572 // The pointer to the scratch buffer is stored in SGPR2, SGPR3 573 if (Info->getShaderType() == ShaderType::COMPUTE) { 574 if (Subtarget->isAmdHsaOS()) 575 Info->NumUserSGPRs = 2; // FIXME: Need to support scratch buffers. 576 else 577 Info->NumUserSGPRs = 4; 578 579 unsigned InputPtrReg = 580 TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR); 581 unsigned InputPtrRegLo = 582 TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0); 583 unsigned InputPtrRegHi = 584 TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1); 585 586 unsigned ScratchPtrReg = 587 TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR); 588 unsigned ScratchPtrRegLo = 589 TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0); 590 unsigned ScratchPtrRegHi = 591 TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1); 592 593 CCInfo.AllocateReg(InputPtrRegLo); 594 CCInfo.AllocateReg(InputPtrRegHi); 595 CCInfo.AllocateReg(ScratchPtrRegLo); 596 CCInfo.AllocateReg(ScratchPtrRegHi); 597 MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass); 598 MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass); 599 } 600 601 if (Info->getShaderType() == ShaderType::COMPUTE) { 602 getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins, 603 Splits); 604 } 605 606 AnalyzeFormalArguments(CCInfo, Splits); 607 608 SmallVector<SDValue, 16> Chains; 609 610 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 611 612 const ISD::InputArg &Arg = Ins[i]; 613 if (Skipped[i]) { 614 InVals.push_back(DAG.getUNDEF(Arg.VT)); 615 continue; 616 } 617 618 CCValAssign &VA = ArgLocs[ArgIdx++]; 619 MVT VT = VA.getLocVT(); 620 621 if (VA.isMemLoc()) { 622 VT = Ins[i].VT; 623 EVT MemVT = Splits[i].VT; 624 const unsigned Offset = Subtarget->getExplicitKernelArgOffset() + 625 VA.getLocMemOffset(); 626 // The first 36 bytes of the input buffer contains information about 627 // thread group and global sizes. 628 SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, Chain, 629 Offset, Ins[i].Flags.isSExt()); 630 Chains.push_back(Arg.getValue(1)); 631 632 auto *ParamTy = 633 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 634 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 635 ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 636 // On SI local pointers are just offsets into LDS, so they are always 637 // less than 16-bits. On CI and newer they could potentially be 638 // real pointers, so we can't guarantee their size. 639 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 640 DAG.getValueType(MVT::i16)); 641 } 642 643 InVals.push_back(Arg); 644 Info->ABIArgOffset = Offset + MemVT.getStoreSize(); 645 continue; 646 } 647 assert(VA.isRegLoc() && "Parameter must be in a register!"); 648 649 unsigned Reg = VA.getLocReg(); 650 651 if (VT == MVT::i64) { 652 // For now assume it is a pointer 653 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, 654 &AMDGPU::SReg_64RegClass); 655 Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass); 656 SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT); 657 InVals.push_back(Copy); 658 continue; 659 } 660 661 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 662 663 Reg = MF.addLiveIn(Reg, RC); 664 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 665 666 if (Arg.VT.isVector()) { 667 668 // Build a vector from the registers 669 Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); 670 unsigned NumElements = ParamType->getVectorNumElements(); 671 672 SmallVector<SDValue, 4> Regs; 673 Regs.push_back(Val); 674 for (unsigned j = 1; j != NumElements; ++j) { 675 Reg = ArgLocs[ArgIdx++].getLocReg(); 676 Reg = MF.addLiveIn(Reg, RC); 677 678 SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT); 679 Regs.push_back(Copy); 680 } 681 682 // Fill up the missing vector elements 683 NumElements = Arg.VT.getVectorNumElements() - NumElements; 684 Regs.append(NumElements, DAG.getUNDEF(VT)); 685 686 InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs)); 687 continue; 688 } 689 690 InVals.push_back(Val); 691 } 692 693 if (Info->getShaderType() != ShaderType::COMPUTE) { 694 unsigned ScratchIdx = CCInfo.getFirstUnallocated(makeArrayRef( 695 AMDGPU::SGPR_32RegClass.begin(), AMDGPU::SGPR_32RegClass.getNumRegs())); 696 Info->ScratchOffsetReg = AMDGPU::SGPR_32RegClass.getRegister(ScratchIdx); 697 } 698 699 if (Chains.empty()) 700 return Chain; 701 702 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 703 } 704 705 MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter( 706 MachineInstr * MI, MachineBasicBlock * BB) const { 707 708 MachineBasicBlock::iterator I = *MI; 709 const SIInstrInfo *TII = 710 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 711 712 switch (MI->getOpcode()) { 713 default: 714 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 715 case AMDGPU::BRANCH: 716 return BB; 717 case AMDGPU::SI_RegisterStorePseudo: { 718 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 719 unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 720 MachineInstrBuilder MIB = 721 BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore), 722 Reg); 723 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) 724 MIB.addOperand(MI->getOperand(i)); 725 726 MI->eraseFromParent(); 727 break; 728 } 729 } 730 return BB; 731 } 732 733 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 734 // This currently forces unfolding various combinations of fsub into fma with 735 // free fneg'd operands. As long as we have fast FMA (controlled by 736 // isFMAFasterThanFMulAndFAdd), we should perform these. 737 738 // When fma is quarter rate, for f64 where add / sub are at best half rate, 739 // most of these combines appear to be cycle neutral but save on instruction 740 // count / code size. 741 return true; 742 } 743 744 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 745 EVT VT) const { 746 if (!VT.isVector()) { 747 return MVT::i1; 748 } 749 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 750 } 751 752 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const { 753 return MVT::i32; 754 } 755 756 // Answering this is somewhat tricky and depends on the specific device which 757 // have different rates for fma or all f64 operations. 758 // 759 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 760 // regardless of which device (although the number of cycles differs between 761 // devices), so it is always profitable for f64. 762 // 763 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 764 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 765 // which we can always do even without fused FP ops since it returns the same 766 // result as the separate operations and since it is always full 767 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 768 // however does not support denormals, so we do report fma as faster if we have 769 // a fast fma device and require denormals. 770 // 771 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 772 VT = VT.getScalarType(); 773 774 if (!VT.isSimple()) 775 return false; 776 777 switch (VT.getSimpleVT().SimpleTy) { 778 case MVT::f32: 779 // This is as fast on some subtargets. However, we always have full rate f32 780 // mad available which returns the same result as the separate operations 781 // which we should prefer over fma. We can't use this if we want to support 782 // denormals, so only report this in these cases. 783 return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32(); 784 case MVT::f64: 785 return true; 786 default: 787 break; 788 } 789 790 return false; 791 } 792 793 //===----------------------------------------------------------------------===// 794 // Custom DAG Lowering Operations 795 //===----------------------------------------------------------------------===// 796 797 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 798 switch (Op.getOpcode()) { 799 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 800 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); 801 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 802 case ISD::LOAD: { 803 SDValue Result = LowerLOAD(Op, DAG); 804 assert((!Result.getNode() || 805 Result.getNode()->getNumValues() == 2) && 806 "Load should return a value and a chain"); 807 return Result; 808 } 809 810 case ISD::FSIN: 811 case ISD::FCOS: 812 return LowerTrig(Op, DAG); 813 case ISD::SELECT: return LowerSELECT(Op, DAG); 814 case ISD::FDIV: return LowerFDIV(Op, DAG); 815 case ISD::STORE: return LowerSTORE(Op, DAG); 816 case ISD::GlobalAddress: { 817 MachineFunction &MF = DAG.getMachineFunction(); 818 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 819 return LowerGlobalAddress(MFI, Op, DAG); 820 } 821 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 822 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 823 } 824 return SDValue(); 825 } 826 827 /// \brief Helper function for LowerBRCOND 828 static SDNode *findUser(SDValue Value, unsigned Opcode) { 829 830 SDNode *Parent = Value.getNode(); 831 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 832 I != E; ++I) { 833 834 if (I.getUse().get() != Value) 835 continue; 836 837 if (I->getOpcode() == Opcode) 838 return *I; 839 } 840 return nullptr; 841 } 842 843 SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const { 844 845 SDLoc SL(Op); 846 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op); 847 unsigned FrameIndex = FINode->getIndex(); 848 849 // A FrameIndex node represents a 32-bit offset into scratch memory. If 850 // the high bit of a frame index offset were to be set, this would mean 851 // that it represented an offset of ~2GB * 64 = ~128GB from the start of the 852 // scratch buffer, with 64 being the number of threads per wave. 853 // 854 // If we know the machine uses less than 128GB of scratch, then we can 855 // amrk the high bit of the FrameIndex node as known zero, 856 // which is important, because it means in most situations we can 857 // prove that values derived from FrameIndex nodes are non-negative. 858 // This enables us to take advantage of more addressing modes when 859 // accessing scratch buffers, since for scratch reads/writes, the register 860 // offset must always be positive. 861 862 SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32); 863 if (Subtarget->enableHugeScratchBuffer()) 864 return TFI; 865 866 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI, 867 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), 31))); 868 } 869 870 /// This transforms the control flow intrinsics to get the branch destination as 871 /// last parameter, also switches branch target with BR if the need arise 872 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 873 SelectionDAG &DAG) const { 874 875 SDLoc DL(BRCOND); 876 877 SDNode *Intr = BRCOND.getOperand(1).getNode(); 878 SDValue Target = BRCOND.getOperand(2); 879 SDNode *BR = nullptr; 880 881 if (Intr->getOpcode() == ISD::SETCC) { 882 // As long as we negate the condition everything is fine 883 SDNode *SetCC = Intr; 884 assert(SetCC->getConstantOperandVal(1) == 1); 885 assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 886 ISD::SETNE); 887 Intr = SetCC->getOperand(0).getNode(); 888 889 } else { 890 // Get the target from BR if we don't negate the condition 891 BR = findUser(BRCOND, ISD::BR); 892 Target = BR->getOperand(1); 893 } 894 895 assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN); 896 897 // Build the result and 898 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 899 900 // operands of the new intrinsic call 901 SmallVector<SDValue, 4> Ops; 902 Ops.push_back(BRCOND.getOperand(0)); 903 Ops.append(Intr->op_begin() + 1, Intr->op_end()); 904 Ops.push_back(Target); 905 906 // build the new intrinsic call 907 SDNode *Result = DAG.getNode( 908 Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL, 909 DAG.getVTList(Res), Ops).getNode(); 910 911 if (BR) { 912 // Give the branch instruction our target 913 SDValue Ops[] = { 914 BR->getOperand(0), 915 BRCOND.getOperand(2) 916 }; 917 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 918 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 919 BR = NewBR.getNode(); 920 } 921 922 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 923 924 // Copy the intrinsic results to registers 925 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 926 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 927 if (!CopyToReg) 928 continue; 929 930 Chain = DAG.getCopyToReg( 931 Chain, DL, 932 CopyToReg->getOperand(1), 933 SDValue(Result, i - 1), 934 SDValue()); 935 936 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 937 } 938 939 // Remove the old intrinsic from the chain 940 DAG.ReplaceAllUsesOfValueWith( 941 SDValue(Intr, Intr->getNumValues() - 1), 942 Intr->getOperand(0)); 943 944 return Chain; 945 } 946 947 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 948 SDValue Op, 949 SelectionDAG &DAG) const { 950 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 951 952 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 953 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 954 955 SDLoc DL(GSD); 956 const GlobalValue *GV = GSD->getGlobal(); 957 MVT PtrVT = getPointerTy(DAG.getDataLayout(), GSD->getAddressSpace()); 958 959 SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT); 960 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32); 961 962 SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr, 963 DAG.getConstant(0, DL, MVT::i32)); 964 SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr, 965 DAG.getConstant(1, DL, MVT::i32)); 966 967 SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue), 968 PtrLo, GA); 969 SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue), 970 PtrHi, DAG.getConstant(0, DL, MVT::i32), 971 SDValue(Lo.getNode(), 1)); 972 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi); 973 } 974 975 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, SDLoc DL, 976 SDValue V) const { 977 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 978 // so we will end up with redundant moves to m0. 979 // 980 // We can't use S_MOV_B32, because there is no way to specify m0 as the 981 // destination register. 982 // 983 // We have to use them both. Machine cse will combine all the S_MOV_B32 984 // instructions and the register coalescer eliminate the extra copies. 985 SDNode *M0 = DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, V.getValueType(), V); 986 return DAG.getCopyToReg(Chain, DL, DAG.getRegister(AMDGPU::M0, MVT::i32), 987 SDValue(M0, 0), SDValue()); // Glue 988 // A Null SDValue creates 989 // a glue result. 990 } 991 992 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 993 SelectionDAG &DAG) const { 994 MachineFunction &MF = DAG.getMachineFunction(); 995 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 996 const SIRegisterInfo *TRI = 997 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 998 999 EVT VT = Op.getValueType(); 1000 SDLoc DL(Op); 1001 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1002 1003 // TODO: Should this propagate fast-math-flags? 1004 1005 switch (IntrinsicID) { 1006 case Intrinsic::r600_read_ngroups_x: 1007 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 1008 SI::KernelInputOffsets::NGROUPS_X, false); 1009 case Intrinsic::r600_read_ngroups_y: 1010 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 1011 SI::KernelInputOffsets::NGROUPS_Y, false); 1012 case Intrinsic::r600_read_ngroups_z: 1013 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 1014 SI::KernelInputOffsets::NGROUPS_Z, false); 1015 case Intrinsic::r600_read_global_size_x: 1016 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 1017 SI::KernelInputOffsets::GLOBAL_SIZE_X, false); 1018 case Intrinsic::r600_read_global_size_y: 1019 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 1020 SI::KernelInputOffsets::GLOBAL_SIZE_Y, false); 1021 case Intrinsic::r600_read_global_size_z: 1022 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 1023 SI::KernelInputOffsets::GLOBAL_SIZE_Z, false); 1024 case Intrinsic::r600_read_local_size_x: 1025 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 1026 SI::KernelInputOffsets::LOCAL_SIZE_X, false); 1027 case Intrinsic::r600_read_local_size_y: 1028 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 1029 SI::KernelInputOffsets::LOCAL_SIZE_Y, false); 1030 case Intrinsic::r600_read_local_size_z: 1031 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 1032 SI::KernelInputOffsets::LOCAL_SIZE_Z, false); 1033 1034 case Intrinsic::AMDGPU_read_workdim: 1035 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 1036 getImplicitParameterOffset(MFI, GRID_DIM), false); 1037 1038 case Intrinsic::r600_read_tgid_x: 1039 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, 1040 TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT); 1041 case Intrinsic::r600_read_tgid_y: 1042 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, 1043 TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT); 1044 case Intrinsic::r600_read_tgid_z: 1045 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, 1046 TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT); 1047 case Intrinsic::r600_read_tidig_x: 1048 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, 1049 TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT); 1050 case Intrinsic::r600_read_tidig_y: 1051 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, 1052 TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT); 1053 case Intrinsic::r600_read_tidig_z: 1054 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, 1055 TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT); 1056 case AMDGPUIntrinsic::SI_load_const: { 1057 SDValue Ops[] = { 1058 Op.getOperand(1), 1059 Op.getOperand(2) 1060 }; 1061 1062 MachineMemOperand *MMO = MF.getMachineMemOperand( 1063 MachinePointerInfo(), 1064 MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, 1065 VT.getStoreSize(), 4); 1066 return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL, 1067 Op->getVTList(), Ops, VT, MMO); 1068 } 1069 case AMDGPUIntrinsic::SI_sample: 1070 return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG); 1071 case AMDGPUIntrinsic::SI_sampleb: 1072 return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG); 1073 case AMDGPUIntrinsic::SI_sampled: 1074 return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG); 1075 case AMDGPUIntrinsic::SI_samplel: 1076 return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG); 1077 case AMDGPUIntrinsic::SI_vs_load_input: 1078 return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT, 1079 Op.getOperand(1), 1080 Op.getOperand(2), 1081 Op.getOperand(3)); 1082 1083 case AMDGPUIntrinsic::AMDGPU_fract: 1084 case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name. 1085 return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1), 1086 DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1))); 1087 case AMDGPUIntrinsic::SI_fs_constant: { 1088 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3)); 1089 SDValue Glue = M0.getValue(1); 1090 return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, 1091 DAG.getConstant(2, DL, MVT::i32), // P0 1092 Op.getOperand(1), Op.getOperand(2), Glue); 1093 } 1094 case AMDGPUIntrinsic::SI_fs_interp: { 1095 SDValue IJ = Op.getOperand(4); 1096 SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ, 1097 DAG.getConstant(0, DL, MVT::i32)); 1098 SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ, 1099 DAG.getConstant(1, DL, MVT::i32)); 1100 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3)); 1101 SDValue Glue = M0.getValue(1); 1102 SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL, 1103 DAG.getVTList(MVT::f32, MVT::Glue), 1104 I, Op.getOperand(1), Op.getOperand(2), Glue); 1105 Glue = SDValue(P1.getNode(), 1); 1106 return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J, 1107 Op.getOperand(1), Op.getOperand(2), Glue); 1108 } 1109 default: 1110 return AMDGPUTargetLowering::LowerOperation(Op, DAG); 1111 } 1112 } 1113 1114 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 1115 SelectionDAG &DAG) const { 1116 MachineFunction &MF = DAG.getMachineFunction(); 1117 SDLoc DL(Op); 1118 SDValue Chain = Op.getOperand(0); 1119 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1120 1121 switch (IntrinsicID) { 1122 case AMDGPUIntrinsic::SI_sendmsg: { 1123 Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 1124 SDValue Glue = Chain.getValue(1); 1125 return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain, 1126 Op.getOperand(2), Glue); 1127 } 1128 case AMDGPUIntrinsic::SI_tbuffer_store: { 1129 SDValue Ops[] = { 1130 Chain, 1131 Op.getOperand(2), 1132 Op.getOperand(3), 1133 Op.getOperand(4), 1134 Op.getOperand(5), 1135 Op.getOperand(6), 1136 Op.getOperand(7), 1137 Op.getOperand(8), 1138 Op.getOperand(9), 1139 Op.getOperand(10), 1140 Op.getOperand(11), 1141 Op.getOperand(12), 1142 Op.getOperand(13), 1143 Op.getOperand(14) 1144 }; 1145 1146 EVT VT = Op.getOperand(3).getValueType(); 1147 1148 MachineMemOperand *MMO = MF.getMachineMemOperand( 1149 MachinePointerInfo(), 1150 MachineMemOperand::MOStore, 1151 VT.getStoreSize(), 4); 1152 return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL, 1153 Op->getVTList(), Ops, VT, MMO); 1154 } 1155 default: 1156 return SDValue(); 1157 } 1158 } 1159 1160 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1161 SDLoc DL(Op); 1162 LoadSDNode *Load = cast<LoadSDNode>(Op); 1163 1164 if (Op.getValueType().isVector()) { 1165 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 1166 "Custom lowering for non-i32 vectors hasn't been implemented."); 1167 unsigned NumElements = Op.getValueType().getVectorNumElements(); 1168 assert(NumElements != 2 && "v2 loads are supported for all address spaces."); 1169 switch (Load->getAddressSpace()) { 1170 default: break; 1171 case AMDGPUAS::GLOBAL_ADDRESS: 1172 case AMDGPUAS::PRIVATE_ADDRESS: 1173 // v4 loads are supported for private and global memory. 1174 if (NumElements <= 4) 1175 break; 1176 // fall-through 1177 case AMDGPUAS::LOCAL_ADDRESS: 1178 return ScalarizeVectorLoad(Op, DAG); 1179 } 1180 } 1181 1182 return AMDGPUTargetLowering::LowerLOAD(Op, DAG); 1183 } 1184 1185 SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode, 1186 const SDValue &Op, 1187 SelectionDAG &DAG) const { 1188 return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1), 1189 Op.getOperand(2), 1190 Op.getOperand(3), 1191 Op.getOperand(4)); 1192 } 1193 1194 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 1195 if (Op.getValueType() != MVT::i64) 1196 return SDValue(); 1197 1198 SDLoc DL(Op); 1199 SDValue Cond = Op.getOperand(0); 1200 1201 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 1202 SDValue One = DAG.getConstant(1, DL, MVT::i32); 1203 1204 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 1205 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 1206 1207 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 1208 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 1209 1210 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 1211 1212 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 1213 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 1214 1215 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 1216 1217 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi); 1218 return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res); 1219 } 1220 1221 // Catch division cases where we can use shortcuts with rcp and rsq 1222 // instructions. 1223 SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const { 1224 SDLoc SL(Op); 1225 SDValue LHS = Op.getOperand(0); 1226 SDValue RHS = Op.getOperand(1); 1227 EVT VT = Op.getValueType(); 1228 bool Unsafe = DAG.getTarget().Options.UnsafeFPMath; 1229 1230 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 1231 if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) && 1232 CLHS->isExactlyValue(1.0)) { 1233 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 1234 // the CI documentation has a worst case error of 1 ulp. 1235 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 1236 // use it as long as we aren't trying to use denormals. 1237 1238 // 1.0 / sqrt(x) -> rsq(x) 1239 // 1240 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 1241 // error seems really high at 2^29 ULP. 1242 if (RHS.getOpcode() == ISD::FSQRT) 1243 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 1244 1245 // 1.0 / x -> rcp(x) 1246 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 1247 } 1248 } 1249 1250 if (Unsafe) { 1251 // Turn into multiply by the reciprocal. 1252 // x / y -> x * (1.0 / y) 1253 SDNodeFlags Flags; 1254 Flags.setUnsafeAlgebra(true); 1255 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 1256 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags); 1257 } 1258 1259 return SDValue(); 1260 } 1261 1262 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 1263 SDValue FastLowered = LowerFastFDIV(Op, DAG); 1264 if (FastLowered.getNode()) 1265 return FastLowered; 1266 1267 // This uses v_rcp_f32 which does not handle denormals. Let this hit a 1268 // selection error for now rather than do something incorrect. 1269 if (Subtarget->hasFP32Denormals()) 1270 return SDValue(); 1271 1272 SDLoc SL(Op); 1273 SDValue LHS = Op.getOperand(0); 1274 SDValue RHS = Op.getOperand(1); 1275 1276 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); 1277 1278 const APFloat K0Val(BitsToFloat(0x6f800000)); 1279 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 1280 1281 const APFloat K1Val(BitsToFloat(0x2f800000)); 1282 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 1283 1284 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 1285 1286 EVT SetCCVT = 1287 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 1288 1289 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 1290 1291 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); 1292 1293 // TODO: Should this propagate fast-math-flags? 1294 1295 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); 1296 1297 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); 1298 1299 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); 1300 1301 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); 1302 } 1303 1304 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 1305 if (DAG.getTarget().Options.UnsafeFPMath) 1306 return LowerFastFDIV(Op, DAG); 1307 1308 SDLoc SL(Op); 1309 SDValue X = Op.getOperand(0); 1310 SDValue Y = Op.getOperand(1); 1311 1312 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1313 1314 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 1315 1316 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 1317 1318 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 1319 1320 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 1321 1322 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 1323 1324 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 1325 1326 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 1327 1328 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 1329 1330 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 1331 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 1332 1333 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 1334 NegDivScale0, Mul, DivScale1); 1335 1336 SDValue Scale; 1337 1338 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1339 // Workaround a hardware bug on SI where the condition output from div_scale 1340 // is not usable. 1341 1342 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 1343 1344 // Figure out if the scale to use for div_fmas. 1345 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 1346 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 1347 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 1348 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 1349 1350 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 1351 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 1352 1353 SDValue Scale0Hi 1354 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 1355 SDValue Scale1Hi 1356 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 1357 1358 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 1359 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 1360 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 1361 } else { 1362 Scale = DivScale1.getValue(1); 1363 } 1364 1365 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 1366 Fma4, Fma3, Mul, Scale); 1367 1368 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 1369 } 1370 1371 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 1372 EVT VT = Op.getValueType(); 1373 1374 if (VT == MVT::f32) 1375 return LowerFDIV32(Op, DAG); 1376 1377 if (VT == MVT::f64) 1378 return LowerFDIV64(Op, DAG); 1379 1380 llvm_unreachable("Unexpected type for fdiv"); 1381 } 1382 1383 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1384 SDLoc DL(Op); 1385 StoreSDNode *Store = cast<StoreSDNode>(Op); 1386 EVT VT = Store->getMemoryVT(); 1387 1388 // These stores are legal. 1389 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { 1390 if (VT.isVector() && VT.getVectorNumElements() > 4) 1391 return ScalarizeVectorStore(Op, DAG); 1392 return SDValue(); 1393 } 1394 1395 SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG); 1396 if (Ret.getNode()) 1397 return Ret; 1398 1399 if (VT.isVector() && VT.getVectorNumElements() >= 8) 1400 return ScalarizeVectorStore(Op, DAG); 1401 1402 if (VT == MVT::i1) 1403 return DAG.getTruncStore(Store->getChain(), DL, 1404 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 1405 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 1406 1407 return SDValue(); 1408 } 1409 1410 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 1411 SDLoc DL(Op); 1412 EVT VT = Op.getValueType(); 1413 SDValue Arg = Op.getOperand(0); 1414 // TODO: Should this propagate fast-math-flags? 1415 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT, 1416 DAG.getNode(ISD::FMUL, DL, VT, Arg, 1417 DAG.getConstantFP(0.5/M_PI, DL, 1418 VT))); 1419 1420 switch (Op.getOpcode()) { 1421 case ISD::FCOS: 1422 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart); 1423 case ISD::FSIN: 1424 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart); 1425 default: 1426 llvm_unreachable("Wrong trig opcode"); 1427 } 1428 } 1429 1430 //===----------------------------------------------------------------------===// 1431 // Custom DAG optimizations 1432 //===----------------------------------------------------------------------===// 1433 1434 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 1435 DAGCombinerInfo &DCI) const { 1436 EVT VT = N->getValueType(0); 1437 EVT ScalarVT = VT.getScalarType(); 1438 if (ScalarVT != MVT::f32) 1439 return SDValue(); 1440 1441 SelectionDAG &DAG = DCI.DAG; 1442 SDLoc DL(N); 1443 1444 SDValue Src = N->getOperand(0); 1445 EVT SrcVT = Src.getValueType(); 1446 1447 // TODO: We could try to match extracting the higher bytes, which would be 1448 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 1449 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 1450 // about in practice. 1451 if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) { 1452 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 1453 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); 1454 DCI.AddToWorklist(Cvt.getNode()); 1455 return Cvt; 1456 } 1457 } 1458 1459 // We are primarily trying to catch operations on illegal vector types 1460 // before they are expanded. 1461 // For scalars, we can use the more flexible method of checking masked bits 1462 // after legalization. 1463 if (!DCI.isBeforeLegalize() || 1464 !SrcVT.isVector() || 1465 SrcVT.getVectorElementType() != MVT::i8) { 1466 return SDValue(); 1467 } 1468 1469 assert(DCI.isBeforeLegalize() && "Unexpected legal type"); 1470 1471 // Weird sized vectors are a pain to handle, but we know 3 is really the same 1472 // size as 4. 1473 unsigned NElts = SrcVT.getVectorNumElements(); 1474 if (!SrcVT.isSimple() && NElts != 3) 1475 return SDValue(); 1476 1477 // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to 1478 // prevent a mess from expanding to v4i32 and repacking. 1479 if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) { 1480 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT); 1481 EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT); 1482 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts); 1483 LoadSDNode *Load = cast<LoadSDNode>(Src); 1484 1485 unsigned AS = Load->getAddressSpace(); 1486 unsigned Align = Load->getAlignment(); 1487 Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext()); 1488 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 1489 1490 // Don't try to replace the load if we have to expand it due to alignment 1491 // problems. Otherwise we will end up scalarizing the load, and trying to 1492 // repack into the vector for no real reason. 1493 if (Align < ABIAlignment && 1494 !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) { 1495 return SDValue(); 1496 } 1497 1498 SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT, 1499 Load->getChain(), 1500 Load->getBasePtr(), 1501 LoadVT, 1502 Load->getMemOperand()); 1503 1504 // Make sure successors of the original load stay after it by updating 1505 // them to use the new Chain. 1506 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1)); 1507 1508 SmallVector<SDValue, 4> Elts; 1509 if (RegVT.isVector()) 1510 DAG.ExtractVectorElements(NewLoad, Elts); 1511 else 1512 Elts.push_back(NewLoad); 1513 1514 SmallVector<SDValue, 4> Ops; 1515 1516 unsigned EltIdx = 0; 1517 for (SDValue Elt : Elts) { 1518 unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx); 1519 for (unsigned I = 0; I < ComponentsInElt; ++I) { 1520 unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I; 1521 SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt); 1522 DCI.AddToWorklist(Cvt.getNode()); 1523 Ops.push_back(Cvt); 1524 } 1525 1526 ++EltIdx; 1527 } 1528 1529 assert(Ops.size() == NElts); 1530 1531 return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops); 1532 } 1533 1534 return SDValue(); 1535 } 1536 1537 /// \brief Return true if the given offset Size in bytes can be folded into 1538 /// the immediate offsets of a memory instruction for the given address space. 1539 static bool canFoldOffset(unsigned OffsetSize, unsigned AS, 1540 const AMDGPUSubtarget &STI) { 1541 switch (AS) { 1542 case AMDGPUAS::GLOBAL_ADDRESS: { 1543 // MUBUF instructions a 12-bit offset in bytes. 1544 return isUInt<12>(OffsetSize); 1545 } 1546 case AMDGPUAS::CONSTANT_ADDRESS: { 1547 // SMRD instructions have an 8-bit offset in dwords on SI and 1548 // a 20-bit offset in bytes on VI. 1549 if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 1550 return isUInt<20>(OffsetSize); 1551 else 1552 return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4); 1553 } 1554 case AMDGPUAS::LOCAL_ADDRESS: 1555 case AMDGPUAS::REGION_ADDRESS: { 1556 // The single offset versions have a 16-bit offset in bytes. 1557 return isUInt<16>(OffsetSize); 1558 } 1559 case AMDGPUAS::PRIVATE_ADDRESS: 1560 // Indirect register addressing does not use any offsets. 1561 default: 1562 return 0; 1563 } 1564 } 1565 1566 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 1567 1568 // This is a variant of 1569 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 1570 // 1571 // The normal DAG combiner will do this, but only if the add has one use since 1572 // that would increase the number of instructions. 1573 // 1574 // This prevents us from seeing a constant offset that can be folded into a 1575 // memory instruction's addressing mode. If we know the resulting add offset of 1576 // a pointer can be folded into an addressing offset, we can replace the pointer 1577 // operand with the add of new constant offset. This eliminates one of the uses, 1578 // and may allow the remaining use to also be simplified. 1579 // 1580 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 1581 unsigned AddrSpace, 1582 DAGCombinerInfo &DCI) const { 1583 SDValue N0 = N->getOperand(0); 1584 SDValue N1 = N->getOperand(1); 1585 1586 if (N0.getOpcode() != ISD::ADD) 1587 return SDValue(); 1588 1589 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 1590 if (!CN1) 1591 return SDValue(); 1592 1593 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 1594 if (!CAdd) 1595 return SDValue(); 1596 1597 // If the resulting offset is too large, we can't fold it into the addressing 1598 // mode offset. 1599 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 1600 if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget)) 1601 return SDValue(); 1602 1603 SelectionDAG &DAG = DCI.DAG; 1604 SDLoc SL(N); 1605 EVT VT = N->getValueType(0); 1606 1607 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 1608 SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); 1609 1610 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset); 1611 } 1612 1613 SDValue SITargetLowering::performAndCombine(SDNode *N, 1614 DAGCombinerInfo &DCI) const { 1615 if (DCI.isBeforeLegalize()) 1616 return SDValue(); 1617 1618 SelectionDAG &DAG = DCI.DAG; 1619 1620 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 1621 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 1622 SDValue LHS = N->getOperand(0); 1623 SDValue RHS = N->getOperand(1); 1624 1625 if (LHS.getOpcode() == ISD::SETCC && 1626 RHS.getOpcode() == ISD::SETCC) { 1627 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 1628 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 1629 1630 SDValue X = LHS.getOperand(0); 1631 SDValue Y = RHS.getOperand(0); 1632 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) 1633 return SDValue(); 1634 1635 if (LCC == ISD::SETO) { 1636 if (X != LHS.getOperand(1)) 1637 return SDValue(); 1638 1639 if (RCC == ISD::SETUNE) { 1640 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 1641 if (!C1 || !C1->isInfinity() || C1->isNegative()) 1642 return SDValue(); 1643 1644 const uint32_t Mask = SIInstrFlags::N_NORMAL | 1645 SIInstrFlags::N_SUBNORMAL | 1646 SIInstrFlags::N_ZERO | 1647 SIInstrFlags::P_ZERO | 1648 SIInstrFlags::P_SUBNORMAL | 1649 SIInstrFlags::P_NORMAL; 1650 1651 static_assert(((~(SIInstrFlags::S_NAN | 1652 SIInstrFlags::Q_NAN | 1653 SIInstrFlags::N_INFINITY | 1654 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 1655 "mask not equal"); 1656 1657 SDLoc DL(N); 1658 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 1659 X, DAG.getConstant(Mask, DL, MVT::i32)); 1660 } 1661 } 1662 } 1663 1664 return SDValue(); 1665 } 1666 1667 SDValue SITargetLowering::performOrCombine(SDNode *N, 1668 DAGCombinerInfo &DCI) const { 1669 SelectionDAG &DAG = DCI.DAG; 1670 SDValue LHS = N->getOperand(0); 1671 SDValue RHS = N->getOperand(1); 1672 1673 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 1674 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 1675 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 1676 SDValue Src = LHS.getOperand(0); 1677 if (Src != RHS.getOperand(0)) 1678 return SDValue(); 1679 1680 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 1681 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 1682 if (!CLHS || !CRHS) 1683 return SDValue(); 1684 1685 // Only 10 bits are used. 1686 static const uint32_t MaxMask = 0x3ff; 1687 1688 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 1689 SDLoc DL(N); 1690 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 1691 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 1692 } 1693 1694 return SDValue(); 1695 } 1696 1697 SDValue SITargetLowering::performClassCombine(SDNode *N, 1698 DAGCombinerInfo &DCI) const { 1699 SelectionDAG &DAG = DCI.DAG; 1700 SDValue Mask = N->getOperand(1); 1701 1702 // fp_class x, 0 -> false 1703 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 1704 if (CMask->isNullValue()) 1705 return DAG.getConstant(0, SDLoc(N), MVT::i1); 1706 } 1707 1708 return SDValue(); 1709 } 1710 1711 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 1712 switch (Opc) { 1713 case ISD::FMAXNUM: 1714 return AMDGPUISD::FMAX3; 1715 case ISD::SMAX: 1716 return AMDGPUISD::SMAX3; 1717 case ISD::UMAX: 1718 return AMDGPUISD::UMAX3; 1719 case ISD::FMINNUM: 1720 return AMDGPUISD::FMIN3; 1721 case ISD::SMIN: 1722 return AMDGPUISD::SMIN3; 1723 case ISD::UMIN: 1724 return AMDGPUISD::UMIN3; 1725 default: 1726 llvm_unreachable("Not a min/max opcode"); 1727 } 1728 } 1729 1730 SDValue SITargetLowering::performMin3Max3Combine(SDNode *N, 1731 DAGCombinerInfo &DCI) const { 1732 SelectionDAG &DAG = DCI.DAG; 1733 1734 unsigned Opc = N->getOpcode(); 1735 SDValue Op0 = N->getOperand(0); 1736 SDValue Op1 = N->getOperand(1); 1737 1738 // Only do this if the inner op has one use since this will just increases 1739 // register pressure for no benefit. 1740 1741 // max(max(a, b), c) 1742 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 1743 SDLoc DL(N); 1744 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 1745 DL, 1746 N->getValueType(0), 1747 Op0.getOperand(0), 1748 Op0.getOperand(1), 1749 Op1); 1750 } 1751 1752 // max(a, max(b, c)) 1753 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 1754 SDLoc DL(N); 1755 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 1756 DL, 1757 N->getValueType(0), 1758 Op0, 1759 Op1.getOperand(0), 1760 Op1.getOperand(1)); 1761 } 1762 1763 return SDValue(); 1764 } 1765 1766 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 1767 DAGCombinerInfo &DCI) const { 1768 SelectionDAG &DAG = DCI.DAG; 1769 SDLoc SL(N); 1770 1771 SDValue LHS = N->getOperand(0); 1772 SDValue RHS = N->getOperand(1); 1773 EVT VT = LHS.getValueType(); 1774 1775 if (VT != MVT::f32 && VT != MVT::f64) 1776 return SDValue(); 1777 1778 // Match isinf pattern 1779 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 1780 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 1781 if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) { 1782 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 1783 if (!CRHS) 1784 return SDValue(); 1785 1786 const APFloat &APF = CRHS->getValueAPF(); 1787 if (APF.isInfinity() && !APF.isNegative()) { 1788 unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY; 1789 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 1790 DAG.getConstant(Mask, SL, MVT::i32)); 1791 } 1792 } 1793 1794 return SDValue(); 1795 } 1796 1797 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 1798 DAGCombinerInfo &DCI) const { 1799 SelectionDAG &DAG = DCI.DAG; 1800 SDLoc DL(N); 1801 1802 switch (N->getOpcode()) { 1803 default: 1804 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 1805 case ISD::SETCC: 1806 return performSetCCCombine(N, DCI); 1807 case ISD::FMAXNUM: // TODO: What about fmax_legacy? 1808 case ISD::FMINNUM: 1809 case ISD::SMAX: 1810 case ISD::SMIN: 1811 case ISD::UMAX: 1812 case ISD::UMIN: { 1813 if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG && 1814 N->getValueType(0) != MVT::f64 && 1815 getTargetMachine().getOptLevel() > CodeGenOpt::None) 1816 return performMin3Max3Combine(N, DCI); 1817 break; 1818 } 1819 1820 case AMDGPUISD::CVT_F32_UBYTE0: 1821 case AMDGPUISD::CVT_F32_UBYTE1: 1822 case AMDGPUISD::CVT_F32_UBYTE2: 1823 case AMDGPUISD::CVT_F32_UBYTE3: { 1824 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 1825 1826 SDValue Src = N->getOperand(0); 1827 APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 1828 1829 APInt KnownZero, KnownOne; 1830 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1831 !DCI.isBeforeLegalizeOps()); 1832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1833 if (TLO.ShrinkDemandedConstant(Src, Demanded) || 1834 TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) { 1835 DCI.CommitTargetLoweringOpt(TLO); 1836 } 1837 1838 break; 1839 } 1840 1841 case ISD::UINT_TO_FP: { 1842 return performUCharToFloatCombine(N, DCI); 1843 1844 case ISD::FADD: { 1845 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 1846 break; 1847 1848 EVT VT = N->getValueType(0); 1849 if (VT != MVT::f32) 1850 break; 1851 1852 // Only do this if we are not trying to support denormals. v_mad_f32 does 1853 // not support denormals ever. 1854 if (Subtarget->hasFP32Denormals()) 1855 break; 1856 1857 SDValue LHS = N->getOperand(0); 1858 SDValue RHS = N->getOperand(1); 1859 1860 // These should really be instruction patterns, but writing patterns with 1861 // source modiifiers is a pain. 1862 1863 // fadd (fadd (a, a), b) -> mad 2.0, a, b 1864 if (LHS.getOpcode() == ISD::FADD) { 1865 SDValue A = LHS.getOperand(0); 1866 if (A == LHS.getOperand(1)) { 1867 const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); 1868 return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS); 1869 } 1870 } 1871 1872 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 1873 if (RHS.getOpcode() == ISD::FADD) { 1874 SDValue A = RHS.getOperand(0); 1875 if (A == RHS.getOperand(1)) { 1876 const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); 1877 return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS); 1878 } 1879 } 1880 1881 return SDValue(); 1882 } 1883 case ISD::FSUB: { 1884 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 1885 break; 1886 1887 EVT VT = N->getValueType(0); 1888 1889 // Try to get the fneg to fold into the source modifier. This undoes generic 1890 // DAG combines and folds them into the mad. 1891 // 1892 // Only do this if we are not trying to support denormals. v_mad_f32 does 1893 // not support denormals ever. 1894 if (VT == MVT::f32 && 1895 !Subtarget->hasFP32Denormals()) { 1896 SDValue LHS = N->getOperand(0); 1897 SDValue RHS = N->getOperand(1); 1898 if (LHS.getOpcode() == ISD::FADD) { 1899 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 1900 1901 SDValue A = LHS.getOperand(0); 1902 if (A == LHS.getOperand(1)) { 1903 const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); 1904 SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS); 1905 1906 return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS); 1907 } 1908 } 1909 1910 if (RHS.getOpcode() == ISD::FADD) { 1911 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 1912 1913 SDValue A = RHS.getOperand(0); 1914 if (A == RHS.getOperand(1)) { 1915 const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32); 1916 return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS); 1917 } 1918 } 1919 1920 return SDValue(); 1921 } 1922 1923 break; 1924 } 1925 } 1926 case ISD::LOAD: 1927 case ISD::STORE: 1928 case ISD::ATOMIC_LOAD: 1929 case ISD::ATOMIC_STORE: 1930 case ISD::ATOMIC_CMP_SWAP: 1931 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 1932 case ISD::ATOMIC_SWAP: 1933 case ISD::ATOMIC_LOAD_ADD: 1934 case ISD::ATOMIC_LOAD_SUB: 1935 case ISD::ATOMIC_LOAD_AND: 1936 case ISD::ATOMIC_LOAD_OR: 1937 case ISD::ATOMIC_LOAD_XOR: 1938 case ISD::ATOMIC_LOAD_NAND: 1939 case ISD::ATOMIC_LOAD_MIN: 1940 case ISD::ATOMIC_LOAD_MAX: 1941 case ISD::ATOMIC_LOAD_UMIN: 1942 case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics. 1943 if (DCI.isBeforeLegalize()) 1944 break; 1945 1946 MemSDNode *MemNode = cast<MemSDNode>(N); 1947 SDValue Ptr = MemNode->getBasePtr(); 1948 1949 // TODO: We could also do this for multiplies. 1950 unsigned AS = MemNode->getAddressSpace(); 1951 if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) { 1952 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI); 1953 if (NewPtr) { 1954 SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end()); 1955 1956 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; 1957 return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0); 1958 } 1959 } 1960 break; 1961 } 1962 case ISD::AND: 1963 return performAndCombine(N, DCI); 1964 case ISD::OR: 1965 return performOrCombine(N, DCI); 1966 case AMDGPUISD::FP_CLASS: 1967 return performClassCombine(N, DCI); 1968 } 1969 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 1970 } 1971 1972 /// \brief Analyze the possible immediate value Op 1973 /// 1974 /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate 1975 /// and the immediate value if it's a literal immediate 1976 int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const { 1977 1978 const SIInstrInfo *TII = 1979 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1980 1981 if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) { 1982 if (TII->isInlineConstant(Node->getAPIntValue())) 1983 return 0; 1984 1985 uint64_t Val = Node->getZExtValue(); 1986 return isUInt<32>(Val) ? Val : -1; 1987 } 1988 1989 if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) { 1990 if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt())) 1991 return 0; 1992 1993 if (Node->getValueType(0) == MVT::f32) 1994 return FloatToBits(Node->getValueAPF().convertToFloat()); 1995 1996 return -1; 1997 } 1998 1999 return -1; 2000 } 2001 2002 /// \brief Helper function for adjustWritemask 2003 static unsigned SubIdx2Lane(unsigned Idx) { 2004 switch (Idx) { 2005 default: return 0; 2006 case AMDGPU::sub0: return 0; 2007 case AMDGPU::sub1: return 1; 2008 case AMDGPU::sub2: return 2; 2009 case AMDGPU::sub3: return 3; 2010 } 2011 } 2012 2013 /// \brief Adjust the writemask of MIMG instructions 2014 void SITargetLowering::adjustWritemask(MachineSDNode *&Node, 2015 SelectionDAG &DAG) const { 2016 SDNode *Users[4] = { }; 2017 unsigned Lane = 0; 2018 unsigned OldDmask = Node->getConstantOperandVal(0); 2019 unsigned NewDmask = 0; 2020 2021 // Try to figure out the used register components 2022 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 2023 I != E; ++I) { 2024 2025 // Abort if we can't understand the usage 2026 if (!I->isMachineOpcode() || 2027 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 2028 return; 2029 2030 // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used. 2031 // Note that subregs are packed, i.e. Lane==0 is the first bit set 2032 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 2033 // set, etc. 2034 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 2035 2036 // Set which texture component corresponds to the lane. 2037 unsigned Comp; 2038 for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) { 2039 assert(Dmask); 2040 Comp = countTrailingZeros(Dmask); 2041 Dmask &= ~(1 << Comp); 2042 } 2043 2044 // Abort if we have more than one user per component 2045 if (Users[Lane]) 2046 return; 2047 2048 Users[Lane] = *I; 2049 NewDmask |= 1 << Comp; 2050 } 2051 2052 // Abort if there's no change 2053 if (NewDmask == OldDmask) 2054 return; 2055 2056 // Adjust the writemask in the node 2057 std::vector<SDValue> Ops; 2058 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 2059 Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end()); 2060 Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops); 2061 2062 // If we only got one lane, replace it with a copy 2063 // (if NewDmask has only one bit set...) 2064 if (NewDmask && (NewDmask & (NewDmask-1)) == 0) { 2065 SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(), 2066 MVT::i32); 2067 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 2068 SDLoc(), Users[Lane]->getValueType(0), 2069 SDValue(Node, 0), RC); 2070 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 2071 return; 2072 } 2073 2074 // Update the users of the node with the new indices 2075 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) { 2076 2077 SDNode *User = Users[i]; 2078 if (!User) 2079 continue; 2080 2081 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 2082 DAG.UpdateNodeOperands(User, User->getOperand(0), Op); 2083 2084 switch (Idx) { 2085 default: break; 2086 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 2087 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 2088 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 2089 } 2090 } 2091 } 2092 2093 static bool isFrameIndexOp(SDValue Op) { 2094 if (Op.getOpcode() == ISD::AssertZext) 2095 Op = Op.getOperand(0); 2096 2097 return isa<FrameIndexSDNode>(Op); 2098 } 2099 2100 /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG) 2101 /// with frame index operands. 2102 /// LLVM assumes that inputs are to these instructions are registers. 2103 void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 2104 SelectionDAG &DAG) const { 2105 2106 SmallVector<SDValue, 8> Ops; 2107 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 2108 if (!isFrameIndexOp(Node->getOperand(i))) { 2109 Ops.push_back(Node->getOperand(i)); 2110 continue; 2111 } 2112 2113 SDLoc DL(Node); 2114 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 2115 Node->getOperand(i).getValueType(), 2116 Node->getOperand(i)), 0)); 2117 } 2118 2119 DAG.UpdateNodeOperands(Node, Ops); 2120 } 2121 2122 /// \brief Fold the instructions after selecting them. 2123 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 2124 SelectionDAG &DAG) const { 2125 const SIInstrInfo *TII = 2126 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2127 2128 if (TII->isMIMG(Node->getMachineOpcode())) 2129 adjustWritemask(Node, DAG); 2130 2131 if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG || 2132 Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) { 2133 legalizeTargetIndependentNode(Node, DAG); 2134 return Node; 2135 } 2136 return Node; 2137 } 2138 2139 /// \brief Assign the register class depending on the number of 2140 /// bits set in the writemask 2141 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, 2142 SDNode *Node) const { 2143 const SIInstrInfo *TII = 2144 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2145 2146 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 2147 2148 if (TII->isVOP3(MI->getOpcode())) { 2149 // Make sure constant bus requirements are respected. 2150 TII->legalizeOperandsVOP3(MRI, MI); 2151 return; 2152 } 2153 2154 if (TII->isMIMG(*MI)) { 2155 unsigned VReg = MI->getOperand(0).getReg(); 2156 unsigned Writemask = MI->getOperand(1).getImm(); 2157 unsigned BitsSet = 0; 2158 for (unsigned i = 0; i < 4; ++i) 2159 BitsSet += Writemask & (1 << i) ? 1 : 0; 2160 2161 const TargetRegisterClass *RC; 2162 switch (BitsSet) { 2163 default: return; 2164 case 1: RC = &AMDGPU::VGPR_32RegClass; break; 2165 case 2: RC = &AMDGPU::VReg_64RegClass; break; 2166 case 3: RC = &AMDGPU::VReg_96RegClass; break; 2167 } 2168 2169 unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet); 2170 MI->setDesc(TII->get(NewOpcode)); 2171 MRI.setRegClass(VReg, RC); 2172 return; 2173 } 2174 2175 // Replace unused atomics with the no return version. 2176 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode()); 2177 if (NoRetAtomicOp != -1) { 2178 if (!Node->hasAnyUseOfValue(0)) { 2179 MI->setDesc(TII->get(NoRetAtomicOp)); 2180 MI->RemoveOperand(0); 2181 } 2182 2183 return; 2184 } 2185 } 2186 2187 static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) { 2188 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 2189 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 2190 } 2191 2192 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 2193 SDLoc DL, 2194 SDValue Ptr) const { 2195 const SIInstrInfo *TII = 2196 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2197 2198 // Build the half of the subregister with the constants before building the 2199 // full 128-bit register. If we are building multiple resource descriptors, 2200 // this will allow CSEing of the 2-component register. 2201 const SDValue Ops0[] = { 2202 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 2203 buildSMovImm32(DAG, DL, 0), 2204 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 2205 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 2206 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 2207 }; 2208 2209 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 2210 MVT::v2i32, Ops0), 0); 2211 2212 // Combine the constants and the pointer. 2213 const SDValue Ops1[] = { 2214 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), 2215 Ptr, 2216 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 2217 SubRegHi, 2218 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 2219 }; 2220 2221 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 2222 } 2223 2224 /// \brief Return a resource descriptor with the 'Add TID' bit enabled 2225 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 2226 /// of the resource descriptor) to create an offset, which is added to 2227 /// the resource pointer. 2228 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, 2229 SDLoc DL, 2230 SDValue Ptr, 2231 uint32_t RsrcDword1, 2232 uint64_t RsrcDword2And3) const { 2233 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 2234 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 2235 if (RsrcDword1) { 2236 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 2237 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 2238 0); 2239 } 2240 2241 SDValue DataLo = buildSMovImm32(DAG, DL, 2242 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 2243 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 2244 2245 const SDValue Ops[] = { 2246 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), 2247 PtrLo, 2248 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 2249 PtrHi, 2250 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 2251 DataLo, 2252 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 2253 DataHi, 2254 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 2255 }; 2256 2257 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 2258 } 2259 2260 MachineSDNode *SITargetLowering::buildScratchRSRC(SelectionDAG &DAG, 2261 SDLoc DL, 2262 SDValue Ptr) const { 2263 const SIInstrInfo *TII = 2264 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2265 2266 return buildRSRC(DAG, DL, Ptr, 0, TII->getScratchRsrcWords23()); 2267 } 2268 2269 SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2270 const TargetRegisterClass *RC, 2271 unsigned Reg, EVT VT) const { 2272 SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT); 2273 2274 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()), 2275 cast<RegisterSDNode>(VReg)->getReg(), VT); 2276 } 2277 2278 //===----------------------------------------------------------------------===// 2279 // SI Inline Assembly Support 2280 //===----------------------------------------------------------------------===// 2281 2282 std::pair<unsigned, const TargetRegisterClass *> 2283 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2284 StringRef Constraint, 2285 MVT VT) const { 2286 if (Constraint == "r") { 2287 switch(VT.SimpleTy) { 2288 default: llvm_unreachable("Unhandled type for 'r' inline asm constraint"); 2289 case MVT::i64: 2290 return std::make_pair(0U, &AMDGPU::SGPR_64RegClass); 2291 case MVT::i32: 2292 return std::make_pair(0U, &AMDGPU::SGPR_32RegClass); 2293 } 2294 } 2295 2296 if (Constraint.size() > 1) { 2297 const TargetRegisterClass *RC = nullptr; 2298 if (Constraint[1] == 'v') { 2299 RC = &AMDGPU::VGPR_32RegClass; 2300 } else if (Constraint[1] == 's') { 2301 RC = &AMDGPU::SGPR_32RegClass; 2302 } 2303 2304 if (RC) { 2305 uint32_t Idx; 2306 bool Failed = Constraint.substr(2).getAsInteger(10, Idx); 2307 if (!Failed && Idx < RC->getNumRegs()) 2308 return std::make_pair(RC->getRegister(Idx), RC); 2309 } 2310 } 2311 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2312 } 2313