1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIISelLowering.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "SIMachineFunctionInfo.h" 19 #include "SIRegisterInfo.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 22 #include "llvm/BinaryFormat/ELF.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FunctionLoweringInfo.h" 25 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/IntrinsicsAMDGPU.h" 29 #include "llvm/IR/IntrinsicsR600.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/KnownBits.h" 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "si-lower" 36 37 STATISTIC(NumTailCalls, "Number of tail calls"); 38 39 static cl::opt<bool> DisableLoopAlignment( 40 "amdgpu-disable-loop-alignment", 41 cl::desc("Do not align and prefetch loops"), 42 cl::init(false)); 43 44 static cl::opt<bool> VGPRReserveforSGPRSpill( 45 "amdgpu-reserve-vgpr-for-sgpr-spill", 46 cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true)); 47 48 static cl::opt<bool> UseDivergentRegisterIndexing( 49 "amdgpu-use-divergent-register-indexing", 50 cl::Hidden, 51 cl::desc("Use indirect register addressing for divergent indexes"), 52 cl::init(false)); 53 54 static bool hasFP32Denormals(const MachineFunction &MF) { 55 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 56 return Info->getMode().allFP32Denormals(); 57 } 58 59 static bool hasFP64FP16Denormals(const MachineFunction &MF) { 60 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 61 return Info->getMode().allFP64FP16Denormals(); 62 } 63 64 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 65 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 66 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 67 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 68 return AMDGPU::SGPR0 + Reg; 69 } 70 } 71 llvm_unreachable("Cannot allocate sgpr"); 72 } 73 74 SITargetLowering::SITargetLowering(const TargetMachine &TM, 75 const GCNSubtarget &STI) 76 : AMDGPUTargetLowering(TM, STI), 77 Subtarget(&STI) { 78 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 79 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 80 81 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 82 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 83 84 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 85 86 const SIRegisterInfo *TRI = STI.getRegisterInfo(); 87 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); 88 89 addRegisterClass(MVT::f64, V64RegClass); 90 addRegisterClass(MVT::v2f32, V64RegClass); 91 92 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 93 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); 94 95 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); 96 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); 97 98 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); 99 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); 100 101 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 102 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); 103 104 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); 105 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); 106 107 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); 108 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); 109 110 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); 111 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); 112 113 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); 114 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); 115 116 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); 117 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); 118 119 if (Subtarget->has16BitInsts()) { 120 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); 121 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); 122 123 // Unless there are also VOP3P operations, not operations are really legal. 124 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); 125 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); 126 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 127 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 128 } 129 130 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 131 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); 132 133 computeRegisterProperties(Subtarget->getRegisterInfo()); 134 135 // The boolean content concept here is too inflexible. Compares only ever 136 // really produce a 1-bit result. Any copy/extend from these will turn into a 137 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as 138 // it's what most targets use. 139 setBooleanContents(ZeroOrOneBooleanContent); 140 setBooleanVectorContents(ZeroOrOneBooleanContent); 141 142 // We need to custom lower vector stores from local memory 143 setOperationAction(ISD::LOAD, MVT::v2i32, Custom); 144 setOperationAction(ISD::LOAD, MVT::v3i32, Custom); 145 setOperationAction(ISD::LOAD, MVT::v4i32, Custom); 146 setOperationAction(ISD::LOAD, MVT::v5i32, Custom); 147 setOperationAction(ISD::LOAD, MVT::v8i32, Custom); 148 setOperationAction(ISD::LOAD, MVT::v16i32, Custom); 149 setOperationAction(ISD::LOAD, MVT::i1, Custom); 150 setOperationAction(ISD::LOAD, MVT::v32i32, Custom); 151 152 setOperationAction(ISD::STORE, MVT::v2i32, Custom); 153 setOperationAction(ISD::STORE, MVT::v3i32, Custom); 154 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 155 setOperationAction(ISD::STORE, MVT::v5i32, Custom); 156 setOperationAction(ISD::STORE, MVT::v8i32, Custom); 157 setOperationAction(ISD::STORE, MVT::v16i32, Custom); 158 setOperationAction(ISD::STORE, MVT::i1, Custom); 159 setOperationAction(ISD::STORE, MVT::v32i32, Custom); 160 161 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 162 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 163 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 164 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 165 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 166 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 167 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 168 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 169 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 170 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 171 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 172 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); 173 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); 174 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); 175 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); 176 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); 177 178 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); 179 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); 180 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); 181 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); 182 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); 183 184 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 185 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 186 187 setOperationAction(ISD::SELECT, MVT::i1, Promote); 188 setOperationAction(ISD::SELECT, MVT::i64, Custom); 189 setOperationAction(ISD::SELECT, MVT::f64, Promote); 190 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 191 192 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 193 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 194 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 195 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 196 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); 197 198 setOperationAction(ISD::SETCC, MVT::i1, Promote); 199 setOperationAction(ISD::SETCC, MVT::v2i1, Expand); 200 setOperationAction(ISD::SETCC, MVT::v4i1, Expand); 201 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 202 203 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); 204 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); 205 setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand); 206 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand); 207 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand); 208 setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand); 209 setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand); 210 setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand); 211 212 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); 213 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); 214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 215 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); 216 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 217 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom); 218 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); 219 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); 220 221 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 222 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 223 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 224 setOperationAction(ISD::BR_CC, MVT::i64, Expand); 225 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 226 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 227 228 setOperationAction(ISD::UADDO, MVT::i32, Legal); 229 setOperationAction(ISD::USUBO, MVT::i32, Legal); 230 231 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); 232 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); 233 234 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 235 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 236 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 237 238 #if 0 239 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); 240 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); 241 #endif 242 243 // We only support LOAD/STORE and vector manipulation ops for vectors 244 // with > 4 elements. 245 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, 246 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, 247 MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, 248 MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) { 249 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 250 switch (Op) { 251 case ISD::LOAD: 252 case ISD::STORE: 253 case ISD::BUILD_VECTOR: 254 case ISD::BITCAST: 255 case ISD::EXTRACT_VECTOR_ELT: 256 case ISD::INSERT_VECTOR_ELT: 257 case ISD::INSERT_SUBVECTOR: 258 case ISD::EXTRACT_SUBVECTOR: 259 case ISD::SCALAR_TO_VECTOR: 260 break; 261 case ISD::CONCAT_VECTORS: 262 setOperationAction(Op, VT, Custom); 263 break; 264 default: 265 setOperationAction(Op, VT, Expand); 266 break; 267 } 268 } 269 } 270 271 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 272 273 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 274 // is expanded to avoid having two separate loops in case the index is a VGPR. 275 276 // Most operations are naturally 32-bit vector operations. We only support 277 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 278 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 279 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 280 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 281 282 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 283 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 284 285 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 286 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 287 288 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 289 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 290 } 291 292 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { 293 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 294 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); 295 296 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 297 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); 298 299 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 300 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); 301 302 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 303 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); 304 } 305 306 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { 307 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 308 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); 309 310 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 311 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); 312 313 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 314 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); 315 316 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 317 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); 318 } 319 320 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { 321 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 322 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); 323 324 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 325 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); 326 327 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 328 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); 329 330 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 331 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); 332 } 333 334 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); 335 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); 336 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); 337 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); 338 339 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom); 340 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); 341 342 // Avoid stack access for these. 343 // TODO: Generalize to more vector types. 344 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); 345 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); 346 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 347 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 348 349 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 350 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 351 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom); 352 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); 353 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom); 354 355 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom); 356 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); 357 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom); 358 359 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom); 360 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom); 361 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); 362 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); 363 364 // Deal with vec3 vector operations when widened to vec4. 365 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom); 366 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom); 367 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom); 368 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom); 369 370 // Deal with vec5 vector operations when widened to vec8. 371 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom); 372 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom); 373 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom); 374 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom); 375 376 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 377 // and output demarshalling 378 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 379 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); 380 381 // We can't return success/failure, only the old value, 382 // let LLVM add the comparison 383 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); 384 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); 385 386 if (Subtarget->hasFlatAddressSpace()) { 387 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); 388 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); 389 } 390 391 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 392 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 393 394 // FIXME: This should be narrowed to i32, but that only happens if i64 is 395 // illegal. 396 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. 397 setOperationAction(ISD::BSWAP, MVT::i64, Legal); 398 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 399 400 // On SI this is s_memtime and s_memrealtime on VI. 401 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 402 setOperationAction(ISD::TRAP, MVT::Other, Custom); 403 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); 404 405 if (Subtarget->has16BitInsts()) { 406 setOperationAction(ISD::FPOW, MVT::f16, Promote); 407 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 408 setOperationAction(ISD::FLOG, MVT::f16, Custom); 409 setOperationAction(ISD::FEXP, MVT::f16, Custom); 410 setOperationAction(ISD::FLOG10, MVT::f16, Custom); 411 } 412 413 if (Subtarget->hasMadMacF32Insts()) 414 setOperationAction(ISD::FMAD, MVT::f32, Legal); 415 416 if (!Subtarget->hasBFI()) { 417 // fcopysign can be done in a single instruction with BFI. 418 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 419 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 420 } 421 422 if (!Subtarget->hasBCNT(32)) 423 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 424 425 if (!Subtarget->hasBCNT(64)) 426 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 427 428 if (Subtarget->hasFFBH()) 429 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 430 431 if (Subtarget->hasFFBL()) 432 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 433 434 // We only really have 32-bit BFE instructions (and 16-bit on VI). 435 // 436 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 437 // effort to match them now. We want this to be false for i64 cases when the 438 // extraction isn't restricted to the upper or lower half. Ideally we would 439 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 440 // span the midpoint are probably relatively rare, so don't worry about them 441 // for now. 442 if (Subtarget->hasBFE()) 443 setHasExtractBitsInsn(true); 444 445 // Clamp modifier on add/sub 446 if (Subtarget->hasIntClamp()) { 447 setOperationAction(ISD::UADDSAT, MVT::i32, Legal); 448 setOperationAction(ISD::USUBSAT, MVT::i32, Legal); 449 } 450 451 if (Subtarget->hasAddNoCarry()) { 452 setOperationAction(ISD::SADDSAT, MVT::i16, Legal); 453 setOperationAction(ISD::SSUBSAT, MVT::i16, Legal); 454 setOperationAction(ISD::SADDSAT, MVT::i32, Legal); 455 setOperationAction(ISD::SSUBSAT, MVT::i32, Legal); 456 } 457 458 setOperationAction(ISD::FMINNUM, MVT::f32, Custom); 459 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom); 460 setOperationAction(ISD::FMINNUM, MVT::f64, Custom); 461 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom); 462 463 464 // These are really only legal for ieee_mode functions. We should be avoiding 465 // them for functions that don't have ieee_mode enabled, so just say they are 466 // legal. 467 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 468 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 469 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 470 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 471 472 473 if (Subtarget->haveRoundOpsF64()) { 474 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 475 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 476 setOperationAction(ISD::FRINT, MVT::f64, Legal); 477 } else { 478 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 479 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 480 setOperationAction(ISD::FRINT, MVT::f64, Custom); 481 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 482 } 483 484 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 485 486 setOperationAction(ISD::FSIN, MVT::f32, Custom); 487 setOperationAction(ISD::FCOS, MVT::f32, Custom); 488 setOperationAction(ISD::FDIV, MVT::f32, Custom); 489 setOperationAction(ISD::FDIV, MVT::f64, Custom); 490 491 if (Subtarget->has16BitInsts()) { 492 setOperationAction(ISD::Constant, MVT::i16, Legal); 493 494 setOperationAction(ISD::SMIN, MVT::i16, Legal); 495 setOperationAction(ISD::SMAX, MVT::i16, Legal); 496 497 setOperationAction(ISD::UMIN, MVT::i16, Legal); 498 setOperationAction(ISD::UMAX, MVT::i16, Legal); 499 500 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); 501 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 502 503 setOperationAction(ISD::ROTR, MVT::i16, Expand); 504 setOperationAction(ISD::ROTL, MVT::i16, Expand); 505 506 setOperationAction(ISD::SDIV, MVT::i16, Promote); 507 setOperationAction(ISD::UDIV, MVT::i16, Promote); 508 setOperationAction(ISD::SREM, MVT::i16, Promote); 509 setOperationAction(ISD::UREM, MVT::i16, Promote); 510 setOperationAction(ISD::UADDSAT, MVT::i16, Legal); 511 setOperationAction(ISD::USUBSAT, MVT::i16, Legal); 512 513 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); 514 515 setOperationAction(ISD::CTTZ, MVT::i16, Promote); 516 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); 517 setOperationAction(ISD::CTLZ, MVT::i16, Promote); 518 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); 519 setOperationAction(ISD::CTPOP, MVT::i16, Promote); 520 521 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); 522 523 setOperationAction(ISD::BR_CC, MVT::i16, Expand); 524 525 setOperationAction(ISD::LOAD, MVT::i16, Custom); 526 527 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 528 529 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 530 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 531 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 532 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 533 534 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Custom); 535 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Custom); 536 537 // F16 - Constant Actions. 538 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 539 540 // F16 - Load/Store Actions. 541 setOperationAction(ISD::LOAD, MVT::f16, Promote); 542 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 543 setOperationAction(ISD::STORE, MVT::f16, Promote); 544 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 545 546 // F16 - VOP1 Actions. 547 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); 548 setOperationAction(ISD::FCOS, MVT::f16, Custom); 549 setOperationAction(ISD::FSIN, MVT::f16, Custom); 550 551 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom); 552 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom); 553 554 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); 555 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); 556 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); 557 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); 558 setOperationAction(ISD::FROUND, MVT::f16, Custom); 559 560 // F16 - VOP2 Actions. 561 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 562 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 563 564 setOperationAction(ISD::FDIV, MVT::f16, Custom); 565 566 // F16 - VOP3 Actions. 567 setOperationAction(ISD::FMA, MVT::f16, Legal); 568 if (STI.hasMadF16()) 569 setOperationAction(ISD::FMAD, MVT::f16, Legal); 570 571 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) { 572 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 573 switch (Op) { 574 case ISD::LOAD: 575 case ISD::STORE: 576 case ISD::BUILD_VECTOR: 577 case ISD::BITCAST: 578 case ISD::EXTRACT_VECTOR_ELT: 579 case ISD::INSERT_VECTOR_ELT: 580 case ISD::INSERT_SUBVECTOR: 581 case ISD::EXTRACT_SUBVECTOR: 582 case ISD::SCALAR_TO_VECTOR: 583 break; 584 case ISD::CONCAT_VECTORS: 585 setOperationAction(Op, VT, Custom); 586 break; 587 default: 588 setOperationAction(Op, VT, Expand); 589 break; 590 } 591 } 592 } 593 594 // v_perm_b32 can handle either of these. 595 setOperationAction(ISD::BSWAP, MVT::i16, Legal); 596 setOperationAction(ISD::BSWAP, MVT::v2i16, Legal); 597 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); 598 599 // XXX - Do these do anything? Vector constants turn into build_vector. 600 setOperationAction(ISD::Constant, MVT::v2i16, Legal); 601 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); 602 603 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal); 604 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal); 605 606 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 607 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 608 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 609 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 610 611 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 612 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 613 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 614 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 615 616 setOperationAction(ISD::AND, MVT::v2i16, Promote); 617 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 618 setOperationAction(ISD::OR, MVT::v2i16, Promote); 619 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 620 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 621 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 622 623 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 624 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 625 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 626 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 627 628 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 629 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 630 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 631 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 632 633 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); 634 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); 635 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); 636 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 637 638 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand); 639 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand); 640 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand); 641 642 if (!Subtarget->hasVOP3PInsts()) { 643 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); 644 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); 645 } 646 647 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 648 // This isn't really legal, but this avoids the legalizer unrolling it (and 649 // allows matching fneg (fabs x) patterns) 650 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 651 652 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom); 653 setOperationAction(ISD::FMINNUM, MVT::f16, Custom); 654 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal); 655 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal); 656 657 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom); 658 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom); 659 660 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand); 661 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand); 662 } 663 664 if (Subtarget->hasVOP3PInsts()) { 665 setOperationAction(ISD::ADD, MVT::v2i16, Legal); 666 setOperationAction(ISD::SUB, MVT::v2i16, Legal); 667 setOperationAction(ISD::MUL, MVT::v2i16, Legal); 668 setOperationAction(ISD::SHL, MVT::v2i16, Legal); 669 setOperationAction(ISD::SRL, MVT::v2i16, Legal); 670 setOperationAction(ISD::SRA, MVT::v2i16, Legal); 671 setOperationAction(ISD::SMIN, MVT::v2i16, Legal); 672 setOperationAction(ISD::UMIN, MVT::v2i16, Legal); 673 setOperationAction(ISD::SMAX, MVT::v2i16, Legal); 674 setOperationAction(ISD::UMAX, MVT::v2i16, Legal); 675 676 setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal); 677 setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal); 678 setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal); 679 setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal); 680 681 setOperationAction(ISD::FADD, MVT::v2f16, Legal); 682 setOperationAction(ISD::FMUL, MVT::v2f16, Legal); 683 setOperationAction(ISD::FMA, MVT::v2f16, Legal); 684 685 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal); 686 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal); 687 688 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal); 689 690 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); 691 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); 692 693 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom); 694 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 695 696 setOperationAction(ISD::SHL, MVT::v4i16, Custom); 697 setOperationAction(ISD::SRA, MVT::v4i16, Custom); 698 setOperationAction(ISD::SRL, MVT::v4i16, Custom); 699 setOperationAction(ISD::ADD, MVT::v4i16, Custom); 700 setOperationAction(ISD::SUB, MVT::v4i16, Custom); 701 setOperationAction(ISD::MUL, MVT::v4i16, Custom); 702 703 setOperationAction(ISD::SMIN, MVT::v4i16, Custom); 704 setOperationAction(ISD::SMAX, MVT::v4i16, Custom); 705 setOperationAction(ISD::UMIN, MVT::v4i16, Custom); 706 setOperationAction(ISD::UMAX, MVT::v4i16, Custom); 707 708 setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom); 709 setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom); 710 setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom); 711 setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom); 712 713 setOperationAction(ISD::FADD, MVT::v4f16, Custom); 714 setOperationAction(ISD::FMUL, MVT::v4f16, Custom); 715 setOperationAction(ISD::FMA, MVT::v4f16, Custom); 716 717 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom); 718 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom); 719 720 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom); 721 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom); 722 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom); 723 724 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 725 setOperationAction(ISD::SELECT, MVT::v4i16, Custom); 726 setOperationAction(ISD::SELECT, MVT::v4f16, Custom); 727 728 if (Subtarget->hasPackedFP32Ops()) { 729 setOperationAction(ISD::FADD, MVT::v2f32, Legal); 730 setOperationAction(ISD::FMUL, MVT::v2f32, Legal); 731 setOperationAction(ISD::FMA, MVT::v2f32, Legal); 732 setOperationAction(ISD::FNEG, MVT::v2f32, Legal); 733 734 for (MVT VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32 }) { 735 setOperationAction(ISD::FADD, VT, Custom); 736 setOperationAction(ISD::FMUL, VT, Custom); 737 setOperationAction(ISD::FMA, VT, Custom); 738 } 739 } 740 } 741 742 setOperationAction(ISD::FNEG, MVT::v4f16, Custom); 743 setOperationAction(ISD::FABS, MVT::v4f16, Custom); 744 745 if (Subtarget->has16BitInsts()) { 746 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 747 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 748 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 749 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 750 } else { 751 // Legalization hack. 752 setOperationAction(ISD::SELECT, MVT::v2i16, Custom); 753 setOperationAction(ISD::SELECT, MVT::v2f16, Custom); 754 755 setOperationAction(ISD::FNEG, MVT::v2f16, Custom); 756 setOperationAction(ISD::FABS, MVT::v2f16, Custom); 757 } 758 759 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) { 760 setOperationAction(ISD::SELECT, VT, Custom); 761 } 762 763 setOperationAction(ISD::SMULO, MVT::i64, Custom); 764 setOperationAction(ISD::UMULO, MVT::i64, Custom); 765 766 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 767 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); 768 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 769 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 770 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom); 771 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom); 772 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); 773 774 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom); 775 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom); 776 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom); 777 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom); 778 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom); 779 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom); 780 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom); 781 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 782 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom); 783 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 784 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 785 786 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 787 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); 788 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); 789 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom); 790 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom); 791 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom); 792 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom); 793 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom); 794 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 795 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 796 797 setTargetDAGCombine(ISD::ADD); 798 setTargetDAGCombine(ISD::ADDCARRY); 799 setTargetDAGCombine(ISD::SUB); 800 setTargetDAGCombine(ISD::SUBCARRY); 801 setTargetDAGCombine(ISD::FADD); 802 setTargetDAGCombine(ISD::FSUB); 803 setTargetDAGCombine(ISD::FMINNUM); 804 setTargetDAGCombine(ISD::FMAXNUM); 805 setTargetDAGCombine(ISD::FMINNUM_IEEE); 806 setTargetDAGCombine(ISD::FMAXNUM_IEEE); 807 setTargetDAGCombine(ISD::FMA); 808 setTargetDAGCombine(ISD::SMIN); 809 setTargetDAGCombine(ISD::SMAX); 810 setTargetDAGCombine(ISD::UMIN); 811 setTargetDAGCombine(ISD::UMAX); 812 setTargetDAGCombine(ISD::SETCC); 813 setTargetDAGCombine(ISD::AND); 814 setTargetDAGCombine(ISD::OR); 815 setTargetDAGCombine(ISD::XOR); 816 setTargetDAGCombine(ISD::SINT_TO_FP); 817 setTargetDAGCombine(ISD::UINT_TO_FP); 818 setTargetDAGCombine(ISD::FCANONICALIZE); 819 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); 820 setTargetDAGCombine(ISD::ZERO_EXTEND); 821 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 822 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 823 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 824 825 // All memory operations. Some folding on the pointer operand is done to help 826 // matching the constant offsets in the addressing modes. 827 setTargetDAGCombine(ISD::LOAD); 828 setTargetDAGCombine(ISD::STORE); 829 setTargetDAGCombine(ISD::ATOMIC_LOAD); 830 setTargetDAGCombine(ISD::ATOMIC_STORE); 831 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); 832 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 833 setTargetDAGCombine(ISD::ATOMIC_SWAP); 834 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); 835 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); 836 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); 837 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); 838 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); 839 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); 840 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); 841 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); 842 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); 843 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); 844 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD); 845 setTargetDAGCombine(ISD::INTRINSIC_VOID); 846 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 847 848 // FIXME: In other contexts we pretend this is a per-function property. 849 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); 850 851 setSchedulingPreference(Sched::RegPressure); 852 } 853 854 const GCNSubtarget *SITargetLowering::getSubtarget() const { 855 return Subtarget; 856 } 857 858 //===----------------------------------------------------------------------===// 859 // TargetLowering queries 860 //===----------------------------------------------------------------------===// 861 862 // v_mad_mix* support a conversion from f16 to f32. 863 // 864 // There is only one special case when denormals are enabled we don't currently, 865 // where this is OK to use. 866 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, 867 EVT DestVT, EVT SrcVT) const { 868 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 869 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 870 DestVT.getScalarType() == MVT::f32 && 871 SrcVT.getScalarType() == MVT::f16 && 872 // TODO: This probably only requires no input flushing? 873 !hasFP32Denormals(DAG.getMachineFunction()); 874 } 875 876 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 877 // SI has some legal vector types, but no legal vector operations. Say no 878 // shuffles are legal in order to prefer scalarizing some vector operations. 879 return false; 880 } 881 882 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 883 CallingConv::ID CC, 884 EVT VT) const { 885 if (CC == CallingConv::AMDGPU_KERNEL) 886 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 887 888 if (VT.isVector()) { 889 EVT ScalarVT = VT.getScalarType(); 890 unsigned Size = ScalarVT.getSizeInBits(); 891 if (Size == 16) { 892 if (Subtarget->has16BitInsts()) 893 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 894 return VT.isInteger() ? MVT::i32 : MVT::f32; 895 } 896 897 if (Size < 16) 898 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; 899 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; 900 } 901 902 if (VT.getSizeInBits() > 32) 903 return MVT::i32; 904 905 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 906 } 907 908 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 909 CallingConv::ID CC, 910 EVT VT) const { 911 if (CC == CallingConv::AMDGPU_KERNEL) 912 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 913 914 if (VT.isVector()) { 915 unsigned NumElts = VT.getVectorNumElements(); 916 EVT ScalarVT = VT.getScalarType(); 917 unsigned Size = ScalarVT.getSizeInBits(); 918 919 // FIXME: Should probably promote 8-bit vectors to i16. 920 if (Size == 16 && Subtarget->has16BitInsts()) 921 return (NumElts + 1) / 2; 922 923 if (Size <= 32) 924 return NumElts; 925 926 if (Size > 32) 927 return NumElts * ((Size + 31) / 32); 928 } else if (VT.getSizeInBits() > 32) 929 return (VT.getSizeInBits() + 31) / 32; 930 931 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 932 } 933 934 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 935 LLVMContext &Context, CallingConv::ID CC, 936 EVT VT, EVT &IntermediateVT, 937 unsigned &NumIntermediates, MVT &RegisterVT) const { 938 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 939 unsigned NumElts = VT.getVectorNumElements(); 940 EVT ScalarVT = VT.getScalarType(); 941 unsigned Size = ScalarVT.getSizeInBits(); 942 // FIXME: We should fix the ABI to be the same on targets without 16-bit 943 // support, but unless we can properly handle 3-vectors, it will be still be 944 // inconsistent. 945 if (Size == 16 && Subtarget->has16BitInsts()) { 946 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 947 IntermediateVT = RegisterVT; 948 NumIntermediates = (NumElts + 1) / 2; 949 return NumIntermediates; 950 } 951 952 if (Size == 32) { 953 RegisterVT = ScalarVT.getSimpleVT(); 954 IntermediateVT = RegisterVT; 955 NumIntermediates = NumElts; 956 return NumIntermediates; 957 } 958 959 if (Size < 16 && Subtarget->has16BitInsts()) { 960 // FIXME: Should probably form v2i16 pieces 961 RegisterVT = MVT::i16; 962 IntermediateVT = ScalarVT; 963 NumIntermediates = NumElts; 964 return NumIntermediates; 965 } 966 967 968 if (Size != 16 && Size <= 32) { 969 RegisterVT = MVT::i32; 970 IntermediateVT = ScalarVT; 971 NumIntermediates = NumElts; 972 return NumIntermediates; 973 } 974 975 if (Size > 32) { 976 RegisterVT = MVT::i32; 977 IntermediateVT = RegisterVT; 978 NumIntermediates = NumElts * ((Size + 31) / 32); 979 return NumIntermediates; 980 } 981 } 982 983 return TargetLowering::getVectorTypeBreakdownForCallingConv( 984 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 985 } 986 987 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) { 988 assert(DMaskLanes != 0); 989 990 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 991 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements()); 992 return EVT::getVectorVT(Ty->getContext(), 993 EVT::getEVT(VT->getElementType()), 994 NumElts); 995 } 996 997 return EVT::getEVT(Ty); 998 } 999 1000 // Peek through TFE struct returns to only use the data size. 1001 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) { 1002 auto *ST = dyn_cast<StructType>(Ty); 1003 if (!ST) 1004 return memVTFromImageData(Ty, DMaskLanes); 1005 1006 // Some intrinsics return an aggregate type - special case to work out the 1007 // correct memVT. 1008 // 1009 // Only limited forms of aggregate type currently expected. 1010 if (ST->getNumContainedTypes() != 2 || 1011 !ST->getContainedType(1)->isIntegerTy(32)) 1012 return EVT(); 1013 return memVTFromImageData(ST->getContainedType(0), DMaskLanes); 1014 } 1015 1016 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1017 const CallInst &CI, 1018 MachineFunction &MF, 1019 unsigned IntrID) const { 1020 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 1021 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 1022 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 1023 (Intrinsic::ID)IntrID); 1024 if (Attr.hasFnAttribute(Attribute::ReadNone)) 1025 return false; 1026 1027 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1028 1029 if (RsrcIntr->IsImage) { 1030 Info.ptrVal = 1031 MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1032 Info.align.reset(); 1033 } else { 1034 Info.ptrVal = 1035 MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1036 } 1037 1038 Info.flags = MachineMemOperand::MODereferenceable; 1039 if (Attr.hasFnAttribute(Attribute::ReadOnly)) { 1040 unsigned DMaskLanes = 4; 1041 1042 if (RsrcIntr->IsImage) { 1043 const AMDGPU::ImageDimIntrinsicInfo *Intr 1044 = AMDGPU::getImageDimIntrinsicInfo(IntrID); 1045 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1046 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 1047 1048 if (!BaseOpcode->Gather4) { 1049 // If this isn't a gather, we may have excess loaded elements in the 1050 // IR type. Check the dmask for the real number of elements loaded. 1051 unsigned DMask 1052 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); 1053 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1054 } 1055 1056 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes); 1057 } else 1058 Info.memVT = EVT::getEVT(CI.getType()); 1059 1060 // FIXME: What does alignment mean for an image? 1061 Info.opc = ISD::INTRINSIC_W_CHAIN; 1062 Info.flags |= MachineMemOperand::MOLoad; 1063 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) { 1064 Info.opc = ISD::INTRINSIC_VOID; 1065 1066 Type *DataTy = CI.getArgOperand(0)->getType(); 1067 if (RsrcIntr->IsImage) { 1068 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); 1069 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); 1070 Info.memVT = memVTFromImageData(DataTy, DMaskLanes); 1071 } else 1072 Info.memVT = EVT::getEVT(DataTy); 1073 1074 Info.flags |= MachineMemOperand::MOStore; 1075 } else { 1076 // Atomic 1077 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : 1078 ISD::INTRINSIC_W_CHAIN; 1079 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); 1080 Info.flags = MachineMemOperand::MOLoad | 1081 MachineMemOperand::MOStore | 1082 MachineMemOperand::MODereferenceable; 1083 1084 // XXX - Should this be volatile without known ordering? 1085 Info.flags |= MachineMemOperand::MOVolatile; 1086 } 1087 return true; 1088 } 1089 1090 switch (IntrID) { 1091 case Intrinsic::amdgcn_atomic_inc: 1092 case Intrinsic::amdgcn_atomic_dec: 1093 case Intrinsic::amdgcn_ds_ordered_add: 1094 case Intrinsic::amdgcn_ds_ordered_swap: 1095 case Intrinsic::amdgcn_ds_fadd: 1096 case Intrinsic::amdgcn_ds_fmin: 1097 case Intrinsic::amdgcn_ds_fmax: { 1098 Info.opc = ISD::INTRINSIC_W_CHAIN; 1099 Info.memVT = MVT::getVT(CI.getType()); 1100 Info.ptrVal = CI.getOperand(0); 1101 Info.align.reset(); 1102 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1103 1104 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 1105 if (!Vol->isZero()) 1106 Info.flags |= MachineMemOperand::MOVolatile; 1107 1108 return true; 1109 } 1110 case Intrinsic::amdgcn_buffer_atomic_fadd: { 1111 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1112 1113 Info.opc = ISD::INTRINSIC_W_CHAIN; 1114 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1115 Info.ptrVal = 1116 MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1117 Info.align.reset(); 1118 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1119 1120 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 1121 if (!Vol || !Vol->isZero()) 1122 Info.flags |= MachineMemOperand::MOVolatile; 1123 1124 return true; 1125 } 1126 case Intrinsic::amdgcn_ds_append: 1127 case Intrinsic::amdgcn_ds_consume: { 1128 Info.opc = ISD::INTRINSIC_W_CHAIN; 1129 Info.memVT = MVT::getVT(CI.getType()); 1130 Info.ptrVal = CI.getOperand(0); 1131 Info.align.reset(); 1132 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1133 1134 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1135 if (!Vol->isZero()) 1136 Info.flags |= MachineMemOperand::MOVolatile; 1137 1138 return true; 1139 } 1140 case Intrinsic::amdgcn_global_atomic_csub: { 1141 Info.opc = ISD::INTRINSIC_W_CHAIN; 1142 Info.memVT = MVT::getVT(CI.getType()); 1143 Info.ptrVal = CI.getOperand(0); 1144 Info.align.reset(); 1145 Info.flags = MachineMemOperand::MOLoad | 1146 MachineMemOperand::MOStore | 1147 MachineMemOperand::MOVolatile; 1148 return true; 1149 } 1150 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 1151 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1152 Info.opc = ISD::INTRINSIC_W_CHAIN; 1153 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? 1154 Info.ptrVal = 1155 MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1156 Info.align.reset(); 1157 Info.flags = MachineMemOperand::MOLoad | 1158 MachineMemOperand::MODereferenceable; 1159 return true; 1160 } 1161 case Intrinsic::amdgcn_global_atomic_fadd: 1162 case Intrinsic::amdgcn_global_atomic_fmin: 1163 case Intrinsic::amdgcn_global_atomic_fmax: 1164 case Intrinsic::amdgcn_flat_atomic_fadd: 1165 case Intrinsic::amdgcn_flat_atomic_fmin: 1166 case Intrinsic::amdgcn_flat_atomic_fmax: { 1167 Info.opc = ISD::INTRINSIC_W_CHAIN; 1168 Info.memVT = MVT::getVT(CI.getType()); 1169 Info.ptrVal = CI.getOperand(0); 1170 Info.align.reset(); 1171 Info.flags = MachineMemOperand::MOLoad | 1172 MachineMemOperand::MOStore | 1173 MachineMemOperand::MODereferenceable | 1174 MachineMemOperand::MOVolatile; 1175 return true; 1176 } 1177 case Intrinsic::amdgcn_ds_gws_init: 1178 case Intrinsic::amdgcn_ds_gws_barrier: 1179 case Intrinsic::amdgcn_ds_gws_sema_v: 1180 case Intrinsic::amdgcn_ds_gws_sema_br: 1181 case Intrinsic::amdgcn_ds_gws_sema_p: 1182 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1183 Info.opc = ISD::INTRINSIC_VOID; 1184 1185 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1186 Info.ptrVal = 1187 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); 1188 1189 // This is an abstract access, but we need to specify a type and size. 1190 Info.memVT = MVT::i32; 1191 Info.size = 4; 1192 Info.align = Align(4); 1193 1194 Info.flags = MachineMemOperand::MOStore; 1195 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1196 Info.flags = MachineMemOperand::MOLoad; 1197 return true; 1198 } 1199 default: 1200 return false; 1201 } 1202 } 1203 1204 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1205 SmallVectorImpl<Value*> &Ops, 1206 Type *&AccessTy) const { 1207 switch (II->getIntrinsicID()) { 1208 case Intrinsic::amdgcn_atomic_inc: 1209 case Intrinsic::amdgcn_atomic_dec: 1210 case Intrinsic::amdgcn_ds_ordered_add: 1211 case Intrinsic::amdgcn_ds_ordered_swap: 1212 case Intrinsic::amdgcn_ds_append: 1213 case Intrinsic::amdgcn_ds_consume: 1214 case Intrinsic::amdgcn_ds_fadd: 1215 case Intrinsic::amdgcn_ds_fmin: 1216 case Intrinsic::amdgcn_ds_fmax: 1217 case Intrinsic::amdgcn_global_atomic_fadd: 1218 case Intrinsic::amdgcn_flat_atomic_fadd: 1219 case Intrinsic::amdgcn_flat_atomic_fmin: 1220 case Intrinsic::amdgcn_flat_atomic_fmax: 1221 case Intrinsic::amdgcn_global_atomic_csub: { 1222 Value *Ptr = II->getArgOperand(0); 1223 AccessTy = II->getType(); 1224 Ops.push_back(Ptr); 1225 return true; 1226 } 1227 default: 1228 return false; 1229 } 1230 } 1231 1232 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { 1233 if (!Subtarget->hasFlatInstOffsets()) { 1234 // Flat instructions do not have offsets, and only have the register 1235 // address. 1236 return AM.BaseOffs == 0 && AM.Scale == 0; 1237 } 1238 1239 return AM.Scale == 0 && 1240 (AM.BaseOffs == 0 || 1241 Subtarget->getInstrInfo()->isLegalFLATOffset( 1242 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT)); 1243 } 1244 1245 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1246 if (Subtarget->hasFlatGlobalInsts()) 1247 return AM.Scale == 0 && 1248 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1249 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, 1250 SIInstrFlags::FlatGlobal)); 1251 1252 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1253 // Assume the we will use FLAT for all global memory accesses 1254 // on VI. 1255 // FIXME: This assumption is currently wrong. On VI we still use 1256 // MUBUF instructions for the r + i addressing mode. As currently 1257 // implemented, the MUBUF instructions only work on buffer < 4GB. 1258 // It may be possible to support > 4GB buffers with MUBUF instructions, 1259 // by setting the stride value in the resource descriptor which would 1260 // increase the size limit to (stride * 4GB). However, this is risky, 1261 // because it has never been validated. 1262 return isLegalFlatAddressingMode(AM); 1263 } 1264 1265 return isLegalMUBUFAddressingMode(AM); 1266 } 1267 1268 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1269 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1270 // additionally can do r + r + i with addr64. 32-bit has more addressing 1271 // mode options. Depending on the resource constant, it can also do 1272 // (i64 r0) + (i32 r1) * (i14 i). 1273 // 1274 // Private arrays end up using a scratch buffer most of the time, so also 1275 // assume those use MUBUF instructions. Scratch loads / stores are currently 1276 // implemented as mubuf instructions with offen bit set, so slightly 1277 // different than the normal addr64. 1278 if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs)) 1279 return false; 1280 1281 // FIXME: Since we can split immediate into soffset and immediate offset, 1282 // would it make sense to allow any immediate? 1283 1284 switch (AM.Scale) { 1285 case 0: // r + i or just i, depending on HasBaseReg. 1286 return true; 1287 case 1: 1288 return true; // We have r + r or r + i. 1289 case 2: 1290 if (AM.HasBaseReg) { 1291 // Reject 2 * r + r. 1292 return false; 1293 } 1294 1295 // Allow 2 * r as r + r 1296 // Or 2 * r + i is allowed as r + r + i. 1297 return true; 1298 default: // Don't allow n * r 1299 return false; 1300 } 1301 } 1302 1303 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1304 const AddrMode &AM, Type *Ty, 1305 unsigned AS, Instruction *I) const { 1306 // No global is ever allowed as a base. 1307 if (AM.BaseGV) 1308 return false; 1309 1310 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1311 return isLegalGlobalAddressingMode(AM); 1312 1313 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1314 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1315 AS == AMDGPUAS::BUFFER_FAT_POINTER) { 1316 // If the offset isn't a multiple of 4, it probably isn't going to be 1317 // correctly aligned. 1318 // FIXME: Can we get the real alignment here? 1319 if (AM.BaseOffs % 4 != 0) 1320 return isLegalMUBUFAddressingMode(AM); 1321 1322 // There are no SMRD extloads, so if we have to do a small type access we 1323 // will use a MUBUF load. 1324 // FIXME?: We also need to do this if unaligned, but we don't know the 1325 // alignment here. 1326 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1327 return isLegalGlobalAddressingMode(AM); 1328 1329 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1330 // SMRD instructions have an 8-bit, dword offset on SI. 1331 if (!isUInt<8>(AM.BaseOffs / 4)) 1332 return false; 1333 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1334 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1335 // in 8-bits, it can use a smaller encoding. 1336 if (!isUInt<32>(AM.BaseOffs / 4)) 1337 return false; 1338 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 1339 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1340 if (!isUInt<20>(AM.BaseOffs)) 1341 return false; 1342 } else 1343 llvm_unreachable("unhandled generation"); 1344 1345 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1346 return true; 1347 1348 if (AM.Scale == 1 && AM.HasBaseReg) 1349 return true; 1350 1351 return false; 1352 1353 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1354 return isLegalMUBUFAddressingMode(AM); 1355 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 1356 AS == AMDGPUAS::REGION_ADDRESS) { 1357 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1358 // field. 1359 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1360 // an 8-bit dword offset but we don't know the alignment here. 1361 if (!isUInt<16>(AM.BaseOffs)) 1362 return false; 1363 1364 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1365 return true; 1366 1367 if (AM.Scale == 1 && AM.HasBaseReg) 1368 return true; 1369 1370 return false; 1371 } else if (AS == AMDGPUAS::FLAT_ADDRESS || 1372 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1373 // For an unknown address space, this usually means that this is for some 1374 // reason being used for pure arithmetic, and not based on some addressing 1375 // computation. We don't have instructions that compute pointers with any 1376 // addressing modes, so treat them as having no offset like flat 1377 // instructions. 1378 return isLegalFlatAddressingMode(AM); 1379 } 1380 1381 // Assume a user alias of global for unknown address spaces. 1382 return isLegalGlobalAddressingMode(AM); 1383 } 1384 1385 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1386 const SelectionDAG &DAG) const { 1387 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1388 return (MemVT.getSizeInBits() <= 4 * 32); 1389 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1390 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1391 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1392 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1393 return (MemVT.getSizeInBits() <= 2 * 32); 1394 } 1395 return true; 1396 } 1397 1398 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1399 unsigned Size, unsigned AddrSpace, Align Alignment, 1400 MachineMemOperand::Flags Flags, bool *IsFast) const { 1401 if (IsFast) 1402 *IsFast = false; 1403 1404 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1405 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1406 // Check if alignment requirements for ds_read/write instructions are 1407 // disabled. 1408 if (Subtarget->hasUnalignedDSAccessEnabled() && 1409 !Subtarget->hasLDSMisalignedBug()) { 1410 if (IsFast) 1411 *IsFast = Alignment != Align(2); 1412 return true; 1413 } 1414 1415 // Either, the alignment requirements are "enabled", or there is an 1416 // unaligned LDS access related hardware bug though alignment requirements 1417 // are "disabled". In either case, we need to check for proper alignment 1418 // requirements. 1419 // 1420 if (Size == 64) { 1421 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we 1422 // can do a 4 byte aligned, 8 byte access in a single operation using 1423 // ds_read2/write2_b32 with adjacent offsets. 1424 bool AlignedBy4 = Alignment >= Align(4); 1425 if (IsFast) 1426 *IsFast = AlignedBy4; 1427 1428 return AlignedBy4; 1429 } 1430 if (Size == 96) { 1431 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on 1432 // gfx8 and older. 1433 bool AlignedBy16 = Alignment >= Align(16); 1434 if (IsFast) 1435 *IsFast = AlignedBy16; 1436 1437 return AlignedBy16; 1438 } 1439 if (Size == 128) { 1440 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on 1441 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a 1442 // single operation using ds_read2/write2_b64. 1443 bool AlignedBy8 = Alignment >= Align(8); 1444 if (IsFast) 1445 *IsFast = AlignedBy8; 1446 1447 return AlignedBy8; 1448 } 1449 } 1450 1451 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 1452 bool AlignedBy4 = Alignment >= Align(4); 1453 if (IsFast) 1454 *IsFast = AlignedBy4; 1455 1456 return AlignedBy4 || 1457 Subtarget->enableFlatScratch() || 1458 Subtarget->hasUnalignedScratchAccess(); 1459 } 1460 1461 // FIXME: We have to be conservative here and assume that flat operations 1462 // will access scratch. If we had access to the IR function, then we 1463 // could determine if any private memory was used in the function. 1464 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && 1465 !Subtarget->hasUnalignedScratchAccess()) { 1466 bool AlignedBy4 = Alignment >= Align(4); 1467 if (IsFast) 1468 *IsFast = AlignedBy4; 1469 1470 return AlignedBy4; 1471 } 1472 1473 if (Subtarget->hasUnalignedBufferAccessEnabled() && 1474 !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1475 AddrSpace == AMDGPUAS::REGION_ADDRESS)) { 1476 // If we have an uniform constant load, it still requires using a slow 1477 // buffer instruction if unaligned. 1478 if (IsFast) { 1479 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so 1480 // 2-byte alignment is worse than 1 unless doing a 2-byte accesss. 1481 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 1482 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? 1483 Alignment >= Align(4) : Alignment != Align(2); 1484 } 1485 1486 return true; 1487 } 1488 1489 // Smaller than dword value must be aligned. 1490 if (Size < 32) 1491 return false; 1492 1493 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1494 // byte-address are ignored, thus forcing Dword alignment. 1495 // This applies to private, global, and constant memory. 1496 if (IsFast) 1497 *IsFast = true; 1498 1499 return Size >= 32 && Alignment >= Align(4); 1500 } 1501 1502 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1503 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 1504 bool *IsFast) const { 1505 if (IsFast) 1506 *IsFast = false; 1507 1508 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, 1509 // which isn't a simple VT. 1510 // Until MVT is extended to handle this, simply check for the size and 1511 // rely on the condition below: allow accesses if the size is a multiple of 4. 1512 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && 1513 VT.getStoreSize() > 16)) { 1514 return false; 1515 } 1516 1517 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1518 Alignment, Flags, IsFast); 1519 } 1520 1521 EVT SITargetLowering::getOptimalMemOpType( 1522 const MemOp &Op, const AttributeList &FuncAttributes) const { 1523 // FIXME: Should account for address space here. 1524 1525 // The default fallback uses the private pointer size as a guess for a type to 1526 // use. Make sure we switch these to 64-bit accesses. 1527 1528 if (Op.size() >= 16 && 1529 Op.isDstAligned(Align(4))) // XXX: Should only do for global 1530 return MVT::v4i32; 1531 1532 if (Op.size() >= 8 && Op.isDstAligned(Align(4))) 1533 return MVT::v2i32; 1534 1535 // Use the default. 1536 return MVT::Other; 1537 } 1538 1539 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1540 const MemSDNode *MemNode = cast<MemSDNode>(N); 1541 const Value *Ptr = MemNode->getMemOperand()->getValue(); 1542 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr); 1543 return I && I->getMetadata("amdgpu.noclobber"); 1544 } 1545 1546 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { 1547 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || 1548 AS == AMDGPUAS::PRIVATE_ADDRESS; 1549 } 1550 1551 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1552 unsigned DestAS) const { 1553 // Flat -> private/local is a simple truncate. 1554 // Flat -> global is no-op 1555 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1556 return true; 1557 1558 const GCNTargetMachine &TM = 1559 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1560 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 1561 } 1562 1563 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1564 const MemSDNode *MemNode = cast<MemSDNode>(N); 1565 1566 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1567 } 1568 1569 TargetLoweringBase::LegalizeTypeAction 1570 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1571 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && 1572 VT.getScalarType().bitsLE(MVT::i16)) 1573 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1574 return TargetLoweringBase::getPreferredVectorAction(VT); 1575 } 1576 1577 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1578 Type *Ty) const { 1579 // FIXME: Could be smarter if called for vector constants. 1580 return true; 1581 } 1582 1583 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1584 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1585 switch (Op) { 1586 case ISD::LOAD: 1587 case ISD::STORE: 1588 1589 // These operations are done with 32-bit instructions anyway. 1590 case ISD::AND: 1591 case ISD::OR: 1592 case ISD::XOR: 1593 case ISD::SELECT: 1594 // TODO: Extensions? 1595 return true; 1596 default: 1597 return false; 1598 } 1599 } 1600 1601 // SimplifySetCC uses this function to determine whether or not it should 1602 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1603 if (VT == MVT::i1 && Op == ISD::SETCC) 1604 return false; 1605 1606 return TargetLowering::isTypeDesirableForOp(Op, VT); 1607 } 1608 1609 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1610 const SDLoc &SL, 1611 SDValue Chain, 1612 uint64_t Offset) const { 1613 const DataLayout &DL = DAG.getDataLayout(); 1614 MachineFunction &MF = DAG.getMachineFunction(); 1615 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1616 1617 const ArgDescriptor *InputPtrReg; 1618 const TargetRegisterClass *RC; 1619 LLT ArgTy; 1620 1621 std::tie(InputPtrReg, RC, ArgTy) = 1622 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1623 1624 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1625 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1626 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1627 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1628 1629 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset)); 1630 } 1631 1632 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1633 const SDLoc &SL) const { 1634 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1635 FIRST_IMPLICIT); 1636 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1637 } 1638 1639 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1640 const SDLoc &SL, SDValue Val, 1641 bool Signed, 1642 const ISD::InputArg *Arg) const { 1643 // First, if it is a widened vector, narrow it. 1644 if (VT.isVector() && 1645 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1646 EVT NarrowedVT = 1647 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1648 VT.getVectorNumElements()); 1649 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1650 DAG.getConstant(0, SL, MVT::i32)); 1651 } 1652 1653 // Then convert the vector elements or scalar value. 1654 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1655 VT.bitsLT(MemVT)) { 1656 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1657 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1658 } 1659 1660 if (MemVT.isFloatingPoint()) 1661 Val = getFPExtOrFPRound(DAG, Val, SL, VT); 1662 else if (Signed) 1663 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1664 else 1665 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1666 1667 return Val; 1668 } 1669 1670 SDValue SITargetLowering::lowerKernargMemParameter( 1671 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, 1672 uint64_t Offset, Align Alignment, bool Signed, 1673 const ISD::InputArg *Arg) const { 1674 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1675 1676 // Try to avoid using an extload by loading earlier than the argument address, 1677 // and extracting the relevant bits. The load should hopefully be merged with 1678 // the previous argument. 1679 if (MemVT.getStoreSize() < 4 && Alignment < 4) { 1680 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1681 int64_t AlignDownOffset = alignDown(Offset, 4); 1682 int64_t OffsetDiff = Offset - AlignDownOffset; 1683 1684 EVT IntVT = MemVT.changeTypeToInteger(); 1685 1686 // TODO: If we passed in the base kernel offset we could have a better 1687 // alignment than 4, but we don't really need it. 1688 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1689 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), 1690 MachineMemOperand::MODereferenceable | 1691 MachineMemOperand::MOInvariant); 1692 1693 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1694 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1695 1696 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1697 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1698 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1699 1700 1701 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1702 } 1703 1704 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 1705 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, 1706 MachineMemOperand::MODereferenceable | 1707 MachineMemOperand::MOInvariant); 1708 1709 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 1710 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 1711 } 1712 1713 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 1714 const SDLoc &SL, SDValue Chain, 1715 const ISD::InputArg &Arg) const { 1716 MachineFunction &MF = DAG.getMachineFunction(); 1717 MachineFrameInfo &MFI = MF.getFrameInfo(); 1718 1719 if (Arg.Flags.isByVal()) { 1720 unsigned Size = Arg.Flags.getByValSize(); 1721 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 1722 return DAG.getFrameIndex(FrameIdx, MVT::i32); 1723 } 1724 1725 unsigned ArgOffset = VA.getLocMemOffset(); 1726 unsigned ArgSize = VA.getValVT().getStoreSize(); 1727 1728 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 1729 1730 // Create load nodes to retrieve arguments from the stack. 1731 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1732 SDValue ArgValue; 1733 1734 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 1735 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 1736 MVT MemVT = VA.getValVT(); 1737 1738 switch (VA.getLocInfo()) { 1739 default: 1740 break; 1741 case CCValAssign::BCvt: 1742 MemVT = VA.getLocVT(); 1743 break; 1744 case CCValAssign::SExt: 1745 ExtType = ISD::SEXTLOAD; 1746 break; 1747 case CCValAssign::ZExt: 1748 ExtType = ISD::ZEXTLOAD; 1749 break; 1750 case CCValAssign::AExt: 1751 ExtType = ISD::EXTLOAD; 1752 break; 1753 } 1754 1755 ArgValue = DAG.getExtLoad( 1756 ExtType, SL, VA.getLocVT(), Chain, FIN, 1757 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 1758 MemVT); 1759 return ArgValue; 1760 } 1761 1762 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 1763 const SIMachineFunctionInfo &MFI, 1764 EVT VT, 1765 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 1766 const ArgDescriptor *Reg; 1767 const TargetRegisterClass *RC; 1768 LLT Ty; 1769 1770 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); 1771 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); 1772 } 1773 1774 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 1775 CallingConv::ID CallConv, 1776 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, 1777 FunctionType *FType, 1778 SIMachineFunctionInfo *Info) { 1779 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 1780 const ISD::InputArg *Arg = &Ins[I]; 1781 1782 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 1783 "vector type argument should have been split"); 1784 1785 // First check if it's a PS input addr. 1786 if (CallConv == CallingConv::AMDGPU_PS && 1787 !Arg->Flags.isInReg() && PSInputNum <= 15) { 1788 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 1789 1790 // Inconveniently only the first part of the split is marked as isSplit, 1791 // so skip to the end. We only want to increment PSInputNum once for the 1792 // entire split argument. 1793 if (Arg->Flags.isSplit()) { 1794 while (!Arg->Flags.isSplitEnd()) { 1795 assert((!Arg->VT.isVector() || 1796 Arg->VT.getScalarSizeInBits() == 16) && 1797 "unexpected vector split in ps argument type"); 1798 if (!SkipArg) 1799 Splits.push_back(*Arg); 1800 Arg = &Ins[++I]; 1801 } 1802 } 1803 1804 if (SkipArg) { 1805 // We can safely skip PS inputs. 1806 Skipped.set(Arg->getOrigArgIndex()); 1807 ++PSInputNum; 1808 continue; 1809 } 1810 1811 Info->markPSInputAllocated(PSInputNum); 1812 if (Arg->Used) 1813 Info->markPSInputEnabled(PSInputNum); 1814 1815 ++PSInputNum; 1816 } 1817 1818 Splits.push_back(*Arg); 1819 } 1820 } 1821 1822 // Allocate special inputs passed in VGPRs. 1823 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 1824 MachineFunction &MF, 1825 const SIRegisterInfo &TRI, 1826 SIMachineFunctionInfo &Info) const { 1827 const LLT S32 = LLT::scalar(32); 1828 MachineRegisterInfo &MRI = MF.getRegInfo(); 1829 1830 if (Info.hasWorkItemIDX()) { 1831 Register Reg = AMDGPU::VGPR0; 1832 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1833 1834 CCInfo.AllocateReg(Reg); 1835 unsigned Mask = (Subtarget->hasPackedTID() && 1836 Info.hasWorkItemIDY()) ? 0x3ff : ~0u; 1837 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 1838 } 1839 1840 if (Info.hasWorkItemIDY()) { 1841 assert(Info.hasWorkItemIDX()); 1842 if (Subtarget->hasPackedTID()) { 1843 Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, 1844 0x3ff << 10)); 1845 } else { 1846 unsigned Reg = AMDGPU::VGPR1; 1847 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1848 1849 CCInfo.AllocateReg(Reg); 1850 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 1851 } 1852 } 1853 1854 if (Info.hasWorkItemIDZ()) { 1855 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY()); 1856 if (Subtarget->hasPackedTID()) { 1857 Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, 1858 0x3ff << 20)); 1859 } else { 1860 unsigned Reg = AMDGPU::VGPR2; 1861 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 1862 1863 CCInfo.AllocateReg(Reg); 1864 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 1865 } 1866 } 1867 } 1868 1869 // Try to allocate a VGPR at the end of the argument list, or if no argument 1870 // VGPRs are left allocating a stack slot. 1871 // If \p Mask is is given it indicates bitfield position in the register. 1872 // If \p Arg is given use it with new ]p Mask instead of allocating new. 1873 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 1874 ArgDescriptor Arg = ArgDescriptor()) { 1875 if (Arg.isSet()) 1876 return ArgDescriptor::createArg(Arg, Mask); 1877 1878 ArrayRef<MCPhysReg> ArgVGPRs 1879 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 1880 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 1881 if (RegIdx == ArgVGPRs.size()) { 1882 // Spill to stack required. 1883 int64_t Offset = CCInfo.AllocateStack(4, Align(4)); 1884 1885 return ArgDescriptor::createStack(Offset, Mask); 1886 } 1887 1888 unsigned Reg = ArgVGPRs[RegIdx]; 1889 Reg = CCInfo.AllocateReg(Reg); 1890 assert(Reg != AMDGPU::NoRegister); 1891 1892 MachineFunction &MF = CCInfo.getMachineFunction(); 1893 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 1894 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 1895 return ArgDescriptor::createRegister(Reg, Mask); 1896 } 1897 1898 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 1899 const TargetRegisterClass *RC, 1900 unsigned NumArgRegs) { 1901 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); 1902 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 1903 if (RegIdx == ArgSGPRs.size()) 1904 report_fatal_error("ran out of SGPRs for arguments"); 1905 1906 unsigned Reg = ArgSGPRs[RegIdx]; 1907 Reg = CCInfo.AllocateReg(Reg); 1908 assert(Reg != AMDGPU::NoRegister); 1909 1910 MachineFunction &MF = CCInfo.getMachineFunction(); 1911 MF.addLiveIn(Reg, RC); 1912 return ArgDescriptor::createRegister(Reg); 1913 } 1914 1915 // If this has a fixed position, we still should allocate the register in the 1916 // CCInfo state. Technically we could get away with this for values passed 1917 // outside of the normal argument range. 1918 static void allocateFixedSGPRInputImpl(CCState &CCInfo, 1919 const TargetRegisterClass *RC, 1920 MCRegister Reg) { 1921 Reg = CCInfo.AllocateReg(Reg); 1922 assert(Reg != AMDGPU::NoRegister); 1923 MachineFunction &MF = CCInfo.getMachineFunction(); 1924 MF.addLiveIn(Reg, RC); 1925 } 1926 1927 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { 1928 if (Arg) { 1929 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 1930 Arg.getRegister()); 1931 } else 1932 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 1933 } 1934 1935 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { 1936 if (Arg) { 1937 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 1938 Arg.getRegister()); 1939 } else 1940 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 1941 } 1942 1943 /// Allocate implicit function VGPR arguments at the end of allocated user 1944 /// arguments. 1945 void SITargetLowering::allocateSpecialInputVGPRs( 1946 CCState &CCInfo, MachineFunction &MF, 1947 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 1948 const unsigned Mask = 0x3ff; 1949 ArgDescriptor Arg; 1950 1951 if (Info.hasWorkItemIDX()) { 1952 Arg = allocateVGPR32Input(CCInfo, Mask); 1953 Info.setWorkItemIDX(Arg); 1954 } 1955 1956 if (Info.hasWorkItemIDY()) { 1957 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 1958 Info.setWorkItemIDY(Arg); 1959 } 1960 1961 if (Info.hasWorkItemIDZ()) 1962 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 1963 } 1964 1965 /// Allocate implicit function VGPR arguments in fixed registers. 1966 void SITargetLowering::allocateSpecialInputVGPRsFixed( 1967 CCState &CCInfo, MachineFunction &MF, 1968 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 1969 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); 1970 if (!Reg) 1971 report_fatal_error("failed to allocated VGPR for implicit arguments"); 1972 1973 const unsigned Mask = 0x3ff; 1974 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 1975 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); 1976 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); 1977 } 1978 1979 void SITargetLowering::allocateSpecialInputSGPRs( 1980 CCState &CCInfo, 1981 MachineFunction &MF, 1982 const SIRegisterInfo &TRI, 1983 SIMachineFunctionInfo &Info) const { 1984 auto &ArgInfo = Info.getArgInfo(); 1985 1986 // TODO: Unify handling with private memory pointers. 1987 1988 if (Info.hasDispatchPtr()) 1989 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); 1990 1991 if (Info.hasQueuePtr()) 1992 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); 1993 1994 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a 1995 // constant offset from the kernarg segment. 1996 if (Info.hasImplicitArgPtr()) 1997 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); 1998 1999 if (Info.hasDispatchID()) 2000 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); 2001 2002 // flat_scratch_init is not applicable for non-kernel functions. 2003 2004 if (Info.hasWorkGroupIDX()) 2005 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); 2006 2007 if (Info.hasWorkGroupIDY()) 2008 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); 2009 2010 if (Info.hasWorkGroupIDZ()) 2011 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); 2012 } 2013 2014 // Allocate special inputs passed in user SGPRs. 2015 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 2016 MachineFunction &MF, 2017 const SIRegisterInfo &TRI, 2018 SIMachineFunctionInfo &Info) const { 2019 if (Info.hasImplicitBufferPtr()) { 2020 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 2021 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 2022 CCInfo.AllocateReg(ImplicitBufferPtrReg); 2023 } 2024 2025 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 2026 if (Info.hasPrivateSegmentBuffer()) { 2027 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 2028 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 2029 CCInfo.AllocateReg(PrivateSegmentBufferReg); 2030 } 2031 2032 if (Info.hasDispatchPtr()) { 2033 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 2034 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 2035 CCInfo.AllocateReg(DispatchPtrReg); 2036 } 2037 2038 if (Info.hasQueuePtr()) { 2039 Register QueuePtrReg = Info.addQueuePtr(TRI); 2040 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 2041 CCInfo.AllocateReg(QueuePtrReg); 2042 } 2043 2044 if (Info.hasKernargSegmentPtr()) { 2045 MachineRegisterInfo &MRI = MF.getRegInfo(); 2046 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 2047 CCInfo.AllocateReg(InputPtrReg); 2048 2049 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 2050 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 2051 } 2052 2053 if (Info.hasDispatchID()) { 2054 Register DispatchIDReg = Info.addDispatchID(TRI); 2055 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 2056 CCInfo.AllocateReg(DispatchIDReg); 2057 } 2058 2059 if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { 2060 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 2061 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 2062 CCInfo.AllocateReg(FlatScratchInitReg); 2063 } 2064 2065 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 2066 // these from the dispatch pointer. 2067 } 2068 2069 // Allocate special input registers that are initialized per-wave. 2070 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 2071 MachineFunction &MF, 2072 SIMachineFunctionInfo &Info, 2073 CallingConv::ID CallConv, 2074 bool IsShader) const { 2075 if (Info.hasWorkGroupIDX()) { 2076 Register Reg = Info.addWorkGroupIDX(); 2077 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2078 CCInfo.AllocateReg(Reg); 2079 } 2080 2081 if (Info.hasWorkGroupIDY()) { 2082 Register Reg = Info.addWorkGroupIDY(); 2083 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2084 CCInfo.AllocateReg(Reg); 2085 } 2086 2087 if (Info.hasWorkGroupIDZ()) { 2088 Register Reg = Info.addWorkGroupIDZ(); 2089 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2090 CCInfo.AllocateReg(Reg); 2091 } 2092 2093 if (Info.hasWorkGroupInfo()) { 2094 Register Reg = Info.addWorkGroupInfo(); 2095 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2096 CCInfo.AllocateReg(Reg); 2097 } 2098 2099 if (Info.hasPrivateSegmentWaveByteOffset()) { 2100 // Scratch wave offset passed in system SGPR. 2101 unsigned PrivateSegmentWaveByteOffsetReg; 2102 2103 if (IsShader) { 2104 PrivateSegmentWaveByteOffsetReg = 2105 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 2106 2107 // This is true if the scratch wave byte offset doesn't have a fixed 2108 // location. 2109 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 2110 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 2111 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 2112 } 2113 } else 2114 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 2115 2116 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 2117 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 2118 } 2119 } 2120 2121 static void reservePrivateMemoryRegs(const TargetMachine &TM, 2122 MachineFunction &MF, 2123 const SIRegisterInfo &TRI, 2124 SIMachineFunctionInfo &Info) { 2125 // Now that we've figured out where the scratch register inputs are, see if 2126 // should reserve the arguments and use them directly. 2127 MachineFrameInfo &MFI = MF.getFrameInfo(); 2128 bool HasStackObjects = MFI.hasStackObjects(); 2129 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 2130 2131 // Record that we know we have non-spill stack objects so we don't need to 2132 // check all stack objects later. 2133 if (HasStackObjects) 2134 Info.setHasNonSpillStackObjects(true); 2135 2136 // Everything live out of a block is spilled with fast regalloc, so it's 2137 // almost certain that spilling will be required. 2138 if (TM.getOptLevel() == CodeGenOpt::None) 2139 HasStackObjects = true; 2140 2141 // For now assume stack access is needed in any callee functions, so we need 2142 // the scratch registers to pass in. 2143 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 2144 2145 if (!ST.enableFlatScratch()) { 2146 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 2147 // If we have stack objects, we unquestionably need the private buffer 2148 // resource. For the Code Object V2 ABI, this will be the first 4 user 2149 // SGPR inputs. We can reserve those and use them directly. 2150 2151 Register PrivateSegmentBufferReg = 2152 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 2153 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 2154 } else { 2155 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 2156 // We tentatively reserve the last registers (skipping the last registers 2157 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 2158 // we'll replace these with the ones immediately after those which were 2159 // really allocated. In the prologue copies will be inserted from the 2160 // argument to these reserved registers. 2161 2162 // Without HSA, relocations are used for the scratch pointer and the 2163 // buffer resource setup is always inserted in the prologue. Scratch wave 2164 // offset is still in an input SGPR. 2165 Info.setScratchRSrcReg(ReservedBufferReg); 2166 } 2167 } 2168 2169 MachineRegisterInfo &MRI = MF.getRegInfo(); 2170 2171 // For entry functions we have to set up the stack pointer if we use it, 2172 // whereas non-entry functions get this "for free". This means there is no 2173 // intrinsic advantage to using S32 over S34 in cases where we do not have 2174 // calls but do need a frame pointer (i.e. if we are requested to have one 2175 // because frame pointer elimination is disabled). To keep things simple we 2176 // only ever use S32 as the call ABI stack pointer, and so using it does not 2177 // imply we need a separate frame pointer. 2178 // 2179 // Try to use s32 as the SP, but move it if it would interfere with input 2180 // arguments. This won't work with calls though. 2181 // 2182 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 2183 // registers. 2184 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 2185 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 2186 } else { 2187 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 2188 2189 if (MFI.hasCalls()) 2190 report_fatal_error("call in graphics shader with too many input SGPRs"); 2191 2192 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 2193 if (!MRI.isLiveIn(Reg)) { 2194 Info.setStackPtrOffsetReg(Reg); 2195 break; 2196 } 2197 } 2198 2199 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 2200 report_fatal_error("failed to find register for SP"); 2201 } 2202 2203 // hasFP should be accurate for entry functions even before the frame is 2204 // finalized, because it does not rely on the known stack size, only 2205 // properties like whether variable sized objects are present. 2206 if (ST.getFrameLowering()->hasFP(MF)) { 2207 Info.setFrameOffsetReg(AMDGPU::SGPR33); 2208 } 2209 } 2210 2211 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 2212 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2213 return !Info->isEntryFunction(); 2214 } 2215 2216 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 2217 2218 } 2219 2220 void SITargetLowering::insertCopiesSplitCSR( 2221 MachineBasicBlock *Entry, 2222 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2223 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2224 2225 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 2226 if (!IStart) 2227 return; 2228 2229 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2230 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 2231 MachineBasicBlock::iterator MBBI = Entry->begin(); 2232 for (const MCPhysReg *I = IStart; *I; ++I) { 2233 const TargetRegisterClass *RC = nullptr; 2234 if (AMDGPU::SReg_64RegClass.contains(*I)) 2235 RC = &AMDGPU::SGPR_64RegClass; 2236 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2237 RC = &AMDGPU::SGPR_32RegClass; 2238 else 2239 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2240 2241 Register NewVR = MRI->createVirtualRegister(RC); 2242 // Create copy from CSR to a virtual register. 2243 Entry->addLiveIn(*I); 2244 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2245 .addReg(*I); 2246 2247 // Insert the copy-back instructions right before the terminator. 2248 for (auto *Exit : Exits) 2249 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2250 TII->get(TargetOpcode::COPY), *I) 2251 .addReg(NewVR); 2252 } 2253 } 2254 2255 SDValue SITargetLowering::LowerFormalArguments( 2256 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2257 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2258 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2259 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2260 2261 MachineFunction &MF = DAG.getMachineFunction(); 2262 const Function &Fn = MF.getFunction(); 2263 FunctionType *FType = MF.getFunction().getFunctionType(); 2264 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2265 2266 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { 2267 DiagnosticInfoUnsupported NoGraphicsHSA( 2268 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2269 DAG.getContext()->diagnose(NoGraphicsHSA); 2270 return DAG.getEntryNode(); 2271 } 2272 2273 Info->allocateModuleLDSGlobal(Fn.getParent()); 2274 2275 SmallVector<ISD::InputArg, 16> Splits; 2276 SmallVector<CCValAssign, 16> ArgLocs; 2277 BitVector Skipped(Ins.size()); 2278 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2279 *DAG.getContext()); 2280 2281 bool IsGraphics = AMDGPU::isGraphics(CallConv); 2282 bool IsKernel = AMDGPU::isKernel(CallConv); 2283 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2284 2285 if (IsGraphics) { 2286 assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && 2287 (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && 2288 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2289 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && 2290 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && 2291 !Info->hasWorkItemIDZ()); 2292 } 2293 2294 if (CallConv == CallingConv::AMDGPU_PS) { 2295 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2296 2297 // At least one interpolation mode must be enabled or else the GPU will 2298 // hang. 2299 // 2300 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2301 // set PSInputAddr, the user wants to enable some bits after the compilation 2302 // based on run-time states. Since we can't know what the final PSInputEna 2303 // will look like, so we shouldn't do anything here and the user should take 2304 // responsibility for the correct programming. 2305 // 2306 // Otherwise, the following restrictions apply: 2307 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2308 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2309 // enabled too. 2310 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2311 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { 2312 CCInfo.AllocateReg(AMDGPU::VGPR0); 2313 CCInfo.AllocateReg(AMDGPU::VGPR1); 2314 Info->markPSInputAllocated(0); 2315 Info->markPSInputEnabled(0); 2316 } 2317 if (Subtarget->isAmdPalOS()) { 2318 // For isAmdPalOS, the user does not enable some bits after compilation 2319 // based on run-time states; the register values being generated here are 2320 // the final ones set in hardware. Therefore we need to apply the 2321 // workaround to PSInputAddr and PSInputEnable together. (The case where 2322 // a bit is set in PSInputAddr but not PSInputEnable is where the 2323 // frontend set up an input arg for a particular interpolation mode, but 2324 // nothing uses that input arg. Really we should have an earlier pass 2325 // that removes such an arg.) 2326 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2327 if ((PsInputBits & 0x7F) == 0 || 2328 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) 2329 Info->markPSInputEnabled( 2330 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 2331 } 2332 } else if (IsKernel) { 2333 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2334 } else { 2335 Splits.append(Ins.begin(), Ins.end()); 2336 } 2337 2338 if (IsEntryFunc) { 2339 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2340 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2341 } else { 2342 // For the fixed ABI, pass workitem IDs in the last argument register. 2343 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 2344 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 2345 } 2346 2347 if (IsKernel) { 2348 analyzeFormalArgumentsCompute(CCInfo, Ins); 2349 } else { 2350 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2351 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2352 } 2353 2354 SmallVector<SDValue, 16> Chains; 2355 2356 // FIXME: This is the minimum kernel argument alignment. We should improve 2357 // this to the maximum alignment of the arguments. 2358 // 2359 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2360 // kern arg offset. 2361 const Align KernelArgBaseAlign = Align(16); 2362 2363 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2364 const ISD::InputArg &Arg = Ins[i]; 2365 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2366 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2367 continue; 2368 } 2369 2370 CCValAssign &VA = ArgLocs[ArgIdx++]; 2371 MVT VT = VA.getLocVT(); 2372 2373 if (IsEntryFunc && VA.isMemLoc()) { 2374 VT = Ins[i].VT; 2375 EVT MemVT = VA.getLocVT(); 2376 2377 const uint64_t Offset = VA.getLocMemOffset(); 2378 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); 2379 2380 if (Arg.Flags.isByRef()) { 2381 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); 2382 2383 const GCNTargetMachine &TM = 2384 static_cast<const GCNTargetMachine &>(getTargetMachine()); 2385 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, 2386 Arg.Flags.getPointerAddrSpace())) { 2387 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, 2388 Arg.Flags.getPointerAddrSpace()); 2389 } 2390 2391 InVals.push_back(Ptr); 2392 continue; 2393 } 2394 2395 SDValue Arg = lowerKernargMemParameter( 2396 DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]); 2397 Chains.push_back(Arg.getValue(1)); 2398 2399 auto *ParamTy = 2400 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2401 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2402 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2403 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2404 // On SI local pointers are just offsets into LDS, so they are always 2405 // less than 16-bits. On CI and newer they could potentially be 2406 // real pointers, so we can't guarantee their size. 2407 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, 2408 DAG.getValueType(MVT::i16)); 2409 } 2410 2411 InVals.push_back(Arg); 2412 continue; 2413 } else if (!IsEntryFunc && VA.isMemLoc()) { 2414 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2415 InVals.push_back(Val); 2416 if (!Arg.Flags.isByVal()) 2417 Chains.push_back(Val.getValue(1)); 2418 continue; 2419 } 2420 2421 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2422 2423 Register Reg = VA.getLocReg(); 2424 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2425 EVT ValVT = VA.getValVT(); 2426 2427 Reg = MF.addLiveIn(Reg, RC); 2428 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2429 2430 if (Arg.Flags.isSRet()) { 2431 // The return object should be reasonably addressable. 2432 2433 // FIXME: This helps when the return is a real sret. If it is a 2434 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2435 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2436 unsigned NumBits 2437 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 2438 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2439 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 2440 } 2441 2442 // If this is an 8 or 16-bit value, it is really passed promoted 2443 // to 32 bits. Insert an assert[sz]ext to capture this, then 2444 // truncate to the right size. 2445 switch (VA.getLocInfo()) { 2446 case CCValAssign::Full: 2447 break; 2448 case CCValAssign::BCvt: 2449 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2450 break; 2451 case CCValAssign::SExt: 2452 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 2453 DAG.getValueType(ValVT)); 2454 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2455 break; 2456 case CCValAssign::ZExt: 2457 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2458 DAG.getValueType(ValVT)); 2459 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2460 break; 2461 case CCValAssign::AExt: 2462 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2463 break; 2464 default: 2465 llvm_unreachable("Unknown loc info!"); 2466 } 2467 2468 InVals.push_back(Val); 2469 } 2470 2471 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 2472 // Special inputs come after user arguments. 2473 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 2474 } 2475 2476 // Start adding system SGPRs. 2477 if (IsEntryFunc) { 2478 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); 2479 } else { 2480 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2481 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2482 } 2483 2484 auto &ArgUsageInfo = 2485 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2486 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 2487 2488 unsigned StackArgSize = CCInfo.getNextStackOffset(); 2489 Info->setBytesInStackArgArea(StackArgSize); 2490 2491 return Chains.empty() ? Chain : 2492 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2493 } 2494 2495 // TODO: If return values can't fit in registers, we should return as many as 2496 // possible in registers before passing on stack. 2497 bool SITargetLowering::CanLowerReturn( 2498 CallingConv::ID CallConv, 2499 MachineFunction &MF, bool IsVarArg, 2500 const SmallVectorImpl<ISD::OutputArg> &Outs, 2501 LLVMContext &Context) const { 2502 // Replacing returns with sret/stack usage doesn't make sense for shaders. 2503 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 2504 // for shaders. Vector types should be explicitly handled by CC. 2505 if (AMDGPU::isEntryFunctionCC(CallConv)) 2506 return true; 2507 2508 SmallVector<CCValAssign, 16> RVLocs; 2509 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2510 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); 2511 } 2512 2513 SDValue 2514 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2515 bool isVarArg, 2516 const SmallVectorImpl<ISD::OutputArg> &Outs, 2517 const SmallVectorImpl<SDValue> &OutVals, 2518 const SDLoc &DL, SelectionDAG &DAG) const { 2519 MachineFunction &MF = DAG.getMachineFunction(); 2520 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2521 2522 if (AMDGPU::isKernel(CallConv)) { 2523 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 2524 OutVals, DL, DAG); 2525 } 2526 2527 bool IsShader = AMDGPU::isShader(CallConv); 2528 2529 Info->setIfReturnsVoid(Outs.empty()); 2530 bool IsWaveEnd = Info->returnsVoid() && IsShader; 2531 2532 // CCValAssign - represent the assignment of the return value to a location. 2533 SmallVector<CCValAssign, 48> RVLocs; 2534 SmallVector<ISD::OutputArg, 48> Splits; 2535 2536 // CCState - Info about the registers and stack slots. 2537 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2538 *DAG.getContext()); 2539 2540 // Analyze outgoing return values. 2541 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 2542 2543 SDValue Flag; 2544 SmallVector<SDValue, 48> RetOps; 2545 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2546 2547 // Add return address for callable functions. 2548 if (!Info->isEntryFunction()) { 2549 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2550 SDValue ReturnAddrReg = CreateLiveInRegister( 2551 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 2552 2553 SDValue ReturnAddrVirtualReg = DAG.getRegister( 2554 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass), 2555 MVT::i64); 2556 Chain = 2557 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag); 2558 Flag = Chain.getValue(1); 2559 RetOps.push_back(ReturnAddrVirtualReg); 2560 } 2561 2562 // Copy the result values into the output registers. 2563 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 2564 ++I, ++RealRVLocIdx) { 2565 CCValAssign &VA = RVLocs[I]; 2566 assert(VA.isRegLoc() && "Can only return in registers!"); 2567 // TODO: Partially return in registers if return values don't fit. 2568 SDValue Arg = OutVals[RealRVLocIdx]; 2569 2570 // Copied from other backends. 2571 switch (VA.getLocInfo()) { 2572 case CCValAssign::Full: 2573 break; 2574 case CCValAssign::BCvt: 2575 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 2576 break; 2577 case CCValAssign::SExt: 2578 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 2579 break; 2580 case CCValAssign::ZExt: 2581 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 2582 break; 2583 case CCValAssign::AExt: 2584 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 2585 break; 2586 default: 2587 llvm_unreachable("Unknown loc info!"); 2588 } 2589 2590 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 2591 Flag = Chain.getValue(1); 2592 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2593 } 2594 2595 // FIXME: Does sret work properly? 2596 if (!Info->isEntryFunction()) { 2597 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2598 const MCPhysReg *I = 2599 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 2600 if (I) { 2601 for (; *I; ++I) { 2602 if (AMDGPU::SReg_64RegClass.contains(*I)) 2603 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 2604 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2605 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 2606 else 2607 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2608 } 2609 } 2610 } 2611 2612 // Update chain and glue. 2613 RetOps[0] = Chain; 2614 if (Flag.getNode()) 2615 RetOps.push_back(Flag); 2616 2617 unsigned Opc = AMDGPUISD::ENDPGM; 2618 if (!IsWaveEnd) 2619 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; 2620 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 2621 } 2622 2623 SDValue SITargetLowering::LowerCallResult( 2624 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2625 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2626 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 2627 SDValue ThisVal) const { 2628 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 2629 2630 // Assign locations to each value returned by this call. 2631 SmallVector<CCValAssign, 16> RVLocs; 2632 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2633 *DAG.getContext()); 2634 CCInfo.AnalyzeCallResult(Ins, RetCC); 2635 2636 // Copy all of the result registers out of their specified physreg. 2637 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2638 CCValAssign VA = RVLocs[i]; 2639 SDValue Val; 2640 2641 if (VA.isRegLoc()) { 2642 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 2643 Chain = Val.getValue(1); 2644 InFlag = Val.getValue(2); 2645 } else if (VA.isMemLoc()) { 2646 report_fatal_error("TODO: return values in memory"); 2647 } else 2648 llvm_unreachable("unknown argument location type"); 2649 2650 switch (VA.getLocInfo()) { 2651 case CCValAssign::Full: 2652 break; 2653 case CCValAssign::BCvt: 2654 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2655 break; 2656 case CCValAssign::ZExt: 2657 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2658 DAG.getValueType(VA.getValVT())); 2659 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2660 break; 2661 case CCValAssign::SExt: 2662 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2663 DAG.getValueType(VA.getValVT())); 2664 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2665 break; 2666 case CCValAssign::AExt: 2667 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2668 break; 2669 default: 2670 llvm_unreachable("Unknown loc info!"); 2671 } 2672 2673 InVals.push_back(Val); 2674 } 2675 2676 return Chain; 2677 } 2678 2679 // Add code to pass special inputs required depending on used features separate 2680 // from the explicit user arguments present in the IR. 2681 void SITargetLowering::passSpecialInputs( 2682 CallLoweringInfo &CLI, 2683 CCState &CCInfo, 2684 const SIMachineFunctionInfo &Info, 2685 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 2686 SmallVectorImpl<SDValue> &MemOpChains, 2687 SDValue Chain) const { 2688 // If we don't have a call site, this was a call inserted by 2689 // legalization. These can never use special inputs. 2690 if (!CLI.CB) 2691 return; 2692 2693 SelectionDAG &DAG = CLI.DAG; 2694 const SDLoc &DL = CLI.DL; 2695 2696 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2697 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 2698 2699 const AMDGPUFunctionArgInfo *CalleeArgInfo 2700 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 2701 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { 2702 auto &ArgUsageInfo = 2703 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 2704 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 2705 } 2706 2707 // TODO: Unify with private memory register handling. This is complicated by 2708 // the fact that at least in kernels, the input argument is not necessarily 2709 // in the same location as the input. 2710 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 2711 AMDGPUFunctionArgInfo::DISPATCH_PTR, 2712 AMDGPUFunctionArgInfo::QUEUE_PTR, 2713 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 2714 AMDGPUFunctionArgInfo::DISPATCH_ID, 2715 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 2716 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 2717 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 2718 }; 2719 2720 for (auto InputID : InputRegs) { 2721 const ArgDescriptor *OutgoingArg; 2722 const TargetRegisterClass *ArgRC; 2723 LLT ArgTy; 2724 2725 std::tie(OutgoingArg, ArgRC, ArgTy) = 2726 CalleeArgInfo->getPreloadedValue(InputID); 2727 if (!OutgoingArg) 2728 continue; 2729 2730 const ArgDescriptor *IncomingArg; 2731 const TargetRegisterClass *IncomingArgRC; 2732 LLT Ty; 2733 std::tie(IncomingArg, IncomingArgRC, Ty) = 2734 CallerArgInfo.getPreloadedValue(InputID); 2735 assert(IncomingArgRC == ArgRC); 2736 2737 // All special arguments are ints for now. 2738 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 2739 SDValue InputReg; 2740 2741 if (IncomingArg) { 2742 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 2743 } else { 2744 // The implicit arg ptr is special because it doesn't have a corresponding 2745 // input for kernels, and is computed from the kernarg segment pointer. 2746 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 2747 InputReg = getImplicitArgPtr(DAG, DL); 2748 } 2749 2750 if (OutgoingArg->isRegister()) { 2751 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2752 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 2753 report_fatal_error("failed to allocate implicit input argument"); 2754 } else { 2755 unsigned SpecialArgOffset = 2756 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); 2757 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2758 SpecialArgOffset); 2759 MemOpChains.push_back(ArgStore); 2760 } 2761 } 2762 2763 // Pack workitem IDs into a single register or pass it as is if already 2764 // packed. 2765 const ArgDescriptor *OutgoingArg; 2766 const TargetRegisterClass *ArgRC; 2767 LLT Ty; 2768 2769 std::tie(OutgoingArg, ArgRC, Ty) = 2770 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 2771 if (!OutgoingArg) 2772 std::tie(OutgoingArg, ArgRC, Ty) = 2773 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 2774 if (!OutgoingArg) 2775 std::tie(OutgoingArg, ArgRC, Ty) = 2776 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 2777 if (!OutgoingArg) 2778 return; 2779 2780 const ArgDescriptor *IncomingArgX = std::get<0>( 2781 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); 2782 const ArgDescriptor *IncomingArgY = std::get<0>( 2783 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); 2784 const ArgDescriptor *IncomingArgZ = std::get<0>( 2785 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); 2786 2787 SDValue InputReg; 2788 SDLoc SL; 2789 2790 // If incoming ids are not packed we need to pack them. 2791 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) 2792 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 2793 2794 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 2795 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 2796 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 2797 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 2798 InputReg = InputReg.getNode() ? 2799 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 2800 } 2801 2802 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 2803 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 2804 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 2805 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 2806 InputReg = InputReg.getNode() ? 2807 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 2808 } 2809 2810 if (!InputReg.getNode()) { 2811 // Workitem ids are already packed, any of present incoming arguments 2812 // will carry all required fields. 2813 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 2814 IncomingArgX ? *IncomingArgX : 2815 IncomingArgY ? *IncomingArgY : 2816 *IncomingArgZ, ~0u); 2817 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 2818 } 2819 2820 if (OutgoingArg->isRegister()) { 2821 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 2822 CCInfo.AllocateReg(OutgoingArg->getRegister()); 2823 } else { 2824 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); 2825 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 2826 SpecialArgOffset); 2827 MemOpChains.push_back(ArgStore); 2828 } 2829 } 2830 2831 static bool canGuaranteeTCO(CallingConv::ID CC) { 2832 return CC == CallingConv::Fast; 2833 } 2834 2835 /// Return true if we might ever do TCO for calls with this calling convention. 2836 static bool mayTailCallThisCC(CallingConv::ID CC) { 2837 switch (CC) { 2838 case CallingConv::C: 2839 case CallingConv::AMDGPU_Gfx: 2840 return true; 2841 default: 2842 return canGuaranteeTCO(CC); 2843 } 2844 } 2845 2846 bool SITargetLowering::isEligibleForTailCallOptimization( 2847 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 2848 const SmallVectorImpl<ISD::OutputArg> &Outs, 2849 const SmallVectorImpl<SDValue> &OutVals, 2850 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 2851 if (!mayTailCallThisCC(CalleeCC)) 2852 return false; 2853 2854 // For a divergent call target, we need to do a waterfall loop over the 2855 // possible callees which precludes us from using a simple jump. 2856 if (Callee->isDivergent()) 2857 return false; 2858 2859 MachineFunction &MF = DAG.getMachineFunction(); 2860 const Function &CallerF = MF.getFunction(); 2861 CallingConv::ID CallerCC = CallerF.getCallingConv(); 2862 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2863 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2864 2865 // Kernels aren't callable, and don't have a live in return address so it 2866 // doesn't make sense to do a tail call with entry functions. 2867 if (!CallerPreserved) 2868 return false; 2869 2870 bool CCMatch = CallerCC == CalleeCC; 2871 2872 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 2873 if (canGuaranteeTCO(CalleeCC) && CCMatch) 2874 return true; 2875 return false; 2876 } 2877 2878 // TODO: Can we handle var args? 2879 if (IsVarArg) 2880 return false; 2881 2882 for (const Argument &Arg : CallerF.args()) { 2883 if (Arg.hasByValAttr()) 2884 return false; 2885 } 2886 2887 LLVMContext &Ctx = *DAG.getContext(); 2888 2889 // Check that the call results are passed in the same way. 2890 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 2891 CCAssignFnForCall(CalleeCC, IsVarArg), 2892 CCAssignFnForCall(CallerCC, IsVarArg))) 2893 return false; 2894 2895 // The callee has to preserve all registers the caller needs to preserve. 2896 if (!CCMatch) { 2897 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2898 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2899 return false; 2900 } 2901 2902 // Nothing more to check if the callee is taking no arguments. 2903 if (Outs.empty()) 2904 return true; 2905 2906 SmallVector<CCValAssign, 16> ArgLocs; 2907 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 2908 2909 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 2910 2911 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 2912 // If the stack arguments for this call do not fit into our own save area then 2913 // the call cannot be made tail. 2914 // TODO: Is this really necessary? 2915 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 2916 return false; 2917 2918 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2919 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 2920 } 2921 2922 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 2923 if (!CI->isTailCall()) 2924 return false; 2925 2926 const Function *ParentFn = CI->getParent()->getParent(); 2927 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 2928 return false; 2929 return true; 2930 } 2931 2932 // The wave scratch offset register is used as the global base pointer. 2933 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 2934 SmallVectorImpl<SDValue> &InVals) const { 2935 SelectionDAG &DAG = CLI.DAG; 2936 const SDLoc &DL = CLI.DL; 2937 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 2938 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 2939 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 2940 SDValue Chain = CLI.Chain; 2941 SDValue Callee = CLI.Callee; 2942 bool &IsTailCall = CLI.IsTailCall; 2943 CallingConv::ID CallConv = CLI.CallConv; 2944 bool IsVarArg = CLI.IsVarArg; 2945 bool IsSibCall = false; 2946 bool IsThisReturn = false; 2947 MachineFunction &MF = DAG.getMachineFunction(); 2948 2949 if (Callee.isUndef() || isNullConstant(Callee)) { 2950 if (!CLI.IsTailCall) { 2951 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 2952 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 2953 } 2954 2955 return Chain; 2956 } 2957 2958 if (IsVarArg) { 2959 return lowerUnhandledCall(CLI, InVals, 2960 "unsupported call to variadic function "); 2961 } 2962 2963 if (!CLI.CB) 2964 report_fatal_error("unsupported libcall legalization"); 2965 2966 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 2967 return lowerUnhandledCall(CLI, InVals, 2968 "unsupported required tail call to function "); 2969 } 2970 2971 if (AMDGPU::isShader(CallConv)) { 2972 // Note the issue is with the CC of the called function, not of the call 2973 // itself. 2974 return lowerUnhandledCall(CLI, InVals, 2975 "unsupported call to a shader function "); 2976 } 2977 2978 if (AMDGPU::isShader(MF.getFunction().getCallingConv()) && 2979 CallConv != CallingConv::AMDGPU_Gfx) { 2980 // Only allow calls with specific calling conventions. 2981 return lowerUnhandledCall(CLI, InVals, 2982 "unsupported calling convention for call from " 2983 "graphics shader of function "); 2984 } 2985 2986 if (IsTailCall) { 2987 IsTailCall = isEligibleForTailCallOptimization( 2988 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 2989 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { 2990 report_fatal_error("failed to perform tail call elimination on a call " 2991 "site marked musttail"); 2992 } 2993 2994 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 2995 2996 // A sibling call is one where we're under the usual C ABI and not planning 2997 // to change that but can still do a tail call: 2998 if (!TailCallOpt && IsTailCall) 2999 IsSibCall = true; 3000 3001 if (IsTailCall) 3002 ++NumTailCalls; 3003 } 3004 3005 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3006 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3007 SmallVector<SDValue, 8> MemOpChains; 3008 3009 // Analyze operands of the call, assigning locations to each operand. 3010 SmallVector<CCValAssign, 16> ArgLocs; 3011 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3012 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 3013 3014 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 3015 CallConv != CallingConv::AMDGPU_Gfx) { 3016 // With a fixed ABI, allocate fixed registers before user arguments. 3017 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 3018 } 3019 3020 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 3021 3022 // Get a count of how many bytes are to be pushed on the stack. 3023 unsigned NumBytes = CCInfo.getNextStackOffset(); 3024 3025 if (IsSibCall) { 3026 // Since we're not changing the ABI to make this a tail call, the memory 3027 // operands are already available in the caller's incoming argument space. 3028 NumBytes = 0; 3029 } 3030 3031 // FPDiff is the byte offset of the call's argument area from the callee's. 3032 // Stores to callee stack arguments will be placed in FixedStackSlots offset 3033 // by this amount for a tail call. In a sibling call it must be 0 because the 3034 // caller will deallocate the entire stack and the callee still expects its 3035 // arguments to begin at SP+0. Completely unused for non-tail calls. 3036 int32_t FPDiff = 0; 3037 MachineFrameInfo &MFI = MF.getFrameInfo(); 3038 3039 // Adjust the stack pointer for the new arguments... 3040 // These operations are automatically eliminated by the prolog/epilog pass 3041 if (!IsSibCall) { 3042 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 3043 3044 if (!Subtarget->enableFlatScratch()) { 3045 SmallVector<SDValue, 4> CopyFromChains; 3046 3047 // In the HSA case, this should be an identity copy. 3048 SDValue ScratchRSrcReg 3049 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 3050 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 3051 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 3052 Chain = DAG.getTokenFactor(DL, CopyFromChains); 3053 } 3054 } 3055 3056 MVT PtrVT = MVT::i32; 3057 3058 // Walk the register/memloc assignments, inserting copies/loads. 3059 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3060 CCValAssign &VA = ArgLocs[i]; 3061 SDValue Arg = OutVals[i]; 3062 3063 // Promote the value if needed. 3064 switch (VA.getLocInfo()) { 3065 case CCValAssign::Full: 3066 break; 3067 case CCValAssign::BCvt: 3068 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 3069 break; 3070 case CCValAssign::ZExt: 3071 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 3072 break; 3073 case CCValAssign::SExt: 3074 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 3075 break; 3076 case CCValAssign::AExt: 3077 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 3078 break; 3079 case CCValAssign::FPExt: 3080 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 3081 break; 3082 default: 3083 llvm_unreachable("Unknown loc info!"); 3084 } 3085 3086 if (VA.isRegLoc()) { 3087 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3088 } else { 3089 assert(VA.isMemLoc()); 3090 3091 SDValue DstAddr; 3092 MachinePointerInfo DstInfo; 3093 3094 unsigned LocMemOffset = VA.getLocMemOffset(); 3095 int32_t Offset = LocMemOffset; 3096 3097 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 3098 MaybeAlign Alignment; 3099 3100 if (IsTailCall) { 3101 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3102 unsigned OpSize = Flags.isByVal() ? 3103 Flags.getByValSize() : VA.getValVT().getStoreSize(); 3104 3105 // FIXME: We can have better than the minimum byval required alignment. 3106 Alignment = 3107 Flags.isByVal() 3108 ? Flags.getNonZeroByValAlign() 3109 : commonAlignment(Subtarget->getStackAlignment(), Offset); 3110 3111 Offset = Offset + FPDiff; 3112 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 3113 3114 DstAddr = DAG.getFrameIndex(FI, PtrVT); 3115 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 3116 3117 // Make sure any stack arguments overlapping with where we're storing 3118 // are loaded before this eventual operation. Otherwise they'll be 3119 // clobbered. 3120 3121 // FIXME: Why is this really necessary? This seems to just result in a 3122 // lot of code to copy the stack and write them back to the same 3123 // locations, which are supposed to be immutable? 3124 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 3125 } else { 3126 // Stores to the argument stack area are relative to the stack pointer. 3127 SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), 3128 MVT::i32); 3129 DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); 3130 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 3131 Alignment = 3132 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); 3133 } 3134 3135 if (Outs[i].Flags.isByVal()) { 3136 SDValue SizeNode = 3137 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 3138 SDValue Cpy = 3139 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, 3140 Outs[i].Flags.getNonZeroByValAlign(), 3141 /*isVol = */ false, /*AlwaysInline = */ true, 3142 /*isTailCall = */ false, DstInfo, 3143 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); 3144 3145 MemOpChains.push_back(Cpy); 3146 } else { 3147 SDValue Store = 3148 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); 3149 MemOpChains.push_back(Store); 3150 } 3151 } 3152 } 3153 3154 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 3155 CallConv != CallingConv::AMDGPU_Gfx) { 3156 // Copy special input registers after user input arguments. 3157 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 3158 } 3159 3160 if (!MemOpChains.empty()) 3161 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3162 3163 // Build a sequence of copy-to-reg nodes chained together with token chain 3164 // and flag operands which copy the outgoing args into the appropriate regs. 3165 SDValue InFlag; 3166 for (auto &RegToPass : RegsToPass) { 3167 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 3168 RegToPass.second, InFlag); 3169 InFlag = Chain.getValue(1); 3170 } 3171 3172 3173 SDValue PhysReturnAddrReg; 3174 if (IsTailCall) { 3175 // Since the return is being combined with the call, we need to pass on the 3176 // return address. 3177 3178 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 3179 SDValue ReturnAddrReg = CreateLiveInRegister( 3180 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); 3181 3182 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), 3183 MVT::i64); 3184 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); 3185 InFlag = Chain.getValue(1); 3186 } 3187 3188 // We don't usually want to end the call-sequence here because we would tidy 3189 // the frame up *after* the call, however in the ABI-changing tail-call case 3190 // we've carefully laid out the parameters so that when sp is reset they'll be 3191 // in the correct location. 3192 if (IsTailCall && !IsSibCall) { 3193 Chain = DAG.getCALLSEQ_END(Chain, 3194 DAG.getTargetConstant(NumBytes, DL, MVT::i32), 3195 DAG.getTargetConstant(0, DL, MVT::i32), 3196 InFlag, DL); 3197 InFlag = Chain.getValue(1); 3198 } 3199 3200 std::vector<SDValue> Ops; 3201 Ops.push_back(Chain); 3202 Ops.push_back(Callee); 3203 // Add a redundant copy of the callee global which will not be legalized, as 3204 // we need direct access to the callee later. 3205 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { 3206 const GlobalValue *GV = GSD->getGlobal(); 3207 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 3208 } else { 3209 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); 3210 } 3211 3212 if (IsTailCall) { 3213 // Each tail call may have to adjust the stack by a different amount, so 3214 // this information must travel along with the operation for eventual 3215 // consumption by emitEpilogue. 3216 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 3217 3218 Ops.push_back(PhysReturnAddrReg); 3219 } 3220 3221 // Add argument registers to the end of the list so that they are known live 3222 // into the call. 3223 for (auto &RegToPass : RegsToPass) { 3224 Ops.push_back(DAG.getRegister(RegToPass.first, 3225 RegToPass.second.getValueType())); 3226 } 3227 3228 // Add a register mask operand representing the call-preserved registers. 3229 3230 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); 3231 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3232 assert(Mask && "Missing call preserved mask for calling convention"); 3233 Ops.push_back(DAG.getRegisterMask(Mask)); 3234 3235 if (InFlag.getNode()) 3236 Ops.push_back(InFlag); 3237 3238 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3239 3240 // If we're doing a tall call, use a TC_RETURN here rather than an 3241 // actual call instruction. 3242 if (IsTailCall) { 3243 MFI.setHasTailCall(); 3244 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); 3245 } 3246 3247 // Returns a chain and a flag for retval copy to use. 3248 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 3249 Chain = Call.getValue(0); 3250 InFlag = Call.getValue(1); 3251 3252 uint64_t CalleePopBytes = NumBytes; 3253 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), 3254 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), 3255 InFlag, DL); 3256 if (!Ins.empty()) 3257 InFlag = Chain.getValue(1); 3258 3259 // Handle result values, copying them out of physregs into vregs that we 3260 // return. 3261 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 3262 InVals, IsThisReturn, 3263 IsThisReturn ? OutVals[0] : SDValue()); 3264 } 3265 3266 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, 3267 // except for applying the wave size scale to the increment amount. 3268 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( 3269 SDValue Op, SelectionDAG &DAG) const { 3270 const MachineFunction &MF = DAG.getMachineFunction(); 3271 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3272 3273 SDLoc dl(Op); 3274 EVT VT = Op.getValueType(); 3275 SDValue Tmp1 = Op; 3276 SDValue Tmp2 = Op.getValue(1); 3277 SDValue Tmp3 = Op.getOperand(2); 3278 SDValue Chain = Tmp1.getOperand(0); 3279 3280 Register SPReg = Info->getStackPtrOffsetReg(); 3281 3282 // Chain the dynamic stack allocation so that it doesn't modify the stack 3283 // pointer when other instructions are using the stack. 3284 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 3285 3286 SDValue Size = Tmp2.getOperand(1); 3287 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 3288 Chain = SP.getValue(1); 3289 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); 3290 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 3291 const TargetFrameLowering *TFL = ST.getFrameLowering(); 3292 unsigned Opc = 3293 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 3294 ISD::ADD : ISD::SUB; 3295 3296 SDValue ScaledSize = DAG.getNode( 3297 ISD::SHL, dl, VT, Size, 3298 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); 3299 3300 Align StackAlign = TFL->getStackAlign(); 3301 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value 3302 if (Alignment && *Alignment > StackAlign) { 3303 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 3304 DAG.getConstant(-(uint64_t)Alignment->value() 3305 << ST.getWavefrontSizeLog2(), 3306 dl, VT)); 3307 } 3308 3309 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 3310 Tmp2 = DAG.getCALLSEQ_END( 3311 Chain, DAG.getIntPtrConstant(0, dl, true), 3312 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 3313 3314 return DAG.getMergeValues({Tmp1, Tmp2}, dl); 3315 } 3316 3317 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3318 SelectionDAG &DAG) const { 3319 // We only handle constant sizes here to allow non-entry block, static sized 3320 // allocas. A truly dynamic value is more difficult to support because we 3321 // don't know if the size value is uniform or not. If the size isn't uniform, 3322 // we would need to do a wave reduction to get the maximum size to know how 3323 // much to increment the uniform stack pointer. 3324 SDValue Size = Op.getOperand(1); 3325 if (isa<ConstantSDNode>(Size)) 3326 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. 3327 3328 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); 3329 } 3330 3331 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, 3332 const MachineFunction &MF) const { 3333 Register Reg = StringSwitch<Register>(RegName) 3334 .Case("m0", AMDGPU::M0) 3335 .Case("exec", AMDGPU::EXEC) 3336 .Case("exec_lo", AMDGPU::EXEC_LO) 3337 .Case("exec_hi", AMDGPU::EXEC_HI) 3338 .Case("flat_scratch", AMDGPU::FLAT_SCR) 3339 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 3340 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 3341 .Default(Register()); 3342 3343 if (Reg == AMDGPU::NoRegister) { 3344 report_fatal_error(Twine("invalid register name \"" 3345 + StringRef(RegName) + "\".")); 3346 3347 } 3348 3349 if (!Subtarget->hasFlatScrRegister() && 3350 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 3351 report_fatal_error(Twine("invalid register \"" 3352 + StringRef(RegName) + "\" for subtarget.")); 3353 } 3354 3355 switch (Reg) { 3356 case AMDGPU::M0: 3357 case AMDGPU::EXEC_LO: 3358 case AMDGPU::EXEC_HI: 3359 case AMDGPU::FLAT_SCR_LO: 3360 case AMDGPU::FLAT_SCR_HI: 3361 if (VT.getSizeInBits() == 32) 3362 return Reg; 3363 break; 3364 case AMDGPU::EXEC: 3365 case AMDGPU::FLAT_SCR: 3366 if (VT.getSizeInBits() == 64) 3367 return Reg; 3368 break; 3369 default: 3370 llvm_unreachable("missing register type checking"); 3371 } 3372 3373 report_fatal_error(Twine("invalid type for register \"" 3374 + StringRef(RegName) + "\".")); 3375 } 3376 3377 // If kill is not the last instruction, split the block so kill is always a 3378 // proper terminator. 3379 MachineBasicBlock * 3380 SITargetLowering::splitKillBlock(MachineInstr &MI, 3381 MachineBasicBlock *BB) const { 3382 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); 3383 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3384 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 3385 return SplitBB; 3386 } 3387 3388 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 3389 // \p MI will be the only instruction in the loop body block. Otherwise, it will 3390 // be the first instruction in the remainder block. 3391 // 3392 /// \returns { LoopBody, Remainder } 3393 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 3394 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 3395 MachineFunction *MF = MBB.getParent(); 3396 MachineBasicBlock::iterator I(&MI); 3397 3398 // To insert the loop we need to split the block. Move everything after this 3399 // point to a new block, and insert a new empty block between the two. 3400 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 3401 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 3402 MachineFunction::iterator MBBI(MBB); 3403 ++MBBI; 3404 3405 MF->insert(MBBI, LoopBB); 3406 MF->insert(MBBI, RemainderBB); 3407 3408 LoopBB->addSuccessor(LoopBB); 3409 LoopBB->addSuccessor(RemainderBB); 3410 3411 // Move the rest of the block into a new block. 3412 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 3413 3414 if (InstInLoop) { 3415 auto Next = std::next(I); 3416 3417 // Move instruction to loop body. 3418 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 3419 3420 // Move the rest of the block. 3421 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 3422 } else { 3423 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 3424 } 3425 3426 MBB.addSuccessor(LoopBB); 3427 3428 return std::make_pair(LoopBB, RemainderBB); 3429 } 3430 3431 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 3432 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 3433 MachineBasicBlock *MBB = MI.getParent(); 3434 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3435 auto I = MI.getIterator(); 3436 auto E = std::next(I); 3437 3438 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 3439 .addImm(0); 3440 3441 MIBundleBuilder Bundler(*MBB, I, E); 3442 finalizeBundle(*MBB, Bundler.begin()); 3443 } 3444 3445 MachineBasicBlock * 3446 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 3447 MachineBasicBlock *BB) const { 3448 const DebugLoc &DL = MI.getDebugLoc(); 3449 3450 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3451 3452 MachineBasicBlock *LoopBB; 3453 MachineBasicBlock *RemainderBB; 3454 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3455 3456 // Apparently kill flags are only valid if the def is in the same block? 3457 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 3458 Src->setIsKill(false); 3459 3460 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 3461 3462 MachineBasicBlock::iterator I = LoopBB->end(); 3463 3464 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 3465 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 3466 3467 // Clear TRAP_STS.MEM_VIOL 3468 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 3469 .addImm(0) 3470 .addImm(EncodedReg); 3471 3472 bundleInstWithWaitcnt(MI); 3473 3474 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3475 3476 // Load and check TRAP_STS.MEM_VIOL 3477 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 3478 .addImm(EncodedReg); 3479 3480 // FIXME: Do we need to use an isel pseudo that may clobber scc? 3481 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 3482 .addReg(Reg, RegState::Kill) 3483 .addImm(0); 3484 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 3485 .addMBB(LoopBB); 3486 3487 return RemainderBB; 3488 } 3489 3490 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 3491 // wavefront. If the value is uniform and just happens to be in a VGPR, this 3492 // will only do one iteration. In the worst case, this will loop 64 times. 3493 // 3494 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 3495 static MachineBasicBlock::iterator 3496 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, 3497 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, 3498 const DebugLoc &DL, const MachineOperand &Idx, 3499 unsigned InitReg, unsigned ResultReg, unsigned PhiReg, 3500 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, 3501 Register &SGPRIdxReg) { 3502 3503 MachineFunction *MF = OrigBB.getParent(); 3504 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3505 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3506 MachineBasicBlock::iterator I = LoopBB.begin(); 3507 3508 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3509 Register PhiExec = MRI.createVirtualRegister(BoolRC); 3510 Register NewExec = MRI.createVirtualRegister(BoolRC); 3511 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3512 Register CondReg = MRI.createVirtualRegister(BoolRC); 3513 3514 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 3515 .addReg(InitReg) 3516 .addMBB(&OrigBB) 3517 .addReg(ResultReg) 3518 .addMBB(&LoopBB); 3519 3520 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 3521 .addReg(InitSaveExecReg) 3522 .addMBB(&OrigBB) 3523 .addReg(NewExec) 3524 .addMBB(&LoopBB); 3525 3526 // Read the next variant <- also loop target. 3527 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 3528 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); 3529 3530 // Compare the just read M0 value to all possible Idx values. 3531 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 3532 .addReg(CurrentIdxReg) 3533 .addReg(Idx.getReg(), 0, Idx.getSubReg()); 3534 3535 // Update EXEC, save the original EXEC value to VCC. 3536 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 3537 : AMDGPU::S_AND_SAVEEXEC_B64), 3538 NewExec) 3539 .addReg(CondReg, RegState::Kill); 3540 3541 MRI.setSimpleHint(NewExec, CondReg); 3542 3543 if (UseGPRIdxMode) { 3544 if (Offset == 0) { 3545 SGPRIdxReg = CurrentIdxReg; 3546 } else { 3547 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 3548 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) 3549 .addReg(CurrentIdxReg, RegState::Kill) 3550 .addImm(Offset); 3551 } 3552 } else { 3553 // Move index from VCC into M0 3554 if (Offset == 0) { 3555 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 3556 .addReg(CurrentIdxReg, RegState::Kill); 3557 } else { 3558 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3559 .addReg(CurrentIdxReg, RegState::Kill) 3560 .addImm(Offset); 3561 } 3562 } 3563 3564 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 3565 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3566 MachineInstr *InsertPt = 3567 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 3568 : AMDGPU::S_XOR_B64_term), Exec) 3569 .addReg(Exec) 3570 .addReg(NewExec); 3571 3572 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 3573 // s_cbranch_scc0? 3574 3575 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 3576 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 3577 .addMBB(&LoopBB); 3578 3579 return InsertPt->getIterator(); 3580 } 3581 3582 // This has slightly sub-optimal regalloc when the source vector is killed by 3583 // the read. The register allocator does not understand that the kill is 3584 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 3585 // subregister from it, using 1 more VGPR than necessary. This was saved when 3586 // this was expanded after register allocation. 3587 static MachineBasicBlock::iterator 3588 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, 3589 unsigned InitResultReg, unsigned PhiReg, int Offset, 3590 bool UseGPRIdxMode, Register &SGPRIdxReg) { 3591 MachineFunction *MF = MBB.getParent(); 3592 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3593 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3594 MachineRegisterInfo &MRI = MF->getRegInfo(); 3595 const DebugLoc &DL = MI.getDebugLoc(); 3596 MachineBasicBlock::iterator I(&MI); 3597 3598 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3599 Register DstReg = MI.getOperand(0).getReg(); 3600 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 3601 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 3602 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 3603 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 3604 3605 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 3606 3607 // Save the EXEC mask 3608 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 3609 .addReg(Exec); 3610 3611 MachineBasicBlock *LoopBB; 3612 MachineBasicBlock *RemainderBB; 3613 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 3614 3615 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3616 3617 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 3618 InitResultReg, DstReg, PhiReg, TmpExec, 3619 Offset, UseGPRIdxMode, SGPRIdxReg); 3620 3621 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); 3622 MachineFunction::iterator MBBI(LoopBB); 3623 ++MBBI; 3624 MF->insert(MBBI, LandingPad); 3625 LoopBB->removeSuccessor(RemainderBB); 3626 LandingPad->addSuccessor(RemainderBB); 3627 LoopBB->addSuccessor(LandingPad); 3628 MachineBasicBlock::iterator First = LandingPad->begin(); 3629 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) 3630 .addReg(SaveExec); 3631 3632 return InsPt; 3633 } 3634 3635 // Returns subreg index, offset 3636 static std::pair<unsigned, int> 3637 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 3638 const TargetRegisterClass *SuperRC, 3639 unsigned VecReg, 3640 int Offset) { 3641 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 3642 3643 // Skip out of bounds offsets, or else we would end up using an undefined 3644 // register. 3645 if (Offset >= NumElts || Offset < 0) 3646 return std::make_pair(AMDGPU::sub0, Offset); 3647 3648 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); 3649 } 3650 3651 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, 3652 MachineRegisterInfo &MRI, MachineInstr &MI, 3653 int Offset) { 3654 MachineBasicBlock *MBB = MI.getParent(); 3655 const DebugLoc &DL = MI.getDebugLoc(); 3656 MachineBasicBlock::iterator I(&MI); 3657 3658 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3659 3660 assert(Idx->getReg() != AMDGPU::NoRegister); 3661 3662 if (Offset == 0) { 3663 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); 3664 } else { 3665 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 3666 .add(*Idx) 3667 .addImm(Offset); 3668 } 3669 } 3670 3671 static Register getIndirectSGPRIdx(const SIInstrInfo *TII, 3672 MachineRegisterInfo &MRI, MachineInstr &MI, 3673 int Offset) { 3674 MachineBasicBlock *MBB = MI.getParent(); 3675 const DebugLoc &DL = MI.getDebugLoc(); 3676 MachineBasicBlock::iterator I(&MI); 3677 3678 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3679 3680 if (Offset == 0) 3681 return Idx->getReg(); 3682 3683 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 3684 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 3685 .add(*Idx) 3686 .addImm(Offset); 3687 return Tmp; 3688 } 3689 3690 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 3691 MachineBasicBlock &MBB, 3692 const GCNSubtarget &ST) { 3693 const SIInstrInfo *TII = ST.getInstrInfo(); 3694 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3695 MachineFunction *MF = MBB.getParent(); 3696 MachineRegisterInfo &MRI = MF->getRegInfo(); 3697 3698 Register Dst = MI.getOperand(0).getReg(); 3699 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3700 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 3701 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3702 3703 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 3704 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3705 3706 unsigned SubReg; 3707 std::tie(SubReg, Offset) 3708 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 3709 3710 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3711 3712 // Check for a SGPR index. 3713 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3714 MachineBasicBlock::iterator I(&MI); 3715 const DebugLoc &DL = MI.getDebugLoc(); 3716 3717 if (UseGPRIdxMode) { 3718 // TODO: Look at the uses to avoid the copy. This may require rescheduling 3719 // to avoid interfering with other uses, so probably requires a new 3720 // optimization pass. 3721 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3722 3723 const MCInstrDesc &GPRIDXDesc = 3724 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3725 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3726 .addReg(SrcReg) 3727 .addReg(Idx) 3728 .addImm(SubReg); 3729 } else { 3730 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3731 3732 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3733 .addReg(SrcReg, 0, SubReg) 3734 .addReg(SrcReg, RegState::Implicit); 3735 } 3736 3737 MI.eraseFromParent(); 3738 3739 return &MBB; 3740 } 3741 3742 // Control flow needs to be inserted if indexing with a VGPR. 3743 const DebugLoc &DL = MI.getDebugLoc(); 3744 MachineBasicBlock::iterator I(&MI); 3745 3746 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3747 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3748 3749 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 3750 3751 Register SGPRIdxReg; 3752 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, 3753 UseGPRIdxMode, SGPRIdxReg); 3754 3755 MachineBasicBlock *LoopBB = InsPt->getParent(); 3756 3757 if (UseGPRIdxMode) { 3758 const MCInstrDesc &GPRIDXDesc = 3759 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 3760 3761 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 3762 .addReg(SrcReg) 3763 .addReg(SGPRIdxReg) 3764 .addImm(SubReg); 3765 } else { 3766 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 3767 .addReg(SrcReg, 0, SubReg) 3768 .addReg(SrcReg, RegState::Implicit); 3769 } 3770 3771 MI.eraseFromParent(); 3772 3773 return LoopBB; 3774 } 3775 3776 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 3777 MachineBasicBlock &MBB, 3778 const GCNSubtarget &ST) { 3779 const SIInstrInfo *TII = ST.getInstrInfo(); 3780 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 3781 MachineFunction *MF = MBB.getParent(); 3782 MachineRegisterInfo &MRI = MF->getRegInfo(); 3783 3784 Register Dst = MI.getOperand(0).getReg(); 3785 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 3786 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 3787 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 3788 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 3789 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 3790 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 3791 3792 // This can be an immediate, but will be folded later. 3793 assert(Val->getReg()); 3794 3795 unsigned SubReg; 3796 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 3797 SrcVec->getReg(), 3798 Offset); 3799 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 3800 3801 if (Idx->getReg() == AMDGPU::NoRegister) { 3802 MachineBasicBlock::iterator I(&MI); 3803 const DebugLoc &DL = MI.getDebugLoc(); 3804 3805 assert(Offset == 0); 3806 3807 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 3808 .add(*SrcVec) 3809 .add(*Val) 3810 .addImm(SubReg); 3811 3812 MI.eraseFromParent(); 3813 return &MBB; 3814 } 3815 3816 // Check for a SGPR index. 3817 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 3818 MachineBasicBlock::iterator I(&MI); 3819 const DebugLoc &DL = MI.getDebugLoc(); 3820 3821 if (UseGPRIdxMode) { 3822 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 3823 3824 const MCInstrDesc &GPRIDXDesc = 3825 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 3826 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 3827 .addReg(SrcVec->getReg()) 3828 .add(*Val) 3829 .addReg(Idx) 3830 .addImm(SubReg); 3831 } else { 3832 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 3833 3834 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 3835 TRI.getRegSizeInBits(*VecRC), 32, false); 3836 BuildMI(MBB, I, DL, MovRelDesc, Dst) 3837 .addReg(SrcVec->getReg()) 3838 .add(*Val) 3839 .addImm(SubReg); 3840 } 3841 MI.eraseFromParent(); 3842 return &MBB; 3843 } 3844 3845 // Control flow needs to be inserted if indexing with a VGPR. 3846 if (Val->isReg()) 3847 MRI.clearKillFlags(Val->getReg()); 3848 3849 const DebugLoc &DL = MI.getDebugLoc(); 3850 3851 Register PhiReg = MRI.createVirtualRegister(VecRC); 3852 3853 Register SGPRIdxReg; 3854 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, 3855 UseGPRIdxMode, SGPRIdxReg); 3856 MachineBasicBlock *LoopBB = InsPt->getParent(); 3857 3858 if (UseGPRIdxMode) { 3859 const MCInstrDesc &GPRIDXDesc = 3860 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 3861 3862 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 3863 .addReg(PhiReg) 3864 .add(*Val) 3865 .addReg(SGPRIdxReg) 3866 .addImm(AMDGPU::sub0); 3867 } else { 3868 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 3869 TRI.getRegSizeInBits(*VecRC), 32, false); 3870 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) 3871 .addReg(PhiReg) 3872 .add(*Val) 3873 .addImm(AMDGPU::sub0); 3874 } 3875 3876 MI.eraseFromParent(); 3877 return LoopBB; 3878 } 3879 3880 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 3881 MachineInstr &MI, MachineBasicBlock *BB) const { 3882 3883 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 3884 MachineFunction *MF = BB->getParent(); 3885 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 3886 3887 switch (MI.getOpcode()) { 3888 case AMDGPU::S_UADDO_PSEUDO: 3889 case AMDGPU::S_USUBO_PSEUDO: { 3890 const DebugLoc &DL = MI.getDebugLoc(); 3891 MachineOperand &Dest0 = MI.getOperand(0); 3892 MachineOperand &Dest1 = MI.getOperand(1); 3893 MachineOperand &Src0 = MI.getOperand(2); 3894 MachineOperand &Src1 = MI.getOperand(3); 3895 3896 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 3897 ? AMDGPU::S_ADD_I32 3898 : AMDGPU::S_SUB_I32; 3899 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); 3900 3901 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) 3902 .addImm(1) 3903 .addImm(0); 3904 3905 MI.eraseFromParent(); 3906 return BB; 3907 } 3908 case AMDGPU::S_ADD_U64_PSEUDO: 3909 case AMDGPU::S_SUB_U64_PSEUDO: { 3910 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3911 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3912 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3913 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 3914 const DebugLoc &DL = MI.getDebugLoc(); 3915 3916 MachineOperand &Dest = MI.getOperand(0); 3917 MachineOperand &Src0 = MI.getOperand(1); 3918 MachineOperand &Src1 = MI.getOperand(2); 3919 3920 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3921 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 3922 3923 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 3924 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 3925 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 3926 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 3927 3928 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 3929 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 3930 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 3931 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 3932 3933 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 3934 3935 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 3936 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 3937 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); 3938 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); 3939 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 3940 .addReg(DestSub0) 3941 .addImm(AMDGPU::sub0) 3942 .addReg(DestSub1) 3943 .addImm(AMDGPU::sub1); 3944 MI.eraseFromParent(); 3945 return BB; 3946 } 3947 case AMDGPU::V_ADD_U64_PSEUDO: 3948 case AMDGPU::V_SUB_U64_PSEUDO: { 3949 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 3950 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3951 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3952 const DebugLoc &DL = MI.getDebugLoc(); 3953 3954 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); 3955 3956 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 3957 3958 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3959 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 3960 3961 Register CarryReg = MRI.createVirtualRegister(CarryRC); 3962 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 3963 3964 MachineOperand &Dest = MI.getOperand(0); 3965 MachineOperand &Src0 = MI.getOperand(1); 3966 MachineOperand &Src1 = MI.getOperand(2); 3967 3968 const TargetRegisterClass *Src0RC = Src0.isReg() 3969 ? MRI.getRegClass(Src0.getReg()) 3970 : &AMDGPU::VReg_64RegClass; 3971 const TargetRegisterClass *Src1RC = Src1.isReg() 3972 ? MRI.getRegClass(Src1.getReg()) 3973 : &AMDGPU::VReg_64RegClass; 3974 3975 const TargetRegisterClass *Src0SubRC = 3976 TRI->getSubRegClass(Src0RC, AMDGPU::sub0); 3977 const TargetRegisterClass *Src1SubRC = 3978 TRI->getSubRegClass(Src1RC, AMDGPU::sub1); 3979 3980 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( 3981 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 3982 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( 3983 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 3984 3985 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( 3986 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 3987 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( 3988 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 3989 3990 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 3991 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 3992 .addReg(CarryReg, RegState::Define) 3993 .add(SrcReg0Sub0) 3994 .add(SrcReg1Sub0) 3995 .addImm(0); // clamp bit 3996 3997 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 3998 MachineInstr *HiHalf = 3999 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 4000 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 4001 .add(SrcReg0Sub1) 4002 .add(SrcReg1Sub1) 4003 .addReg(CarryReg, RegState::Kill) 4004 .addImm(0); // clamp bit 4005 4006 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4007 .addReg(DestSub0) 4008 .addImm(AMDGPU::sub0) 4009 .addReg(DestSub1) 4010 .addImm(AMDGPU::sub1); 4011 TII->legalizeOperands(*LoHalf); 4012 TII->legalizeOperands(*HiHalf); 4013 MI.eraseFromParent(); 4014 return BB; 4015 } 4016 case AMDGPU::S_ADD_CO_PSEUDO: 4017 case AMDGPU::S_SUB_CO_PSEUDO: { 4018 // This pseudo has a chance to be selected 4019 // only from uniform add/subcarry node. All the VGPR operands 4020 // therefore assumed to be splat vectors. 4021 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4022 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4023 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4024 MachineBasicBlock::iterator MII = MI; 4025 const DebugLoc &DL = MI.getDebugLoc(); 4026 MachineOperand &Dest = MI.getOperand(0); 4027 MachineOperand &CarryDest = MI.getOperand(1); 4028 MachineOperand &Src0 = MI.getOperand(2); 4029 MachineOperand &Src1 = MI.getOperand(3); 4030 MachineOperand &Src2 = MI.getOperand(4); 4031 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 4032 ? AMDGPU::S_ADDC_U32 4033 : AMDGPU::S_SUBB_U32; 4034 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { 4035 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4036 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) 4037 .addReg(Src0.getReg()); 4038 Src0.setReg(RegOp0); 4039 } 4040 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { 4041 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4042 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) 4043 .addReg(Src1.getReg()); 4044 Src1.setReg(RegOp1); 4045 } 4046 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4047 if (TRI->isVectorRegister(MRI, Src2.getReg())) { 4048 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) 4049 .addReg(Src2.getReg()); 4050 Src2.setReg(RegOp2); 4051 } 4052 4053 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); 4054 if (TRI->getRegSizeInBits(*Src2RC) == 64) { 4055 if (ST.hasScalarCompareEq64()) { 4056 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) 4057 .addReg(Src2.getReg()) 4058 .addImm(0); 4059 } else { 4060 const TargetRegisterClass *SubRC = 4061 TRI->getSubRegClass(Src2RC, AMDGPU::sub0); 4062 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( 4063 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); 4064 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( 4065 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); 4066 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4067 4068 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) 4069 .add(Src2Sub0) 4070 .add(Src2Sub1); 4071 4072 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4073 .addReg(Src2_32, RegState::Kill) 4074 .addImm(0); 4075 } 4076 } else { 4077 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32)) 4078 .addReg(Src2.getReg()) 4079 .addImm(0); 4080 } 4081 4082 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); 4083 4084 BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg()) 4085 .addReg(AMDGPU::SCC); 4086 MI.eraseFromParent(); 4087 return BB; 4088 } 4089 case AMDGPU::SI_INIT_M0: { 4090 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 4091 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 4092 .add(MI.getOperand(0)); 4093 MI.eraseFromParent(); 4094 return BB; 4095 } 4096 case AMDGPU::GET_GROUPSTATICSIZE: { 4097 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 4098 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 4099 DebugLoc DL = MI.getDebugLoc(); 4100 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 4101 .add(MI.getOperand(0)) 4102 .addImm(MFI->getLDSSize()); 4103 MI.eraseFromParent(); 4104 return BB; 4105 } 4106 case AMDGPU::SI_INDIRECT_SRC_V1: 4107 case AMDGPU::SI_INDIRECT_SRC_V2: 4108 case AMDGPU::SI_INDIRECT_SRC_V4: 4109 case AMDGPU::SI_INDIRECT_SRC_V8: 4110 case AMDGPU::SI_INDIRECT_SRC_V16: 4111 case AMDGPU::SI_INDIRECT_SRC_V32: 4112 return emitIndirectSrc(MI, *BB, *getSubtarget()); 4113 case AMDGPU::SI_INDIRECT_DST_V1: 4114 case AMDGPU::SI_INDIRECT_DST_V2: 4115 case AMDGPU::SI_INDIRECT_DST_V4: 4116 case AMDGPU::SI_INDIRECT_DST_V8: 4117 case AMDGPU::SI_INDIRECT_DST_V16: 4118 case AMDGPU::SI_INDIRECT_DST_V32: 4119 return emitIndirectDst(MI, *BB, *getSubtarget()); 4120 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 4121 case AMDGPU::SI_KILL_I1_PSEUDO: 4122 return splitKillBlock(MI, BB); 4123 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 4124 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4125 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4126 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4127 4128 Register Dst = MI.getOperand(0).getReg(); 4129 Register Src0 = MI.getOperand(1).getReg(); 4130 Register Src1 = MI.getOperand(2).getReg(); 4131 const DebugLoc &DL = MI.getDebugLoc(); 4132 Register SrcCond = MI.getOperand(3).getReg(); 4133 4134 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4135 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4136 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4137 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 4138 4139 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 4140 .addReg(SrcCond); 4141 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 4142 .addImm(0) 4143 .addReg(Src0, 0, AMDGPU::sub0) 4144 .addImm(0) 4145 .addReg(Src1, 0, AMDGPU::sub0) 4146 .addReg(SrcCondCopy); 4147 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 4148 .addImm(0) 4149 .addReg(Src0, 0, AMDGPU::sub1) 4150 .addImm(0) 4151 .addReg(Src1, 0, AMDGPU::sub1) 4152 .addReg(SrcCondCopy); 4153 4154 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 4155 .addReg(DstLo) 4156 .addImm(AMDGPU::sub0) 4157 .addReg(DstHi) 4158 .addImm(AMDGPU::sub1); 4159 MI.eraseFromParent(); 4160 return BB; 4161 } 4162 case AMDGPU::SI_BR_UNDEF: { 4163 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4164 const DebugLoc &DL = MI.getDebugLoc(); 4165 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4166 .add(MI.getOperand(0)); 4167 Br->getOperand(1).setIsUndef(true); // read undef SCC 4168 MI.eraseFromParent(); 4169 return BB; 4170 } 4171 case AMDGPU::ADJCALLSTACKUP: 4172 case AMDGPU::ADJCALLSTACKDOWN: { 4173 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 4174 MachineInstrBuilder MIB(*MF, &MI); 4175 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 4176 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); 4177 return BB; 4178 } 4179 case AMDGPU::SI_CALL_ISEL: { 4180 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4181 const DebugLoc &DL = MI.getDebugLoc(); 4182 4183 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 4184 4185 MachineInstrBuilder MIB; 4186 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 4187 4188 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) 4189 MIB.add(MI.getOperand(I)); 4190 4191 MIB.cloneMemRefs(MI); 4192 MI.eraseFromParent(); 4193 return BB; 4194 } 4195 case AMDGPU::V_ADD_CO_U32_e32: 4196 case AMDGPU::V_SUB_CO_U32_e32: 4197 case AMDGPU::V_SUBREV_CO_U32_e32: { 4198 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 4199 const DebugLoc &DL = MI.getDebugLoc(); 4200 unsigned Opc = MI.getOpcode(); 4201 4202 bool NeedClampOperand = false; 4203 if (TII->pseudoToMCOpcode(Opc) == -1) { 4204 Opc = AMDGPU::getVOPe64(Opc); 4205 NeedClampOperand = true; 4206 } 4207 4208 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 4209 if (TII->isVOP3(*I)) { 4210 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4211 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4212 I.addReg(TRI->getVCC(), RegState::Define); 4213 } 4214 I.add(MI.getOperand(1)) 4215 .add(MI.getOperand(2)); 4216 if (NeedClampOperand) 4217 I.addImm(0); // clamp bit for e64 encoding 4218 4219 TII->legalizeOperands(*I); 4220 4221 MI.eraseFromParent(); 4222 return BB; 4223 } 4224 case AMDGPU::DS_GWS_INIT: 4225 case AMDGPU::DS_GWS_SEMA_V: 4226 case AMDGPU::DS_GWS_SEMA_BR: 4227 case AMDGPU::DS_GWS_SEMA_P: 4228 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 4229 case AMDGPU::DS_GWS_BARRIER: 4230 // A s_waitcnt 0 is required to be the instruction immediately following. 4231 if (getSubtarget()->hasGWSAutoReplay()) { 4232 bundleInstWithWaitcnt(MI); 4233 return BB; 4234 } 4235 4236 return emitGWSMemViolTestLoop(MI, BB); 4237 case AMDGPU::S_SETREG_B32: { 4238 // Try to optimize cases that only set the denormal mode or rounding mode. 4239 // 4240 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or 4241 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode 4242 // instead. 4243 // 4244 // FIXME: This could be predicates on the immediate, but tablegen doesn't 4245 // allow you to have a no side effect instruction in the output of a 4246 // sideeffecting pattern. 4247 unsigned ID, Offset, Width; 4248 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); 4249 if (ID != AMDGPU::Hwreg::ID_MODE) 4250 return BB; 4251 4252 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); 4253 const unsigned SetMask = WidthMask << Offset; 4254 4255 if (getSubtarget()->hasDenormModeInst()) { 4256 unsigned SetDenormOp = 0; 4257 unsigned SetRoundOp = 0; 4258 4259 // The dedicated instructions can only set the whole denorm or round mode 4260 // at once, not a subset of bits in either. 4261 if (SetMask == 4262 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { 4263 // If this fully sets both the round and denorm mode, emit the two 4264 // dedicated instructions for these. 4265 SetRoundOp = AMDGPU::S_ROUND_MODE; 4266 SetDenormOp = AMDGPU::S_DENORM_MODE; 4267 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { 4268 SetRoundOp = AMDGPU::S_ROUND_MODE; 4269 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { 4270 SetDenormOp = AMDGPU::S_DENORM_MODE; 4271 } 4272 4273 if (SetRoundOp || SetDenormOp) { 4274 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4275 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); 4276 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { 4277 unsigned ImmVal = Def->getOperand(1).getImm(); 4278 if (SetRoundOp) { 4279 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) 4280 .addImm(ImmVal & 0xf); 4281 4282 // If we also have the denorm mode, get just the denorm mode bits. 4283 ImmVal >>= 4; 4284 } 4285 4286 if (SetDenormOp) { 4287 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) 4288 .addImm(ImmVal & 0xf); 4289 } 4290 4291 MI.eraseFromParent(); 4292 return BB; 4293 } 4294 } 4295 } 4296 4297 // If only FP bits are touched, used the no side effects pseudo. 4298 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | 4299 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) 4300 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); 4301 4302 return BB; 4303 } 4304 default: 4305 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 4306 } 4307 } 4308 4309 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { 4310 return isTypeLegal(VT.getScalarType()); 4311 } 4312 4313 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 4314 // This currently forces unfolding various combinations of fsub into fma with 4315 // free fneg'd operands. As long as we have fast FMA (controlled by 4316 // isFMAFasterThanFMulAndFAdd), we should perform these. 4317 4318 // When fma is quarter rate, for f64 where add / sub are at best half rate, 4319 // most of these combines appear to be cycle neutral but save on instruction 4320 // count / code size. 4321 return true; 4322 } 4323 4324 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 4325 EVT VT) const { 4326 if (!VT.isVector()) { 4327 return MVT::i1; 4328 } 4329 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 4330 } 4331 4332 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 4333 // TODO: Should i16 be used always if legal? For now it would force VALU 4334 // shifts. 4335 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 4336 } 4337 4338 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { 4339 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) 4340 ? Ty.changeElementSize(16) 4341 : Ty.changeElementSize(32); 4342 } 4343 4344 // Answering this is somewhat tricky and depends on the specific device which 4345 // have different rates for fma or all f64 operations. 4346 // 4347 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 4348 // regardless of which device (although the number of cycles differs between 4349 // devices), so it is always profitable for f64. 4350 // 4351 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 4352 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 4353 // which we can always do even without fused FP ops since it returns the same 4354 // result as the separate operations and since it is always full 4355 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 4356 // however does not support denormals, so we do report fma as faster if we have 4357 // a fast fma device and require denormals. 4358 // 4359 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4360 EVT VT) const { 4361 VT = VT.getScalarType(); 4362 4363 switch (VT.getSimpleVT().SimpleTy) { 4364 case MVT::f32: { 4365 // If mad is not available this depends only on if f32 fma is full rate. 4366 if (!Subtarget->hasMadMacF32Insts()) 4367 return Subtarget->hasFastFMAF32(); 4368 4369 // Otherwise f32 mad is always full rate and returns the same result as 4370 // the separate operations so should be preferred over fma. 4371 // However does not support denomals. 4372 if (hasFP32Denormals(MF)) 4373 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 4374 4375 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 4376 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 4377 } 4378 case MVT::f64: 4379 return true; 4380 case MVT::f16: 4381 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); 4382 default: 4383 break; 4384 } 4385 4386 return false; 4387 } 4388 4389 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, 4390 const SDNode *N) const { 4391 // TODO: Check future ftz flag 4392 // v_mad_f32/v_mac_f32 do not support denormals. 4393 EVT VT = N->getValueType(0); 4394 if (VT == MVT::f32) 4395 return Subtarget->hasMadMacF32Insts() && 4396 !hasFP32Denormals(DAG.getMachineFunction()); 4397 if (VT == MVT::f16) { 4398 return Subtarget->hasMadF16() && 4399 !hasFP64FP16Denormals(DAG.getMachineFunction()); 4400 } 4401 4402 return false; 4403 } 4404 4405 //===----------------------------------------------------------------------===// 4406 // Custom DAG Lowering Operations 4407 //===----------------------------------------------------------------------===// 4408 4409 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4410 // wider vector type is legal. 4411 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 4412 SelectionDAG &DAG) const { 4413 unsigned Opc = Op.getOpcode(); 4414 EVT VT = Op.getValueType(); 4415 assert(VT == MVT::v4f16 || VT == MVT::v4i16); 4416 4417 SDValue Lo, Hi; 4418 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4419 4420 SDLoc SL(Op); 4421 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 4422 Op->getFlags()); 4423 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 4424 Op->getFlags()); 4425 4426 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4427 } 4428 4429 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 4430 // wider vector type is legal. 4431 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 4432 SelectionDAG &DAG) const { 4433 unsigned Opc = Op.getOpcode(); 4434 EVT VT = Op.getValueType(); 4435 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || 4436 VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32); 4437 4438 SDValue Lo0, Hi0; 4439 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4440 SDValue Lo1, Hi1; 4441 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4442 4443 SDLoc SL(Op); 4444 4445 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 4446 Op->getFlags()); 4447 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 4448 Op->getFlags()); 4449 4450 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4451 } 4452 4453 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 4454 SelectionDAG &DAG) const { 4455 unsigned Opc = Op.getOpcode(); 4456 EVT VT = Op.getValueType(); 4457 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || 4458 VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32); 4459 4460 SDValue Lo0, Hi0; 4461 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 4462 SDValue Lo1, Hi1; 4463 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 4464 SDValue Lo2, Hi2; 4465 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 4466 4467 SDLoc SL(Op); 4468 4469 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2, 4470 Op->getFlags()); 4471 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2, 4472 Op->getFlags()); 4473 4474 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 4475 } 4476 4477 4478 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4479 switch (Op.getOpcode()) { 4480 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 4481 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 4482 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4483 case ISD::LOAD: { 4484 SDValue Result = LowerLOAD(Op, DAG); 4485 assert((!Result.getNode() || 4486 Result.getNode()->getNumValues() == 2) && 4487 "Load should return a value and a chain"); 4488 return Result; 4489 } 4490 4491 case ISD::FSIN: 4492 case ISD::FCOS: 4493 return LowerTrig(Op, DAG); 4494 case ISD::SELECT: return LowerSELECT(Op, DAG); 4495 case ISD::FDIV: return LowerFDIV(Op, DAG); 4496 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 4497 case ISD::STORE: return LowerSTORE(Op, DAG); 4498 case ISD::GlobalAddress: { 4499 MachineFunction &MF = DAG.getMachineFunction(); 4500 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 4501 return LowerGlobalAddress(MFI, Op, DAG); 4502 } 4503 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4504 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 4505 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 4506 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 4507 case ISD::INSERT_SUBVECTOR: 4508 return lowerINSERT_SUBVECTOR(Op, DAG); 4509 case ISD::INSERT_VECTOR_ELT: 4510 return lowerINSERT_VECTOR_ELT(Op, DAG); 4511 case ISD::EXTRACT_VECTOR_ELT: 4512 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4513 case ISD::VECTOR_SHUFFLE: 4514 return lowerVECTOR_SHUFFLE(Op, DAG); 4515 case ISD::BUILD_VECTOR: 4516 return lowerBUILD_VECTOR(Op, DAG); 4517 case ISD::FP_ROUND: 4518 return lowerFP_ROUND(Op, DAG); 4519 case ISD::TRAP: 4520 return lowerTRAP(Op, DAG); 4521 case ISD::DEBUGTRAP: 4522 return lowerDEBUGTRAP(Op, DAG); 4523 case ISD::FABS: 4524 case ISD::FNEG: 4525 case ISD::FCANONICALIZE: 4526 case ISD::BSWAP: 4527 return splitUnaryVectorOp(Op, DAG); 4528 case ISD::FMINNUM: 4529 case ISD::FMAXNUM: 4530 return lowerFMINNUM_FMAXNUM(Op, DAG); 4531 case ISD::FMA: 4532 return splitTernaryVectorOp(Op, DAG); 4533 case ISD::FP_TO_SINT: 4534 case ISD::FP_TO_UINT: 4535 return LowerFP_TO_INT(Op, DAG); 4536 case ISD::SHL: 4537 case ISD::SRA: 4538 case ISD::SRL: 4539 case ISD::ADD: 4540 case ISD::SUB: 4541 case ISD::MUL: 4542 case ISD::SMIN: 4543 case ISD::SMAX: 4544 case ISD::UMIN: 4545 case ISD::UMAX: 4546 case ISD::FADD: 4547 case ISD::FMUL: 4548 case ISD::FMINNUM_IEEE: 4549 case ISD::FMAXNUM_IEEE: 4550 case ISD::UADDSAT: 4551 case ISD::USUBSAT: 4552 case ISD::SADDSAT: 4553 case ISD::SSUBSAT: 4554 return splitBinaryVectorOp(Op, DAG); 4555 case ISD::SMULO: 4556 case ISD::UMULO: 4557 return lowerXMULO(Op, DAG); 4558 case ISD::DYNAMIC_STACKALLOC: 4559 return LowerDYNAMIC_STACKALLOC(Op, DAG); 4560 } 4561 return SDValue(); 4562 } 4563 4564 // Used for D16: Casts the result of an instruction into the right vector, 4565 // packs values if loads return unpacked values. 4566 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 4567 const SDLoc &DL, 4568 SelectionDAG &DAG, bool Unpacked) { 4569 if (!LoadVT.isVector()) 4570 return Result; 4571 4572 // Cast back to the original packed type or to a larger type that is a 4573 // multiple of 32 bit for D16. Widening the return type is a required for 4574 // legalization. 4575 EVT FittingLoadVT = LoadVT; 4576 if ((LoadVT.getVectorNumElements() % 2) == 1) { 4577 FittingLoadVT = 4578 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 4579 LoadVT.getVectorNumElements() + 1); 4580 } 4581 4582 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 4583 // Truncate to v2i16/v4i16. 4584 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); 4585 4586 // Workaround legalizer not scalarizing truncate after vector op 4587 // legalization but not creating intermediate vector trunc. 4588 SmallVector<SDValue, 4> Elts; 4589 DAG.ExtractVectorElements(Result, Elts); 4590 for (SDValue &Elt : Elts) 4591 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 4592 4593 // Pad illegal v1i16/v3fi6 to v4i16 4594 if ((LoadVT.getVectorNumElements() % 2) == 1) 4595 Elts.push_back(DAG.getUNDEF(MVT::i16)); 4596 4597 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 4598 4599 // Bitcast to original type (v2f16/v4f16). 4600 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 4601 } 4602 4603 // Cast back to the original packed type. 4604 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 4605 } 4606 4607 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 4608 MemSDNode *M, 4609 SelectionDAG &DAG, 4610 ArrayRef<SDValue> Ops, 4611 bool IsIntrinsic) const { 4612 SDLoc DL(M); 4613 4614 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 4615 EVT LoadVT = M->getValueType(0); 4616 4617 EVT EquivLoadVT = LoadVT; 4618 if (LoadVT.isVector()) { 4619 if (Unpacked) { 4620 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 4621 LoadVT.getVectorNumElements()); 4622 } else if ((LoadVT.getVectorNumElements() % 2) == 1) { 4623 // Widen v3f16 to legal type 4624 EquivLoadVT = 4625 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 4626 LoadVT.getVectorNumElements() + 1); 4627 } 4628 } 4629 4630 // Change from v4f16/v2f16 to EquivLoadVT. 4631 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 4632 4633 SDValue Load 4634 = DAG.getMemIntrinsicNode( 4635 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 4636 VTList, Ops, M->getMemoryVT(), 4637 M->getMemOperand()); 4638 4639 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 4640 4641 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 4642 } 4643 4644 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 4645 SelectionDAG &DAG, 4646 ArrayRef<SDValue> Ops) const { 4647 SDLoc DL(M); 4648 EVT LoadVT = M->getValueType(0); 4649 EVT EltType = LoadVT.getScalarType(); 4650 EVT IntVT = LoadVT.changeTypeToInteger(); 4651 4652 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 4653 4654 unsigned Opc = 4655 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD; 4656 4657 if (IsD16) { 4658 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 4659 } 4660 4661 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 4662 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 4663 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 4664 4665 if (isTypeLegal(LoadVT)) { 4666 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 4667 M->getMemOperand(), DAG); 4668 } 4669 4670 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 4671 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 4672 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 4673 M->getMemOperand(), DAG); 4674 return DAG.getMergeValues( 4675 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 4676 DL); 4677 } 4678 4679 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 4680 SDNode *N, SelectionDAG &DAG) { 4681 EVT VT = N->getValueType(0); 4682 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4683 unsigned CondCode = CD->getZExtValue(); 4684 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) 4685 return DAG.getUNDEF(VT); 4686 4687 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 4688 4689 SDValue LHS = N->getOperand(1); 4690 SDValue RHS = N->getOperand(2); 4691 4692 SDLoc DL(N); 4693 4694 EVT CmpVT = LHS.getValueType(); 4695 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 4696 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 4697 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4698 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 4699 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 4700 } 4701 4702 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 4703 4704 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4705 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4706 4707 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 4708 DAG.getCondCode(CCOpcode)); 4709 if (VT.bitsEq(CCVT)) 4710 return SetCC; 4711 return DAG.getZExtOrTrunc(SetCC, DL, VT); 4712 } 4713 4714 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 4715 SDNode *N, SelectionDAG &DAG) { 4716 EVT VT = N->getValueType(0); 4717 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 4718 4719 unsigned CondCode = CD->getZExtValue(); 4720 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) 4721 return DAG.getUNDEF(VT); 4722 4723 SDValue Src0 = N->getOperand(1); 4724 SDValue Src1 = N->getOperand(2); 4725 EVT CmpVT = Src0.getValueType(); 4726 SDLoc SL(N); 4727 4728 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 4729 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 4730 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 4731 } 4732 4733 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 4734 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 4735 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 4736 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 4737 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 4738 Src1, DAG.getCondCode(CCOpcode)); 4739 if (VT.bitsEq(CCVT)) 4740 return SetCC; 4741 return DAG.getZExtOrTrunc(SetCC, SL, VT); 4742 } 4743 4744 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, 4745 SelectionDAG &DAG) { 4746 EVT VT = N->getValueType(0); 4747 SDValue Src = N->getOperand(1); 4748 SDLoc SL(N); 4749 4750 if (Src.getOpcode() == ISD::SETCC) { 4751 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) 4752 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), 4753 Src.getOperand(1), Src.getOperand(2)); 4754 } 4755 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { 4756 // (ballot 0) -> 0 4757 if (Arg->isNullValue()) 4758 return DAG.getConstant(0, SL, VT); 4759 4760 // (ballot 1) -> EXEC/EXEC_LO 4761 if (Arg->isOne()) { 4762 Register Exec; 4763 if (VT.getScalarSizeInBits() == 32) 4764 Exec = AMDGPU::EXEC_LO; 4765 else if (VT.getScalarSizeInBits() == 64) 4766 Exec = AMDGPU::EXEC; 4767 else 4768 return SDValue(); 4769 4770 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); 4771 } 4772 } 4773 4774 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) 4775 // ISD::SETNE) 4776 return DAG.getNode( 4777 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), 4778 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); 4779 } 4780 4781 void SITargetLowering::ReplaceNodeResults(SDNode *N, 4782 SmallVectorImpl<SDValue> &Results, 4783 SelectionDAG &DAG) const { 4784 switch (N->getOpcode()) { 4785 case ISD::INSERT_VECTOR_ELT: { 4786 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 4787 Results.push_back(Res); 4788 return; 4789 } 4790 case ISD::EXTRACT_VECTOR_ELT: { 4791 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 4792 Results.push_back(Res); 4793 return; 4794 } 4795 case ISD::INTRINSIC_WO_CHAIN: { 4796 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4797 switch (IID) { 4798 case Intrinsic::amdgcn_cvt_pkrtz: { 4799 SDValue Src0 = N->getOperand(1); 4800 SDValue Src1 = N->getOperand(2); 4801 SDLoc SL(N); 4802 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 4803 Src0, Src1); 4804 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 4805 return; 4806 } 4807 case Intrinsic::amdgcn_cvt_pknorm_i16: 4808 case Intrinsic::amdgcn_cvt_pknorm_u16: 4809 case Intrinsic::amdgcn_cvt_pk_i16: 4810 case Intrinsic::amdgcn_cvt_pk_u16: { 4811 SDValue Src0 = N->getOperand(1); 4812 SDValue Src1 = N->getOperand(2); 4813 SDLoc SL(N); 4814 unsigned Opcode; 4815 4816 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 4817 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 4818 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 4819 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 4820 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 4821 Opcode = AMDGPUISD::CVT_PK_I16_I32; 4822 else 4823 Opcode = AMDGPUISD::CVT_PK_U16_U32; 4824 4825 EVT VT = N->getValueType(0); 4826 if (isTypeLegal(VT)) 4827 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 4828 else { 4829 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 4830 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 4831 } 4832 return; 4833 } 4834 } 4835 break; 4836 } 4837 case ISD::INTRINSIC_W_CHAIN: { 4838 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 4839 if (Res.getOpcode() == ISD::MERGE_VALUES) { 4840 // FIXME: Hacky 4841 for (unsigned I = 0; I < Res.getNumOperands(); I++) { 4842 Results.push_back(Res.getOperand(I)); 4843 } 4844 } else { 4845 Results.push_back(Res); 4846 Results.push_back(Res.getValue(1)); 4847 } 4848 return; 4849 } 4850 4851 break; 4852 } 4853 case ISD::SELECT: { 4854 SDLoc SL(N); 4855 EVT VT = N->getValueType(0); 4856 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 4857 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 4858 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 4859 4860 EVT SelectVT = NewVT; 4861 if (NewVT.bitsLT(MVT::i32)) { 4862 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 4863 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 4864 SelectVT = MVT::i32; 4865 } 4866 4867 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 4868 N->getOperand(0), LHS, RHS); 4869 4870 if (NewVT != SelectVT) 4871 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 4872 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 4873 return; 4874 } 4875 case ISD::FNEG: { 4876 if (N->getValueType(0) != MVT::v2f16) 4877 break; 4878 4879 SDLoc SL(N); 4880 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 4881 4882 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 4883 BC, 4884 DAG.getConstant(0x80008000, SL, MVT::i32)); 4885 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 4886 return; 4887 } 4888 case ISD::FABS: { 4889 if (N->getValueType(0) != MVT::v2f16) 4890 break; 4891 4892 SDLoc SL(N); 4893 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 4894 4895 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 4896 BC, 4897 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 4898 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 4899 return; 4900 } 4901 default: 4902 break; 4903 } 4904 } 4905 4906 /// Helper function for LowerBRCOND 4907 static SDNode *findUser(SDValue Value, unsigned Opcode) { 4908 4909 SDNode *Parent = Value.getNode(); 4910 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 4911 I != E; ++I) { 4912 4913 if (I.getUse().get() != Value) 4914 continue; 4915 4916 if (I->getOpcode() == Opcode) 4917 return *I; 4918 } 4919 return nullptr; 4920 } 4921 4922 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 4923 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 4924 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { 4925 case Intrinsic::amdgcn_if: 4926 return AMDGPUISD::IF; 4927 case Intrinsic::amdgcn_else: 4928 return AMDGPUISD::ELSE; 4929 case Intrinsic::amdgcn_loop: 4930 return AMDGPUISD::LOOP; 4931 case Intrinsic::amdgcn_end_cf: 4932 llvm_unreachable("should not occur"); 4933 default: 4934 return 0; 4935 } 4936 } 4937 4938 // break, if_break, else_break are all only used as inputs to loop, not 4939 // directly as branch conditions. 4940 return 0; 4941 } 4942 4943 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 4944 const Triple &TT = getTargetMachine().getTargetTriple(); 4945 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 4946 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 4947 AMDGPU::shouldEmitConstantsToTextSection(TT); 4948 } 4949 4950 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 4951 // FIXME: Either avoid relying on address space here or change the default 4952 // address space for functions to avoid the explicit check. 4953 return (GV->getValueType()->isFunctionTy() || 4954 !isNonGlobalAddrSpace(GV->getAddressSpace())) && 4955 !shouldEmitFixup(GV) && 4956 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 4957 } 4958 4959 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 4960 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 4961 } 4962 4963 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { 4964 if (!GV->hasExternalLinkage()) 4965 return true; 4966 4967 const auto OS = getTargetMachine().getTargetTriple().getOS(); 4968 return OS == Triple::AMDHSA || OS == Triple::AMDPAL; 4969 } 4970 4971 /// This transforms the control flow intrinsics to get the branch destination as 4972 /// last parameter, also switches branch target with BR if the need arise 4973 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 4974 SelectionDAG &DAG) const { 4975 SDLoc DL(BRCOND); 4976 4977 SDNode *Intr = BRCOND.getOperand(1).getNode(); 4978 SDValue Target = BRCOND.getOperand(2); 4979 SDNode *BR = nullptr; 4980 SDNode *SetCC = nullptr; 4981 4982 if (Intr->getOpcode() == ISD::SETCC) { 4983 // As long as we negate the condition everything is fine 4984 SetCC = Intr; 4985 Intr = SetCC->getOperand(0).getNode(); 4986 4987 } else { 4988 // Get the target from BR if we don't negate the condition 4989 BR = findUser(BRCOND, ISD::BR); 4990 assert(BR && "brcond missing unconditional branch user"); 4991 Target = BR->getOperand(1); 4992 } 4993 4994 unsigned CFNode = isCFIntrinsic(Intr); 4995 if (CFNode == 0) { 4996 // This is a uniform branch so we don't need to legalize. 4997 return BRCOND; 4998 } 4999 5000 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 5001 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 5002 5003 assert(!SetCC || 5004 (SetCC->getConstantOperandVal(1) == 1 && 5005 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 5006 ISD::SETNE)); 5007 5008 // operands of the new intrinsic call 5009 SmallVector<SDValue, 4> Ops; 5010 if (HaveChain) 5011 Ops.push_back(BRCOND.getOperand(0)); 5012 5013 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 5014 Ops.push_back(Target); 5015 5016 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 5017 5018 // build the new intrinsic call 5019 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 5020 5021 if (!HaveChain) { 5022 SDValue Ops[] = { 5023 SDValue(Result, 0), 5024 BRCOND.getOperand(0) 5025 }; 5026 5027 Result = DAG.getMergeValues(Ops, DL).getNode(); 5028 } 5029 5030 if (BR) { 5031 // Give the branch instruction our target 5032 SDValue Ops[] = { 5033 BR->getOperand(0), 5034 BRCOND.getOperand(2) 5035 }; 5036 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 5037 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 5038 } 5039 5040 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 5041 5042 // Copy the intrinsic results to registers 5043 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 5044 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 5045 if (!CopyToReg) 5046 continue; 5047 5048 Chain = DAG.getCopyToReg( 5049 Chain, DL, 5050 CopyToReg->getOperand(1), 5051 SDValue(Result, i - 1), 5052 SDValue()); 5053 5054 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 5055 } 5056 5057 // Remove the old intrinsic from the chain 5058 DAG.ReplaceAllUsesOfValueWith( 5059 SDValue(Intr, Intr->getNumValues() - 1), 5060 Intr->getOperand(0)); 5061 5062 return Chain; 5063 } 5064 5065 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 5066 SelectionDAG &DAG) const { 5067 MVT VT = Op.getSimpleValueType(); 5068 SDLoc DL(Op); 5069 // Checking the depth 5070 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) 5071 return DAG.getConstant(0, DL, VT); 5072 5073 MachineFunction &MF = DAG.getMachineFunction(); 5074 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5075 // Check for kernel and shader functions 5076 if (Info->isEntryFunction()) 5077 return DAG.getConstant(0, DL, VT); 5078 5079 MachineFrameInfo &MFI = MF.getFrameInfo(); 5080 // There is a call to @llvm.returnaddress in this function 5081 MFI.setReturnAddressIsTaken(true); 5082 5083 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 5084 // Get the return address reg and mark it as an implicit live-in 5085 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 5086 5087 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 5088 } 5089 5090 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, 5091 SDValue Op, 5092 const SDLoc &DL, 5093 EVT VT) const { 5094 return Op.getValueType().bitsLE(VT) ? 5095 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 5096 DAG.getNode(ISD::FP_ROUND, DL, VT, Op, 5097 DAG.getTargetConstant(0, DL, MVT::i32)); 5098 } 5099 5100 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 5101 assert(Op.getValueType() == MVT::f16 && 5102 "Do not know how to custom lower FP_ROUND for non-f16 type"); 5103 5104 SDValue Src = Op.getOperand(0); 5105 EVT SrcVT = Src.getValueType(); 5106 if (SrcVT != MVT::f64) 5107 return Op; 5108 5109 SDLoc DL(Op); 5110 5111 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 5112 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 5113 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 5114 } 5115 5116 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 5117 SelectionDAG &DAG) const { 5118 EVT VT = Op.getValueType(); 5119 const MachineFunction &MF = DAG.getMachineFunction(); 5120 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5121 bool IsIEEEMode = Info->getMode().IEEE; 5122 5123 // FIXME: Assert during selection that this is only selected for 5124 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 5125 // mode functions, but this happens to be OK since it's only done in cases 5126 // where there is known no sNaN. 5127 if (IsIEEEMode) 5128 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 5129 5130 if (VT == MVT::v4f16) 5131 return splitBinaryVectorOp(Op, DAG); 5132 return Op; 5133 } 5134 5135 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { 5136 EVT VT = Op.getValueType(); 5137 SDLoc SL(Op); 5138 SDValue LHS = Op.getOperand(0); 5139 SDValue RHS = Op.getOperand(1); 5140 bool isSigned = Op.getOpcode() == ISD::SMULO; 5141 5142 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5143 const APInt &C = RHSC->getAPIntValue(); 5144 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5145 if (C.isPowerOf2()) { 5146 // smulo(x, signed_min) is same as umulo(x, signed_min). 5147 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5148 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); 5149 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); 5150 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, 5151 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5152 SL, VT, Result, ShiftAmt), 5153 LHS, ISD::SETNE); 5154 return DAG.getMergeValues({ Result, Overflow }, SL); 5155 } 5156 } 5157 5158 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); 5159 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, 5160 SL, VT, LHS, RHS); 5161 5162 SDValue Sign = isSigned 5163 ? DAG.getNode(ISD::SRA, SL, VT, Result, 5164 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) 5165 : DAG.getConstant(0, SL, VT); 5166 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); 5167 5168 return DAG.getMergeValues({ Result, Overflow }, SL); 5169 } 5170 5171 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 5172 if (!Subtarget->isTrapHandlerEnabled() || 5173 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) 5174 return lowerTrapEndpgm(Op, DAG); 5175 5176 if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) { 5177 switch (*HsaAbiVer) { 5178 case ELF::ELFABIVERSION_AMDGPU_HSA_V2: 5179 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 5180 return lowerTrapHsaQueuePtr(Op, DAG); 5181 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 5182 return Subtarget->supportsGetDoorbellID() ? 5183 lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG); 5184 } 5185 } 5186 5187 llvm_unreachable("Unknown trap handler"); 5188 } 5189 5190 SDValue SITargetLowering::lowerTrapEndpgm( 5191 SDValue Op, SelectionDAG &DAG) const { 5192 SDLoc SL(Op); 5193 SDValue Chain = Op.getOperand(0); 5194 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); 5195 } 5196 5197 SDValue SITargetLowering::lowerTrapHsaQueuePtr( 5198 SDValue Op, SelectionDAG &DAG) const { 5199 SDLoc SL(Op); 5200 SDValue Chain = Op.getOperand(0); 5201 5202 MachineFunction &MF = DAG.getMachineFunction(); 5203 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5204 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5205 assert(UserSGPR != AMDGPU::NoRegister); 5206 SDValue QueuePtr = CreateLiveInRegister( 5207 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5208 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 5209 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 5210 QueuePtr, SDValue()); 5211 5212 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 5213 SDValue Ops[] = { 5214 ToReg, 5215 DAG.getTargetConstant(TrapID, SL, MVT::i16), 5216 SGPR01, 5217 ToReg.getValue(1) 5218 }; 5219 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5220 } 5221 5222 SDValue SITargetLowering::lowerTrapHsa( 5223 SDValue Op, SelectionDAG &DAG) const { 5224 SDLoc SL(Op); 5225 SDValue Chain = Op.getOperand(0); 5226 5227 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 5228 SDValue Ops[] = { 5229 Chain, 5230 DAG.getTargetConstant(TrapID, SL, MVT::i16) 5231 }; 5232 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5233 } 5234 5235 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 5236 SDLoc SL(Op); 5237 SDValue Chain = Op.getOperand(0); 5238 MachineFunction &MF = DAG.getMachineFunction(); 5239 5240 if (!Subtarget->isTrapHandlerEnabled() || 5241 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { 5242 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 5243 "debugtrap handler not supported", 5244 Op.getDebugLoc(), 5245 DS_Warning); 5246 LLVMContext &Ctx = MF.getFunction().getContext(); 5247 Ctx.diagnose(NoTrap); 5248 return Chain; 5249 } 5250 5251 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); 5252 SDValue Ops[] = { 5253 Chain, 5254 DAG.getTargetConstant(TrapID, SL, MVT::i16) 5255 }; 5256 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 5257 } 5258 5259 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 5260 SelectionDAG &DAG) const { 5261 // FIXME: Use inline constants (src_{shared, private}_base) instead. 5262 if (Subtarget->hasApertureRegs()) { 5263 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? 5264 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : 5265 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; 5266 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? 5267 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : 5268 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; 5269 unsigned Encoding = 5270 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | 5271 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | 5272 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; 5273 5274 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); 5275 SDValue ApertureReg = SDValue( 5276 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); 5277 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); 5278 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); 5279 } 5280 5281 MachineFunction &MF = DAG.getMachineFunction(); 5282 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 5283 Register UserSGPR = Info->getQueuePtrUserSGPR(); 5284 assert(UserSGPR != AMDGPU::NoRegister); 5285 5286 SDValue QueuePtr = CreateLiveInRegister( 5287 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 5288 5289 // Offset into amd_queue_t for group_segment_aperture_base_hi / 5290 // private_segment_aperture_base_hi. 5291 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 5292 5293 SDValue Ptr = 5294 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset)); 5295 5296 // TODO: Use custom target PseudoSourceValue. 5297 // TODO: We should use the value from the IR intrinsic call, but it might not 5298 // be available and how do we get it? 5299 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 5300 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 5301 commonAlignment(Align(64), StructOffset), 5302 MachineMemOperand::MODereferenceable | 5303 MachineMemOperand::MOInvariant); 5304 } 5305 5306 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 5307 SelectionDAG &DAG) const { 5308 SDLoc SL(Op); 5309 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 5310 5311 SDValue Src = ASC->getOperand(0); 5312 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 5313 5314 const AMDGPUTargetMachine &TM = 5315 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 5316 5317 // flat -> local/private 5318 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5319 unsigned DestAS = ASC->getDestAddressSpace(); 5320 5321 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 5322 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 5323 unsigned NullVal = TM.getNullPointerValue(DestAS); 5324 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5325 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 5326 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5327 5328 return DAG.getNode(ISD::SELECT, SL, MVT::i32, 5329 NonNull, Ptr, SegmentNullPtr); 5330 } 5331 } 5332 5333 // local/private -> flat 5334 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 5335 unsigned SrcAS = ASC->getSrcAddressSpace(); 5336 5337 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 5338 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 5339 unsigned NullVal = TM.getNullPointerValue(SrcAS); 5340 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 5341 5342 SDValue NonNull 5343 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 5344 5345 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 5346 SDValue CvtPtr 5347 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 5348 5349 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, 5350 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), 5351 FlatNullPtr); 5352 } 5353 } 5354 5355 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 5356 Src.getValueType() == MVT::i64) 5357 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 5358 5359 // global <-> flat are no-ops and never emitted. 5360 5361 const MachineFunction &MF = DAG.getMachineFunction(); 5362 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 5363 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 5364 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 5365 5366 return DAG.getUNDEF(ASC->getValueType(0)); 5367 } 5368 5369 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 5370 // the small vector and inserting them into the big vector. That is better than 5371 // the default expansion of doing it via a stack slot. Even though the use of 5372 // the stack slot would be optimized away afterwards, the stack slot itself 5373 // remains. 5374 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5375 SelectionDAG &DAG) const { 5376 SDValue Vec = Op.getOperand(0); 5377 SDValue Ins = Op.getOperand(1); 5378 SDValue Idx = Op.getOperand(2); 5379 EVT VecVT = Vec.getValueType(); 5380 EVT InsVT = Ins.getValueType(); 5381 EVT EltVT = VecVT.getVectorElementType(); 5382 unsigned InsNumElts = InsVT.getVectorNumElements(); 5383 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); 5384 SDLoc SL(Op); 5385 5386 for (unsigned I = 0; I != InsNumElts; ++I) { 5387 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 5388 DAG.getConstant(I, SL, MVT::i32)); 5389 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 5390 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 5391 } 5392 return Vec; 5393 } 5394 5395 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5396 SelectionDAG &DAG) const { 5397 SDValue Vec = Op.getOperand(0); 5398 SDValue InsVal = Op.getOperand(1); 5399 SDValue Idx = Op.getOperand(2); 5400 EVT VecVT = Vec.getValueType(); 5401 EVT EltVT = VecVT.getVectorElementType(); 5402 unsigned VecSize = VecVT.getSizeInBits(); 5403 unsigned EltSize = EltVT.getSizeInBits(); 5404 5405 5406 assert(VecSize <= 64); 5407 5408 unsigned NumElts = VecVT.getVectorNumElements(); 5409 SDLoc SL(Op); 5410 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 5411 5412 if (NumElts == 4 && EltSize == 16 && KIdx) { 5413 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 5414 5415 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5416 DAG.getConstant(0, SL, MVT::i32)); 5417 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 5418 DAG.getConstant(1, SL, MVT::i32)); 5419 5420 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 5421 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 5422 5423 unsigned Idx = KIdx->getZExtValue(); 5424 bool InsertLo = Idx < 2; 5425 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 5426 InsertLo ? LoVec : HiVec, 5427 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 5428 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 5429 5430 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 5431 5432 SDValue Concat = InsertLo ? 5433 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 5434 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 5435 5436 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 5437 } 5438 5439 if (isa<ConstantSDNode>(Idx)) 5440 return SDValue(); 5441 5442 MVT IntVT = MVT::getIntegerVT(VecSize); 5443 5444 // Avoid stack access for dynamic indexing. 5445 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 5446 5447 // Create a congruent vector with the target value in each element so that 5448 // the required element can be masked and ORed into the target vector. 5449 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 5450 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 5451 5452 assert(isPowerOf2_32(EltSize)); 5453 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5454 5455 // Convert vector index to bit-index. 5456 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5457 5458 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5459 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 5460 DAG.getConstant(0xffff, SL, IntVT), 5461 ScaledIdx); 5462 5463 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 5464 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 5465 DAG.getNOT(SL, BFM, IntVT), BCVec); 5466 5467 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 5468 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 5469 } 5470 5471 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5472 SelectionDAG &DAG) const { 5473 SDLoc SL(Op); 5474 5475 EVT ResultVT = Op.getValueType(); 5476 SDValue Vec = Op.getOperand(0); 5477 SDValue Idx = Op.getOperand(1); 5478 EVT VecVT = Vec.getValueType(); 5479 unsigned VecSize = VecVT.getSizeInBits(); 5480 EVT EltVT = VecVT.getVectorElementType(); 5481 assert(VecSize <= 64); 5482 5483 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 5484 5485 // Make sure we do any optimizations that will make it easier to fold 5486 // source modifiers before obscuring it with bit operations. 5487 5488 // XXX - Why doesn't this get called when vector_shuffle is expanded? 5489 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 5490 return Combined; 5491 5492 unsigned EltSize = EltVT.getSizeInBits(); 5493 assert(isPowerOf2_32(EltSize)); 5494 5495 MVT IntVT = MVT::getIntegerVT(VecSize); 5496 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 5497 5498 // Convert vector index to bit-index (* EltSize) 5499 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 5500 5501 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 5502 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 5503 5504 if (ResultVT == MVT::f16) { 5505 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 5506 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 5507 } 5508 5509 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 5510 } 5511 5512 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 5513 assert(Elt % 2 == 0); 5514 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 5515 } 5516 5517 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5518 SelectionDAG &DAG) const { 5519 SDLoc SL(Op); 5520 EVT ResultVT = Op.getValueType(); 5521 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 5522 5523 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 5524 EVT EltVT = PackVT.getVectorElementType(); 5525 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 5526 5527 // vector_shuffle <0,1,6,7> lhs, rhs 5528 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 5529 // 5530 // vector_shuffle <6,7,2,3> lhs, rhs 5531 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 5532 // 5533 // vector_shuffle <6,7,0,1> lhs, rhs 5534 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 5535 5536 // Avoid scalarizing when both halves are reading from consecutive elements. 5537 SmallVector<SDValue, 4> Pieces; 5538 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 5539 if (elementPairIsContiguous(SVN->getMask(), I)) { 5540 const int Idx = SVN->getMaskElt(I); 5541 int VecIdx = Idx < SrcNumElts ? 0 : 1; 5542 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 5543 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 5544 PackVT, SVN->getOperand(VecIdx), 5545 DAG.getConstant(EltIdx, SL, MVT::i32)); 5546 Pieces.push_back(SubVec); 5547 } else { 5548 const int Idx0 = SVN->getMaskElt(I); 5549 const int Idx1 = SVN->getMaskElt(I + 1); 5550 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 5551 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 5552 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 5553 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 5554 5555 SDValue Vec0 = SVN->getOperand(VecIdx0); 5556 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5557 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 5558 5559 SDValue Vec1 = SVN->getOperand(VecIdx1); 5560 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 5561 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 5562 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 5563 } 5564 } 5565 5566 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 5567 } 5568 5569 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 5570 SelectionDAG &DAG) const { 5571 SDLoc SL(Op); 5572 EVT VT = Op.getValueType(); 5573 5574 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 5575 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2); 5576 5577 // Turn into pair of packed build_vectors. 5578 // TODO: Special case for constants that can be materialized with s_mov_b64. 5579 SDValue Lo = DAG.getBuildVector(HalfVT, SL, 5580 { Op.getOperand(0), Op.getOperand(1) }); 5581 SDValue Hi = DAG.getBuildVector(HalfVT, SL, 5582 { Op.getOperand(2), Op.getOperand(3) }); 5583 5584 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo); 5585 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi); 5586 5587 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi }); 5588 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 5589 } 5590 5591 assert(VT == MVT::v2f16 || VT == MVT::v2i16); 5592 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 5593 5594 SDValue Lo = Op.getOperand(0); 5595 SDValue Hi = Op.getOperand(1); 5596 5597 // Avoid adding defined bits with the zero_extend. 5598 if (Hi.isUndef()) { 5599 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5600 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 5601 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 5602 } 5603 5604 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 5605 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 5606 5607 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 5608 DAG.getConstant(16, SL, MVT::i32)); 5609 if (Lo.isUndef()) 5610 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 5611 5612 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 5613 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 5614 5615 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 5616 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 5617 } 5618 5619 bool 5620 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5621 // We can fold offsets for anything that doesn't require a GOT relocation. 5622 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 5623 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 5624 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 5625 !shouldEmitGOTReloc(GA->getGlobal()); 5626 } 5627 5628 static SDValue 5629 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 5630 const SDLoc &DL, int64_t Offset, EVT PtrVT, 5631 unsigned GAFlags = SIInstrInfo::MO_NONE) { 5632 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 5633 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 5634 // lowered to the following code sequence: 5635 // 5636 // For constant address space: 5637 // s_getpc_b64 s[0:1] 5638 // s_add_u32 s0, s0, $symbol 5639 // s_addc_u32 s1, s1, 0 5640 // 5641 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5642 // a fixup or relocation is emitted to replace $symbol with a literal 5643 // constant, which is a pc-relative offset from the encoding of the $symbol 5644 // operand to the global variable. 5645 // 5646 // For global address space: 5647 // s_getpc_b64 s[0:1] 5648 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 5649 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 5650 // 5651 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 5652 // fixups or relocations are emitted to replace $symbol@*@lo and 5653 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 5654 // which is a 64-bit pc-relative offset from the encoding of the $symbol 5655 // operand to the global variable. 5656 // 5657 // What we want here is an offset from the value returned by s_getpc 5658 // (which is the address of the s_add_u32 instruction) to the global 5659 // variable, but since the encoding of $symbol starts 4 bytes after the start 5660 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too 5661 // small. This requires us to add 4 to the global variable offset in order to 5662 // compute the correct address. Similarly for the s_addc_u32 instruction, the 5663 // encoding of $symbol starts 12 bytes after the start of the s_add_u32 5664 // instruction. 5665 SDValue PtrLo = 5666 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); 5667 SDValue PtrHi; 5668 if (GAFlags == SIInstrInfo::MO_NONE) { 5669 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 5670 } else { 5671 PtrHi = 5672 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1); 5673 } 5674 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 5675 } 5676 5677 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 5678 SDValue Op, 5679 SelectionDAG &DAG) const { 5680 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 5681 SDLoc DL(GSD); 5682 EVT PtrVT = Op.getValueType(); 5683 5684 const GlobalValue *GV = GSD->getGlobal(); 5685 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 5686 shouldUseLDSConstAddress(GV)) || 5687 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 5688 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { 5689 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 5690 GV->hasExternalLinkage()) { 5691 Type *Ty = GV->getValueType(); 5692 // HIP uses an unsized array `extern __shared__ T s[]` or similar 5693 // zero-sized type in other languages to declare the dynamic shared 5694 // memory which size is not known at the compile time. They will be 5695 // allocated by the runtime and placed directly after the static 5696 // allocated ones. They all share the same offset. 5697 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { 5698 assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); 5699 // Adjust alignment for that dynamic shared memory array. 5700 MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV)); 5701 return SDValue( 5702 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); 5703 } 5704 } 5705 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 5706 } 5707 5708 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 5709 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 5710 SIInstrInfo::MO_ABS32_LO); 5711 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 5712 } 5713 5714 if (shouldEmitFixup(GV)) 5715 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 5716 else if (shouldEmitPCReloc(GV)) 5717 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 5718 SIInstrInfo::MO_REL32); 5719 5720 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 5721 SIInstrInfo::MO_GOTPCREL32); 5722 5723 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 5724 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 5725 const DataLayout &DataLayout = DAG.getDataLayout(); 5726 Align Alignment = DataLayout.getABITypeAlign(PtrTy); 5727 MachinePointerInfo PtrInfo 5728 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 5729 5730 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, 5731 MachineMemOperand::MODereferenceable | 5732 MachineMemOperand::MOInvariant); 5733 } 5734 5735 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 5736 const SDLoc &DL, SDValue V) const { 5737 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 5738 // the destination register. 5739 // 5740 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 5741 // so we will end up with redundant moves to m0. 5742 // 5743 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 5744 5745 // A Null SDValue creates a glue result. 5746 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 5747 V, Chain); 5748 return SDValue(M0, 0); 5749 } 5750 5751 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 5752 SDValue Op, 5753 MVT VT, 5754 unsigned Offset) const { 5755 SDLoc SL(Op); 5756 SDValue Param = lowerKernargMemParameter( 5757 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); 5758 // The local size values will have the hi 16-bits as zero. 5759 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 5760 DAG.getValueType(VT)); 5761 } 5762 5763 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 5764 EVT VT) { 5765 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 5766 "non-hsa intrinsic with hsa target", 5767 DL.getDebugLoc()); 5768 DAG.getContext()->diagnose(BadIntrin); 5769 return DAG.getUNDEF(VT); 5770 } 5771 5772 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 5773 EVT VT) { 5774 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 5775 "intrinsic not supported on subtarget", 5776 DL.getDebugLoc()); 5777 DAG.getContext()->diagnose(BadIntrin); 5778 return DAG.getUNDEF(VT); 5779 } 5780 5781 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 5782 ArrayRef<SDValue> Elts) { 5783 assert(!Elts.empty()); 5784 MVT Type; 5785 unsigned NumElts; 5786 5787 if (Elts.size() == 1) { 5788 Type = MVT::f32; 5789 NumElts = 1; 5790 } else if (Elts.size() == 2) { 5791 Type = MVT::v2f32; 5792 NumElts = 2; 5793 } else if (Elts.size() == 3) { 5794 Type = MVT::v3f32; 5795 NumElts = 3; 5796 } else if (Elts.size() <= 4) { 5797 Type = MVT::v4f32; 5798 NumElts = 4; 5799 } else if (Elts.size() <= 8) { 5800 Type = MVT::v8f32; 5801 NumElts = 8; 5802 } else { 5803 assert(Elts.size() <= 16); 5804 Type = MVT::v16f32; 5805 NumElts = 16; 5806 } 5807 5808 SmallVector<SDValue, 16> VecElts(NumElts); 5809 for (unsigned i = 0; i < Elts.size(); ++i) { 5810 SDValue Elt = Elts[i]; 5811 if (Elt.getValueType() != MVT::f32) 5812 Elt = DAG.getBitcast(MVT::f32, Elt); 5813 VecElts[i] = Elt; 5814 } 5815 for (unsigned i = Elts.size(); i < NumElts; ++i) 5816 VecElts[i] = DAG.getUNDEF(MVT::f32); 5817 5818 if (NumElts == 1) 5819 return VecElts[0]; 5820 return DAG.getBuildVector(Type, DL, VecElts); 5821 } 5822 5823 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, 5824 SDValue Src, int ExtraElts) { 5825 EVT SrcVT = Src.getValueType(); 5826 5827 SmallVector<SDValue, 8> Elts; 5828 5829 if (SrcVT.isVector()) 5830 DAG.ExtractVectorElements(Src, Elts); 5831 else 5832 Elts.push_back(Src); 5833 5834 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); 5835 while (ExtraElts--) 5836 Elts.push_back(Undef); 5837 5838 return DAG.getBuildVector(CastVT, DL, Elts); 5839 } 5840 5841 // Re-construct the required return value for a image load intrinsic. 5842 // This is more complicated due to the optional use TexFailCtrl which means the required 5843 // return type is an aggregate 5844 static SDValue constructRetValue(SelectionDAG &DAG, 5845 MachineSDNode *Result, 5846 ArrayRef<EVT> ResultTypes, 5847 bool IsTexFail, bool Unpacked, bool IsD16, 5848 int DMaskPop, int NumVDataDwords, 5849 const SDLoc &DL) { 5850 // Determine the required return type. This is the same regardless of IsTexFail flag 5851 EVT ReqRetVT = ResultTypes[0]; 5852 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 5853 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? 5854 ReqRetNumElts : (ReqRetNumElts + 1) / 2; 5855 5856 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? 5857 DMaskPop : (DMaskPop + 1) / 2; 5858 5859 MVT DataDwordVT = NumDataDwords == 1 ? 5860 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); 5861 5862 MVT MaskPopVT = MaskPopDwords == 1 ? 5863 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); 5864 5865 SDValue Data(Result, 0); 5866 SDValue TexFail; 5867 5868 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { 5869 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); 5870 if (MaskPopVT.isVector()) { 5871 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, 5872 SDValue(Result, 0), ZeroIdx); 5873 } else { 5874 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, 5875 SDValue(Result, 0), ZeroIdx); 5876 } 5877 } 5878 5879 if (DataDwordVT.isVector()) 5880 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, 5881 NumDataDwords - MaskPopDwords); 5882 5883 if (IsD16) 5884 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); 5885 5886 EVT LegalReqRetVT = ReqRetVT; 5887 if (!ReqRetVT.isVector()) { 5888 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); 5889 } else { 5890 // We need to widen the return vector to a legal type 5891 if ((ReqRetVT.getVectorNumElements() % 2) == 1 && 5892 ReqRetVT.getVectorElementType().getSizeInBits() == 16) { 5893 LegalReqRetVT = 5894 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), 5895 ReqRetVT.getVectorNumElements() + 1); 5896 } 5897 } 5898 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); 5899 5900 if (IsTexFail) { 5901 TexFail = 5902 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), 5903 DAG.getConstant(MaskPopDwords, DL, MVT::i32)); 5904 5905 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); 5906 } 5907 5908 if (Result->getNumValues() == 1) 5909 return Data; 5910 5911 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); 5912 } 5913 5914 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 5915 SDValue *LWE, bool &IsTexFail) { 5916 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 5917 5918 uint64_t Value = TexFailCtrlConst->getZExtValue(); 5919 if (Value) { 5920 IsTexFail = true; 5921 } 5922 5923 SDLoc DL(TexFailCtrlConst); 5924 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 5925 Value &= ~(uint64_t)0x1; 5926 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 5927 Value &= ~(uint64_t)0x2; 5928 5929 return Value == 0; 5930 } 5931 5932 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, 5933 MVT PackVectorVT, 5934 SmallVectorImpl<SDValue> &PackedAddrs, 5935 unsigned DimIdx, unsigned EndIdx, 5936 unsigned NumGradients) { 5937 SDLoc DL(Op); 5938 for (unsigned I = DimIdx; I < EndIdx; I++) { 5939 SDValue Addr = Op.getOperand(I); 5940 5941 // Gradients are packed with undef for each coordinate. 5942 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: 5943 // 1D: undef,dx/dh; undef,dx/dv 5944 // 2D: dy/dh,dx/dh; dy/dv,dx/dv 5945 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv 5946 if (((I + 1) >= EndIdx) || 5947 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || 5948 I == DimIdx + NumGradients - 1))) { 5949 if (Addr.getValueType() != MVT::i16) 5950 Addr = DAG.getBitcast(MVT::i16, Addr); 5951 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); 5952 } else { 5953 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); 5954 I++; 5955 } 5956 Addr = DAG.getBitcast(MVT::f32, Addr); 5957 PackedAddrs.push_back(Addr); 5958 } 5959 } 5960 5961 SDValue SITargetLowering::lowerImage(SDValue Op, 5962 const AMDGPU::ImageDimIntrinsicInfo *Intr, 5963 SelectionDAG &DAG, bool WithChain) const { 5964 SDLoc DL(Op); 5965 MachineFunction &MF = DAG.getMachineFunction(); 5966 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 5967 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 5968 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 5969 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 5970 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = 5971 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode); 5972 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo = 5973 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode); 5974 unsigned IntrOpcode = Intr->BaseOpcode; 5975 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); 5976 5977 SmallVector<EVT, 3> ResultTypes(Op->values()); 5978 SmallVector<EVT, 3> OrigResultTypes(Op->values()); 5979 bool IsD16 = false; 5980 bool IsG16 = false; 5981 bool IsA16 = false; 5982 SDValue VData; 5983 int NumVDataDwords; 5984 bool AdjustRetType = false; 5985 5986 // Offset of intrinsic arguments 5987 const unsigned ArgOffset = WithChain ? 2 : 1; 5988 5989 unsigned DMask; 5990 unsigned DMaskLanes = 0; 5991 5992 if (BaseOpcode->Atomic) { 5993 VData = Op.getOperand(2); 5994 5995 bool Is64Bit = VData.getValueType() == MVT::i64; 5996 if (BaseOpcode->AtomicX2) { 5997 SDValue VData2 = Op.getOperand(3); 5998 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 5999 {VData, VData2}); 6000 if (Is64Bit) 6001 VData = DAG.getBitcast(MVT::v4i32, VData); 6002 6003 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 6004 DMask = Is64Bit ? 0xf : 0x3; 6005 NumVDataDwords = Is64Bit ? 4 : 2; 6006 } else { 6007 DMask = Is64Bit ? 0x3 : 0x1; 6008 NumVDataDwords = Is64Bit ? 2 : 1; 6009 } 6010 } else { 6011 auto *DMaskConst = 6012 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex)); 6013 DMask = DMaskConst->getZExtValue(); 6014 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); 6015 6016 if (BaseOpcode->Store) { 6017 VData = Op.getOperand(2); 6018 6019 MVT StoreVT = VData.getSimpleValueType(); 6020 if (StoreVT.getScalarType() == MVT::f16) { 6021 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 6022 return Op; // D16 is unsupported for this instruction 6023 6024 IsD16 = true; 6025 VData = handleD16VData(VData, DAG, true); 6026 } 6027 6028 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 6029 } else { 6030 // Work out the num dwords based on the dmask popcount and underlying type 6031 // and whether packing is supported. 6032 MVT LoadVT = ResultTypes[0].getSimpleVT(); 6033 if (LoadVT.getScalarType() == MVT::f16) { 6034 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 6035 return Op; // D16 is unsupported for this instruction 6036 6037 IsD16 = true; 6038 } 6039 6040 // Confirm that the return type is large enough for the dmask specified 6041 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 6042 (!LoadVT.isVector() && DMaskLanes > 1)) 6043 return Op; 6044 6045 // The sq block of gfx8 and gfx9 do not estimate register use correctly 6046 // for d16 image_gather4, image_gather4_l, and image_gather4_lz 6047 // instructions. 6048 if (IsD16 && !Subtarget->hasUnpackedD16VMem() && 6049 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) 6050 NumVDataDwords = (DMaskLanes + 1) / 2; 6051 else 6052 NumVDataDwords = DMaskLanes; 6053 6054 AdjustRetType = true; 6055 } 6056 } 6057 6058 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; 6059 SmallVector<SDValue, 4> VAddrs; 6060 6061 // Optimize _L to _LZ when _L is zero 6062 if (LZMappingInfo) { 6063 if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>( 6064 Op.getOperand(ArgOffset + Intr->LodIndex))) { 6065 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 6066 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l 6067 VAddrEnd--; // remove 'lod' 6068 } 6069 } 6070 } 6071 6072 // Optimize _mip away, when 'lod' is zero 6073 if (MIPMappingInfo) { 6074 if (auto *ConstantLod = dyn_cast<ConstantSDNode>( 6075 Op.getOperand(ArgOffset + Intr->MipIndex))) { 6076 if (ConstantLod->isNullValue()) { 6077 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip 6078 VAddrEnd--; // remove 'mip' 6079 } 6080 } 6081 } 6082 6083 // Push back extra arguments. 6084 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) 6085 VAddrs.push_back(Op.getOperand(ArgOffset + I)); 6086 6087 // Check for 16 bit addresses or derivatives and pack if true. 6088 MVT VAddrVT = 6089 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); 6090 MVT VAddrScalarVT = VAddrVT.getScalarType(); 6091 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 6092 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6093 6094 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); 6095 VAddrScalarVT = VAddrVT.getScalarType(); 6096 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 6097 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 6098 6099 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { 6100 // 16 bit gradients are supported, but are tied to the A16 control 6101 // so both gradients and addresses must be 16 bit 6102 LLVM_DEBUG( 6103 dbgs() << "Failed to lower image intrinsic: 16 bit addresses " 6104 "require 16 bit args for both gradients and addresses"); 6105 return Op; 6106 } 6107 6108 if (IsA16) { 6109 if (!ST->hasA16()) { 6110 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 6111 "support 16 bit addresses\n"); 6112 return Op; 6113 } 6114 } 6115 6116 // We've dealt with incorrect input so we know that if IsA16, IsG16 6117 // are set then we have to compress/pack operands (either address, 6118 // gradient or both) 6119 // In the case where a16 and gradients are tied (no G16 support) then we 6120 // have already verified that both IsA16 and IsG16 are true 6121 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { 6122 // Activate g16 6123 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = 6124 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); 6125 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 6126 } 6127 6128 // Add gradients (packed or unpacked) 6129 if (IsG16) { 6130 // Pack the gradients 6131 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); 6132 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, 6133 ArgOffset + Intr->GradientStart, 6134 ArgOffset + Intr->CoordStart, Intr->NumGradients); 6135 } else { 6136 for (unsigned I = ArgOffset + Intr->GradientStart; 6137 I < ArgOffset + Intr->CoordStart; I++) 6138 VAddrs.push_back(Op.getOperand(I)); 6139 } 6140 6141 // Add addresses (packed or unpacked) 6142 if (IsA16) { 6143 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, 6144 ArgOffset + Intr->CoordStart, VAddrEnd, 6145 0 /* No gradients */); 6146 } else { 6147 // Add uncompressed address 6148 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) 6149 VAddrs.push_back(Op.getOperand(I)); 6150 } 6151 6152 // If the register allocator cannot place the address registers contiguously 6153 // without introducing moves, then using the non-sequential address encoding 6154 // is always preferable, since it saves VALU instructions and is usually a 6155 // wash in terms of code size or even better. 6156 // 6157 // However, we currently have no way of hinting to the register allocator that 6158 // MIMG addresses should be placed contiguously when it is possible to do so, 6159 // so force non-NSA for the common 2-address case as a heuristic. 6160 // 6161 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 6162 // allocation when possible. 6163 bool UseNSA = 6164 ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3; 6165 SDValue VAddr; 6166 if (!UseNSA) 6167 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 6168 6169 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 6170 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 6171 SDValue Unorm; 6172 if (!BaseOpcode->Sampler) { 6173 Unorm = True; 6174 } else { 6175 auto UnormConst = 6176 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex)); 6177 6178 Unorm = UnormConst->getZExtValue() ? True : False; 6179 } 6180 6181 SDValue TFE; 6182 SDValue LWE; 6183 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); 6184 bool IsTexFail = false; 6185 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 6186 return Op; 6187 6188 if (IsTexFail) { 6189 if (!DMaskLanes) { 6190 // Expecting to get an error flag since TFC is on - and dmask is 0 6191 // Force dmask to be at least 1 otherwise the instruction will fail 6192 DMask = 0x1; 6193 DMaskLanes = 1; 6194 NumVDataDwords = 1; 6195 } 6196 NumVDataDwords += 1; 6197 AdjustRetType = true; 6198 } 6199 6200 // Has something earlier tagged that the return type needs adjusting 6201 // This happens if the instruction is a load or has set TexFailCtrl flags 6202 if (AdjustRetType) { 6203 // NumVDataDwords reflects the true number of dwords required in the return type 6204 if (DMaskLanes == 0 && !BaseOpcode->Store) { 6205 // This is a no-op load. This can be eliminated 6206 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 6207 if (isa<MemSDNode>(Op)) 6208 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 6209 return Undef; 6210 } 6211 6212 EVT NewVT = NumVDataDwords > 1 ? 6213 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) 6214 : MVT::i32; 6215 6216 ResultTypes[0] = NewVT; 6217 if (ResultTypes.size() == 3) { 6218 // Original result was aggregate type used for TexFailCtrl results 6219 // The actual instruction returns as a vector type which has now been 6220 // created. Remove the aggregate result. 6221 ResultTypes.erase(&ResultTypes[1]); 6222 } 6223 } 6224 6225 unsigned CPol = cast<ConstantSDNode>( 6226 Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue(); 6227 if (BaseOpcode->Atomic) 6228 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization 6229 if (CPol & ~AMDGPU::CPol::ALL) 6230 return Op; 6231 6232 SmallVector<SDValue, 26> Ops; 6233 if (BaseOpcode->Store || BaseOpcode->Atomic) 6234 Ops.push_back(VData); // vdata 6235 if (UseNSA) 6236 append_range(Ops, VAddrs); 6237 else 6238 Ops.push_back(VAddr); 6239 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); 6240 if (BaseOpcode->Sampler) 6241 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); 6242 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 6243 if (IsGFX10Plus) 6244 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 6245 Ops.push_back(Unorm); 6246 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); 6247 Ops.push_back(IsA16 && // r128, a16 for gfx9 6248 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 6249 if (IsGFX10Plus) 6250 Ops.push_back(IsA16 ? True : False); 6251 if (!Subtarget->hasGFX90AInsts()) { 6252 Ops.push_back(TFE); //tfe 6253 } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) { 6254 report_fatal_error("TFE is not supported on this GPU"); 6255 } 6256 Ops.push_back(LWE); // lwe 6257 if (!IsGFX10Plus) 6258 Ops.push_back(DimInfo->DA ? True : False); 6259 if (BaseOpcode->HasD16) 6260 Ops.push_back(IsD16 ? True : False); 6261 if (isa<MemSDNode>(Op)) 6262 Ops.push_back(Op.getOperand(0)); // chain 6263 6264 int NumVAddrDwords = 6265 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 6266 int Opcode = -1; 6267 6268 if (IsGFX10Plus) { 6269 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 6270 UseNSA ? AMDGPU::MIMGEncGfx10NSA 6271 : AMDGPU::MIMGEncGfx10Default, 6272 NumVDataDwords, NumVAddrDwords); 6273 } else { 6274 if (Subtarget->hasGFX90AInsts()) { 6275 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, 6276 NumVDataDwords, NumVAddrDwords); 6277 if (Opcode == -1) 6278 report_fatal_error( 6279 "requested image instruction is not supported on this GPU"); 6280 } 6281 if (Opcode == -1 && 6282 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6283 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 6284 NumVDataDwords, NumVAddrDwords); 6285 if (Opcode == -1) 6286 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 6287 NumVDataDwords, NumVAddrDwords); 6288 } 6289 assert(Opcode != -1); 6290 6291 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 6292 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 6293 MachineMemOperand *MemRef = MemOp->getMemOperand(); 6294 DAG.setNodeMemRefs(NewNode, {MemRef}); 6295 } 6296 6297 if (BaseOpcode->AtomicX2) { 6298 SmallVector<SDValue, 1> Elt; 6299 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 6300 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 6301 } 6302 if (BaseOpcode->Store) 6303 return SDValue(NewNode, 0); 6304 return constructRetValue(DAG, NewNode, 6305 OrigResultTypes, IsTexFail, 6306 Subtarget->hasUnpackedD16VMem(), IsD16, 6307 DMaskLanes, NumVDataDwords, DL); 6308 } 6309 6310 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 6311 SDValue Offset, SDValue CachePolicy, 6312 SelectionDAG &DAG) const { 6313 MachineFunction &MF = DAG.getMachineFunction(); 6314 6315 const DataLayout &DataLayout = DAG.getDataLayout(); 6316 Align Alignment = 6317 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); 6318 6319 MachineMemOperand *MMO = MF.getMachineMemOperand( 6320 MachinePointerInfo(), 6321 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 6322 MachineMemOperand::MOInvariant, 6323 VT.getStoreSize(), Alignment); 6324 6325 if (!Offset->isDivergent()) { 6326 SDValue Ops[] = { 6327 Rsrc, 6328 Offset, // Offset 6329 CachePolicy 6330 }; 6331 6332 // Widen vec3 load to vec4. 6333 if (VT.isVector() && VT.getVectorNumElements() == 3) { 6334 EVT WidenedVT = 6335 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 6336 auto WidenedOp = DAG.getMemIntrinsicNode( 6337 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, 6338 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); 6339 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, 6340 DAG.getVectorIdxConstant(0, DL)); 6341 return Subvector; 6342 } 6343 6344 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 6345 DAG.getVTList(VT), Ops, VT, MMO); 6346 } 6347 6348 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 6349 // assume that the buffer is unswizzled. 6350 SmallVector<SDValue, 4> Loads; 6351 unsigned NumLoads = 1; 6352 MVT LoadVT = VT.getSimpleVT(); 6353 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 6354 assert((LoadVT.getScalarType() == MVT::i32 || 6355 LoadVT.getScalarType() == MVT::f32)); 6356 6357 if (NumElts == 8 || NumElts == 16) { 6358 NumLoads = NumElts / 4; 6359 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); 6360 } 6361 6362 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 6363 SDValue Ops[] = { 6364 DAG.getEntryNode(), // Chain 6365 Rsrc, // rsrc 6366 DAG.getConstant(0, DL, MVT::i32), // vindex 6367 {}, // voffset 6368 {}, // soffset 6369 {}, // offset 6370 CachePolicy, // cachepolicy 6371 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6372 }; 6373 6374 // Use the alignment to ensure that the required offsets will fit into the 6375 // immediate offsets. 6376 setBufferOffsets(Offset, DAG, &Ops[3], 6377 NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); 6378 6379 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); 6380 for (unsigned i = 0; i < NumLoads; ++i) { 6381 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 6382 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, 6383 LoadVT, MMO, DAG)); 6384 } 6385 6386 if (NumElts == 8 || NumElts == 16) 6387 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 6388 6389 return Loads[0]; 6390 } 6391 6392 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 6393 SelectionDAG &DAG) const { 6394 MachineFunction &MF = DAG.getMachineFunction(); 6395 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 6396 6397 EVT VT = Op.getValueType(); 6398 SDLoc DL(Op); 6399 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6400 6401 // TODO: Should this propagate fast-math-flags? 6402 6403 switch (IntrinsicID) { 6404 case Intrinsic::amdgcn_implicit_buffer_ptr: { 6405 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 6406 return emitNonHSAIntrinsicError(DAG, DL, VT); 6407 return getPreloadedValue(DAG, *MFI, VT, 6408 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 6409 } 6410 case Intrinsic::amdgcn_dispatch_ptr: 6411 case Intrinsic::amdgcn_queue_ptr: { 6412 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 6413 DiagnosticInfoUnsupported BadIntrin( 6414 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 6415 DL.getDebugLoc()); 6416 DAG.getContext()->diagnose(BadIntrin); 6417 return DAG.getUNDEF(VT); 6418 } 6419 6420 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 6421 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 6422 return getPreloadedValue(DAG, *MFI, VT, RegID); 6423 } 6424 case Intrinsic::amdgcn_implicitarg_ptr: { 6425 if (MFI->isEntryFunction()) 6426 return getImplicitArgPtr(DAG, DL); 6427 return getPreloadedValue(DAG, *MFI, VT, 6428 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 6429 } 6430 case Intrinsic::amdgcn_kernarg_segment_ptr: { 6431 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { 6432 // This only makes sense to call in a kernel, so just lower to null. 6433 return DAG.getConstant(0, DL, VT); 6434 } 6435 6436 return getPreloadedValue(DAG, *MFI, VT, 6437 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 6438 } 6439 case Intrinsic::amdgcn_dispatch_id: { 6440 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 6441 } 6442 case Intrinsic::amdgcn_rcp: 6443 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 6444 case Intrinsic::amdgcn_rsq: 6445 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6446 case Intrinsic::amdgcn_rsq_legacy: 6447 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6448 return emitRemovedIntrinsicError(DAG, DL, VT); 6449 return SDValue(); 6450 case Intrinsic::amdgcn_rcp_legacy: 6451 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 6452 return emitRemovedIntrinsicError(DAG, DL, VT); 6453 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 6454 case Intrinsic::amdgcn_rsq_clamp: { 6455 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6456 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 6457 6458 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 6459 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 6460 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 6461 6462 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 6463 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 6464 DAG.getConstantFP(Max, DL, VT)); 6465 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 6466 DAG.getConstantFP(Min, DL, VT)); 6467 } 6468 case Intrinsic::r600_read_ngroups_x: 6469 if (Subtarget->isAmdHsaOS()) 6470 return emitNonHSAIntrinsicError(DAG, DL, VT); 6471 6472 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6473 SI::KernelInputOffsets::NGROUPS_X, Align(4), 6474 false); 6475 case Intrinsic::r600_read_ngroups_y: 6476 if (Subtarget->isAmdHsaOS()) 6477 return emitNonHSAIntrinsicError(DAG, DL, VT); 6478 6479 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6480 SI::KernelInputOffsets::NGROUPS_Y, Align(4), 6481 false); 6482 case Intrinsic::r600_read_ngroups_z: 6483 if (Subtarget->isAmdHsaOS()) 6484 return emitNonHSAIntrinsicError(DAG, DL, VT); 6485 6486 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6487 SI::KernelInputOffsets::NGROUPS_Z, Align(4), 6488 false); 6489 case Intrinsic::r600_read_global_size_x: 6490 if (Subtarget->isAmdHsaOS()) 6491 return emitNonHSAIntrinsicError(DAG, DL, VT); 6492 6493 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6494 SI::KernelInputOffsets::GLOBAL_SIZE_X, 6495 Align(4), false); 6496 case Intrinsic::r600_read_global_size_y: 6497 if (Subtarget->isAmdHsaOS()) 6498 return emitNonHSAIntrinsicError(DAG, DL, VT); 6499 6500 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6501 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 6502 Align(4), false); 6503 case Intrinsic::r600_read_global_size_z: 6504 if (Subtarget->isAmdHsaOS()) 6505 return emitNonHSAIntrinsicError(DAG, DL, VT); 6506 6507 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 6508 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 6509 Align(4), false); 6510 case Intrinsic::r600_read_local_size_x: 6511 if (Subtarget->isAmdHsaOS()) 6512 return emitNonHSAIntrinsicError(DAG, DL, VT); 6513 6514 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6515 SI::KernelInputOffsets::LOCAL_SIZE_X); 6516 case Intrinsic::r600_read_local_size_y: 6517 if (Subtarget->isAmdHsaOS()) 6518 return emitNonHSAIntrinsicError(DAG, DL, VT); 6519 6520 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6521 SI::KernelInputOffsets::LOCAL_SIZE_Y); 6522 case Intrinsic::r600_read_local_size_z: 6523 if (Subtarget->isAmdHsaOS()) 6524 return emitNonHSAIntrinsicError(DAG, DL, VT); 6525 6526 return lowerImplicitZextParam(DAG, Op, MVT::i16, 6527 SI::KernelInputOffsets::LOCAL_SIZE_Z); 6528 case Intrinsic::amdgcn_workgroup_id_x: 6529 return getPreloadedValue(DAG, *MFI, VT, 6530 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 6531 case Intrinsic::amdgcn_workgroup_id_y: 6532 return getPreloadedValue(DAG, *MFI, VT, 6533 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 6534 case Intrinsic::amdgcn_workgroup_id_z: 6535 return getPreloadedValue(DAG, *MFI, VT, 6536 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 6537 case Intrinsic::amdgcn_workitem_id_x: 6538 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6539 SDLoc(DAG.getEntryNode()), 6540 MFI->getArgInfo().WorkItemIDX); 6541 case Intrinsic::amdgcn_workitem_id_y: 6542 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6543 SDLoc(DAG.getEntryNode()), 6544 MFI->getArgInfo().WorkItemIDY); 6545 case Intrinsic::amdgcn_workitem_id_z: 6546 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 6547 SDLoc(DAG.getEntryNode()), 6548 MFI->getArgInfo().WorkItemIDZ); 6549 case Intrinsic::amdgcn_wavefrontsize: 6550 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 6551 SDLoc(Op), MVT::i32); 6552 case Intrinsic::amdgcn_s_buffer_load: { 6553 unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6554 if (CPol & ~AMDGPU::CPol::ALL) 6555 return Op; 6556 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6557 DAG); 6558 } 6559 case Intrinsic::amdgcn_fdiv_fast: 6560 return lowerFDIV_FAST(Op, DAG); 6561 case Intrinsic::amdgcn_sin: 6562 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 6563 6564 case Intrinsic::amdgcn_cos: 6565 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 6566 6567 case Intrinsic::amdgcn_mul_u24: 6568 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6569 case Intrinsic::amdgcn_mul_i24: 6570 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6571 6572 case Intrinsic::amdgcn_log_clamp: { 6573 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 6574 return SDValue(); 6575 6576 return emitRemovedIntrinsicError(DAG, DL, VT); 6577 } 6578 case Intrinsic::amdgcn_ldexp: 6579 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, 6580 Op.getOperand(1), Op.getOperand(2)); 6581 6582 case Intrinsic::amdgcn_fract: 6583 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 6584 6585 case Intrinsic::amdgcn_class: 6586 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 6587 Op.getOperand(1), Op.getOperand(2)); 6588 case Intrinsic::amdgcn_div_fmas: 6589 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 6590 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6591 Op.getOperand(4)); 6592 6593 case Intrinsic::amdgcn_div_fixup: 6594 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 6595 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6596 6597 case Intrinsic::amdgcn_div_scale: { 6598 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 6599 6600 // Translate to the operands expected by the machine instruction. The 6601 // first parameter must be the same as the first instruction. 6602 SDValue Numerator = Op.getOperand(1); 6603 SDValue Denominator = Op.getOperand(2); 6604 6605 // Note this order is opposite of the machine instruction's operations, 6606 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 6607 // intrinsic has the numerator as the first operand to match a normal 6608 // division operation. 6609 6610 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 6611 6612 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 6613 Denominator, Numerator); 6614 } 6615 case Intrinsic::amdgcn_icmp: { 6616 // There is a Pat that handles this variant, so return it as-is. 6617 if (Op.getOperand(1).getValueType() == MVT::i1 && 6618 Op.getConstantOperandVal(2) == 0 && 6619 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 6620 return Op; 6621 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 6622 } 6623 case Intrinsic::amdgcn_fcmp: { 6624 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 6625 } 6626 case Intrinsic::amdgcn_ballot: 6627 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); 6628 case Intrinsic::amdgcn_fmed3: 6629 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 6630 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6631 case Intrinsic::amdgcn_fdot2: 6632 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 6633 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 6634 Op.getOperand(4)); 6635 case Intrinsic::amdgcn_fmul_legacy: 6636 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 6637 Op.getOperand(1), Op.getOperand(2)); 6638 case Intrinsic::amdgcn_sffbh: 6639 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 6640 case Intrinsic::amdgcn_sbfe: 6641 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 6642 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6643 case Intrinsic::amdgcn_ubfe: 6644 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 6645 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6646 case Intrinsic::amdgcn_cvt_pkrtz: 6647 case Intrinsic::amdgcn_cvt_pknorm_i16: 6648 case Intrinsic::amdgcn_cvt_pknorm_u16: 6649 case Intrinsic::amdgcn_cvt_pk_i16: 6650 case Intrinsic::amdgcn_cvt_pk_u16: { 6651 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 6652 EVT VT = Op.getValueType(); 6653 unsigned Opcode; 6654 6655 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 6656 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 6657 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 6658 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 6659 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 6660 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 6661 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 6662 Opcode = AMDGPUISD::CVT_PK_I16_I32; 6663 else 6664 Opcode = AMDGPUISD::CVT_PK_U16_U32; 6665 6666 if (isTypeLegal(VT)) 6667 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 6668 6669 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 6670 Op.getOperand(1), Op.getOperand(2)); 6671 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 6672 } 6673 case Intrinsic::amdgcn_fmad_ftz: 6674 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 6675 Op.getOperand(2), Op.getOperand(3)); 6676 6677 case Intrinsic::amdgcn_if_break: 6678 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 6679 Op->getOperand(1), Op->getOperand(2)), 0); 6680 6681 case Intrinsic::amdgcn_groupstaticsize: { 6682 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 6683 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 6684 return Op; 6685 6686 const Module *M = MF.getFunction().getParent(); 6687 const GlobalValue *GV = 6688 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 6689 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 6690 SIInstrInfo::MO_ABS32_LO); 6691 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 6692 } 6693 case Intrinsic::amdgcn_is_shared: 6694 case Intrinsic::amdgcn_is_private: { 6695 SDLoc SL(Op); 6696 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 6697 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 6698 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 6699 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 6700 Op.getOperand(1)); 6701 6702 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 6703 DAG.getConstant(1, SL, MVT::i32)); 6704 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 6705 } 6706 case Intrinsic::amdgcn_alignbit: 6707 return DAG.getNode(ISD::FSHR, DL, VT, 6708 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 6709 case Intrinsic::amdgcn_perm: 6710 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), 6711 Op.getOperand(2), Op.getOperand(3)); 6712 case Intrinsic::amdgcn_reloc_constant: { 6713 Module *M = const_cast<Module *>(MF.getFunction().getParent()); 6714 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); 6715 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); 6716 auto RelocSymbol = cast<GlobalVariable>( 6717 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); 6718 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, 6719 SIInstrInfo::MO_ABS32_LO); 6720 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 6721 } 6722 default: 6723 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 6724 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 6725 return lowerImage(Op, ImageDimIntr, DAG, false); 6726 6727 return Op; 6728 } 6729 } 6730 6731 // This function computes an appropriate offset to pass to 6732 // MachineMemOperand::setOffset() based on the offset inputs to 6733 // an intrinsic. If any of the offsets are non-contstant or 6734 // if VIndex is non-zero then this function returns 0. Otherwise, 6735 // it returns the sum of VOffset, SOffset, and Offset. 6736 static unsigned getBufferOffsetForMMO(SDValue VOffset, 6737 SDValue SOffset, 6738 SDValue Offset, 6739 SDValue VIndex = SDValue()) { 6740 6741 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) || 6742 !isa<ConstantSDNode>(Offset)) 6743 return 0; 6744 6745 if (VIndex) { 6746 if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue()) 6747 return 0; 6748 } 6749 6750 return cast<ConstantSDNode>(VOffset)->getSExtValue() + 6751 cast<ConstantSDNode>(SOffset)->getSExtValue() + 6752 cast<ConstantSDNode>(Offset)->getSExtValue(); 6753 } 6754 6755 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, 6756 SelectionDAG &DAG, 6757 unsigned NewOpcode) const { 6758 SDLoc DL(Op); 6759 6760 SDValue VData = Op.getOperand(2); 6761 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6762 SDValue Ops[] = { 6763 Op.getOperand(0), // Chain 6764 VData, // vdata 6765 Op.getOperand(3), // rsrc 6766 DAG.getConstant(0, DL, MVT::i32), // vindex 6767 Offsets.first, // voffset 6768 Op.getOperand(5), // soffset 6769 Offsets.second, // offset 6770 Op.getOperand(6), // cachepolicy 6771 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6772 }; 6773 6774 auto *M = cast<MemSDNode>(Op); 6775 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6])); 6776 6777 EVT MemVT = VData.getValueType(); 6778 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 6779 M->getMemOperand()); 6780 } 6781 6782 SDValue 6783 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, 6784 unsigned NewOpcode) const { 6785 SDLoc DL(Op); 6786 6787 SDValue VData = Op.getOperand(2); 6788 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 6789 SDValue Ops[] = { 6790 Op.getOperand(0), // Chain 6791 VData, // vdata 6792 Op.getOperand(3), // rsrc 6793 Op.getOperand(4), // vindex 6794 Offsets.first, // voffset 6795 Op.getOperand(6), // soffset 6796 Offsets.second, // offset 6797 Op.getOperand(7), // cachepolicy 6798 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6799 }; 6800 6801 auto *M = cast<MemSDNode>(Op); 6802 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6], 6803 Ops[3])); 6804 6805 EVT MemVT = VData.getValueType(); 6806 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 6807 M->getMemOperand()); 6808 } 6809 6810 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 6811 SelectionDAG &DAG) const { 6812 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 6813 SDLoc DL(Op); 6814 6815 switch (IntrID) { 6816 case Intrinsic::amdgcn_ds_ordered_add: 6817 case Intrinsic::amdgcn_ds_ordered_swap: { 6818 MemSDNode *M = cast<MemSDNode>(Op); 6819 SDValue Chain = M->getOperand(0); 6820 SDValue M0 = M->getOperand(2); 6821 SDValue Value = M->getOperand(3); 6822 unsigned IndexOperand = M->getConstantOperandVal(7); 6823 unsigned WaveRelease = M->getConstantOperandVal(8); 6824 unsigned WaveDone = M->getConstantOperandVal(9); 6825 6826 unsigned OrderedCountIndex = IndexOperand & 0x3f; 6827 IndexOperand &= ~0x3f; 6828 unsigned CountDw = 0; 6829 6830 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 6831 CountDw = (IndexOperand >> 24) & 0xf; 6832 IndexOperand &= ~(0xf << 24); 6833 6834 if (CountDw < 1 || CountDw > 4) { 6835 report_fatal_error( 6836 "ds_ordered_count: dword count must be between 1 and 4"); 6837 } 6838 } 6839 6840 if (IndexOperand) 6841 report_fatal_error("ds_ordered_count: bad index operand"); 6842 6843 if (WaveDone && !WaveRelease) 6844 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 6845 6846 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; 6847 unsigned ShaderType = 6848 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); 6849 unsigned Offset0 = OrderedCountIndex << 2; 6850 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) | 6851 (Instruction << 4); 6852 6853 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 6854 Offset1 |= (CountDw - 1) << 6; 6855 6856 unsigned Offset = Offset0 | (Offset1 << 8); 6857 6858 SDValue Ops[] = { 6859 Chain, 6860 Value, 6861 DAG.getTargetConstant(Offset, DL, MVT::i16), 6862 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 6863 }; 6864 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 6865 M->getVTList(), Ops, M->getMemoryVT(), 6866 M->getMemOperand()); 6867 } 6868 case Intrinsic::amdgcn_ds_fadd: { 6869 MemSDNode *M = cast<MemSDNode>(Op); 6870 unsigned Opc; 6871 switch (IntrID) { 6872 case Intrinsic::amdgcn_ds_fadd: 6873 Opc = ISD::ATOMIC_LOAD_FADD; 6874 break; 6875 } 6876 6877 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 6878 M->getOperand(0), M->getOperand(2), M->getOperand(3), 6879 M->getMemOperand()); 6880 } 6881 case Intrinsic::amdgcn_atomic_inc: 6882 case Intrinsic::amdgcn_atomic_dec: 6883 case Intrinsic::amdgcn_ds_fmin: 6884 case Intrinsic::amdgcn_ds_fmax: { 6885 MemSDNode *M = cast<MemSDNode>(Op); 6886 unsigned Opc; 6887 switch (IntrID) { 6888 case Intrinsic::amdgcn_atomic_inc: 6889 Opc = AMDGPUISD::ATOMIC_INC; 6890 break; 6891 case Intrinsic::amdgcn_atomic_dec: 6892 Opc = AMDGPUISD::ATOMIC_DEC; 6893 break; 6894 case Intrinsic::amdgcn_ds_fmin: 6895 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 6896 break; 6897 case Intrinsic::amdgcn_ds_fmax: 6898 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 6899 break; 6900 default: 6901 llvm_unreachable("Unknown intrinsic!"); 6902 } 6903 SDValue Ops[] = { 6904 M->getOperand(0), // Chain 6905 M->getOperand(2), // Ptr 6906 M->getOperand(3) // Value 6907 }; 6908 6909 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 6910 M->getMemoryVT(), M->getMemOperand()); 6911 } 6912 case Intrinsic::amdgcn_buffer_load: 6913 case Intrinsic::amdgcn_buffer_load_format: { 6914 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 6915 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 6916 unsigned IdxEn = 1; 6917 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 6918 IdxEn = Idx->getZExtValue() != 0; 6919 SDValue Ops[] = { 6920 Op.getOperand(0), // Chain 6921 Op.getOperand(2), // rsrc 6922 Op.getOperand(3), // vindex 6923 SDValue(), // voffset -- will be set by setBufferOffsets 6924 SDValue(), // soffset -- will be set by setBufferOffsets 6925 SDValue(), // offset -- will be set by setBufferOffsets 6926 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 6927 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 6928 }; 6929 6930 unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 6931 // We don't know the offset if vindex is non-zero, so clear it. 6932 if (IdxEn) 6933 Offset = 0; 6934 6935 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 6936 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 6937 6938 EVT VT = Op.getValueType(); 6939 EVT IntVT = VT.changeTypeToInteger(); 6940 auto *M = cast<MemSDNode>(Op); 6941 M->getMemOperand()->setOffset(Offset); 6942 EVT LoadVT = Op.getValueType(); 6943 6944 if (LoadVT.getScalarType() == MVT::f16) 6945 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 6946 M, DAG, Ops); 6947 6948 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 6949 if (LoadVT.getScalarType() == MVT::i8 || 6950 LoadVT.getScalarType() == MVT::i16) 6951 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 6952 6953 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 6954 M->getMemOperand(), DAG); 6955 } 6956 case Intrinsic::amdgcn_raw_buffer_load: 6957 case Intrinsic::amdgcn_raw_buffer_load_format: { 6958 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; 6959 6960 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 6961 SDValue Ops[] = { 6962 Op.getOperand(0), // Chain 6963 Op.getOperand(2), // rsrc 6964 DAG.getConstant(0, DL, MVT::i32), // vindex 6965 Offsets.first, // voffset 6966 Op.getOperand(4), // soffset 6967 Offsets.second, // offset 6968 Op.getOperand(5), // cachepolicy, swizzled buffer 6969 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 6970 }; 6971 6972 auto *M = cast<MemSDNode>(Op); 6973 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5])); 6974 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); 6975 } 6976 case Intrinsic::amdgcn_struct_buffer_load: 6977 case Intrinsic::amdgcn_struct_buffer_load_format: { 6978 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; 6979 6980 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 6981 SDValue Ops[] = { 6982 Op.getOperand(0), // Chain 6983 Op.getOperand(2), // rsrc 6984 Op.getOperand(3), // vindex 6985 Offsets.first, // voffset 6986 Op.getOperand(5), // soffset 6987 Offsets.second, // offset 6988 Op.getOperand(6), // cachepolicy, swizzled buffer 6989 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 6990 }; 6991 6992 auto *M = cast<MemSDNode>(Op); 6993 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5], 6994 Ops[2])); 6995 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 6996 } 6997 case Intrinsic::amdgcn_tbuffer_load: { 6998 MemSDNode *M = cast<MemSDNode>(Op); 6999 EVT LoadVT = Op.getValueType(); 7000 7001 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7002 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 7003 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 7004 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 7005 unsigned IdxEn = 1; 7006 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) 7007 IdxEn = Idx->getZExtValue() != 0; 7008 SDValue Ops[] = { 7009 Op.getOperand(0), // Chain 7010 Op.getOperand(2), // rsrc 7011 Op.getOperand(3), // vindex 7012 Op.getOperand(4), // voffset 7013 Op.getOperand(5), // soffset 7014 Op.getOperand(6), // offset 7015 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 7016 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7017 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 7018 }; 7019 7020 if (LoadVT.getScalarType() == MVT::f16) 7021 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7022 M, DAG, Ops); 7023 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7024 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7025 DAG); 7026 } 7027 case Intrinsic::amdgcn_raw_tbuffer_load: { 7028 MemSDNode *M = cast<MemSDNode>(Op); 7029 EVT LoadVT = Op.getValueType(); 7030 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 7031 7032 SDValue Ops[] = { 7033 Op.getOperand(0), // Chain 7034 Op.getOperand(2), // rsrc 7035 DAG.getConstant(0, DL, MVT::i32), // vindex 7036 Offsets.first, // voffset 7037 Op.getOperand(4), // soffset 7038 Offsets.second, // offset 7039 Op.getOperand(5), // format 7040 Op.getOperand(6), // cachepolicy, swizzled buffer 7041 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7042 }; 7043 7044 if (LoadVT.getScalarType() == MVT::f16) 7045 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7046 M, DAG, Ops); 7047 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7048 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7049 DAG); 7050 } 7051 case Intrinsic::amdgcn_struct_tbuffer_load: { 7052 MemSDNode *M = cast<MemSDNode>(Op); 7053 EVT LoadVT = Op.getValueType(); 7054 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7055 7056 SDValue Ops[] = { 7057 Op.getOperand(0), // Chain 7058 Op.getOperand(2), // rsrc 7059 Op.getOperand(3), // vindex 7060 Offsets.first, // voffset 7061 Op.getOperand(5), // soffset 7062 Offsets.second, // offset 7063 Op.getOperand(6), // format 7064 Op.getOperand(7), // cachepolicy, swizzled buffer 7065 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7066 }; 7067 7068 if (LoadVT.getScalarType() == MVT::f16) 7069 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 7070 M, DAG, Ops); 7071 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 7072 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 7073 DAG); 7074 } 7075 case Intrinsic::amdgcn_buffer_atomic_swap: 7076 case Intrinsic::amdgcn_buffer_atomic_add: 7077 case Intrinsic::amdgcn_buffer_atomic_sub: 7078 case Intrinsic::amdgcn_buffer_atomic_csub: 7079 case Intrinsic::amdgcn_buffer_atomic_smin: 7080 case Intrinsic::amdgcn_buffer_atomic_umin: 7081 case Intrinsic::amdgcn_buffer_atomic_smax: 7082 case Intrinsic::amdgcn_buffer_atomic_umax: 7083 case Intrinsic::amdgcn_buffer_atomic_and: 7084 case Intrinsic::amdgcn_buffer_atomic_or: 7085 case Intrinsic::amdgcn_buffer_atomic_xor: 7086 case Intrinsic::amdgcn_buffer_atomic_fadd: { 7087 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7088 unsigned IdxEn = 1; 7089 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 7090 IdxEn = Idx->getZExtValue() != 0; 7091 SDValue Ops[] = { 7092 Op.getOperand(0), // Chain 7093 Op.getOperand(2), // vdata 7094 Op.getOperand(3), // rsrc 7095 Op.getOperand(4), // vindex 7096 SDValue(), // voffset -- will be set by setBufferOffsets 7097 SDValue(), // soffset -- will be set by setBufferOffsets 7098 SDValue(), // offset -- will be set by setBufferOffsets 7099 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7100 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7101 }; 7102 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7103 // We don't know the offset if vindex is non-zero, so clear it. 7104 if (IdxEn) 7105 Offset = 0; 7106 EVT VT = Op.getValueType(); 7107 7108 auto *M = cast<MemSDNode>(Op); 7109 M->getMemOperand()->setOffset(Offset); 7110 unsigned Opcode = 0; 7111 7112 switch (IntrID) { 7113 case Intrinsic::amdgcn_buffer_atomic_swap: 7114 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 7115 break; 7116 case Intrinsic::amdgcn_buffer_atomic_add: 7117 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 7118 break; 7119 case Intrinsic::amdgcn_buffer_atomic_sub: 7120 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 7121 break; 7122 case Intrinsic::amdgcn_buffer_atomic_csub: 7123 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; 7124 break; 7125 case Intrinsic::amdgcn_buffer_atomic_smin: 7126 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 7127 break; 7128 case Intrinsic::amdgcn_buffer_atomic_umin: 7129 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 7130 break; 7131 case Intrinsic::amdgcn_buffer_atomic_smax: 7132 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 7133 break; 7134 case Intrinsic::amdgcn_buffer_atomic_umax: 7135 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 7136 break; 7137 case Intrinsic::amdgcn_buffer_atomic_and: 7138 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 7139 break; 7140 case Intrinsic::amdgcn_buffer_atomic_or: 7141 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 7142 break; 7143 case Intrinsic::amdgcn_buffer_atomic_xor: 7144 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 7145 break; 7146 case Intrinsic::amdgcn_buffer_atomic_fadd: 7147 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) { 7148 DiagnosticInfoUnsupported 7149 NoFpRet(DAG.getMachineFunction().getFunction(), 7150 "return versions of fp atomics not supported", 7151 DL.getDebugLoc(), DS_Error); 7152 DAG.getContext()->diagnose(NoFpRet); 7153 return SDValue(); 7154 } 7155 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD; 7156 break; 7157 default: 7158 llvm_unreachable("unhandled atomic opcode"); 7159 } 7160 7161 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 7162 M->getMemOperand()); 7163 } 7164 case Intrinsic::amdgcn_raw_buffer_atomic_fadd: 7165 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7166 case Intrinsic::amdgcn_struct_buffer_atomic_fadd: 7167 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 7168 case Intrinsic::amdgcn_raw_buffer_atomic_fmin: 7169 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 7170 case Intrinsic::amdgcn_struct_buffer_atomic_fmin: 7171 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 7172 case Intrinsic::amdgcn_raw_buffer_atomic_fmax: 7173 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 7174 case Intrinsic::amdgcn_struct_buffer_atomic_fmax: 7175 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 7176 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 7177 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); 7178 case Intrinsic::amdgcn_raw_buffer_atomic_add: 7179 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7180 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 7181 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7182 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 7183 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); 7184 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 7185 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); 7186 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 7187 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); 7188 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 7189 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); 7190 case Intrinsic::amdgcn_raw_buffer_atomic_and: 7191 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7192 case Intrinsic::amdgcn_raw_buffer_atomic_or: 7193 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7194 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 7195 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7196 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 7197 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7198 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 7199 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7200 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 7201 return lowerStructBufferAtomicIntrin(Op, DAG, 7202 AMDGPUISD::BUFFER_ATOMIC_SWAP); 7203 case Intrinsic::amdgcn_struct_buffer_atomic_add: 7204 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 7205 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 7206 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 7207 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 7208 return lowerStructBufferAtomicIntrin(Op, DAG, 7209 AMDGPUISD::BUFFER_ATOMIC_SMIN); 7210 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 7211 return lowerStructBufferAtomicIntrin(Op, DAG, 7212 AMDGPUISD::BUFFER_ATOMIC_UMIN); 7213 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 7214 return lowerStructBufferAtomicIntrin(Op, DAG, 7215 AMDGPUISD::BUFFER_ATOMIC_SMAX); 7216 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 7217 return lowerStructBufferAtomicIntrin(Op, DAG, 7218 AMDGPUISD::BUFFER_ATOMIC_UMAX); 7219 case Intrinsic::amdgcn_struct_buffer_atomic_and: 7220 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 7221 case Intrinsic::amdgcn_struct_buffer_atomic_or: 7222 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 7223 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 7224 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 7225 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 7226 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 7227 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 7228 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 7229 7230 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 7231 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7232 unsigned IdxEn = 1; 7233 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5))) 7234 IdxEn = Idx->getZExtValue() != 0; 7235 SDValue Ops[] = { 7236 Op.getOperand(0), // Chain 7237 Op.getOperand(2), // src 7238 Op.getOperand(3), // cmp 7239 Op.getOperand(4), // rsrc 7240 Op.getOperand(5), // vindex 7241 SDValue(), // voffset -- will be set by setBufferOffsets 7242 SDValue(), // soffset -- will be set by setBufferOffsets 7243 SDValue(), // offset -- will be set by setBufferOffsets 7244 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 7245 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7246 }; 7247 unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 7248 // We don't know the offset if vindex is non-zero, so clear it. 7249 if (IdxEn) 7250 Offset = 0; 7251 EVT VT = Op.getValueType(); 7252 auto *M = cast<MemSDNode>(Op); 7253 M->getMemOperand()->setOffset(Offset); 7254 7255 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7256 Op->getVTList(), Ops, VT, M->getMemOperand()); 7257 } 7258 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { 7259 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7260 SDValue Ops[] = { 7261 Op.getOperand(0), // Chain 7262 Op.getOperand(2), // src 7263 Op.getOperand(3), // cmp 7264 Op.getOperand(4), // rsrc 7265 DAG.getConstant(0, DL, MVT::i32), // vindex 7266 Offsets.first, // voffset 7267 Op.getOperand(6), // soffset 7268 Offsets.second, // offset 7269 Op.getOperand(7), // cachepolicy 7270 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7271 }; 7272 EVT VT = Op.getValueType(); 7273 auto *M = cast<MemSDNode>(Op); 7274 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7])); 7275 7276 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7277 Op->getVTList(), Ops, VT, M->getMemOperand()); 7278 } 7279 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { 7280 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 7281 SDValue Ops[] = { 7282 Op.getOperand(0), // Chain 7283 Op.getOperand(2), // src 7284 Op.getOperand(3), // cmp 7285 Op.getOperand(4), // rsrc 7286 Op.getOperand(5), // vindex 7287 Offsets.first, // voffset 7288 Op.getOperand(7), // soffset 7289 Offsets.second, // offset 7290 Op.getOperand(8), // cachepolicy 7291 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7292 }; 7293 EVT VT = Op.getValueType(); 7294 auto *M = cast<MemSDNode>(Op); 7295 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7], 7296 Ops[4])); 7297 7298 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 7299 Op->getVTList(), Ops, VT, M->getMemOperand()); 7300 } 7301 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 7302 SDLoc DL(Op); 7303 MemSDNode *M = cast<MemSDNode>(Op); 7304 SDValue NodePtr = M->getOperand(2); 7305 SDValue RayExtent = M->getOperand(3); 7306 SDValue RayOrigin = M->getOperand(4); 7307 SDValue RayDir = M->getOperand(5); 7308 SDValue RayInvDir = M->getOperand(6); 7309 SDValue TDescr = M->getOperand(7); 7310 7311 assert(NodePtr.getValueType() == MVT::i32 || 7312 NodePtr.getValueType() == MVT::i64); 7313 assert(RayDir.getValueType() == MVT::v4f16 || 7314 RayDir.getValueType() == MVT::v4f32); 7315 7316 bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; 7317 bool Is64 = NodePtr.getValueType() == MVT::i64; 7318 unsigned Opcode = IsA16 ? Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa 7319 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa 7320 : Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_nsa 7321 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_nsa; 7322 7323 SmallVector<SDValue, 16> Ops; 7324 7325 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { 7326 SmallVector<SDValue, 3> Lanes; 7327 DAG.ExtractVectorElements(Op, Lanes, 0, 3); 7328 if (Lanes[0].getValueSizeInBits() == 32) { 7329 for (unsigned I = 0; I < 3; ++I) 7330 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); 7331 } else { 7332 if (IsAligned) { 7333 Ops.push_back( 7334 DAG.getBitcast(MVT::i32, 7335 DAG.getBuildVector(MVT::v2f16, DL, 7336 { Lanes[0], Lanes[1] }))); 7337 Ops.push_back(Lanes[2]); 7338 } else { 7339 SDValue Elt0 = Ops.pop_back_val(); 7340 Ops.push_back( 7341 DAG.getBitcast(MVT::i32, 7342 DAG.getBuildVector(MVT::v2f16, DL, 7343 { Elt0, Lanes[0] }))); 7344 Ops.push_back( 7345 DAG.getBitcast(MVT::i32, 7346 DAG.getBuildVector(MVT::v2f16, DL, 7347 { Lanes[1], Lanes[2] }))); 7348 } 7349 } 7350 }; 7351 7352 if (Is64) 7353 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2); 7354 else 7355 Ops.push_back(NodePtr); 7356 7357 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 7358 packLanes(RayOrigin, true); 7359 packLanes(RayDir, true); 7360 packLanes(RayInvDir, false); 7361 Ops.push_back(TDescr); 7362 if (IsA16) 7363 Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1)); 7364 Ops.push_back(M->getChain()); 7365 7366 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); 7367 MachineMemOperand *MemRef = M->getMemOperand(); 7368 DAG.setNodeMemRefs(NewNode, {MemRef}); 7369 return SDValue(NewNode, 0); 7370 } 7371 case Intrinsic::amdgcn_global_atomic_fadd: 7372 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) { 7373 DiagnosticInfoUnsupported 7374 NoFpRet(DAG.getMachineFunction().getFunction(), 7375 "return versions of fp atomics not supported", 7376 DL.getDebugLoc(), DS_Error); 7377 DAG.getContext()->diagnose(NoFpRet); 7378 return SDValue(); 7379 } 7380 LLVM_FALLTHROUGH; 7381 case Intrinsic::amdgcn_global_atomic_fmin: 7382 case Intrinsic::amdgcn_global_atomic_fmax: 7383 case Intrinsic::amdgcn_flat_atomic_fadd: 7384 case Intrinsic::amdgcn_flat_atomic_fmin: 7385 case Intrinsic::amdgcn_flat_atomic_fmax: { 7386 MemSDNode *M = cast<MemSDNode>(Op); 7387 SDValue Ops[] = { 7388 M->getOperand(0), // Chain 7389 M->getOperand(2), // Ptr 7390 M->getOperand(3) // Value 7391 }; 7392 unsigned Opcode = 0; 7393 switch (IntrID) { 7394 case Intrinsic::amdgcn_global_atomic_fadd: 7395 case Intrinsic::amdgcn_flat_atomic_fadd: { 7396 EVT VT = Op.getOperand(3).getValueType(); 7397 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT, 7398 DAG.getVTList(VT, MVT::Other), Ops, 7399 M->getMemOperand()); 7400 } 7401 case Intrinsic::amdgcn_global_atomic_fmin: 7402 case Intrinsic::amdgcn_flat_atomic_fmin: { 7403 Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN; 7404 break; 7405 } 7406 case Intrinsic::amdgcn_global_atomic_fmax: 7407 case Intrinsic::amdgcn_flat_atomic_fmax: { 7408 Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX; 7409 break; 7410 } 7411 default: 7412 llvm_unreachable("unhandled atomic opcode"); 7413 } 7414 return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op), 7415 M->getVTList(), Ops, M->getMemoryVT(), 7416 M->getMemOperand()); 7417 } 7418 default: 7419 7420 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7421 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 7422 return lowerImage(Op, ImageDimIntr, DAG, true); 7423 7424 return SDValue(); 7425 } 7426 } 7427 7428 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 7429 // dwordx4 if on SI. 7430 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 7431 SDVTList VTList, 7432 ArrayRef<SDValue> Ops, EVT MemVT, 7433 MachineMemOperand *MMO, 7434 SelectionDAG &DAG) const { 7435 EVT VT = VTList.VTs[0]; 7436 EVT WidenedVT = VT; 7437 EVT WidenedMemVT = MemVT; 7438 if (!Subtarget->hasDwordx3LoadStores() && 7439 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { 7440 WidenedVT = EVT::getVectorVT(*DAG.getContext(), 7441 WidenedVT.getVectorElementType(), 4); 7442 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), 7443 WidenedMemVT.getVectorElementType(), 4); 7444 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); 7445 } 7446 7447 assert(VTList.NumVTs == 2); 7448 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 7449 7450 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 7451 WidenedMemVT, MMO); 7452 if (WidenedVT != VT) { 7453 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, 7454 DAG.getVectorIdxConstant(0, DL)); 7455 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); 7456 } 7457 return NewOp; 7458 } 7459 7460 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, 7461 bool ImageStore) const { 7462 EVT StoreVT = VData.getValueType(); 7463 7464 // No change for f16 and legal vector D16 types. 7465 if (!StoreVT.isVector()) 7466 return VData; 7467 7468 SDLoc DL(VData); 7469 unsigned NumElements = StoreVT.getVectorNumElements(); 7470 7471 if (Subtarget->hasUnpackedD16VMem()) { 7472 // We need to unpack the packed data to store. 7473 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7474 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7475 7476 EVT EquivStoreVT = 7477 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); 7478 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 7479 return DAG.UnrollVectorOp(ZExt.getNode()); 7480 } 7481 7482 // The sq block of gfx8.1 does not estimate register use correctly for d16 7483 // image store instructions. The data operand is computed as if it were not a 7484 // d16 image instruction. 7485 if (ImageStore && Subtarget->hasImageStoreD16Bug()) { 7486 // Bitcast to i16 7487 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 7488 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7489 7490 // Decompose into scalars 7491 SmallVector<SDValue, 4> Elts; 7492 DAG.ExtractVectorElements(IntVData, Elts); 7493 7494 // Group pairs of i16 into v2i16 and bitcast to i32 7495 SmallVector<SDValue, 4> PackedElts; 7496 for (unsigned I = 0; I < Elts.size() / 2; I += 1) { 7497 SDValue Pair = 7498 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); 7499 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 7500 PackedElts.push_back(IntPair); 7501 } 7502 if ((NumElements % 2) == 1) { 7503 // Handle v3i16 7504 unsigned I = Elts.size() / 2; 7505 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, 7506 {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); 7507 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 7508 PackedElts.push_back(IntPair); 7509 } 7510 7511 // Pad using UNDEF 7512 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); 7513 7514 // Build final vector 7515 EVT VecVT = 7516 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); 7517 return DAG.getBuildVector(VecVT, DL, PackedElts); 7518 } 7519 7520 if (NumElements == 3) { 7521 EVT IntStoreVT = 7522 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); 7523 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 7524 7525 EVT WidenedStoreVT = EVT::getVectorVT( 7526 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); 7527 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), 7528 WidenedStoreVT.getStoreSizeInBits()); 7529 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); 7530 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); 7531 } 7532 7533 assert(isTypeLegal(StoreVT)); 7534 return VData; 7535 } 7536 7537 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 7538 SelectionDAG &DAG) const { 7539 SDLoc DL(Op); 7540 SDValue Chain = Op.getOperand(0); 7541 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 7542 MachineFunction &MF = DAG.getMachineFunction(); 7543 7544 switch (IntrinsicID) { 7545 case Intrinsic::amdgcn_exp_compr: { 7546 SDValue Src0 = Op.getOperand(4); 7547 SDValue Src1 = Op.getOperand(5); 7548 // Hack around illegal type on SI by directly selecting it. 7549 if (isTypeLegal(Src0.getValueType())) 7550 return SDValue(); 7551 7552 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 7553 SDValue Undef = DAG.getUNDEF(MVT::f32); 7554 const SDValue Ops[] = { 7555 Op.getOperand(2), // tgt 7556 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 7557 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 7558 Undef, // src2 7559 Undef, // src3 7560 Op.getOperand(7), // vm 7561 DAG.getTargetConstant(1, DL, MVT::i1), // compr 7562 Op.getOperand(3), // en 7563 Op.getOperand(0) // Chain 7564 }; 7565 7566 unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE; 7567 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); 7568 } 7569 case Intrinsic::amdgcn_s_barrier: { 7570 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { 7571 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 7572 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 7573 if (WGSize <= ST.getWavefrontSize()) 7574 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 7575 Op.getOperand(0)), 0); 7576 } 7577 return SDValue(); 7578 }; 7579 case Intrinsic::amdgcn_tbuffer_store: { 7580 SDValue VData = Op.getOperand(2); 7581 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7582 if (IsD16) 7583 VData = handleD16VData(VData, DAG); 7584 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); 7585 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); 7586 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); 7587 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); 7588 unsigned IdxEn = 1; 7589 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 7590 IdxEn = Idx->getZExtValue() != 0; 7591 SDValue Ops[] = { 7592 Chain, 7593 VData, // vdata 7594 Op.getOperand(3), // rsrc 7595 Op.getOperand(4), // vindex 7596 Op.getOperand(5), // voffset 7597 Op.getOperand(6), // soffset 7598 Op.getOperand(7), // offset 7599 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 7600 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7601 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen 7602 }; 7603 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7604 AMDGPUISD::TBUFFER_STORE_FORMAT; 7605 MemSDNode *M = cast<MemSDNode>(Op); 7606 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7607 M->getMemoryVT(), M->getMemOperand()); 7608 } 7609 7610 case Intrinsic::amdgcn_struct_tbuffer_store: { 7611 SDValue VData = Op.getOperand(2); 7612 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7613 if (IsD16) 7614 VData = handleD16VData(VData, DAG); 7615 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7616 SDValue Ops[] = { 7617 Chain, 7618 VData, // vdata 7619 Op.getOperand(3), // rsrc 7620 Op.getOperand(4), // vindex 7621 Offsets.first, // voffset 7622 Op.getOperand(6), // soffset 7623 Offsets.second, // offset 7624 Op.getOperand(7), // format 7625 Op.getOperand(8), // cachepolicy, swizzled buffer 7626 DAG.getTargetConstant(1, DL, MVT::i1), // idexen 7627 }; 7628 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7629 AMDGPUISD::TBUFFER_STORE_FORMAT; 7630 MemSDNode *M = cast<MemSDNode>(Op); 7631 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7632 M->getMemoryVT(), M->getMemOperand()); 7633 } 7634 7635 case Intrinsic::amdgcn_raw_tbuffer_store: { 7636 SDValue VData = Op.getOperand(2); 7637 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7638 if (IsD16) 7639 VData = handleD16VData(VData, DAG); 7640 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7641 SDValue Ops[] = { 7642 Chain, 7643 VData, // vdata 7644 Op.getOperand(3), // rsrc 7645 DAG.getConstant(0, DL, MVT::i32), // vindex 7646 Offsets.first, // voffset 7647 Op.getOperand(5), // soffset 7648 Offsets.second, // offset 7649 Op.getOperand(6), // format 7650 Op.getOperand(7), // cachepolicy, swizzled buffer 7651 DAG.getTargetConstant(0, DL, MVT::i1), // idexen 7652 }; 7653 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 7654 AMDGPUISD::TBUFFER_STORE_FORMAT; 7655 MemSDNode *M = cast<MemSDNode>(Op); 7656 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7657 M->getMemoryVT(), M->getMemOperand()); 7658 } 7659 7660 case Intrinsic::amdgcn_buffer_store: 7661 case Intrinsic::amdgcn_buffer_store_format: { 7662 SDValue VData = Op.getOperand(2); 7663 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 7664 if (IsD16) 7665 VData = handleD16VData(VData, DAG); 7666 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); 7667 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); 7668 unsigned IdxEn = 1; 7669 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) 7670 IdxEn = Idx->getZExtValue() != 0; 7671 SDValue Ops[] = { 7672 Chain, 7673 VData, 7674 Op.getOperand(3), // rsrc 7675 Op.getOperand(4), // vindex 7676 SDValue(), // voffset -- will be set by setBufferOffsets 7677 SDValue(), // soffset -- will be set by setBufferOffsets 7678 SDValue(), // offset -- will be set by setBufferOffsets 7679 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 7680 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 7681 }; 7682 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 7683 // We don't know the offset if vindex is non-zero, so clear it. 7684 if (IdxEn) 7685 Offset = 0; 7686 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 7687 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 7688 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7689 MemSDNode *M = cast<MemSDNode>(Op); 7690 M->getMemOperand()->setOffset(Offset); 7691 7692 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7693 EVT VDataType = VData.getValueType().getScalarType(); 7694 if (VDataType == MVT::i8 || VDataType == MVT::i16) 7695 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 7696 7697 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7698 M->getMemoryVT(), M->getMemOperand()); 7699 } 7700 7701 case Intrinsic::amdgcn_raw_buffer_store: 7702 case Intrinsic::amdgcn_raw_buffer_store_format: { 7703 const bool IsFormat = 7704 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; 7705 7706 SDValue VData = Op.getOperand(2); 7707 EVT VDataVT = VData.getValueType(); 7708 EVT EltType = VDataVT.getScalarType(); 7709 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 7710 if (IsD16) { 7711 VData = handleD16VData(VData, DAG); 7712 VDataVT = VData.getValueType(); 7713 } 7714 7715 if (!isTypeLegal(VDataVT)) { 7716 VData = 7717 DAG.getNode(ISD::BITCAST, DL, 7718 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 7719 } 7720 7721 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 7722 SDValue Ops[] = { 7723 Chain, 7724 VData, 7725 Op.getOperand(3), // rsrc 7726 DAG.getConstant(0, DL, MVT::i32), // vindex 7727 Offsets.first, // voffset 7728 Op.getOperand(5), // soffset 7729 Offsets.second, // offset 7730 Op.getOperand(6), // cachepolicy, swizzled buffer 7731 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7732 }; 7733 unsigned Opc = 7734 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 7735 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7736 MemSDNode *M = cast<MemSDNode>(Op); 7737 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6])); 7738 7739 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7740 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 7741 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 7742 7743 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7744 M->getMemoryVT(), M->getMemOperand()); 7745 } 7746 7747 case Intrinsic::amdgcn_struct_buffer_store: 7748 case Intrinsic::amdgcn_struct_buffer_store_format: { 7749 const bool IsFormat = 7750 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; 7751 7752 SDValue VData = Op.getOperand(2); 7753 EVT VDataVT = VData.getValueType(); 7754 EVT EltType = VDataVT.getScalarType(); 7755 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 7756 7757 if (IsD16) { 7758 VData = handleD16VData(VData, DAG); 7759 VDataVT = VData.getValueType(); 7760 } 7761 7762 if (!isTypeLegal(VDataVT)) { 7763 VData = 7764 DAG.getNode(ISD::BITCAST, DL, 7765 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 7766 } 7767 7768 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 7769 SDValue Ops[] = { 7770 Chain, 7771 VData, 7772 Op.getOperand(3), // rsrc 7773 Op.getOperand(4), // vindex 7774 Offsets.first, // voffset 7775 Op.getOperand(6), // soffset 7776 Offsets.second, // offset 7777 Op.getOperand(7), // cachepolicy, swizzled buffer 7778 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 7779 }; 7780 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? 7781 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 7782 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 7783 MemSDNode *M = cast<MemSDNode>(Op); 7784 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6], 7785 Ops[3])); 7786 7787 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 7788 EVT VDataType = VData.getValueType().getScalarType(); 7789 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 7790 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 7791 7792 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 7793 M->getMemoryVT(), M->getMemOperand()); 7794 } 7795 case Intrinsic::amdgcn_end_cf: 7796 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 7797 Op->getOperand(2), Chain), 0); 7798 7799 default: { 7800 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 7801 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 7802 return lowerImage(Op, ImageDimIntr, DAG, true); 7803 7804 return Op; 7805 } 7806 } 7807 } 7808 7809 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 7810 // offset (the offset that is included in bounds checking and swizzling, to be 7811 // split between the instruction's voffset and immoffset fields) and soffset 7812 // (the offset that is excluded from bounds checking and swizzling, to go in 7813 // the instruction's soffset field). This function takes the first kind of 7814 // offset and figures out how to split it between voffset and immoffset. 7815 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 7816 SDValue Offset, SelectionDAG &DAG) const { 7817 SDLoc DL(Offset); 7818 const unsigned MaxImm = 4095; 7819 SDValue N0 = Offset; 7820 ConstantSDNode *C1 = nullptr; 7821 7822 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 7823 N0 = SDValue(); 7824 else if (DAG.isBaseWithConstantOffset(N0)) { 7825 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 7826 N0 = N0.getOperand(0); 7827 } 7828 7829 if (C1) { 7830 unsigned ImmOffset = C1->getZExtValue(); 7831 // If the immediate value is too big for the immoffset field, put the value 7832 // and -4096 into the immoffset field so that the value that is copied/added 7833 // for the voffset field is a multiple of 4096, and it stands more chance 7834 // of being CSEd with the copy/add for another similar load/store. 7835 // However, do not do that rounding down to a multiple of 4096 if that is a 7836 // negative number, as it appears to be illegal to have a negative offset 7837 // in the vgpr, even if adding the immediate offset makes it positive. 7838 unsigned Overflow = ImmOffset & ~MaxImm; 7839 ImmOffset -= Overflow; 7840 if ((int32_t)Overflow < 0) { 7841 Overflow += ImmOffset; 7842 ImmOffset = 0; 7843 } 7844 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 7845 if (Overflow) { 7846 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 7847 if (!N0) 7848 N0 = OverflowVal; 7849 else { 7850 SDValue Ops[] = { N0, OverflowVal }; 7851 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 7852 } 7853 } 7854 } 7855 if (!N0) 7856 N0 = DAG.getConstant(0, DL, MVT::i32); 7857 if (!C1) 7858 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 7859 return {N0, SDValue(C1, 0)}; 7860 } 7861 7862 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 7863 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 7864 // pointed to by Offsets. 7865 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 7866 SelectionDAG &DAG, SDValue *Offsets, 7867 Align Alignment) const { 7868 SDLoc DL(CombinedOffset); 7869 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 7870 uint32_t Imm = C->getZExtValue(); 7871 uint32_t SOffset, ImmOffset; 7872 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, 7873 Alignment)) { 7874 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 7875 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 7876 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 7877 return SOffset + ImmOffset; 7878 } 7879 } 7880 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 7881 SDValue N0 = CombinedOffset.getOperand(0); 7882 SDValue N1 = CombinedOffset.getOperand(1); 7883 uint32_t SOffset, ImmOffset; 7884 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 7885 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, 7886 Subtarget, Alignment)) { 7887 Offsets[0] = N0; 7888 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 7889 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 7890 return 0; 7891 } 7892 } 7893 Offsets[0] = CombinedOffset; 7894 Offsets[1] = DAG.getConstant(0, DL, MVT::i32); 7895 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 7896 return 0; 7897 } 7898 7899 // Handle 8 bit and 16 bit buffer loads 7900 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, 7901 EVT LoadVT, SDLoc DL, 7902 ArrayRef<SDValue> Ops, 7903 MemSDNode *M) const { 7904 EVT IntVT = LoadVT.changeTypeToInteger(); 7905 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 7906 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 7907 7908 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 7909 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, 7910 Ops, IntVT, 7911 M->getMemOperand()); 7912 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 7913 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 7914 7915 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 7916 } 7917 7918 // Handle 8 bit and 16 bit buffer stores 7919 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 7920 EVT VDataType, SDLoc DL, 7921 SDValue Ops[], 7922 MemSDNode *M) const { 7923 if (VDataType == MVT::f16) 7924 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 7925 7926 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 7927 Ops[1] = BufferStoreExt; 7928 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 7929 AMDGPUISD::BUFFER_STORE_SHORT; 7930 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); 7931 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 7932 M->getMemOperand()); 7933 } 7934 7935 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 7936 ISD::LoadExtType ExtType, SDValue Op, 7937 const SDLoc &SL, EVT VT) { 7938 if (VT.bitsLT(Op.getValueType())) 7939 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 7940 7941 switch (ExtType) { 7942 case ISD::SEXTLOAD: 7943 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 7944 case ISD::ZEXTLOAD: 7945 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 7946 case ISD::EXTLOAD: 7947 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 7948 case ISD::NON_EXTLOAD: 7949 return Op; 7950 } 7951 7952 llvm_unreachable("invalid ext type"); 7953 } 7954 7955 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 7956 SelectionDAG &DAG = DCI.DAG; 7957 if (Ld->getAlignment() < 4 || Ld->isDivergent()) 7958 return SDValue(); 7959 7960 // FIXME: Constant loads should all be marked invariant. 7961 unsigned AS = Ld->getAddressSpace(); 7962 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 7963 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 7964 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 7965 return SDValue(); 7966 7967 // Don't do this early, since it may interfere with adjacent load merging for 7968 // illegal types. We can avoid losing alignment information for exotic types 7969 // pre-legalize. 7970 EVT MemVT = Ld->getMemoryVT(); 7971 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 7972 MemVT.getSizeInBits() >= 32) 7973 return SDValue(); 7974 7975 SDLoc SL(Ld); 7976 7977 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 7978 "unexpected vector extload"); 7979 7980 // TODO: Drop only high part of range. 7981 SDValue Ptr = Ld->getBasePtr(); 7982 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 7983 MVT::i32, SL, Ld->getChain(), Ptr, 7984 Ld->getOffset(), 7985 Ld->getPointerInfo(), MVT::i32, 7986 Ld->getAlignment(), 7987 Ld->getMemOperand()->getFlags(), 7988 Ld->getAAInfo(), 7989 nullptr); // Drop ranges 7990 7991 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 7992 if (MemVT.isFloatingPoint()) { 7993 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 7994 "unexpected fp extload"); 7995 TruncVT = MemVT.changeTypeToInteger(); 7996 } 7997 7998 SDValue Cvt = NewLoad; 7999 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 8000 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 8001 DAG.getValueType(TruncVT)); 8002 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 8003 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 8004 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 8005 } else { 8006 assert(Ld->getExtensionType() == ISD::EXTLOAD); 8007 } 8008 8009 EVT VT = Ld->getValueType(0); 8010 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8011 8012 DCI.AddToWorklist(Cvt.getNode()); 8013 8014 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 8015 // the appropriate extension from the 32-bit load. 8016 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 8017 DCI.AddToWorklist(Cvt.getNode()); 8018 8019 // Handle conversion back to floating point if necessary. 8020 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 8021 8022 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 8023 } 8024 8025 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 8026 SDLoc DL(Op); 8027 LoadSDNode *Load = cast<LoadSDNode>(Op); 8028 ISD::LoadExtType ExtType = Load->getExtensionType(); 8029 EVT MemVT = Load->getMemoryVT(); 8030 8031 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 8032 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 8033 return SDValue(); 8034 8035 // FIXME: Copied from PPC 8036 // First, load into 32 bits, then truncate to 1 bit. 8037 8038 SDValue Chain = Load->getChain(); 8039 SDValue BasePtr = Load->getBasePtr(); 8040 MachineMemOperand *MMO = Load->getMemOperand(); 8041 8042 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 8043 8044 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 8045 BasePtr, RealMemVT, MMO); 8046 8047 if (!MemVT.isVector()) { 8048 SDValue Ops[] = { 8049 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 8050 NewLD.getValue(1) 8051 }; 8052 8053 return DAG.getMergeValues(Ops, DL); 8054 } 8055 8056 SmallVector<SDValue, 3> Elts; 8057 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 8058 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 8059 DAG.getConstant(I, DL, MVT::i32)); 8060 8061 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 8062 } 8063 8064 SDValue Ops[] = { 8065 DAG.getBuildVector(MemVT, DL, Elts), 8066 NewLD.getValue(1) 8067 }; 8068 8069 return DAG.getMergeValues(Ops, DL); 8070 } 8071 8072 if (!MemVT.isVector()) 8073 return SDValue(); 8074 8075 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 8076 "Custom lowering for non-i32 vectors hasn't been implemented."); 8077 8078 unsigned Alignment = Load->getAlignment(); 8079 unsigned AS = Load->getAddressSpace(); 8080 if (Subtarget->hasLDSMisalignedBug() && 8081 AS == AMDGPUAS::FLAT_ADDRESS && 8082 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 8083 return SplitVectorLoad(Op, DAG); 8084 } 8085 8086 MachineFunction &MF = DAG.getMachineFunction(); 8087 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 8088 // If there is a possibilty that flat instruction access scratch memory 8089 // then we need to use the same legalization rules we use for private. 8090 if (AS == AMDGPUAS::FLAT_ADDRESS && 8091 !Subtarget->hasMultiDwordFlatScratchAddressing()) 8092 AS = MFI->hasFlatScratchInit() ? 8093 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 8094 8095 unsigned NumElements = MemVT.getVectorNumElements(); 8096 8097 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8098 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 8099 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) { 8100 if (MemVT.isPow2VectorType()) 8101 return SDValue(); 8102 return WidenOrSplitVectorLoad(Op, DAG); 8103 } 8104 // Non-uniform loads will be selected to MUBUF instructions, so they 8105 // have the same legalization requirements as global and private 8106 // loads. 8107 // 8108 } 8109 8110 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8111 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 8112 AS == AMDGPUAS::GLOBAL_ADDRESS) { 8113 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 8114 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && 8115 Alignment >= 4 && NumElements < 32) { 8116 if (MemVT.isPow2VectorType()) 8117 return SDValue(); 8118 return WidenOrSplitVectorLoad(Op, DAG); 8119 } 8120 // Non-uniform loads will be selected to MUBUF instructions, so they 8121 // have the same legalization requirements as global and private 8122 // loads. 8123 // 8124 } 8125 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 8126 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 8127 AS == AMDGPUAS::GLOBAL_ADDRESS || 8128 AS == AMDGPUAS::FLAT_ADDRESS) { 8129 if (NumElements > 4) 8130 return SplitVectorLoad(Op, DAG); 8131 // v3 loads not supported on SI. 8132 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8133 return WidenOrSplitVectorLoad(Op, DAG); 8134 8135 // v3 and v4 loads are supported for private and global memory. 8136 return SDValue(); 8137 } 8138 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 8139 // Depending on the setting of the private_element_size field in the 8140 // resource descriptor, we can only make private accesses up to a certain 8141 // size. 8142 switch (Subtarget->getMaxPrivateElementSize()) { 8143 case 4: { 8144 SDValue Ops[2]; 8145 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 8146 return DAG.getMergeValues(Ops, DL); 8147 } 8148 case 8: 8149 if (NumElements > 2) 8150 return SplitVectorLoad(Op, DAG); 8151 return SDValue(); 8152 case 16: 8153 // Same as global/flat 8154 if (NumElements > 4) 8155 return SplitVectorLoad(Op, DAG); 8156 // v3 loads not supported on SI. 8157 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8158 return WidenOrSplitVectorLoad(Op, DAG); 8159 8160 return SDValue(); 8161 default: 8162 llvm_unreachable("unsupported private_element_size"); 8163 } 8164 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 8165 // Use ds_read_b128 or ds_read_b96 when possible. 8166 if (Subtarget->hasDS96AndDS128() && 8167 ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) || 8168 MemVT.getStoreSize() == 12) && 8169 allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, 8170 Load->getAlign())) 8171 return SDValue(); 8172 8173 if (NumElements > 2) 8174 return SplitVectorLoad(Op, DAG); 8175 8176 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 8177 // address is negative, then the instruction is incorrectly treated as 8178 // out-of-bounds even if base + offsets is in bounds. Split vectorized 8179 // loads here to avoid emitting ds_read2_b32. We may re-combine the 8180 // load later in the SILoadStoreOptimizer. 8181 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 8182 NumElements == 2 && MemVT.getStoreSize() == 8 && 8183 Load->getAlignment() < 8) { 8184 return SplitVectorLoad(Op, DAG); 8185 } 8186 } 8187 8188 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8189 MemVT, *Load->getMemOperand())) { 8190 SDValue Ops[2]; 8191 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 8192 return DAG.getMergeValues(Ops, DL); 8193 } 8194 8195 return SDValue(); 8196 } 8197 8198 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 8199 EVT VT = Op.getValueType(); 8200 assert(VT.getSizeInBits() == 64); 8201 8202 SDLoc DL(Op); 8203 SDValue Cond = Op.getOperand(0); 8204 8205 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 8206 SDValue One = DAG.getConstant(1, DL, MVT::i32); 8207 8208 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 8209 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 8210 8211 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 8212 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 8213 8214 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 8215 8216 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 8217 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 8218 8219 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 8220 8221 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 8222 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 8223 } 8224 8225 // Catch division cases where we can use shortcuts with rcp and rsq 8226 // instructions. 8227 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 8228 SelectionDAG &DAG) const { 8229 SDLoc SL(Op); 8230 SDValue LHS = Op.getOperand(0); 8231 SDValue RHS = Op.getOperand(1); 8232 EVT VT = Op.getValueType(); 8233 const SDNodeFlags Flags = Op->getFlags(); 8234 8235 bool AllowInaccurateRcp = Flags.hasApproximateFuncs(); 8236 8237 // Without !fpmath accuracy information, we can't do more because we don't 8238 // know exactly whether rcp is accurate enough to meet !fpmath requirement. 8239 if (!AllowInaccurateRcp) 8240 return SDValue(); 8241 8242 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 8243 if (CLHS->isExactlyValue(1.0)) { 8244 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 8245 // the CI documentation has a worst case error of 1 ulp. 8246 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 8247 // use it as long as we aren't trying to use denormals. 8248 // 8249 // v_rcp_f16 and v_rsq_f16 DO support denormals. 8250 8251 // 1.0 / sqrt(x) -> rsq(x) 8252 8253 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 8254 // error seems really high at 2^29 ULP. 8255 if (RHS.getOpcode() == ISD::FSQRT) 8256 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); 8257 8258 // 1.0 / x -> rcp(x) 8259 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8260 } 8261 8262 // Same as for 1.0, but expand the sign out of the constant. 8263 if (CLHS->isExactlyValue(-1.0)) { 8264 // -1.0 / x -> rcp (fneg x) 8265 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 8266 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 8267 } 8268 } 8269 8270 // Turn into multiply by the reciprocal. 8271 // x / y -> x * (1.0 / y) 8272 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 8273 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 8274 } 8275 8276 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, 8277 SelectionDAG &DAG) const { 8278 SDLoc SL(Op); 8279 SDValue X = Op.getOperand(0); 8280 SDValue Y = Op.getOperand(1); 8281 EVT VT = Op.getValueType(); 8282 const SDNodeFlags Flags = Op->getFlags(); 8283 8284 bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || 8285 DAG.getTarget().Options.UnsafeFPMath; 8286 if (!AllowInaccurateDiv) 8287 return SDValue(); 8288 8289 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); 8290 SDValue One = DAG.getConstantFP(1.0, SL, VT); 8291 8292 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); 8293 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 8294 8295 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); 8296 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 8297 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); 8298 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); 8299 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); 8300 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); 8301 } 8302 8303 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8304 EVT VT, SDValue A, SDValue B, SDValue GlueChain, 8305 SDNodeFlags Flags) { 8306 if (GlueChain->getNumValues() <= 1) { 8307 return DAG.getNode(Opcode, SL, VT, A, B, Flags); 8308 } 8309 8310 assert(GlueChain->getNumValues() == 3); 8311 8312 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8313 switch (Opcode) { 8314 default: llvm_unreachable("no chain equivalent for opcode"); 8315 case ISD::FMUL: 8316 Opcode = AMDGPUISD::FMUL_W_CHAIN; 8317 break; 8318 } 8319 8320 return DAG.getNode(Opcode, SL, VTList, 8321 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, 8322 Flags); 8323 } 8324 8325 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 8326 EVT VT, SDValue A, SDValue B, SDValue C, 8327 SDValue GlueChain, SDNodeFlags Flags) { 8328 if (GlueChain->getNumValues() <= 1) { 8329 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); 8330 } 8331 8332 assert(GlueChain->getNumValues() == 3); 8333 8334 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 8335 switch (Opcode) { 8336 default: llvm_unreachable("no chain equivalent for opcode"); 8337 case ISD::FMA: 8338 Opcode = AMDGPUISD::FMA_W_CHAIN; 8339 break; 8340 } 8341 8342 return DAG.getNode(Opcode, SL, VTList, 8343 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, 8344 Flags); 8345 } 8346 8347 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 8348 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8349 return FastLowered; 8350 8351 SDLoc SL(Op); 8352 SDValue Src0 = Op.getOperand(0); 8353 SDValue Src1 = Op.getOperand(1); 8354 8355 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 8356 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 8357 8358 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 8359 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 8360 8361 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 8362 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 8363 8364 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 8365 } 8366 8367 // Faster 2.5 ULP division that does not support denormals. 8368 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 8369 SDLoc SL(Op); 8370 SDValue LHS = Op.getOperand(1); 8371 SDValue RHS = Op.getOperand(2); 8372 8373 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); 8374 8375 const APFloat K0Val(BitsToFloat(0x6f800000)); 8376 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 8377 8378 const APFloat K1Val(BitsToFloat(0x2f800000)); 8379 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 8380 8381 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8382 8383 EVT SetCCVT = 8384 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 8385 8386 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 8387 8388 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); 8389 8390 // TODO: Should this propagate fast-math-flags? 8391 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); 8392 8393 // rcp does not support denormals. 8394 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); 8395 8396 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); 8397 8398 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); 8399 } 8400 8401 // Returns immediate value for setting the F32 denorm mode when using the 8402 // S_DENORM_MODE instruction. 8403 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, 8404 const SDLoc &SL, const GCNSubtarget *ST) { 8405 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 8406 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction()) 8407 ? FP_DENORM_FLUSH_NONE 8408 : FP_DENORM_FLUSH_IN_FLUSH_OUT; 8409 8410 int Mode = SPDenormMode | (DPDenormModeDefault << 2); 8411 return DAG.getTargetConstant(Mode, SL, MVT::i32); 8412 } 8413 8414 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 8415 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 8416 return FastLowered; 8417 8418 // The selection matcher assumes anything with a chain selecting to a 8419 // mayRaiseFPException machine instruction. Since we're introducing a chain 8420 // here, we need to explicitly report nofpexcept for the regular fdiv 8421 // lowering. 8422 SDNodeFlags Flags = Op->getFlags(); 8423 Flags.setNoFPExcept(true); 8424 8425 SDLoc SL(Op); 8426 SDValue LHS = Op.getOperand(0); 8427 SDValue RHS = Op.getOperand(1); 8428 8429 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 8430 8431 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 8432 8433 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 8434 {RHS, RHS, LHS}, Flags); 8435 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 8436 {LHS, RHS, LHS}, Flags); 8437 8438 // Denominator is scaled to not be denormal, so using rcp is ok. 8439 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 8440 DenominatorScaled, Flags); 8441 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 8442 DenominatorScaled, Flags); 8443 8444 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 8445 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 8446 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 8447 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); 8448 8449 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction()); 8450 8451 if (!HasFP32Denormals) { 8452 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV 8453 // lowering. The chain dependence is insufficient, and we need glue. We do 8454 // not need the glue variants in a strictfp function. 8455 8456 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 8457 8458 SDNode *EnableDenorm; 8459 if (Subtarget->hasDenormModeInst()) { 8460 const SDValue EnableDenormValue = 8461 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget); 8462 8463 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, 8464 DAG.getEntryNode(), EnableDenormValue).getNode(); 8465 } else { 8466 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 8467 SL, MVT::i32); 8468 EnableDenorm = 8469 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, 8470 {EnableDenormValue, BitField, DAG.getEntryNode()}); 8471 } 8472 8473 SDValue Ops[3] = { 8474 NegDivScale0, 8475 SDValue(EnableDenorm, 0), 8476 SDValue(EnableDenorm, 1) 8477 }; 8478 8479 NegDivScale0 = DAG.getMergeValues(Ops, SL); 8480 } 8481 8482 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 8483 ApproxRcp, One, NegDivScale0, Flags); 8484 8485 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 8486 ApproxRcp, Fma0, Flags); 8487 8488 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 8489 Fma1, Fma1, Flags); 8490 8491 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 8492 NumeratorScaled, Mul, Flags); 8493 8494 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, 8495 Fma2, Fma1, Mul, Fma2, Flags); 8496 8497 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 8498 NumeratorScaled, Fma3, Flags); 8499 8500 if (!HasFP32Denormals) { 8501 SDNode *DisableDenorm; 8502 if (Subtarget->hasDenormModeInst()) { 8503 const SDValue DisableDenormValue = 8504 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget); 8505 8506 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 8507 Fma4.getValue(1), DisableDenormValue, 8508 Fma4.getValue(2)).getNode(); 8509 } else { 8510 const SDValue DisableDenormValue = 8511 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 8512 8513 DisableDenorm = DAG.getMachineNode( 8514 AMDGPU::S_SETREG_B32, SL, MVT::Other, 8515 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); 8516 } 8517 8518 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 8519 SDValue(DisableDenorm, 0), DAG.getRoot()); 8520 DAG.setRoot(OutputChain); 8521 } 8522 8523 SDValue Scale = NumeratorScaled.getValue(1); 8524 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 8525 {Fma4, Fma1, Fma3, Scale}, Flags); 8526 8527 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); 8528 } 8529 8530 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 8531 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) 8532 return FastLowered; 8533 8534 SDLoc SL(Op); 8535 SDValue X = Op.getOperand(0); 8536 SDValue Y = Op.getOperand(1); 8537 8538 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 8539 8540 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 8541 8542 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 8543 8544 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 8545 8546 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 8547 8548 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 8549 8550 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 8551 8552 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 8553 8554 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 8555 8556 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 8557 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 8558 8559 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 8560 NegDivScale0, Mul, DivScale1); 8561 8562 SDValue Scale; 8563 8564 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 8565 // Workaround a hardware bug on SI where the condition output from div_scale 8566 // is not usable. 8567 8568 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 8569 8570 // Figure out if the scale to use for div_fmas. 8571 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 8572 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 8573 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 8574 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 8575 8576 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 8577 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 8578 8579 SDValue Scale0Hi 8580 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 8581 SDValue Scale1Hi 8582 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 8583 8584 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 8585 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 8586 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 8587 } else { 8588 Scale = DivScale1.getValue(1); 8589 } 8590 8591 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 8592 Fma4, Fma3, Mul, Scale); 8593 8594 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 8595 } 8596 8597 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 8598 EVT VT = Op.getValueType(); 8599 8600 if (VT == MVT::f32) 8601 return LowerFDIV32(Op, DAG); 8602 8603 if (VT == MVT::f64) 8604 return LowerFDIV64(Op, DAG); 8605 8606 if (VT == MVT::f16) 8607 return LowerFDIV16(Op, DAG); 8608 8609 llvm_unreachable("Unexpected type for fdiv"); 8610 } 8611 8612 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 8613 SDLoc DL(Op); 8614 StoreSDNode *Store = cast<StoreSDNode>(Op); 8615 EVT VT = Store->getMemoryVT(); 8616 8617 if (VT == MVT::i1) { 8618 return DAG.getTruncStore(Store->getChain(), DL, 8619 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 8620 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 8621 } 8622 8623 assert(VT.isVector() && 8624 Store->getValue().getValueType().getScalarType() == MVT::i32); 8625 8626 unsigned AS = Store->getAddressSpace(); 8627 if (Subtarget->hasLDSMisalignedBug() && 8628 AS == AMDGPUAS::FLAT_ADDRESS && 8629 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 8630 return SplitVectorStore(Op, DAG); 8631 } 8632 8633 MachineFunction &MF = DAG.getMachineFunction(); 8634 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 8635 // If there is a possibilty that flat instruction access scratch memory 8636 // then we need to use the same legalization rules we use for private. 8637 if (AS == AMDGPUAS::FLAT_ADDRESS && 8638 !Subtarget->hasMultiDwordFlatScratchAddressing()) 8639 AS = MFI->hasFlatScratchInit() ? 8640 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 8641 8642 unsigned NumElements = VT.getVectorNumElements(); 8643 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 8644 AS == AMDGPUAS::FLAT_ADDRESS) { 8645 if (NumElements > 4) 8646 return SplitVectorStore(Op, DAG); 8647 // v3 stores not supported on SI. 8648 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 8649 return SplitVectorStore(Op, DAG); 8650 8651 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8652 VT, *Store->getMemOperand())) 8653 return expandUnalignedStore(Store, DAG); 8654 8655 return SDValue(); 8656 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 8657 switch (Subtarget->getMaxPrivateElementSize()) { 8658 case 4: 8659 return scalarizeVectorStore(Store, DAG); 8660 case 8: 8661 if (NumElements > 2) 8662 return SplitVectorStore(Op, DAG); 8663 return SDValue(); 8664 case 16: 8665 if (NumElements > 4 || 8666 (NumElements == 3 && !Subtarget->enableFlatScratch())) 8667 return SplitVectorStore(Op, DAG); 8668 return SDValue(); 8669 default: 8670 llvm_unreachable("unsupported private_element_size"); 8671 } 8672 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 8673 // Use ds_write_b128 or ds_write_b96 when possible. 8674 if (Subtarget->hasDS96AndDS128() && 8675 ((Subtarget->useDS128() && VT.getStoreSize() == 16) || 8676 (VT.getStoreSize() == 12)) && 8677 allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, 8678 Store->getAlign())) 8679 return SDValue(); 8680 8681 if (NumElements > 2) 8682 return SplitVectorStore(Op, DAG); 8683 8684 // SI has a hardware bug in the LDS / GDS boounds checking: if the base 8685 // address is negative, then the instruction is incorrectly treated as 8686 // out-of-bounds even if base + offsets is in bounds. Split vectorized 8687 // stores here to avoid emitting ds_write2_b32. We may re-combine the 8688 // store later in the SILoadStoreOptimizer. 8689 if (!Subtarget->hasUsableDSOffset() && 8690 NumElements == 2 && VT.getStoreSize() == 8 && 8691 Store->getAlignment() < 8) { 8692 return SplitVectorStore(Op, DAG); 8693 } 8694 8695 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 8696 VT, *Store->getMemOperand())) { 8697 if (VT.isVector()) 8698 return SplitVectorStore(Op, DAG); 8699 return expandUnalignedStore(Store, DAG); 8700 } 8701 8702 return SDValue(); 8703 } else { 8704 llvm_unreachable("unhandled address space"); 8705 } 8706 } 8707 8708 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 8709 SDLoc DL(Op); 8710 EVT VT = Op.getValueType(); 8711 SDValue Arg = Op.getOperand(0); 8712 SDValue TrigVal; 8713 8714 // Propagate fast-math flags so that the multiply we introduce can be folded 8715 // if Arg is already the result of a multiply by constant. 8716 auto Flags = Op->getFlags(); 8717 8718 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); 8719 8720 if (Subtarget->hasTrigReducedRange()) { 8721 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 8722 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); 8723 } else { 8724 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 8725 } 8726 8727 switch (Op.getOpcode()) { 8728 case ISD::FCOS: 8729 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); 8730 case ISD::FSIN: 8731 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); 8732 default: 8733 llvm_unreachable("Wrong trig opcode"); 8734 } 8735 } 8736 8737 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 8738 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 8739 assert(AtomicNode->isCompareAndSwap()); 8740 unsigned AS = AtomicNode->getAddressSpace(); 8741 8742 // No custom lowering required for local address space 8743 if (!AMDGPU::isFlatGlobalAddrSpace(AS)) 8744 return Op; 8745 8746 // Non-local address space requires custom lowering for atomic compare 8747 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 8748 SDLoc DL(Op); 8749 SDValue ChainIn = Op.getOperand(0); 8750 SDValue Addr = Op.getOperand(1); 8751 SDValue Old = Op.getOperand(2); 8752 SDValue New = Op.getOperand(3); 8753 EVT VT = Op.getValueType(); 8754 MVT SimpleVT = VT.getSimpleVT(); 8755 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 8756 8757 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 8758 SDValue Ops[] = { ChainIn, Addr, NewOld }; 8759 8760 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 8761 Ops, VT, AtomicNode->getMemOperand()); 8762 } 8763 8764 //===----------------------------------------------------------------------===// 8765 // Custom DAG optimizations 8766 //===----------------------------------------------------------------------===// 8767 8768 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 8769 DAGCombinerInfo &DCI) const { 8770 EVT VT = N->getValueType(0); 8771 EVT ScalarVT = VT.getScalarType(); 8772 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) 8773 return SDValue(); 8774 8775 SelectionDAG &DAG = DCI.DAG; 8776 SDLoc DL(N); 8777 8778 SDValue Src = N->getOperand(0); 8779 EVT SrcVT = Src.getValueType(); 8780 8781 // TODO: We could try to match extracting the higher bytes, which would be 8782 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 8783 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 8784 // about in practice. 8785 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 8786 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 8787 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); 8788 DCI.AddToWorklist(Cvt.getNode()); 8789 8790 // For the f16 case, fold to a cast to f32 and then cast back to f16. 8791 if (ScalarVT != MVT::f32) { 8792 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, 8793 DAG.getTargetConstant(0, DL, MVT::i32)); 8794 } 8795 return Cvt; 8796 } 8797 } 8798 8799 return SDValue(); 8800 } 8801 8802 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 8803 8804 // This is a variant of 8805 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 8806 // 8807 // The normal DAG combiner will do this, but only if the add has one use since 8808 // that would increase the number of instructions. 8809 // 8810 // This prevents us from seeing a constant offset that can be folded into a 8811 // memory instruction's addressing mode. If we know the resulting add offset of 8812 // a pointer can be folded into an addressing offset, we can replace the pointer 8813 // operand with the add of new constant offset. This eliminates one of the uses, 8814 // and may allow the remaining use to also be simplified. 8815 // 8816 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 8817 unsigned AddrSpace, 8818 EVT MemVT, 8819 DAGCombinerInfo &DCI) const { 8820 SDValue N0 = N->getOperand(0); 8821 SDValue N1 = N->getOperand(1); 8822 8823 // We only do this to handle cases where it's profitable when there are 8824 // multiple uses of the add, so defer to the standard combine. 8825 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 8826 N0->hasOneUse()) 8827 return SDValue(); 8828 8829 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 8830 if (!CN1) 8831 return SDValue(); 8832 8833 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 8834 if (!CAdd) 8835 return SDValue(); 8836 8837 // If the resulting offset is too large, we can't fold it into the addressing 8838 // mode offset. 8839 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 8840 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 8841 8842 AddrMode AM; 8843 AM.HasBaseReg = true; 8844 AM.BaseOffs = Offset.getSExtValue(); 8845 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 8846 return SDValue(); 8847 8848 SelectionDAG &DAG = DCI.DAG; 8849 SDLoc SL(N); 8850 EVT VT = N->getValueType(0); 8851 8852 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 8853 SDValue COffset = DAG.getConstant(Offset, SL, VT); 8854 8855 SDNodeFlags Flags; 8856 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 8857 (N0.getOpcode() == ISD::OR || 8858 N0->getFlags().hasNoUnsignedWrap())); 8859 8860 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 8861 } 8862 8863 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset 8864 /// by the chain and intrinsic ID. Theoretically we would also need to check the 8865 /// specific intrinsic, but they all place the pointer operand first. 8866 static unsigned getBasePtrIndex(const MemSDNode *N) { 8867 switch (N->getOpcode()) { 8868 case ISD::STORE: 8869 case ISD::INTRINSIC_W_CHAIN: 8870 case ISD::INTRINSIC_VOID: 8871 return 2; 8872 default: 8873 return 1; 8874 } 8875 } 8876 8877 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 8878 DAGCombinerInfo &DCI) const { 8879 SelectionDAG &DAG = DCI.DAG; 8880 SDLoc SL(N); 8881 8882 unsigned PtrIdx = getBasePtrIndex(N); 8883 SDValue Ptr = N->getOperand(PtrIdx); 8884 8885 // TODO: We could also do this for multiplies. 8886 if (Ptr.getOpcode() == ISD::SHL) { 8887 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 8888 N->getMemoryVT(), DCI); 8889 if (NewPtr) { 8890 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 8891 8892 NewOps[PtrIdx] = NewPtr; 8893 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 8894 } 8895 } 8896 8897 return SDValue(); 8898 } 8899 8900 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 8901 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 8902 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 8903 (Opc == ISD::XOR && Val == 0); 8904 } 8905 8906 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 8907 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 8908 // integer combine opportunities since most 64-bit operations are decomposed 8909 // this way. TODO: We won't want this for SALU especially if it is an inline 8910 // immediate. 8911 SDValue SITargetLowering::splitBinaryBitConstantOp( 8912 DAGCombinerInfo &DCI, 8913 const SDLoc &SL, 8914 unsigned Opc, SDValue LHS, 8915 const ConstantSDNode *CRHS) const { 8916 uint64_t Val = CRHS->getZExtValue(); 8917 uint32_t ValLo = Lo_32(Val); 8918 uint32_t ValHi = Hi_32(Val); 8919 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 8920 8921 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 8922 bitOpWithConstantIsReducible(Opc, ValHi)) || 8923 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 8924 // If we need to materialize a 64-bit immediate, it will be split up later 8925 // anyway. Avoid creating the harder to understand 64-bit immediate 8926 // materialization. 8927 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 8928 } 8929 8930 return SDValue(); 8931 } 8932 8933 // Returns true if argument is a boolean value which is not serialized into 8934 // memory or argument and does not require v_cndmask_b32 to be deserialized. 8935 static bool isBoolSGPR(SDValue V) { 8936 if (V.getValueType() != MVT::i1) 8937 return false; 8938 switch (V.getOpcode()) { 8939 default: 8940 break; 8941 case ISD::SETCC: 8942 case AMDGPUISD::FP_CLASS: 8943 return true; 8944 case ISD::AND: 8945 case ISD::OR: 8946 case ISD::XOR: 8947 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); 8948 } 8949 return false; 8950 } 8951 8952 // If a constant has all zeroes or all ones within each byte return it. 8953 // Otherwise return 0. 8954 static uint32_t getConstantPermuteMask(uint32_t C) { 8955 // 0xff for any zero byte in the mask 8956 uint32_t ZeroByteMask = 0; 8957 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 8958 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 8959 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 8960 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 8961 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 8962 if ((NonZeroByteMask & C) != NonZeroByteMask) 8963 return 0; // Partial bytes selected. 8964 return C; 8965 } 8966 8967 // Check if a node selects whole bytes from its operand 0 starting at a byte 8968 // boundary while masking the rest. Returns select mask as in the v_perm_b32 8969 // or -1 if not succeeded. 8970 // Note byte select encoding: 8971 // value 0-3 selects corresponding source byte; 8972 // value 0xc selects zero; 8973 // value 0xff selects 0xff. 8974 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { 8975 assert(V.getValueSizeInBits() == 32); 8976 8977 if (V.getNumOperands() != 2) 8978 return ~0; 8979 8980 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 8981 if (!N1) 8982 return ~0; 8983 8984 uint32_t C = N1->getZExtValue(); 8985 8986 switch (V.getOpcode()) { 8987 default: 8988 break; 8989 case ISD::AND: 8990 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 8991 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 8992 } 8993 break; 8994 8995 case ISD::OR: 8996 if (uint32_t ConstMask = getConstantPermuteMask(C)) { 8997 return (0x03020100 & ~ConstMask) | ConstMask; 8998 } 8999 break; 9000 9001 case ISD::SHL: 9002 if (C % 8) 9003 return ~0; 9004 9005 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 9006 9007 case ISD::SRL: 9008 if (C % 8) 9009 return ~0; 9010 9011 return uint32_t(0x0c0c0c0c03020100ull >> C); 9012 } 9013 9014 return ~0; 9015 } 9016 9017 SDValue SITargetLowering::performAndCombine(SDNode *N, 9018 DAGCombinerInfo &DCI) const { 9019 if (DCI.isBeforeLegalize()) 9020 return SDValue(); 9021 9022 SelectionDAG &DAG = DCI.DAG; 9023 EVT VT = N->getValueType(0); 9024 SDValue LHS = N->getOperand(0); 9025 SDValue RHS = N->getOperand(1); 9026 9027 9028 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 9029 if (VT == MVT::i64 && CRHS) { 9030 if (SDValue Split 9031 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 9032 return Split; 9033 } 9034 9035 if (CRHS && VT == MVT::i32) { 9036 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 9037 // nb = number of trailing zeroes in mask 9038 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 9039 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 9040 uint64_t Mask = CRHS->getZExtValue(); 9041 unsigned Bits = countPopulation(Mask); 9042 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 9043 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 9044 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 9045 unsigned Shift = CShift->getZExtValue(); 9046 unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); 9047 unsigned Offset = NB + Shift; 9048 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 9049 SDLoc SL(N); 9050 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 9051 LHS->getOperand(0), 9052 DAG.getConstant(Offset, SL, MVT::i32), 9053 DAG.getConstant(Bits, SL, MVT::i32)); 9054 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9055 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 9056 DAG.getValueType(NarrowVT)); 9057 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 9058 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 9059 return Shl; 9060 } 9061 } 9062 } 9063 9064 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 9065 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 9066 isa<ConstantSDNode>(LHS.getOperand(2))) { 9067 uint32_t Sel = getConstantPermuteMask(Mask); 9068 if (!Sel) 9069 return SDValue(); 9070 9071 // Select 0xc for all zero bytes 9072 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 9073 SDLoc DL(N); 9074 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 9075 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 9076 } 9077 } 9078 9079 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 9080 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 9081 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 9082 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 9083 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 9084 9085 SDValue X = LHS.getOperand(0); 9086 SDValue Y = RHS.getOperand(0); 9087 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) 9088 return SDValue(); 9089 9090 if (LCC == ISD::SETO) { 9091 if (X != LHS.getOperand(1)) 9092 return SDValue(); 9093 9094 if (RCC == ISD::SETUNE) { 9095 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 9096 if (!C1 || !C1->isInfinity() || C1->isNegative()) 9097 return SDValue(); 9098 9099 const uint32_t Mask = SIInstrFlags::N_NORMAL | 9100 SIInstrFlags::N_SUBNORMAL | 9101 SIInstrFlags::N_ZERO | 9102 SIInstrFlags::P_ZERO | 9103 SIInstrFlags::P_SUBNORMAL | 9104 SIInstrFlags::P_NORMAL; 9105 9106 static_assert(((~(SIInstrFlags::S_NAN | 9107 SIInstrFlags::Q_NAN | 9108 SIInstrFlags::N_INFINITY | 9109 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 9110 "mask not equal"); 9111 9112 SDLoc DL(N); 9113 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 9114 X, DAG.getConstant(Mask, DL, MVT::i32)); 9115 } 9116 } 9117 } 9118 9119 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 9120 std::swap(LHS, RHS); 9121 9122 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 9123 RHS.hasOneUse()) { 9124 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 9125 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 9126 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 9127 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9128 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 9129 (RHS.getOperand(0) == LHS.getOperand(0) && 9130 LHS.getOperand(0) == LHS.getOperand(1))) { 9131 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 9132 unsigned NewMask = LCC == ISD::SETO ? 9133 Mask->getZExtValue() & ~OrdMask : 9134 Mask->getZExtValue() & OrdMask; 9135 9136 SDLoc DL(N); 9137 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 9138 DAG.getConstant(NewMask, DL, MVT::i32)); 9139 } 9140 } 9141 9142 if (VT == MVT::i32 && 9143 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 9144 // and x, (sext cc from i1) => select cc, x, 0 9145 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 9146 std::swap(LHS, RHS); 9147 if (isBoolSGPR(RHS.getOperand(0))) 9148 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 9149 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 9150 } 9151 9152 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 9153 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9154 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 9155 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 9156 uint32_t LHSMask = getPermuteMask(DAG, LHS); 9157 uint32_t RHSMask = getPermuteMask(DAG, RHS); 9158 if (LHSMask != ~0u && RHSMask != ~0u) { 9159 // Canonicalize the expression in an attempt to have fewer unique masks 9160 // and therefore fewer registers used to hold the masks. 9161 if (LHSMask > RHSMask) { 9162 std::swap(LHSMask, RHSMask); 9163 std::swap(LHS, RHS); 9164 } 9165 9166 // Select 0xc for each lane used from source operand. Zero has 0xc mask 9167 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 9168 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9169 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9170 9171 // Check of we need to combine values from two sources within a byte. 9172 if (!(LHSUsedLanes & RHSUsedLanes) && 9173 // If we select high and lower word keep it for SDWA. 9174 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 9175 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 9176 // Each byte in each mask is either selector mask 0-3, or has higher 9177 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 9178 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 9179 // mask which is not 0xff wins. By anding both masks we have a correct 9180 // result except that 0x0c shall be corrected to give 0x0c only. 9181 uint32_t Mask = LHSMask & RHSMask; 9182 for (unsigned I = 0; I < 32; I += 8) { 9183 uint32_t ByteSel = 0xff << I; 9184 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 9185 Mask &= (0x0c << I) & 0xffffffff; 9186 } 9187 9188 // Add 4 to each active LHS lane. It will not affect any existing 0xff 9189 // or 0x0c. 9190 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 9191 SDLoc DL(N); 9192 9193 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 9194 LHS.getOperand(0), RHS.getOperand(0), 9195 DAG.getConstant(Sel, DL, MVT::i32)); 9196 } 9197 } 9198 } 9199 9200 return SDValue(); 9201 } 9202 9203 SDValue SITargetLowering::performOrCombine(SDNode *N, 9204 DAGCombinerInfo &DCI) const { 9205 SelectionDAG &DAG = DCI.DAG; 9206 SDValue LHS = N->getOperand(0); 9207 SDValue RHS = N->getOperand(1); 9208 9209 EVT VT = N->getValueType(0); 9210 if (VT == MVT::i1) { 9211 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 9212 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 9213 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 9214 SDValue Src = LHS.getOperand(0); 9215 if (Src != RHS.getOperand(0)) 9216 return SDValue(); 9217 9218 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 9219 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 9220 if (!CLHS || !CRHS) 9221 return SDValue(); 9222 9223 // Only 10 bits are used. 9224 static const uint32_t MaxMask = 0x3ff; 9225 9226 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 9227 SDLoc DL(N); 9228 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 9229 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 9230 } 9231 9232 return SDValue(); 9233 } 9234 9235 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 9236 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 9237 LHS.getOpcode() == AMDGPUISD::PERM && 9238 isa<ConstantSDNode>(LHS.getOperand(2))) { 9239 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 9240 if (!Sel) 9241 return SDValue(); 9242 9243 Sel |= LHS.getConstantOperandVal(2); 9244 SDLoc DL(N); 9245 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 9246 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 9247 } 9248 9249 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 9250 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9251 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 9252 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 9253 uint32_t LHSMask = getPermuteMask(DAG, LHS); 9254 uint32_t RHSMask = getPermuteMask(DAG, RHS); 9255 if (LHSMask != ~0u && RHSMask != ~0u) { 9256 // Canonicalize the expression in an attempt to have fewer unique masks 9257 // and therefore fewer registers used to hold the masks. 9258 if (LHSMask > RHSMask) { 9259 std::swap(LHSMask, RHSMask); 9260 std::swap(LHS, RHS); 9261 } 9262 9263 // Select 0xc for each lane used from source operand. Zero has 0xc mask 9264 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 9265 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9266 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 9267 9268 // Check of we need to combine values from two sources within a byte. 9269 if (!(LHSUsedLanes & RHSUsedLanes) && 9270 // If we select high and lower word keep it for SDWA. 9271 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 9272 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 9273 // Kill zero bytes selected by other mask. Zero value is 0xc. 9274 LHSMask &= ~RHSUsedLanes; 9275 RHSMask &= ~LHSUsedLanes; 9276 // Add 4 to each active LHS lane 9277 LHSMask |= LHSUsedLanes & 0x04040404; 9278 // Combine masks 9279 uint32_t Sel = LHSMask | RHSMask; 9280 SDLoc DL(N); 9281 9282 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 9283 LHS.getOperand(0), RHS.getOperand(0), 9284 DAG.getConstant(Sel, DL, MVT::i32)); 9285 } 9286 } 9287 } 9288 9289 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) 9290 return SDValue(); 9291 9292 // TODO: This could be a generic combine with a predicate for extracting the 9293 // high half of an integer being free. 9294 9295 // (or i64:x, (zero_extend i32:y)) -> 9296 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 9297 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 9298 RHS.getOpcode() != ISD::ZERO_EXTEND) 9299 std::swap(LHS, RHS); 9300 9301 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 9302 SDValue ExtSrc = RHS.getOperand(0); 9303 EVT SrcVT = ExtSrc.getValueType(); 9304 if (SrcVT == MVT::i32) { 9305 SDLoc SL(N); 9306 SDValue LowLHS, HiBits; 9307 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 9308 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 9309 9310 DCI.AddToWorklist(LowOr.getNode()); 9311 DCI.AddToWorklist(HiBits.getNode()); 9312 9313 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 9314 LowOr, HiBits); 9315 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 9316 } 9317 } 9318 9319 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9320 if (CRHS) { 9321 if (SDValue Split 9322 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS)) 9323 return Split; 9324 } 9325 9326 return SDValue(); 9327 } 9328 9329 SDValue SITargetLowering::performXorCombine(SDNode *N, 9330 DAGCombinerInfo &DCI) const { 9331 EVT VT = N->getValueType(0); 9332 if (VT != MVT::i64) 9333 return SDValue(); 9334 9335 SDValue LHS = N->getOperand(0); 9336 SDValue RHS = N->getOperand(1); 9337 9338 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 9339 if (CRHS) { 9340 if (SDValue Split 9341 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 9342 return Split; 9343 } 9344 9345 return SDValue(); 9346 } 9347 9348 // Instructions that will be lowered with a final instruction that zeros the 9349 // high result bits. 9350 // XXX - probably only need to list legal operations. 9351 static bool fp16SrcZerosHighBits(unsigned Opc) { 9352 switch (Opc) { 9353 case ISD::FADD: 9354 case ISD::FSUB: 9355 case ISD::FMUL: 9356 case ISD::FDIV: 9357 case ISD::FREM: 9358 case ISD::FMA: 9359 case ISD::FMAD: 9360 case ISD::FCANONICALIZE: 9361 case ISD::FP_ROUND: 9362 case ISD::UINT_TO_FP: 9363 case ISD::SINT_TO_FP: 9364 case ISD::FABS: 9365 // Fabs is lowered to a bit operation, but it's an and which will clear the 9366 // high bits anyway. 9367 case ISD::FSQRT: 9368 case ISD::FSIN: 9369 case ISD::FCOS: 9370 case ISD::FPOWI: 9371 case ISD::FPOW: 9372 case ISD::FLOG: 9373 case ISD::FLOG2: 9374 case ISD::FLOG10: 9375 case ISD::FEXP: 9376 case ISD::FEXP2: 9377 case ISD::FCEIL: 9378 case ISD::FTRUNC: 9379 case ISD::FRINT: 9380 case ISD::FNEARBYINT: 9381 case ISD::FROUND: 9382 case ISD::FFLOOR: 9383 case ISD::FMINNUM: 9384 case ISD::FMAXNUM: 9385 case AMDGPUISD::FRACT: 9386 case AMDGPUISD::CLAMP: 9387 case AMDGPUISD::COS_HW: 9388 case AMDGPUISD::SIN_HW: 9389 case AMDGPUISD::FMIN3: 9390 case AMDGPUISD::FMAX3: 9391 case AMDGPUISD::FMED3: 9392 case AMDGPUISD::FMAD_FTZ: 9393 case AMDGPUISD::RCP: 9394 case AMDGPUISD::RSQ: 9395 case AMDGPUISD::RCP_IFLAG: 9396 case AMDGPUISD::LDEXP: 9397 return true; 9398 default: 9399 // fcopysign, select and others may be lowered to 32-bit bit operations 9400 // which don't zero the high bits. 9401 return false; 9402 } 9403 } 9404 9405 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 9406 DAGCombinerInfo &DCI) const { 9407 if (!Subtarget->has16BitInsts() || 9408 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 9409 return SDValue(); 9410 9411 EVT VT = N->getValueType(0); 9412 if (VT != MVT::i32) 9413 return SDValue(); 9414 9415 SDValue Src = N->getOperand(0); 9416 if (Src.getValueType() != MVT::i16) 9417 return SDValue(); 9418 9419 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src 9420 // FIXME: It is not universally true that the high bits are zeroed on gfx9. 9421 if (Src.getOpcode() == ISD::BITCAST) { 9422 SDValue BCSrc = Src.getOperand(0); 9423 if (BCSrc.getValueType() == MVT::f16 && 9424 fp16SrcZerosHighBits(BCSrc.getOpcode())) 9425 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc); 9426 } 9427 9428 return SDValue(); 9429 } 9430 9431 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, 9432 DAGCombinerInfo &DCI) 9433 const { 9434 SDValue Src = N->getOperand(0); 9435 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 9436 9437 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 9438 VTSign->getVT() == MVT::i8) || 9439 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 9440 VTSign->getVT() == MVT::i16)) && 9441 Src.hasOneUse()) { 9442 auto *M = cast<MemSDNode>(Src); 9443 SDValue Ops[] = { 9444 Src.getOperand(0), // Chain 9445 Src.getOperand(1), // rsrc 9446 Src.getOperand(2), // vindex 9447 Src.getOperand(3), // voffset 9448 Src.getOperand(4), // soffset 9449 Src.getOperand(5), // offset 9450 Src.getOperand(6), 9451 Src.getOperand(7) 9452 }; 9453 // replace with BUFFER_LOAD_BYTE/SHORT 9454 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 9455 Src.getOperand(0).getValueType()); 9456 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 9457 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 9458 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 9459 ResList, 9460 Ops, M->getMemoryVT(), 9461 M->getMemOperand()); 9462 return DCI.DAG.getMergeValues({BufferLoadSignExt, 9463 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 9464 } 9465 return SDValue(); 9466 } 9467 9468 SDValue SITargetLowering::performClassCombine(SDNode *N, 9469 DAGCombinerInfo &DCI) const { 9470 SelectionDAG &DAG = DCI.DAG; 9471 SDValue Mask = N->getOperand(1); 9472 9473 // fp_class x, 0 -> false 9474 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { 9475 if (CMask->isNullValue()) 9476 return DAG.getConstant(0, SDLoc(N), MVT::i1); 9477 } 9478 9479 if (N->getOperand(0).isUndef()) 9480 return DAG.getUNDEF(MVT::i1); 9481 9482 return SDValue(); 9483 } 9484 9485 SDValue SITargetLowering::performRcpCombine(SDNode *N, 9486 DAGCombinerInfo &DCI) const { 9487 EVT VT = N->getValueType(0); 9488 SDValue N0 = N->getOperand(0); 9489 9490 if (N0.isUndef()) 9491 return N0; 9492 9493 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 9494 N0.getOpcode() == ISD::SINT_TO_FP)) { 9495 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 9496 N->getFlags()); 9497 } 9498 9499 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) { 9500 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, 9501 N0.getOperand(0), N->getFlags()); 9502 } 9503 9504 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 9505 } 9506 9507 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 9508 unsigned MaxDepth) const { 9509 unsigned Opcode = Op.getOpcode(); 9510 if (Opcode == ISD::FCANONICALIZE) 9511 return true; 9512 9513 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 9514 auto F = CFP->getValueAPF(); 9515 if (F.isNaN() && F.isSignaling()) 9516 return false; 9517 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType()); 9518 } 9519 9520 // If source is a result of another standard FP operation it is already in 9521 // canonical form. 9522 if (MaxDepth == 0) 9523 return false; 9524 9525 switch (Opcode) { 9526 // These will flush denorms if required. 9527 case ISD::FADD: 9528 case ISD::FSUB: 9529 case ISD::FMUL: 9530 case ISD::FCEIL: 9531 case ISD::FFLOOR: 9532 case ISD::FMA: 9533 case ISD::FMAD: 9534 case ISD::FSQRT: 9535 case ISD::FDIV: 9536 case ISD::FREM: 9537 case ISD::FP_ROUND: 9538 case ISD::FP_EXTEND: 9539 case AMDGPUISD::FMUL_LEGACY: 9540 case AMDGPUISD::FMAD_FTZ: 9541 case AMDGPUISD::RCP: 9542 case AMDGPUISD::RSQ: 9543 case AMDGPUISD::RSQ_CLAMP: 9544 case AMDGPUISD::RCP_LEGACY: 9545 case AMDGPUISD::RCP_IFLAG: 9546 case AMDGPUISD::DIV_SCALE: 9547 case AMDGPUISD::DIV_FMAS: 9548 case AMDGPUISD::DIV_FIXUP: 9549 case AMDGPUISD::FRACT: 9550 case AMDGPUISD::LDEXP: 9551 case AMDGPUISD::CVT_PKRTZ_F16_F32: 9552 case AMDGPUISD::CVT_F32_UBYTE0: 9553 case AMDGPUISD::CVT_F32_UBYTE1: 9554 case AMDGPUISD::CVT_F32_UBYTE2: 9555 case AMDGPUISD::CVT_F32_UBYTE3: 9556 return true; 9557 9558 // It can/will be lowered or combined as a bit operation. 9559 // Need to check their input recursively to handle. 9560 case ISD::FNEG: 9561 case ISD::FABS: 9562 case ISD::FCOPYSIGN: 9563 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 9564 9565 case ISD::FSIN: 9566 case ISD::FCOS: 9567 case ISD::FSINCOS: 9568 return Op.getValueType().getScalarType() != MVT::f16; 9569 9570 case ISD::FMINNUM: 9571 case ISD::FMAXNUM: 9572 case ISD::FMINNUM_IEEE: 9573 case ISD::FMAXNUM_IEEE: 9574 case AMDGPUISD::CLAMP: 9575 case AMDGPUISD::FMED3: 9576 case AMDGPUISD::FMAX3: 9577 case AMDGPUISD::FMIN3: { 9578 // FIXME: Shouldn't treat the generic operations different based these. 9579 // However, we aren't really required to flush the result from 9580 // minnum/maxnum.. 9581 9582 // snans will be quieted, so we only need to worry about denormals. 9583 if (Subtarget->supportsMinMaxDenormModes() || 9584 denormalsEnabledForType(DAG, Op.getValueType())) 9585 return true; 9586 9587 // Flushing may be required. 9588 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 9589 // targets need to check their input recursively. 9590 9591 // FIXME: Does this apply with clamp? It's implemented with max. 9592 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 9593 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 9594 return false; 9595 } 9596 9597 return true; 9598 } 9599 case ISD::SELECT: { 9600 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 9601 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 9602 } 9603 case ISD::BUILD_VECTOR: { 9604 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 9605 SDValue SrcOp = Op.getOperand(i); 9606 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 9607 return false; 9608 } 9609 9610 return true; 9611 } 9612 case ISD::EXTRACT_VECTOR_ELT: 9613 case ISD::EXTRACT_SUBVECTOR: { 9614 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 9615 } 9616 case ISD::INSERT_VECTOR_ELT: { 9617 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 9618 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 9619 } 9620 case ISD::UNDEF: 9621 // Could be anything. 9622 return false; 9623 9624 case ISD::BITCAST: 9625 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 9626 case ISD::TRUNCATE: { 9627 // Hack round the mess we make when legalizing extract_vector_elt 9628 if (Op.getValueType() == MVT::i16) { 9629 SDValue TruncSrc = Op.getOperand(0); 9630 if (TruncSrc.getValueType() == MVT::i32 && 9631 TruncSrc.getOpcode() == ISD::BITCAST && 9632 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 9633 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 9634 } 9635 } 9636 return false; 9637 } 9638 case ISD::INTRINSIC_WO_CHAIN: { 9639 unsigned IntrinsicID 9640 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9641 // TODO: Handle more intrinsics 9642 switch (IntrinsicID) { 9643 case Intrinsic::amdgcn_cvt_pkrtz: 9644 case Intrinsic::amdgcn_cubeid: 9645 case Intrinsic::amdgcn_frexp_mant: 9646 case Intrinsic::amdgcn_fdot2: 9647 case Intrinsic::amdgcn_rcp: 9648 case Intrinsic::amdgcn_rsq: 9649 case Intrinsic::amdgcn_rsq_clamp: 9650 case Intrinsic::amdgcn_rcp_legacy: 9651 case Intrinsic::amdgcn_rsq_legacy: 9652 case Intrinsic::amdgcn_trig_preop: 9653 return true; 9654 default: 9655 break; 9656 } 9657 9658 LLVM_FALLTHROUGH; 9659 } 9660 default: 9661 return denormalsEnabledForType(DAG, Op.getValueType()) && 9662 DAG.isKnownNeverSNaN(Op); 9663 } 9664 9665 llvm_unreachable("invalid operation"); 9666 } 9667 9668 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF, 9669 unsigned MaxDepth) const { 9670 MachineRegisterInfo &MRI = MF.getRegInfo(); 9671 MachineInstr *MI = MRI.getVRegDef(Reg); 9672 unsigned Opcode = MI->getOpcode(); 9673 9674 if (Opcode == AMDGPU::G_FCANONICALIZE) 9675 return true; 9676 9677 if (Opcode == AMDGPU::G_FCONSTANT) { 9678 auto F = MI->getOperand(1).getFPImm()->getValueAPF(); 9679 if (F.isNaN() && F.isSignaling()) 9680 return false; 9681 return !F.isDenormal() || denormalsEnabledForType(MRI.getType(Reg), MF); 9682 } 9683 9684 if (MaxDepth == 0) 9685 return false; 9686 9687 switch (Opcode) { 9688 case AMDGPU::G_FMINNUM_IEEE: 9689 case AMDGPU::G_FMAXNUM_IEEE: { 9690 if (Subtarget->supportsMinMaxDenormModes() || 9691 denormalsEnabledForType(MRI.getType(Reg), MF)) 9692 return true; 9693 for (unsigned I = 1, E = MI->getNumOperands(); I != E; ++I) { 9694 if (!isCanonicalized(MI->getOperand(I).getReg(), MF, MaxDepth - 1)) 9695 return false; 9696 } 9697 return true; 9698 } 9699 default: 9700 return denormalsEnabledForType(MRI.getType(Reg), MF) && 9701 isKnownNeverSNaN(Reg, MRI); 9702 } 9703 9704 llvm_unreachable("invalid operation"); 9705 } 9706 9707 // Constant fold canonicalize. 9708 SDValue SITargetLowering::getCanonicalConstantFP( 9709 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 9710 // Flush denormals to 0 if not enabled. 9711 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) 9712 return DAG.getConstantFP(0.0, SL, VT); 9713 9714 if (C.isNaN()) { 9715 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 9716 if (C.isSignaling()) { 9717 // Quiet a signaling NaN. 9718 // FIXME: Is this supposed to preserve payload bits? 9719 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 9720 } 9721 9722 // Make sure it is the canonical NaN bitpattern. 9723 // 9724 // TODO: Can we use -1 as the canonical NaN value since it's an inline 9725 // immediate? 9726 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 9727 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 9728 } 9729 9730 // Already canonical. 9731 return DAG.getConstantFP(C, SL, VT); 9732 } 9733 9734 static bool vectorEltWillFoldAway(SDValue Op) { 9735 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 9736 } 9737 9738 SDValue SITargetLowering::performFCanonicalizeCombine( 9739 SDNode *N, 9740 DAGCombinerInfo &DCI) const { 9741 SelectionDAG &DAG = DCI.DAG; 9742 SDValue N0 = N->getOperand(0); 9743 EVT VT = N->getValueType(0); 9744 9745 // fcanonicalize undef -> qnan 9746 if (N0.isUndef()) { 9747 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 9748 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 9749 } 9750 9751 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 9752 EVT VT = N->getValueType(0); 9753 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 9754 } 9755 9756 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 9757 // (fcanonicalize k) 9758 // 9759 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 9760 9761 // TODO: This could be better with wider vectors that will be split to v2f16, 9762 // and to consider uses since there aren't that many packed operations. 9763 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 9764 isTypeLegal(MVT::v2f16)) { 9765 SDLoc SL(N); 9766 SDValue NewElts[2]; 9767 SDValue Lo = N0.getOperand(0); 9768 SDValue Hi = N0.getOperand(1); 9769 EVT EltVT = Lo.getValueType(); 9770 9771 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 9772 for (unsigned I = 0; I != 2; ++I) { 9773 SDValue Op = N0.getOperand(I); 9774 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 9775 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 9776 CFP->getValueAPF()); 9777 } else if (Op.isUndef()) { 9778 // Handled below based on what the other operand is. 9779 NewElts[I] = Op; 9780 } else { 9781 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 9782 } 9783 } 9784 9785 // If one half is undef, and one is constant, perfer a splat vector rather 9786 // than the normal qNaN. If it's a register, prefer 0.0 since that's 9787 // cheaper to use and may be free with a packed operation. 9788 if (NewElts[0].isUndef()) { 9789 if (isa<ConstantFPSDNode>(NewElts[1])) 9790 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 9791 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 9792 } 9793 9794 if (NewElts[1].isUndef()) { 9795 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 9796 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 9797 } 9798 9799 return DAG.getBuildVector(VT, SL, NewElts); 9800 } 9801 } 9802 9803 unsigned SrcOpc = N0.getOpcode(); 9804 9805 // If it's free to do so, push canonicalizes further up the source, which may 9806 // find a canonical source. 9807 // 9808 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for 9809 // sNaNs. 9810 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 9811 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9812 if (CRHS && N0.hasOneUse()) { 9813 SDLoc SL(N); 9814 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 9815 N0.getOperand(0)); 9816 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 9817 DCI.AddToWorklist(Canon0.getNode()); 9818 9819 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 9820 } 9821 } 9822 9823 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 9824 } 9825 9826 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 9827 switch (Opc) { 9828 case ISD::FMAXNUM: 9829 case ISD::FMAXNUM_IEEE: 9830 return AMDGPUISD::FMAX3; 9831 case ISD::SMAX: 9832 return AMDGPUISD::SMAX3; 9833 case ISD::UMAX: 9834 return AMDGPUISD::UMAX3; 9835 case ISD::FMINNUM: 9836 case ISD::FMINNUM_IEEE: 9837 return AMDGPUISD::FMIN3; 9838 case ISD::SMIN: 9839 return AMDGPUISD::SMIN3; 9840 case ISD::UMIN: 9841 return AMDGPUISD::UMIN3; 9842 default: 9843 llvm_unreachable("Not a min/max opcode"); 9844 } 9845 } 9846 9847 SDValue SITargetLowering::performIntMed3ImmCombine( 9848 SelectionDAG &DAG, const SDLoc &SL, 9849 SDValue Op0, SDValue Op1, bool Signed) const { 9850 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); 9851 if (!K1) 9852 return SDValue(); 9853 9854 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 9855 if (!K0) 9856 return SDValue(); 9857 9858 if (Signed) { 9859 if (K0->getAPIntValue().sge(K1->getAPIntValue())) 9860 return SDValue(); 9861 } else { 9862 if (K0->getAPIntValue().uge(K1->getAPIntValue())) 9863 return SDValue(); 9864 } 9865 9866 EVT VT = K0->getValueType(0); 9867 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 9868 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { 9869 return DAG.getNode(Med3Opc, SL, VT, 9870 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); 9871 } 9872 9873 // If there isn't a 16-bit med3 operation, convert to 32-bit. 9874 if (VT == MVT::i16) { 9875 MVT NVT = MVT::i32; 9876 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9877 9878 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); 9879 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); 9880 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); 9881 9882 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); 9883 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); 9884 } 9885 9886 return SDValue(); 9887 } 9888 9889 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 9890 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 9891 return C; 9892 9893 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 9894 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 9895 return C; 9896 } 9897 9898 return nullptr; 9899 } 9900 9901 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 9902 const SDLoc &SL, 9903 SDValue Op0, 9904 SDValue Op1) const { 9905 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 9906 if (!K1) 9907 return SDValue(); 9908 9909 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 9910 if (!K0) 9911 return SDValue(); 9912 9913 // Ordered >= (although NaN inputs should have folded away by now). 9914 if (K0->getValueAPF() > K1->getValueAPF()) 9915 return SDValue(); 9916 9917 const MachineFunction &MF = DAG.getMachineFunction(); 9918 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 9919 9920 // TODO: Check IEEE bit enabled? 9921 EVT VT = Op0.getValueType(); 9922 if (Info->getMode().DX10Clamp) { 9923 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 9924 // hardware fmed3 behavior converting to a min. 9925 // FIXME: Should this be allowing -0.0? 9926 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 9927 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 9928 } 9929 9930 // med3 for f16 is only available on gfx9+, and not available for v2f16. 9931 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 9932 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 9933 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 9934 // then give the other result, which is different from med3 with a NaN 9935 // input. 9936 SDValue Var = Op0.getOperand(0); 9937 if (!DAG.isKnownNeverSNaN(Var)) 9938 return SDValue(); 9939 9940 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9941 9942 if ((!K0->hasOneUse() || 9943 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 9944 (!K1->hasOneUse() || 9945 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 9946 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 9947 Var, SDValue(K0, 0), SDValue(K1, 0)); 9948 } 9949 } 9950 9951 return SDValue(); 9952 } 9953 9954 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 9955 DAGCombinerInfo &DCI) const { 9956 SelectionDAG &DAG = DCI.DAG; 9957 9958 EVT VT = N->getValueType(0); 9959 unsigned Opc = N->getOpcode(); 9960 SDValue Op0 = N->getOperand(0); 9961 SDValue Op1 = N->getOperand(1); 9962 9963 // Only do this if the inner op has one use since this will just increases 9964 // register pressure for no benefit. 9965 9966 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 9967 !VT.isVector() && 9968 (VT == MVT::i32 || VT == MVT::f32 || 9969 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 9970 // max(max(a, b), c) -> max3(a, b, c) 9971 // min(min(a, b), c) -> min3(a, b, c) 9972 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 9973 SDLoc DL(N); 9974 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 9975 DL, 9976 N->getValueType(0), 9977 Op0.getOperand(0), 9978 Op0.getOperand(1), 9979 Op1); 9980 } 9981 9982 // Try commuted. 9983 // max(a, max(b, c)) -> max3(a, b, c) 9984 // min(a, min(b, c)) -> min3(a, b, c) 9985 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 9986 SDLoc DL(N); 9987 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 9988 DL, 9989 N->getValueType(0), 9990 Op0, 9991 Op1.getOperand(0), 9992 Op1.getOperand(1)); 9993 } 9994 } 9995 9996 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 9997 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 9998 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) 9999 return Med3; 10000 } 10001 10002 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 10003 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) 10004 return Med3; 10005 } 10006 10007 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 10008 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 10009 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 10010 (Opc == AMDGPUISD::FMIN_LEGACY && 10011 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 10012 (VT == MVT::f32 || VT == MVT::f64 || 10013 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 10014 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 10015 Op0.hasOneUse()) { 10016 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 10017 return Res; 10018 } 10019 10020 return SDValue(); 10021 } 10022 10023 static bool isClampZeroToOne(SDValue A, SDValue B) { 10024 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 10025 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 10026 // FIXME: Should this be allowing -0.0? 10027 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 10028 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 10029 } 10030 } 10031 10032 return false; 10033 } 10034 10035 // FIXME: Should only worry about snans for version with chain. 10036 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 10037 DAGCombinerInfo &DCI) const { 10038 EVT VT = N->getValueType(0); 10039 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 10040 // NaNs. With a NaN input, the order of the operands may change the result. 10041 10042 SelectionDAG &DAG = DCI.DAG; 10043 SDLoc SL(N); 10044 10045 SDValue Src0 = N->getOperand(0); 10046 SDValue Src1 = N->getOperand(1); 10047 SDValue Src2 = N->getOperand(2); 10048 10049 if (isClampZeroToOne(Src0, Src1)) { 10050 // const_a, const_b, x -> clamp is safe in all cases including signaling 10051 // nans. 10052 // FIXME: Should this be allowing -0.0? 10053 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 10054 } 10055 10056 const MachineFunction &MF = DAG.getMachineFunction(); 10057 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10058 10059 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 10060 // handling no dx10-clamp? 10061 if (Info->getMode().DX10Clamp) { 10062 // If NaNs is clamped to 0, we are free to reorder the inputs. 10063 10064 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 10065 std::swap(Src0, Src1); 10066 10067 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 10068 std::swap(Src1, Src2); 10069 10070 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 10071 std::swap(Src0, Src1); 10072 10073 if (isClampZeroToOne(Src1, Src2)) 10074 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 10075 } 10076 10077 return SDValue(); 10078 } 10079 10080 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 10081 DAGCombinerInfo &DCI) const { 10082 SDValue Src0 = N->getOperand(0); 10083 SDValue Src1 = N->getOperand(1); 10084 if (Src0.isUndef() && Src1.isUndef()) 10085 return DCI.DAG.getUNDEF(N->getValueType(0)); 10086 return SDValue(); 10087 } 10088 10089 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be 10090 // expanded into a set of cmp/select instructions. 10091 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, 10092 unsigned NumElem, 10093 bool IsDivergentIdx) { 10094 if (UseDivergentRegisterIndexing) 10095 return false; 10096 10097 unsigned VecSize = EltSize * NumElem; 10098 10099 // Sub-dword vectors of size 2 dword or less have better implementation. 10100 if (VecSize <= 64 && EltSize < 32) 10101 return false; 10102 10103 // Always expand the rest of sub-dword instructions, otherwise it will be 10104 // lowered via memory. 10105 if (EltSize < 32) 10106 return true; 10107 10108 // Always do this if var-idx is divergent, otherwise it will become a loop. 10109 if (IsDivergentIdx) 10110 return true; 10111 10112 // Large vectors would yield too many compares and v_cndmask_b32 instructions. 10113 unsigned NumInsts = NumElem /* Number of compares */ + 10114 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; 10115 return NumInsts <= 16; 10116 } 10117 10118 static bool shouldExpandVectorDynExt(SDNode *N) { 10119 SDValue Idx = N->getOperand(N->getNumOperands() - 1); 10120 if (isa<ConstantSDNode>(Idx)) 10121 return false; 10122 10123 SDValue Vec = N->getOperand(0); 10124 EVT VecVT = Vec.getValueType(); 10125 EVT EltVT = VecVT.getVectorElementType(); 10126 unsigned EltSize = EltVT.getSizeInBits(); 10127 unsigned NumElem = VecVT.getVectorNumElements(); 10128 10129 return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem, 10130 Idx->isDivergent()); 10131 } 10132 10133 SDValue SITargetLowering::performExtractVectorEltCombine( 10134 SDNode *N, DAGCombinerInfo &DCI) const { 10135 SDValue Vec = N->getOperand(0); 10136 SelectionDAG &DAG = DCI.DAG; 10137 10138 EVT VecVT = Vec.getValueType(); 10139 EVT EltVT = VecVT.getVectorElementType(); 10140 10141 if ((Vec.getOpcode() == ISD::FNEG || 10142 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 10143 SDLoc SL(N); 10144 EVT EltVT = N->getValueType(0); 10145 SDValue Idx = N->getOperand(1); 10146 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10147 Vec.getOperand(0), Idx); 10148 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); 10149 } 10150 10151 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 10152 // => 10153 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 10154 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 10155 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 10156 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { 10157 SDLoc SL(N); 10158 EVT EltVT = N->getValueType(0); 10159 SDValue Idx = N->getOperand(1); 10160 unsigned Opc = Vec.getOpcode(); 10161 10162 switch(Opc) { 10163 default: 10164 break; 10165 // TODO: Support other binary operations. 10166 case ISD::FADD: 10167 case ISD::FSUB: 10168 case ISD::FMUL: 10169 case ISD::ADD: 10170 case ISD::UMIN: 10171 case ISD::UMAX: 10172 case ISD::SMIN: 10173 case ISD::SMAX: 10174 case ISD::FMAXNUM: 10175 case ISD::FMINNUM: 10176 case ISD::FMAXNUM_IEEE: 10177 case ISD::FMINNUM_IEEE: { 10178 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10179 Vec.getOperand(0), Idx); 10180 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 10181 Vec.getOperand(1), Idx); 10182 10183 DCI.AddToWorklist(Elt0.getNode()); 10184 DCI.AddToWorklist(Elt1.getNode()); 10185 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); 10186 } 10187 } 10188 } 10189 10190 unsigned VecSize = VecVT.getSizeInBits(); 10191 unsigned EltSize = EltVT.getSizeInBits(); 10192 10193 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 10194 if (::shouldExpandVectorDynExt(N)) { 10195 SDLoc SL(N); 10196 SDValue Idx = N->getOperand(1); 10197 SDValue V; 10198 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 10199 SDValue IC = DAG.getVectorIdxConstant(I, SL); 10200 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 10201 if (I == 0) 10202 V = Elt; 10203 else 10204 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 10205 } 10206 return V; 10207 } 10208 10209 if (!DCI.isBeforeLegalize()) 10210 return SDValue(); 10211 10212 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 10213 // elements. This exposes more load reduction opportunities by replacing 10214 // multiple small extract_vector_elements with a single 32-bit extract. 10215 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10216 if (isa<MemSDNode>(Vec) && 10217 EltSize <= 16 && 10218 EltVT.isByteSized() && 10219 VecSize > 32 && 10220 VecSize % 32 == 0 && 10221 Idx) { 10222 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 10223 10224 unsigned BitIndex = Idx->getZExtValue() * EltSize; 10225 unsigned EltIdx = BitIndex / 32; 10226 unsigned LeftoverBitIdx = BitIndex % 32; 10227 SDLoc SL(N); 10228 10229 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 10230 DCI.AddToWorklist(Cast.getNode()); 10231 10232 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 10233 DAG.getConstant(EltIdx, SL, MVT::i32)); 10234 DCI.AddToWorklist(Elt.getNode()); 10235 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 10236 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 10237 DCI.AddToWorklist(Srl.getNode()); 10238 10239 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); 10240 DCI.AddToWorklist(Trunc.getNode()); 10241 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); 10242 } 10243 10244 return SDValue(); 10245 } 10246 10247 SDValue 10248 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 10249 DAGCombinerInfo &DCI) const { 10250 SDValue Vec = N->getOperand(0); 10251 SDValue Idx = N->getOperand(2); 10252 EVT VecVT = Vec.getValueType(); 10253 EVT EltVT = VecVT.getVectorElementType(); 10254 10255 // INSERT_VECTOR_ELT (<n x e>, var-idx) 10256 // => BUILD_VECTOR n x select (e, const-idx) 10257 if (!::shouldExpandVectorDynExt(N)) 10258 return SDValue(); 10259 10260 SelectionDAG &DAG = DCI.DAG; 10261 SDLoc SL(N); 10262 SDValue Ins = N->getOperand(1); 10263 EVT IdxVT = Idx.getValueType(); 10264 10265 SmallVector<SDValue, 16> Ops; 10266 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 10267 SDValue IC = DAG.getConstant(I, SL, IdxVT); 10268 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 10269 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 10270 Ops.push_back(V); 10271 } 10272 10273 return DAG.getBuildVector(VecVT, SL, Ops); 10274 } 10275 10276 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 10277 const SDNode *N0, 10278 const SDNode *N1) const { 10279 EVT VT = N0->getValueType(0); 10280 10281 // Only do this if we are not trying to support denormals. v_mad_f32 does not 10282 // support denormals ever. 10283 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) || 10284 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) && 10285 getSubtarget()->hasMadF16())) && 10286 isOperationLegal(ISD::FMAD, VT)) 10287 return ISD::FMAD; 10288 10289 const TargetOptions &Options = DAG.getTarget().Options; 10290 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 10291 (N0->getFlags().hasAllowContract() && 10292 N1->getFlags().hasAllowContract())) && 10293 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 10294 return ISD::FMA; 10295 } 10296 10297 return 0; 10298 } 10299 10300 // For a reassociatable opcode perform: 10301 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 10302 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 10303 SelectionDAG &DAG) const { 10304 EVT VT = N->getValueType(0); 10305 if (VT != MVT::i32 && VT != MVT::i64) 10306 return SDValue(); 10307 10308 unsigned Opc = N->getOpcode(); 10309 SDValue Op0 = N->getOperand(0); 10310 SDValue Op1 = N->getOperand(1); 10311 10312 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 10313 return SDValue(); 10314 10315 if (Op0->isDivergent()) 10316 std::swap(Op0, Op1); 10317 10318 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 10319 return SDValue(); 10320 10321 SDValue Op2 = Op1.getOperand(1); 10322 Op1 = Op1.getOperand(0); 10323 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 10324 return SDValue(); 10325 10326 if (Op1->isDivergent()) 10327 std::swap(Op1, Op2); 10328 10329 // If either operand is constant this will conflict with 10330 // DAGCombiner::ReassociateOps(). 10331 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 10332 DAG.isConstantIntBuildVectorOrConstantInt(Op1)) 10333 return SDValue(); 10334 10335 SDLoc SL(N); 10336 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 10337 return DAG.getNode(Opc, SL, VT, Add1, Op2); 10338 } 10339 10340 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 10341 EVT VT, 10342 SDValue N0, SDValue N1, SDValue N2, 10343 bool Signed) { 10344 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 10345 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 10346 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 10347 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 10348 } 10349 10350 SDValue SITargetLowering::performAddCombine(SDNode *N, 10351 DAGCombinerInfo &DCI) const { 10352 SelectionDAG &DAG = DCI.DAG; 10353 EVT VT = N->getValueType(0); 10354 SDLoc SL(N); 10355 SDValue LHS = N->getOperand(0); 10356 SDValue RHS = N->getOperand(1); 10357 10358 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) 10359 && Subtarget->hasMad64_32() && 10360 !VT.isVector() && VT.getScalarSizeInBits() > 32 && 10361 VT.getScalarSizeInBits() <= 64) { 10362 if (LHS.getOpcode() != ISD::MUL) 10363 std::swap(LHS, RHS); 10364 10365 SDValue MulLHS = LHS.getOperand(0); 10366 SDValue MulRHS = LHS.getOperand(1); 10367 SDValue AddRHS = RHS; 10368 10369 // TODO: Maybe restrict if SGPR inputs. 10370 if (numBitsUnsigned(MulLHS, DAG) <= 32 && 10371 numBitsUnsigned(MulRHS, DAG) <= 32) { 10372 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); 10373 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); 10374 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); 10375 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); 10376 } 10377 10378 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) { 10379 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); 10380 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); 10381 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); 10382 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); 10383 } 10384 10385 return SDValue(); 10386 } 10387 10388 if (SDValue V = reassociateScalarOps(N, DAG)) { 10389 return V; 10390 } 10391 10392 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 10393 return SDValue(); 10394 10395 // add x, zext (setcc) => addcarry x, 0, setcc 10396 // add x, sext (setcc) => subcarry x, 0, setcc 10397 unsigned Opc = LHS.getOpcode(); 10398 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 10399 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) 10400 std::swap(RHS, LHS); 10401 10402 Opc = RHS.getOpcode(); 10403 switch (Opc) { 10404 default: break; 10405 case ISD::ZERO_EXTEND: 10406 case ISD::SIGN_EXTEND: 10407 case ISD::ANY_EXTEND: { 10408 auto Cond = RHS.getOperand(0); 10409 // If this won't be a real VOPC output, we would still need to insert an 10410 // extra instruction anyway. 10411 if (!isBoolSGPR(Cond)) 10412 break; 10413 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 10414 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 10415 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; 10416 return DAG.getNode(Opc, SL, VTList, Args); 10417 } 10418 case ISD::ADDCARRY: { 10419 // add x, (addcarry y, 0, cc) => addcarry x, y, cc 10420 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 10421 if (!C || C->getZExtValue() != 0) break; 10422 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 10423 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); 10424 } 10425 } 10426 return SDValue(); 10427 } 10428 10429 SDValue SITargetLowering::performSubCombine(SDNode *N, 10430 DAGCombinerInfo &DCI) const { 10431 SelectionDAG &DAG = DCI.DAG; 10432 EVT VT = N->getValueType(0); 10433 10434 if (VT != MVT::i32) 10435 return SDValue(); 10436 10437 SDLoc SL(N); 10438 SDValue LHS = N->getOperand(0); 10439 SDValue RHS = N->getOperand(1); 10440 10441 // sub x, zext (setcc) => subcarry x, 0, setcc 10442 // sub x, sext (setcc) => addcarry x, 0, setcc 10443 unsigned Opc = RHS.getOpcode(); 10444 switch (Opc) { 10445 default: break; 10446 case ISD::ZERO_EXTEND: 10447 case ISD::SIGN_EXTEND: 10448 case ISD::ANY_EXTEND: { 10449 auto Cond = RHS.getOperand(0); 10450 // If this won't be a real VOPC output, we would still need to insert an 10451 // extra instruction anyway. 10452 if (!isBoolSGPR(Cond)) 10453 break; 10454 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 10455 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 10456 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY; 10457 return DAG.getNode(Opc, SL, VTList, Args); 10458 } 10459 } 10460 10461 if (LHS.getOpcode() == ISD::SUBCARRY) { 10462 // sub (subcarry x, 0, cc), y => subcarry x, y, cc 10463 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 10464 if (!C || !C->isNullValue()) 10465 return SDValue(); 10466 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 10467 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); 10468 } 10469 return SDValue(); 10470 } 10471 10472 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 10473 DAGCombinerInfo &DCI) const { 10474 10475 if (N->getValueType(0) != MVT::i32) 10476 return SDValue(); 10477 10478 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10479 if (!C || C->getZExtValue() != 0) 10480 return SDValue(); 10481 10482 SelectionDAG &DAG = DCI.DAG; 10483 SDValue LHS = N->getOperand(0); 10484 10485 // addcarry (add x, y), 0, cc => addcarry x, y, cc 10486 // subcarry (sub x, y), 0, cc => subcarry x, y, cc 10487 unsigned LHSOpc = LHS.getOpcode(); 10488 unsigned Opc = N->getOpcode(); 10489 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || 10490 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { 10491 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 10492 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 10493 } 10494 return SDValue(); 10495 } 10496 10497 SDValue SITargetLowering::performFAddCombine(SDNode *N, 10498 DAGCombinerInfo &DCI) const { 10499 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 10500 return SDValue(); 10501 10502 SelectionDAG &DAG = DCI.DAG; 10503 EVT VT = N->getValueType(0); 10504 10505 SDLoc SL(N); 10506 SDValue LHS = N->getOperand(0); 10507 SDValue RHS = N->getOperand(1); 10508 10509 // These should really be instruction patterns, but writing patterns with 10510 // source modiifiers is a pain. 10511 10512 // fadd (fadd (a, a), b) -> mad 2.0, a, b 10513 if (LHS.getOpcode() == ISD::FADD) { 10514 SDValue A = LHS.getOperand(0); 10515 if (A == LHS.getOperand(1)) { 10516 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 10517 if (FusedOp != 0) { 10518 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10519 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 10520 } 10521 } 10522 } 10523 10524 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 10525 if (RHS.getOpcode() == ISD::FADD) { 10526 SDValue A = RHS.getOperand(0); 10527 if (A == RHS.getOperand(1)) { 10528 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 10529 if (FusedOp != 0) { 10530 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10531 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 10532 } 10533 } 10534 } 10535 10536 return SDValue(); 10537 } 10538 10539 SDValue SITargetLowering::performFSubCombine(SDNode *N, 10540 DAGCombinerInfo &DCI) const { 10541 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 10542 return SDValue(); 10543 10544 SelectionDAG &DAG = DCI.DAG; 10545 SDLoc SL(N); 10546 EVT VT = N->getValueType(0); 10547 assert(!VT.isVector()); 10548 10549 // Try to get the fneg to fold into the source modifier. This undoes generic 10550 // DAG combines and folds them into the mad. 10551 // 10552 // Only do this if we are not trying to support denormals. v_mad_f32 does 10553 // not support denormals ever. 10554 SDValue LHS = N->getOperand(0); 10555 SDValue RHS = N->getOperand(1); 10556 if (LHS.getOpcode() == ISD::FADD) { 10557 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 10558 SDValue A = LHS.getOperand(0); 10559 if (A == LHS.getOperand(1)) { 10560 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 10561 if (FusedOp != 0){ 10562 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 10563 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 10564 10565 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 10566 } 10567 } 10568 } 10569 10570 if (RHS.getOpcode() == ISD::FADD) { 10571 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 10572 10573 SDValue A = RHS.getOperand(0); 10574 if (A == RHS.getOperand(1)) { 10575 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 10576 if (FusedOp != 0){ 10577 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 10578 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 10579 } 10580 } 10581 } 10582 10583 return SDValue(); 10584 } 10585 10586 SDValue SITargetLowering::performFMACombine(SDNode *N, 10587 DAGCombinerInfo &DCI) const { 10588 SelectionDAG &DAG = DCI.DAG; 10589 EVT VT = N->getValueType(0); 10590 SDLoc SL(N); 10591 10592 if (!Subtarget->hasDot7Insts() || VT != MVT::f32) 10593 return SDValue(); 10594 10595 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 10596 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 10597 SDValue Op1 = N->getOperand(0); 10598 SDValue Op2 = N->getOperand(1); 10599 SDValue FMA = N->getOperand(2); 10600 10601 if (FMA.getOpcode() != ISD::FMA || 10602 Op1.getOpcode() != ISD::FP_EXTEND || 10603 Op2.getOpcode() != ISD::FP_EXTEND) 10604 return SDValue(); 10605 10606 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 10607 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract 10608 // is sufficient to allow generaing fdot2. 10609 const TargetOptions &Options = DAG.getTarget().Options; 10610 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 10611 (N->getFlags().hasAllowContract() && 10612 FMA->getFlags().hasAllowContract())) { 10613 Op1 = Op1.getOperand(0); 10614 Op2 = Op2.getOperand(0); 10615 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10616 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10617 return SDValue(); 10618 10619 SDValue Vec1 = Op1.getOperand(0); 10620 SDValue Idx1 = Op1.getOperand(1); 10621 SDValue Vec2 = Op2.getOperand(0); 10622 10623 SDValue FMAOp1 = FMA.getOperand(0); 10624 SDValue FMAOp2 = FMA.getOperand(1); 10625 SDValue FMAAcc = FMA.getOperand(2); 10626 10627 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 10628 FMAOp2.getOpcode() != ISD::FP_EXTEND) 10629 return SDValue(); 10630 10631 FMAOp1 = FMAOp1.getOperand(0); 10632 FMAOp2 = FMAOp2.getOperand(0); 10633 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10634 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10635 return SDValue(); 10636 10637 SDValue Vec3 = FMAOp1.getOperand(0); 10638 SDValue Vec4 = FMAOp2.getOperand(0); 10639 SDValue Idx2 = FMAOp1.getOperand(1); 10640 10641 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 10642 // Idx1 and Idx2 cannot be the same. 10643 Idx1 == Idx2) 10644 return SDValue(); 10645 10646 if (Vec1 == Vec2 || Vec3 == Vec4) 10647 return SDValue(); 10648 10649 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 10650 return SDValue(); 10651 10652 if ((Vec1 == Vec3 && Vec2 == Vec4) || 10653 (Vec1 == Vec4 && Vec2 == Vec3)) { 10654 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 10655 DAG.getTargetConstant(0, SL, MVT::i1)); 10656 } 10657 } 10658 return SDValue(); 10659 } 10660 10661 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 10662 DAGCombinerInfo &DCI) const { 10663 SelectionDAG &DAG = DCI.DAG; 10664 SDLoc SL(N); 10665 10666 SDValue LHS = N->getOperand(0); 10667 SDValue RHS = N->getOperand(1); 10668 EVT VT = LHS.getValueType(); 10669 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 10670 10671 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 10672 if (!CRHS) { 10673 CRHS = dyn_cast<ConstantSDNode>(LHS); 10674 if (CRHS) { 10675 std::swap(LHS, RHS); 10676 CC = getSetCCSwappedOperands(CC); 10677 } 10678 } 10679 10680 if (CRHS) { 10681 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 10682 isBoolSGPR(LHS.getOperand(0))) { 10683 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 10684 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 10685 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 10686 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 10687 if ((CRHS->isAllOnesValue() && 10688 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 10689 (CRHS->isNullValue() && 10690 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 10691 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 10692 DAG.getConstant(-1, SL, MVT::i1)); 10693 if ((CRHS->isAllOnesValue() && 10694 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 10695 (CRHS->isNullValue() && 10696 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 10697 return LHS.getOperand(0); 10698 } 10699 10700 uint64_t CRHSVal = CRHS->getZExtValue(); 10701 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 10702 LHS.getOpcode() == ISD::SELECT && 10703 isa<ConstantSDNode>(LHS.getOperand(1)) && 10704 isa<ConstantSDNode>(LHS.getOperand(2)) && 10705 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 10706 isBoolSGPR(LHS.getOperand(0))) { 10707 // Given CT != FT: 10708 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 10709 // setcc (select cc, CT, CF), CF, ne => cc 10710 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 10711 // setcc (select cc, CT, CF), CT, eq => cc 10712 uint64_t CT = LHS.getConstantOperandVal(1); 10713 uint64_t CF = LHS.getConstantOperandVal(2); 10714 10715 if ((CF == CRHSVal && CC == ISD::SETEQ) || 10716 (CT == CRHSVal && CC == ISD::SETNE)) 10717 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 10718 DAG.getConstant(-1, SL, MVT::i1)); 10719 if ((CF == CRHSVal && CC == ISD::SETNE) || 10720 (CT == CRHSVal && CC == ISD::SETEQ)) 10721 return LHS.getOperand(0); 10722 } 10723 } 10724 10725 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && 10726 VT != MVT::f16)) 10727 return SDValue(); 10728 10729 // Match isinf/isfinite pattern 10730 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 10731 // (fcmp one (fabs x), inf) -> (fp_class x, 10732 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 10733 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 10734 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 10735 if (!CRHS) 10736 return SDValue(); 10737 10738 const APFloat &APF = CRHS->getValueAPF(); 10739 if (APF.isInfinity() && !APF.isNegative()) { 10740 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 10741 SIInstrFlags::N_INFINITY; 10742 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 10743 SIInstrFlags::P_ZERO | 10744 SIInstrFlags::N_NORMAL | 10745 SIInstrFlags::P_NORMAL | 10746 SIInstrFlags::N_SUBNORMAL | 10747 SIInstrFlags::P_SUBNORMAL; 10748 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 10749 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 10750 DAG.getConstant(Mask, SL, MVT::i32)); 10751 } 10752 } 10753 10754 return SDValue(); 10755 } 10756 10757 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 10758 DAGCombinerInfo &DCI) const { 10759 SelectionDAG &DAG = DCI.DAG; 10760 SDLoc SL(N); 10761 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 10762 10763 SDValue Src = N->getOperand(0); 10764 SDValue Shift = N->getOperand(0); 10765 10766 // TODO: Extend type shouldn't matter (assuming legal types). 10767 if (Shift.getOpcode() == ISD::ZERO_EXTEND) 10768 Shift = Shift.getOperand(0); 10769 10770 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { 10771 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x 10772 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x 10773 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 10774 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 10775 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 10776 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { 10777 Shift = DAG.getZExtOrTrunc(Shift.getOperand(0), 10778 SDLoc(Shift.getOperand(0)), MVT::i32); 10779 10780 unsigned ShiftOffset = 8 * Offset; 10781 if (Shift.getOpcode() == ISD::SHL) 10782 ShiftOffset -= C->getZExtValue(); 10783 else 10784 ShiftOffset += C->getZExtValue(); 10785 10786 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { 10787 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, 10788 MVT::f32, Shift); 10789 } 10790 } 10791 } 10792 10793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10794 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 10795 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { 10796 // We simplified Src. If this node is not dead, visit it again so it is 10797 // folded properly. 10798 if (N->getOpcode() != ISD::DELETED_NODE) 10799 DCI.AddToWorklist(N); 10800 return SDValue(N, 0); 10801 } 10802 10803 // Handle (or x, (srl y, 8)) pattern when known bits are zero. 10804 if (SDValue DemandedSrc = 10805 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) 10806 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); 10807 10808 return SDValue(); 10809 } 10810 10811 SDValue SITargetLowering::performClampCombine(SDNode *N, 10812 DAGCombinerInfo &DCI) const { 10813 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 10814 if (!CSrc) 10815 return SDValue(); 10816 10817 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 10818 const APFloat &F = CSrc->getValueAPF(); 10819 APFloat Zero = APFloat::getZero(F.getSemantics()); 10820 if (F < Zero || 10821 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 10822 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 10823 } 10824 10825 APFloat One(F.getSemantics(), "1.0"); 10826 if (F > One) 10827 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 10828 10829 return SDValue(CSrc, 0); 10830 } 10831 10832 10833 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 10834 DAGCombinerInfo &DCI) const { 10835 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 10836 return SDValue(); 10837 switch (N->getOpcode()) { 10838 case ISD::ADD: 10839 return performAddCombine(N, DCI); 10840 case ISD::SUB: 10841 return performSubCombine(N, DCI); 10842 case ISD::ADDCARRY: 10843 case ISD::SUBCARRY: 10844 return performAddCarrySubCarryCombine(N, DCI); 10845 case ISD::FADD: 10846 return performFAddCombine(N, DCI); 10847 case ISD::FSUB: 10848 return performFSubCombine(N, DCI); 10849 case ISD::SETCC: 10850 return performSetCCCombine(N, DCI); 10851 case ISD::FMAXNUM: 10852 case ISD::FMINNUM: 10853 case ISD::FMAXNUM_IEEE: 10854 case ISD::FMINNUM_IEEE: 10855 case ISD::SMAX: 10856 case ISD::SMIN: 10857 case ISD::UMAX: 10858 case ISD::UMIN: 10859 case AMDGPUISD::FMIN_LEGACY: 10860 case AMDGPUISD::FMAX_LEGACY: 10861 return performMinMaxCombine(N, DCI); 10862 case ISD::FMA: 10863 return performFMACombine(N, DCI); 10864 case ISD::AND: 10865 return performAndCombine(N, DCI); 10866 case ISD::OR: 10867 return performOrCombine(N, DCI); 10868 case ISD::XOR: 10869 return performXorCombine(N, DCI); 10870 case ISD::ZERO_EXTEND: 10871 return performZeroExtendCombine(N, DCI); 10872 case ISD::SIGN_EXTEND_INREG: 10873 return performSignExtendInRegCombine(N , DCI); 10874 case AMDGPUISD::FP_CLASS: 10875 return performClassCombine(N, DCI); 10876 case ISD::FCANONICALIZE: 10877 return performFCanonicalizeCombine(N, DCI); 10878 case AMDGPUISD::RCP: 10879 return performRcpCombine(N, DCI); 10880 case AMDGPUISD::FRACT: 10881 case AMDGPUISD::RSQ: 10882 case AMDGPUISD::RCP_LEGACY: 10883 case AMDGPUISD::RCP_IFLAG: 10884 case AMDGPUISD::RSQ_CLAMP: 10885 case AMDGPUISD::LDEXP: { 10886 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 10887 SDValue Src = N->getOperand(0); 10888 if (Src.isUndef()) 10889 return Src; 10890 break; 10891 } 10892 case ISD::SINT_TO_FP: 10893 case ISD::UINT_TO_FP: 10894 return performUCharToFloatCombine(N, DCI); 10895 case AMDGPUISD::CVT_F32_UBYTE0: 10896 case AMDGPUISD::CVT_F32_UBYTE1: 10897 case AMDGPUISD::CVT_F32_UBYTE2: 10898 case AMDGPUISD::CVT_F32_UBYTE3: 10899 return performCvtF32UByteNCombine(N, DCI); 10900 case AMDGPUISD::FMED3: 10901 return performFMed3Combine(N, DCI); 10902 case AMDGPUISD::CVT_PKRTZ_F16_F32: 10903 return performCvtPkRTZCombine(N, DCI); 10904 case AMDGPUISD::CLAMP: 10905 return performClampCombine(N, DCI); 10906 case ISD::SCALAR_TO_VECTOR: { 10907 SelectionDAG &DAG = DCI.DAG; 10908 EVT VT = N->getValueType(0); 10909 10910 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 10911 if (VT == MVT::v2i16 || VT == MVT::v2f16) { 10912 SDLoc SL(N); 10913 SDValue Src = N->getOperand(0); 10914 EVT EltVT = Src.getValueType(); 10915 if (EltVT == MVT::f16) 10916 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 10917 10918 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 10919 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 10920 } 10921 10922 break; 10923 } 10924 case ISD::EXTRACT_VECTOR_ELT: 10925 return performExtractVectorEltCombine(N, DCI); 10926 case ISD::INSERT_VECTOR_ELT: 10927 return performInsertVectorEltCombine(N, DCI); 10928 case ISD::LOAD: { 10929 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 10930 return Widended; 10931 LLVM_FALLTHROUGH; 10932 } 10933 default: { 10934 if (!DCI.isBeforeLegalize()) { 10935 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N)) 10936 return performMemSDNodeCombine(MemNode, DCI); 10937 } 10938 10939 break; 10940 } 10941 } 10942 10943 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 10944 } 10945 10946 /// Helper function for adjustWritemask 10947 static unsigned SubIdx2Lane(unsigned Idx) { 10948 switch (Idx) { 10949 default: return ~0u; 10950 case AMDGPU::sub0: return 0; 10951 case AMDGPU::sub1: return 1; 10952 case AMDGPU::sub2: return 2; 10953 case AMDGPU::sub3: return 3; 10954 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 10955 } 10956 } 10957 10958 /// Adjust the writemask of MIMG instructions 10959 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 10960 SelectionDAG &DAG) const { 10961 unsigned Opcode = Node->getMachineOpcode(); 10962 10963 // Subtract 1 because the vdata output is not a MachineSDNode operand. 10964 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 10965 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 10966 return Node; // not implemented for D16 10967 10968 SDNode *Users[5] = { nullptr }; 10969 unsigned Lane = 0; 10970 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 10971 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 10972 unsigned NewDmask = 0; 10973 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 10974 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 10975 bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || 10976 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0; 10977 unsigned TFCLane = 0; 10978 bool HasChain = Node->getNumValues() > 1; 10979 10980 if (OldDmask == 0) { 10981 // These are folded out, but on the chance it happens don't assert. 10982 return Node; 10983 } 10984 10985 unsigned OldBitsSet = countPopulation(OldDmask); 10986 // Work out which is the TFE/LWE lane if that is enabled. 10987 if (UsesTFC) { 10988 TFCLane = OldBitsSet; 10989 } 10990 10991 // Try to figure out the used register components 10992 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 10993 I != E; ++I) { 10994 10995 // Don't look at users of the chain. 10996 if (I.getUse().getResNo() != 0) 10997 continue; 10998 10999 // Abort if we can't understand the usage 11000 if (!I->isMachineOpcode() || 11001 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 11002 return Node; 11003 11004 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 11005 // Note that subregs are packed, i.e. Lane==0 is the first bit set 11006 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 11007 // set, etc. 11008 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 11009 if (Lane == ~0u) 11010 return Node; 11011 11012 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 11013 if (UsesTFC && Lane == TFCLane) { 11014 Users[Lane] = *I; 11015 } else { 11016 // Set which texture component corresponds to the lane. 11017 unsigned Comp; 11018 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 11019 Comp = countTrailingZeros(Dmask); 11020 Dmask &= ~(1 << Comp); 11021 } 11022 11023 // Abort if we have more than one user per component. 11024 if (Users[Lane]) 11025 return Node; 11026 11027 Users[Lane] = *I; 11028 NewDmask |= 1 << Comp; 11029 } 11030 } 11031 11032 // Don't allow 0 dmask, as hardware assumes one channel enabled. 11033 bool NoChannels = !NewDmask; 11034 if (NoChannels) { 11035 if (!UsesTFC) { 11036 // No uses of the result and not using TFC. Then do nothing. 11037 return Node; 11038 } 11039 // If the original dmask has one channel - then nothing to do 11040 if (OldBitsSet == 1) 11041 return Node; 11042 // Use an arbitrary dmask - required for the instruction to work 11043 NewDmask = 1; 11044 } 11045 // Abort if there's no change 11046 if (NewDmask == OldDmask) 11047 return Node; 11048 11049 unsigned BitsSet = countPopulation(NewDmask); 11050 11051 // Check for TFE or LWE - increase the number of channels by one to account 11052 // for the extra return value 11053 // This will need adjustment for D16 if this is also included in 11054 // adjustWriteMask (this function) but at present D16 are excluded. 11055 unsigned NewChannels = BitsSet + UsesTFC; 11056 11057 int NewOpcode = 11058 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 11059 assert(NewOpcode != -1 && 11060 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 11061 "failed to find equivalent MIMG op"); 11062 11063 // Adjust the writemask in the node 11064 SmallVector<SDValue, 12> Ops; 11065 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 11066 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 11067 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 11068 11069 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 11070 11071 MVT ResultVT = NewChannels == 1 ? 11072 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 11073 NewChannels == 5 ? 8 : NewChannels); 11074 SDVTList NewVTList = HasChain ? 11075 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 11076 11077 11078 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 11079 NewVTList, Ops); 11080 11081 if (HasChain) { 11082 // Update chain. 11083 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 11084 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 11085 } 11086 11087 if (NewChannels == 1) { 11088 assert(Node->hasNUsesOfValue(1, 0)); 11089 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 11090 SDLoc(Node), Users[Lane]->getValueType(0), 11091 SDValue(NewNode, 0)); 11092 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 11093 return nullptr; 11094 } 11095 11096 // Update the users of the node with the new indices 11097 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 11098 SDNode *User = Users[i]; 11099 if (!User) { 11100 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 11101 // Users[0] is still nullptr because channel 0 doesn't really have a use. 11102 if (i || !NoChannels) 11103 continue; 11104 } else { 11105 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 11106 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 11107 } 11108 11109 switch (Idx) { 11110 default: break; 11111 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 11112 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 11113 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 11114 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 11115 } 11116 } 11117 11118 DAG.RemoveDeadNode(Node); 11119 return nullptr; 11120 } 11121 11122 static bool isFrameIndexOp(SDValue Op) { 11123 if (Op.getOpcode() == ISD::AssertZext) 11124 Op = Op.getOperand(0); 11125 11126 return isa<FrameIndexSDNode>(Op); 11127 } 11128 11129 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 11130 /// with frame index operands. 11131 /// LLVM assumes that inputs are to these instructions are registers. 11132 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 11133 SelectionDAG &DAG) const { 11134 if (Node->getOpcode() == ISD::CopyToReg) { 11135 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 11136 SDValue SrcVal = Node->getOperand(2); 11137 11138 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 11139 // to try understanding copies to physical registers. 11140 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { 11141 SDLoc SL(Node); 11142 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11143 SDValue VReg = DAG.getRegister( 11144 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 11145 11146 SDNode *Glued = Node->getGluedNode(); 11147 SDValue ToVReg 11148 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 11149 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 11150 SDValue ToResultReg 11151 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 11152 VReg, ToVReg.getValue(1)); 11153 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 11154 DAG.RemoveDeadNode(Node); 11155 return ToResultReg.getNode(); 11156 } 11157 } 11158 11159 SmallVector<SDValue, 8> Ops; 11160 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 11161 if (!isFrameIndexOp(Node->getOperand(i))) { 11162 Ops.push_back(Node->getOperand(i)); 11163 continue; 11164 } 11165 11166 SDLoc DL(Node); 11167 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 11168 Node->getOperand(i).getValueType(), 11169 Node->getOperand(i)), 0)); 11170 } 11171 11172 return DAG.UpdateNodeOperands(Node, Ops); 11173 } 11174 11175 /// Fold the instructions after selecting them. 11176 /// Returns null if users were already updated. 11177 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 11178 SelectionDAG &DAG) const { 11179 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11180 unsigned Opcode = Node->getMachineOpcode(); 11181 11182 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && 11183 !TII->isGather4(Opcode) && 11184 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) { 11185 return adjustWritemask(Node, DAG); 11186 } 11187 11188 if (Opcode == AMDGPU::INSERT_SUBREG || 11189 Opcode == AMDGPU::REG_SEQUENCE) { 11190 legalizeTargetIndependentNode(Node, DAG); 11191 return Node; 11192 } 11193 11194 switch (Opcode) { 11195 case AMDGPU::V_DIV_SCALE_F32_e64: 11196 case AMDGPU::V_DIV_SCALE_F64_e64: { 11197 // Satisfy the operand register constraint when one of the inputs is 11198 // undefined. Ordinarily each undef value will have its own implicit_def of 11199 // a vreg, so force these to use a single register. 11200 SDValue Src0 = Node->getOperand(1); 11201 SDValue Src1 = Node->getOperand(3); 11202 SDValue Src2 = Node->getOperand(5); 11203 11204 if ((Src0.isMachineOpcode() && 11205 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 11206 (Src0 == Src1 || Src0 == Src2)) 11207 break; 11208 11209 MVT VT = Src0.getValueType().getSimpleVT(); 11210 const TargetRegisterClass *RC = 11211 getRegClassFor(VT, Src0.getNode()->isDivergent()); 11212 11213 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11214 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 11215 11216 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 11217 UndefReg, Src0, SDValue()); 11218 11219 // src0 must be the same register as src1 or src2, even if the value is 11220 // undefined, so make sure we don't violate this constraint. 11221 if (Src0.isMachineOpcode() && 11222 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 11223 if (Src1.isMachineOpcode() && 11224 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 11225 Src0 = Src1; 11226 else if (Src2.isMachineOpcode() && 11227 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 11228 Src0 = Src2; 11229 else { 11230 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 11231 Src0 = UndefReg; 11232 Src1 = UndefReg; 11233 } 11234 } else 11235 break; 11236 11237 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end()); 11238 Ops[1] = Src0; 11239 Ops[3] = Src1; 11240 Ops[5] = Src2; 11241 Ops.push_back(ImpDef.getValue(1)); 11242 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 11243 } 11244 default: 11245 break; 11246 } 11247 11248 return Node; 11249 } 11250 11251 // Any MIMG instructions that use tfe or lwe require an initialization of the 11252 // result register that will be written in the case of a memory access failure. 11253 // The required code is also added to tie this init code to the result of the 11254 // img instruction. 11255 void SITargetLowering::AddIMGInit(MachineInstr &MI) const { 11256 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11257 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 11258 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 11259 MachineBasicBlock &MBB = *MI.getParent(); 11260 11261 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); 11262 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); 11263 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); 11264 11265 if (!TFE && !LWE) // intersect_ray 11266 return; 11267 11268 unsigned TFEVal = TFE ? TFE->getImm() : 0; 11269 unsigned LWEVal = LWE->getImm(); 11270 unsigned D16Val = D16 ? D16->getImm() : 0; 11271 11272 if (!TFEVal && !LWEVal) 11273 return; 11274 11275 // At least one of TFE or LWE are non-zero 11276 // We have to insert a suitable initialization of the result value and 11277 // tie this to the dest of the image instruction. 11278 11279 const DebugLoc &DL = MI.getDebugLoc(); 11280 11281 int DstIdx = 11282 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); 11283 11284 // Calculate which dword we have to initialize to 0. 11285 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); 11286 11287 // check that dmask operand is found. 11288 assert(MO_Dmask && "Expected dmask operand in instruction"); 11289 11290 unsigned dmask = MO_Dmask->getImm(); 11291 // Determine the number of active lanes taking into account the 11292 // Gather4 special case 11293 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask); 11294 11295 bool Packed = !Subtarget->hasUnpackedD16VMem(); 11296 11297 unsigned InitIdx = 11298 D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; 11299 11300 // Abandon attempt if the dst size isn't large enough 11301 // - this is in fact an error but this is picked up elsewhere and 11302 // reported correctly. 11303 uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; 11304 if (DstSize < InitIdx) 11305 return; 11306 11307 // Create a register for the intialization value. 11308 Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 11309 unsigned NewDst = 0; // Final initialized value will be in here 11310 11311 // If PRTStrictNull feature is enabled (the default) then initialize 11312 // all the result registers to 0, otherwise just the error indication 11313 // register (VGPRn+1) 11314 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; 11315 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); 11316 11317 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); 11318 for (; SizeLeft; SizeLeft--, CurrIdx++) { 11319 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 11320 // Initialize dword 11321 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 11322 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) 11323 .addImm(0); 11324 // Insert into the super-reg 11325 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) 11326 .addReg(PrevDst) 11327 .addReg(SubReg) 11328 .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); 11329 11330 PrevDst = NewDst; 11331 } 11332 11333 // Add as an implicit operand 11334 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); 11335 11336 // Tie the just added implicit operand to the dst 11337 MI.tieOperands(DstIdx, MI.getNumOperands() - 1); 11338 } 11339 11340 /// Assign the register class depending on the number of 11341 /// bits set in the writemask 11342 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 11343 SDNode *Node) const { 11344 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11345 11346 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 11347 11348 if (TII->isVOP3(MI.getOpcode())) { 11349 // Make sure constant bus requirements are respected. 11350 TII->legalizeOperandsVOP3(MRI, MI); 11351 11352 // Prefer VGPRs over AGPRs in mAI instructions where possible. 11353 // This saves a chain-copy of registers and better ballance register 11354 // use between vgpr and agpr as agpr tuples tend to be big. 11355 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) { 11356 unsigned Opc = MI.getOpcode(); 11357 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11358 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 11359 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { 11360 if (I == -1) 11361 break; 11362 MachineOperand &Op = MI.getOperand(I); 11363 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID && 11364 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) || 11365 !Op.getReg().isVirtual() || !TRI->isAGPR(MRI, Op.getReg())) 11366 continue; 11367 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 11368 if (!Src || !Src->isCopy() || 11369 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 11370 continue; 11371 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 11372 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 11373 // All uses of agpr64 and agpr32 can also accept vgpr except for 11374 // v_accvgpr_read, but we do not produce agpr reads during selection, 11375 // so no use checks are needed. 11376 MRI.setRegClass(Op.getReg(), NewRC); 11377 } 11378 } 11379 11380 return; 11381 } 11382 11383 // Replace unused atomics with the no return version. 11384 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); 11385 if (NoRetAtomicOp != -1) { 11386 if (!Node->hasAnyUseOfValue(0)) { 11387 int CPolIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 11388 AMDGPU::OpName::cpol); 11389 if (CPolIdx != -1) { 11390 MachineOperand &CPol = MI.getOperand(CPolIdx); 11391 CPol.setImm(CPol.getImm() & ~AMDGPU::CPol::GLC); 11392 } 11393 MI.RemoveOperand(0); 11394 MI.setDesc(TII->get(NoRetAtomicOp)); 11395 return; 11396 } 11397 11398 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg 11399 // instruction, because the return type of these instructions is a vec2 of 11400 // the memory type, so it can be tied to the input operand. 11401 // This means these instructions always have a use, so we need to add a 11402 // special case to check if the atomic has only one extract_subreg use, 11403 // which itself has no uses. 11404 if ((Node->hasNUsesOfValue(1, 0) && 11405 Node->use_begin()->isMachineOpcode() && 11406 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && 11407 !Node->use_begin()->hasAnyUseOfValue(0))) { 11408 Register Def = MI.getOperand(0).getReg(); 11409 11410 // Change this into a noret atomic. 11411 MI.setDesc(TII->get(NoRetAtomicOp)); 11412 MI.RemoveOperand(0); 11413 11414 // If we only remove the def operand from the atomic instruction, the 11415 // extract_subreg will be left with a use of a vreg without a def. 11416 // So we need to insert an implicit_def to avoid machine verifier 11417 // errors. 11418 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 11419 TII->get(AMDGPU::IMPLICIT_DEF), Def); 11420 } 11421 return; 11422 } 11423 11424 if (TII->isMIMG(MI) && !MI.mayStore()) 11425 AddIMGInit(MI); 11426 } 11427 11428 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 11429 uint64_t Val) { 11430 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 11431 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 11432 } 11433 11434 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 11435 const SDLoc &DL, 11436 SDValue Ptr) const { 11437 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11438 11439 // Build the half of the subregister with the constants before building the 11440 // full 128-bit register. If we are building multiple resource descriptors, 11441 // this will allow CSEing of the 2-component register. 11442 const SDValue Ops0[] = { 11443 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 11444 buildSMovImm32(DAG, DL, 0), 11445 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 11446 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 11447 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 11448 }; 11449 11450 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 11451 MVT::v2i32, Ops0), 0); 11452 11453 // Combine the constants and the pointer. 11454 const SDValue Ops1[] = { 11455 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 11456 Ptr, 11457 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 11458 SubRegHi, 11459 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 11460 }; 11461 11462 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 11463 } 11464 11465 /// Return a resource descriptor with the 'Add TID' bit enabled 11466 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 11467 /// of the resource descriptor) to create an offset, which is added to 11468 /// the resource pointer. 11469 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 11470 SDValue Ptr, uint32_t RsrcDword1, 11471 uint64_t RsrcDword2And3) const { 11472 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 11473 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 11474 if (RsrcDword1) { 11475 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 11476 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 11477 0); 11478 } 11479 11480 SDValue DataLo = buildSMovImm32(DAG, DL, 11481 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 11482 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 11483 11484 const SDValue Ops[] = { 11485 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 11486 PtrLo, 11487 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 11488 PtrHi, 11489 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 11490 DataLo, 11491 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 11492 DataHi, 11493 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 11494 }; 11495 11496 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 11497 } 11498 11499 //===----------------------------------------------------------------------===// 11500 // SI Inline Assembly Support 11501 //===----------------------------------------------------------------------===// 11502 11503 std::pair<unsigned, const TargetRegisterClass *> 11504 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, 11505 StringRef Constraint, 11506 MVT VT) const { 11507 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_); 11508 11509 const TargetRegisterClass *RC = nullptr; 11510 if (Constraint.size() == 1) { 11511 const unsigned BitWidth = VT.getSizeInBits(); 11512 switch (Constraint[0]) { 11513 default: 11514 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11515 case 's': 11516 case 'r': 11517 switch (BitWidth) { 11518 case 16: 11519 RC = &AMDGPU::SReg_32RegClass; 11520 break; 11521 case 64: 11522 RC = &AMDGPU::SGPR_64RegClass; 11523 break; 11524 default: 11525 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); 11526 if (!RC) 11527 return std::make_pair(0U, nullptr); 11528 break; 11529 } 11530 break; 11531 case 'v': 11532 switch (BitWidth) { 11533 case 16: 11534 RC = &AMDGPU::VGPR_32RegClass; 11535 break; 11536 default: 11537 RC = TRI->getVGPRClassForBitWidth(BitWidth); 11538 if (!RC) 11539 return std::make_pair(0U, nullptr); 11540 break; 11541 } 11542 break; 11543 case 'a': 11544 if (!Subtarget->hasMAIInsts()) 11545 break; 11546 switch (BitWidth) { 11547 case 16: 11548 RC = &AMDGPU::AGPR_32RegClass; 11549 break; 11550 default: 11551 RC = TRI->getAGPRClassForBitWidth(BitWidth); 11552 if (!RC) 11553 return std::make_pair(0U, nullptr); 11554 break; 11555 } 11556 break; 11557 } 11558 // We actually support i128, i16 and f16 as inline parameters 11559 // even if they are not reported as legal 11560 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 11561 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 11562 return std::make_pair(0U, RC); 11563 } 11564 11565 if (Constraint.size() > 1) { 11566 if (Constraint[1] == 'v') { 11567 RC = &AMDGPU::VGPR_32RegClass; 11568 } else if (Constraint[1] == 's') { 11569 RC = &AMDGPU::SGPR_32RegClass; 11570 } else if (Constraint[1] == 'a') { 11571 RC = &AMDGPU::AGPR_32RegClass; 11572 } 11573 11574 if (RC) { 11575 uint32_t Idx; 11576 bool Failed = Constraint.substr(2).getAsInteger(10, Idx); 11577 if (!Failed && Idx < RC->getNumRegs()) 11578 return std::make_pair(RC->getRegister(Idx), RC); 11579 } 11580 } 11581 11582 // FIXME: Returns VS_32 for physical SGPR constraints 11583 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11584 } 11585 11586 static bool isImmConstraint(StringRef Constraint) { 11587 if (Constraint.size() == 1) { 11588 switch (Constraint[0]) { 11589 default: break; 11590 case 'I': 11591 case 'J': 11592 case 'A': 11593 case 'B': 11594 case 'C': 11595 return true; 11596 } 11597 } else if (Constraint == "DA" || 11598 Constraint == "DB") { 11599 return true; 11600 } 11601 return false; 11602 } 11603 11604 SITargetLowering::ConstraintType 11605 SITargetLowering::getConstraintType(StringRef Constraint) const { 11606 if (Constraint.size() == 1) { 11607 switch (Constraint[0]) { 11608 default: break; 11609 case 's': 11610 case 'v': 11611 case 'a': 11612 return C_RegisterClass; 11613 } 11614 } 11615 if (isImmConstraint(Constraint)) { 11616 return C_Other; 11617 } 11618 return TargetLowering::getConstraintType(Constraint); 11619 } 11620 11621 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { 11622 if (!AMDGPU::isInlinableIntLiteral(Val)) { 11623 Val = Val & maskTrailingOnes<uint64_t>(Size); 11624 } 11625 return Val; 11626 } 11627 11628 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, 11629 std::string &Constraint, 11630 std::vector<SDValue> &Ops, 11631 SelectionDAG &DAG) const { 11632 if (isImmConstraint(Constraint)) { 11633 uint64_t Val; 11634 if (getAsmOperandConstVal(Op, Val) && 11635 checkAsmConstraintVal(Op, Constraint, Val)) { 11636 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); 11637 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); 11638 } 11639 } else { 11640 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11641 } 11642 } 11643 11644 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { 11645 unsigned Size = Op.getScalarValueSizeInBits(); 11646 if (Size > 64) 11647 return false; 11648 11649 if (Size == 16 && !Subtarget->has16BitInsts()) 11650 return false; 11651 11652 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 11653 Val = C->getSExtValue(); 11654 return true; 11655 } 11656 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 11657 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 11658 return true; 11659 } 11660 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { 11661 if (Size != 16 || Op.getNumOperands() != 2) 11662 return false; 11663 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) 11664 return false; 11665 if (ConstantSDNode *C = V->getConstantSplatNode()) { 11666 Val = C->getSExtValue(); 11667 return true; 11668 } 11669 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { 11670 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 11671 return true; 11672 } 11673 } 11674 11675 return false; 11676 } 11677 11678 bool SITargetLowering::checkAsmConstraintVal(SDValue Op, 11679 const std::string &Constraint, 11680 uint64_t Val) const { 11681 if (Constraint.size() == 1) { 11682 switch (Constraint[0]) { 11683 case 'I': 11684 return AMDGPU::isInlinableIntLiteral(Val); 11685 case 'J': 11686 return isInt<16>(Val); 11687 case 'A': 11688 return checkAsmConstraintValA(Op, Val); 11689 case 'B': 11690 return isInt<32>(Val); 11691 case 'C': 11692 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || 11693 AMDGPU::isInlinableIntLiteral(Val); 11694 default: 11695 break; 11696 } 11697 } else if (Constraint.size() == 2) { 11698 if (Constraint == "DA") { 11699 int64_t HiBits = static_cast<int32_t>(Val >> 32); 11700 int64_t LoBits = static_cast<int32_t>(Val); 11701 return checkAsmConstraintValA(Op, HiBits, 32) && 11702 checkAsmConstraintValA(Op, LoBits, 32); 11703 } 11704 if (Constraint == "DB") { 11705 return true; 11706 } 11707 } 11708 llvm_unreachable("Invalid asm constraint"); 11709 } 11710 11711 bool SITargetLowering::checkAsmConstraintValA(SDValue Op, 11712 uint64_t Val, 11713 unsigned MaxSize) const { 11714 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); 11715 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); 11716 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || 11717 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || 11718 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { 11719 return true; 11720 } 11721 return false; 11722 } 11723 11724 static int getAlignedAGPRClassID(unsigned UnalignedClassID) { 11725 switch (UnalignedClassID) { 11726 case AMDGPU::VReg_64RegClassID: 11727 return AMDGPU::VReg_64_Align2RegClassID; 11728 case AMDGPU::VReg_96RegClassID: 11729 return AMDGPU::VReg_96_Align2RegClassID; 11730 case AMDGPU::VReg_128RegClassID: 11731 return AMDGPU::VReg_128_Align2RegClassID; 11732 case AMDGPU::VReg_160RegClassID: 11733 return AMDGPU::VReg_160_Align2RegClassID; 11734 case AMDGPU::VReg_192RegClassID: 11735 return AMDGPU::VReg_192_Align2RegClassID; 11736 case AMDGPU::VReg_256RegClassID: 11737 return AMDGPU::VReg_256_Align2RegClassID; 11738 case AMDGPU::VReg_512RegClassID: 11739 return AMDGPU::VReg_512_Align2RegClassID; 11740 case AMDGPU::VReg_1024RegClassID: 11741 return AMDGPU::VReg_1024_Align2RegClassID; 11742 case AMDGPU::AReg_64RegClassID: 11743 return AMDGPU::AReg_64_Align2RegClassID; 11744 case AMDGPU::AReg_96RegClassID: 11745 return AMDGPU::AReg_96_Align2RegClassID; 11746 case AMDGPU::AReg_128RegClassID: 11747 return AMDGPU::AReg_128_Align2RegClassID; 11748 case AMDGPU::AReg_160RegClassID: 11749 return AMDGPU::AReg_160_Align2RegClassID; 11750 case AMDGPU::AReg_192RegClassID: 11751 return AMDGPU::AReg_192_Align2RegClassID; 11752 case AMDGPU::AReg_256RegClassID: 11753 return AMDGPU::AReg_256_Align2RegClassID; 11754 case AMDGPU::AReg_512RegClassID: 11755 return AMDGPU::AReg_512_Align2RegClassID; 11756 case AMDGPU::AReg_1024RegClassID: 11757 return AMDGPU::AReg_1024_Align2RegClassID; 11758 default: 11759 return -1; 11760 } 11761 } 11762 11763 // Figure out which registers should be reserved for stack access. Only after 11764 // the function is legalized do we know all of the non-spill stack objects or if 11765 // calls are present. 11766 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 11767 MachineRegisterInfo &MRI = MF.getRegInfo(); 11768 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 11769 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 11770 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 11771 const SIInstrInfo *TII = ST.getInstrInfo(); 11772 11773 if (Info->isEntryFunction()) { 11774 // Callable functions have fixed registers used for stack access. 11775 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 11776 } 11777 11778 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 11779 Info->getStackPtrOffsetReg())); 11780 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 11781 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 11782 11783 // We need to worry about replacing the default register with itself in case 11784 // of MIR testcases missing the MFI. 11785 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 11786 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 11787 11788 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 11789 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 11790 11791 Info->limitOccupancy(MF); 11792 11793 if (ST.isWave32() && !MF.empty()) { 11794 for (auto &MBB : MF) { 11795 for (auto &MI : MBB) { 11796 TII->fixImplicitOperands(MI); 11797 } 11798 } 11799 } 11800 11801 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned 11802 // classes if required. Ideally the register class constraints would differ 11803 // per-subtarget, but there's no easy way to achieve that right now. This is 11804 // not a problem for VGPRs because the correctly aligned VGPR class is implied 11805 // from using them as the register class for legal types. 11806 if (ST.needsAlignedVGPRs()) { 11807 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 11808 const Register Reg = Register::index2VirtReg(I); 11809 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); 11810 if (!RC) 11811 continue; 11812 int NewClassID = getAlignedAGPRClassID(RC->getID()); 11813 if (NewClassID != -1) 11814 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); 11815 } 11816 } 11817 11818 TargetLoweringBase::finalizeLowering(MF); 11819 11820 // Allocate a VGPR for future SGPR Spill if 11821 // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used 11822 // FIXME: We won't need this hack if we split SGPR allocation from VGPR 11823 if (VGPRReserveforSGPRSpill && TRI->spillSGPRToVGPR() && 11824 !Info->VGPRReservedForSGPRSpill && !Info->isEntryFunction()) 11825 Info->reserveVGPRforSGPRSpills(MF); 11826 } 11827 11828 void SITargetLowering::computeKnownBitsForFrameIndex( 11829 const int FI, KnownBits &Known, const MachineFunction &MF) const { 11830 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); 11831 11832 // Set the high bits to zero based on the maximum allowed scratch size per 11833 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 11834 // calculation won't overflow, so assume the sign bit is never set. 11835 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 11836 } 11837 11838 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, 11839 KnownBits &Known, unsigned Dim) { 11840 unsigned MaxValue = 11841 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); 11842 Known.Zero.setHighBits(countLeadingZeros(MaxValue)); 11843 } 11844 11845 void SITargetLowering::computeKnownBitsForTargetInstr( 11846 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, 11847 const MachineRegisterInfo &MRI, unsigned Depth) const { 11848 const MachineInstr *MI = MRI.getVRegDef(R); 11849 switch (MI->getOpcode()) { 11850 case AMDGPU::G_INTRINSIC: { 11851 switch (MI->getIntrinsicID()) { 11852 case Intrinsic::amdgcn_workitem_id_x: 11853 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); 11854 break; 11855 case Intrinsic::amdgcn_workitem_id_y: 11856 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); 11857 break; 11858 case Intrinsic::amdgcn_workitem_id_z: 11859 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); 11860 break; 11861 case Intrinsic::amdgcn_mbcnt_lo: 11862 case Intrinsic::amdgcn_mbcnt_hi: { 11863 // These return at most the wavefront size - 1. 11864 unsigned Size = MRI.getType(R).getSizeInBits(); 11865 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); 11866 break; 11867 } 11868 case Intrinsic::amdgcn_groupstaticsize: { 11869 // We can report everything over the maximum size as 0. We can't report 11870 // based on the actual size because we don't know if it's accurate or not 11871 // at any given point. 11872 Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize())); 11873 break; 11874 } 11875 } 11876 break; 11877 } 11878 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 11879 Known.Zero.setHighBits(24); 11880 break; 11881 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 11882 Known.Zero.setHighBits(16); 11883 break; 11884 } 11885 } 11886 11887 Align SITargetLowering::computeKnownAlignForTargetInstr( 11888 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, 11889 unsigned Depth) const { 11890 const MachineInstr *MI = MRI.getVRegDef(R); 11891 switch (MI->getOpcode()) { 11892 case AMDGPU::G_INTRINSIC: 11893 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { 11894 // FIXME: Can this move to generic code? What about the case where the call 11895 // site specifies a lower alignment? 11896 Intrinsic::ID IID = MI->getIntrinsicID(); 11897 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); 11898 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); 11899 if (MaybeAlign RetAlign = Attrs.getRetAlignment()) 11900 return *RetAlign; 11901 return Align(1); 11902 } 11903 default: 11904 return Align(1); 11905 } 11906 } 11907 11908 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 11909 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 11910 const Align CacheLineAlign = Align(64); 11911 11912 // Pre-GFX10 target did not benefit from loop alignment 11913 if (!ML || DisableLoopAlignment || 11914 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || 11915 getSubtarget()->hasInstFwdPrefetchBug()) 11916 return PrefAlign; 11917 11918 // On GFX10 I$ is 4 x 64 bytes cache lines. 11919 // By default prefetcher keeps one cache line behind and reads two ahead. 11920 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 11921 // behind and one ahead. 11922 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 11923 // If loop fits 64 bytes it always spans no more than two cache lines and 11924 // does not need an alignment. 11925 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 11926 // Else if loop is less or equal 192 bytes we need two lines behind. 11927 11928 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11929 const MachineBasicBlock *Header = ML->getHeader(); 11930 if (Header->getAlignment() != PrefAlign) 11931 return Header->getAlignment(); // Already processed. 11932 11933 unsigned LoopSize = 0; 11934 for (const MachineBasicBlock *MBB : ML->blocks()) { 11935 // If inner loop block is aligned assume in average half of the alignment 11936 // size to be added as nops. 11937 if (MBB != Header) 11938 LoopSize += MBB->getAlignment().value() / 2; 11939 11940 for (const MachineInstr &MI : *MBB) { 11941 LoopSize += TII->getInstSizeInBytes(MI); 11942 if (LoopSize > 192) 11943 return PrefAlign; 11944 } 11945 } 11946 11947 if (LoopSize <= 64) 11948 return PrefAlign; 11949 11950 if (LoopSize <= 128) 11951 return CacheLineAlign; 11952 11953 // If any of parent loops is surrounded by prefetch instructions do not 11954 // insert new for inner loop, which would reset parent's settings. 11955 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 11956 if (MachineBasicBlock *Exit = P->getExitBlock()) { 11957 auto I = Exit->getFirstNonDebugInstr(); 11958 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 11959 return CacheLineAlign; 11960 } 11961 } 11962 11963 MachineBasicBlock *Pre = ML->getLoopPreheader(); 11964 MachineBasicBlock *Exit = ML->getExitBlock(); 11965 11966 if (Pre && Exit) { 11967 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(), 11968 TII->get(AMDGPU::S_INST_PREFETCH)) 11969 .addImm(1); // prefetch 2 lines behind PC 11970 11971 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(), 11972 TII->get(AMDGPU::S_INST_PREFETCH)) 11973 .addImm(2); // prefetch 1 line behind PC 11974 } 11975 11976 return CacheLineAlign; 11977 } 11978 11979 LLVM_ATTRIBUTE_UNUSED 11980 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 11981 assert(N->getOpcode() == ISD::CopyFromReg); 11982 do { 11983 // Follow the chain until we find an INLINEASM node. 11984 N = N->getOperand(0).getNode(); 11985 if (N->getOpcode() == ISD::INLINEASM || 11986 N->getOpcode() == ISD::INLINEASM_BR) 11987 return true; 11988 } while (N->getOpcode() == ISD::CopyFromReg); 11989 return false; 11990 } 11991 11992 bool SITargetLowering::isSDNodeSourceOfDivergence( 11993 const SDNode *N, FunctionLoweringInfo *FLI, 11994 LegacyDivergenceAnalysis *KDA) const { 11995 switch (N->getOpcode()) { 11996 case ISD::CopyFromReg: { 11997 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 11998 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); 11999 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12000 Register Reg = R->getReg(); 12001 12002 // FIXME: Why does this need to consider isLiveIn? 12003 if (Reg.isPhysical() || MRI.isLiveIn(Reg)) 12004 return !TRI->isSGPRReg(MRI, Reg); 12005 12006 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) 12007 return KDA->isDivergent(V); 12008 12009 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 12010 return !TRI->isSGPRReg(MRI, Reg); 12011 } 12012 case ISD::LOAD: { 12013 const LoadSDNode *L = cast<LoadSDNode>(N); 12014 unsigned AS = L->getAddressSpace(); 12015 // A flat load may access private memory. 12016 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 12017 } 12018 case ISD::CALLSEQ_END: 12019 return true; 12020 case ISD::INTRINSIC_WO_CHAIN: 12021 return AMDGPU::isIntrinsicSourceOfDivergence( 12022 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); 12023 case ISD::INTRINSIC_W_CHAIN: 12024 return AMDGPU::isIntrinsicSourceOfDivergence( 12025 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 12026 case AMDGPUISD::ATOMIC_CMP_SWAP: 12027 case AMDGPUISD::ATOMIC_INC: 12028 case AMDGPUISD::ATOMIC_DEC: 12029 case AMDGPUISD::ATOMIC_LOAD_FMIN: 12030 case AMDGPUISD::ATOMIC_LOAD_FMAX: 12031 case AMDGPUISD::BUFFER_ATOMIC_SWAP: 12032 case AMDGPUISD::BUFFER_ATOMIC_ADD: 12033 case AMDGPUISD::BUFFER_ATOMIC_SUB: 12034 case AMDGPUISD::BUFFER_ATOMIC_SMIN: 12035 case AMDGPUISD::BUFFER_ATOMIC_UMIN: 12036 case AMDGPUISD::BUFFER_ATOMIC_SMAX: 12037 case AMDGPUISD::BUFFER_ATOMIC_UMAX: 12038 case AMDGPUISD::BUFFER_ATOMIC_AND: 12039 case AMDGPUISD::BUFFER_ATOMIC_OR: 12040 case AMDGPUISD::BUFFER_ATOMIC_XOR: 12041 case AMDGPUISD::BUFFER_ATOMIC_INC: 12042 case AMDGPUISD::BUFFER_ATOMIC_DEC: 12043 case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: 12044 case AMDGPUISD::BUFFER_ATOMIC_CSUB: 12045 case AMDGPUISD::BUFFER_ATOMIC_FADD: 12046 case AMDGPUISD::BUFFER_ATOMIC_FMIN: 12047 case AMDGPUISD::BUFFER_ATOMIC_FMAX: 12048 // Target-specific read-modify-write atomics are sources of divergence. 12049 return true; 12050 default: 12051 if (auto *A = dyn_cast<AtomicSDNode>(N)) { 12052 // Generic read-modify-write atomics are sources of divergence. 12053 return A->readMem() && A->writeMem(); 12054 } 12055 return false; 12056 } 12057 } 12058 12059 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, 12060 EVT VT) const { 12061 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 12062 case MVT::f32: 12063 return hasFP32Denormals(DAG.getMachineFunction()); 12064 case MVT::f64: 12065 case MVT::f16: 12066 return hasFP64FP16Denormals(DAG.getMachineFunction()); 12067 default: 12068 return false; 12069 } 12070 } 12071 12072 bool SITargetLowering::denormalsEnabledForType(LLT Ty, 12073 MachineFunction &MF) const { 12074 switch (Ty.getScalarSizeInBits()) { 12075 case 32: 12076 return hasFP32Denormals(MF); 12077 case 64: 12078 case 16: 12079 return hasFP64FP16Denormals(MF); 12080 default: 12081 return false; 12082 } 12083 } 12084 12085 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 12086 const SelectionDAG &DAG, 12087 bool SNaN, 12088 unsigned Depth) const { 12089 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 12090 const MachineFunction &MF = DAG.getMachineFunction(); 12091 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12092 12093 if (Info->getMode().DX10Clamp) 12094 return true; // Clamped to 0. 12095 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 12096 } 12097 12098 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 12099 SNaN, Depth); 12100 } 12101 12102 // Global FP atomic instructions have a hardcoded FP mode and do not support 12103 // FP32 denormals, and only support v2f16 denormals. 12104 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { 12105 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); 12106 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); 12107 if (&Flt == &APFloat::IEEEsingle()) 12108 return DenormMode == DenormalMode::getPreserveSign(); 12109 return DenormMode == DenormalMode::getIEEE(); 12110 } 12111 12112 TargetLowering::AtomicExpansionKind 12113 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 12114 switch (RMW->getOperation()) { 12115 case AtomicRMWInst::FAdd: { 12116 Type *Ty = RMW->getType(); 12117 12118 // We don't have a way to support 16-bit atomics now, so just leave them 12119 // as-is. 12120 if (Ty->isHalfTy()) 12121 return AtomicExpansionKind::None; 12122 12123 if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy())) 12124 return AtomicExpansionKind::CmpXChg; 12125 12126 unsigned AS = RMW->getPointerAddressSpace(); 12127 12128 if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) && 12129 Subtarget->hasAtomicFaddInsts()) { 12130 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe 12131 // floating point atomic instructions. May generate more efficient code, 12132 // but may not respect rounding and denormal modes, and may give incorrect 12133 // results for certain memory destinations. 12134 if (RMW->getFunction() 12135 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 12136 .getValueAsString() != "true") 12137 return AtomicExpansionKind::CmpXChg; 12138 12139 if (Subtarget->hasGFX90AInsts()) { 12140 if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS) 12141 return AtomicExpansionKind::CmpXChg; 12142 12143 auto SSID = RMW->getSyncScopeID(); 12144 if (SSID == SyncScope::System || 12145 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as")) 12146 return AtomicExpansionKind::CmpXChg; 12147 12148 return AtomicExpansionKind::None; 12149 } 12150 12151 if (AS == AMDGPUAS::FLAT_ADDRESS) 12152 return AtomicExpansionKind::CmpXChg; 12153 12154 return RMW->use_empty() ? AtomicExpansionKind::None 12155 : AtomicExpansionKind::CmpXChg; 12156 } 12157 12158 // DS FP atomics do repect the denormal mode, but the rounding mode is fixed 12159 // to round-to-nearest-even. 12160 // The only exception is DS_ADD_F64 which never flushes regardless of mode. 12161 if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) { 12162 if (!Ty->isDoubleTy()) 12163 return AtomicExpansionKind::None; 12164 12165 return (fpModeMatchesGlobalFPAtomicMode(RMW) || 12166 RMW->getFunction() 12167 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 12168 .getValueAsString() == "true") 12169 ? AtomicExpansionKind::None 12170 : AtomicExpansionKind::CmpXChg; 12171 } 12172 12173 return AtomicExpansionKind::CmpXChg; 12174 } 12175 default: 12176 break; 12177 } 12178 12179 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 12180 } 12181 12182 const TargetRegisterClass * 12183 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 12184 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); 12185 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12186 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) 12187 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass 12188 : &AMDGPU::SReg_32RegClass; 12189 if (!TRI->isSGPRClass(RC) && !isDivergent) 12190 return TRI->getEquivalentSGPRClass(RC); 12191 else if (TRI->isSGPRClass(RC) && isDivergent) 12192 return TRI->getEquivalentVGPRClass(RC); 12193 12194 return RC; 12195 } 12196 12197 // FIXME: This is a workaround for DivergenceAnalysis not understanding always 12198 // uniform values (as produced by the mask results of control flow intrinsics) 12199 // used outside of divergent blocks. The phi users need to also be treated as 12200 // always uniform. 12201 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, 12202 unsigned WaveSize) { 12203 // FIXME: We asssume we never cast the mask results of a control flow 12204 // intrinsic. 12205 // Early exit if the type won't be consistent as a compile time hack. 12206 IntegerType *IT = dyn_cast<IntegerType>(V->getType()); 12207 if (!IT || IT->getBitWidth() != WaveSize) 12208 return false; 12209 12210 if (!isa<Instruction>(V)) 12211 return false; 12212 if (!Visited.insert(V).second) 12213 return false; 12214 bool Result = false; 12215 for (auto U : V->users()) { 12216 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { 12217 if (V == U->getOperand(1)) { 12218 switch (Intrinsic->getIntrinsicID()) { 12219 default: 12220 Result = false; 12221 break; 12222 case Intrinsic::amdgcn_if_break: 12223 case Intrinsic::amdgcn_if: 12224 case Intrinsic::amdgcn_else: 12225 Result = true; 12226 break; 12227 } 12228 } 12229 if (V == U->getOperand(0)) { 12230 switch (Intrinsic->getIntrinsicID()) { 12231 default: 12232 Result = false; 12233 break; 12234 case Intrinsic::amdgcn_end_cf: 12235 case Intrinsic::amdgcn_loop: 12236 Result = true; 12237 break; 12238 } 12239 } 12240 } else { 12241 Result = hasCFUser(U, Visited, WaveSize); 12242 } 12243 if (Result) 12244 break; 12245 } 12246 return Result; 12247 } 12248 12249 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, 12250 const Value *V) const { 12251 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 12252 if (CI->isInlineAsm()) { 12253 // FIXME: This cannot give a correct answer. This should only trigger in 12254 // the case where inline asm returns mixed SGPR and VGPR results, used 12255 // outside the defining block. We don't have a specific result to 12256 // consider, so this assumes if any value is SGPR, the overall register 12257 // also needs to be SGPR. 12258 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); 12259 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( 12260 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); 12261 for (auto &TC : TargetConstraints) { 12262 if (TC.Type == InlineAsm::isOutput) { 12263 ComputeConstraintToUse(TC, SDValue()); 12264 unsigned AssignedReg; 12265 const TargetRegisterClass *RC; 12266 std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint( 12267 SIRI, TC.ConstraintCode, TC.ConstraintVT); 12268 if (RC) { 12269 MachineRegisterInfo &MRI = MF.getRegInfo(); 12270 if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg)) 12271 return true; 12272 else if (SIRI->isSGPRClass(RC)) 12273 return true; 12274 } 12275 } 12276 } 12277 } 12278 } 12279 SmallPtrSet<const Value *, 16> Visited; 12280 return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); 12281 } 12282 12283 std::pair<InstructionCost, MVT> 12284 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL, 12285 Type *Ty) const { 12286 std::pair<InstructionCost, MVT> Cost = 12287 TargetLoweringBase::getTypeLegalizationCost(DL, Ty); 12288 auto Size = DL.getTypeSizeInBits(Ty); 12289 // Maximum load or store can handle 8 dwords for scalar and 4 for 12290 // vector ALU. Let's assume anything above 8 dwords is expensive 12291 // even if legal. 12292 if (Size <= 256) 12293 return Cost; 12294 12295 Cost.first = (Size + 255) / 256; 12296 return Cost; 12297 } 12298