1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/BinaryFormat/ELF.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
27 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/IntrinsicsAMDGPU.h"
33 #include "llvm/IR/IntrinsicsR600.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/KnownBits.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "si-lower"
40 
41 STATISTIC(NumTailCalls, "Number of tail calls");
42 
43 static cl::opt<bool> DisableLoopAlignment(
44   "amdgpu-disable-loop-alignment",
45   cl::desc("Do not align and prefetch loops"),
46   cl::init(false));
47 
48 static cl::opt<bool> UseDivergentRegisterIndexing(
49   "amdgpu-use-divergent-register-indexing",
50   cl::Hidden,
51   cl::desc("Use indirect register addressing for divergent indexes"),
52   cl::init(false));
53 
54 static bool hasFP32Denormals(const MachineFunction &MF) {
55   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
56   return Info->getMode().allFP32Denormals();
57 }
58 
59 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
60   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
61   return Info->getMode().allFP64FP16Denormals();
62 }
63 
64 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
65   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
66   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
67     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
68       return AMDGPU::SGPR0 + Reg;
69     }
70   }
71   llvm_unreachable("Cannot allocate sgpr");
72 }
73 
74 SITargetLowering::SITargetLowering(const TargetMachine &TM,
75                                    const GCNSubtarget &STI)
76     : AMDGPUTargetLowering(TM, STI),
77       Subtarget(&STI) {
78   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
79   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
80 
81   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
82   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
83 
84   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
85 
86   const SIRegisterInfo *TRI = STI.getRegisterInfo();
87   const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
88 
89   addRegisterClass(MVT::f64, V64RegClass);
90   addRegisterClass(MVT::v2f32, V64RegClass);
91 
92   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
93   addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
94 
95   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
96   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
97 
98   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
99   addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
100 
101   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
102   addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
103 
104   addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
105   addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
106 
107   addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
108   addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
109 
110   addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
111   addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
112 
113   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
114   addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
115 
116   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
117   addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
118 
119   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
120   addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
121 
122   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
123   addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
124 
125   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
126   addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
127 
128   if (Subtarget->has16BitInsts()) {
129     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
130     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
131 
132     // Unless there are also VOP3P operations, not operations are really legal.
133     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
134     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
135     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
136     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
137   }
138 
139   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
140   addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
141 
142   computeRegisterProperties(Subtarget->getRegisterInfo());
143 
144   // The boolean content concept here is too inflexible. Compares only ever
145   // really produce a 1-bit result. Any copy/extend from these will turn into a
146   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
147   // it's what most targets use.
148   setBooleanContents(ZeroOrOneBooleanContent);
149   setBooleanVectorContents(ZeroOrOneBooleanContent);
150 
151   // We need to custom lower vector stores from local memory
152   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
153   setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
154   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
155   setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
156   setOperationAction(ISD::LOAD, MVT::v6i32, Custom);
157   setOperationAction(ISD::LOAD, MVT::v7i32, Custom);
158   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
159   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
160   setOperationAction(ISD::LOAD, MVT::i1, Custom);
161   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
162 
163   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
164   setOperationAction(ISD::STORE, MVT::v3i32, Custom);
165   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
166   setOperationAction(ISD::STORE, MVT::v5i32, Custom);
167   setOperationAction(ISD::STORE, MVT::v6i32, Custom);
168   setOperationAction(ISD::STORE, MVT::v7i32, Custom);
169   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
170   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
171   setOperationAction(ISD::STORE, MVT::i1, Custom);
172   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
173 
174   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
175   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
176   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
177   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
178   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
179   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
180   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
181   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
182   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
183   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
184   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
185   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
186   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
187   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
188   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
189   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
190 
191   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
192   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
193   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
194   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
195   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
196   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
197   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
198 
199   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
200   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
201 
202   setOperationAction(ISD::SELECT, MVT::i1, Promote);
203   setOperationAction(ISD::SELECT, MVT::i64, Custom);
204   setOperationAction(ISD::SELECT, MVT::f64, Promote);
205   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
206 
207   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
208   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
209   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
210   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
211   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
212 
213   setOperationAction(ISD::SETCC, MVT::i1, Promote);
214   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
215   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
216   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
217 
218   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
219   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
220   setOperationAction(ISD::TRUNCATE, MVT::v3i32, Expand);
221   setOperationAction(ISD::FP_ROUND, MVT::v3f32, Expand);
222   setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
223   setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
224   setOperationAction(ISD::TRUNCATE, MVT::v5i32, Expand);
225   setOperationAction(ISD::FP_ROUND, MVT::v5f32, Expand);
226   setOperationAction(ISD::TRUNCATE, MVT::v6i32, Expand);
227   setOperationAction(ISD::FP_ROUND, MVT::v6f32, Expand);
228   setOperationAction(ISD::TRUNCATE, MVT::v7i32, Expand);
229   setOperationAction(ISD::FP_ROUND, MVT::v7f32, Expand);
230   setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
231   setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
232   setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
233   setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
234 
235   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
236   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
237   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
238   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
239   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
240   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
241   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
242   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
243 
244   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
245   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
246   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
247   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
248   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
249   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
250 
251   setOperationAction(ISD::UADDO, MVT::i32, Legal);
252   setOperationAction(ISD::USUBO, MVT::i32, Legal);
253 
254   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
255   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
256 
257   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
258   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
259   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
260 
261 #if 0
262   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
263   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
264 #endif
265 
266   // We only support LOAD/STORE and vector manipulation ops for vectors
267   // with > 4 elements.
268   for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
269                   MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
270                   MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32,
271                   MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
272                   MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) {
273     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
274       switch (Op) {
275       case ISD::LOAD:
276       case ISD::STORE:
277       case ISD::BUILD_VECTOR:
278       case ISD::BITCAST:
279       case ISD::EXTRACT_VECTOR_ELT:
280       case ISD::INSERT_VECTOR_ELT:
281       case ISD::EXTRACT_SUBVECTOR:
282       case ISD::SCALAR_TO_VECTOR:
283         break;
284       case ISD::INSERT_SUBVECTOR:
285       case ISD::CONCAT_VECTORS:
286         setOperationAction(Op, VT, Custom);
287         break;
288       default:
289         setOperationAction(Op, VT, Expand);
290         break;
291       }
292     }
293   }
294 
295   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
296 
297   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
298   // is expanded to avoid having two separate loops in case the index is a VGPR.
299 
300   // Most operations are naturally 32-bit vector operations. We only support
301   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
302   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
303     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
304     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
305 
306     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
307     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
308 
309     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
310     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
311 
312     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
313     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
314   }
315 
316   for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
317     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
318     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
319 
320     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
321     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
322 
323     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
324     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
325 
326     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
327     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
328   }
329 
330   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
331     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
332     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
333 
334     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
335     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
336 
337     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
338     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
339 
340     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
341     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
342   }
343 
344   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
345     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
346     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
347 
348     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
349     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
350 
351     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
352     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
353 
354     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
355     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
356   }
357 
358   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
359     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
360     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
361 
362     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
363     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
364 
365     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
366     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
367 
368     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
369     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
370   }
371 
372   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
373   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
374   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
375   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
376 
377   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
378   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
379 
380   // Avoid stack access for these.
381   // TODO: Generalize to more vector types.
382   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
383   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
384   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
385   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
386 
387   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
388   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
389   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
390   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
391   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
392   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
393 
394   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
395   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
396   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
397   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
398 
399   // Deal with vec3 vector operations when widened to vec4.
400   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
401   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
402   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
403   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
404 
405   // Deal with vec5/6/7 vector operations when widened to vec8.
406   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
407   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
408   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6i32, Custom);
409   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6f32, Custom);
410   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7i32, Custom);
411   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7f32, Custom);
412   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
413   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
414 
415   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
416   // and output demarshalling
417   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
418   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
419 
420   // We can't return success/failure, only the old value,
421   // let LLVM add the comparison
422   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
423   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
424 
425   if (Subtarget->hasFlatAddressSpace()) {
426     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
427     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
428   }
429 
430   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
431   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
432 
433   // FIXME: This should be narrowed to i32, but that only happens if i64 is
434   // illegal.
435   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
436   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
437   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
438 
439   // On SI this is s_memtime and s_memrealtime on VI.
440   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
441   setOperationAction(ISD::TRAP, MVT::Other, Custom);
442   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
443 
444   if (Subtarget->has16BitInsts()) {
445     setOperationAction(ISD::FPOW, MVT::f16, Promote);
446     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
447     setOperationAction(ISD::FLOG, MVT::f16, Custom);
448     setOperationAction(ISD::FEXP, MVT::f16, Custom);
449     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
450   }
451 
452   if (Subtarget->hasMadMacF32Insts())
453     setOperationAction(ISD::FMAD, MVT::f32, Legal);
454 
455   if (!Subtarget->hasBFI()) {
456     // fcopysign can be done in a single instruction with BFI.
457     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
458     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
459   }
460 
461   if (!Subtarget->hasBCNT(32))
462     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
463 
464   if (!Subtarget->hasBCNT(64))
465     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
466 
467   if (Subtarget->hasFFBH()) {
468     setOperationAction(ISD::CTLZ, MVT::i32, Custom);
469     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
470   }
471 
472   if (Subtarget->hasFFBL()) {
473     setOperationAction(ISD::CTTZ, MVT::i32, Custom);
474     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
475   }
476 
477   // We only really have 32-bit BFE instructions (and 16-bit on VI).
478   //
479   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
480   // effort to match them now. We want this to be false for i64 cases when the
481   // extraction isn't restricted to the upper or lower half. Ideally we would
482   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
483   // span the midpoint are probably relatively rare, so don't worry about them
484   // for now.
485   if (Subtarget->hasBFE())
486     setHasExtractBitsInsn(true);
487 
488   // Clamp modifier on add/sub
489   if (Subtarget->hasIntClamp()) {
490     setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
491     setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
492   }
493 
494   if (Subtarget->hasAddNoCarry()) {
495     setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
496     setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
497     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
498     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
499   }
500 
501   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
502   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
503   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
504   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
505 
506 
507   // These are really only legal for ieee_mode functions. We should be avoiding
508   // them for functions that don't have ieee_mode enabled, so just say they are
509   // legal.
510   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
511   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
512   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
513   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
514 
515 
516   if (Subtarget->haveRoundOpsF64()) {
517     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
518     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
519     setOperationAction(ISD::FRINT, MVT::f64, Legal);
520   } else {
521     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
522     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
523     setOperationAction(ISD::FRINT, MVT::f64, Custom);
524     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
525   }
526 
527   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
528 
529   setOperationAction(ISD::FSIN, MVT::f32, Custom);
530   setOperationAction(ISD::FCOS, MVT::f32, Custom);
531   setOperationAction(ISD::FDIV, MVT::f32, Custom);
532   setOperationAction(ISD::FDIV, MVT::f64, Custom);
533 
534   if (Subtarget->has16BitInsts()) {
535     setOperationAction(ISD::Constant, MVT::i16, Legal);
536 
537     setOperationAction(ISD::SMIN, MVT::i16, Legal);
538     setOperationAction(ISD::SMAX, MVT::i16, Legal);
539 
540     setOperationAction(ISD::UMIN, MVT::i16, Legal);
541     setOperationAction(ISD::UMAX, MVT::i16, Legal);
542 
543     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
544     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
545 
546     setOperationAction(ISD::ROTR, MVT::i16, Expand);
547     setOperationAction(ISD::ROTL, MVT::i16, Expand);
548 
549     setOperationAction(ISD::SDIV, MVT::i16, Promote);
550     setOperationAction(ISD::UDIV, MVT::i16, Promote);
551     setOperationAction(ISD::SREM, MVT::i16, Promote);
552     setOperationAction(ISD::UREM, MVT::i16, Promote);
553     setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
554     setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
555 
556     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
557 
558     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
559     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
560     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
561     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
562     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
563 
564     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
565 
566     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
567 
568     setOperationAction(ISD::LOAD, MVT::i16, Custom);
569 
570     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
571 
572     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
573     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
574     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
575     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
576 
577     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Custom);
578     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Custom);
579 
580     // F16 - Constant Actions.
581     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
582 
583     // F16 - Load/Store Actions.
584     setOperationAction(ISD::LOAD, MVT::f16, Promote);
585     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
586     setOperationAction(ISD::STORE, MVT::f16, Promote);
587     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
588 
589     // F16 - VOP1 Actions.
590     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
591     setOperationAction(ISD::FCOS, MVT::f16, Custom);
592     setOperationAction(ISD::FSIN, MVT::f16, Custom);
593 
594     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
595     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
596 
597     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
598     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
599     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
600     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
601     setOperationAction(ISD::FROUND, MVT::f16, Custom);
602 
603     // F16 - VOP2 Actions.
604     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
605     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
606 
607     setOperationAction(ISD::FDIV, MVT::f16, Custom);
608 
609     // F16 - VOP3 Actions.
610     setOperationAction(ISD::FMA, MVT::f16, Legal);
611     if (STI.hasMadF16())
612       setOperationAction(ISD::FMAD, MVT::f16, Legal);
613 
614     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
615       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
616         switch (Op) {
617         case ISD::LOAD:
618         case ISD::STORE:
619         case ISD::BUILD_VECTOR:
620         case ISD::BITCAST:
621         case ISD::EXTRACT_VECTOR_ELT:
622         case ISD::INSERT_VECTOR_ELT:
623         case ISD::INSERT_SUBVECTOR:
624         case ISD::EXTRACT_SUBVECTOR:
625         case ISD::SCALAR_TO_VECTOR:
626           break;
627         case ISD::CONCAT_VECTORS:
628           setOperationAction(Op, VT, Custom);
629           break;
630         default:
631           setOperationAction(Op, VT, Expand);
632           break;
633         }
634       }
635     }
636 
637     // v_perm_b32 can handle either of these.
638     setOperationAction(ISD::BSWAP, MVT::i16, Legal);
639     setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
640     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
641 
642     // XXX - Do these do anything? Vector constants turn into build_vector.
643     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
644     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
645 
646     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
647     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
648 
649     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
650     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
651     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
652     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
653 
654     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
655     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
656     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
657     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
658 
659     setOperationAction(ISD::AND, MVT::v2i16, Promote);
660     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
661     setOperationAction(ISD::OR, MVT::v2i16, Promote);
662     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
663     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
664     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
665 
666     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
667     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
668     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
669     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
670 
671     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
672     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
673     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
674     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
675 
676     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
677     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
678     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
679     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
680 
681     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
682     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
683     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
684 
685     if (!Subtarget->hasVOP3PInsts()) {
686       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
687       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
688     }
689 
690     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
691     // This isn't really legal, but this avoids the legalizer unrolling it (and
692     // allows matching fneg (fabs x) patterns)
693     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
694 
695     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
696     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
697     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
698     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
699 
700     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
701     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
702 
703     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
704     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
705   }
706 
707   if (Subtarget->hasVOP3PInsts()) {
708     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
709     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
710     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
711     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
712     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
713     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
714     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
715     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
716     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
717     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
718 
719     setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
720     setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
721     setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
722     setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
723 
724     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
725     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
726     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
727 
728     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
729     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
730 
731     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
732 
733     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
734     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
735 
736     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
737     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
738 
739     setOperationAction(ISD::SHL, MVT::v4i16, Custom);
740     setOperationAction(ISD::SRA, MVT::v4i16, Custom);
741     setOperationAction(ISD::SRL, MVT::v4i16, Custom);
742     setOperationAction(ISD::ADD, MVT::v4i16, Custom);
743     setOperationAction(ISD::SUB, MVT::v4i16, Custom);
744     setOperationAction(ISD::MUL, MVT::v4i16, Custom);
745 
746     setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
747     setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
748     setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
749     setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
750 
751     setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom);
752     setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom);
753     setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom);
754     setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom);
755 
756     setOperationAction(ISD::FADD, MVT::v4f16, Custom);
757     setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
758     setOperationAction(ISD::FMA, MVT::v4f16, Custom);
759 
760     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
761     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
762 
763     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
764     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
765     setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
766 
767     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
768     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
769     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
770 
771     if (Subtarget->hasPackedFP32Ops()) {
772       setOperationAction(ISD::FADD, MVT::v2f32, Legal);
773       setOperationAction(ISD::FMUL, MVT::v2f32, Legal);
774       setOperationAction(ISD::FMA,  MVT::v2f32, Legal);
775       setOperationAction(ISD::FNEG, MVT::v2f32, Legal);
776 
777       for (MVT VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32 }) {
778         setOperationAction(ISD::FADD, VT, Custom);
779         setOperationAction(ISD::FMUL, VT, Custom);
780         setOperationAction(ISD::FMA, VT, Custom);
781       }
782     }
783   }
784 
785   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
786   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
787 
788   if (Subtarget->has16BitInsts()) {
789     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
790     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
791     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
792     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
793   } else {
794     // Legalization hack.
795     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
796     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
797 
798     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
799     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
800   }
801 
802   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
803     setOperationAction(ISD::SELECT, VT, Custom);
804   }
805 
806   setOperationAction(ISD::SMULO, MVT::i64, Custom);
807   setOperationAction(ISD::UMULO, MVT::i64, Custom);
808 
809   if (Subtarget->hasMad64_32()) {
810     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
811     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
812   }
813 
814   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
815   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
816   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
817   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
818   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
819   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
820   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
821 
822   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
823   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
824   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
825   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
826   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
827   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
828   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
829   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
830   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
831   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
832   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
833 
834   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
835   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
836   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
837   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
838   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
839   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
840   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
841   setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
842   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
843   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
844 
845   setTargetDAGCombine(ISD::ADD);
846   setTargetDAGCombine(ISD::ADDCARRY);
847   setTargetDAGCombine(ISD::SUB);
848   setTargetDAGCombine(ISD::SUBCARRY);
849   setTargetDAGCombine(ISD::FADD);
850   setTargetDAGCombine(ISD::FSUB);
851   setTargetDAGCombine(ISD::FMINNUM);
852   setTargetDAGCombine(ISD::FMAXNUM);
853   setTargetDAGCombine(ISD::FMINNUM_IEEE);
854   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
855   setTargetDAGCombine(ISD::FMA);
856   setTargetDAGCombine(ISD::SMIN);
857   setTargetDAGCombine(ISD::SMAX);
858   setTargetDAGCombine(ISD::UMIN);
859   setTargetDAGCombine(ISD::UMAX);
860   setTargetDAGCombine(ISD::SETCC);
861   setTargetDAGCombine(ISD::AND);
862   setTargetDAGCombine(ISD::OR);
863   setTargetDAGCombine(ISD::XOR);
864   setTargetDAGCombine(ISD::SINT_TO_FP);
865   setTargetDAGCombine(ISD::UINT_TO_FP);
866   setTargetDAGCombine(ISD::FCANONICALIZE);
867   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
868   setTargetDAGCombine(ISD::ZERO_EXTEND);
869   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
870   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
871   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
872 
873   // All memory operations. Some folding on the pointer operand is done to help
874   // matching the constant offsets in the addressing modes.
875   setTargetDAGCombine(ISD::LOAD);
876   setTargetDAGCombine(ISD::STORE);
877   setTargetDAGCombine(ISD::ATOMIC_LOAD);
878   setTargetDAGCombine(ISD::ATOMIC_STORE);
879   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
880   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
881   setTargetDAGCombine(ISD::ATOMIC_SWAP);
882   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
883   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
884   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
885   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
886   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
887   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
888   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
889   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
890   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
891   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
892   setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
893   setTargetDAGCombine(ISD::INTRINSIC_VOID);
894   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
895 
896   // FIXME: In other contexts we pretend this is a per-function property.
897   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
898 
899   setSchedulingPreference(Sched::RegPressure);
900 }
901 
902 const GCNSubtarget *SITargetLowering::getSubtarget() const {
903   return Subtarget;
904 }
905 
906 //===----------------------------------------------------------------------===//
907 // TargetLowering queries
908 //===----------------------------------------------------------------------===//
909 
910 // v_mad_mix* support a conversion from f16 to f32.
911 //
912 // There is only one special case when denormals are enabled we don't currently,
913 // where this is OK to use.
914 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
915                                        EVT DestVT, EVT SrcVT) const {
916   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
917           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
918     DestVT.getScalarType() == MVT::f32 &&
919     SrcVT.getScalarType() == MVT::f16 &&
920     // TODO: This probably only requires no input flushing?
921     !hasFP32Denormals(DAG.getMachineFunction());
922 }
923 
924 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
925                                        LLT DestTy, LLT SrcTy) const {
926   return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
927           (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
928          DestTy.getScalarSizeInBits() == 32 &&
929          SrcTy.getScalarSizeInBits() == 16 &&
930          // TODO: This probably only requires no input flushing?
931          !hasFP32Denormals(*MI.getMF());
932 }
933 
934 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
935   // SI has some legal vector types, but no legal vector operations. Say no
936   // shuffles are legal in order to prefer scalarizing some vector operations.
937   return false;
938 }
939 
940 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
941                                                     CallingConv::ID CC,
942                                                     EVT VT) const {
943   if (CC == CallingConv::AMDGPU_KERNEL)
944     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
945 
946   if (VT.isVector()) {
947     EVT ScalarVT = VT.getScalarType();
948     unsigned Size = ScalarVT.getSizeInBits();
949     if (Size == 16) {
950       if (Subtarget->has16BitInsts())
951         return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
952       return VT.isInteger() ? MVT::i32 : MVT::f32;
953     }
954 
955     if (Size < 16)
956       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
957     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
958   }
959 
960   if (VT.getSizeInBits() > 32)
961     return MVT::i32;
962 
963   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
964 }
965 
966 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
967                                                          CallingConv::ID CC,
968                                                          EVT VT) const {
969   if (CC == CallingConv::AMDGPU_KERNEL)
970     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
971 
972   if (VT.isVector()) {
973     unsigned NumElts = VT.getVectorNumElements();
974     EVT ScalarVT = VT.getScalarType();
975     unsigned Size = ScalarVT.getSizeInBits();
976 
977     // FIXME: Should probably promote 8-bit vectors to i16.
978     if (Size == 16 && Subtarget->has16BitInsts())
979       return (NumElts + 1) / 2;
980 
981     if (Size <= 32)
982       return NumElts;
983 
984     if (Size > 32)
985       return NumElts * ((Size + 31) / 32);
986   } else if (VT.getSizeInBits() > 32)
987     return (VT.getSizeInBits() + 31) / 32;
988 
989   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
990 }
991 
992 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
993   LLVMContext &Context, CallingConv::ID CC,
994   EVT VT, EVT &IntermediateVT,
995   unsigned &NumIntermediates, MVT &RegisterVT) const {
996   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
997     unsigned NumElts = VT.getVectorNumElements();
998     EVT ScalarVT = VT.getScalarType();
999     unsigned Size = ScalarVT.getSizeInBits();
1000     // FIXME: We should fix the ABI to be the same on targets without 16-bit
1001     // support, but unless we can properly handle 3-vectors, it will be still be
1002     // inconsistent.
1003     if (Size == 16 && Subtarget->has16BitInsts()) {
1004       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
1005       IntermediateVT = RegisterVT;
1006       NumIntermediates = (NumElts + 1) / 2;
1007       return NumIntermediates;
1008     }
1009 
1010     if (Size == 32) {
1011       RegisterVT = ScalarVT.getSimpleVT();
1012       IntermediateVT = RegisterVT;
1013       NumIntermediates = NumElts;
1014       return NumIntermediates;
1015     }
1016 
1017     if (Size < 16 && Subtarget->has16BitInsts()) {
1018       // FIXME: Should probably form v2i16 pieces
1019       RegisterVT = MVT::i16;
1020       IntermediateVT = ScalarVT;
1021       NumIntermediates = NumElts;
1022       return NumIntermediates;
1023     }
1024 
1025 
1026     if (Size != 16 && Size <= 32) {
1027       RegisterVT = MVT::i32;
1028       IntermediateVT = ScalarVT;
1029       NumIntermediates = NumElts;
1030       return NumIntermediates;
1031     }
1032 
1033     if (Size > 32) {
1034       RegisterVT = MVT::i32;
1035       IntermediateVT = RegisterVT;
1036       NumIntermediates = NumElts * ((Size + 31) / 32);
1037       return NumIntermediates;
1038     }
1039   }
1040 
1041   return TargetLowering::getVectorTypeBreakdownForCallingConv(
1042     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1043 }
1044 
1045 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
1046   assert(DMaskLanes != 0);
1047 
1048   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1049     unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
1050     return EVT::getVectorVT(Ty->getContext(),
1051                             EVT::getEVT(VT->getElementType()),
1052                             NumElts);
1053   }
1054 
1055   return EVT::getEVT(Ty);
1056 }
1057 
1058 // Peek through TFE struct returns to only use the data size.
1059 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
1060   auto *ST = dyn_cast<StructType>(Ty);
1061   if (!ST)
1062     return memVTFromImageData(Ty, DMaskLanes);
1063 
1064   // Some intrinsics return an aggregate type - special case to work out the
1065   // correct memVT.
1066   //
1067   // Only limited forms of aggregate type currently expected.
1068   if (ST->getNumContainedTypes() != 2 ||
1069       !ST->getContainedType(1)->isIntegerTy(32))
1070     return EVT();
1071   return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
1072 }
1073 
1074 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1075                                           const CallInst &CI,
1076                                           MachineFunction &MF,
1077                                           unsigned IntrID) const {
1078   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1079           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1080     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1081                                                   (Intrinsic::ID)IntrID);
1082     if (Attr.hasFnAttr(Attribute::ReadNone))
1083       return false;
1084 
1085     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1086 
1087     if (RsrcIntr->IsImage) {
1088       Info.ptrVal =
1089           MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1090       Info.align.reset();
1091     } else {
1092       Info.ptrVal =
1093           MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1094     }
1095 
1096     Info.flags = MachineMemOperand::MODereferenceable;
1097     if (Attr.hasFnAttr(Attribute::ReadOnly)) {
1098       unsigned DMaskLanes = 4;
1099 
1100       if (RsrcIntr->IsImage) {
1101         const AMDGPU::ImageDimIntrinsicInfo *Intr
1102           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1103         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1104           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1105 
1106         if (!BaseOpcode->Gather4) {
1107           // If this isn't a gather, we may have excess loaded elements in the
1108           // IR type. Check the dmask for the real number of elements loaded.
1109           unsigned DMask
1110             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1111           DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1112         }
1113 
1114         Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1115       } else
1116         Info.memVT = EVT::getEVT(CI.getType());
1117 
1118       // FIXME: What does alignment mean for an image?
1119       Info.opc = ISD::INTRINSIC_W_CHAIN;
1120       Info.flags |= MachineMemOperand::MOLoad;
1121     } else if (Attr.hasFnAttr(Attribute::WriteOnly)) {
1122       Info.opc = ISD::INTRINSIC_VOID;
1123 
1124       Type *DataTy = CI.getArgOperand(0)->getType();
1125       if (RsrcIntr->IsImage) {
1126         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1127         unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1128         Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1129       } else
1130         Info.memVT = EVT::getEVT(DataTy);
1131 
1132       Info.flags |= MachineMemOperand::MOStore;
1133     } else {
1134       // Atomic
1135       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1136                                             ISD::INTRINSIC_W_CHAIN;
1137       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1138       Info.flags = MachineMemOperand::MOLoad |
1139                    MachineMemOperand::MOStore |
1140                    MachineMemOperand::MODereferenceable;
1141 
1142       // XXX - Should this be volatile without known ordering?
1143       Info.flags |= MachineMemOperand::MOVolatile;
1144     }
1145     return true;
1146   }
1147 
1148   switch (IntrID) {
1149   case Intrinsic::amdgcn_atomic_inc:
1150   case Intrinsic::amdgcn_atomic_dec:
1151   case Intrinsic::amdgcn_ds_ordered_add:
1152   case Intrinsic::amdgcn_ds_ordered_swap:
1153   case Intrinsic::amdgcn_ds_fadd:
1154   case Intrinsic::amdgcn_ds_fmin:
1155   case Intrinsic::amdgcn_ds_fmax: {
1156     Info.opc = ISD::INTRINSIC_W_CHAIN;
1157     Info.memVT = MVT::getVT(CI.getType());
1158     Info.ptrVal = CI.getOperand(0);
1159     Info.align.reset();
1160     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1161 
1162     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1163     if (!Vol->isZero())
1164       Info.flags |= MachineMemOperand::MOVolatile;
1165 
1166     return true;
1167   }
1168   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1169     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1170 
1171     Info.opc = ISD::INTRINSIC_W_CHAIN;
1172     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1173     Info.ptrVal =
1174         MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1175     Info.align.reset();
1176     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1177 
1178     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1179     if (!Vol || !Vol->isZero())
1180       Info.flags |= MachineMemOperand::MOVolatile;
1181 
1182     return true;
1183   }
1184   case Intrinsic::amdgcn_ds_append:
1185   case Intrinsic::amdgcn_ds_consume: {
1186     Info.opc = ISD::INTRINSIC_W_CHAIN;
1187     Info.memVT = MVT::getVT(CI.getType());
1188     Info.ptrVal = CI.getOperand(0);
1189     Info.align.reset();
1190     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1191 
1192     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1193     if (!Vol->isZero())
1194       Info.flags |= MachineMemOperand::MOVolatile;
1195 
1196     return true;
1197   }
1198   case Intrinsic::amdgcn_global_atomic_csub: {
1199     Info.opc = ISD::INTRINSIC_W_CHAIN;
1200     Info.memVT = MVT::getVT(CI.getType());
1201     Info.ptrVal = CI.getOperand(0);
1202     Info.align.reset();
1203     Info.flags = MachineMemOperand::MOLoad |
1204                  MachineMemOperand::MOStore |
1205                  MachineMemOperand::MOVolatile;
1206     return true;
1207   }
1208   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1209     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1210     Info.opc = ISD::INTRINSIC_W_CHAIN;
1211     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1212     Info.ptrVal =
1213         MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1214     Info.align.reset();
1215     Info.flags = MachineMemOperand::MOLoad |
1216                  MachineMemOperand::MODereferenceable;
1217     return true;
1218   }
1219   case Intrinsic::amdgcn_global_atomic_fadd:
1220   case Intrinsic::amdgcn_global_atomic_fmin:
1221   case Intrinsic::amdgcn_global_atomic_fmax:
1222   case Intrinsic::amdgcn_flat_atomic_fadd:
1223   case Intrinsic::amdgcn_flat_atomic_fmin:
1224   case Intrinsic::amdgcn_flat_atomic_fmax: {
1225     Info.opc = ISD::INTRINSIC_W_CHAIN;
1226     Info.memVT = MVT::getVT(CI.getType());
1227     Info.ptrVal = CI.getOperand(0);
1228     Info.align.reset();
1229     Info.flags = MachineMemOperand::MOLoad |
1230                  MachineMemOperand::MOStore |
1231                  MachineMemOperand::MODereferenceable |
1232                  MachineMemOperand::MOVolatile;
1233     return true;
1234   }
1235   case Intrinsic::amdgcn_ds_gws_init:
1236   case Intrinsic::amdgcn_ds_gws_barrier:
1237   case Intrinsic::amdgcn_ds_gws_sema_v:
1238   case Intrinsic::amdgcn_ds_gws_sema_br:
1239   case Intrinsic::amdgcn_ds_gws_sema_p:
1240   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1241     Info.opc = ISD::INTRINSIC_VOID;
1242 
1243     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1244     Info.ptrVal =
1245         MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1246 
1247     // This is an abstract access, but we need to specify a type and size.
1248     Info.memVT = MVT::i32;
1249     Info.size = 4;
1250     Info.align = Align(4);
1251 
1252     Info.flags = MachineMemOperand::MOStore;
1253     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1254       Info.flags = MachineMemOperand::MOLoad;
1255     return true;
1256   }
1257   default:
1258     return false;
1259   }
1260 }
1261 
1262 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1263                                             SmallVectorImpl<Value*> &Ops,
1264                                             Type *&AccessTy) const {
1265   switch (II->getIntrinsicID()) {
1266   case Intrinsic::amdgcn_atomic_inc:
1267   case Intrinsic::amdgcn_atomic_dec:
1268   case Intrinsic::amdgcn_ds_ordered_add:
1269   case Intrinsic::amdgcn_ds_ordered_swap:
1270   case Intrinsic::amdgcn_ds_append:
1271   case Intrinsic::amdgcn_ds_consume:
1272   case Intrinsic::amdgcn_ds_fadd:
1273   case Intrinsic::amdgcn_ds_fmin:
1274   case Intrinsic::amdgcn_ds_fmax:
1275   case Intrinsic::amdgcn_global_atomic_fadd:
1276   case Intrinsic::amdgcn_flat_atomic_fadd:
1277   case Intrinsic::amdgcn_flat_atomic_fmin:
1278   case Intrinsic::amdgcn_flat_atomic_fmax:
1279   case Intrinsic::amdgcn_global_atomic_csub: {
1280     Value *Ptr = II->getArgOperand(0);
1281     AccessTy = II->getType();
1282     Ops.push_back(Ptr);
1283     return true;
1284   }
1285   default:
1286     return false;
1287   }
1288 }
1289 
1290 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1291   if (!Subtarget->hasFlatInstOffsets()) {
1292     // Flat instructions do not have offsets, and only have the register
1293     // address.
1294     return AM.BaseOffs == 0 && AM.Scale == 0;
1295   }
1296 
1297   return AM.Scale == 0 &&
1298          (AM.BaseOffs == 0 ||
1299           Subtarget->getInstrInfo()->isLegalFLATOffset(
1300               AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1301 }
1302 
1303 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1304   if (Subtarget->hasFlatGlobalInsts())
1305     return AM.Scale == 0 &&
1306            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1307                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1308                                     SIInstrFlags::FlatGlobal));
1309 
1310   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1311       // Assume the we will use FLAT for all global memory accesses
1312       // on VI.
1313       // FIXME: This assumption is currently wrong.  On VI we still use
1314       // MUBUF instructions for the r + i addressing mode.  As currently
1315       // implemented, the MUBUF instructions only work on buffer < 4GB.
1316       // It may be possible to support > 4GB buffers with MUBUF instructions,
1317       // by setting the stride value in the resource descriptor which would
1318       // increase the size limit to (stride * 4GB).  However, this is risky,
1319       // because it has never been validated.
1320     return isLegalFlatAddressingMode(AM);
1321   }
1322 
1323   return isLegalMUBUFAddressingMode(AM);
1324 }
1325 
1326 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1327   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1328   // additionally can do r + r + i with addr64. 32-bit has more addressing
1329   // mode options. Depending on the resource constant, it can also do
1330   // (i64 r0) + (i32 r1) * (i14 i).
1331   //
1332   // Private arrays end up using a scratch buffer most of the time, so also
1333   // assume those use MUBUF instructions. Scratch loads / stores are currently
1334   // implemented as mubuf instructions with offen bit set, so slightly
1335   // different than the normal addr64.
1336   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1337     return false;
1338 
1339   // FIXME: Since we can split immediate into soffset and immediate offset,
1340   // would it make sense to allow any immediate?
1341 
1342   switch (AM.Scale) {
1343   case 0: // r + i or just i, depending on HasBaseReg.
1344     return true;
1345   case 1:
1346     return true; // We have r + r or r + i.
1347   case 2:
1348     if (AM.HasBaseReg) {
1349       // Reject 2 * r + r.
1350       return false;
1351     }
1352 
1353     // Allow 2 * r as r + r
1354     // Or  2 * r + i is allowed as r + r + i.
1355     return true;
1356   default: // Don't allow n * r
1357     return false;
1358   }
1359 }
1360 
1361 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1362                                              const AddrMode &AM, Type *Ty,
1363                                              unsigned AS, Instruction *I) const {
1364   // No global is ever allowed as a base.
1365   if (AM.BaseGV)
1366     return false;
1367 
1368   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1369     return isLegalGlobalAddressingMode(AM);
1370 
1371   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1372       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1373       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1374     // If the offset isn't a multiple of 4, it probably isn't going to be
1375     // correctly aligned.
1376     // FIXME: Can we get the real alignment here?
1377     if (AM.BaseOffs % 4 != 0)
1378       return isLegalMUBUFAddressingMode(AM);
1379 
1380     // There are no SMRD extloads, so if we have to do a small type access we
1381     // will use a MUBUF load.
1382     // FIXME?: We also need to do this if unaligned, but we don't know the
1383     // alignment here.
1384     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1385       return isLegalGlobalAddressingMode(AM);
1386 
1387     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1388       // SMRD instructions have an 8-bit, dword offset on SI.
1389       if (!isUInt<8>(AM.BaseOffs / 4))
1390         return false;
1391     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1392       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1393       // in 8-bits, it can use a smaller encoding.
1394       if (!isUInt<32>(AM.BaseOffs / 4))
1395         return false;
1396     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1397       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1398       if (!isUInt<20>(AM.BaseOffs))
1399         return false;
1400     } else
1401       llvm_unreachable("unhandled generation");
1402 
1403     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1404       return true;
1405 
1406     if (AM.Scale == 1 && AM.HasBaseReg)
1407       return true;
1408 
1409     return false;
1410 
1411   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1412     return isLegalMUBUFAddressingMode(AM);
1413   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1414              AS == AMDGPUAS::REGION_ADDRESS) {
1415     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1416     // field.
1417     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1418     // an 8-bit dword offset but we don't know the alignment here.
1419     if (!isUInt<16>(AM.BaseOffs))
1420       return false;
1421 
1422     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1423       return true;
1424 
1425     if (AM.Scale == 1 && AM.HasBaseReg)
1426       return true;
1427 
1428     return false;
1429   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1430              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1431     // For an unknown address space, this usually means that this is for some
1432     // reason being used for pure arithmetic, and not based on some addressing
1433     // computation. We don't have instructions that compute pointers with any
1434     // addressing modes, so treat them as having no offset like flat
1435     // instructions.
1436     return isLegalFlatAddressingMode(AM);
1437   }
1438 
1439   // Assume a user alias of global for unknown address spaces.
1440   return isLegalGlobalAddressingMode(AM);
1441 }
1442 
1443 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1444                                         const MachineFunction &MF) const {
1445   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1446     return (MemVT.getSizeInBits() <= 4 * 32);
1447   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1448     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1449     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1450   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1451     return (MemVT.getSizeInBits() <= 2 * 32);
1452   }
1453   return true;
1454 }
1455 
1456 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1457     unsigned Size, unsigned AddrSpace, Align Alignment,
1458     MachineMemOperand::Flags Flags, bool *IsFast) const {
1459   if (IsFast)
1460     *IsFast = false;
1461 
1462   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1463       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1464     // Check if alignment requirements for ds_read/write instructions are
1465     // disabled.
1466     if (Subtarget->hasUnalignedDSAccessEnabled() &&
1467         !Subtarget->hasLDSMisalignedBug()) {
1468       if (IsFast)
1469         *IsFast = Alignment != Align(2);
1470       return true;
1471     }
1472 
1473     // Either, the alignment requirements are "enabled", or there is an
1474     // unaligned LDS access related hardware bug though alignment requirements
1475     // are "disabled". In either case, we need to check for proper alignment
1476     // requirements.
1477     //
1478     if (Size == 64) {
1479       // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1480       // can do a 4 byte aligned, 8 byte access in a single operation using
1481       // ds_read2/write2_b32 with adjacent offsets.
1482       bool AlignedBy4 = Alignment >= Align(4);
1483       if (IsFast)
1484         *IsFast = AlignedBy4;
1485 
1486       return AlignedBy4;
1487     }
1488     if (Size == 96) {
1489       // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1490       // gfx8 and older.
1491       bool AlignedBy16 = Alignment >= Align(16);
1492       if (IsFast)
1493         *IsFast = AlignedBy16;
1494 
1495       return AlignedBy16;
1496     }
1497     if (Size == 128) {
1498       // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1499       // gfx8 and older, but  we can do a 8 byte aligned, 16 byte access in a
1500       // single operation using ds_read2/write2_b64.
1501       bool AlignedBy8 = Alignment >= Align(8);
1502       if (IsFast)
1503         *IsFast = AlignedBy8;
1504 
1505       return AlignedBy8;
1506     }
1507   }
1508 
1509   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1510     bool AlignedBy4 = Alignment >= Align(4);
1511     if (IsFast)
1512       *IsFast = AlignedBy4;
1513 
1514     return AlignedBy4 ||
1515            Subtarget->enableFlatScratch() ||
1516            Subtarget->hasUnalignedScratchAccess();
1517   }
1518 
1519   // FIXME: We have to be conservative here and assume that flat operations
1520   // will access scratch.  If we had access to the IR function, then we
1521   // could determine if any private memory was used in the function.
1522   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1523       !Subtarget->hasUnalignedScratchAccess()) {
1524     bool AlignedBy4 = Alignment >= Align(4);
1525     if (IsFast)
1526       *IsFast = AlignedBy4;
1527 
1528     return AlignedBy4;
1529   }
1530 
1531   if (Subtarget->hasUnalignedBufferAccessEnabled() &&
1532       !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1533         AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1534     // If we have an uniform constant load, it still requires using a slow
1535     // buffer instruction if unaligned.
1536     if (IsFast) {
1537       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1538       // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1539       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1540                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1541         Alignment >= Align(4) : Alignment != Align(2);
1542     }
1543 
1544     return true;
1545   }
1546 
1547   // Smaller than dword value must be aligned.
1548   if (Size < 32)
1549     return false;
1550 
1551   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1552   // byte-address are ignored, thus forcing Dword alignment.
1553   // This applies to private, global, and constant memory.
1554   if (IsFast)
1555     *IsFast = true;
1556 
1557   return Size >= 32 && Alignment >= Align(4);
1558 }
1559 
1560 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1561     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1562     bool *IsFast) const {
1563   if (IsFast)
1564     *IsFast = false;
1565 
1566   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1567   // which isn't a simple VT.
1568   // Until MVT is extended to handle this, simply check for the size and
1569   // rely on the condition below: allow accesses if the size is a multiple of 4.
1570   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1571                            VT.getStoreSize() > 16)) {
1572     return false;
1573   }
1574 
1575   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1576                                             Alignment, Flags, IsFast);
1577 }
1578 
1579 EVT SITargetLowering::getOptimalMemOpType(
1580     const MemOp &Op, const AttributeList &FuncAttributes) const {
1581   // FIXME: Should account for address space here.
1582 
1583   // The default fallback uses the private pointer size as a guess for a type to
1584   // use. Make sure we switch these to 64-bit accesses.
1585 
1586   if (Op.size() >= 16 &&
1587       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1588     return MVT::v4i32;
1589 
1590   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1591     return MVT::v2i32;
1592 
1593   // Use the default.
1594   return MVT::Other;
1595 }
1596 
1597 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1598   const MemSDNode *MemNode = cast<MemSDNode>(N);
1599   const Value *Ptr = MemNode->getMemOperand()->getValue();
1600   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1601   return I && I->getMetadata("amdgpu.noclobber");
1602 }
1603 
1604 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1605   return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1606          AS == AMDGPUAS::PRIVATE_ADDRESS;
1607 }
1608 
1609 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1610                                            unsigned DestAS) const {
1611   // Flat -> private/local is a simple truncate.
1612   // Flat -> global is no-op
1613   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1614     return true;
1615 
1616   const GCNTargetMachine &TM =
1617       static_cast<const GCNTargetMachine &>(getTargetMachine());
1618   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1619 }
1620 
1621 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1622   const MemSDNode *MemNode = cast<MemSDNode>(N);
1623 
1624   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1625 }
1626 
1627 TargetLoweringBase::LegalizeTypeAction
1628 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1629   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1630       VT.getScalarType().bitsLE(MVT::i16))
1631     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1632   return TargetLoweringBase::getPreferredVectorAction(VT);
1633 }
1634 
1635 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1636                                                          Type *Ty) const {
1637   // FIXME: Could be smarter if called for vector constants.
1638   return true;
1639 }
1640 
1641 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1642   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1643     switch (Op) {
1644     case ISD::LOAD:
1645     case ISD::STORE:
1646 
1647     // These operations are done with 32-bit instructions anyway.
1648     case ISD::AND:
1649     case ISD::OR:
1650     case ISD::XOR:
1651     case ISD::SELECT:
1652       // TODO: Extensions?
1653       return true;
1654     default:
1655       return false;
1656     }
1657   }
1658 
1659   // SimplifySetCC uses this function to determine whether or not it should
1660   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1661   if (VT == MVT::i1 && Op == ISD::SETCC)
1662     return false;
1663 
1664   return TargetLowering::isTypeDesirableForOp(Op, VT);
1665 }
1666 
1667 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1668                                                    const SDLoc &SL,
1669                                                    SDValue Chain,
1670                                                    uint64_t Offset) const {
1671   const DataLayout &DL = DAG.getDataLayout();
1672   MachineFunction &MF = DAG.getMachineFunction();
1673   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1674 
1675   const ArgDescriptor *InputPtrReg;
1676   const TargetRegisterClass *RC;
1677   LLT ArgTy;
1678   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1679 
1680   std::tie(InputPtrReg, RC, ArgTy) =
1681       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1682 
1683   // We may not have the kernarg segment argument if we have no kernel
1684   // arguments.
1685   if (!InputPtrReg)
1686     return DAG.getConstant(0, SL, PtrVT);
1687 
1688   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1689   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1690     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1691 
1692   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1693 }
1694 
1695 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1696                                             const SDLoc &SL) const {
1697   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1698                                                FIRST_IMPLICIT);
1699   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1700 }
1701 
1702 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1703                                          const SDLoc &SL, SDValue Val,
1704                                          bool Signed,
1705                                          const ISD::InputArg *Arg) const {
1706   // First, if it is a widened vector, narrow it.
1707   if (VT.isVector() &&
1708       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1709     EVT NarrowedVT =
1710         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1711                          VT.getVectorNumElements());
1712     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1713                       DAG.getConstant(0, SL, MVT::i32));
1714   }
1715 
1716   // Then convert the vector elements or scalar value.
1717   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1718       VT.bitsLT(MemVT)) {
1719     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1720     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1721   }
1722 
1723   if (MemVT.isFloatingPoint())
1724     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1725   else if (Signed)
1726     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1727   else
1728     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1729 
1730   return Val;
1731 }
1732 
1733 SDValue SITargetLowering::lowerKernargMemParameter(
1734     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1735     uint64_t Offset, Align Alignment, bool Signed,
1736     const ISD::InputArg *Arg) const {
1737   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1738 
1739   // Try to avoid using an extload by loading earlier than the argument address,
1740   // and extracting the relevant bits. The load should hopefully be merged with
1741   // the previous argument.
1742   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1743     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1744     int64_t AlignDownOffset = alignDown(Offset, 4);
1745     int64_t OffsetDiff = Offset - AlignDownOffset;
1746 
1747     EVT IntVT = MemVT.changeTypeToInteger();
1748 
1749     // TODO: If we passed in the base kernel offset we could have a better
1750     // alignment than 4, but we don't really need it.
1751     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1752     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1753                                MachineMemOperand::MODereferenceable |
1754                                    MachineMemOperand::MOInvariant);
1755 
1756     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1757     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1758 
1759     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1760     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1761     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1762 
1763 
1764     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1765   }
1766 
1767   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1768   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1769                              MachineMemOperand::MODereferenceable |
1770                                  MachineMemOperand::MOInvariant);
1771 
1772   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1773   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1774 }
1775 
1776 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1777                                               const SDLoc &SL, SDValue Chain,
1778                                               const ISD::InputArg &Arg) const {
1779   MachineFunction &MF = DAG.getMachineFunction();
1780   MachineFrameInfo &MFI = MF.getFrameInfo();
1781 
1782   if (Arg.Flags.isByVal()) {
1783     unsigned Size = Arg.Flags.getByValSize();
1784     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1785     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1786   }
1787 
1788   unsigned ArgOffset = VA.getLocMemOffset();
1789   unsigned ArgSize = VA.getValVT().getStoreSize();
1790 
1791   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1792 
1793   // Create load nodes to retrieve arguments from the stack.
1794   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1795   SDValue ArgValue;
1796 
1797   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1798   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1799   MVT MemVT = VA.getValVT();
1800 
1801   switch (VA.getLocInfo()) {
1802   default:
1803     break;
1804   case CCValAssign::BCvt:
1805     MemVT = VA.getLocVT();
1806     break;
1807   case CCValAssign::SExt:
1808     ExtType = ISD::SEXTLOAD;
1809     break;
1810   case CCValAssign::ZExt:
1811     ExtType = ISD::ZEXTLOAD;
1812     break;
1813   case CCValAssign::AExt:
1814     ExtType = ISD::EXTLOAD;
1815     break;
1816   }
1817 
1818   ArgValue = DAG.getExtLoad(
1819     ExtType, SL, VA.getLocVT(), Chain, FIN,
1820     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1821     MemVT);
1822   return ArgValue;
1823 }
1824 
1825 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1826   const SIMachineFunctionInfo &MFI,
1827   EVT VT,
1828   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1829   const ArgDescriptor *Reg;
1830   const TargetRegisterClass *RC;
1831   LLT Ty;
1832 
1833   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1834   if (!Reg) {
1835     if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) {
1836       // It's possible for a kernarg intrinsic call to appear in a kernel with
1837       // no allocated segment, in which case we do not add the user sgpr
1838       // argument, so just return null.
1839       return DAG.getConstant(0, SDLoc(), VT);
1840     }
1841 
1842     // It's undefined behavior if a function marked with the amdgpu-no-*
1843     // attributes uses the corresponding intrinsic.
1844     return DAG.getUNDEF(VT);
1845   }
1846 
1847   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1848 }
1849 
1850 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1851                                CallingConv::ID CallConv,
1852                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1853                                FunctionType *FType,
1854                                SIMachineFunctionInfo *Info) {
1855   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1856     const ISD::InputArg *Arg = &Ins[I];
1857 
1858     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1859            "vector type argument should have been split");
1860 
1861     // First check if it's a PS input addr.
1862     if (CallConv == CallingConv::AMDGPU_PS &&
1863         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1864       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1865 
1866       // Inconveniently only the first part of the split is marked as isSplit,
1867       // so skip to the end. We only want to increment PSInputNum once for the
1868       // entire split argument.
1869       if (Arg->Flags.isSplit()) {
1870         while (!Arg->Flags.isSplitEnd()) {
1871           assert((!Arg->VT.isVector() ||
1872                   Arg->VT.getScalarSizeInBits() == 16) &&
1873                  "unexpected vector split in ps argument type");
1874           if (!SkipArg)
1875             Splits.push_back(*Arg);
1876           Arg = &Ins[++I];
1877         }
1878       }
1879 
1880       if (SkipArg) {
1881         // We can safely skip PS inputs.
1882         Skipped.set(Arg->getOrigArgIndex());
1883         ++PSInputNum;
1884         continue;
1885       }
1886 
1887       Info->markPSInputAllocated(PSInputNum);
1888       if (Arg->Used)
1889         Info->markPSInputEnabled(PSInputNum);
1890 
1891       ++PSInputNum;
1892     }
1893 
1894     Splits.push_back(*Arg);
1895   }
1896 }
1897 
1898 // Allocate special inputs passed in VGPRs.
1899 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1900                                                       MachineFunction &MF,
1901                                                       const SIRegisterInfo &TRI,
1902                                                       SIMachineFunctionInfo &Info) const {
1903   const LLT S32 = LLT::scalar(32);
1904   MachineRegisterInfo &MRI = MF.getRegInfo();
1905 
1906   if (Info.hasWorkItemIDX()) {
1907     Register Reg = AMDGPU::VGPR0;
1908     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1909 
1910     CCInfo.AllocateReg(Reg);
1911     unsigned Mask = (Subtarget->hasPackedTID() &&
1912                      Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1913     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1914   }
1915 
1916   if (Info.hasWorkItemIDY()) {
1917     assert(Info.hasWorkItemIDX());
1918     if (Subtarget->hasPackedTID()) {
1919       Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1920                                                         0x3ff << 10));
1921     } else {
1922       unsigned Reg = AMDGPU::VGPR1;
1923       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1924 
1925       CCInfo.AllocateReg(Reg);
1926       Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1927     }
1928   }
1929 
1930   if (Info.hasWorkItemIDZ()) {
1931     assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
1932     if (Subtarget->hasPackedTID()) {
1933       Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1934                                                         0x3ff << 20));
1935     } else {
1936       unsigned Reg = AMDGPU::VGPR2;
1937       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1938 
1939       CCInfo.AllocateReg(Reg);
1940       Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1941     }
1942   }
1943 }
1944 
1945 // Try to allocate a VGPR at the end of the argument list, or if no argument
1946 // VGPRs are left allocating a stack slot.
1947 // If \p Mask is is given it indicates bitfield position in the register.
1948 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1949 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1950                                          ArgDescriptor Arg = ArgDescriptor()) {
1951   if (Arg.isSet())
1952     return ArgDescriptor::createArg(Arg, Mask);
1953 
1954   ArrayRef<MCPhysReg> ArgVGPRs
1955     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1956   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1957   if (RegIdx == ArgVGPRs.size()) {
1958     // Spill to stack required.
1959     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1960 
1961     return ArgDescriptor::createStack(Offset, Mask);
1962   }
1963 
1964   unsigned Reg = ArgVGPRs[RegIdx];
1965   Reg = CCInfo.AllocateReg(Reg);
1966   assert(Reg != AMDGPU::NoRegister);
1967 
1968   MachineFunction &MF = CCInfo.getMachineFunction();
1969   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1970   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1971   return ArgDescriptor::createRegister(Reg, Mask);
1972 }
1973 
1974 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1975                                              const TargetRegisterClass *RC,
1976                                              unsigned NumArgRegs) {
1977   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1978   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1979   if (RegIdx == ArgSGPRs.size())
1980     report_fatal_error("ran out of SGPRs for arguments");
1981 
1982   unsigned Reg = ArgSGPRs[RegIdx];
1983   Reg = CCInfo.AllocateReg(Reg);
1984   assert(Reg != AMDGPU::NoRegister);
1985 
1986   MachineFunction &MF = CCInfo.getMachineFunction();
1987   MF.addLiveIn(Reg, RC);
1988   return ArgDescriptor::createRegister(Reg);
1989 }
1990 
1991 // If this has a fixed position, we still should allocate the register in the
1992 // CCInfo state. Technically we could get away with this for values passed
1993 // outside of the normal argument range.
1994 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
1995                                        const TargetRegisterClass *RC,
1996                                        MCRegister Reg) {
1997   Reg = CCInfo.AllocateReg(Reg);
1998   assert(Reg != AMDGPU::NoRegister);
1999   MachineFunction &MF = CCInfo.getMachineFunction();
2000   MF.addLiveIn(Reg, RC);
2001 }
2002 
2003 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
2004   if (Arg) {
2005     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
2006                                Arg.getRegister());
2007   } else
2008     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
2009 }
2010 
2011 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
2012   if (Arg) {
2013     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
2014                                Arg.getRegister());
2015   } else
2016     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
2017 }
2018 
2019 /// Allocate implicit function VGPR arguments at the end of allocated user
2020 /// arguments.
2021 void SITargetLowering::allocateSpecialInputVGPRs(
2022   CCState &CCInfo, MachineFunction &MF,
2023   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2024   const unsigned Mask = 0x3ff;
2025   ArgDescriptor Arg;
2026 
2027   if (Info.hasWorkItemIDX()) {
2028     Arg = allocateVGPR32Input(CCInfo, Mask);
2029     Info.setWorkItemIDX(Arg);
2030   }
2031 
2032   if (Info.hasWorkItemIDY()) {
2033     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
2034     Info.setWorkItemIDY(Arg);
2035   }
2036 
2037   if (Info.hasWorkItemIDZ())
2038     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2039 }
2040 
2041 /// Allocate implicit function VGPR arguments in fixed registers.
2042 void SITargetLowering::allocateSpecialInputVGPRsFixed(
2043   CCState &CCInfo, MachineFunction &MF,
2044   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2045   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2046   if (!Reg)
2047     report_fatal_error("failed to allocated VGPR for implicit arguments");
2048 
2049   const unsigned Mask = 0x3ff;
2050   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2051   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2052   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2053 }
2054 
2055 void SITargetLowering::allocateSpecialInputSGPRs(
2056   CCState &CCInfo,
2057   MachineFunction &MF,
2058   const SIRegisterInfo &TRI,
2059   SIMachineFunctionInfo &Info) const {
2060   auto &ArgInfo = Info.getArgInfo();
2061 
2062   // TODO: Unify handling with private memory pointers.
2063   if (Info.hasDispatchPtr())
2064     allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2065 
2066   if (Info.hasQueuePtr())
2067     allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2068 
2069   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2070   // constant offset from the kernarg segment.
2071   if (Info.hasImplicitArgPtr())
2072     allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2073 
2074   if (Info.hasDispatchID())
2075     allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2076 
2077   // flat_scratch_init is not applicable for non-kernel functions.
2078 
2079   if (Info.hasWorkGroupIDX())
2080     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2081 
2082   if (Info.hasWorkGroupIDY())
2083     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2084 
2085   if (Info.hasWorkGroupIDZ())
2086     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2087 }
2088 
2089 // Allocate special inputs passed in user SGPRs.
2090 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2091                                             MachineFunction &MF,
2092                                             const SIRegisterInfo &TRI,
2093                                             SIMachineFunctionInfo &Info) const {
2094   if (Info.hasImplicitBufferPtr()) {
2095     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2096     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2097     CCInfo.AllocateReg(ImplicitBufferPtrReg);
2098   }
2099 
2100   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2101   if (Info.hasPrivateSegmentBuffer()) {
2102     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2103     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2104     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2105   }
2106 
2107   if (Info.hasDispatchPtr()) {
2108     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2109     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2110     CCInfo.AllocateReg(DispatchPtrReg);
2111   }
2112 
2113   if (Info.hasQueuePtr()) {
2114     Register QueuePtrReg = Info.addQueuePtr(TRI);
2115     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2116     CCInfo.AllocateReg(QueuePtrReg);
2117   }
2118 
2119   if (Info.hasKernargSegmentPtr()) {
2120     MachineRegisterInfo &MRI = MF.getRegInfo();
2121     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2122     CCInfo.AllocateReg(InputPtrReg);
2123 
2124     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2125     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2126   }
2127 
2128   if (Info.hasDispatchID()) {
2129     Register DispatchIDReg = Info.addDispatchID(TRI);
2130     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2131     CCInfo.AllocateReg(DispatchIDReg);
2132   }
2133 
2134   if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2135     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2136     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2137     CCInfo.AllocateReg(FlatScratchInitReg);
2138   }
2139 
2140   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2141   // these from the dispatch pointer.
2142 }
2143 
2144 // Allocate special input registers that are initialized per-wave.
2145 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2146                                            MachineFunction &MF,
2147                                            SIMachineFunctionInfo &Info,
2148                                            CallingConv::ID CallConv,
2149                                            bool IsShader) const {
2150   if (Info.hasWorkGroupIDX()) {
2151     Register Reg = Info.addWorkGroupIDX();
2152     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2153     CCInfo.AllocateReg(Reg);
2154   }
2155 
2156   if (Info.hasWorkGroupIDY()) {
2157     Register Reg = Info.addWorkGroupIDY();
2158     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2159     CCInfo.AllocateReg(Reg);
2160   }
2161 
2162   if (Info.hasWorkGroupIDZ()) {
2163     Register Reg = Info.addWorkGroupIDZ();
2164     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2165     CCInfo.AllocateReg(Reg);
2166   }
2167 
2168   if (Info.hasWorkGroupInfo()) {
2169     Register Reg = Info.addWorkGroupInfo();
2170     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2171     CCInfo.AllocateReg(Reg);
2172   }
2173 
2174   if (Info.hasPrivateSegmentWaveByteOffset()) {
2175     // Scratch wave offset passed in system SGPR.
2176     unsigned PrivateSegmentWaveByteOffsetReg;
2177 
2178     if (IsShader) {
2179       PrivateSegmentWaveByteOffsetReg =
2180         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2181 
2182       // This is true if the scratch wave byte offset doesn't have a fixed
2183       // location.
2184       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2185         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2186         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2187       }
2188     } else
2189       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2190 
2191     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2192     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2193   }
2194 }
2195 
2196 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2197                                      MachineFunction &MF,
2198                                      const SIRegisterInfo &TRI,
2199                                      SIMachineFunctionInfo &Info) {
2200   // Now that we've figured out where the scratch register inputs are, see if
2201   // should reserve the arguments and use them directly.
2202   MachineFrameInfo &MFI = MF.getFrameInfo();
2203   bool HasStackObjects = MFI.hasStackObjects();
2204   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2205 
2206   // Record that we know we have non-spill stack objects so we don't need to
2207   // check all stack objects later.
2208   if (HasStackObjects)
2209     Info.setHasNonSpillStackObjects(true);
2210 
2211   // Everything live out of a block is spilled with fast regalloc, so it's
2212   // almost certain that spilling will be required.
2213   if (TM.getOptLevel() == CodeGenOpt::None)
2214     HasStackObjects = true;
2215 
2216   // For now assume stack access is needed in any callee functions, so we need
2217   // the scratch registers to pass in.
2218   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2219 
2220   if (!ST.enableFlatScratch()) {
2221     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2222       // If we have stack objects, we unquestionably need the private buffer
2223       // resource. For the Code Object V2 ABI, this will be the first 4 user
2224       // SGPR inputs. We can reserve those and use them directly.
2225 
2226       Register PrivateSegmentBufferReg =
2227           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2228       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2229     } else {
2230       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2231       // We tentatively reserve the last registers (skipping the last registers
2232       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2233       // we'll replace these with the ones immediately after those which were
2234       // really allocated. In the prologue copies will be inserted from the
2235       // argument to these reserved registers.
2236 
2237       // Without HSA, relocations are used for the scratch pointer and the
2238       // buffer resource setup is always inserted in the prologue. Scratch wave
2239       // offset is still in an input SGPR.
2240       Info.setScratchRSrcReg(ReservedBufferReg);
2241     }
2242   }
2243 
2244   MachineRegisterInfo &MRI = MF.getRegInfo();
2245 
2246   // For entry functions we have to set up the stack pointer if we use it,
2247   // whereas non-entry functions get this "for free". This means there is no
2248   // intrinsic advantage to using S32 over S34 in cases where we do not have
2249   // calls but do need a frame pointer (i.e. if we are requested to have one
2250   // because frame pointer elimination is disabled). To keep things simple we
2251   // only ever use S32 as the call ABI stack pointer, and so using it does not
2252   // imply we need a separate frame pointer.
2253   //
2254   // Try to use s32 as the SP, but move it if it would interfere with input
2255   // arguments. This won't work with calls though.
2256   //
2257   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2258   // registers.
2259   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2260     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2261   } else {
2262     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2263 
2264     if (MFI.hasCalls())
2265       report_fatal_error("call in graphics shader with too many input SGPRs");
2266 
2267     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2268       if (!MRI.isLiveIn(Reg)) {
2269         Info.setStackPtrOffsetReg(Reg);
2270         break;
2271       }
2272     }
2273 
2274     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2275       report_fatal_error("failed to find register for SP");
2276   }
2277 
2278   // hasFP should be accurate for entry functions even before the frame is
2279   // finalized, because it does not rely on the known stack size, only
2280   // properties like whether variable sized objects are present.
2281   if (ST.getFrameLowering()->hasFP(MF)) {
2282     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2283   }
2284 }
2285 
2286 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2287   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2288   return !Info->isEntryFunction();
2289 }
2290 
2291 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2292 
2293 }
2294 
2295 void SITargetLowering::insertCopiesSplitCSR(
2296   MachineBasicBlock *Entry,
2297   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2298   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2299 
2300   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2301   if (!IStart)
2302     return;
2303 
2304   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2305   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2306   MachineBasicBlock::iterator MBBI = Entry->begin();
2307   for (const MCPhysReg *I = IStart; *I; ++I) {
2308     const TargetRegisterClass *RC = nullptr;
2309     if (AMDGPU::SReg_64RegClass.contains(*I))
2310       RC = &AMDGPU::SGPR_64RegClass;
2311     else if (AMDGPU::SReg_32RegClass.contains(*I))
2312       RC = &AMDGPU::SGPR_32RegClass;
2313     else
2314       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2315 
2316     Register NewVR = MRI->createVirtualRegister(RC);
2317     // Create copy from CSR to a virtual register.
2318     Entry->addLiveIn(*I);
2319     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2320       .addReg(*I);
2321 
2322     // Insert the copy-back instructions right before the terminator.
2323     for (auto *Exit : Exits)
2324       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2325               TII->get(TargetOpcode::COPY), *I)
2326         .addReg(NewVR);
2327   }
2328 }
2329 
2330 SDValue SITargetLowering::LowerFormalArguments(
2331     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2332     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2333     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2334   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2335 
2336   MachineFunction &MF = DAG.getMachineFunction();
2337   const Function &Fn = MF.getFunction();
2338   FunctionType *FType = MF.getFunction().getFunctionType();
2339   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2340 
2341   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2342     DiagnosticInfoUnsupported NoGraphicsHSA(
2343         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2344     DAG.getContext()->diagnose(NoGraphicsHSA);
2345     return DAG.getEntryNode();
2346   }
2347 
2348   Info->allocateModuleLDSGlobal(Fn.getParent());
2349 
2350   SmallVector<ISD::InputArg, 16> Splits;
2351   SmallVector<CCValAssign, 16> ArgLocs;
2352   BitVector Skipped(Ins.size());
2353   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2354                  *DAG.getContext());
2355 
2356   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2357   bool IsKernel = AMDGPU::isKernel(CallConv);
2358   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2359 
2360   if (IsGraphics) {
2361     assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2362            (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2363            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2364            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2365            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2366            !Info->hasWorkItemIDZ());
2367   }
2368 
2369   if (CallConv == CallingConv::AMDGPU_PS) {
2370     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2371 
2372     // At least one interpolation mode must be enabled or else the GPU will
2373     // hang.
2374     //
2375     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2376     // set PSInputAddr, the user wants to enable some bits after the compilation
2377     // based on run-time states. Since we can't know what the final PSInputEna
2378     // will look like, so we shouldn't do anything here and the user should take
2379     // responsibility for the correct programming.
2380     //
2381     // Otherwise, the following restrictions apply:
2382     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2383     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2384     //   enabled too.
2385     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2386         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2387       CCInfo.AllocateReg(AMDGPU::VGPR0);
2388       CCInfo.AllocateReg(AMDGPU::VGPR1);
2389       Info->markPSInputAllocated(0);
2390       Info->markPSInputEnabled(0);
2391     }
2392     if (Subtarget->isAmdPalOS()) {
2393       // For isAmdPalOS, the user does not enable some bits after compilation
2394       // based on run-time states; the register values being generated here are
2395       // the final ones set in hardware. Therefore we need to apply the
2396       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2397       // a bit is set in PSInputAddr but not PSInputEnable is where the
2398       // frontend set up an input arg for a particular interpolation mode, but
2399       // nothing uses that input arg. Really we should have an earlier pass
2400       // that removes such an arg.)
2401       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2402       if ((PsInputBits & 0x7F) == 0 ||
2403           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2404         Info->markPSInputEnabled(
2405             countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2406     }
2407   } else if (IsKernel) {
2408     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2409   } else {
2410     Splits.append(Ins.begin(), Ins.end());
2411   }
2412 
2413   if (IsEntryFunc) {
2414     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2415     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2416   } else if (!IsGraphics) {
2417     // For the fixed ABI, pass workitem IDs in the last argument register.
2418     allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2419   }
2420 
2421   if (IsKernel) {
2422     analyzeFormalArgumentsCompute(CCInfo, Ins);
2423   } else {
2424     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2425     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2426   }
2427 
2428   SmallVector<SDValue, 16> Chains;
2429 
2430   // FIXME: This is the minimum kernel argument alignment. We should improve
2431   // this to the maximum alignment of the arguments.
2432   //
2433   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2434   // kern arg offset.
2435   const Align KernelArgBaseAlign = Align(16);
2436 
2437   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2438     const ISD::InputArg &Arg = Ins[i];
2439     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2440       InVals.push_back(DAG.getUNDEF(Arg.VT));
2441       continue;
2442     }
2443 
2444     CCValAssign &VA = ArgLocs[ArgIdx++];
2445     MVT VT = VA.getLocVT();
2446 
2447     if (IsEntryFunc && VA.isMemLoc()) {
2448       VT = Ins[i].VT;
2449       EVT MemVT = VA.getLocVT();
2450 
2451       const uint64_t Offset = VA.getLocMemOffset();
2452       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2453 
2454       if (Arg.Flags.isByRef()) {
2455         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2456 
2457         const GCNTargetMachine &TM =
2458             static_cast<const GCNTargetMachine &>(getTargetMachine());
2459         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2460                                     Arg.Flags.getPointerAddrSpace())) {
2461           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2462                                      Arg.Flags.getPointerAddrSpace());
2463         }
2464 
2465         InVals.push_back(Ptr);
2466         continue;
2467       }
2468 
2469       SDValue Arg = lowerKernargMemParameter(
2470         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2471       Chains.push_back(Arg.getValue(1));
2472 
2473       auto *ParamTy =
2474         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2475       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2476           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2477                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2478         // On SI local pointers are just offsets into LDS, so they are always
2479         // less than 16-bits.  On CI and newer they could potentially be
2480         // real pointers, so we can't guarantee their size.
2481         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2482                           DAG.getValueType(MVT::i16));
2483       }
2484 
2485       InVals.push_back(Arg);
2486       continue;
2487     } else if (!IsEntryFunc && VA.isMemLoc()) {
2488       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2489       InVals.push_back(Val);
2490       if (!Arg.Flags.isByVal())
2491         Chains.push_back(Val.getValue(1));
2492       continue;
2493     }
2494 
2495     assert(VA.isRegLoc() && "Parameter must be in a register!");
2496 
2497     Register Reg = VA.getLocReg();
2498     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2499     EVT ValVT = VA.getValVT();
2500 
2501     Reg = MF.addLiveIn(Reg, RC);
2502     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2503 
2504     if (Arg.Flags.isSRet()) {
2505       // The return object should be reasonably addressable.
2506 
2507       // FIXME: This helps when the return is a real sret. If it is a
2508       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2509       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2510       unsigned NumBits
2511         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2512       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2513         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2514     }
2515 
2516     // If this is an 8 or 16-bit value, it is really passed promoted
2517     // to 32 bits. Insert an assert[sz]ext to capture this, then
2518     // truncate to the right size.
2519     switch (VA.getLocInfo()) {
2520     case CCValAssign::Full:
2521       break;
2522     case CCValAssign::BCvt:
2523       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2524       break;
2525     case CCValAssign::SExt:
2526       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2527                         DAG.getValueType(ValVT));
2528       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2529       break;
2530     case CCValAssign::ZExt:
2531       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2532                         DAG.getValueType(ValVT));
2533       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2534       break;
2535     case CCValAssign::AExt:
2536       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2537       break;
2538     default:
2539       llvm_unreachable("Unknown loc info!");
2540     }
2541 
2542     InVals.push_back(Val);
2543   }
2544 
2545   // Start adding system SGPRs.
2546   if (IsEntryFunc) {
2547     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2548   } else {
2549     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2550     if (!IsGraphics)
2551       allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2552   }
2553 
2554   auto &ArgUsageInfo =
2555     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2556   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2557 
2558   unsigned StackArgSize = CCInfo.getNextStackOffset();
2559   Info->setBytesInStackArgArea(StackArgSize);
2560 
2561   return Chains.empty() ? Chain :
2562     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2563 }
2564 
2565 // TODO: If return values can't fit in registers, we should return as many as
2566 // possible in registers before passing on stack.
2567 bool SITargetLowering::CanLowerReturn(
2568   CallingConv::ID CallConv,
2569   MachineFunction &MF, bool IsVarArg,
2570   const SmallVectorImpl<ISD::OutputArg> &Outs,
2571   LLVMContext &Context) const {
2572   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2573   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2574   // for shaders. Vector types should be explicitly handled by CC.
2575   if (AMDGPU::isEntryFunctionCC(CallConv))
2576     return true;
2577 
2578   SmallVector<CCValAssign, 16> RVLocs;
2579   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2580   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2581 }
2582 
2583 SDValue
2584 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2585                               bool isVarArg,
2586                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2587                               const SmallVectorImpl<SDValue> &OutVals,
2588                               const SDLoc &DL, SelectionDAG &DAG) const {
2589   MachineFunction &MF = DAG.getMachineFunction();
2590   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2591 
2592   if (AMDGPU::isKernel(CallConv)) {
2593     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2594                                              OutVals, DL, DAG);
2595   }
2596 
2597   bool IsShader = AMDGPU::isShader(CallConv);
2598 
2599   Info->setIfReturnsVoid(Outs.empty());
2600   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2601 
2602   // CCValAssign - represent the assignment of the return value to a location.
2603   SmallVector<CCValAssign, 48> RVLocs;
2604   SmallVector<ISD::OutputArg, 48> Splits;
2605 
2606   // CCState - Info about the registers and stack slots.
2607   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2608                  *DAG.getContext());
2609 
2610   // Analyze outgoing return values.
2611   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2612 
2613   SDValue Flag;
2614   SmallVector<SDValue, 48> RetOps;
2615   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2616 
2617   // Add return address for callable functions.
2618   if (!Info->isEntryFunction()) {
2619     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2620     SDValue ReturnAddrReg = CreateLiveInRegister(
2621       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2622 
2623     SDValue ReturnAddrVirtualReg =
2624         DAG.getRegister(MF.getRegInfo().createVirtualRegister(
2625                             CallConv != CallingConv::AMDGPU_Gfx
2626                                 ? &AMDGPU::CCR_SGPR_64RegClass
2627                                 : &AMDGPU::Gfx_CCR_SGPR_64RegClass),
2628                         MVT::i64);
2629     Chain =
2630         DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2631     Flag = Chain.getValue(1);
2632     RetOps.push_back(ReturnAddrVirtualReg);
2633   }
2634 
2635   // Copy the result values into the output registers.
2636   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2637        ++I, ++RealRVLocIdx) {
2638     CCValAssign &VA = RVLocs[I];
2639     assert(VA.isRegLoc() && "Can only return in registers!");
2640     // TODO: Partially return in registers if return values don't fit.
2641     SDValue Arg = OutVals[RealRVLocIdx];
2642 
2643     // Copied from other backends.
2644     switch (VA.getLocInfo()) {
2645     case CCValAssign::Full:
2646       break;
2647     case CCValAssign::BCvt:
2648       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2649       break;
2650     case CCValAssign::SExt:
2651       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2652       break;
2653     case CCValAssign::ZExt:
2654       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2655       break;
2656     case CCValAssign::AExt:
2657       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2658       break;
2659     default:
2660       llvm_unreachable("Unknown loc info!");
2661     }
2662 
2663     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2664     Flag = Chain.getValue(1);
2665     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2666   }
2667 
2668   // FIXME: Does sret work properly?
2669   if (!Info->isEntryFunction()) {
2670     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2671     const MCPhysReg *I =
2672       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2673     if (I) {
2674       for (; *I; ++I) {
2675         if (AMDGPU::SReg_64RegClass.contains(*I))
2676           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2677         else if (AMDGPU::SReg_32RegClass.contains(*I))
2678           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2679         else
2680           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2681       }
2682     }
2683   }
2684 
2685   // Update chain and glue.
2686   RetOps[0] = Chain;
2687   if (Flag.getNode())
2688     RetOps.push_back(Flag);
2689 
2690   unsigned Opc = AMDGPUISD::ENDPGM;
2691   if (!IsWaveEnd) {
2692     if (IsShader)
2693       Opc = AMDGPUISD::RETURN_TO_EPILOG;
2694     else if (CallConv == CallingConv::AMDGPU_Gfx)
2695       Opc = AMDGPUISD::RET_GFX_FLAG;
2696     else
2697       Opc = AMDGPUISD::RET_FLAG;
2698   }
2699 
2700   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2701 }
2702 
2703 SDValue SITargetLowering::LowerCallResult(
2704     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2705     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2706     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2707     SDValue ThisVal) const {
2708   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2709 
2710   // Assign locations to each value returned by this call.
2711   SmallVector<CCValAssign, 16> RVLocs;
2712   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2713                  *DAG.getContext());
2714   CCInfo.AnalyzeCallResult(Ins, RetCC);
2715 
2716   // Copy all of the result registers out of their specified physreg.
2717   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2718     CCValAssign VA = RVLocs[i];
2719     SDValue Val;
2720 
2721     if (VA.isRegLoc()) {
2722       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2723       Chain = Val.getValue(1);
2724       InFlag = Val.getValue(2);
2725     } else if (VA.isMemLoc()) {
2726       report_fatal_error("TODO: return values in memory");
2727     } else
2728       llvm_unreachable("unknown argument location type");
2729 
2730     switch (VA.getLocInfo()) {
2731     case CCValAssign::Full:
2732       break;
2733     case CCValAssign::BCvt:
2734       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2735       break;
2736     case CCValAssign::ZExt:
2737       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2738                         DAG.getValueType(VA.getValVT()));
2739       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2740       break;
2741     case CCValAssign::SExt:
2742       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2743                         DAG.getValueType(VA.getValVT()));
2744       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2745       break;
2746     case CCValAssign::AExt:
2747       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2748       break;
2749     default:
2750       llvm_unreachable("Unknown loc info!");
2751     }
2752 
2753     InVals.push_back(Val);
2754   }
2755 
2756   return Chain;
2757 }
2758 
2759 // Add code to pass special inputs required depending on used features separate
2760 // from the explicit user arguments present in the IR.
2761 void SITargetLowering::passSpecialInputs(
2762     CallLoweringInfo &CLI,
2763     CCState &CCInfo,
2764     const SIMachineFunctionInfo &Info,
2765     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2766     SmallVectorImpl<SDValue> &MemOpChains,
2767     SDValue Chain) const {
2768   // If we don't have a call site, this was a call inserted by
2769   // legalization. These can never use special inputs.
2770   if (!CLI.CB)
2771     return;
2772 
2773   SelectionDAG &DAG = CLI.DAG;
2774   const SDLoc &DL = CLI.DL;
2775   const Function &F = DAG.getMachineFunction().getFunction();
2776 
2777   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2778   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2779 
2780   const AMDGPUFunctionArgInfo *CalleeArgInfo
2781     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2782   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2783     auto &ArgUsageInfo =
2784       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2785     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2786   }
2787 
2788   // TODO: Unify with private memory register handling. This is complicated by
2789   // the fact that at least in kernels, the input argument is not necessarily
2790   // in the same location as the input.
2791   static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
2792                              StringLiteral> ImplicitAttrs[] = {
2793     {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"},
2794     {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" },
2795     {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"},
2796     {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"},
2797     {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"},
2798     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"},
2799     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}
2800   };
2801 
2802   for (auto Attr : ImplicitAttrs) {
2803     const ArgDescriptor *OutgoingArg;
2804     const TargetRegisterClass *ArgRC;
2805     LLT ArgTy;
2806 
2807     AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first;
2808 
2809     // If the callee does not use the attribute value, skip copying the value.
2810     if (CLI.CB->hasFnAttr(Attr.second))
2811       continue;
2812 
2813     std::tie(OutgoingArg, ArgRC, ArgTy) =
2814         CalleeArgInfo->getPreloadedValue(InputID);
2815     if (!OutgoingArg)
2816       continue;
2817 
2818     const ArgDescriptor *IncomingArg;
2819     const TargetRegisterClass *IncomingArgRC;
2820     LLT Ty;
2821     std::tie(IncomingArg, IncomingArgRC, Ty) =
2822         CallerArgInfo.getPreloadedValue(InputID);
2823     assert(IncomingArgRC == ArgRC);
2824 
2825     // All special arguments are ints for now.
2826     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2827     SDValue InputReg;
2828 
2829     if (IncomingArg) {
2830       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2831     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
2832       // The implicit arg ptr is special because it doesn't have a corresponding
2833       // input for kernels, and is computed from the kernarg segment pointer.
2834       InputReg = getImplicitArgPtr(DAG, DL);
2835     } else {
2836       // We may have proven the input wasn't needed, although the ABI is
2837       // requiring it. We just need to allocate the register appropriately.
2838       InputReg = DAG.getUNDEF(ArgVT);
2839     }
2840 
2841     if (OutgoingArg->isRegister()) {
2842       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2843       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2844         report_fatal_error("failed to allocate implicit input argument");
2845     } else {
2846       unsigned SpecialArgOffset =
2847           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2848       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2849                                               SpecialArgOffset);
2850       MemOpChains.push_back(ArgStore);
2851     }
2852   }
2853 
2854   // Pack workitem IDs into a single register or pass it as is if already
2855   // packed.
2856   const ArgDescriptor *OutgoingArg;
2857   const TargetRegisterClass *ArgRC;
2858   LLT Ty;
2859 
2860   std::tie(OutgoingArg, ArgRC, Ty) =
2861       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2862   if (!OutgoingArg)
2863     std::tie(OutgoingArg, ArgRC, Ty) =
2864         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2865   if (!OutgoingArg)
2866     std::tie(OutgoingArg, ArgRC, Ty) =
2867         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2868   if (!OutgoingArg)
2869     return;
2870 
2871   const ArgDescriptor *IncomingArgX = std::get<0>(
2872       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2873   const ArgDescriptor *IncomingArgY = std::get<0>(
2874       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2875   const ArgDescriptor *IncomingArgZ = std::get<0>(
2876       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2877 
2878   SDValue InputReg;
2879   SDLoc SL;
2880 
2881   const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
2882   const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
2883   const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
2884 
2885   // If incoming ids are not packed we need to pack them.
2886   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
2887       NeedWorkItemIDX) {
2888     if (Subtarget->getMaxWorkitemID(F, 0) != 0) {
2889       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2890     } else {
2891       InputReg = DAG.getConstant(0, DL, MVT::i32);
2892     }
2893   }
2894 
2895   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
2896       NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) {
2897     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2898     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2899                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2900     InputReg = InputReg.getNode() ?
2901                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2902   }
2903 
2904   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
2905       NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) {
2906     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2907     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2908                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2909     InputReg = InputReg.getNode() ?
2910                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2911   }
2912 
2913   if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
2914     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
2915       // We're in a situation where the outgoing function requires the workitem
2916       // ID, but the calling function does not have it (e.g a graphics function
2917       // calling a C calling convention function). This is illegal, but we need
2918       // to produce something.
2919       InputReg = DAG.getUNDEF(MVT::i32);
2920     } else {
2921       // Workitem ids are already packed, any of present incoming arguments
2922       // will carry all required fields.
2923       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2924         IncomingArgX ? *IncomingArgX :
2925         IncomingArgY ? *IncomingArgY :
2926         *IncomingArgZ, ~0u);
2927       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2928     }
2929   }
2930 
2931   if (OutgoingArg->isRegister()) {
2932     if (InputReg)
2933       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2934 
2935     CCInfo.AllocateReg(OutgoingArg->getRegister());
2936   } else {
2937     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2938     if (InputReg) {
2939       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2940                                               SpecialArgOffset);
2941       MemOpChains.push_back(ArgStore);
2942     }
2943   }
2944 }
2945 
2946 static bool canGuaranteeTCO(CallingConv::ID CC) {
2947   return CC == CallingConv::Fast;
2948 }
2949 
2950 /// Return true if we might ever do TCO for calls with this calling convention.
2951 static bool mayTailCallThisCC(CallingConv::ID CC) {
2952   switch (CC) {
2953   case CallingConv::C:
2954   case CallingConv::AMDGPU_Gfx:
2955     return true;
2956   default:
2957     return canGuaranteeTCO(CC);
2958   }
2959 }
2960 
2961 bool SITargetLowering::isEligibleForTailCallOptimization(
2962     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2963     const SmallVectorImpl<ISD::OutputArg> &Outs,
2964     const SmallVectorImpl<SDValue> &OutVals,
2965     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2966   if (!mayTailCallThisCC(CalleeCC))
2967     return false;
2968 
2969   // For a divergent call target, we need to do a waterfall loop over the
2970   // possible callees which precludes us from using a simple jump.
2971   if (Callee->isDivergent())
2972     return false;
2973 
2974   MachineFunction &MF = DAG.getMachineFunction();
2975   const Function &CallerF = MF.getFunction();
2976   CallingConv::ID CallerCC = CallerF.getCallingConv();
2977   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2978   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2979 
2980   // Kernels aren't callable, and don't have a live in return address so it
2981   // doesn't make sense to do a tail call with entry functions.
2982   if (!CallerPreserved)
2983     return false;
2984 
2985   bool CCMatch = CallerCC == CalleeCC;
2986 
2987   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2988     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2989       return true;
2990     return false;
2991   }
2992 
2993   // TODO: Can we handle var args?
2994   if (IsVarArg)
2995     return false;
2996 
2997   for (const Argument &Arg : CallerF.args()) {
2998     if (Arg.hasByValAttr())
2999       return false;
3000   }
3001 
3002   LLVMContext &Ctx = *DAG.getContext();
3003 
3004   // Check that the call results are passed in the same way.
3005   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
3006                                   CCAssignFnForCall(CalleeCC, IsVarArg),
3007                                   CCAssignFnForCall(CallerCC, IsVarArg)))
3008     return false;
3009 
3010   // The callee has to preserve all registers the caller needs to preserve.
3011   if (!CCMatch) {
3012     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3013     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3014       return false;
3015   }
3016 
3017   // Nothing more to check if the callee is taking no arguments.
3018   if (Outs.empty())
3019     return true;
3020 
3021   SmallVector<CCValAssign, 16> ArgLocs;
3022   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
3023 
3024   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
3025 
3026   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
3027   // If the stack arguments for this call do not fit into our own save area then
3028   // the call cannot be made tail.
3029   // TODO: Is this really necessary?
3030   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3031     return false;
3032 
3033   const MachineRegisterInfo &MRI = MF.getRegInfo();
3034   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
3035 }
3036 
3037 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3038   if (!CI->isTailCall())
3039     return false;
3040 
3041   const Function *ParentFn = CI->getParent()->getParent();
3042   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
3043     return false;
3044   return true;
3045 }
3046 
3047 // The wave scratch offset register is used as the global base pointer.
3048 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
3049                                     SmallVectorImpl<SDValue> &InVals) const {
3050   SelectionDAG &DAG = CLI.DAG;
3051   const SDLoc &DL = CLI.DL;
3052   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3053   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3054   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3055   SDValue Chain = CLI.Chain;
3056   SDValue Callee = CLI.Callee;
3057   bool &IsTailCall = CLI.IsTailCall;
3058   CallingConv::ID CallConv = CLI.CallConv;
3059   bool IsVarArg = CLI.IsVarArg;
3060   bool IsSibCall = false;
3061   bool IsThisReturn = false;
3062   MachineFunction &MF = DAG.getMachineFunction();
3063 
3064   if (Callee.isUndef() || isNullConstant(Callee)) {
3065     if (!CLI.IsTailCall) {
3066       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
3067         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
3068     }
3069 
3070     return Chain;
3071   }
3072 
3073   if (IsVarArg) {
3074     return lowerUnhandledCall(CLI, InVals,
3075                               "unsupported call to variadic function ");
3076   }
3077 
3078   if (!CLI.CB)
3079     report_fatal_error("unsupported libcall legalization");
3080 
3081   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3082     return lowerUnhandledCall(CLI, InVals,
3083                               "unsupported required tail call to function ");
3084   }
3085 
3086   if (AMDGPU::isShader(CallConv)) {
3087     // Note the issue is with the CC of the called function, not of the call
3088     // itself.
3089     return lowerUnhandledCall(CLI, InVals,
3090                               "unsupported call to a shader function ");
3091   }
3092 
3093   if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
3094       CallConv != CallingConv::AMDGPU_Gfx) {
3095     // Only allow calls with specific calling conventions.
3096     return lowerUnhandledCall(CLI, InVals,
3097                               "unsupported calling convention for call from "
3098                               "graphics shader of function ");
3099   }
3100 
3101   if (IsTailCall) {
3102     IsTailCall = isEligibleForTailCallOptimization(
3103       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3104     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
3105       report_fatal_error("failed to perform tail call elimination on a call "
3106                          "site marked musttail");
3107     }
3108 
3109     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3110 
3111     // A sibling call is one where we're under the usual C ABI and not planning
3112     // to change that but can still do a tail call:
3113     if (!TailCallOpt && IsTailCall)
3114       IsSibCall = true;
3115 
3116     if (IsTailCall)
3117       ++NumTailCalls;
3118   }
3119 
3120   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3121   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3122   SmallVector<SDValue, 8> MemOpChains;
3123 
3124   // Analyze operands of the call, assigning locations to each operand.
3125   SmallVector<CCValAssign, 16> ArgLocs;
3126   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3127   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3128 
3129   if (CallConv != CallingConv::AMDGPU_Gfx) {
3130     // With a fixed ABI, allocate fixed registers before user arguments.
3131     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3132   }
3133 
3134   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3135 
3136   // Get a count of how many bytes are to be pushed on the stack.
3137   unsigned NumBytes = CCInfo.getNextStackOffset();
3138 
3139   if (IsSibCall) {
3140     // Since we're not changing the ABI to make this a tail call, the memory
3141     // operands are already available in the caller's incoming argument space.
3142     NumBytes = 0;
3143   }
3144 
3145   // FPDiff is the byte offset of the call's argument area from the callee's.
3146   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3147   // by this amount for a tail call. In a sibling call it must be 0 because the
3148   // caller will deallocate the entire stack and the callee still expects its
3149   // arguments to begin at SP+0. Completely unused for non-tail calls.
3150   int32_t FPDiff = 0;
3151   MachineFrameInfo &MFI = MF.getFrameInfo();
3152 
3153   // Adjust the stack pointer for the new arguments...
3154   // These operations are automatically eliminated by the prolog/epilog pass
3155   if (!IsSibCall) {
3156     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3157 
3158     if (!Subtarget->enableFlatScratch()) {
3159       SmallVector<SDValue, 4> CopyFromChains;
3160 
3161       // In the HSA case, this should be an identity copy.
3162       SDValue ScratchRSrcReg
3163         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3164       RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3165       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3166       Chain = DAG.getTokenFactor(DL, CopyFromChains);
3167     }
3168   }
3169 
3170   MVT PtrVT = MVT::i32;
3171 
3172   // Walk the register/memloc assignments, inserting copies/loads.
3173   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3174     CCValAssign &VA = ArgLocs[i];
3175     SDValue Arg = OutVals[i];
3176 
3177     // Promote the value if needed.
3178     switch (VA.getLocInfo()) {
3179     case CCValAssign::Full:
3180       break;
3181     case CCValAssign::BCvt:
3182       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3183       break;
3184     case CCValAssign::ZExt:
3185       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3186       break;
3187     case CCValAssign::SExt:
3188       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3189       break;
3190     case CCValAssign::AExt:
3191       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3192       break;
3193     case CCValAssign::FPExt:
3194       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3195       break;
3196     default:
3197       llvm_unreachable("Unknown loc info!");
3198     }
3199 
3200     if (VA.isRegLoc()) {
3201       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3202     } else {
3203       assert(VA.isMemLoc());
3204 
3205       SDValue DstAddr;
3206       MachinePointerInfo DstInfo;
3207 
3208       unsigned LocMemOffset = VA.getLocMemOffset();
3209       int32_t Offset = LocMemOffset;
3210 
3211       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3212       MaybeAlign Alignment;
3213 
3214       if (IsTailCall) {
3215         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3216         unsigned OpSize = Flags.isByVal() ?
3217           Flags.getByValSize() : VA.getValVT().getStoreSize();
3218 
3219         // FIXME: We can have better than the minimum byval required alignment.
3220         Alignment =
3221             Flags.isByVal()
3222                 ? Flags.getNonZeroByValAlign()
3223                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3224 
3225         Offset = Offset + FPDiff;
3226         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3227 
3228         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3229         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3230 
3231         // Make sure any stack arguments overlapping with where we're storing
3232         // are loaded before this eventual operation. Otherwise they'll be
3233         // clobbered.
3234 
3235         // FIXME: Why is this really necessary? This seems to just result in a
3236         // lot of code to copy the stack and write them back to the same
3237         // locations, which are supposed to be immutable?
3238         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3239       } else {
3240         // Stores to the argument stack area are relative to the stack pointer.
3241         SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3242                                         MVT::i32);
3243         DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3244         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3245         Alignment =
3246             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3247       }
3248 
3249       if (Outs[i].Flags.isByVal()) {
3250         SDValue SizeNode =
3251             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3252         SDValue Cpy =
3253             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3254                           Outs[i].Flags.getNonZeroByValAlign(),
3255                           /*isVol = */ false, /*AlwaysInline = */ true,
3256                           /*isTailCall = */ false, DstInfo,
3257                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3258 
3259         MemOpChains.push_back(Cpy);
3260       } else {
3261         SDValue Store =
3262             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3263         MemOpChains.push_back(Store);
3264       }
3265     }
3266   }
3267 
3268   if (!MemOpChains.empty())
3269     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3270 
3271   // Build a sequence of copy-to-reg nodes chained together with token chain
3272   // and flag operands which copy the outgoing args into the appropriate regs.
3273   SDValue InFlag;
3274   for (auto &RegToPass : RegsToPass) {
3275     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3276                              RegToPass.second, InFlag);
3277     InFlag = Chain.getValue(1);
3278   }
3279 
3280 
3281   SDValue PhysReturnAddrReg;
3282   if (IsTailCall) {
3283     // Since the return is being combined with the call, we need to pass on the
3284     // return address.
3285 
3286     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3287     SDValue ReturnAddrReg = CreateLiveInRegister(
3288       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3289 
3290     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3291                                         MVT::i64);
3292     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3293     InFlag = Chain.getValue(1);
3294   }
3295 
3296   // We don't usually want to end the call-sequence here because we would tidy
3297   // the frame up *after* the call, however in the ABI-changing tail-call case
3298   // we've carefully laid out the parameters so that when sp is reset they'll be
3299   // in the correct location.
3300   if (IsTailCall && !IsSibCall) {
3301     Chain = DAG.getCALLSEQ_END(Chain,
3302                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3303                                DAG.getTargetConstant(0, DL, MVT::i32),
3304                                InFlag, DL);
3305     InFlag = Chain.getValue(1);
3306   }
3307 
3308   std::vector<SDValue> Ops;
3309   Ops.push_back(Chain);
3310   Ops.push_back(Callee);
3311   // Add a redundant copy of the callee global which will not be legalized, as
3312   // we need direct access to the callee later.
3313   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3314     const GlobalValue *GV = GSD->getGlobal();
3315     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3316   } else {
3317     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3318   }
3319 
3320   if (IsTailCall) {
3321     // Each tail call may have to adjust the stack by a different amount, so
3322     // this information must travel along with the operation for eventual
3323     // consumption by emitEpilogue.
3324     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3325 
3326     Ops.push_back(PhysReturnAddrReg);
3327   }
3328 
3329   // Add argument registers to the end of the list so that they are known live
3330   // into the call.
3331   for (auto &RegToPass : RegsToPass) {
3332     Ops.push_back(DAG.getRegister(RegToPass.first,
3333                                   RegToPass.second.getValueType()));
3334   }
3335 
3336   // Add a register mask operand representing the call-preserved registers.
3337 
3338   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3339   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3340   assert(Mask && "Missing call preserved mask for calling convention");
3341   Ops.push_back(DAG.getRegisterMask(Mask));
3342 
3343   if (InFlag.getNode())
3344     Ops.push_back(InFlag);
3345 
3346   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3347 
3348   // If we're doing a tall call, use a TC_RETURN here rather than an
3349   // actual call instruction.
3350   if (IsTailCall) {
3351     MFI.setHasTailCall();
3352     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3353   }
3354 
3355   // Returns a chain and a flag for retval copy to use.
3356   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3357   Chain = Call.getValue(0);
3358   InFlag = Call.getValue(1);
3359 
3360   uint64_t CalleePopBytes = NumBytes;
3361   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3362                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3363                              InFlag, DL);
3364   if (!Ins.empty())
3365     InFlag = Chain.getValue(1);
3366 
3367   // Handle result values, copying them out of physregs into vregs that we
3368   // return.
3369   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3370                          InVals, IsThisReturn,
3371                          IsThisReturn ? OutVals[0] : SDValue());
3372 }
3373 
3374 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3375 // except for applying the wave size scale to the increment amount.
3376 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3377     SDValue Op, SelectionDAG &DAG) const {
3378   const MachineFunction &MF = DAG.getMachineFunction();
3379   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3380 
3381   SDLoc dl(Op);
3382   EVT VT = Op.getValueType();
3383   SDValue Tmp1 = Op;
3384   SDValue Tmp2 = Op.getValue(1);
3385   SDValue Tmp3 = Op.getOperand(2);
3386   SDValue Chain = Tmp1.getOperand(0);
3387 
3388   Register SPReg = Info->getStackPtrOffsetReg();
3389 
3390   // Chain the dynamic stack allocation so that it doesn't modify the stack
3391   // pointer when other instructions are using the stack.
3392   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3393 
3394   SDValue Size  = Tmp2.getOperand(1);
3395   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3396   Chain = SP.getValue(1);
3397   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3398   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3399   const TargetFrameLowering *TFL = ST.getFrameLowering();
3400   unsigned Opc =
3401     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3402     ISD::ADD : ISD::SUB;
3403 
3404   SDValue ScaledSize = DAG.getNode(
3405       ISD::SHL, dl, VT, Size,
3406       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3407 
3408   Align StackAlign = TFL->getStackAlign();
3409   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3410   if (Alignment && *Alignment > StackAlign) {
3411     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3412                        DAG.getConstant(-(uint64_t)Alignment->value()
3413                                            << ST.getWavefrontSizeLog2(),
3414                                        dl, VT));
3415   }
3416 
3417   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3418   Tmp2 = DAG.getCALLSEQ_END(
3419       Chain, DAG.getIntPtrConstant(0, dl, true),
3420       DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3421 
3422   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3423 }
3424 
3425 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3426                                                   SelectionDAG &DAG) const {
3427   // We only handle constant sizes here to allow non-entry block, static sized
3428   // allocas. A truly dynamic value is more difficult to support because we
3429   // don't know if the size value is uniform or not. If the size isn't uniform,
3430   // we would need to do a wave reduction to get the maximum size to know how
3431   // much to increment the uniform stack pointer.
3432   SDValue Size = Op.getOperand(1);
3433   if (isa<ConstantSDNode>(Size))
3434       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3435 
3436   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3437 }
3438 
3439 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3440                                              const MachineFunction &MF) const {
3441   Register Reg = StringSwitch<Register>(RegName)
3442     .Case("m0", AMDGPU::M0)
3443     .Case("exec", AMDGPU::EXEC)
3444     .Case("exec_lo", AMDGPU::EXEC_LO)
3445     .Case("exec_hi", AMDGPU::EXEC_HI)
3446     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3447     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3448     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3449     .Default(Register());
3450 
3451   if (Reg == AMDGPU::NoRegister) {
3452     report_fatal_error(Twine("invalid register name \""
3453                              + StringRef(RegName)  + "\"."));
3454 
3455   }
3456 
3457   if (!Subtarget->hasFlatScrRegister() &&
3458        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3459     report_fatal_error(Twine("invalid register \""
3460                              + StringRef(RegName)  + "\" for subtarget."));
3461   }
3462 
3463   switch (Reg) {
3464   case AMDGPU::M0:
3465   case AMDGPU::EXEC_LO:
3466   case AMDGPU::EXEC_HI:
3467   case AMDGPU::FLAT_SCR_LO:
3468   case AMDGPU::FLAT_SCR_HI:
3469     if (VT.getSizeInBits() == 32)
3470       return Reg;
3471     break;
3472   case AMDGPU::EXEC:
3473   case AMDGPU::FLAT_SCR:
3474     if (VT.getSizeInBits() == 64)
3475       return Reg;
3476     break;
3477   default:
3478     llvm_unreachable("missing register type checking");
3479   }
3480 
3481   report_fatal_error(Twine("invalid type for register \""
3482                            + StringRef(RegName) + "\"."));
3483 }
3484 
3485 // If kill is not the last instruction, split the block so kill is always a
3486 // proper terminator.
3487 MachineBasicBlock *
3488 SITargetLowering::splitKillBlock(MachineInstr &MI,
3489                                  MachineBasicBlock *BB) const {
3490   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3491   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3492   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3493   return SplitBB;
3494 }
3495 
3496 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3497 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3498 // be the first instruction in the remainder block.
3499 //
3500 /// \returns { LoopBody, Remainder }
3501 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3502 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3503   MachineFunction *MF = MBB.getParent();
3504   MachineBasicBlock::iterator I(&MI);
3505 
3506   // To insert the loop we need to split the block. Move everything after this
3507   // point to a new block, and insert a new empty block between the two.
3508   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3509   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3510   MachineFunction::iterator MBBI(MBB);
3511   ++MBBI;
3512 
3513   MF->insert(MBBI, LoopBB);
3514   MF->insert(MBBI, RemainderBB);
3515 
3516   LoopBB->addSuccessor(LoopBB);
3517   LoopBB->addSuccessor(RemainderBB);
3518 
3519   // Move the rest of the block into a new block.
3520   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3521 
3522   if (InstInLoop) {
3523     auto Next = std::next(I);
3524 
3525     // Move instruction to loop body.
3526     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3527 
3528     // Move the rest of the block.
3529     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3530   } else {
3531     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3532   }
3533 
3534   MBB.addSuccessor(LoopBB);
3535 
3536   return std::make_pair(LoopBB, RemainderBB);
3537 }
3538 
3539 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3540 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3541   MachineBasicBlock *MBB = MI.getParent();
3542   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3543   auto I = MI.getIterator();
3544   auto E = std::next(I);
3545 
3546   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3547     .addImm(0);
3548 
3549   MIBundleBuilder Bundler(*MBB, I, E);
3550   finalizeBundle(*MBB, Bundler.begin());
3551 }
3552 
3553 MachineBasicBlock *
3554 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3555                                          MachineBasicBlock *BB) const {
3556   const DebugLoc &DL = MI.getDebugLoc();
3557 
3558   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3559 
3560   MachineBasicBlock *LoopBB;
3561   MachineBasicBlock *RemainderBB;
3562   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3563 
3564   // Apparently kill flags are only valid if the def is in the same block?
3565   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3566     Src->setIsKill(false);
3567 
3568   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3569 
3570   MachineBasicBlock::iterator I = LoopBB->end();
3571 
3572   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3573     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3574 
3575   // Clear TRAP_STS.MEM_VIOL
3576   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3577     .addImm(0)
3578     .addImm(EncodedReg);
3579 
3580   bundleInstWithWaitcnt(MI);
3581 
3582   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3583 
3584   // Load and check TRAP_STS.MEM_VIOL
3585   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3586     .addImm(EncodedReg);
3587 
3588   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3589   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3590     .addReg(Reg, RegState::Kill)
3591     .addImm(0);
3592   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3593     .addMBB(LoopBB);
3594 
3595   return RemainderBB;
3596 }
3597 
3598 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3599 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3600 // will only do one iteration. In the worst case, this will loop 64 times.
3601 //
3602 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3603 static MachineBasicBlock::iterator
3604 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3605                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3606                        const DebugLoc &DL, const MachineOperand &Idx,
3607                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3608                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3609                        Register &SGPRIdxReg) {
3610 
3611   MachineFunction *MF = OrigBB.getParent();
3612   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3613   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3614   MachineBasicBlock::iterator I = LoopBB.begin();
3615 
3616   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3617   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3618   Register NewExec = MRI.createVirtualRegister(BoolRC);
3619   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3620   Register CondReg = MRI.createVirtualRegister(BoolRC);
3621 
3622   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3623     .addReg(InitReg)
3624     .addMBB(&OrigBB)
3625     .addReg(ResultReg)
3626     .addMBB(&LoopBB);
3627 
3628   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3629     .addReg(InitSaveExecReg)
3630     .addMBB(&OrigBB)
3631     .addReg(NewExec)
3632     .addMBB(&LoopBB);
3633 
3634   // Read the next variant <- also loop target.
3635   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3636       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3637 
3638   // Compare the just read M0 value to all possible Idx values.
3639   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3640       .addReg(CurrentIdxReg)
3641       .addReg(Idx.getReg(), 0, Idx.getSubReg());
3642 
3643   // Update EXEC, save the original EXEC value to VCC.
3644   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3645                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3646           NewExec)
3647     .addReg(CondReg, RegState::Kill);
3648 
3649   MRI.setSimpleHint(NewExec, CondReg);
3650 
3651   if (UseGPRIdxMode) {
3652     if (Offset == 0) {
3653       SGPRIdxReg = CurrentIdxReg;
3654     } else {
3655       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3656       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3657           .addReg(CurrentIdxReg, RegState::Kill)
3658           .addImm(Offset);
3659     }
3660   } else {
3661     // Move index from VCC into M0
3662     if (Offset == 0) {
3663       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3664         .addReg(CurrentIdxReg, RegState::Kill);
3665     } else {
3666       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3667         .addReg(CurrentIdxReg, RegState::Kill)
3668         .addImm(Offset);
3669     }
3670   }
3671 
3672   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3673   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3674   MachineInstr *InsertPt =
3675     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3676                                                   : AMDGPU::S_XOR_B64_term), Exec)
3677       .addReg(Exec)
3678       .addReg(NewExec);
3679 
3680   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3681   // s_cbranch_scc0?
3682 
3683   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3684   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3685     .addMBB(&LoopBB);
3686 
3687   return InsertPt->getIterator();
3688 }
3689 
3690 // This has slightly sub-optimal regalloc when the source vector is killed by
3691 // the read. The register allocator does not understand that the kill is
3692 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3693 // subregister from it, using 1 more VGPR than necessary. This was saved when
3694 // this was expanded after register allocation.
3695 static MachineBasicBlock::iterator
3696 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3697                unsigned InitResultReg, unsigned PhiReg, int Offset,
3698                bool UseGPRIdxMode, Register &SGPRIdxReg) {
3699   MachineFunction *MF = MBB.getParent();
3700   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3701   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3702   MachineRegisterInfo &MRI = MF->getRegInfo();
3703   const DebugLoc &DL = MI.getDebugLoc();
3704   MachineBasicBlock::iterator I(&MI);
3705 
3706   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3707   Register DstReg = MI.getOperand(0).getReg();
3708   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3709   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3710   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3711   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3712 
3713   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3714 
3715   // Save the EXEC mask
3716   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3717     .addReg(Exec);
3718 
3719   MachineBasicBlock *LoopBB;
3720   MachineBasicBlock *RemainderBB;
3721   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3722 
3723   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3724 
3725   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3726                                       InitResultReg, DstReg, PhiReg, TmpExec,
3727                                       Offset, UseGPRIdxMode, SGPRIdxReg);
3728 
3729   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3730   MachineFunction::iterator MBBI(LoopBB);
3731   ++MBBI;
3732   MF->insert(MBBI, LandingPad);
3733   LoopBB->removeSuccessor(RemainderBB);
3734   LandingPad->addSuccessor(RemainderBB);
3735   LoopBB->addSuccessor(LandingPad);
3736   MachineBasicBlock::iterator First = LandingPad->begin();
3737   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3738     .addReg(SaveExec);
3739 
3740   return InsPt;
3741 }
3742 
3743 // Returns subreg index, offset
3744 static std::pair<unsigned, int>
3745 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3746                             const TargetRegisterClass *SuperRC,
3747                             unsigned VecReg,
3748                             int Offset) {
3749   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3750 
3751   // Skip out of bounds offsets, or else we would end up using an undefined
3752   // register.
3753   if (Offset >= NumElts || Offset < 0)
3754     return std::make_pair(AMDGPU::sub0, Offset);
3755 
3756   return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3757 }
3758 
3759 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3760                                  MachineRegisterInfo &MRI, MachineInstr &MI,
3761                                  int Offset) {
3762   MachineBasicBlock *MBB = MI.getParent();
3763   const DebugLoc &DL = MI.getDebugLoc();
3764   MachineBasicBlock::iterator I(&MI);
3765 
3766   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3767 
3768   assert(Idx->getReg() != AMDGPU::NoRegister);
3769 
3770   if (Offset == 0) {
3771     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3772   } else {
3773     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3774         .add(*Idx)
3775         .addImm(Offset);
3776   }
3777 }
3778 
3779 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3780                                    MachineRegisterInfo &MRI, MachineInstr &MI,
3781                                    int Offset) {
3782   MachineBasicBlock *MBB = MI.getParent();
3783   const DebugLoc &DL = MI.getDebugLoc();
3784   MachineBasicBlock::iterator I(&MI);
3785 
3786   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3787 
3788   if (Offset == 0)
3789     return Idx->getReg();
3790 
3791   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3792   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3793       .add(*Idx)
3794       .addImm(Offset);
3795   return Tmp;
3796 }
3797 
3798 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3799                                           MachineBasicBlock &MBB,
3800                                           const GCNSubtarget &ST) {
3801   const SIInstrInfo *TII = ST.getInstrInfo();
3802   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3803   MachineFunction *MF = MBB.getParent();
3804   MachineRegisterInfo &MRI = MF->getRegInfo();
3805 
3806   Register Dst = MI.getOperand(0).getReg();
3807   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3808   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3809   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3810 
3811   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3812   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3813 
3814   unsigned SubReg;
3815   std::tie(SubReg, Offset)
3816     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3817 
3818   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3819 
3820   // Check for a SGPR index.
3821   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3822     MachineBasicBlock::iterator I(&MI);
3823     const DebugLoc &DL = MI.getDebugLoc();
3824 
3825     if (UseGPRIdxMode) {
3826       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3827       // to avoid interfering with other uses, so probably requires a new
3828       // optimization pass.
3829       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3830 
3831       const MCInstrDesc &GPRIDXDesc =
3832           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3833       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3834           .addReg(SrcReg)
3835           .addReg(Idx)
3836           .addImm(SubReg);
3837     } else {
3838       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3839 
3840       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3841         .addReg(SrcReg, 0, SubReg)
3842         .addReg(SrcReg, RegState::Implicit);
3843     }
3844 
3845     MI.eraseFromParent();
3846 
3847     return &MBB;
3848   }
3849 
3850   // Control flow needs to be inserted if indexing with a VGPR.
3851   const DebugLoc &DL = MI.getDebugLoc();
3852   MachineBasicBlock::iterator I(&MI);
3853 
3854   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3855   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3856 
3857   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3858 
3859   Register SGPRIdxReg;
3860   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3861                               UseGPRIdxMode, SGPRIdxReg);
3862 
3863   MachineBasicBlock *LoopBB = InsPt->getParent();
3864 
3865   if (UseGPRIdxMode) {
3866     const MCInstrDesc &GPRIDXDesc =
3867         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3868 
3869     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3870         .addReg(SrcReg)
3871         .addReg(SGPRIdxReg)
3872         .addImm(SubReg);
3873   } else {
3874     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3875       .addReg(SrcReg, 0, SubReg)
3876       .addReg(SrcReg, RegState::Implicit);
3877   }
3878 
3879   MI.eraseFromParent();
3880 
3881   return LoopBB;
3882 }
3883 
3884 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3885                                           MachineBasicBlock &MBB,
3886                                           const GCNSubtarget &ST) {
3887   const SIInstrInfo *TII = ST.getInstrInfo();
3888   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3889   MachineFunction *MF = MBB.getParent();
3890   MachineRegisterInfo &MRI = MF->getRegInfo();
3891 
3892   Register Dst = MI.getOperand(0).getReg();
3893   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3894   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3895   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3896   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3897   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3898   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3899 
3900   // This can be an immediate, but will be folded later.
3901   assert(Val->getReg());
3902 
3903   unsigned SubReg;
3904   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3905                                                          SrcVec->getReg(),
3906                                                          Offset);
3907   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3908 
3909   if (Idx->getReg() == AMDGPU::NoRegister) {
3910     MachineBasicBlock::iterator I(&MI);
3911     const DebugLoc &DL = MI.getDebugLoc();
3912 
3913     assert(Offset == 0);
3914 
3915     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3916         .add(*SrcVec)
3917         .add(*Val)
3918         .addImm(SubReg);
3919 
3920     MI.eraseFromParent();
3921     return &MBB;
3922   }
3923 
3924   // Check for a SGPR index.
3925   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3926     MachineBasicBlock::iterator I(&MI);
3927     const DebugLoc &DL = MI.getDebugLoc();
3928 
3929     if (UseGPRIdxMode) {
3930       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3931 
3932       const MCInstrDesc &GPRIDXDesc =
3933           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3934       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3935           .addReg(SrcVec->getReg())
3936           .add(*Val)
3937           .addReg(Idx)
3938           .addImm(SubReg);
3939     } else {
3940       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3941 
3942       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3943           TRI.getRegSizeInBits(*VecRC), 32, false);
3944       BuildMI(MBB, I, DL, MovRelDesc, Dst)
3945           .addReg(SrcVec->getReg())
3946           .add(*Val)
3947           .addImm(SubReg);
3948     }
3949     MI.eraseFromParent();
3950     return &MBB;
3951   }
3952 
3953   // Control flow needs to be inserted if indexing with a VGPR.
3954   if (Val->isReg())
3955     MRI.clearKillFlags(Val->getReg());
3956 
3957   const DebugLoc &DL = MI.getDebugLoc();
3958 
3959   Register PhiReg = MRI.createVirtualRegister(VecRC);
3960 
3961   Register SGPRIdxReg;
3962   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3963                               UseGPRIdxMode, SGPRIdxReg);
3964   MachineBasicBlock *LoopBB = InsPt->getParent();
3965 
3966   if (UseGPRIdxMode) {
3967     const MCInstrDesc &GPRIDXDesc =
3968         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3969 
3970     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3971         .addReg(PhiReg)
3972         .add(*Val)
3973         .addReg(SGPRIdxReg)
3974         .addImm(AMDGPU::sub0);
3975   } else {
3976     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3977         TRI.getRegSizeInBits(*VecRC), 32, false);
3978     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3979         .addReg(PhiReg)
3980         .add(*Val)
3981         .addImm(AMDGPU::sub0);
3982   }
3983 
3984   MI.eraseFromParent();
3985   return LoopBB;
3986 }
3987 
3988 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3989   MachineInstr &MI, MachineBasicBlock *BB) const {
3990 
3991   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3992   MachineFunction *MF = BB->getParent();
3993   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3994 
3995   switch (MI.getOpcode()) {
3996   case AMDGPU::S_UADDO_PSEUDO:
3997   case AMDGPU::S_USUBO_PSEUDO: {
3998     const DebugLoc &DL = MI.getDebugLoc();
3999     MachineOperand &Dest0 = MI.getOperand(0);
4000     MachineOperand &Dest1 = MI.getOperand(1);
4001     MachineOperand &Src0 = MI.getOperand(2);
4002     MachineOperand &Src1 = MI.getOperand(3);
4003 
4004     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
4005                        ? AMDGPU::S_ADD_I32
4006                        : AMDGPU::S_SUB_I32;
4007     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
4008 
4009     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
4010         .addImm(1)
4011         .addImm(0);
4012 
4013     MI.eraseFromParent();
4014     return BB;
4015   }
4016   case AMDGPU::S_ADD_U64_PSEUDO:
4017   case AMDGPU::S_SUB_U64_PSEUDO: {
4018     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4019     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4020     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4021     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
4022     const DebugLoc &DL = MI.getDebugLoc();
4023 
4024     MachineOperand &Dest = MI.getOperand(0);
4025     MachineOperand &Src0 = MI.getOperand(1);
4026     MachineOperand &Src1 = MI.getOperand(2);
4027 
4028     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4029     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4030 
4031     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
4032         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4033     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
4034         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4035 
4036     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
4037         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4038     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
4039         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4040 
4041     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
4042 
4043     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
4044     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
4045     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
4046     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
4047     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4048         .addReg(DestSub0)
4049         .addImm(AMDGPU::sub0)
4050         .addReg(DestSub1)
4051         .addImm(AMDGPU::sub1);
4052     MI.eraseFromParent();
4053     return BB;
4054   }
4055   case AMDGPU::V_ADD_U64_PSEUDO:
4056   case AMDGPU::V_SUB_U64_PSEUDO: {
4057     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4058     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4059     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4060     const DebugLoc &DL = MI.getDebugLoc();
4061 
4062     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
4063 
4064     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4065 
4066     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4067     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4068 
4069     Register CarryReg = MRI.createVirtualRegister(CarryRC);
4070     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4071 
4072     MachineOperand &Dest = MI.getOperand(0);
4073     MachineOperand &Src0 = MI.getOperand(1);
4074     MachineOperand &Src1 = MI.getOperand(2);
4075 
4076     const TargetRegisterClass *Src0RC = Src0.isReg()
4077                                             ? MRI.getRegClass(Src0.getReg())
4078                                             : &AMDGPU::VReg_64RegClass;
4079     const TargetRegisterClass *Src1RC = Src1.isReg()
4080                                             ? MRI.getRegClass(Src1.getReg())
4081                                             : &AMDGPU::VReg_64RegClass;
4082 
4083     const TargetRegisterClass *Src0SubRC =
4084         TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
4085     const TargetRegisterClass *Src1SubRC =
4086         TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
4087 
4088     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4089         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4090     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4091         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4092 
4093     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4094         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4095     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4096         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4097 
4098     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4099     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4100                                .addReg(CarryReg, RegState::Define)
4101                                .add(SrcReg0Sub0)
4102                                .add(SrcReg1Sub0)
4103                                .addImm(0); // clamp bit
4104 
4105     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4106     MachineInstr *HiHalf =
4107         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4108             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4109             .add(SrcReg0Sub1)
4110             .add(SrcReg1Sub1)
4111             .addReg(CarryReg, RegState::Kill)
4112             .addImm(0); // clamp bit
4113 
4114     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4115         .addReg(DestSub0)
4116         .addImm(AMDGPU::sub0)
4117         .addReg(DestSub1)
4118         .addImm(AMDGPU::sub1);
4119     TII->legalizeOperands(*LoHalf);
4120     TII->legalizeOperands(*HiHalf);
4121     MI.eraseFromParent();
4122     return BB;
4123   }
4124   case AMDGPU::S_ADD_CO_PSEUDO:
4125   case AMDGPU::S_SUB_CO_PSEUDO: {
4126     // This pseudo has a chance to be selected
4127     // only from uniform add/subcarry node. All the VGPR operands
4128     // therefore assumed to be splat vectors.
4129     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4130     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4131     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4132     MachineBasicBlock::iterator MII = MI;
4133     const DebugLoc &DL = MI.getDebugLoc();
4134     MachineOperand &Dest = MI.getOperand(0);
4135     MachineOperand &CarryDest = MI.getOperand(1);
4136     MachineOperand &Src0 = MI.getOperand(2);
4137     MachineOperand &Src1 = MI.getOperand(3);
4138     MachineOperand &Src2 = MI.getOperand(4);
4139     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4140                        ? AMDGPU::S_ADDC_U32
4141                        : AMDGPU::S_SUBB_U32;
4142     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4143       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4144       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4145           .addReg(Src0.getReg());
4146       Src0.setReg(RegOp0);
4147     }
4148     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4149       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4150       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4151           .addReg(Src1.getReg());
4152       Src1.setReg(RegOp1);
4153     }
4154     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4155     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4156       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4157           .addReg(Src2.getReg());
4158       Src2.setReg(RegOp2);
4159     }
4160 
4161     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4162     unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
4163     assert(WaveSize == 64 || WaveSize == 32);
4164 
4165     if (WaveSize == 64) {
4166       if (ST.hasScalarCompareEq64()) {
4167         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4168             .addReg(Src2.getReg())
4169             .addImm(0);
4170       } else {
4171         const TargetRegisterClass *SubRC =
4172             TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4173         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4174             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4175         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4176             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4177         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4178 
4179         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4180             .add(Src2Sub0)
4181             .add(Src2Sub1);
4182 
4183         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4184             .addReg(Src2_32, RegState::Kill)
4185             .addImm(0);
4186       }
4187     } else {
4188       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4189           .addReg(Src2.getReg())
4190           .addImm(0);
4191     }
4192 
4193     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4194 
4195     unsigned SelOpc =
4196         (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
4197 
4198     BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
4199         .addImm(-1)
4200         .addImm(0);
4201 
4202     MI.eraseFromParent();
4203     return BB;
4204   }
4205   case AMDGPU::SI_INIT_M0: {
4206     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4207             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4208         .add(MI.getOperand(0));
4209     MI.eraseFromParent();
4210     return BB;
4211   }
4212   case AMDGPU::GET_GROUPSTATICSIZE: {
4213     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4214            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4215     DebugLoc DL = MI.getDebugLoc();
4216     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4217         .add(MI.getOperand(0))
4218         .addImm(MFI->getLDSSize());
4219     MI.eraseFromParent();
4220     return BB;
4221   }
4222   case AMDGPU::SI_INDIRECT_SRC_V1:
4223   case AMDGPU::SI_INDIRECT_SRC_V2:
4224   case AMDGPU::SI_INDIRECT_SRC_V4:
4225   case AMDGPU::SI_INDIRECT_SRC_V8:
4226   case AMDGPU::SI_INDIRECT_SRC_V16:
4227   case AMDGPU::SI_INDIRECT_SRC_V32:
4228     return emitIndirectSrc(MI, *BB, *getSubtarget());
4229   case AMDGPU::SI_INDIRECT_DST_V1:
4230   case AMDGPU::SI_INDIRECT_DST_V2:
4231   case AMDGPU::SI_INDIRECT_DST_V4:
4232   case AMDGPU::SI_INDIRECT_DST_V8:
4233   case AMDGPU::SI_INDIRECT_DST_V16:
4234   case AMDGPU::SI_INDIRECT_DST_V32:
4235     return emitIndirectDst(MI, *BB, *getSubtarget());
4236   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4237   case AMDGPU::SI_KILL_I1_PSEUDO:
4238     return splitKillBlock(MI, BB);
4239   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4240     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4241     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4242     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4243 
4244     Register Dst = MI.getOperand(0).getReg();
4245     Register Src0 = MI.getOperand(1).getReg();
4246     Register Src1 = MI.getOperand(2).getReg();
4247     const DebugLoc &DL = MI.getDebugLoc();
4248     Register SrcCond = MI.getOperand(3).getReg();
4249 
4250     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4251     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4252     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4253     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4254 
4255     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4256       .addReg(SrcCond);
4257     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4258       .addImm(0)
4259       .addReg(Src0, 0, AMDGPU::sub0)
4260       .addImm(0)
4261       .addReg(Src1, 0, AMDGPU::sub0)
4262       .addReg(SrcCondCopy);
4263     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4264       .addImm(0)
4265       .addReg(Src0, 0, AMDGPU::sub1)
4266       .addImm(0)
4267       .addReg(Src1, 0, AMDGPU::sub1)
4268       .addReg(SrcCondCopy);
4269 
4270     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4271       .addReg(DstLo)
4272       .addImm(AMDGPU::sub0)
4273       .addReg(DstHi)
4274       .addImm(AMDGPU::sub1);
4275     MI.eraseFromParent();
4276     return BB;
4277   }
4278   case AMDGPU::SI_BR_UNDEF: {
4279     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4280     const DebugLoc &DL = MI.getDebugLoc();
4281     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4282                            .add(MI.getOperand(0));
4283     Br->getOperand(1).setIsUndef(true); // read undef SCC
4284     MI.eraseFromParent();
4285     return BB;
4286   }
4287   case AMDGPU::ADJCALLSTACKUP:
4288   case AMDGPU::ADJCALLSTACKDOWN: {
4289     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4290     MachineInstrBuilder MIB(*MF, &MI);
4291     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4292        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4293     return BB;
4294   }
4295   case AMDGPU::SI_CALL_ISEL: {
4296     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4297     const DebugLoc &DL = MI.getDebugLoc();
4298 
4299     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4300 
4301     MachineInstrBuilder MIB;
4302     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4303 
4304     for (const MachineOperand &MO : MI.operands())
4305       MIB.add(MO);
4306 
4307     MIB.cloneMemRefs(MI);
4308     MI.eraseFromParent();
4309     return BB;
4310   }
4311   case AMDGPU::V_ADD_CO_U32_e32:
4312   case AMDGPU::V_SUB_CO_U32_e32:
4313   case AMDGPU::V_SUBREV_CO_U32_e32: {
4314     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4315     const DebugLoc &DL = MI.getDebugLoc();
4316     unsigned Opc = MI.getOpcode();
4317 
4318     bool NeedClampOperand = false;
4319     if (TII->pseudoToMCOpcode(Opc) == -1) {
4320       Opc = AMDGPU::getVOPe64(Opc);
4321       NeedClampOperand = true;
4322     }
4323 
4324     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4325     if (TII->isVOP3(*I)) {
4326       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4327       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4328       I.addReg(TRI->getVCC(), RegState::Define);
4329     }
4330     I.add(MI.getOperand(1))
4331      .add(MI.getOperand(2));
4332     if (NeedClampOperand)
4333       I.addImm(0); // clamp bit for e64 encoding
4334 
4335     TII->legalizeOperands(*I);
4336 
4337     MI.eraseFromParent();
4338     return BB;
4339   }
4340   case AMDGPU::V_ADDC_U32_e32:
4341   case AMDGPU::V_SUBB_U32_e32:
4342   case AMDGPU::V_SUBBREV_U32_e32:
4343     // These instructions have an implicit use of vcc which counts towards the
4344     // constant bus limit.
4345     TII->legalizeOperands(MI);
4346     return BB;
4347   case AMDGPU::DS_GWS_INIT:
4348   case AMDGPU::DS_GWS_SEMA_BR:
4349   case AMDGPU::DS_GWS_BARRIER:
4350     if (Subtarget->needsAlignedVGPRs()) {
4351       // Add implicit aligned super-reg to force alignment on the data operand.
4352       const DebugLoc &DL = MI.getDebugLoc();
4353       MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4354       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
4355       MachineOperand *Op = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
4356       Register DataReg = Op->getReg();
4357       bool IsAGPR = TRI->isAGPR(MRI, DataReg);
4358       Register Undef = MRI.createVirtualRegister(
4359           IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass);
4360       BuildMI(*BB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), Undef);
4361       Register NewVR =
4362           MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass
4363                                            : &AMDGPU::VReg_64_Align2RegClass);
4364       BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), NewVR)
4365           .addReg(DataReg, 0, Op->getSubReg())
4366           .addImm(AMDGPU::sub0)
4367           .addReg(Undef)
4368           .addImm(AMDGPU::sub1);
4369       Op->setReg(NewVR);
4370       Op->setSubReg(AMDGPU::sub0);
4371       MI.addOperand(MachineOperand::CreateReg(NewVR, false, true));
4372     }
4373     LLVM_FALLTHROUGH;
4374   case AMDGPU::DS_GWS_SEMA_V:
4375   case AMDGPU::DS_GWS_SEMA_P:
4376   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4377     // A s_waitcnt 0 is required to be the instruction immediately following.
4378     if (getSubtarget()->hasGWSAutoReplay()) {
4379       bundleInstWithWaitcnt(MI);
4380       return BB;
4381     }
4382 
4383     return emitGWSMemViolTestLoop(MI, BB);
4384   case AMDGPU::S_SETREG_B32: {
4385     // Try to optimize cases that only set the denormal mode or rounding mode.
4386     //
4387     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4388     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4389     // instead.
4390     //
4391     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4392     // allow you to have a no side effect instruction in the output of a
4393     // sideeffecting pattern.
4394     unsigned ID, Offset, Width;
4395     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4396     if (ID != AMDGPU::Hwreg::ID_MODE)
4397       return BB;
4398 
4399     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4400     const unsigned SetMask = WidthMask << Offset;
4401 
4402     if (getSubtarget()->hasDenormModeInst()) {
4403       unsigned SetDenormOp = 0;
4404       unsigned SetRoundOp = 0;
4405 
4406       // The dedicated instructions can only set the whole denorm or round mode
4407       // at once, not a subset of bits in either.
4408       if (SetMask ==
4409           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4410         // If this fully sets both the round and denorm mode, emit the two
4411         // dedicated instructions for these.
4412         SetRoundOp = AMDGPU::S_ROUND_MODE;
4413         SetDenormOp = AMDGPU::S_DENORM_MODE;
4414       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4415         SetRoundOp = AMDGPU::S_ROUND_MODE;
4416       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4417         SetDenormOp = AMDGPU::S_DENORM_MODE;
4418       }
4419 
4420       if (SetRoundOp || SetDenormOp) {
4421         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4422         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4423         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4424           unsigned ImmVal = Def->getOperand(1).getImm();
4425           if (SetRoundOp) {
4426             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4427                 .addImm(ImmVal & 0xf);
4428 
4429             // If we also have the denorm mode, get just the denorm mode bits.
4430             ImmVal >>= 4;
4431           }
4432 
4433           if (SetDenormOp) {
4434             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4435                 .addImm(ImmVal & 0xf);
4436           }
4437 
4438           MI.eraseFromParent();
4439           return BB;
4440         }
4441       }
4442     }
4443 
4444     // If only FP bits are touched, used the no side effects pseudo.
4445     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4446                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4447       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4448 
4449     return BB;
4450   }
4451   default:
4452     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4453   }
4454 }
4455 
4456 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4457   return isTypeLegal(VT.getScalarType());
4458 }
4459 
4460 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4461   // This currently forces unfolding various combinations of fsub into fma with
4462   // free fneg'd operands. As long as we have fast FMA (controlled by
4463   // isFMAFasterThanFMulAndFAdd), we should perform these.
4464 
4465   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4466   // most of these combines appear to be cycle neutral but save on instruction
4467   // count / code size.
4468   return true;
4469 }
4470 
4471 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; }
4472 
4473 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4474                                          EVT VT) const {
4475   if (!VT.isVector()) {
4476     return MVT::i1;
4477   }
4478   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4479 }
4480 
4481 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4482   // TODO: Should i16 be used always if legal? For now it would force VALU
4483   // shifts.
4484   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4485 }
4486 
4487 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4488   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4489              ? Ty.changeElementSize(16)
4490              : Ty.changeElementSize(32);
4491 }
4492 
4493 // Answering this is somewhat tricky and depends on the specific device which
4494 // have different rates for fma or all f64 operations.
4495 //
4496 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4497 // regardless of which device (although the number of cycles differs between
4498 // devices), so it is always profitable for f64.
4499 //
4500 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4501 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4502 // which we can always do even without fused FP ops since it returns the same
4503 // result as the separate operations and since it is always full
4504 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4505 // however does not support denormals, so we do report fma as faster if we have
4506 // a fast fma device and require denormals.
4507 //
4508 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4509                                                   EVT VT) const {
4510   VT = VT.getScalarType();
4511 
4512   switch (VT.getSimpleVT().SimpleTy) {
4513   case MVT::f32: {
4514     // If mad is not available this depends only on if f32 fma is full rate.
4515     if (!Subtarget->hasMadMacF32Insts())
4516       return Subtarget->hasFastFMAF32();
4517 
4518     // Otherwise f32 mad is always full rate and returns the same result as
4519     // the separate operations so should be preferred over fma.
4520     // However does not support denomals.
4521     if (hasFP32Denormals(MF))
4522       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4523 
4524     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4525     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4526   }
4527   case MVT::f64:
4528     return true;
4529   case MVT::f16:
4530     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4531   default:
4532     break;
4533   }
4534 
4535   return false;
4536 }
4537 
4538 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4539                                                   LLT Ty) const {
4540   switch (Ty.getScalarSizeInBits()) {
4541   case 16:
4542     return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
4543   case 32:
4544     return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
4545   case 64:
4546     return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
4547   default:
4548     break;
4549   }
4550 
4551   return false;
4552 }
4553 
4554 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const {
4555   if (!Ty.isScalar())
4556     return false;
4557 
4558   if (Ty.getScalarSizeInBits() == 16)
4559     return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF());
4560   if (Ty.getScalarSizeInBits() == 32)
4561     return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF());
4562 
4563   return false;
4564 }
4565 
4566 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4567                                    const SDNode *N) const {
4568   // TODO: Check future ftz flag
4569   // v_mad_f32/v_mac_f32 do not support denormals.
4570   EVT VT = N->getValueType(0);
4571   if (VT == MVT::f32)
4572     return Subtarget->hasMadMacF32Insts() &&
4573            !hasFP32Denormals(DAG.getMachineFunction());
4574   if (VT == MVT::f16) {
4575     return Subtarget->hasMadF16() &&
4576            !hasFP64FP16Denormals(DAG.getMachineFunction());
4577   }
4578 
4579   return false;
4580 }
4581 
4582 //===----------------------------------------------------------------------===//
4583 // Custom DAG Lowering Operations
4584 //===----------------------------------------------------------------------===//
4585 
4586 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4587 // wider vector type is legal.
4588 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4589                                              SelectionDAG &DAG) const {
4590   unsigned Opc = Op.getOpcode();
4591   EVT VT = Op.getValueType();
4592   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4593 
4594   SDValue Lo, Hi;
4595   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4596 
4597   SDLoc SL(Op);
4598   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4599                              Op->getFlags());
4600   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4601                              Op->getFlags());
4602 
4603   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4604 }
4605 
4606 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4607 // wider vector type is legal.
4608 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4609                                               SelectionDAG &DAG) const {
4610   unsigned Opc = Op.getOpcode();
4611   EVT VT = Op.getValueType();
4612   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4613          VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32);
4614 
4615   SDValue Lo0, Hi0;
4616   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4617   SDValue Lo1, Hi1;
4618   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4619 
4620   SDLoc SL(Op);
4621 
4622   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4623                              Op->getFlags());
4624   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4625                              Op->getFlags());
4626 
4627   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4628 }
4629 
4630 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4631                                               SelectionDAG &DAG) const {
4632   unsigned Opc = Op.getOpcode();
4633   EVT VT = Op.getValueType();
4634   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4635          VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32);
4636 
4637   SDValue Lo0, Hi0;
4638   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4639   SDValue Lo1, Hi1;
4640   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4641   SDValue Lo2, Hi2;
4642   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4643 
4644   SDLoc SL(Op);
4645 
4646   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4647                              Op->getFlags());
4648   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4649                              Op->getFlags());
4650 
4651   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4652 }
4653 
4654 
4655 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4656   switch (Op.getOpcode()) {
4657   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4658   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4659   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4660   case ISD::LOAD: {
4661     SDValue Result = LowerLOAD(Op, DAG);
4662     assert((!Result.getNode() ||
4663             Result.getNode()->getNumValues() == 2) &&
4664            "Load should return a value and a chain");
4665     return Result;
4666   }
4667 
4668   case ISD::FSIN:
4669   case ISD::FCOS:
4670     return LowerTrig(Op, DAG);
4671   case ISD::SELECT: return LowerSELECT(Op, DAG);
4672   case ISD::FDIV: return LowerFDIV(Op, DAG);
4673   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4674   case ISD::STORE: return LowerSTORE(Op, DAG);
4675   case ISD::GlobalAddress: {
4676     MachineFunction &MF = DAG.getMachineFunction();
4677     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4678     return LowerGlobalAddress(MFI, Op, DAG);
4679   }
4680   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4681   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4682   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4683   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4684   case ISD::INSERT_SUBVECTOR:
4685     return lowerINSERT_SUBVECTOR(Op, DAG);
4686   case ISD::INSERT_VECTOR_ELT:
4687     return lowerINSERT_VECTOR_ELT(Op, DAG);
4688   case ISD::EXTRACT_VECTOR_ELT:
4689     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4690   case ISD::VECTOR_SHUFFLE:
4691     return lowerVECTOR_SHUFFLE(Op, DAG);
4692   case ISD::BUILD_VECTOR:
4693     return lowerBUILD_VECTOR(Op, DAG);
4694   case ISD::FP_ROUND:
4695     return lowerFP_ROUND(Op, DAG);
4696   case ISD::TRAP:
4697     return lowerTRAP(Op, DAG);
4698   case ISD::DEBUGTRAP:
4699     return lowerDEBUGTRAP(Op, DAG);
4700   case ISD::FABS:
4701   case ISD::FNEG:
4702   case ISD::FCANONICALIZE:
4703   case ISD::BSWAP:
4704     return splitUnaryVectorOp(Op, DAG);
4705   case ISD::FMINNUM:
4706   case ISD::FMAXNUM:
4707     return lowerFMINNUM_FMAXNUM(Op, DAG);
4708   case ISD::FMA:
4709     return splitTernaryVectorOp(Op, DAG);
4710   case ISD::FP_TO_SINT:
4711   case ISD::FP_TO_UINT:
4712     return LowerFP_TO_INT(Op, DAG);
4713   case ISD::SHL:
4714   case ISD::SRA:
4715   case ISD::SRL:
4716   case ISD::ADD:
4717   case ISD::SUB:
4718   case ISD::MUL:
4719   case ISD::SMIN:
4720   case ISD::SMAX:
4721   case ISD::UMIN:
4722   case ISD::UMAX:
4723   case ISD::FADD:
4724   case ISD::FMUL:
4725   case ISD::FMINNUM_IEEE:
4726   case ISD::FMAXNUM_IEEE:
4727   case ISD::UADDSAT:
4728   case ISD::USUBSAT:
4729   case ISD::SADDSAT:
4730   case ISD::SSUBSAT:
4731     return splitBinaryVectorOp(Op, DAG);
4732   case ISD::SMULO:
4733   case ISD::UMULO:
4734     return lowerXMULO(Op, DAG);
4735   case ISD::SMUL_LOHI:
4736   case ISD::UMUL_LOHI:
4737     return lowerXMUL_LOHI(Op, DAG);
4738   case ISD::DYNAMIC_STACKALLOC:
4739     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4740   }
4741   return SDValue();
4742 }
4743 
4744 // Used for D16: Casts the result of an instruction into the right vector,
4745 // packs values if loads return unpacked values.
4746 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4747                                        const SDLoc &DL,
4748                                        SelectionDAG &DAG, bool Unpacked) {
4749   if (!LoadVT.isVector())
4750     return Result;
4751 
4752   // Cast back to the original packed type or to a larger type that is a
4753   // multiple of 32 bit for D16. Widening the return type is a required for
4754   // legalization.
4755   EVT FittingLoadVT = LoadVT;
4756   if ((LoadVT.getVectorNumElements() % 2) == 1) {
4757     FittingLoadVT =
4758         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4759                          LoadVT.getVectorNumElements() + 1);
4760   }
4761 
4762   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4763     // Truncate to v2i16/v4i16.
4764     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4765 
4766     // Workaround legalizer not scalarizing truncate after vector op
4767     // legalization but not creating intermediate vector trunc.
4768     SmallVector<SDValue, 4> Elts;
4769     DAG.ExtractVectorElements(Result, Elts);
4770     for (SDValue &Elt : Elts)
4771       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4772 
4773     // Pad illegal v1i16/v3fi6 to v4i16
4774     if ((LoadVT.getVectorNumElements() % 2) == 1)
4775       Elts.push_back(DAG.getUNDEF(MVT::i16));
4776 
4777     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4778 
4779     // Bitcast to original type (v2f16/v4f16).
4780     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4781   }
4782 
4783   // Cast back to the original packed type.
4784   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4785 }
4786 
4787 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4788                                               MemSDNode *M,
4789                                               SelectionDAG &DAG,
4790                                               ArrayRef<SDValue> Ops,
4791                                               bool IsIntrinsic) const {
4792   SDLoc DL(M);
4793 
4794   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4795   EVT LoadVT = M->getValueType(0);
4796 
4797   EVT EquivLoadVT = LoadVT;
4798   if (LoadVT.isVector()) {
4799     if (Unpacked) {
4800       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4801                                      LoadVT.getVectorNumElements());
4802     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4803       // Widen v3f16 to legal type
4804       EquivLoadVT =
4805           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4806                            LoadVT.getVectorNumElements() + 1);
4807     }
4808   }
4809 
4810   // Change from v4f16/v2f16 to EquivLoadVT.
4811   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4812 
4813   SDValue Load
4814     = DAG.getMemIntrinsicNode(
4815       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4816       VTList, Ops, M->getMemoryVT(),
4817       M->getMemOperand());
4818 
4819   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4820 
4821   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4822 }
4823 
4824 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4825                                              SelectionDAG &DAG,
4826                                              ArrayRef<SDValue> Ops) const {
4827   SDLoc DL(M);
4828   EVT LoadVT = M->getValueType(0);
4829   EVT EltType = LoadVT.getScalarType();
4830   EVT IntVT = LoadVT.changeTypeToInteger();
4831 
4832   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4833 
4834   unsigned Opc =
4835       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4836 
4837   if (IsD16) {
4838     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4839   }
4840 
4841   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4842   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4843     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4844 
4845   if (isTypeLegal(LoadVT)) {
4846     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4847                                M->getMemOperand(), DAG);
4848   }
4849 
4850   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4851   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4852   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4853                                         M->getMemOperand(), DAG);
4854   return DAG.getMergeValues(
4855       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4856       DL);
4857 }
4858 
4859 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4860                                   SDNode *N, SelectionDAG &DAG) {
4861   EVT VT = N->getValueType(0);
4862   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4863   unsigned CondCode = CD->getZExtValue();
4864   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4865     return DAG.getUNDEF(VT);
4866 
4867   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4868 
4869   SDValue LHS = N->getOperand(1);
4870   SDValue RHS = N->getOperand(2);
4871 
4872   SDLoc DL(N);
4873 
4874   EVT CmpVT = LHS.getValueType();
4875   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4876     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4877       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4878     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4879     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4880   }
4881 
4882   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4883 
4884   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4885   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4886 
4887   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4888                               DAG.getCondCode(CCOpcode));
4889   if (VT.bitsEq(CCVT))
4890     return SetCC;
4891   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4892 }
4893 
4894 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4895                                   SDNode *N, SelectionDAG &DAG) {
4896   EVT VT = N->getValueType(0);
4897   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4898 
4899   unsigned CondCode = CD->getZExtValue();
4900   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4901     return DAG.getUNDEF(VT);
4902 
4903   SDValue Src0 = N->getOperand(1);
4904   SDValue Src1 = N->getOperand(2);
4905   EVT CmpVT = Src0.getValueType();
4906   SDLoc SL(N);
4907 
4908   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4909     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4910     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4911   }
4912 
4913   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4914   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4915   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4916   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4917   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4918                               Src1, DAG.getCondCode(CCOpcode));
4919   if (VT.bitsEq(CCVT))
4920     return SetCC;
4921   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4922 }
4923 
4924 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4925                                     SelectionDAG &DAG) {
4926   EVT VT = N->getValueType(0);
4927   SDValue Src = N->getOperand(1);
4928   SDLoc SL(N);
4929 
4930   if (Src.getOpcode() == ISD::SETCC) {
4931     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4932     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4933                        Src.getOperand(1), Src.getOperand(2));
4934   }
4935   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4936     // (ballot 0) -> 0
4937     if (Arg->isZero())
4938       return DAG.getConstant(0, SL, VT);
4939 
4940     // (ballot 1) -> EXEC/EXEC_LO
4941     if (Arg->isOne()) {
4942       Register Exec;
4943       if (VT.getScalarSizeInBits() == 32)
4944         Exec = AMDGPU::EXEC_LO;
4945       else if (VT.getScalarSizeInBits() == 64)
4946         Exec = AMDGPU::EXEC;
4947       else
4948         return SDValue();
4949 
4950       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4951     }
4952   }
4953 
4954   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4955   // ISD::SETNE)
4956   return DAG.getNode(
4957       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4958       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4959 }
4960 
4961 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4962                                           SmallVectorImpl<SDValue> &Results,
4963                                           SelectionDAG &DAG) const {
4964   switch (N->getOpcode()) {
4965   case ISD::INSERT_VECTOR_ELT: {
4966     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4967       Results.push_back(Res);
4968     return;
4969   }
4970   case ISD::EXTRACT_VECTOR_ELT: {
4971     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4972       Results.push_back(Res);
4973     return;
4974   }
4975   case ISD::INTRINSIC_WO_CHAIN: {
4976     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4977     switch (IID) {
4978     case Intrinsic::amdgcn_cvt_pkrtz: {
4979       SDValue Src0 = N->getOperand(1);
4980       SDValue Src1 = N->getOperand(2);
4981       SDLoc SL(N);
4982       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4983                                 Src0, Src1);
4984       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4985       return;
4986     }
4987     case Intrinsic::amdgcn_cvt_pknorm_i16:
4988     case Intrinsic::amdgcn_cvt_pknorm_u16:
4989     case Intrinsic::amdgcn_cvt_pk_i16:
4990     case Intrinsic::amdgcn_cvt_pk_u16: {
4991       SDValue Src0 = N->getOperand(1);
4992       SDValue Src1 = N->getOperand(2);
4993       SDLoc SL(N);
4994       unsigned Opcode;
4995 
4996       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4997         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4998       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4999         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
5000       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
5001         Opcode = AMDGPUISD::CVT_PK_I16_I32;
5002       else
5003         Opcode = AMDGPUISD::CVT_PK_U16_U32;
5004 
5005       EVT VT = N->getValueType(0);
5006       if (isTypeLegal(VT))
5007         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
5008       else {
5009         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
5010         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
5011       }
5012       return;
5013     }
5014     }
5015     break;
5016   }
5017   case ISD::INTRINSIC_W_CHAIN: {
5018     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
5019       if (Res.getOpcode() == ISD::MERGE_VALUES) {
5020         // FIXME: Hacky
5021         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
5022           Results.push_back(Res.getOperand(I));
5023         }
5024       } else {
5025         Results.push_back(Res);
5026         Results.push_back(Res.getValue(1));
5027       }
5028       return;
5029     }
5030 
5031     break;
5032   }
5033   case ISD::SELECT: {
5034     SDLoc SL(N);
5035     EVT VT = N->getValueType(0);
5036     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
5037     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
5038     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
5039 
5040     EVT SelectVT = NewVT;
5041     if (NewVT.bitsLT(MVT::i32)) {
5042       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
5043       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
5044       SelectVT = MVT::i32;
5045     }
5046 
5047     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
5048                                     N->getOperand(0), LHS, RHS);
5049 
5050     if (NewVT != SelectVT)
5051       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
5052     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
5053     return;
5054   }
5055   case ISD::FNEG: {
5056     if (N->getValueType(0) != MVT::v2f16)
5057       break;
5058 
5059     SDLoc SL(N);
5060     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5061 
5062     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
5063                              BC,
5064                              DAG.getConstant(0x80008000, SL, MVT::i32));
5065     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5066     return;
5067   }
5068   case ISD::FABS: {
5069     if (N->getValueType(0) != MVT::v2f16)
5070       break;
5071 
5072     SDLoc SL(N);
5073     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5074 
5075     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
5076                              BC,
5077                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
5078     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5079     return;
5080   }
5081   default:
5082     break;
5083   }
5084 }
5085 
5086 /// Helper function for LowerBRCOND
5087 static SDNode *findUser(SDValue Value, unsigned Opcode) {
5088 
5089   SDNode *Parent = Value.getNode();
5090   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
5091        I != E; ++I) {
5092 
5093     if (I.getUse().get() != Value)
5094       continue;
5095 
5096     if (I->getOpcode() == Opcode)
5097       return *I;
5098   }
5099   return nullptr;
5100 }
5101 
5102 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
5103   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
5104     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
5105     case Intrinsic::amdgcn_if:
5106       return AMDGPUISD::IF;
5107     case Intrinsic::amdgcn_else:
5108       return AMDGPUISD::ELSE;
5109     case Intrinsic::amdgcn_loop:
5110       return AMDGPUISD::LOOP;
5111     case Intrinsic::amdgcn_end_cf:
5112       llvm_unreachable("should not occur");
5113     default:
5114       return 0;
5115     }
5116   }
5117 
5118   // break, if_break, else_break are all only used as inputs to loop, not
5119   // directly as branch conditions.
5120   return 0;
5121 }
5122 
5123 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
5124   const Triple &TT = getTargetMachine().getTargetTriple();
5125   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5126           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5127          AMDGPU::shouldEmitConstantsToTextSection(TT);
5128 }
5129 
5130 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
5131   // FIXME: Either avoid relying on address space here or change the default
5132   // address space for functions to avoid the explicit check.
5133   return (GV->getValueType()->isFunctionTy() ||
5134           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
5135          !shouldEmitFixup(GV) &&
5136          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5137 }
5138 
5139 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5140   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5141 }
5142 
5143 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5144   if (!GV->hasExternalLinkage())
5145     return true;
5146 
5147   const auto OS = getTargetMachine().getTargetTriple().getOS();
5148   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5149 }
5150 
5151 /// This transforms the control flow intrinsics to get the branch destination as
5152 /// last parameter, also switches branch target with BR if the need arise
5153 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5154                                       SelectionDAG &DAG) const {
5155   SDLoc DL(BRCOND);
5156 
5157   SDNode *Intr = BRCOND.getOperand(1).getNode();
5158   SDValue Target = BRCOND.getOperand(2);
5159   SDNode *BR = nullptr;
5160   SDNode *SetCC = nullptr;
5161 
5162   if (Intr->getOpcode() == ISD::SETCC) {
5163     // As long as we negate the condition everything is fine
5164     SetCC = Intr;
5165     Intr = SetCC->getOperand(0).getNode();
5166 
5167   } else {
5168     // Get the target from BR if we don't negate the condition
5169     BR = findUser(BRCOND, ISD::BR);
5170     assert(BR && "brcond missing unconditional branch user");
5171     Target = BR->getOperand(1);
5172   }
5173 
5174   unsigned CFNode = isCFIntrinsic(Intr);
5175   if (CFNode == 0) {
5176     // This is a uniform branch so we don't need to legalize.
5177     return BRCOND;
5178   }
5179 
5180   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5181                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5182 
5183   assert(!SetCC ||
5184         (SetCC->getConstantOperandVal(1) == 1 &&
5185          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5186                                                              ISD::SETNE));
5187 
5188   // operands of the new intrinsic call
5189   SmallVector<SDValue, 4> Ops;
5190   if (HaveChain)
5191     Ops.push_back(BRCOND.getOperand(0));
5192 
5193   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
5194   Ops.push_back(Target);
5195 
5196   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5197 
5198   // build the new intrinsic call
5199   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5200 
5201   if (!HaveChain) {
5202     SDValue Ops[] =  {
5203       SDValue(Result, 0),
5204       BRCOND.getOperand(0)
5205     };
5206 
5207     Result = DAG.getMergeValues(Ops, DL).getNode();
5208   }
5209 
5210   if (BR) {
5211     // Give the branch instruction our target
5212     SDValue Ops[] = {
5213       BR->getOperand(0),
5214       BRCOND.getOperand(2)
5215     };
5216     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5217     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5218   }
5219 
5220   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5221 
5222   // Copy the intrinsic results to registers
5223   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5224     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5225     if (!CopyToReg)
5226       continue;
5227 
5228     Chain = DAG.getCopyToReg(
5229       Chain, DL,
5230       CopyToReg->getOperand(1),
5231       SDValue(Result, i - 1),
5232       SDValue());
5233 
5234     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5235   }
5236 
5237   // Remove the old intrinsic from the chain
5238   DAG.ReplaceAllUsesOfValueWith(
5239     SDValue(Intr, Intr->getNumValues() - 1),
5240     Intr->getOperand(0));
5241 
5242   return Chain;
5243 }
5244 
5245 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5246                                           SelectionDAG &DAG) const {
5247   MVT VT = Op.getSimpleValueType();
5248   SDLoc DL(Op);
5249   // Checking the depth
5250   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5251     return DAG.getConstant(0, DL, VT);
5252 
5253   MachineFunction &MF = DAG.getMachineFunction();
5254   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5255   // Check for kernel and shader functions
5256   if (Info->isEntryFunction())
5257     return DAG.getConstant(0, DL, VT);
5258 
5259   MachineFrameInfo &MFI = MF.getFrameInfo();
5260   // There is a call to @llvm.returnaddress in this function
5261   MFI.setReturnAddressIsTaken(true);
5262 
5263   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5264   // Get the return address reg and mark it as an implicit live-in
5265   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5266 
5267   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5268 }
5269 
5270 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5271                                             SDValue Op,
5272                                             const SDLoc &DL,
5273                                             EVT VT) const {
5274   return Op.getValueType().bitsLE(VT) ?
5275       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5276     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5277                 DAG.getTargetConstant(0, DL, MVT::i32));
5278 }
5279 
5280 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5281   assert(Op.getValueType() == MVT::f16 &&
5282          "Do not know how to custom lower FP_ROUND for non-f16 type");
5283 
5284   SDValue Src = Op.getOperand(0);
5285   EVT SrcVT = Src.getValueType();
5286   if (SrcVT != MVT::f64)
5287     return Op;
5288 
5289   SDLoc DL(Op);
5290 
5291   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5292   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5293   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5294 }
5295 
5296 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5297                                                SelectionDAG &DAG) const {
5298   EVT VT = Op.getValueType();
5299   const MachineFunction &MF = DAG.getMachineFunction();
5300   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5301   bool IsIEEEMode = Info->getMode().IEEE;
5302 
5303   // FIXME: Assert during selection that this is only selected for
5304   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5305   // mode functions, but this happens to be OK since it's only done in cases
5306   // where there is known no sNaN.
5307   if (IsIEEEMode)
5308     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5309 
5310   if (VT == MVT::v4f16)
5311     return splitBinaryVectorOp(Op, DAG);
5312   return Op;
5313 }
5314 
5315 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5316   EVT VT = Op.getValueType();
5317   SDLoc SL(Op);
5318   SDValue LHS = Op.getOperand(0);
5319   SDValue RHS = Op.getOperand(1);
5320   bool isSigned = Op.getOpcode() == ISD::SMULO;
5321 
5322   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5323     const APInt &C = RHSC->getAPIntValue();
5324     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5325     if (C.isPowerOf2()) {
5326       // smulo(x, signed_min) is same as umulo(x, signed_min).
5327       bool UseArithShift = isSigned && !C.isMinSignedValue();
5328       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5329       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5330       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5331           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5332                       SL, VT, Result, ShiftAmt),
5333           LHS, ISD::SETNE);
5334       return DAG.getMergeValues({ Result, Overflow }, SL);
5335     }
5336   }
5337 
5338   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5339   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5340                             SL, VT, LHS, RHS);
5341 
5342   SDValue Sign = isSigned
5343     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5344                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5345     : DAG.getConstant(0, SL, VT);
5346   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5347 
5348   return DAG.getMergeValues({ Result, Overflow }, SL);
5349 }
5350 
5351 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
5352   if (Op->isDivergent()) {
5353     // Select to V_MAD_[IU]64_[IU]32.
5354     return Op;
5355   }
5356   if (Subtarget->hasSMulHi()) {
5357     // Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
5358     return SDValue();
5359   }
5360   // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
5361   // calculate the high part, so we might as well do the whole thing with
5362   // V_MAD_[IU]64_[IU]32.
5363   return Op;
5364 }
5365 
5366 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5367   if (!Subtarget->isTrapHandlerEnabled() ||
5368       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5369     return lowerTrapEndpgm(Op, DAG);
5370 
5371   if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) {
5372     switch (*HsaAbiVer) {
5373     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
5374     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
5375       return lowerTrapHsaQueuePtr(Op, DAG);
5376     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
5377       return Subtarget->supportsGetDoorbellID() ?
5378           lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG);
5379     }
5380   }
5381 
5382   llvm_unreachable("Unknown trap handler");
5383 }
5384 
5385 SDValue SITargetLowering::lowerTrapEndpgm(
5386     SDValue Op, SelectionDAG &DAG) const {
5387   SDLoc SL(Op);
5388   SDValue Chain = Op.getOperand(0);
5389   return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5390 }
5391 
5392 SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5393     SDValue Op, SelectionDAG &DAG) const {
5394   SDLoc SL(Op);
5395   SDValue Chain = Op.getOperand(0);
5396 
5397   MachineFunction &MF = DAG.getMachineFunction();
5398   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5399   Register UserSGPR = Info->getQueuePtrUserSGPR();
5400 
5401   SDValue QueuePtr;
5402   if (UserSGPR == AMDGPU::NoRegister) {
5403     // We probably are in a function incorrectly marked with
5404     // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the trap,
5405     // so just use a null pointer.
5406     QueuePtr = DAG.getConstant(0, SL, MVT::i64);
5407   } else {
5408     QueuePtr = CreateLiveInRegister(
5409       DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5410   }
5411 
5412   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5413   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5414                                    QueuePtr, SDValue());
5415 
5416   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5417   SDValue Ops[] = {
5418     ToReg,
5419     DAG.getTargetConstant(TrapID, SL, MVT::i16),
5420     SGPR01,
5421     ToReg.getValue(1)
5422   };
5423   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5424 }
5425 
5426 SDValue SITargetLowering::lowerTrapHsa(
5427     SDValue Op, SelectionDAG &DAG) const {
5428   SDLoc SL(Op);
5429   SDValue Chain = Op.getOperand(0);
5430 
5431   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5432   SDValue Ops[] = {
5433     Chain,
5434     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5435   };
5436   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5437 }
5438 
5439 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5440   SDLoc SL(Op);
5441   SDValue Chain = Op.getOperand(0);
5442   MachineFunction &MF = DAG.getMachineFunction();
5443 
5444   if (!Subtarget->isTrapHandlerEnabled() ||
5445       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5446     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5447                                      "debugtrap handler not supported",
5448                                      Op.getDebugLoc(),
5449                                      DS_Warning);
5450     LLVMContext &Ctx = MF.getFunction().getContext();
5451     Ctx.diagnose(NoTrap);
5452     return Chain;
5453   }
5454 
5455   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5456   SDValue Ops[] = {
5457     Chain,
5458     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5459   };
5460   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5461 }
5462 
5463 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5464                                              SelectionDAG &DAG) const {
5465   // FIXME: Use inline constants (src_{shared, private}_base) instead.
5466   if (Subtarget->hasApertureRegs()) {
5467     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5468         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5469         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5470     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5471         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5472         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5473     unsigned Encoding =
5474         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5475         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5476         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5477 
5478     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5479     SDValue ApertureReg = SDValue(
5480         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5481     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5482     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5483   }
5484 
5485   MachineFunction &MF = DAG.getMachineFunction();
5486   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5487   Register UserSGPR = Info->getQueuePtrUserSGPR();
5488   if (UserSGPR == AMDGPU::NoRegister) {
5489     // We probably are in a function incorrectly marked with
5490     // amdgpu-no-queue-ptr. This is undefined.
5491     return DAG.getUNDEF(MVT::i32);
5492   }
5493 
5494   SDValue QueuePtr = CreateLiveInRegister(
5495     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5496 
5497   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5498   // private_segment_aperture_base_hi.
5499   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5500 
5501   SDValue Ptr =
5502       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5503 
5504   // TODO: Use custom target PseudoSourceValue.
5505   // TODO: We should use the value from the IR intrinsic call, but it might not
5506   // be available and how do we get it?
5507   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5508   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5509                      commonAlignment(Align(64), StructOffset),
5510                      MachineMemOperand::MODereferenceable |
5511                          MachineMemOperand::MOInvariant);
5512 }
5513 
5514 /// Return true if the value is a known valid address, such that a null check is
5515 /// not necessary.
5516 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG,
5517                            const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
5518   if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) ||
5519       isa<BasicBlockSDNode>(Val))
5520     return true;
5521 
5522   if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
5523     return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
5524 
5525   // TODO: Search through arithmetic, handle arguments and loads
5526   // marked nonnull.
5527   return false;
5528 }
5529 
5530 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5531                                              SelectionDAG &DAG) const {
5532   SDLoc SL(Op);
5533   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5534 
5535   SDValue Src = ASC->getOperand(0);
5536   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5537   unsigned SrcAS = ASC->getSrcAddressSpace();
5538 
5539   const AMDGPUTargetMachine &TM =
5540     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5541 
5542   // flat -> local/private
5543   if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
5544     unsigned DestAS = ASC->getDestAddressSpace();
5545 
5546     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5547         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5548       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5549 
5550       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5551         return Ptr;
5552 
5553       unsigned NullVal = TM.getNullPointerValue(DestAS);
5554       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5555       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5556 
5557       return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr,
5558                          SegmentNullPtr);
5559     }
5560   }
5561 
5562   // local/private -> flat
5563   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5564     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5565         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5566 
5567       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5568       SDValue CvtPtr =
5569           DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5570       CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
5571 
5572       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5573         return CvtPtr;
5574 
5575       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5576       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5577 
5578       SDValue NonNull
5579         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5580 
5581       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr,
5582                          FlatNullPtr);
5583     }
5584   }
5585 
5586   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5587       Src.getValueType() == MVT::i64)
5588     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5589 
5590   // global <-> flat are no-ops and never emitted.
5591 
5592   const MachineFunction &MF = DAG.getMachineFunction();
5593   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5594     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5595   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5596 
5597   return DAG.getUNDEF(ASC->getValueType(0));
5598 }
5599 
5600 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5601 // the small vector and inserting them into the big vector. That is better than
5602 // the default expansion of doing it via a stack slot. Even though the use of
5603 // the stack slot would be optimized away afterwards, the stack slot itself
5604 // remains.
5605 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5606                                                 SelectionDAG &DAG) const {
5607   SDValue Vec = Op.getOperand(0);
5608   SDValue Ins = Op.getOperand(1);
5609   SDValue Idx = Op.getOperand(2);
5610   EVT VecVT = Vec.getValueType();
5611   EVT InsVT = Ins.getValueType();
5612   EVT EltVT = VecVT.getVectorElementType();
5613   unsigned InsNumElts = InsVT.getVectorNumElements();
5614   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5615   SDLoc SL(Op);
5616 
5617   for (unsigned I = 0; I != InsNumElts; ++I) {
5618     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5619                               DAG.getConstant(I, SL, MVT::i32));
5620     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5621                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5622   }
5623   return Vec;
5624 }
5625 
5626 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5627                                                  SelectionDAG &DAG) const {
5628   SDValue Vec = Op.getOperand(0);
5629   SDValue InsVal = Op.getOperand(1);
5630   SDValue Idx = Op.getOperand(2);
5631   EVT VecVT = Vec.getValueType();
5632   EVT EltVT = VecVT.getVectorElementType();
5633   unsigned VecSize = VecVT.getSizeInBits();
5634   unsigned EltSize = EltVT.getSizeInBits();
5635 
5636 
5637   assert(VecSize <= 64);
5638 
5639   unsigned NumElts = VecVT.getVectorNumElements();
5640   SDLoc SL(Op);
5641   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5642 
5643   if (NumElts == 4 && EltSize == 16 && KIdx) {
5644     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5645 
5646     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5647                                  DAG.getConstant(0, SL, MVT::i32));
5648     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5649                                  DAG.getConstant(1, SL, MVT::i32));
5650 
5651     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5652     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5653 
5654     unsigned Idx = KIdx->getZExtValue();
5655     bool InsertLo = Idx < 2;
5656     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5657       InsertLo ? LoVec : HiVec,
5658       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5659       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5660 
5661     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5662 
5663     SDValue Concat = InsertLo ?
5664       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5665       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5666 
5667     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5668   }
5669 
5670   if (isa<ConstantSDNode>(Idx))
5671     return SDValue();
5672 
5673   MVT IntVT = MVT::getIntegerVT(VecSize);
5674 
5675   // Avoid stack access for dynamic indexing.
5676   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5677 
5678   // Create a congruent vector with the target value in each element so that
5679   // the required element can be masked and ORed into the target vector.
5680   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5681                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5682 
5683   assert(isPowerOf2_32(EltSize));
5684   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5685 
5686   // Convert vector index to bit-index.
5687   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5688 
5689   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5690   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5691                             DAG.getConstant(0xffff, SL, IntVT),
5692                             ScaledIdx);
5693 
5694   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5695   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5696                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5697 
5698   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5699   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5700 }
5701 
5702 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5703                                                   SelectionDAG &DAG) const {
5704   SDLoc SL(Op);
5705 
5706   EVT ResultVT = Op.getValueType();
5707   SDValue Vec = Op.getOperand(0);
5708   SDValue Idx = Op.getOperand(1);
5709   EVT VecVT = Vec.getValueType();
5710   unsigned VecSize = VecVT.getSizeInBits();
5711   EVT EltVT = VecVT.getVectorElementType();
5712   assert(VecSize <= 64);
5713 
5714   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5715 
5716   // Make sure we do any optimizations that will make it easier to fold
5717   // source modifiers before obscuring it with bit operations.
5718 
5719   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5720   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5721     return Combined;
5722 
5723   unsigned EltSize = EltVT.getSizeInBits();
5724   assert(isPowerOf2_32(EltSize));
5725 
5726   MVT IntVT = MVT::getIntegerVT(VecSize);
5727   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5728 
5729   // Convert vector index to bit-index (* EltSize)
5730   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5731 
5732   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5733   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5734 
5735   if (ResultVT == MVT::f16) {
5736     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5737     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5738   }
5739 
5740   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5741 }
5742 
5743 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5744   assert(Elt % 2 == 0);
5745   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5746 }
5747 
5748 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5749                                               SelectionDAG &DAG) const {
5750   SDLoc SL(Op);
5751   EVT ResultVT = Op.getValueType();
5752   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5753 
5754   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5755   EVT EltVT = PackVT.getVectorElementType();
5756   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5757 
5758   // vector_shuffle <0,1,6,7> lhs, rhs
5759   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5760   //
5761   // vector_shuffle <6,7,2,3> lhs, rhs
5762   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5763   //
5764   // vector_shuffle <6,7,0,1> lhs, rhs
5765   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5766 
5767   // Avoid scalarizing when both halves are reading from consecutive elements.
5768   SmallVector<SDValue, 4> Pieces;
5769   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5770     if (elementPairIsContiguous(SVN->getMask(), I)) {
5771       const int Idx = SVN->getMaskElt(I);
5772       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5773       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5774       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5775                                     PackVT, SVN->getOperand(VecIdx),
5776                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5777       Pieces.push_back(SubVec);
5778     } else {
5779       const int Idx0 = SVN->getMaskElt(I);
5780       const int Idx1 = SVN->getMaskElt(I + 1);
5781       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5782       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5783       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5784       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5785 
5786       SDValue Vec0 = SVN->getOperand(VecIdx0);
5787       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5788                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5789 
5790       SDValue Vec1 = SVN->getOperand(VecIdx1);
5791       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5792                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5793       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5794     }
5795   }
5796 
5797   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5798 }
5799 
5800 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5801                                             SelectionDAG &DAG) const {
5802   SDLoc SL(Op);
5803   EVT VT = Op.getValueType();
5804 
5805   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
5806     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
5807 
5808     // Turn into pair of packed build_vectors.
5809     // TODO: Special case for constants that can be materialized with s_mov_b64.
5810     SDValue Lo = DAG.getBuildVector(HalfVT, SL,
5811                                     { Op.getOperand(0), Op.getOperand(1) });
5812     SDValue Hi = DAG.getBuildVector(HalfVT, SL,
5813                                     { Op.getOperand(2), Op.getOperand(3) });
5814 
5815     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
5816     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
5817 
5818     SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
5819     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5820   }
5821 
5822   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5823   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5824 
5825   SDValue Lo = Op.getOperand(0);
5826   SDValue Hi = Op.getOperand(1);
5827 
5828   // Avoid adding defined bits with the zero_extend.
5829   if (Hi.isUndef()) {
5830     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5831     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5832     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5833   }
5834 
5835   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5836   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5837 
5838   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5839                               DAG.getConstant(16, SL, MVT::i32));
5840   if (Lo.isUndef())
5841     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5842 
5843   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5844   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5845 
5846   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5847   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5848 }
5849 
5850 bool
5851 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5852   // We can fold offsets for anything that doesn't require a GOT relocation.
5853   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5854           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5855           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5856          !shouldEmitGOTReloc(GA->getGlobal());
5857 }
5858 
5859 static SDValue
5860 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5861                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
5862                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5863   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5864   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5865   // lowered to the following code sequence:
5866   //
5867   // For constant address space:
5868   //   s_getpc_b64 s[0:1]
5869   //   s_add_u32 s0, s0, $symbol
5870   //   s_addc_u32 s1, s1, 0
5871   //
5872   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5873   //   a fixup or relocation is emitted to replace $symbol with a literal
5874   //   constant, which is a pc-relative offset from the encoding of the $symbol
5875   //   operand to the global variable.
5876   //
5877   // For global address space:
5878   //   s_getpc_b64 s[0:1]
5879   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5880   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5881   //
5882   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5883   //   fixups or relocations are emitted to replace $symbol@*@lo and
5884   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5885   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5886   //   operand to the global variable.
5887   //
5888   // What we want here is an offset from the value returned by s_getpc
5889   // (which is the address of the s_add_u32 instruction) to the global
5890   // variable, but since the encoding of $symbol starts 4 bytes after the start
5891   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5892   // small. This requires us to add 4 to the global variable offset in order to
5893   // compute the correct address. Similarly for the s_addc_u32 instruction, the
5894   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5895   // instruction.
5896   SDValue PtrLo =
5897       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5898   SDValue PtrHi;
5899   if (GAFlags == SIInstrInfo::MO_NONE) {
5900     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5901   } else {
5902     PtrHi =
5903         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5904   }
5905   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5906 }
5907 
5908 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5909                                              SDValue Op,
5910                                              SelectionDAG &DAG) const {
5911   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5912   SDLoc DL(GSD);
5913   EVT PtrVT = Op.getValueType();
5914 
5915   const GlobalValue *GV = GSD->getGlobal();
5916   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5917        shouldUseLDSConstAddress(GV)) ||
5918       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5919       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
5920     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5921         GV->hasExternalLinkage()) {
5922       Type *Ty = GV->getValueType();
5923       // HIP uses an unsized array `extern __shared__ T s[]` or similar
5924       // zero-sized type in other languages to declare the dynamic shared
5925       // memory which size is not known at the compile time. They will be
5926       // allocated by the runtime and placed directly after the static
5927       // allocated ones. They all share the same offset.
5928       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
5929         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
5930         // Adjust alignment for that dynamic shared memory array.
5931         MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
5932         return SDValue(
5933             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
5934       }
5935     }
5936     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5937   }
5938 
5939   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5940     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5941                                             SIInstrInfo::MO_ABS32_LO);
5942     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5943   }
5944 
5945   if (shouldEmitFixup(GV))
5946     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5947   else if (shouldEmitPCReloc(GV))
5948     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5949                                    SIInstrInfo::MO_REL32);
5950 
5951   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5952                                             SIInstrInfo::MO_GOTPCREL32);
5953 
5954   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5955   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5956   const DataLayout &DataLayout = DAG.getDataLayout();
5957   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
5958   MachinePointerInfo PtrInfo
5959     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5960 
5961   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
5962                      MachineMemOperand::MODereferenceable |
5963                          MachineMemOperand::MOInvariant);
5964 }
5965 
5966 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5967                                    const SDLoc &DL, SDValue V) const {
5968   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5969   // the destination register.
5970   //
5971   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5972   // so we will end up with redundant moves to m0.
5973   //
5974   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5975 
5976   // A Null SDValue creates a glue result.
5977   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5978                                   V, Chain);
5979   return SDValue(M0, 0);
5980 }
5981 
5982 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5983                                                  SDValue Op,
5984                                                  MVT VT,
5985                                                  unsigned Offset) const {
5986   SDLoc SL(Op);
5987   SDValue Param = lowerKernargMemParameter(
5988       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
5989   // The local size values will have the hi 16-bits as zero.
5990   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5991                      DAG.getValueType(VT));
5992 }
5993 
5994 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5995                                         EVT VT) {
5996   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5997                                       "non-hsa intrinsic with hsa target",
5998                                       DL.getDebugLoc());
5999   DAG.getContext()->diagnose(BadIntrin);
6000   return DAG.getUNDEF(VT);
6001 }
6002 
6003 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6004                                          EVT VT) {
6005   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6006                                       "intrinsic not supported on subtarget",
6007                                       DL.getDebugLoc());
6008   DAG.getContext()->diagnose(BadIntrin);
6009   return DAG.getUNDEF(VT);
6010 }
6011 
6012 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
6013                                     ArrayRef<SDValue> Elts) {
6014   assert(!Elts.empty());
6015   MVT Type;
6016   unsigned NumElts = Elts.size();
6017 
6018   if (NumElts <= 8) {
6019     Type = MVT::getVectorVT(MVT::f32, NumElts);
6020   } else {
6021     assert(Elts.size() <= 16);
6022     Type = MVT::v16f32;
6023     NumElts = 16;
6024   }
6025 
6026   SmallVector<SDValue, 16> VecElts(NumElts);
6027   for (unsigned i = 0; i < Elts.size(); ++i) {
6028     SDValue Elt = Elts[i];
6029     if (Elt.getValueType() != MVT::f32)
6030       Elt = DAG.getBitcast(MVT::f32, Elt);
6031     VecElts[i] = Elt;
6032   }
6033   for (unsigned i = Elts.size(); i < NumElts; ++i)
6034     VecElts[i] = DAG.getUNDEF(MVT::f32);
6035 
6036   if (NumElts == 1)
6037     return VecElts[0];
6038   return DAG.getBuildVector(Type, DL, VecElts);
6039 }
6040 
6041 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
6042                               SDValue Src, int ExtraElts) {
6043   EVT SrcVT = Src.getValueType();
6044 
6045   SmallVector<SDValue, 8> Elts;
6046 
6047   if (SrcVT.isVector())
6048     DAG.ExtractVectorElements(Src, Elts);
6049   else
6050     Elts.push_back(Src);
6051 
6052   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
6053   while (ExtraElts--)
6054     Elts.push_back(Undef);
6055 
6056   return DAG.getBuildVector(CastVT, DL, Elts);
6057 }
6058 
6059 // Re-construct the required return value for a image load intrinsic.
6060 // This is more complicated due to the optional use TexFailCtrl which means the required
6061 // return type is an aggregate
6062 static SDValue constructRetValue(SelectionDAG &DAG,
6063                                  MachineSDNode *Result,
6064                                  ArrayRef<EVT> ResultTypes,
6065                                  bool IsTexFail, bool Unpacked, bool IsD16,
6066                                  int DMaskPop, int NumVDataDwords,
6067                                  const SDLoc &DL) {
6068   // Determine the required return type. This is the same regardless of IsTexFail flag
6069   EVT ReqRetVT = ResultTypes[0];
6070   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
6071   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6072     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
6073 
6074   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6075     DMaskPop : (DMaskPop + 1) / 2;
6076 
6077   MVT DataDwordVT = NumDataDwords == 1 ?
6078     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
6079 
6080   MVT MaskPopVT = MaskPopDwords == 1 ?
6081     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
6082 
6083   SDValue Data(Result, 0);
6084   SDValue TexFail;
6085 
6086   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
6087     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
6088     if (MaskPopVT.isVector()) {
6089       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
6090                          SDValue(Result, 0), ZeroIdx);
6091     } else {
6092       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
6093                          SDValue(Result, 0), ZeroIdx);
6094     }
6095   }
6096 
6097   if (DataDwordVT.isVector())
6098     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
6099                           NumDataDwords - MaskPopDwords);
6100 
6101   if (IsD16)
6102     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
6103 
6104   EVT LegalReqRetVT = ReqRetVT;
6105   if (!ReqRetVT.isVector()) {
6106     if (!Data.getValueType().isInteger())
6107       Data = DAG.getNode(ISD::BITCAST, DL,
6108                          Data.getValueType().changeTypeToInteger(), Data);
6109     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
6110   } else {
6111     // We need to widen the return vector to a legal type
6112     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
6113         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
6114       LegalReqRetVT =
6115           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
6116                            ReqRetVT.getVectorNumElements() + 1);
6117     }
6118   }
6119   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
6120 
6121   if (IsTexFail) {
6122     TexFail =
6123         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
6124                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
6125 
6126     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
6127   }
6128 
6129   if (Result->getNumValues() == 1)
6130     return Data;
6131 
6132   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
6133 }
6134 
6135 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
6136                          SDValue *LWE, bool &IsTexFail) {
6137   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
6138 
6139   uint64_t Value = TexFailCtrlConst->getZExtValue();
6140   if (Value) {
6141     IsTexFail = true;
6142   }
6143 
6144   SDLoc DL(TexFailCtrlConst);
6145   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
6146   Value &= ~(uint64_t)0x1;
6147   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
6148   Value &= ~(uint64_t)0x2;
6149 
6150   return Value == 0;
6151 }
6152 
6153 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
6154                                       MVT PackVectorVT,
6155                                       SmallVectorImpl<SDValue> &PackedAddrs,
6156                                       unsigned DimIdx, unsigned EndIdx,
6157                                       unsigned NumGradients) {
6158   SDLoc DL(Op);
6159   for (unsigned I = DimIdx; I < EndIdx; I++) {
6160     SDValue Addr = Op.getOperand(I);
6161 
6162     // Gradients are packed with undef for each coordinate.
6163     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
6164     // 1D: undef,dx/dh; undef,dx/dv
6165     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
6166     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
6167     if (((I + 1) >= EndIdx) ||
6168         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
6169                                          I == DimIdx + NumGradients - 1))) {
6170       if (Addr.getValueType() != MVT::i16)
6171         Addr = DAG.getBitcast(MVT::i16, Addr);
6172       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
6173     } else {
6174       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
6175       I++;
6176     }
6177     Addr = DAG.getBitcast(MVT::f32, Addr);
6178     PackedAddrs.push_back(Addr);
6179   }
6180 }
6181 
6182 SDValue SITargetLowering::lowerImage(SDValue Op,
6183                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
6184                                      SelectionDAG &DAG, bool WithChain) const {
6185   SDLoc DL(Op);
6186   MachineFunction &MF = DAG.getMachineFunction();
6187   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
6188   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
6189       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
6190   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
6191   const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
6192       AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
6193   const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
6194       AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
6195   unsigned IntrOpcode = Intr->BaseOpcode;
6196   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6197 
6198   SmallVector<EVT, 3> ResultTypes(Op->values());
6199   SmallVector<EVT, 3> OrigResultTypes(Op->values());
6200   bool IsD16 = false;
6201   bool IsG16 = false;
6202   bool IsA16 = false;
6203   SDValue VData;
6204   int NumVDataDwords;
6205   bool AdjustRetType = false;
6206 
6207   // Offset of intrinsic arguments
6208   const unsigned ArgOffset = WithChain ? 2 : 1;
6209 
6210   unsigned DMask;
6211   unsigned DMaskLanes = 0;
6212 
6213   if (BaseOpcode->Atomic) {
6214     VData = Op.getOperand(2);
6215 
6216     bool Is64Bit = VData.getValueType() == MVT::i64;
6217     if (BaseOpcode->AtomicX2) {
6218       SDValue VData2 = Op.getOperand(3);
6219       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6220                                  {VData, VData2});
6221       if (Is64Bit)
6222         VData = DAG.getBitcast(MVT::v4i32, VData);
6223 
6224       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6225       DMask = Is64Bit ? 0xf : 0x3;
6226       NumVDataDwords = Is64Bit ? 4 : 2;
6227     } else {
6228       DMask = Is64Bit ? 0x3 : 0x1;
6229       NumVDataDwords = Is64Bit ? 2 : 1;
6230     }
6231   } else {
6232     auto *DMaskConst =
6233         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6234     DMask = DMaskConst->getZExtValue();
6235     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6236 
6237     if (BaseOpcode->Store) {
6238       VData = Op.getOperand(2);
6239 
6240       MVT StoreVT = VData.getSimpleValueType();
6241       if (StoreVT.getScalarType() == MVT::f16) {
6242         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6243           return Op; // D16 is unsupported for this instruction
6244 
6245         IsD16 = true;
6246         VData = handleD16VData(VData, DAG, true);
6247       }
6248 
6249       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6250     } else {
6251       // Work out the num dwords based on the dmask popcount and underlying type
6252       // and whether packing is supported.
6253       MVT LoadVT = ResultTypes[0].getSimpleVT();
6254       if (LoadVT.getScalarType() == MVT::f16) {
6255         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6256           return Op; // D16 is unsupported for this instruction
6257 
6258         IsD16 = true;
6259       }
6260 
6261       // Confirm that the return type is large enough for the dmask specified
6262       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6263           (!LoadVT.isVector() && DMaskLanes > 1))
6264           return Op;
6265 
6266       // The sq block of gfx8 and gfx9 do not estimate register use correctly
6267       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6268       // instructions.
6269       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6270           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6271         NumVDataDwords = (DMaskLanes + 1) / 2;
6272       else
6273         NumVDataDwords = DMaskLanes;
6274 
6275       AdjustRetType = true;
6276     }
6277   }
6278 
6279   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6280   SmallVector<SDValue, 4> VAddrs;
6281 
6282   // Optimize _L to _LZ when _L is zero
6283   if (LZMappingInfo) {
6284     if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>(
6285             Op.getOperand(ArgOffset + Intr->LodIndex))) {
6286       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
6287         IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
6288         VAddrEnd--;                      // remove 'lod'
6289       }
6290     }
6291   }
6292 
6293   // Optimize _mip away, when 'lod' is zero
6294   if (MIPMappingInfo) {
6295     if (auto *ConstantLod = dyn_cast<ConstantSDNode>(
6296             Op.getOperand(ArgOffset + Intr->MipIndex))) {
6297       if (ConstantLod->isZero()) {
6298         IntrOpcode = MIPMappingInfo->NONMIP;  // set new opcode to variant without _mip
6299         VAddrEnd--;                           // remove 'mip'
6300       }
6301     }
6302   }
6303 
6304   // Check for 16 bit addresses or derivatives and pack if true.
6305   MVT VAddrVT =
6306       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6307   MVT VAddrScalarVT = VAddrVT.getScalarType();
6308   MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6309   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6310 
6311   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6312   VAddrScalarVT = VAddrVT.getScalarType();
6313   MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6314   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6315 
6316   // Push back extra arguments.
6317   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) {
6318     if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) {
6319       // Special handling of bias when A16 is on. Bias is of type half but
6320       // occupies full 32-bit.
6321       SDValue bias = DAG.getBuildVector( MVT::v2f16, DL, {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)});
6322       VAddrs.push_back(bias);
6323     } else
6324       VAddrs.push_back(Op.getOperand(ArgOffset + I));
6325   }
6326 
6327   if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6328     // 16 bit gradients are supported, but are tied to the A16 control
6329     // so both gradients and addresses must be 16 bit
6330     LLVM_DEBUG(
6331         dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6332                   "require 16 bit args for both gradients and addresses");
6333     return Op;
6334   }
6335 
6336   if (IsA16) {
6337     if (!ST->hasA16()) {
6338       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6339                            "support 16 bit addresses\n");
6340       return Op;
6341     }
6342   }
6343 
6344   // We've dealt with incorrect input so we know that if IsA16, IsG16
6345   // are set then we have to compress/pack operands (either address,
6346   // gradient or both)
6347   // In the case where a16 and gradients are tied (no G16 support) then we
6348   // have already verified that both IsA16 and IsG16 are true
6349   if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6350     // Activate g16
6351     const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6352         AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6353     IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6354   }
6355 
6356   // Add gradients (packed or unpacked)
6357   if (IsG16) {
6358     // Pack the gradients
6359     // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6360     packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6361                               ArgOffset + Intr->GradientStart,
6362                               ArgOffset + Intr->CoordStart, Intr->NumGradients);
6363   } else {
6364     for (unsigned I = ArgOffset + Intr->GradientStart;
6365          I < ArgOffset + Intr->CoordStart; I++)
6366       VAddrs.push_back(Op.getOperand(I));
6367   }
6368 
6369   // Add addresses (packed or unpacked)
6370   if (IsA16) {
6371     packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6372                               ArgOffset + Intr->CoordStart, VAddrEnd,
6373                               0 /* No gradients */);
6374   } else {
6375     // Add uncompressed address
6376     for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6377       VAddrs.push_back(Op.getOperand(I));
6378   }
6379 
6380   // If the register allocator cannot place the address registers contiguously
6381   // without introducing moves, then using the non-sequential address encoding
6382   // is always preferable, since it saves VALU instructions and is usually a
6383   // wash in terms of code size or even better.
6384   //
6385   // However, we currently have no way of hinting to the register allocator that
6386   // MIMG addresses should be placed contiguously when it is possible to do so,
6387   // so force non-NSA for the common 2-address case as a heuristic.
6388   //
6389   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6390   // allocation when possible.
6391   bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) &&
6392                 VAddrs.size() >= 3 &&
6393                 VAddrs.size() <= (unsigned)ST->getNSAMaxSize();
6394   SDValue VAddr;
6395   if (!UseNSA)
6396     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6397 
6398   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6399   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6400   SDValue Unorm;
6401   if (!BaseOpcode->Sampler) {
6402     Unorm = True;
6403   } else {
6404     auto UnormConst =
6405         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6406 
6407     Unorm = UnormConst->getZExtValue() ? True : False;
6408   }
6409 
6410   SDValue TFE;
6411   SDValue LWE;
6412   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6413   bool IsTexFail = false;
6414   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6415     return Op;
6416 
6417   if (IsTexFail) {
6418     if (!DMaskLanes) {
6419       // Expecting to get an error flag since TFC is on - and dmask is 0
6420       // Force dmask to be at least 1 otherwise the instruction will fail
6421       DMask = 0x1;
6422       DMaskLanes = 1;
6423       NumVDataDwords = 1;
6424     }
6425     NumVDataDwords += 1;
6426     AdjustRetType = true;
6427   }
6428 
6429   // Has something earlier tagged that the return type needs adjusting
6430   // This happens if the instruction is a load or has set TexFailCtrl flags
6431   if (AdjustRetType) {
6432     // NumVDataDwords reflects the true number of dwords required in the return type
6433     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6434       // This is a no-op load. This can be eliminated
6435       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6436       if (isa<MemSDNode>(Op))
6437         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6438       return Undef;
6439     }
6440 
6441     EVT NewVT = NumVDataDwords > 1 ?
6442                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6443                 : MVT::i32;
6444 
6445     ResultTypes[0] = NewVT;
6446     if (ResultTypes.size() == 3) {
6447       // Original result was aggregate type used for TexFailCtrl results
6448       // The actual instruction returns as a vector type which has now been
6449       // created. Remove the aggregate result.
6450       ResultTypes.erase(&ResultTypes[1]);
6451     }
6452   }
6453 
6454   unsigned CPol = cast<ConstantSDNode>(
6455       Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6456   if (BaseOpcode->Atomic)
6457     CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6458   if (CPol & ~AMDGPU::CPol::ALL)
6459     return Op;
6460 
6461   SmallVector<SDValue, 26> Ops;
6462   if (BaseOpcode->Store || BaseOpcode->Atomic)
6463     Ops.push_back(VData); // vdata
6464   if (UseNSA)
6465     append_range(Ops, VAddrs);
6466   else
6467     Ops.push_back(VAddr);
6468   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6469   if (BaseOpcode->Sampler)
6470     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6471   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6472   if (IsGFX10Plus)
6473     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6474   Ops.push_back(Unorm);
6475   Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6476   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6477                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6478   if (IsGFX10Plus)
6479     Ops.push_back(IsA16 ? True : False);
6480   if (!Subtarget->hasGFX90AInsts()) {
6481     Ops.push_back(TFE); //tfe
6482   } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6483     report_fatal_error("TFE is not supported on this GPU");
6484   }
6485   Ops.push_back(LWE); // lwe
6486   if (!IsGFX10Plus)
6487     Ops.push_back(DimInfo->DA ? True : False);
6488   if (BaseOpcode->HasD16)
6489     Ops.push_back(IsD16 ? True : False);
6490   if (isa<MemSDNode>(Op))
6491     Ops.push_back(Op.getOperand(0)); // chain
6492 
6493   int NumVAddrDwords =
6494       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6495   int Opcode = -1;
6496 
6497   if (IsGFX10Plus) {
6498     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6499                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6500                                           : AMDGPU::MIMGEncGfx10Default,
6501                                    NumVDataDwords, NumVAddrDwords);
6502   } else {
6503     if (Subtarget->hasGFX90AInsts()) {
6504       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
6505                                      NumVDataDwords, NumVAddrDwords);
6506       if (Opcode == -1)
6507         report_fatal_error(
6508             "requested image instruction is not supported on this GPU");
6509     }
6510     if (Opcode == -1 &&
6511         Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6512       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6513                                      NumVDataDwords, NumVAddrDwords);
6514     if (Opcode == -1)
6515       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6516                                      NumVDataDwords, NumVAddrDwords);
6517   }
6518   assert(Opcode != -1);
6519 
6520   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6521   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6522     MachineMemOperand *MemRef = MemOp->getMemOperand();
6523     DAG.setNodeMemRefs(NewNode, {MemRef});
6524   }
6525 
6526   if (BaseOpcode->AtomicX2) {
6527     SmallVector<SDValue, 1> Elt;
6528     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6529     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6530   }
6531   if (BaseOpcode->Store)
6532     return SDValue(NewNode, 0);
6533   return constructRetValue(DAG, NewNode,
6534                            OrigResultTypes, IsTexFail,
6535                            Subtarget->hasUnpackedD16VMem(), IsD16,
6536                            DMaskLanes, NumVDataDwords, DL);
6537 }
6538 
6539 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6540                                        SDValue Offset, SDValue CachePolicy,
6541                                        SelectionDAG &DAG) const {
6542   MachineFunction &MF = DAG.getMachineFunction();
6543 
6544   const DataLayout &DataLayout = DAG.getDataLayout();
6545   Align Alignment =
6546       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6547 
6548   MachineMemOperand *MMO = MF.getMachineMemOperand(
6549       MachinePointerInfo(),
6550       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6551           MachineMemOperand::MOInvariant,
6552       VT.getStoreSize(), Alignment);
6553 
6554   if (!Offset->isDivergent()) {
6555     SDValue Ops[] = {
6556         Rsrc,
6557         Offset, // Offset
6558         CachePolicy
6559     };
6560 
6561     // Widen vec3 load to vec4.
6562     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6563       EVT WidenedVT =
6564           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6565       auto WidenedOp = DAG.getMemIntrinsicNode(
6566           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6567           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6568       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6569                                    DAG.getVectorIdxConstant(0, DL));
6570       return Subvector;
6571     }
6572 
6573     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6574                                    DAG.getVTList(VT), Ops, VT, MMO);
6575   }
6576 
6577   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6578   // assume that the buffer is unswizzled.
6579   SmallVector<SDValue, 4> Loads;
6580   unsigned NumLoads = 1;
6581   MVT LoadVT = VT.getSimpleVT();
6582   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6583   assert((LoadVT.getScalarType() == MVT::i32 ||
6584           LoadVT.getScalarType() == MVT::f32));
6585 
6586   if (NumElts == 8 || NumElts == 16) {
6587     NumLoads = NumElts / 4;
6588     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6589   }
6590 
6591   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6592   SDValue Ops[] = {
6593       DAG.getEntryNode(),                               // Chain
6594       Rsrc,                                             // rsrc
6595       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6596       {},                                               // voffset
6597       {},                                               // soffset
6598       {},                                               // offset
6599       CachePolicy,                                      // cachepolicy
6600       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6601   };
6602 
6603   // Use the alignment to ensure that the required offsets will fit into the
6604   // immediate offsets.
6605   setBufferOffsets(Offset, DAG, &Ops[3],
6606                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6607 
6608   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6609   for (unsigned i = 0; i < NumLoads; ++i) {
6610     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6611     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6612                                         LoadVT, MMO, DAG));
6613   }
6614 
6615   if (NumElts == 8 || NumElts == 16)
6616     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6617 
6618   return Loads[0];
6619 }
6620 
6621 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6622                                                   SelectionDAG &DAG) const {
6623   MachineFunction &MF = DAG.getMachineFunction();
6624   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6625 
6626   EVT VT = Op.getValueType();
6627   SDLoc DL(Op);
6628   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6629 
6630   // TODO: Should this propagate fast-math-flags?
6631 
6632   switch (IntrinsicID) {
6633   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6634     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6635       return emitNonHSAIntrinsicError(DAG, DL, VT);
6636     return getPreloadedValue(DAG, *MFI, VT,
6637                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6638   }
6639   case Intrinsic::amdgcn_dispatch_ptr:
6640   case Intrinsic::amdgcn_queue_ptr: {
6641     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6642       DiagnosticInfoUnsupported BadIntrin(
6643           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6644           DL.getDebugLoc());
6645       DAG.getContext()->diagnose(BadIntrin);
6646       return DAG.getUNDEF(VT);
6647     }
6648 
6649     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6650       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6651     return getPreloadedValue(DAG, *MFI, VT, RegID);
6652   }
6653   case Intrinsic::amdgcn_implicitarg_ptr: {
6654     if (MFI->isEntryFunction())
6655       return getImplicitArgPtr(DAG, DL);
6656     return getPreloadedValue(DAG, *MFI, VT,
6657                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6658   }
6659   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6660     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6661       // This only makes sense to call in a kernel, so just lower to null.
6662       return DAG.getConstant(0, DL, VT);
6663     }
6664 
6665     return getPreloadedValue(DAG, *MFI, VT,
6666                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6667   }
6668   case Intrinsic::amdgcn_dispatch_id: {
6669     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6670   }
6671   case Intrinsic::amdgcn_rcp:
6672     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6673   case Intrinsic::amdgcn_rsq:
6674     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6675   case Intrinsic::amdgcn_rsq_legacy:
6676     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6677       return emitRemovedIntrinsicError(DAG, DL, VT);
6678     return SDValue();
6679   case Intrinsic::amdgcn_rcp_legacy:
6680     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6681       return emitRemovedIntrinsicError(DAG, DL, VT);
6682     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6683   case Intrinsic::amdgcn_rsq_clamp: {
6684     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6685       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6686 
6687     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6688     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6689     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6690 
6691     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6692     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6693                               DAG.getConstantFP(Max, DL, VT));
6694     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6695                        DAG.getConstantFP(Min, DL, VT));
6696   }
6697   case Intrinsic::r600_read_ngroups_x:
6698     if (Subtarget->isAmdHsaOS())
6699       return emitNonHSAIntrinsicError(DAG, DL, VT);
6700 
6701     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6702                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6703                                     false);
6704   case Intrinsic::r600_read_ngroups_y:
6705     if (Subtarget->isAmdHsaOS())
6706       return emitNonHSAIntrinsicError(DAG, DL, VT);
6707 
6708     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6709                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6710                                     false);
6711   case Intrinsic::r600_read_ngroups_z:
6712     if (Subtarget->isAmdHsaOS())
6713       return emitNonHSAIntrinsicError(DAG, DL, VT);
6714 
6715     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6716                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6717                                     false);
6718   case Intrinsic::r600_read_global_size_x:
6719     if (Subtarget->isAmdHsaOS())
6720       return emitNonHSAIntrinsicError(DAG, DL, VT);
6721 
6722     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6723                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6724                                     Align(4), false);
6725   case Intrinsic::r600_read_global_size_y:
6726     if (Subtarget->isAmdHsaOS())
6727       return emitNonHSAIntrinsicError(DAG, DL, VT);
6728 
6729     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6730                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6731                                     Align(4), false);
6732   case Intrinsic::r600_read_global_size_z:
6733     if (Subtarget->isAmdHsaOS())
6734       return emitNonHSAIntrinsicError(DAG, DL, VT);
6735 
6736     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6737                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6738                                     Align(4), false);
6739   case Intrinsic::r600_read_local_size_x:
6740     if (Subtarget->isAmdHsaOS())
6741       return emitNonHSAIntrinsicError(DAG, DL, VT);
6742 
6743     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6744                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6745   case Intrinsic::r600_read_local_size_y:
6746     if (Subtarget->isAmdHsaOS())
6747       return emitNonHSAIntrinsicError(DAG, DL, VT);
6748 
6749     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6750                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6751   case Intrinsic::r600_read_local_size_z:
6752     if (Subtarget->isAmdHsaOS())
6753       return emitNonHSAIntrinsicError(DAG, DL, VT);
6754 
6755     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6756                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6757   case Intrinsic::amdgcn_workgroup_id_x:
6758     return getPreloadedValue(DAG, *MFI, VT,
6759                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6760   case Intrinsic::amdgcn_workgroup_id_y:
6761     return getPreloadedValue(DAG, *MFI, VT,
6762                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6763   case Intrinsic::amdgcn_workgroup_id_z:
6764     return getPreloadedValue(DAG, *MFI, VT,
6765                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6766   case Intrinsic::amdgcn_workitem_id_x:
6767     if (Subtarget->getMaxWorkitemID(MF.getFunction(), 0) == 0)
6768       return DAG.getConstant(0, DL, MVT::i32);
6769 
6770     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6771                           SDLoc(DAG.getEntryNode()),
6772                           MFI->getArgInfo().WorkItemIDX);
6773   case Intrinsic::amdgcn_workitem_id_y:
6774     if (Subtarget->getMaxWorkitemID(MF.getFunction(), 1) == 0)
6775       return DAG.getConstant(0, DL, MVT::i32);
6776 
6777     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6778                           SDLoc(DAG.getEntryNode()),
6779                           MFI->getArgInfo().WorkItemIDY);
6780   case Intrinsic::amdgcn_workitem_id_z:
6781     if (Subtarget->getMaxWorkitemID(MF.getFunction(), 2) == 0)
6782       return DAG.getConstant(0, DL, MVT::i32);
6783 
6784     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6785                           SDLoc(DAG.getEntryNode()),
6786                           MFI->getArgInfo().WorkItemIDZ);
6787   case Intrinsic::amdgcn_wavefrontsize:
6788     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6789                            SDLoc(Op), MVT::i32);
6790   case Intrinsic::amdgcn_s_buffer_load: {
6791     unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6792     if (CPol & ~AMDGPU::CPol::ALL)
6793       return Op;
6794     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6795                         DAG);
6796   }
6797   case Intrinsic::amdgcn_fdiv_fast:
6798     return lowerFDIV_FAST(Op, DAG);
6799   case Intrinsic::amdgcn_sin:
6800     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6801 
6802   case Intrinsic::amdgcn_cos:
6803     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6804 
6805   case Intrinsic::amdgcn_mul_u24:
6806     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6807   case Intrinsic::amdgcn_mul_i24:
6808     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6809 
6810   case Intrinsic::amdgcn_log_clamp: {
6811     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6812       return SDValue();
6813 
6814     return emitRemovedIntrinsicError(DAG, DL, VT);
6815   }
6816   case Intrinsic::amdgcn_ldexp:
6817     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6818                        Op.getOperand(1), Op.getOperand(2));
6819 
6820   case Intrinsic::amdgcn_fract:
6821     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6822 
6823   case Intrinsic::amdgcn_class:
6824     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6825                        Op.getOperand(1), Op.getOperand(2));
6826   case Intrinsic::amdgcn_div_fmas:
6827     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6828                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6829                        Op.getOperand(4));
6830 
6831   case Intrinsic::amdgcn_div_fixup:
6832     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6833                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6834 
6835   case Intrinsic::amdgcn_div_scale: {
6836     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6837 
6838     // Translate to the operands expected by the machine instruction. The
6839     // first parameter must be the same as the first instruction.
6840     SDValue Numerator = Op.getOperand(1);
6841     SDValue Denominator = Op.getOperand(2);
6842 
6843     // Note this order is opposite of the machine instruction's operations,
6844     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6845     // intrinsic has the numerator as the first operand to match a normal
6846     // division operation.
6847 
6848     SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
6849 
6850     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6851                        Denominator, Numerator);
6852   }
6853   case Intrinsic::amdgcn_icmp: {
6854     // There is a Pat that handles this variant, so return it as-is.
6855     if (Op.getOperand(1).getValueType() == MVT::i1 &&
6856         Op.getConstantOperandVal(2) == 0 &&
6857         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6858       return Op;
6859     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6860   }
6861   case Intrinsic::amdgcn_fcmp: {
6862     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6863   }
6864   case Intrinsic::amdgcn_ballot:
6865     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6866   case Intrinsic::amdgcn_fmed3:
6867     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6868                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6869   case Intrinsic::amdgcn_fdot2:
6870     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6871                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6872                        Op.getOperand(4));
6873   case Intrinsic::amdgcn_fmul_legacy:
6874     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6875                        Op.getOperand(1), Op.getOperand(2));
6876   case Intrinsic::amdgcn_sffbh:
6877     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6878   case Intrinsic::amdgcn_sbfe:
6879     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6880                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6881   case Intrinsic::amdgcn_ubfe:
6882     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6883                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6884   case Intrinsic::amdgcn_cvt_pkrtz:
6885   case Intrinsic::amdgcn_cvt_pknorm_i16:
6886   case Intrinsic::amdgcn_cvt_pknorm_u16:
6887   case Intrinsic::amdgcn_cvt_pk_i16:
6888   case Intrinsic::amdgcn_cvt_pk_u16: {
6889     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6890     EVT VT = Op.getValueType();
6891     unsigned Opcode;
6892 
6893     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6894       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6895     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6896       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6897     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6898       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6899     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6900       Opcode = AMDGPUISD::CVT_PK_I16_I32;
6901     else
6902       Opcode = AMDGPUISD::CVT_PK_U16_U32;
6903 
6904     if (isTypeLegal(VT))
6905       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6906 
6907     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6908                                Op.getOperand(1), Op.getOperand(2));
6909     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6910   }
6911   case Intrinsic::amdgcn_fmad_ftz:
6912     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6913                        Op.getOperand(2), Op.getOperand(3));
6914 
6915   case Intrinsic::amdgcn_if_break:
6916     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6917                                       Op->getOperand(1), Op->getOperand(2)), 0);
6918 
6919   case Intrinsic::amdgcn_groupstaticsize: {
6920     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6921     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6922       return Op;
6923 
6924     const Module *M = MF.getFunction().getParent();
6925     const GlobalValue *GV =
6926         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6927     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6928                                             SIInstrInfo::MO_ABS32_LO);
6929     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6930   }
6931   case Intrinsic::amdgcn_is_shared:
6932   case Intrinsic::amdgcn_is_private: {
6933     SDLoc SL(Op);
6934     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6935       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6936     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6937     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6938                                  Op.getOperand(1));
6939 
6940     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6941                                 DAG.getConstant(1, SL, MVT::i32));
6942     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6943   }
6944   case Intrinsic::amdgcn_perm:
6945     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
6946                        Op.getOperand(2), Op.getOperand(3));
6947   case Intrinsic::amdgcn_reloc_constant: {
6948     Module *M = const_cast<Module *>(MF.getFunction().getParent());
6949     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
6950     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
6951     auto RelocSymbol = cast<GlobalVariable>(
6952         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
6953     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
6954                                             SIInstrInfo::MO_ABS32_LO);
6955     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6956   }
6957   default:
6958     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6959             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6960       return lowerImage(Op, ImageDimIntr, DAG, false);
6961 
6962     return Op;
6963   }
6964 }
6965 
6966 /// Update \p MMO based on the offset inputs to an intrinsic.
6967 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset,
6968                             SDValue SOffset, SDValue Offset,
6969                             SDValue VIndex = SDValue()) {
6970   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6971       !isa<ConstantSDNode>(Offset)) {
6972     // The combined offset is not known to be constant, so we cannot represent
6973     // it in the MMO. Give up.
6974     MMO->setValue((Value *)nullptr);
6975     return;
6976   }
6977 
6978   if (VIndex && (!isa<ConstantSDNode>(VIndex) ||
6979                  !cast<ConstantSDNode>(VIndex)->isZero())) {
6980     // The strided index component of the address is not known to be zero, so we
6981     // cannot represent it in the MMO. Give up.
6982     MMO->setValue((Value *)nullptr);
6983     return;
6984   }
6985 
6986   MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() +
6987                  cast<ConstantSDNode>(SOffset)->getSExtValue() +
6988                  cast<ConstantSDNode>(Offset)->getSExtValue());
6989 }
6990 
6991 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
6992                                                      SelectionDAG &DAG,
6993                                                      unsigned NewOpcode) const {
6994   SDLoc DL(Op);
6995 
6996   SDValue VData = Op.getOperand(2);
6997   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6998   SDValue Ops[] = {
6999     Op.getOperand(0), // Chain
7000     VData,            // vdata
7001     Op.getOperand(3), // rsrc
7002     DAG.getConstant(0, DL, MVT::i32), // vindex
7003     Offsets.first,    // voffset
7004     Op.getOperand(5), // soffset
7005     Offsets.second,   // offset
7006     Op.getOperand(6), // cachepolicy
7007     DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7008   };
7009 
7010   auto *M = cast<MemSDNode>(Op);
7011   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
7012 
7013   EVT MemVT = VData.getValueType();
7014   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7015                                  M->getMemOperand());
7016 }
7017 
7018 // Return a value to use for the idxen operand by examining the vindex operand.
7019 static unsigned getIdxEn(SDValue VIndex) {
7020   if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex))
7021     // No need to set idxen if vindex is known to be zero.
7022     return VIndexC->getZExtValue() != 0;
7023   return 1;
7024 }
7025 
7026 SDValue
7027 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
7028                                                 unsigned NewOpcode) const {
7029   SDLoc DL(Op);
7030 
7031   SDValue VData = Op.getOperand(2);
7032   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7033   SDValue Ops[] = {
7034     Op.getOperand(0), // Chain
7035     VData,            // vdata
7036     Op.getOperand(3), // rsrc
7037     Op.getOperand(4), // vindex
7038     Offsets.first,    // voffset
7039     Op.getOperand(6), // soffset
7040     Offsets.second,   // offset
7041     Op.getOperand(7), // cachepolicy
7042     DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7043   };
7044 
7045   auto *M = cast<MemSDNode>(Op);
7046   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7047 
7048   EVT MemVT = VData.getValueType();
7049   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7050                                  M->getMemOperand());
7051 }
7052 
7053 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
7054                                                  SelectionDAG &DAG) const {
7055   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7056   SDLoc DL(Op);
7057 
7058   switch (IntrID) {
7059   case Intrinsic::amdgcn_ds_ordered_add:
7060   case Intrinsic::amdgcn_ds_ordered_swap: {
7061     MemSDNode *M = cast<MemSDNode>(Op);
7062     SDValue Chain = M->getOperand(0);
7063     SDValue M0 = M->getOperand(2);
7064     SDValue Value = M->getOperand(3);
7065     unsigned IndexOperand = M->getConstantOperandVal(7);
7066     unsigned WaveRelease = M->getConstantOperandVal(8);
7067     unsigned WaveDone = M->getConstantOperandVal(9);
7068 
7069     unsigned OrderedCountIndex = IndexOperand & 0x3f;
7070     IndexOperand &= ~0x3f;
7071     unsigned CountDw = 0;
7072 
7073     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
7074       CountDw = (IndexOperand >> 24) & 0xf;
7075       IndexOperand &= ~(0xf << 24);
7076 
7077       if (CountDw < 1 || CountDw > 4) {
7078         report_fatal_error(
7079             "ds_ordered_count: dword count must be between 1 and 4");
7080       }
7081     }
7082 
7083     if (IndexOperand)
7084       report_fatal_error("ds_ordered_count: bad index operand");
7085 
7086     if (WaveDone && !WaveRelease)
7087       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
7088 
7089     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
7090     unsigned ShaderType =
7091         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
7092     unsigned Offset0 = OrderedCountIndex << 2;
7093     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
7094                        (Instruction << 4);
7095 
7096     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
7097       Offset1 |= (CountDw - 1) << 6;
7098 
7099     unsigned Offset = Offset0 | (Offset1 << 8);
7100 
7101     SDValue Ops[] = {
7102       Chain,
7103       Value,
7104       DAG.getTargetConstant(Offset, DL, MVT::i16),
7105       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
7106     };
7107     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
7108                                    M->getVTList(), Ops, M->getMemoryVT(),
7109                                    M->getMemOperand());
7110   }
7111   case Intrinsic::amdgcn_ds_fadd: {
7112     MemSDNode *M = cast<MemSDNode>(Op);
7113     unsigned Opc;
7114     switch (IntrID) {
7115     case Intrinsic::amdgcn_ds_fadd:
7116       Opc = ISD::ATOMIC_LOAD_FADD;
7117       break;
7118     }
7119 
7120     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
7121                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
7122                          M->getMemOperand());
7123   }
7124   case Intrinsic::amdgcn_atomic_inc:
7125   case Intrinsic::amdgcn_atomic_dec:
7126   case Intrinsic::amdgcn_ds_fmin:
7127   case Intrinsic::amdgcn_ds_fmax: {
7128     MemSDNode *M = cast<MemSDNode>(Op);
7129     unsigned Opc;
7130     switch (IntrID) {
7131     case Intrinsic::amdgcn_atomic_inc:
7132       Opc = AMDGPUISD::ATOMIC_INC;
7133       break;
7134     case Intrinsic::amdgcn_atomic_dec:
7135       Opc = AMDGPUISD::ATOMIC_DEC;
7136       break;
7137     case Intrinsic::amdgcn_ds_fmin:
7138       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
7139       break;
7140     case Intrinsic::amdgcn_ds_fmax:
7141       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
7142       break;
7143     default:
7144       llvm_unreachable("Unknown intrinsic!");
7145     }
7146     SDValue Ops[] = {
7147       M->getOperand(0), // Chain
7148       M->getOperand(2), // Ptr
7149       M->getOperand(3)  // Value
7150     };
7151 
7152     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
7153                                    M->getMemoryVT(), M->getMemOperand());
7154   }
7155   case Intrinsic::amdgcn_buffer_load:
7156   case Intrinsic::amdgcn_buffer_load_format: {
7157     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7158     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7159     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7160     SDValue Ops[] = {
7161       Op.getOperand(0), // Chain
7162       Op.getOperand(2), // rsrc
7163       Op.getOperand(3), // vindex
7164       SDValue(),        // voffset -- will be set by setBufferOffsets
7165       SDValue(),        // soffset -- will be set by setBufferOffsets
7166       SDValue(),        // offset -- will be set by setBufferOffsets
7167       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7168       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7169     };
7170     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
7171 
7172     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
7173         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
7174 
7175     EVT VT = Op.getValueType();
7176     EVT IntVT = VT.changeTypeToInteger();
7177     auto *M = cast<MemSDNode>(Op);
7178     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7179     EVT LoadVT = Op.getValueType();
7180 
7181     if (LoadVT.getScalarType() == MVT::f16)
7182       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
7183                                  M, DAG, Ops);
7184 
7185     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
7186     if (LoadVT.getScalarType() == MVT::i8 ||
7187         LoadVT.getScalarType() == MVT::i16)
7188       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
7189 
7190     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
7191                                M->getMemOperand(), DAG);
7192   }
7193   case Intrinsic::amdgcn_raw_buffer_load:
7194   case Intrinsic::amdgcn_raw_buffer_load_format: {
7195     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
7196 
7197     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7198     SDValue Ops[] = {
7199       Op.getOperand(0), // Chain
7200       Op.getOperand(2), // rsrc
7201       DAG.getConstant(0, DL, MVT::i32), // vindex
7202       Offsets.first,    // voffset
7203       Op.getOperand(4), // soffset
7204       Offsets.second,   // offset
7205       Op.getOperand(5), // cachepolicy, swizzled buffer
7206       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7207     };
7208 
7209     auto *M = cast<MemSDNode>(Op);
7210     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]);
7211     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
7212   }
7213   case Intrinsic::amdgcn_struct_buffer_load:
7214   case Intrinsic::amdgcn_struct_buffer_load_format: {
7215     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7216 
7217     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7218     SDValue Ops[] = {
7219       Op.getOperand(0), // Chain
7220       Op.getOperand(2), // rsrc
7221       Op.getOperand(3), // vindex
7222       Offsets.first,    // voffset
7223       Op.getOperand(5), // soffset
7224       Offsets.second,   // offset
7225       Op.getOperand(6), // cachepolicy, swizzled buffer
7226       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7227     };
7228 
7229     auto *M = cast<MemSDNode>(Op);
7230     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7231     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7232   }
7233   case Intrinsic::amdgcn_tbuffer_load: {
7234     MemSDNode *M = cast<MemSDNode>(Op);
7235     EVT LoadVT = Op.getValueType();
7236 
7237     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7238     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7239     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7240     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7241     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7242     SDValue Ops[] = {
7243       Op.getOperand(0),  // Chain
7244       Op.getOperand(2),  // rsrc
7245       Op.getOperand(3),  // vindex
7246       Op.getOperand(4),  // voffset
7247       Op.getOperand(5),  // soffset
7248       Op.getOperand(6),  // offset
7249       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7250       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7251       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7252     };
7253 
7254     if (LoadVT.getScalarType() == MVT::f16)
7255       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7256                                  M, DAG, Ops);
7257     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7258                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7259                                DAG);
7260   }
7261   case Intrinsic::amdgcn_raw_tbuffer_load: {
7262     MemSDNode *M = cast<MemSDNode>(Op);
7263     EVT LoadVT = Op.getValueType();
7264     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7265 
7266     SDValue Ops[] = {
7267       Op.getOperand(0),  // Chain
7268       Op.getOperand(2),  // rsrc
7269       DAG.getConstant(0, DL, MVT::i32), // vindex
7270       Offsets.first,     // voffset
7271       Op.getOperand(4),  // soffset
7272       Offsets.second,    // offset
7273       Op.getOperand(5),  // format
7274       Op.getOperand(6),  // cachepolicy, swizzled buffer
7275       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7276     };
7277 
7278     if (LoadVT.getScalarType() == MVT::f16)
7279       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7280                                  M, DAG, Ops);
7281     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7282                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7283                                DAG);
7284   }
7285   case Intrinsic::amdgcn_struct_tbuffer_load: {
7286     MemSDNode *M = cast<MemSDNode>(Op);
7287     EVT LoadVT = Op.getValueType();
7288     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7289 
7290     SDValue Ops[] = {
7291       Op.getOperand(0),  // Chain
7292       Op.getOperand(2),  // rsrc
7293       Op.getOperand(3),  // vindex
7294       Offsets.first,     // voffset
7295       Op.getOperand(5),  // soffset
7296       Offsets.second,    // offset
7297       Op.getOperand(6),  // format
7298       Op.getOperand(7),  // cachepolicy, swizzled buffer
7299       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7300     };
7301 
7302     if (LoadVT.getScalarType() == MVT::f16)
7303       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7304                                  M, DAG, Ops);
7305     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7306                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7307                                DAG);
7308   }
7309   case Intrinsic::amdgcn_buffer_atomic_swap:
7310   case Intrinsic::amdgcn_buffer_atomic_add:
7311   case Intrinsic::amdgcn_buffer_atomic_sub:
7312   case Intrinsic::amdgcn_buffer_atomic_csub:
7313   case Intrinsic::amdgcn_buffer_atomic_smin:
7314   case Intrinsic::amdgcn_buffer_atomic_umin:
7315   case Intrinsic::amdgcn_buffer_atomic_smax:
7316   case Intrinsic::amdgcn_buffer_atomic_umax:
7317   case Intrinsic::amdgcn_buffer_atomic_and:
7318   case Intrinsic::amdgcn_buffer_atomic_or:
7319   case Intrinsic::amdgcn_buffer_atomic_xor:
7320   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7321     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7322     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7323     SDValue Ops[] = {
7324       Op.getOperand(0), // Chain
7325       Op.getOperand(2), // vdata
7326       Op.getOperand(3), // rsrc
7327       Op.getOperand(4), // vindex
7328       SDValue(),        // voffset -- will be set by setBufferOffsets
7329       SDValue(),        // soffset -- will be set by setBufferOffsets
7330       SDValue(),        // offset -- will be set by setBufferOffsets
7331       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7332       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7333     };
7334     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7335 
7336     EVT VT = Op.getValueType();
7337 
7338     auto *M = cast<MemSDNode>(Op);
7339     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7340     unsigned Opcode = 0;
7341 
7342     switch (IntrID) {
7343     case Intrinsic::amdgcn_buffer_atomic_swap:
7344       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7345       break;
7346     case Intrinsic::amdgcn_buffer_atomic_add:
7347       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7348       break;
7349     case Intrinsic::amdgcn_buffer_atomic_sub:
7350       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7351       break;
7352     case Intrinsic::amdgcn_buffer_atomic_csub:
7353       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7354       break;
7355     case Intrinsic::amdgcn_buffer_atomic_smin:
7356       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7357       break;
7358     case Intrinsic::amdgcn_buffer_atomic_umin:
7359       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7360       break;
7361     case Intrinsic::amdgcn_buffer_atomic_smax:
7362       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7363       break;
7364     case Intrinsic::amdgcn_buffer_atomic_umax:
7365       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7366       break;
7367     case Intrinsic::amdgcn_buffer_atomic_and:
7368       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7369       break;
7370     case Intrinsic::amdgcn_buffer_atomic_or:
7371       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7372       break;
7373     case Intrinsic::amdgcn_buffer_atomic_xor:
7374       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7375       break;
7376     case Intrinsic::amdgcn_buffer_atomic_fadd:
7377       if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7378         DiagnosticInfoUnsupported
7379           NoFpRet(DAG.getMachineFunction().getFunction(),
7380                   "return versions of fp atomics not supported",
7381                   DL.getDebugLoc(), DS_Error);
7382         DAG.getContext()->diagnose(NoFpRet);
7383         return SDValue();
7384       }
7385       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7386       break;
7387     default:
7388       llvm_unreachable("unhandled atomic opcode");
7389     }
7390 
7391     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7392                                    M->getMemOperand());
7393   }
7394   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7395     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7396   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7397     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7398   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7399     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7400   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7401     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7402   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7403     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7404   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7405     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7406   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7407     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7408   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7409     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7410   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7411     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7412   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7413     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7414   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7415     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7416   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7417     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7418   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7419     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7420   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7421     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7422   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7423     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7424   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7425     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7426   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7427     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7428   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7429     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7430   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7431     return lowerStructBufferAtomicIntrin(Op, DAG,
7432                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7433   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7434     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7435   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7436     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7437   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7438     return lowerStructBufferAtomicIntrin(Op, DAG,
7439                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7440   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7441     return lowerStructBufferAtomicIntrin(Op, DAG,
7442                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7443   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7444     return lowerStructBufferAtomicIntrin(Op, DAG,
7445                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7446   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7447     return lowerStructBufferAtomicIntrin(Op, DAG,
7448                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7449   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7450     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7451   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7452     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7453   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7454     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7455   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7456     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7457   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7458     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7459 
7460   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7461     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7462     unsigned IdxEn = getIdxEn(Op.getOperand(5));
7463     SDValue Ops[] = {
7464       Op.getOperand(0), // Chain
7465       Op.getOperand(2), // src
7466       Op.getOperand(3), // cmp
7467       Op.getOperand(4), // rsrc
7468       Op.getOperand(5), // vindex
7469       SDValue(),        // voffset -- will be set by setBufferOffsets
7470       SDValue(),        // soffset -- will be set by setBufferOffsets
7471       SDValue(),        // offset -- will be set by setBufferOffsets
7472       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7473       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7474     };
7475     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7476 
7477     EVT VT = Op.getValueType();
7478     auto *M = cast<MemSDNode>(Op);
7479     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7480 
7481     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7482                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7483   }
7484   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7485     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7486     SDValue Ops[] = {
7487       Op.getOperand(0), // Chain
7488       Op.getOperand(2), // src
7489       Op.getOperand(3), // cmp
7490       Op.getOperand(4), // rsrc
7491       DAG.getConstant(0, DL, MVT::i32), // vindex
7492       Offsets.first,    // voffset
7493       Op.getOperand(6), // soffset
7494       Offsets.second,   // offset
7495       Op.getOperand(7), // cachepolicy
7496       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7497     };
7498     EVT VT = Op.getValueType();
7499     auto *M = cast<MemSDNode>(Op);
7500     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]);
7501 
7502     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7503                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7504   }
7505   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7506     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7507     SDValue Ops[] = {
7508       Op.getOperand(0), // Chain
7509       Op.getOperand(2), // src
7510       Op.getOperand(3), // cmp
7511       Op.getOperand(4), // rsrc
7512       Op.getOperand(5), // vindex
7513       Offsets.first,    // voffset
7514       Op.getOperand(7), // soffset
7515       Offsets.second,   // offset
7516       Op.getOperand(8), // cachepolicy
7517       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7518     };
7519     EVT VT = Op.getValueType();
7520     auto *M = cast<MemSDNode>(Op);
7521     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7522 
7523     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7524                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7525   }
7526   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7527     MemSDNode *M = cast<MemSDNode>(Op);
7528     SDValue NodePtr = M->getOperand(2);
7529     SDValue RayExtent = M->getOperand(3);
7530     SDValue RayOrigin = M->getOperand(4);
7531     SDValue RayDir = M->getOperand(5);
7532     SDValue RayInvDir = M->getOperand(6);
7533     SDValue TDescr = M->getOperand(7);
7534 
7535     assert(NodePtr.getValueType() == MVT::i32 ||
7536            NodePtr.getValueType() == MVT::i64);
7537     assert(RayDir.getValueType() == MVT::v3f16 ||
7538            RayDir.getValueType() == MVT::v3f32);
7539 
7540     if (!Subtarget->hasGFX10_AEncoding()) {
7541       emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
7542       return SDValue();
7543     }
7544 
7545     const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7546     const bool Is64 = NodePtr.getValueType() == MVT::i64;
7547     const unsigned NumVDataDwords = 4;
7548     const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7549     const bool UseNSA = Subtarget->hasNSAEncoding() &&
7550                         NumVAddrDwords <= Subtarget->getNSAMaxSize();
7551     const unsigned BaseOpcodes[2][2] = {
7552         {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7553         {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7554          AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7555     int Opcode;
7556     if (UseNSA) {
7557       Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7558                                      AMDGPU::MIMGEncGfx10NSA, NumVDataDwords,
7559                                      NumVAddrDwords);
7560     } else {
7561       Opcode = AMDGPU::getMIMGOpcode(
7562           BaseOpcodes[Is64][IsA16], AMDGPU::MIMGEncGfx10Default, NumVDataDwords,
7563           PowerOf2Ceil(NumVAddrDwords));
7564     }
7565     assert(Opcode != -1);
7566 
7567     SmallVector<SDValue, 16> Ops;
7568 
7569     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7570       SmallVector<SDValue, 3> Lanes;
7571       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7572       if (Lanes[0].getValueSizeInBits() == 32) {
7573         for (unsigned I = 0; I < 3; ++I)
7574           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7575       } else {
7576         if (IsAligned) {
7577           Ops.push_back(
7578             DAG.getBitcast(MVT::i32,
7579                            DAG.getBuildVector(MVT::v2f16, DL,
7580                                               { Lanes[0], Lanes[1] })));
7581           Ops.push_back(Lanes[2]);
7582         } else {
7583           SDValue Elt0 = Ops.pop_back_val();
7584           Ops.push_back(
7585             DAG.getBitcast(MVT::i32,
7586                            DAG.getBuildVector(MVT::v2f16, DL,
7587                                               { Elt0, Lanes[0] })));
7588           Ops.push_back(
7589             DAG.getBitcast(MVT::i32,
7590                            DAG.getBuildVector(MVT::v2f16, DL,
7591                                               { Lanes[1], Lanes[2] })));
7592         }
7593       }
7594     };
7595 
7596     if (Is64)
7597       DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7598     else
7599       Ops.push_back(NodePtr);
7600 
7601     Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7602     packLanes(RayOrigin, true);
7603     packLanes(RayDir, true);
7604     packLanes(RayInvDir, false);
7605 
7606     if (!UseNSA) {
7607       // Build a single vector containing all the operands so far prepared.
7608       if (NumVAddrDwords > 8) {
7609         SDValue Undef = DAG.getUNDEF(MVT::i32);
7610         Ops.append(16 - Ops.size(), Undef);
7611       }
7612       assert(Ops.size() == 8 || Ops.size() == 16);
7613       SDValue MergedOps = DAG.getBuildVector(
7614           Ops.size() == 16 ? MVT::v16i32 : MVT::v8i32, DL, Ops);
7615       Ops.clear();
7616       Ops.push_back(MergedOps);
7617     }
7618 
7619     Ops.push_back(TDescr);
7620     if (IsA16)
7621       Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7622     Ops.push_back(M->getChain());
7623 
7624     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7625     MachineMemOperand *MemRef = M->getMemOperand();
7626     DAG.setNodeMemRefs(NewNode, {MemRef});
7627     return SDValue(NewNode, 0);
7628   }
7629   case Intrinsic::amdgcn_global_atomic_fadd:
7630     if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7631       DiagnosticInfoUnsupported
7632         NoFpRet(DAG.getMachineFunction().getFunction(),
7633                 "return versions of fp atomics not supported",
7634                 DL.getDebugLoc(), DS_Error);
7635       DAG.getContext()->diagnose(NoFpRet);
7636       return SDValue();
7637     }
7638     LLVM_FALLTHROUGH;
7639   case Intrinsic::amdgcn_global_atomic_fmin:
7640   case Intrinsic::amdgcn_global_atomic_fmax:
7641   case Intrinsic::amdgcn_flat_atomic_fadd:
7642   case Intrinsic::amdgcn_flat_atomic_fmin:
7643   case Intrinsic::amdgcn_flat_atomic_fmax: {
7644     MemSDNode *M = cast<MemSDNode>(Op);
7645     SDValue Ops[] = {
7646       M->getOperand(0), // Chain
7647       M->getOperand(2), // Ptr
7648       M->getOperand(3)  // Value
7649     };
7650     unsigned Opcode = 0;
7651     switch (IntrID) {
7652     case Intrinsic::amdgcn_global_atomic_fadd:
7653     case Intrinsic::amdgcn_flat_atomic_fadd: {
7654       EVT VT = Op.getOperand(3).getValueType();
7655       return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7656                            DAG.getVTList(VT, MVT::Other), Ops,
7657                            M->getMemOperand());
7658     }
7659     case Intrinsic::amdgcn_global_atomic_fmin:
7660     case Intrinsic::amdgcn_flat_atomic_fmin: {
7661       Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
7662       break;
7663     }
7664     case Intrinsic::amdgcn_global_atomic_fmax:
7665     case Intrinsic::amdgcn_flat_atomic_fmax: {
7666       Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
7667       break;
7668     }
7669     default:
7670       llvm_unreachable("unhandled atomic opcode");
7671     }
7672     return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
7673                                    M->getVTList(), Ops, M->getMemoryVT(),
7674                                    M->getMemOperand());
7675   }
7676   default:
7677 
7678     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7679             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7680       return lowerImage(Op, ImageDimIntr, DAG, true);
7681 
7682     return SDValue();
7683   }
7684 }
7685 
7686 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7687 // dwordx4 if on SI.
7688 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7689                                               SDVTList VTList,
7690                                               ArrayRef<SDValue> Ops, EVT MemVT,
7691                                               MachineMemOperand *MMO,
7692                                               SelectionDAG &DAG) const {
7693   EVT VT = VTList.VTs[0];
7694   EVT WidenedVT = VT;
7695   EVT WidenedMemVT = MemVT;
7696   if (!Subtarget->hasDwordx3LoadStores() &&
7697       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7698     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7699                                  WidenedVT.getVectorElementType(), 4);
7700     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7701                                     WidenedMemVT.getVectorElementType(), 4);
7702     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7703   }
7704 
7705   assert(VTList.NumVTs == 2);
7706   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7707 
7708   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7709                                        WidenedMemVT, MMO);
7710   if (WidenedVT != VT) {
7711     auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7712                                DAG.getVectorIdxConstant(0, DL));
7713     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7714   }
7715   return NewOp;
7716 }
7717 
7718 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7719                                          bool ImageStore) const {
7720   EVT StoreVT = VData.getValueType();
7721 
7722   // No change for f16 and legal vector D16 types.
7723   if (!StoreVT.isVector())
7724     return VData;
7725 
7726   SDLoc DL(VData);
7727   unsigned NumElements = StoreVT.getVectorNumElements();
7728 
7729   if (Subtarget->hasUnpackedD16VMem()) {
7730     // We need to unpack the packed data to store.
7731     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7732     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7733 
7734     EVT EquivStoreVT =
7735         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7736     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7737     return DAG.UnrollVectorOp(ZExt.getNode());
7738   }
7739 
7740   // The sq block of gfx8.1 does not estimate register use correctly for d16
7741   // image store instructions. The data operand is computed as if it were not a
7742   // d16 image instruction.
7743   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7744     // Bitcast to i16
7745     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7746     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7747 
7748     // Decompose into scalars
7749     SmallVector<SDValue, 4> Elts;
7750     DAG.ExtractVectorElements(IntVData, Elts);
7751 
7752     // Group pairs of i16 into v2i16 and bitcast to i32
7753     SmallVector<SDValue, 4> PackedElts;
7754     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7755       SDValue Pair =
7756           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7757       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7758       PackedElts.push_back(IntPair);
7759     }
7760     if ((NumElements % 2) == 1) {
7761       // Handle v3i16
7762       unsigned I = Elts.size() / 2;
7763       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7764                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7765       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7766       PackedElts.push_back(IntPair);
7767     }
7768 
7769     // Pad using UNDEF
7770     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7771 
7772     // Build final vector
7773     EVT VecVT =
7774         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7775     return DAG.getBuildVector(VecVT, DL, PackedElts);
7776   }
7777 
7778   if (NumElements == 3) {
7779     EVT IntStoreVT =
7780         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7781     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7782 
7783     EVT WidenedStoreVT = EVT::getVectorVT(
7784         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7785     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7786                                          WidenedStoreVT.getStoreSizeInBits());
7787     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7788     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7789   }
7790 
7791   assert(isTypeLegal(StoreVT));
7792   return VData;
7793 }
7794 
7795 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7796                                               SelectionDAG &DAG) const {
7797   SDLoc DL(Op);
7798   SDValue Chain = Op.getOperand(0);
7799   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7800   MachineFunction &MF = DAG.getMachineFunction();
7801 
7802   switch (IntrinsicID) {
7803   case Intrinsic::amdgcn_exp_compr: {
7804     SDValue Src0 = Op.getOperand(4);
7805     SDValue Src1 = Op.getOperand(5);
7806     // Hack around illegal type on SI by directly selecting it.
7807     if (isTypeLegal(Src0.getValueType()))
7808       return SDValue();
7809 
7810     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7811     SDValue Undef = DAG.getUNDEF(MVT::f32);
7812     const SDValue Ops[] = {
7813       Op.getOperand(2), // tgt
7814       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7815       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7816       Undef, // src2
7817       Undef, // src3
7818       Op.getOperand(7), // vm
7819       DAG.getTargetConstant(1, DL, MVT::i1), // compr
7820       Op.getOperand(3), // en
7821       Op.getOperand(0) // Chain
7822     };
7823 
7824     unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7825     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7826   }
7827   case Intrinsic::amdgcn_s_barrier: {
7828     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7829       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7830       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7831       if (WGSize <= ST.getWavefrontSize())
7832         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7833                                           Op.getOperand(0)), 0);
7834     }
7835     return SDValue();
7836   };
7837   case Intrinsic::amdgcn_tbuffer_store: {
7838     SDValue VData = Op.getOperand(2);
7839     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7840     if (IsD16)
7841       VData = handleD16VData(VData, DAG);
7842     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7843     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7844     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7845     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7846     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7847     SDValue Ops[] = {
7848       Chain,
7849       VData,             // vdata
7850       Op.getOperand(3),  // rsrc
7851       Op.getOperand(4),  // vindex
7852       Op.getOperand(5),  // voffset
7853       Op.getOperand(6),  // soffset
7854       Op.getOperand(7),  // offset
7855       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7856       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7857       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7858     };
7859     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7860                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7861     MemSDNode *M = cast<MemSDNode>(Op);
7862     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7863                                    M->getMemoryVT(), M->getMemOperand());
7864   }
7865 
7866   case Intrinsic::amdgcn_struct_tbuffer_store: {
7867     SDValue VData = Op.getOperand(2);
7868     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7869     if (IsD16)
7870       VData = handleD16VData(VData, DAG);
7871     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7872     SDValue Ops[] = {
7873       Chain,
7874       VData,             // vdata
7875       Op.getOperand(3),  // rsrc
7876       Op.getOperand(4),  // vindex
7877       Offsets.first,     // voffset
7878       Op.getOperand(6),  // soffset
7879       Offsets.second,    // offset
7880       Op.getOperand(7),  // format
7881       Op.getOperand(8),  // cachepolicy, swizzled buffer
7882       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7883     };
7884     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7885                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7886     MemSDNode *M = cast<MemSDNode>(Op);
7887     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7888                                    M->getMemoryVT(), M->getMemOperand());
7889   }
7890 
7891   case Intrinsic::amdgcn_raw_tbuffer_store: {
7892     SDValue VData = Op.getOperand(2);
7893     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7894     if (IsD16)
7895       VData = handleD16VData(VData, DAG);
7896     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7897     SDValue Ops[] = {
7898       Chain,
7899       VData,             // vdata
7900       Op.getOperand(3),  // rsrc
7901       DAG.getConstant(0, DL, MVT::i32), // vindex
7902       Offsets.first,     // voffset
7903       Op.getOperand(5),  // soffset
7904       Offsets.second,    // offset
7905       Op.getOperand(6),  // format
7906       Op.getOperand(7),  // cachepolicy, swizzled buffer
7907       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7908     };
7909     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7910                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7911     MemSDNode *M = cast<MemSDNode>(Op);
7912     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7913                                    M->getMemoryVT(), M->getMemOperand());
7914   }
7915 
7916   case Intrinsic::amdgcn_buffer_store:
7917   case Intrinsic::amdgcn_buffer_store_format: {
7918     SDValue VData = Op.getOperand(2);
7919     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7920     if (IsD16)
7921       VData = handleD16VData(VData, DAG);
7922     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7923     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7924     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7925     SDValue Ops[] = {
7926       Chain,
7927       VData,
7928       Op.getOperand(3), // rsrc
7929       Op.getOperand(4), // vindex
7930       SDValue(), // voffset -- will be set by setBufferOffsets
7931       SDValue(), // soffset -- will be set by setBufferOffsets
7932       SDValue(), // offset -- will be set by setBufferOffsets
7933       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7934       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7935     };
7936     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7937 
7938     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
7939                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7940     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7941     MemSDNode *M = cast<MemSDNode>(Op);
7942     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7943 
7944     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7945     EVT VDataType = VData.getValueType().getScalarType();
7946     if (VDataType == MVT::i8 || VDataType == MVT::i16)
7947       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7948 
7949     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7950                                    M->getMemoryVT(), M->getMemOperand());
7951   }
7952 
7953   case Intrinsic::amdgcn_raw_buffer_store:
7954   case Intrinsic::amdgcn_raw_buffer_store_format: {
7955     const bool IsFormat =
7956         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
7957 
7958     SDValue VData = Op.getOperand(2);
7959     EVT VDataVT = VData.getValueType();
7960     EVT EltType = VDataVT.getScalarType();
7961     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7962     if (IsD16) {
7963       VData = handleD16VData(VData, DAG);
7964       VDataVT = VData.getValueType();
7965     }
7966 
7967     if (!isTypeLegal(VDataVT)) {
7968       VData =
7969           DAG.getNode(ISD::BITCAST, DL,
7970                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7971     }
7972 
7973     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7974     SDValue Ops[] = {
7975       Chain,
7976       VData,
7977       Op.getOperand(3), // rsrc
7978       DAG.getConstant(0, DL, MVT::i32), // vindex
7979       Offsets.first,    // voffset
7980       Op.getOperand(5), // soffset
7981       Offsets.second,   // offset
7982       Op.getOperand(6), // cachepolicy, swizzled buffer
7983       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7984     };
7985     unsigned Opc =
7986         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7987     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7988     MemSDNode *M = cast<MemSDNode>(Op);
7989     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
7990 
7991     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7992     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7993       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7994 
7995     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7996                                    M->getMemoryVT(), M->getMemOperand());
7997   }
7998 
7999   case Intrinsic::amdgcn_struct_buffer_store:
8000   case Intrinsic::amdgcn_struct_buffer_store_format: {
8001     const bool IsFormat =
8002         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
8003 
8004     SDValue VData = Op.getOperand(2);
8005     EVT VDataVT = VData.getValueType();
8006     EVT EltType = VDataVT.getScalarType();
8007     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8008 
8009     if (IsD16) {
8010       VData = handleD16VData(VData, DAG);
8011       VDataVT = VData.getValueType();
8012     }
8013 
8014     if (!isTypeLegal(VDataVT)) {
8015       VData =
8016           DAG.getNode(ISD::BITCAST, DL,
8017                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8018     }
8019 
8020     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8021     SDValue Ops[] = {
8022       Chain,
8023       VData,
8024       Op.getOperand(3), // rsrc
8025       Op.getOperand(4), // vindex
8026       Offsets.first,    // voffset
8027       Op.getOperand(6), // soffset
8028       Offsets.second,   // offset
8029       Op.getOperand(7), // cachepolicy, swizzled buffer
8030       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8031     };
8032     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
8033                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8034     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8035     MemSDNode *M = cast<MemSDNode>(Op);
8036     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8037 
8038     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8039     EVT VDataType = VData.getValueType().getScalarType();
8040     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8041       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8042 
8043     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8044                                    M->getMemoryVT(), M->getMemOperand());
8045   }
8046   case Intrinsic::amdgcn_end_cf:
8047     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
8048                                       Op->getOperand(2), Chain), 0);
8049 
8050   default: {
8051     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
8052             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
8053       return lowerImage(Op, ImageDimIntr, DAG, true);
8054 
8055     return Op;
8056   }
8057   }
8058 }
8059 
8060 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
8061 // offset (the offset that is included in bounds checking and swizzling, to be
8062 // split between the instruction's voffset and immoffset fields) and soffset
8063 // (the offset that is excluded from bounds checking and swizzling, to go in
8064 // the instruction's soffset field).  This function takes the first kind of
8065 // offset and figures out how to split it between voffset and immoffset.
8066 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
8067     SDValue Offset, SelectionDAG &DAG) const {
8068   SDLoc DL(Offset);
8069   const unsigned MaxImm = 4095;
8070   SDValue N0 = Offset;
8071   ConstantSDNode *C1 = nullptr;
8072 
8073   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
8074     N0 = SDValue();
8075   else if (DAG.isBaseWithConstantOffset(N0)) {
8076     C1 = cast<ConstantSDNode>(N0.getOperand(1));
8077     N0 = N0.getOperand(0);
8078   }
8079 
8080   if (C1) {
8081     unsigned ImmOffset = C1->getZExtValue();
8082     // If the immediate value is too big for the immoffset field, put the value
8083     // and -4096 into the immoffset field so that the value that is copied/added
8084     // for the voffset field is a multiple of 4096, and it stands more chance
8085     // of being CSEd with the copy/add for another similar load/store.
8086     // However, do not do that rounding down to a multiple of 4096 if that is a
8087     // negative number, as it appears to be illegal to have a negative offset
8088     // in the vgpr, even if adding the immediate offset makes it positive.
8089     unsigned Overflow = ImmOffset & ~MaxImm;
8090     ImmOffset -= Overflow;
8091     if ((int32_t)Overflow < 0) {
8092       Overflow += ImmOffset;
8093       ImmOffset = 0;
8094     }
8095     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
8096     if (Overflow) {
8097       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
8098       if (!N0)
8099         N0 = OverflowVal;
8100       else {
8101         SDValue Ops[] = { N0, OverflowVal };
8102         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
8103       }
8104     }
8105   }
8106   if (!N0)
8107     N0 = DAG.getConstant(0, DL, MVT::i32);
8108   if (!C1)
8109     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
8110   return {N0, SDValue(C1, 0)};
8111 }
8112 
8113 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
8114 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
8115 // pointed to by Offsets.
8116 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
8117                                         SelectionDAG &DAG, SDValue *Offsets,
8118                                         Align Alignment) const {
8119   SDLoc DL(CombinedOffset);
8120   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
8121     uint32_t Imm = C->getZExtValue();
8122     uint32_t SOffset, ImmOffset;
8123     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
8124                                  Alignment)) {
8125       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
8126       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8127       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8128       return;
8129     }
8130   }
8131   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
8132     SDValue N0 = CombinedOffset.getOperand(0);
8133     SDValue N1 = CombinedOffset.getOperand(1);
8134     uint32_t SOffset, ImmOffset;
8135     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
8136     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
8137                                                 Subtarget, Alignment)) {
8138       Offsets[0] = N0;
8139       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8140       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8141       return;
8142     }
8143   }
8144   Offsets[0] = CombinedOffset;
8145   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
8146   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
8147 }
8148 
8149 // Handle 8 bit and 16 bit buffer loads
8150 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
8151                                                      EVT LoadVT, SDLoc DL,
8152                                                      ArrayRef<SDValue> Ops,
8153                                                      MemSDNode *M) const {
8154   EVT IntVT = LoadVT.changeTypeToInteger();
8155   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
8156          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
8157 
8158   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
8159   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
8160                                                Ops, IntVT,
8161                                                M->getMemOperand());
8162   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
8163   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
8164 
8165   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
8166 }
8167 
8168 // Handle 8 bit and 16 bit buffer stores
8169 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
8170                                                       EVT VDataType, SDLoc DL,
8171                                                       SDValue Ops[],
8172                                                       MemSDNode *M) const {
8173   if (VDataType == MVT::f16)
8174     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
8175 
8176   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
8177   Ops[1] = BufferStoreExt;
8178   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
8179                                  AMDGPUISD::BUFFER_STORE_SHORT;
8180   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
8181   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
8182                                      M->getMemOperand());
8183 }
8184 
8185 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
8186                                  ISD::LoadExtType ExtType, SDValue Op,
8187                                  const SDLoc &SL, EVT VT) {
8188   if (VT.bitsLT(Op.getValueType()))
8189     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
8190 
8191   switch (ExtType) {
8192   case ISD::SEXTLOAD:
8193     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
8194   case ISD::ZEXTLOAD:
8195     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
8196   case ISD::EXTLOAD:
8197     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
8198   case ISD::NON_EXTLOAD:
8199     return Op;
8200   }
8201 
8202   llvm_unreachable("invalid ext type");
8203 }
8204 
8205 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
8206   SelectionDAG &DAG = DCI.DAG;
8207   if (Ld->getAlignment() < 4 || Ld->isDivergent())
8208     return SDValue();
8209 
8210   // FIXME: Constant loads should all be marked invariant.
8211   unsigned AS = Ld->getAddressSpace();
8212   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
8213       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8214       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
8215     return SDValue();
8216 
8217   // Don't do this early, since it may interfere with adjacent load merging for
8218   // illegal types. We can avoid losing alignment information for exotic types
8219   // pre-legalize.
8220   EVT MemVT = Ld->getMemoryVT();
8221   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
8222       MemVT.getSizeInBits() >= 32)
8223     return SDValue();
8224 
8225   SDLoc SL(Ld);
8226 
8227   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
8228          "unexpected vector extload");
8229 
8230   // TODO: Drop only high part of range.
8231   SDValue Ptr = Ld->getBasePtr();
8232   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
8233                                 MVT::i32, SL, Ld->getChain(), Ptr,
8234                                 Ld->getOffset(),
8235                                 Ld->getPointerInfo(), MVT::i32,
8236                                 Ld->getAlignment(),
8237                                 Ld->getMemOperand()->getFlags(),
8238                                 Ld->getAAInfo(),
8239                                 nullptr); // Drop ranges
8240 
8241   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
8242   if (MemVT.isFloatingPoint()) {
8243     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
8244            "unexpected fp extload");
8245     TruncVT = MemVT.changeTypeToInteger();
8246   }
8247 
8248   SDValue Cvt = NewLoad;
8249   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
8250     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
8251                       DAG.getValueType(TruncVT));
8252   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
8253              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
8254     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
8255   } else {
8256     assert(Ld->getExtensionType() == ISD::EXTLOAD);
8257   }
8258 
8259   EVT VT = Ld->getValueType(0);
8260   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8261 
8262   DCI.AddToWorklist(Cvt.getNode());
8263 
8264   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8265   // the appropriate extension from the 32-bit load.
8266   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8267   DCI.AddToWorklist(Cvt.getNode());
8268 
8269   // Handle conversion back to floating point if necessary.
8270   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8271 
8272   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8273 }
8274 
8275 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8276   SDLoc DL(Op);
8277   LoadSDNode *Load = cast<LoadSDNode>(Op);
8278   ISD::LoadExtType ExtType = Load->getExtensionType();
8279   EVT MemVT = Load->getMemoryVT();
8280 
8281   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8282     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8283       return SDValue();
8284 
8285     // FIXME: Copied from PPC
8286     // First, load into 32 bits, then truncate to 1 bit.
8287 
8288     SDValue Chain = Load->getChain();
8289     SDValue BasePtr = Load->getBasePtr();
8290     MachineMemOperand *MMO = Load->getMemOperand();
8291 
8292     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8293 
8294     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8295                                    BasePtr, RealMemVT, MMO);
8296 
8297     if (!MemVT.isVector()) {
8298       SDValue Ops[] = {
8299         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8300         NewLD.getValue(1)
8301       };
8302 
8303       return DAG.getMergeValues(Ops, DL);
8304     }
8305 
8306     SmallVector<SDValue, 3> Elts;
8307     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8308       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8309                                 DAG.getConstant(I, DL, MVT::i32));
8310 
8311       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8312     }
8313 
8314     SDValue Ops[] = {
8315       DAG.getBuildVector(MemVT, DL, Elts),
8316       NewLD.getValue(1)
8317     };
8318 
8319     return DAG.getMergeValues(Ops, DL);
8320   }
8321 
8322   if (!MemVT.isVector())
8323     return SDValue();
8324 
8325   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8326          "Custom lowering for non-i32 vectors hasn't been implemented.");
8327 
8328   unsigned Alignment = Load->getAlignment();
8329   unsigned AS = Load->getAddressSpace();
8330   if (Subtarget->hasLDSMisalignedBug() &&
8331       AS == AMDGPUAS::FLAT_ADDRESS &&
8332       Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8333     return SplitVectorLoad(Op, DAG);
8334   }
8335 
8336   MachineFunction &MF = DAG.getMachineFunction();
8337   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8338   // If there is a possibilty that flat instruction access scratch memory
8339   // then we need to use the same legalization rules we use for private.
8340   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8341       !Subtarget->hasMultiDwordFlatScratchAddressing())
8342     AS = MFI->hasFlatScratchInit() ?
8343          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8344 
8345   unsigned NumElements = MemVT.getVectorNumElements();
8346 
8347   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8348       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8349     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
8350       if (MemVT.isPow2VectorType())
8351         return SDValue();
8352       return WidenOrSplitVectorLoad(Op, DAG);
8353     }
8354     // Non-uniform loads will be selected to MUBUF instructions, so they
8355     // have the same legalization requirements as global and private
8356     // loads.
8357     //
8358   }
8359 
8360   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8361       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8362       AS == AMDGPUAS::GLOBAL_ADDRESS) {
8363     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8364         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8365         Alignment >= 4 && NumElements < 32) {
8366       if (MemVT.isPow2VectorType())
8367         return SDValue();
8368       return WidenOrSplitVectorLoad(Op, DAG);
8369     }
8370     // Non-uniform loads will be selected to MUBUF instructions, so they
8371     // have the same legalization requirements as global and private
8372     // loads.
8373     //
8374   }
8375   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8376       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8377       AS == AMDGPUAS::GLOBAL_ADDRESS ||
8378       AS == AMDGPUAS::FLAT_ADDRESS) {
8379     if (NumElements > 4)
8380       return SplitVectorLoad(Op, DAG);
8381     // v3 loads not supported on SI.
8382     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8383       return WidenOrSplitVectorLoad(Op, DAG);
8384 
8385     // v3 and v4 loads are supported for private and global memory.
8386     return SDValue();
8387   }
8388   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8389     // Depending on the setting of the private_element_size field in the
8390     // resource descriptor, we can only make private accesses up to a certain
8391     // size.
8392     switch (Subtarget->getMaxPrivateElementSize()) {
8393     case 4: {
8394       SDValue Ops[2];
8395       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8396       return DAG.getMergeValues(Ops, DL);
8397     }
8398     case 8:
8399       if (NumElements > 2)
8400         return SplitVectorLoad(Op, DAG);
8401       return SDValue();
8402     case 16:
8403       // Same as global/flat
8404       if (NumElements > 4)
8405         return SplitVectorLoad(Op, DAG);
8406       // v3 loads not supported on SI.
8407       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8408         return WidenOrSplitVectorLoad(Op, DAG);
8409 
8410       return SDValue();
8411     default:
8412       llvm_unreachable("unsupported private_element_size");
8413     }
8414   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8415     // Use ds_read_b128 or ds_read_b96 when possible.
8416     if (Subtarget->hasDS96AndDS128() &&
8417         ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8418          MemVT.getStoreSize() == 12) &&
8419         allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8420                                            Load->getAlign()))
8421       return SDValue();
8422 
8423     if (NumElements > 2)
8424       return SplitVectorLoad(Op, DAG);
8425 
8426     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8427     // address is negative, then the instruction is incorrectly treated as
8428     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8429     // loads here to avoid emitting ds_read2_b32. We may re-combine the
8430     // load later in the SILoadStoreOptimizer.
8431     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8432         NumElements == 2 && MemVT.getStoreSize() == 8 &&
8433         Load->getAlignment() < 8) {
8434       return SplitVectorLoad(Op, DAG);
8435     }
8436   }
8437 
8438   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8439                                       MemVT, *Load->getMemOperand())) {
8440     SDValue Ops[2];
8441     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8442     return DAG.getMergeValues(Ops, DL);
8443   }
8444 
8445   return SDValue();
8446 }
8447 
8448 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8449   EVT VT = Op.getValueType();
8450   assert(VT.getSizeInBits() == 64);
8451 
8452   SDLoc DL(Op);
8453   SDValue Cond = Op.getOperand(0);
8454 
8455   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8456   SDValue One = DAG.getConstant(1, DL, MVT::i32);
8457 
8458   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8459   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8460 
8461   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8462   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8463 
8464   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8465 
8466   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8467   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8468 
8469   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8470 
8471   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8472   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8473 }
8474 
8475 // Catch division cases where we can use shortcuts with rcp and rsq
8476 // instructions.
8477 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8478                                               SelectionDAG &DAG) const {
8479   SDLoc SL(Op);
8480   SDValue LHS = Op.getOperand(0);
8481   SDValue RHS = Op.getOperand(1);
8482   EVT VT = Op.getValueType();
8483   const SDNodeFlags Flags = Op->getFlags();
8484 
8485   bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8486 
8487   // Without !fpmath accuracy information, we can't do more because we don't
8488   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8489   if (!AllowInaccurateRcp)
8490     return SDValue();
8491 
8492   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8493     if (CLHS->isExactlyValue(1.0)) {
8494       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8495       // the CI documentation has a worst case error of 1 ulp.
8496       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8497       // use it as long as we aren't trying to use denormals.
8498       //
8499       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8500 
8501       // 1.0 / sqrt(x) -> rsq(x)
8502 
8503       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8504       // error seems really high at 2^29 ULP.
8505       if (RHS.getOpcode() == ISD::FSQRT)
8506         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8507 
8508       // 1.0 / x -> rcp(x)
8509       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8510     }
8511 
8512     // Same as for 1.0, but expand the sign out of the constant.
8513     if (CLHS->isExactlyValue(-1.0)) {
8514       // -1.0 / x -> rcp (fneg x)
8515       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8516       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8517     }
8518   }
8519 
8520   // Turn into multiply by the reciprocal.
8521   // x / y -> x * (1.0 / y)
8522   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8523   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8524 }
8525 
8526 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8527                                                 SelectionDAG &DAG) const {
8528   SDLoc SL(Op);
8529   SDValue X = Op.getOperand(0);
8530   SDValue Y = Op.getOperand(1);
8531   EVT VT = Op.getValueType();
8532   const SDNodeFlags Flags = Op->getFlags();
8533 
8534   bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8535                             DAG.getTarget().Options.UnsafeFPMath;
8536   if (!AllowInaccurateDiv)
8537     return SDValue();
8538 
8539   SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8540   SDValue One = DAG.getConstantFP(1.0, SL, VT);
8541 
8542   SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8543   SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8544 
8545   R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8546   SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8547   R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8548   SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8549   SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8550   return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8551 }
8552 
8553 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8554                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8555                           SDNodeFlags Flags) {
8556   if (GlueChain->getNumValues() <= 1) {
8557     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8558   }
8559 
8560   assert(GlueChain->getNumValues() == 3);
8561 
8562   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8563   switch (Opcode) {
8564   default: llvm_unreachable("no chain equivalent for opcode");
8565   case ISD::FMUL:
8566     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8567     break;
8568   }
8569 
8570   return DAG.getNode(Opcode, SL, VTList,
8571                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8572                      Flags);
8573 }
8574 
8575 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8576                            EVT VT, SDValue A, SDValue B, SDValue C,
8577                            SDValue GlueChain, SDNodeFlags Flags) {
8578   if (GlueChain->getNumValues() <= 1) {
8579     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8580   }
8581 
8582   assert(GlueChain->getNumValues() == 3);
8583 
8584   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8585   switch (Opcode) {
8586   default: llvm_unreachable("no chain equivalent for opcode");
8587   case ISD::FMA:
8588     Opcode = AMDGPUISD::FMA_W_CHAIN;
8589     break;
8590   }
8591 
8592   return DAG.getNode(Opcode, SL, VTList,
8593                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8594                      Flags);
8595 }
8596 
8597 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8598   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8599     return FastLowered;
8600 
8601   SDLoc SL(Op);
8602   SDValue Src0 = Op.getOperand(0);
8603   SDValue Src1 = Op.getOperand(1);
8604 
8605   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8606   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8607 
8608   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8609   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8610 
8611   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8612   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8613 
8614   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8615 }
8616 
8617 // Faster 2.5 ULP division that does not support denormals.
8618 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8619   SDLoc SL(Op);
8620   SDValue LHS = Op.getOperand(1);
8621   SDValue RHS = Op.getOperand(2);
8622 
8623   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8624 
8625   const APFloat K0Val(BitsToFloat(0x6f800000));
8626   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8627 
8628   const APFloat K1Val(BitsToFloat(0x2f800000));
8629   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8630 
8631   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8632 
8633   EVT SetCCVT =
8634     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8635 
8636   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8637 
8638   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8639 
8640   // TODO: Should this propagate fast-math-flags?
8641   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8642 
8643   // rcp does not support denormals.
8644   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8645 
8646   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8647 
8648   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8649 }
8650 
8651 // Returns immediate value for setting the F32 denorm mode when using the
8652 // S_DENORM_MODE instruction.
8653 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8654                                     const SDLoc &SL, const GCNSubtarget *ST) {
8655   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8656   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8657                                 ? FP_DENORM_FLUSH_NONE
8658                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8659 
8660   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8661   return DAG.getTargetConstant(Mode, SL, MVT::i32);
8662 }
8663 
8664 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8665   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8666     return FastLowered;
8667 
8668   // The selection matcher assumes anything with a chain selecting to a
8669   // mayRaiseFPException machine instruction. Since we're introducing a chain
8670   // here, we need to explicitly report nofpexcept for the regular fdiv
8671   // lowering.
8672   SDNodeFlags Flags = Op->getFlags();
8673   Flags.setNoFPExcept(true);
8674 
8675   SDLoc SL(Op);
8676   SDValue LHS = Op.getOperand(0);
8677   SDValue RHS = Op.getOperand(1);
8678 
8679   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8680 
8681   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8682 
8683   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8684                                           {RHS, RHS, LHS}, Flags);
8685   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8686                                         {LHS, RHS, LHS}, Flags);
8687 
8688   // Denominator is scaled to not be denormal, so using rcp is ok.
8689   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8690                                   DenominatorScaled, Flags);
8691   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8692                                      DenominatorScaled, Flags);
8693 
8694   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8695                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8696                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8697   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8698 
8699   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8700 
8701   if (!HasFP32Denormals) {
8702     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8703     // lowering. The chain dependence is insufficient, and we need glue. We do
8704     // not need the glue variants in a strictfp function.
8705 
8706     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8707 
8708     SDNode *EnableDenorm;
8709     if (Subtarget->hasDenormModeInst()) {
8710       const SDValue EnableDenormValue =
8711           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8712 
8713       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8714                                  DAG.getEntryNode(), EnableDenormValue).getNode();
8715     } else {
8716       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
8717                                                         SL, MVT::i32);
8718       EnableDenorm =
8719           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8720                              {EnableDenormValue, BitField, DAG.getEntryNode()});
8721     }
8722 
8723     SDValue Ops[3] = {
8724       NegDivScale0,
8725       SDValue(EnableDenorm, 0),
8726       SDValue(EnableDenorm, 1)
8727     };
8728 
8729     NegDivScale0 = DAG.getMergeValues(Ops, SL);
8730   }
8731 
8732   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8733                              ApproxRcp, One, NegDivScale0, Flags);
8734 
8735   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8736                              ApproxRcp, Fma0, Flags);
8737 
8738   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8739                            Fma1, Fma1, Flags);
8740 
8741   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8742                              NumeratorScaled, Mul, Flags);
8743 
8744   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8745                              Fma2, Fma1, Mul, Fma2, Flags);
8746 
8747   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8748                              NumeratorScaled, Fma3, Flags);
8749 
8750   if (!HasFP32Denormals) {
8751     SDNode *DisableDenorm;
8752     if (Subtarget->hasDenormModeInst()) {
8753       const SDValue DisableDenormValue =
8754           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
8755 
8756       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8757                                   Fma4.getValue(1), DisableDenormValue,
8758                                   Fma4.getValue(2)).getNode();
8759     } else {
8760       const SDValue DisableDenormValue =
8761           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
8762 
8763       DisableDenorm = DAG.getMachineNode(
8764           AMDGPU::S_SETREG_B32, SL, MVT::Other,
8765           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8766     }
8767 
8768     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8769                                       SDValue(DisableDenorm, 0), DAG.getRoot());
8770     DAG.setRoot(OutputChain);
8771   }
8772 
8773   SDValue Scale = NumeratorScaled.getValue(1);
8774   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8775                              {Fma4, Fma1, Fma3, Scale}, Flags);
8776 
8777   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8778 }
8779 
8780 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8781   if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
8782     return FastLowered;
8783 
8784   SDLoc SL(Op);
8785   SDValue X = Op.getOperand(0);
8786   SDValue Y = Op.getOperand(1);
8787 
8788   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8789 
8790   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8791 
8792   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8793 
8794   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8795 
8796   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8797 
8798   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8799 
8800   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8801 
8802   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8803 
8804   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8805 
8806   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8807   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8808 
8809   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8810                              NegDivScale0, Mul, DivScale1);
8811 
8812   SDValue Scale;
8813 
8814   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8815     // Workaround a hardware bug on SI where the condition output from div_scale
8816     // is not usable.
8817 
8818     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8819 
8820     // Figure out if the scale to use for div_fmas.
8821     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8822     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8823     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8824     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8825 
8826     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8827     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8828 
8829     SDValue Scale0Hi
8830       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8831     SDValue Scale1Hi
8832       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8833 
8834     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8835     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8836     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8837   } else {
8838     Scale = DivScale1.getValue(1);
8839   }
8840 
8841   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8842                              Fma4, Fma3, Mul, Scale);
8843 
8844   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8845 }
8846 
8847 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8848   EVT VT = Op.getValueType();
8849 
8850   if (VT == MVT::f32)
8851     return LowerFDIV32(Op, DAG);
8852 
8853   if (VT == MVT::f64)
8854     return LowerFDIV64(Op, DAG);
8855 
8856   if (VT == MVT::f16)
8857     return LowerFDIV16(Op, DAG);
8858 
8859   llvm_unreachable("Unexpected type for fdiv");
8860 }
8861 
8862 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8863   SDLoc DL(Op);
8864   StoreSDNode *Store = cast<StoreSDNode>(Op);
8865   EVT VT = Store->getMemoryVT();
8866 
8867   if (VT == MVT::i1) {
8868     return DAG.getTruncStore(Store->getChain(), DL,
8869        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8870        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8871   }
8872 
8873   assert(VT.isVector() &&
8874          Store->getValue().getValueType().getScalarType() == MVT::i32);
8875 
8876   unsigned AS = Store->getAddressSpace();
8877   if (Subtarget->hasLDSMisalignedBug() &&
8878       AS == AMDGPUAS::FLAT_ADDRESS &&
8879       Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8880     return SplitVectorStore(Op, DAG);
8881   }
8882 
8883   MachineFunction &MF = DAG.getMachineFunction();
8884   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8885   // If there is a possibilty that flat instruction access scratch memory
8886   // then we need to use the same legalization rules we use for private.
8887   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8888       !Subtarget->hasMultiDwordFlatScratchAddressing())
8889     AS = MFI->hasFlatScratchInit() ?
8890          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8891 
8892   unsigned NumElements = VT.getVectorNumElements();
8893   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8894       AS == AMDGPUAS::FLAT_ADDRESS) {
8895     if (NumElements > 4)
8896       return SplitVectorStore(Op, DAG);
8897     // v3 stores not supported on SI.
8898     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8899       return SplitVectorStore(Op, DAG);
8900 
8901     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8902                                         VT, *Store->getMemOperand()))
8903       return expandUnalignedStore(Store, DAG);
8904 
8905     return SDValue();
8906   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8907     switch (Subtarget->getMaxPrivateElementSize()) {
8908     case 4:
8909       return scalarizeVectorStore(Store, DAG);
8910     case 8:
8911       if (NumElements > 2)
8912         return SplitVectorStore(Op, DAG);
8913       return SDValue();
8914     case 16:
8915       if (NumElements > 4 ||
8916           (NumElements == 3 && !Subtarget->enableFlatScratch()))
8917         return SplitVectorStore(Op, DAG);
8918       return SDValue();
8919     default:
8920       llvm_unreachable("unsupported private_element_size");
8921     }
8922   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8923     // Use ds_write_b128 or ds_write_b96 when possible.
8924     if (Subtarget->hasDS96AndDS128() &&
8925         ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
8926          (VT.getStoreSize() == 12)) &&
8927         allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
8928                                            Store->getAlign()))
8929       return SDValue();
8930 
8931     if (NumElements > 2)
8932       return SplitVectorStore(Op, DAG);
8933 
8934     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8935     // address is negative, then the instruction is incorrectly treated as
8936     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8937     // stores here to avoid emitting ds_write2_b32. We may re-combine the
8938     // store later in the SILoadStoreOptimizer.
8939     if (!Subtarget->hasUsableDSOffset() &&
8940         NumElements == 2 && VT.getStoreSize() == 8 &&
8941         Store->getAlignment() < 8) {
8942       return SplitVectorStore(Op, DAG);
8943     }
8944 
8945     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8946                                         VT, *Store->getMemOperand())) {
8947       if (VT.isVector())
8948         return SplitVectorStore(Op, DAG);
8949       return expandUnalignedStore(Store, DAG);
8950     }
8951 
8952     return SDValue();
8953   } else {
8954     llvm_unreachable("unhandled address space");
8955   }
8956 }
8957 
8958 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
8959   SDLoc DL(Op);
8960   EVT VT = Op.getValueType();
8961   SDValue Arg = Op.getOperand(0);
8962   SDValue TrigVal;
8963 
8964   // Propagate fast-math flags so that the multiply we introduce can be folded
8965   // if Arg is already the result of a multiply by constant.
8966   auto Flags = Op->getFlags();
8967 
8968   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
8969 
8970   if (Subtarget->hasTrigReducedRange()) {
8971     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8972     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
8973   } else {
8974     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8975   }
8976 
8977   switch (Op.getOpcode()) {
8978   case ISD::FCOS:
8979     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
8980   case ISD::FSIN:
8981     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
8982   default:
8983     llvm_unreachable("Wrong trig opcode");
8984   }
8985 }
8986 
8987 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8988   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8989   assert(AtomicNode->isCompareAndSwap());
8990   unsigned AS = AtomicNode->getAddressSpace();
8991 
8992   // No custom lowering required for local address space
8993   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
8994     return Op;
8995 
8996   // Non-local address space requires custom lowering for atomic compare
8997   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8998   SDLoc DL(Op);
8999   SDValue ChainIn = Op.getOperand(0);
9000   SDValue Addr = Op.getOperand(1);
9001   SDValue Old = Op.getOperand(2);
9002   SDValue New = Op.getOperand(3);
9003   EVT VT = Op.getValueType();
9004   MVT SimpleVT = VT.getSimpleVT();
9005   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
9006 
9007   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
9008   SDValue Ops[] = { ChainIn, Addr, NewOld };
9009 
9010   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
9011                                  Ops, VT, AtomicNode->getMemOperand());
9012 }
9013 
9014 //===----------------------------------------------------------------------===//
9015 // Custom DAG optimizations
9016 //===----------------------------------------------------------------------===//
9017 
9018 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
9019                                                      DAGCombinerInfo &DCI) const {
9020   EVT VT = N->getValueType(0);
9021   EVT ScalarVT = VT.getScalarType();
9022   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
9023     return SDValue();
9024 
9025   SelectionDAG &DAG = DCI.DAG;
9026   SDLoc DL(N);
9027 
9028   SDValue Src = N->getOperand(0);
9029   EVT SrcVT = Src.getValueType();
9030 
9031   // TODO: We could try to match extracting the higher bytes, which would be
9032   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
9033   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
9034   // about in practice.
9035   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
9036     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
9037       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
9038       DCI.AddToWorklist(Cvt.getNode());
9039 
9040       // For the f16 case, fold to a cast to f32 and then cast back to f16.
9041       if (ScalarVT != MVT::f32) {
9042         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
9043                           DAG.getTargetConstant(0, DL, MVT::i32));
9044       }
9045       return Cvt;
9046     }
9047   }
9048 
9049   return SDValue();
9050 }
9051 
9052 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
9053 
9054 // This is a variant of
9055 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
9056 //
9057 // The normal DAG combiner will do this, but only if the add has one use since
9058 // that would increase the number of instructions.
9059 //
9060 // This prevents us from seeing a constant offset that can be folded into a
9061 // memory instruction's addressing mode. If we know the resulting add offset of
9062 // a pointer can be folded into an addressing offset, we can replace the pointer
9063 // operand with the add of new constant offset. This eliminates one of the uses,
9064 // and may allow the remaining use to also be simplified.
9065 //
9066 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
9067                                                unsigned AddrSpace,
9068                                                EVT MemVT,
9069                                                DAGCombinerInfo &DCI) const {
9070   SDValue N0 = N->getOperand(0);
9071   SDValue N1 = N->getOperand(1);
9072 
9073   // We only do this to handle cases where it's profitable when there are
9074   // multiple uses of the add, so defer to the standard combine.
9075   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
9076       N0->hasOneUse())
9077     return SDValue();
9078 
9079   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
9080   if (!CN1)
9081     return SDValue();
9082 
9083   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9084   if (!CAdd)
9085     return SDValue();
9086 
9087   // If the resulting offset is too large, we can't fold it into the addressing
9088   // mode offset.
9089   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
9090   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
9091 
9092   AddrMode AM;
9093   AM.HasBaseReg = true;
9094   AM.BaseOffs = Offset.getSExtValue();
9095   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
9096     return SDValue();
9097 
9098   SelectionDAG &DAG = DCI.DAG;
9099   SDLoc SL(N);
9100   EVT VT = N->getValueType(0);
9101 
9102   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
9103   SDValue COffset = DAG.getConstant(Offset, SL, VT);
9104 
9105   SDNodeFlags Flags;
9106   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
9107                           (N0.getOpcode() == ISD::OR ||
9108                            N0->getFlags().hasNoUnsignedWrap()));
9109 
9110   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
9111 }
9112 
9113 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
9114 /// by the chain and intrinsic ID. Theoretically we would also need to check the
9115 /// specific intrinsic, but they all place the pointer operand first.
9116 static unsigned getBasePtrIndex(const MemSDNode *N) {
9117   switch (N->getOpcode()) {
9118   case ISD::STORE:
9119   case ISD::INTRINSIC_W_CHAIN:
9120   case ISD::INTRINSIC_VOID:
9121     return 2;
9122   default:
9123     return 1;
9124   }
9125 }
9126 
9127 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
9128                                                   DAGCombinerInfo &DCI) const {
9129   SelectionDAG &DAG = DCI.DAG;
9130   SDLoc SL(N);
9131 
9132   unsigned PtrIdx = getBasePtrIndex(N);
9133   SDValue Ptr = N->getOperand(PtrIdx);
9134 
9135   // TODO: We could also do this for multiplies.
9136   if (Ptr.getOpcode() == ISD::SHL) {
9137     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
9138                                           N->getMemoryVT(), DCI);
9139     if (NewPtr) {
9140       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
9141 
9142       NewOps[PtrIdx] = NewPtr;
9143       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
9144     }
9145   }
9146 
9147   return SDValue();
9148 }
9149 
9150 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
9151   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
9152          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
9153          (Opc == ISD::XOR && Val == 0);
9154 }
9155 
9156 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
9157 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
9158 // integer combine opportunities since most 64-bit operations are decomposed
9159 // this way.  TODO: We won't want this for SALU especially if it is an inline
9160 // immediate.
9161 SDValue SITargetLowering::splitBinaryBitConstantOp(
9162   DAGCombinerInfo &DCI,
9163   const SDLoc &SL,
9164   unsigned Opc, SDValue LHS,
9165   const ConstantSDNode *CRHS) const {
9166   uint64_t Val = CRHS->getZExtValue();
9167   uint32_t ValLo = Lo_32(Val);
9168   uint32_t ValHi = Hi_32(Val);
9169   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9170 
9171     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
9172          bitOpWithConstantIsReducible(Opc, ValHi)) ||
9173         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
9174     // If we need to materialize a 64-bit immediate, it will be split up later
9175     // anyway. Avoid creating the harder to understand 64-bit immediate
9176     // materialization.
9177     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
9178   }
9179 
9180   return SDValue();
9181 }
9182 
9183 // Returns true if argument is a boolean value which is not serialized into
9184 // memory or argument and does not require v_cndmask_b32 to be deserialized.
9185 static bool isBoolSGPR(SDValue V) {
9186   if (V.getValueType() != MVT::i1)
9187     return false;
9188   switch (V.getOpcode()) {
9189   default:
9190     break;
9191   case ISD::SETCC:
9192   case AMDGPUISD::FP_CLASS:
9193     return true;
9194   case ISD::AND:
9195   case ISD::OR:
9196   case ISD::XOR:
9197     return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
9198   }
9199   return false;
9200 }
9201 
9202 // If a constant has all zeroes or all ones within each byte return it.
9203 // Otherwise return 0.
9204 static uint32_t getConstantPermuteMask(uint32_t C) {
9205   // 0xff for any zero byte in the mask
9206   uint32_t ZeroByteMask = 0;
9207   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
9208   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
9209   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
9210   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
9211   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
9212   if ((NonZeroByteMask & C) != NonZeroByteMask)
9213     return 0; // Partial bytes selected.
9214   return C;
9215 }
9216 
9217 // Check if a node selects whole bytes from its operand 0 starting at a byte
9218 // boundary while masking the rest. Returns select mask as in the v_perm_b32
9219 // or -1 if not succeeded.
9220 // Note byte select encoding:
9221 // value 0-3 selects corresponding source byte;
9222 // value 0xc selects zero;
9223 // value 0xff selects 0xff.
9224 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
9225   assert(V.getValueSizeInBits() == 32);
9226 
9227   if (V.getNumOperands() != 2)
9228     return ~0;
9229 
9230   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
9231   if (!N1)
9232     return ~0;
9233 
9234   uint32_t C = N1->getZExtValue();
9235 
9236   switch (V.getOpcode()) {
9237   default:
9238     break;
9239   case ISD::AND:
9240     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9241       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
9242     }
9243     break;
9244 
9245   case ISD::OR:
9246     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9247       return (0x03020100 & ~ConstMask) | ConstMask;
9248     }
9249     break;
9250 
9251   case ISD::SHL:
9252     if (C % 8)
9253       return ~0;
9254 
9255     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
9256 
9257   case ISD::SRL:
9258     if (C % 8)
9259       return ~0;
9260 
9261     return uint32_t(0x0c0c0c0c03020100ull >> C);
9262   }
9263 
9264   return ~0;
9265 }
9266 
9267 SDValue SITargetLowering::performAndCombine(SDNode *N,
9268                                             DAGCombinerInfo &DCI) const {
9269   if (DCI.isBeforeLegalize())
9270     return SDValue();
9271 
9272   SelectionDAG &DAG = DCI.DAG;
9273   EVT VT = N->getValueType(0);
9274   SDValue LHS = N->getOperand(0);
9275   SDValue RHS = N->getOperand(1);
9276 
9277 
9278   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9279   if (VT == MVT::i64 && CRHS) {
9280     if (SDValue Split
9281         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
9282       return Split;
9283   }
9284 
9285   if (CRHS && VT == MVT::i32) {
9286     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
9287     // nb = number of trailing zeroes in mask
9288     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
9289     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
9290     uint64_t Mask = CRHS->getZExtValue();
9291     unsigned Bits = countPopulation(Mask);
9292     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9293         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9294       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9295         unsigned Shift = CShift->getZExtValue();
9296         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9297         unsigned Offset = NB + Shift;
9298         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9299           SDLoc SL(N);
9300           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9301                                     LHS->getOperand(0),
9302                                     DAG.getConstant(Offset, SL, MVT::i32),
9303                                     DAG.getConstant(Bits, SL, MVT::i32));
9304           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9305           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9306                                     DAG.getValueType(NarrowVT));
9307           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9308                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9309           return Shl;
9310         }
9311       }
9312     }
9313 
9314     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9315     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9316         isa<ConstantSDNode>(LHS.getOperand(2))) {
9317       uint32_t Sel = getConstantPermuteMask(Mask);
9318       if (!Sel)
9319         return SDValue();
9320 
9321       // Select 0xc for all zero bytes
9322       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9323       SDLoc DL(N);
9324       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9325                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9326     }
9327   }
9328 
9329   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9330   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9331   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9332     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9333     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9334 
9335     SDValue X = LHS.getOperand(0);
9336     SDValue Y = RHS.getOperand(0);
9337     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9338       return SDValue();
9339 
9340     if (LCC == ISD::SETO) {
9341       if (X != LHS.getOperand(1))
9342         return SDValue();
9343 
9344       if (RCC == ISD::SETUNE) {
9345         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9346         if (!C1 || !C1->isInfinity() || C1->isNegative())
9347           return SDValue();
9348 
9349         const uint32_t Mask = SIInstrFlags::N_NORMAL |
9350                               SIInstrFlags::N_SUBNORMAL |
9351                               SIInstrFlags::N_ZERO |
9352                               SIInstrFlags::P_ZERO |
9353                               SIInstrFlags::P_SUBNORMAL |
9354                               SIInstrFlags::P_NORMAL;
9355 
9356         static_assert(((~(SIInstrFlags::S_NAN |
9357                           SIInstrFlags::Q_NAN |
9358                           SIInstrFlags::N_INFINITY |
9359                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9360                       "mask not equal");
9361 
9362         SDLoc DL(N);
9363         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9364                            X, DAG.getConstant(Mask, DL, MVT::i32));
9365       }
9366     }
9367   }
9368 
9369   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9370     std::swap(LHS, RHS);
9371 
9372   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9373       RHS.hasOneUse()) {
9374     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9375     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9376     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9377     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9378     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9379         (RHS.getOperand(0) == LHS.getOperand(0) &&
9380          LHS.getOperand(0) == LHS.getOperand(1))) {
9381       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9382       unsigned NewMask = LCC == ISD::SETO ?
9383         Mask->getZExtValue() & ~OrdMask :
9384         Mask->getZExtValue() & OrdMask;
9385 
9386       SDLoc DL(N);
9387       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9388                          DAG.getConstant(NewMask, DL, MVT::i32));
9389     }
9390   }
9391 
9392   if (VT == MVT::i32 &&
9393       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9394     // and x, (sext cc from i1) => select cc, x, 0
9395     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9396       std::swap(LHS, RHS);
9397     if (isBoolSGPR(RHS.getOperand(0)))
9398       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9399                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9400   }
9401 
9402   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9403   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9404   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9405       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9406     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9407     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9408     if (LHSMask != ~0u && RHSMask != ~0u) {
9409       // Canonicalize the expression in an attempt to have fewer unique masks
9410       // and therefore fewer registers used to hold the masks.
9411       if (LHSMask > RHSMask) {
9412         std::swap(LHSMask, RHSMask);
9413         std::swap(LHS, RHS);
9414       }
9415 
9416       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9417       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9418       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9419       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9420 
9421       // Check of we need to combine values from two sources within a byte.
9422       if (!(LHSUsedLanes & RHSUsedLanes) &&
9423           // If we select high and lower word keep it for SDWA.
9424           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9425           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9426         // Each byte in each mask is either selector mask 0-3, or has higher
9427         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9428         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9429         // mask which is not 0xff wins. By anding both masks we have a correct
9430         // result except that 0x0c shall be corrected to give 0x0c only.
9431         uint32_t Mask = LHSMask & RHSMask;
9432         for (unsigned I = 0; I < 32; I += 8) {
9433           uint32_t ByteSel = 0xff << I;
9434           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9435             Mask &= (0x0c << I) & 0xffffffff;
9436         }
9437 
9438         // Add 4 to each active LHS lane. It will not affect any existing 0xff
9439         // or 0x0c.
9440         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9441         SDLoc DL(N);
9442 
9443         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9444                            LHS.getOperand(0), RHS.getOperand(0),
9445                            DAG.getConstant(Sel, DL, MVT::i32));
9446       }
9447     }
9448   }
9449 
9450   return SDValue();
9451 }
9452 
9453 SDValue SITargetLowering::performOrCombine(SDNode *N,
9454                                            DAGCombinerInfo &DCI) const {
9455   SelectionDAG &DAG = DCI.DAG;
9456   SDValue LHS = N->getOperand(0);
9457   SDValue RHS = N->getOperand(1);
9458 
9459   EVT VT = N->getValueType(0);
9460   if (VT == MVT::i1) {
9461     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9462     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9463         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9464       SDValue Src = LHS.getOperand(0);
9465       if (Src != RHS.getOperand(0))
9466         return SDValue();
9467 
9468       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9469       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9470       if (!CLHS || !CRHS)
9471         return SDValue();
9472 
9473       // Only 10 bits are used.
9474       static const uint32_t MaxMask = 0x3ff;
9475 
9476       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9477       SDLoc DL(N);
9478       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9479                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
9480     }
9481 
9482     return SDValue();
9483   }
9484 
9485   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9486   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9487       LHS.getOpcode() == AMDGPUISD::PERM &&
9488       isa<ConstantSDNode>(LHS.getOperand(2))) {
9489     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9490     if (!Sel)
9491       return SDValue();
9492 
9493     Sel |= LHS.getConstantOperandVal(2);
9494     SDLoc DL(N);
9495     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9496                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9497   }
9498 
9499   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9500   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9501   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9502       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9503     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9504     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9505     if (LHSMask != ~0u && RHSMask != ~0u) {
9506       // Canonicalize the expression in an attempt to have fewer unique masks
9507       // and therefore fewer registers used to hold the masks.
9508       if (LHSMask > RHSMask) {
9509         std::swap(LHSMask, RHSMask);
9510         std::swap(LHS, RHS);
9511       }
9512 
9513       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9514       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9515       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9516       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9517 
9518       // Check of we need to combine values from two sources within a byte.
9519       if (!(LHSUsedLanes & RHSUsedLanes) &&
9520           // If we select high and lower word keep it for SDWA.
9521           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9522           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9523         // Kill zero bytes selected by other mask. Zero value is 0xc.
9524         LHSMask &= ~RHSUsedLanes;
9525         RHSMask &= ~LHSUsedLanes;
9526         // Add 4 to each active LHS lane
9527         LHSMask |= LHSUsedLanes & 0x04040404;
9528         // Combine masks
9529         uint32_t Sel = LHSMask | RHSMask;
9530         SDLoc DL(N);
9531 
9532         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9533                            LHS.getOperand(0), RHS.getOperand(0),
9534                            DAG.getConstant(Sel, DL, MVT::i32));
9535       }
9536     }
9537   }
9538 
9539   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9540     return SDValue();
9541 
9542   // TODO: This could be a generic combine with a predicate for extracting the
9543   // high half of an integer being free.
9544 
9545   // (or i64:x, (zero_extend i32:y)) ->
9546   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9547   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9548       RHS.getOpcode() != ISD::ZERO_EXTEND)
9549     std::swap(LHS, RHS);
9550 
9551   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9552     SDValue ExtSrc = RHS.getOperand(0);
9553     EVT SrcVT = ExtSrc.getValueType();
9554     if (SrcVT == MVT::i32) {
9555       SDLoc SL(N);
9556       SDValue LowLHS, HiBits;
9557       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9558       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9559 
9560       DCI.AddToWorklist(LowOr.getNode());
9561       DCI.AddToWorklist(HiBits.getNode());
9562 
9563       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9564                                 LowOr, HiBits);
9565       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9566     }
9567   }
9568 
9569   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9570   if (CRHS) {
9571     if (SDValue Split
9572           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
9573                                      N->getOperand(0), CRHS))
9574       return Split;
9575   }
9576 
9577   return SDValue();
9578 }
9579 
9580 SDValue SITargetLowering::performXorCombine(SDNode *N,
9581                                             DAGCombinerInfo &DCI) const {
9582   EVT VT = N->getValueType(0);
9583   if (VT != MVT::i64)
9584     return SDValue();
9585 
9586   SDValue LHS = N->getOperand(0);
9587   SDValue RHS = N->getOperand(1);
9588 
9589   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9590   if (CRHS) {
9591     if (SDValue Split
9592           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9593       return Split;
9594   }
9595 
9596   return SDValue();
9597 }
9598 
9599 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9600                                                    DAGCombinerInfo &DCI) const {
9601   if (!Subtarget->has16BitInsts() ||
9602       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9603     return SDValue();
9604 
9605   EVT VT = N->getValueType(0);
9606   if (VT != MVT::i32)
9607     return SDValue();
9608 
9609   SDValue Src = N->getOperand(0);
9610   if (Src.getValueType() != MVT::i16)
9611     return SDValue();
9612 
9613   return SDValue();
9614 }
9615 
9616 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9617                                                         DAGCombinerInfo &DCI)
9618                                                         const {
9619   SDValue Src = N->getOperand(0);
9620   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9621 
9622   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9623       VTSign->getVT() == MVT::i8) ||
9624       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9625       VTSign->getVT() == MVT::i16)) &&
9626       Src.hasOneUse()) {
9627     auto *M = cast<MemSDNode>(Src);
9628     SDValue Ops[] = {
9629       Src.getOperand(0), // Chain
9630       Src.getOperand(1), // rsrc
9631       Src.getOperand(2), // vindex
9632       Src.getOperand(3), // voffset
9633       Src.getOperand(4), // soffset
9634       Src.getOperand(5), // offset
9635       Src.getOperand(6),
9636       Src.getOperand(7)
9637     };
9638     // replace with BUFFER_LOAD_BYTE/SHORT
9639     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9640                                          Src.getOperand(0).getValueType());
9641     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9642                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9643     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9644                                                           ResList,
9645                                                           Ops, M->getMemoryVT(),
9646                                                           M->getMemOperand());
9647     return DCI.DAG.getMergeValues({BufferLoadSignExt,
9648                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
9649   }
9650   return SDValue();
9651 }
9652 
9653 SDValue SITargetLowering::performClassCombine(SDNode *N,
9654                                               DAGCombinerInfo &DCI) const {
9655   SelectionDAG &DAG = DCI.DAG;
9656   SDValue Mask = N->getOperand(1);
9657 
9658   // fp_class x, 0 -> false
9659   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9660     if (CMask->isZero())
9661       return DAG.getConstant(0, SDLoc(N), MVT::i1);
9662   }
9663 
9664   if (N->getOperand(0).isUndef())
9665     return DAG.getUNDEF(MVT::i1);
9666 
9667   return SDValue();
9668 }
9669 
9670 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9671                                             DAGCombinerInfo &DCI) const {
9672   EVT VT = N->getValueType(0);
9673   SDValue N0 = N->getOperand(0);
9674 
9675   if (N0.isUndef())
9676     return N0;
9677 
9678   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9679                          N0.getOpcode() == ISD::SINT_TO_FP)) {
9680     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9681                            N->getFlags());
9682   }
9683 
9684   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9685     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9686                            N0.getOperand(0), N->getFlags());
9687   }
9688 
9689   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9690 }
9691 
9692 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9693                                        unsigned MaxDepth) const {
9694   unsigned Opcode = Op.getOpcode();
9695   if (Opcode == ISD::FCANONICALIZE)
9696     return true;
9697 
9698   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9699     auto F = CFP->getValueAPF();
9700     if (F.isNaN() && F.isSignaling())
9701       return false;
9702     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9703   }
9704 
9705   // If source is a result of another standard FP operation it is already in
9706   // canonical form.
9707   if (MaxDepth == 0)
9708     return false;
9709 
9710   switch (Opcode) {
9711   // These will flush denorms if required.
9712   case ISD::FADD:
9713   case ISD::FSUB:
9714   case ISD::FMUL:
9715   case ISD::FCEIL:
9716   case ISD::FFLOOR:
9717   case ISD::FMA:
9718   case ISD::FMAD:
9719   case ISD::FSQRT:
9720   case ISD::FDIV:
9721   case ISD::FREM:
9722   case ISD::FP_ROUND:
9723   case ISD::FP_EXTEND:
9724   case AMDGPUISD::FMUL_LEGACY:
9725   case AMDGPUISD::FMAD_FTZ:
9726   case AMDGPUISD::RCP:
9727   case AMDGPUISD::RSQ:
9728   case AMDGPUISD::RSQ_CLAMP:
9729   case AMDGPUISD::RCP_LEGACY:
9730   case AMDGPUISD::RCP_IFLAG:
9731   case AMDGPUISD::DIV_SCALE:
9732   case AMDGPUISD::DIV_FMAS:
9733   case AMDGPUISD::DIV_FIXUP:
9734   case AMDGPUISD::FRACT:
9735   case AMDGPUISD::LDEXP:
9736   case AMDGPUISD::CVT_PKRTZ_F16_F32:
9737   case AMDGPUISD::CVT_F32_UBYTE0:
9738   case AMDGPUISD::CVT_F32_UBYTE1:
9739   case AMDGPUISD::CVT_F32_UBYTE2:
9740   case AMDGPUISD::CVT_F32_UBYTE3:
9741     return true;
9742 
9743   // It can/will be lowered or combined as a bit operation.
9744   // Need to check their input recursively to handle.
9745   case ISD::FNEG:
9746   case ISD::FABS:
9747   case ISD::FCOPYSIGN:
9748     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9749 
9750   case ISD::FSIN:
9751   case ISD::FCOS:
9752   case ISD::FSINCOS:
9753     return Op.getValueType().getScalarType() != MVT::f16;
9754 
9755   case ISD::FMINNUM:
9756   case ISD::FMAXNUM:
9757   case ISD::FMINNUM_IEEE:
9758   case ISD::FMAXNUM_IEEE:
9759   case AMDGPUISD::CLAMP:
9760   case AMDGPUISD::FMED3:
9761   case AMDGPUISD::FMAX3:
9762   case AMDGPUISD::FMIN3: {
9763     // FIXME: Shouldn't treat the generic operations different based these.
9764     // However, we aren't really required to flush the result from
9765     // minnum/maxnum..
9766 
9767     // snans will be quieted, so we only need to worry about denormals.
9768     if (Subtarget->supportsMinMaxDenormModes() ||
9769         denormalsEnabledForType(DAG, Op.getValueType()))
9770       return true;
9771 
9772     // Flushing may be required.
9773     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9774     // targets need to check their input recursively.
9775 
9776     // FIXME: Does this apply with clamp? It's implemented with max.
9777     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9778       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9779         return false;
9780     }
9781 
9782     return true;
9783   }
9784   case ISD::SELECT: {
9785     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9786            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9787   }
9788   case ISD::BUILD_VECTOR: {
9789     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9790       SDValue SrcOp = Op.getOperand(i);
9791       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9792         return false;
9793     }
9794 
9795     return true;
9796   }
9797   case ISD::EXTRACT_VECTOR_ELT:
9798   case ISD::EXTRACT_SUBVECTOR: {
9799     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9800   }
9801   case ISD::INSERT_VECTOR_ELT: {
9802     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9803            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9804   }
9805   case ISD::UNDEF:
9806     // Could be anything.
9807     return false;
9808 
9809   case ISD::BITCAST:
9810     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9811   case ISD::TRUNCATE: {
9812     // Hack round the mess we make when legalizing extract_vector_elt
9813     if (Op.getValueType() == MVT::i16) {
9814       SDValue TruncSrc = Op.getOperand(0);
9815       if (TruncSrc.getValueType() == MVT::i32 &&
9816           TruncSrc.getOpcode() == ISD::BITCAST &&
9817           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9818         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9819       }
9820     }
9821     return false;
9822   }
9823   case ISD::INTRINSIC_WO_CHAIN: {
9824     unsigned IntrinsicID
9825       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9826     // TODO: Handle more intrinsics
9827     switch (IntrinsicID) {
9828     case Intrinsic::amdgcn_cvt_pkrtz:
9829     case Intrinsic::amdgcn_cubeid:
9830     case Intrinsic::amdgcn_frexp_mant:
9831     case Intrinsic::amdgcn_fdot2:
9832     case Intrinsic::amdgcn_rcp:
9833     case Intrinsic::amdgcn_rsq:
9834     case Intrinsic::amdgcn_rsq_clamp:
9835     case Intrinsic::amdgcn_rcp_legacy:
9836     case Intrinsic::amdgcn_rsq_legacy:
9837     case Intrinsic::amdgcn_trig_preop:
9838       return true;
9839     default:
9840       break;
9841     }
9842 
9843     LLVM_FALLTHROUGH;
9844   }
9845   default:
9846     return denormalsEnabledForType(DAG, Op.getValueType()) &&
9847            DAG.isKnownNeverSNaN(Op);
9848   }
9849 
9850   llvm_unreachable("invalid operation");
9851 }
9852 
9853 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
9854                                        unsigned MaxDepth) const {
9855   MachineRegisterInfo &MRI = MF.getRegInfo();
9856   MachineInstr *MI = MRI.getVRegDef(Reg);
9857   unsigned Opcode = MI->getOpcode();
9858 
9859   if (Opcode == AMDGPU::G_FCANONICALIZE)
9860     return true;
9861 
9862   Optional<FPValueAndVReg> FCR;
9863   // Constant splat (can be padded with undef) or scalar constant.
9864   if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) {
9865     if (FCR->Value.isSignaling())
9866       return false;
9867     return !FCR->Value.isDenormal() ||
9868            denormalsEnabledForType(MRI.getType(FCR->VReg), MF);
9869   }
9870 
9871   if (MaxDepth == 0)
9872     return false;
9873 
9874   switch (Opcode) {
9875   case AMDGPU::G_FMINNUM_IEEE:
9876   case AMDGPU::G_FMAXNUM_IEEE: {
9877     if (Subtarget->supportsMinMaxDenormModes() ||
9878         denormalsEnabledForType(MRI.getType(Reg), MF))
9879       return true;
9880     for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
9881       if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
9882         return false;
9883     return true;
9884   }
9885   default:
9886     return denormalsEnabledForType(MRI.getType(Reg), MF) &&
9887            isKnownNeverSNaN(Reg, MRI);
9888   }
9889 
9890   llvm_unreachable("invalid operation");
9891 }
9892 
9893 // Constant fold canonicalize.
9894 SDValue SITargetLowering::getCanonicalConstantFP(
9895   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9896   // Flush denormals to 0 if not enabled.
9897   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9898     return DAG.getConstantFP(0.0, SL, VT);
9899 
9900   if (C.isNaN()) {
9901     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9902     if (C.isSignaling()) {
9903       // Quiet a signaling NaN.
9904       // FIXME: Is this supposed to preserve payload bits?
9905       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9906     }
9907 
9908     // Make sure it is the canonical NaN bitpattern.
9909     //
9910     // TODO: Can we use -1 as the canonical NaN value since it's an inline
9911     // immediate?
9912     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9913       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9914   }
9915 
9916   // Already canonical.
9917   return DAG.getConstantFP(C, SL, VT);
9918 }
9919 
9920 static bool vectorEltWillFoldAway(SDValue Op) {
9921   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9922 }
9923 
9924 SDValue SITargetLowering::performFCanonicalizeCombine(
9925   SDNode *N,
9926   DAGCombinerInfo &DCI) const {
9927   SelectionDAG &DAG = DCI.DAG;
9928   SDValue N0 = N->getOperand(0);
9929   EVT VT = N->getValueType(0);
9930 
9931   // fcanonicalize undef -> qnan
9932   if (N0.isUndef()) {
9933     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
9934     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
9935   }
9936 
9937   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
9938     EVT VT = N->getValueType(0);
9939     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
9940   }
9941 
9942   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
9943   //                                                   (fcanonicalize k)
9944   //
9945   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
9946 
9947   // TODO: This could be better with wider vectors that will be split to v2f16,
9948   // and to consider uses since there aren't that many packed operations.
9949   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
9950       isTypeLegal(MVT::v2f16)) {
9951     SDLoc SL(N);
9952     SDValue NewElts[2];
9953     SDValue Lo = N0.getOperand(0);
9954     SDValue Hi = N0.getOperand(1);
9955     EVT EltVT = Lo.getValueType();
9956 
9957     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
9958       for (unsigned I = 0; I != 2; ++I) {
9959         SDValue Op = N0.getOperand(I);
9960         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9961           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
9962                                               CFP->getValueAPF());
9963         } else if (Op.isUndef()) {
9964           // Handled below based on what the other operand is.
9965           NewElts[I] = Op;
9966         } else {
9967           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
9968         }
9969       }
9970 
9971       // If one half is undef, and one is constant, perfer a splat vector rather
9972       // than the normal qNaN. If it's a register, prefer 0.0 since that's
9973       // cheaper to use and may be free with a packed operation.
9974       if (NewElts[0].isUndef()) {
9975         if (isa<ConstantFPSDNode>(NewElts[1]))
9976           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
9977             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
9978       }
9979 
9980       if (NewElts[1].isUndef()) {
9981         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
9982           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
9983       }
9984 
9985       return DAG.getBuildVector(VT, SL, NewElts);
9986     }
9987   }
9988 
9989   unsigned SrcOpc = N0.getOpcode();
9990 
9991   // If it's free to do so, push canonicalizes further up the source, which may
9992   // find a canonical source.
9993   //
9994   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9995   // sNaNs.
9996   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9997     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9998     if (CRHS && N0.hasOneUse()) {
9999       SDLoc SL(N);
10000       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
10001                                    N0.getOperand(0));
10002       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
10003       DCI.AddToWorklist(Canon0.getNode());
10004 
10005       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
10006     }
10007   }
10008 
10009   return isCanonicalized(DAG, N0) ? N0 : SDValue();
10010 }
10011 
10012 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
10013   switch (Opc) {
10014   case ISD::FMAXNUM:
10015   case ISD::FMAXNUM_IEEE:
10016     return AMDGPUISD::FMAX3;
10017   case ISD::SMAX:
10018     return AMDGPUISD::SMAX3;
10019   case ISD::UMAX:
10020     return AMDGPUISD::UMAX3;
10021   case ISD::FMINNUM:
10022   case ISD::FMINNUM_IEEE:
10023     return AMDGPUISD::FMIN3;
10024   case ISD::SMIN:
10025     return AMDGPUISD::SMIN3;
10026   case ISD::UMIN:
10027     return AMDGPUISD::UMIN3;
10028   default:
10029     llvm_unreachable("Not a min/max opcode");
10030   }
10031 }
10032 
10033 SDValue SITargetLowering::performIntMed3ImmCombine(
10034   SelectionDAG &DAG, const SDLoc &SL,
10035   SDValue Op0, SDValue Op1, bool Signed) const {
10036   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
10037   if (!K1)
10038     return SDValue();
10039 
10040   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
10041   if (!K0)
10042     return SDValue();
10043 
10044   if (Signed) {
10045     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
10046       return SDValue();
10047   } else {
10048     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
10049       return SDValue();
10050   }
10051 
10052   EVT VT = K0->getValueType(0);
10053   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
10054   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
10055     return DAG.getNode(Med3Opc, SL, VT,
10056                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
10057   }
10058 
10059   // If there isn't a 16-bit med3 operation, convert to 32-bit.
10060   if (VT == MVT::i16) {
10061     MVT NVT = MVT::i32;
10062     unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10063 
10064     SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
10065     SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
10066     SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
10067 
10068     SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
10069     return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
10070   }
10071 
10072   return SDValue();
10073 }
10074 
10075 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
10076   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
10077     return C;
10078 
10079   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
10080     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
10081       return C;
10082   }
10083 
10084   return nullptr;
10085 }
10086 
10087 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
10088                                                   const SDLoc &SL,
10089                                                   SDValue Op0,
10090                                                   SDValue Op1) const {
10091   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
10092   if (!K1)
10093     return SDValue();
10094 
10095   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
10096   if (!K0)
10097     return SDValue();
10098 
10099   // Ordered >= (although NaN inputs should have folded away by now).
10100   if (K0->getValueAPF() > K1->getValueAPF())
10101     return SDValue();
10102 
10103   const MachineFunction &MF = DAG.getMachineFunction();
10104   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10105 
10106   // TODO: Check IEEE bit enabled?
10107   EVT VT = Op0.getValueType();
10108   if (Info->getMode().DX10Clamp) {
10109     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
10110     // hardware fmed3 behavior converting to a min.
10111     // FIXME: Should this be allowing -0.0?
10112     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
10113       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
10114   }
10115 
10116   // med3 for f16 is only available on gfx9+, and not available for v2f16.
10117   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
10118     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
10119     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
10120     // then give the other result, which is different from med3 with a NaN
10121     // input.
10122     SDValue Var = Op0.getOperand(0);
10123     if (!DAG.isKnownNeverSNaN(Var))
10124       return SDValue();
10125 
10126     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10127 
10128     if ((!K0->hasOneUse() ||
10129          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
10130         (!K1->hasOneUse() ||
10131          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
10132       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
10133                          Var, SDValue(K0, 0), SDValue(K1, 0));
10134     }
10135   }
10136 
10137   return SDValue();
10138 }
10139 
10140 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
10141                                                DAGCombinerInfo &DCI) const {
10142   SelectionDAG &DAG = DCI.DAG;
10143 
10144   EVT VT = N->getValueType(0);
10145   unsigned Opc = N->getOpcode();
10146   SDValue Op0 = N->getOperand(0);
10147   SDValue Op1 = N->getOperand(1);
10148 
10149   // Only do this if the inner op has one use since this will just increases
10150   // register pressure for no benefit.
10151 
10152   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
10153       !VT.isVector() &&
10154       (VT == MVT::i32 || VT == MVT::f32 ||
10155        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
10156     // max(max(a, b), c) -> max3(a, b, c)
10157     // min(min(a, b), c) -> min3(a, b, c)
10158     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
10159       SDLoc DL(N);
10160       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10161                          DL,
10162                          N->getValueType(0),
10163                          Op0.getOperand(0),
10164                          Op0.getOperand(1),
10165                          Op1);
10166     }
10167 
10168     // Try commuted.
10169     // max(a, max(b, c)) -> max3(a, b, c)
10170     // min(a, min(b, c)) -> min3(a, b, c)
10171     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
10172       SDLoc DL(N);
10173       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10174                          DL,
10175                          N->getValueType(0),
10176                          Op0,
10177                          Op1.getOperand(0),
10178                          Op1.getOperand(1));
10179     }
10180   }
10181 
10182   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
10183   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
10184     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
10185       return Med3;
10186   }
10187 
10188   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
10189     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
10190       return Med3;
10191   }
10192 
10193   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
10194   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
10195        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
10196        (Opc == AMDGPUISD::FMIN_LEGACY &&
10197         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
10198       (VT == MVT::f32 || VT == MVT::f64 ||
10199        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
10200        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
10201       Op0.hasOneUse()) {
10202     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
10203       return Res;
10204   }
10205 
10206   return SDValue();
10207 }
10208 
10209 static bool isClampZeroToOne(SDValue A, SDValue B) {
10210   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
10211     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
10212       // FIXME: Should this be allowing -0.0?
10213       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
10214              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
10215     }
10216   }
10217 
10218   return false;
10219 }
10220 
10221 // FIXME: Should only worry about snans for version with chain.
10222 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
10223                                               DAGCombinerInfo &DCI) const {
10224   EVT VT = N->getValueType(0);
10225   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
10226   // NaNs. With a NaN input, the order of the operands may change the result.
10227 
10228   SelectionDAG &DAG = DCI.DAG;
10229   SDLoc SL(N);
10230 
10231   SDValue Src0 = N->getOperand(0);
10232   SDValue Src1 = N->getOperand(1);
10233   SDValue Src2 = N->getOperand(2);
10234 
10235   if (isClampZeroToOne(Src0, Src1)) {
10236     // const_a, const_b, x -> clamp is safe in all cases including signaling
10237     // nans.
10238     // FIXME: Should this be allowing -0.0?
10239     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
10240   }
10241 
10242   const MachineFunction &MF = DAG.getMachineFunction();
10243   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10244 
10245   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
10246   // handling no dx10-clamp?
10247   if (Info->getMode().DX10Clamp) {
10248     // If NaNs is clamped to 0, we are free to reorder the inputs.
10249 
10250     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10251       std::swap(Src0, Src1);
10252 
10253     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
10254       std::swap(Src1, Src2);
10255 
10256     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10257       std::swap(Src0, Src1);
10258 
10259     if (isClampZeroToOne(Src1, Src2))
10260       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
10261   }
10262 
10263   return SDValue();
10264 }
10265 
10266 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
10267                                                  DAGCombinerInfo &DCI) const {
10268   SDValue Src0 = N->getOperand(0);
10269   SDValue Src1 = N->getOperand(1);
10270   if (Src0.isUndef() && Src1.isUndef())
10271     return DCI.DAG.getUNDEF(N->getValueType(0));
10272   return SDValue();
10273 }
10274 
10275 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10276 // expanded into a set of cmp/select instructions.
10277 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10278                                                 unsigned NumElem,
10279                                                 bool IsDivergentIdx) {
10280   if (UseDivergentRegisterIndexing)
10281     return false;
10282 
10283   unsigned VecSize = EltSize * NumElem;
10284 
10285   // Sub-dword vectors of size 2 dword or less have better implementation.
10286   if (VecSize <= 64 && EltSize < 32)
10287     return false;
10288 
10289   // Always expand the rest of sub-dword instructions, otherwise it will be
10290   // lowered via memory.
10291   if (EltSize < 32)
10292     return true;
10293 
10294   // Always do this if var-idx is divergent, otherwise it will become a loop.
10295   if (IsDivergentIdx)
10296     return true;
10297 
10298   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10299   unsigned NumInsts = NumElem /* Number of compares */ +
10300                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10301   return NumInsts <= 16;
10302 }
10303 
10304 static bool shouldExpandVectorDynExt(SDNode *N) {
10305   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10306   if (isa<ConstantSDNode>(Idx))
10307     return false;
10308 
10309   SDValue Vec = N->getOperand(0);
10310   EVT VecVT = Vec.getValueType();
10311   EVT EltVT = VecVT.getVectorElementType();
10312   unsigned EltSize = EltVT.getSizeInBits();
10313   unsigned NumElem = VecVT.getVectorNumElements();
10314 
10315   return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
10316                                                     Idx->isDivergent());
10317 }
10318 
10319 SDValue SITargetLowering::performExtractVectorEltCombine(
10320   SDNode *N, DAGCombinerInfo &DCI) const {
10321   SDValue Vec = N->getOperand(0);
10322   SelectionDAG &DAG = DCI.DAG;
10323 
10324   EVT VecVT = Vec.getValueType();
10325   EVT EltVT = VecVT.getVectorElementType();
10326 
10327   if ((Vec.getOpcode() == ISD::FNEG ||
10328        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10329     SDLoc SL(N);
10330     EVT EltVT = N->getValueType(0);
10331     SDValue Idx = N->getOperand(1);
10332     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10333                               Vec.getOperand(0), Idx);
10334     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10335   }
10336 
10337   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10338   //    =>
10339   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10340   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10341   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10342   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10343     SDLoc SL(N);
10344     EVT EltVT = N->getValueType(0);
10345     SDValue Idx = N->getOperand(1);
10346     unsigned Opc = Vec.getOpcode();
10347 
10348     switch(Opc) {
10349     default:
10350       break;
10351       // TODO: Support other binary operations.
10352     case ISD::FADD:
10353     case ISD::FSUB:
10354     case ISD::FMUL:
10355     case ISD::ADD:
10356     case ISD::UMIN:
10357     case ISD::UMAX:
10358     case ISD::SMIN:
10359     case ISD::SMAX:
10360     case ISD::FMAXNUM:
10361     case ISD::FMINNUM:
10362     case ISD::FMAXNUM_IEEE:
10363     case ISD::FMINNUM_IEEE: {
10364       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10365                                  Vec.getOperand(0), Idx);
10366       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10367                                  Vec.getOperand(1), Idx);
10368 
10369       DCI.AddToWorklist(Elt0.getNode());
10370       DCI.AddToWorklist(Elt1.getNode());
10371       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10372     }
10373     }
10374   }
10375 
10376   unsigned VecSize = VecVT.getSizeInBits();
10377   unsigned EltSize = EltVT.getSizeInBits();
10378 
10379   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10380   if (::shouldExpandVectorDynExt(N)) {
10381     SDLoc SL(N);
10382     SDValue Idx = N->getOperand(1);
10383     SDValue V;
10384     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10385       SDValue IC = DAG.getVectorIdxConstant(I, SL);
10386       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10387       if (I == 0)
10388         V = Elt;
10389       else
10390         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10391     }
10392     return V;
10393   }
10394 
10395   if (!DCI.isBeforeLegalize())
10396     return SDValue();
10397 
10398   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10399   // elements. This exposes more load reduction opportunities by replacing
10400   // multiple small extract_vector_elements with a single 32-bit extract.
10401   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10402   if (isa<MemSDNode>(Vec) &&
10403       EltSize <= 16 &&
10404       EltVT.isByteSized() &&
10405       VecSize > 32 &&
10406       VecSize % 32 == 0 &&
10407       Idx) {
10408     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10409 
10410     unsigned BitIndex = Idx->getZExtValue() * EltSize;
10411     unsigned EltIdx = BitIndex / 32;
10412     unsigned LeftoverBitIdx = BitIndex % 32;
10413     SDLoc SL(N);
10414 
10415     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10416     DCI.AddToWorklist(Cast.getNode());
10417 
10418     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10419                               DAG.getConstant(EltIdx, SL, MVT::i32));
10420     DCI.AddToWorklist(Elt.getNode());
10421     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10422                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10423     DCI.AddToWorklist(Srl.getNode());
10424 
10425     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10426     DCI.AddToWorklist(Trunc.getNode());
10427     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10428   }
10429 
10430   return SDValue();
10431 }
10432 
10433 SDValue
10434 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10435                                                 DAGCombinerInfo &DCI) const {
10436   SDValue Vec = N->getOperand(0);
10437   SDValue Idx = N->getOperand(2);
10438   EVT VecVT = Vec.getValueType();
10439   EVT EltVT = VecVT.getVectorElementType();
10440 
10441   // INSERT_VECTOR_ELT (<n x e>, var-idx)
10442   // => BUILD_VECTOR n x select (e, const-idx)
10443   if (!::shouldExpandVectorDynExt(N))
10444     return SDValue();
10445 
10446   SelectionDAG &DAG = DCI.DAG;
10447   SDLoc SL(N);
10448   SDValue Ins = N->getOperand(1);
10449   EVT IdxVT = Idx.getValueType();
10450 
10451   SmallVector<SDValue, 16> Ops;
10452   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10453     SDValue IC = DAG.getConstant(I, SL, IdxVT);
10454     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10455     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10456     Ops.push_back(V);
10457   }
10458 
10459   return DAG.getBuildVector(VecVT, SL, Ops);
10460 }
10461 
10462 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10463                                           const SDNode *N0,
10464                                           const SDNode *N1) const {
10465   EVT VT = N0->getValueType(0);
10466 
10467   // Only do this if we are not trying to support denormals. v_mad_f32 does not
10468   // support denormals ever.
10469   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10470        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10471         getSubtarget()->hasMadF16())) &&
10472        isOperationLegal(ISD::FMAD, VT))
10473     return ISD::FMAD;
10474 
10475   const TargetOptions &Options = DAG.getTarget().Options;
10476   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10477        (N0->getFlags().hasAllowContract() &&
10478         N1->getFlags().hasAllowContract())) &&
10479       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10480     return ISD::FMA;
10481   }
10482 
10483   return 0;
10484 }
10485 
10486 // For a reassociatable opcode perform:
10487 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10488 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10489                                                SelectionDAG &DAG) const {
10490   EVT VT = N->getValueType(0);
10491   if (VT != MVT::i32 && VT != MVT::i64)
10492     return SDValue();
10493 
10494   unsigned Opc = N->getOpcode();
10495   SDValue Op0 = N->getOperand(0);
10496   SDValue Op1 = N->getOperand(1);
10497 
10498   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10499     return SDValue();
10500 
10501   if (Op0->isDivergent())
10502     std::swap(Op0, Op1);
10503 
10504   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10505     return SDValue();
10506 
10507   SDValue Op2 = Op1.getOperand(1);
10508   Op1 = Op1.getOperand(0);
10509   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10510     return SDValue();
10511 
10512   if (Op1->isDivergent())
10513     std::swap(Op1, Op2);
10514 
10515   // If either operand is constant this will conflict with
10516   // DAGCombiner::ReassociateOps().
10517   if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
10518       DAG.isConstantIntBuildVectorOrConstantInt(Op1))
10519     return SDValue();
10520 
10521   SDLoc SL(N);
10522   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10523   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10524 }
10525 
10526 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10527                            EVT VT,
10528                            SDValue N0, SDValue N1, SDValue N2,
10529                            bool Signed) {
10530   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10531   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10532   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10533   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10534 }
10535 
10536 SDValue SITargetLowering::performAddCombine(SDNode *N,
10537                                             DAGCombinerInfo &DCI) const {
10538   SelectionDAG &DAG = DCI.DAG;
10539   EVT VT = N->getValueType(0);
10540   SDLoc SL(N);
10541   SDValue LHS = N->getOperand(0);
10542   SDValue RHS = N->getOperand(1);
10543 
10544   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10545       && Subtarget->hasMad64_32() &&
10546       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10547       VT.getScalarSizeInBits() <= 64) {
10548     if (LHS.getOpcode() != ISD::MUL)
10549       std::swap(LHS, RHS);
10550 
10551     SDValue MulLHS = LHS.getOperand(0);
10552     SDValue MulRHS = LHS.getOperand(1);
10553     SDValue AddRHS = RHS;
10554 
10555     // TODO: Maybe restrict if SGPR inputs.
10556     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10557         numBitsUnsigned(MulRHS, DAG) <= 32) {
10558       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10559       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10560       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10561       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10562     }
10563 
10564     if (numBitsSigned(MulLHS, DAG) <= 32 && numBitsSigned(MulRHS, DAG) <= 32) {
10565       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10566       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10567       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10568       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10569     }
10570 
10571     return SDValue();
10572   }
10573 
10574   if (SDValue V = reassociateScalarOps(N, DAG)) {
10575     return V;
10576   }
10577 
10578   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10579     return SDValue();
10580 
10581   // add x, zext (setcc) => addcarry x, 0, setcc
10582   // add x, sext (setcc) => subcarry x, 0, setcc
10583   unsigned Opc = LHS.getOpcode();
10584   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10585       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10586     std::swap(RHS, LHS);
10587 
10588   Opc = RHS.getOpcode();
10589   switch (Opc) {
10590   default: break;
10591   case ISD::ZERO_EXTEND:
10592   case ISD::SIGN_EXTEND:
10593   case ISD::ANY_EXTEND: {
10594     auto Cond = RHS.getOperand(0);
10595     // If this won't be a real VOPC output, we would still need to insert an
10596     // extra instruction anyway.
10597     if (!isBoolSGPR(Cond))
10598       break;
10599     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10600     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10601     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10602     return DAG.getNode(Opc, SL, VTList, Args);
10603   }
10604   case ISD::ADDCARRY: {
10605     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10606     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10607     if (!C || C->getZExtValue() != 0) break;
10608     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10609     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10610   }
10611   }
10612   return SDValue();
10613 }
10614 
10615 SDValue SITargetLowering::performSubCombine(SDNode *N,
10616                                             DAGCombinerInfo &DCI) const {
10617   SelectionDAG &DAG = DCI.DAG;
10618   EVT VT = N->getValueType(0);
10619 
10620   if (VT != MVT::i32)
10621     return SDValue();
10622 
10623   SDLoc SL(N);
10624   SDValue LHS = N->getOperand(0);
10625   SDValue RHS = N->getOperand(1);
10626 
10627   // sub x, zext (setcc) => subcarry x, 0, setcc
10628   // sub x, sext (setcc) => addcarry x, 0, setcc
10629   unsigned Opc = RHS.getOpcode();
10630   switch (Opc) {
10631   default: break;
10632   case ISD::ZERO_EXTEND:
10633   case ISD::SIGN_EXTEND:
10634   case ISD::ANY_EXTEND: {
10635     auto Cond = RHS.getOperand(0);
10636     // If this won't be a real VOPC output, we would still need to insert an
10637     // extra instruction anyway.
10638     if (!isBoolSGPR(Cond))
10639       break;
10640     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10641     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10642     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10643     return DAG.getNode(Opc, SL, VTList, Args);
10644   }
10645   }
10646 
10647   if (LHS.getOpcode() == ISD::SUBCARRY) {
10648     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10649     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10650     if (!C || !C->isZero())
10651       return SDValue();
10652     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10653     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10654   }
10655   return SDValue();
10656 }
10657 
10658 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10659   DAGCombinerInfo &DCI) const {
10660 
10661   if (N->getValueType(0) != MVT::i32)
10662     return SDValue();
10663 
10664   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10665   if (!C || C->getZExtValue() != 0)
10666     return SDValue();
10667 
10668   SelectionDAG &DAG = DCI.DAG;
10669   SDValue LHS = N->getOperand(0);
10670 
10671   // addcarry (add x, y), 0, cc => addcarry x, y, cc
10672   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10673   unsigned LHSOpc = LHS.getOpcode();
10674   unsigned Opc = N->getOpcode();
10675   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10676       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10677     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10678     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10679   }
10680   return SDValue();
10681 }
10682 
10683 SDValue SITargetLowering::performFAddCombine(SDNode *N,
10684                                              DAGCombinerInfo &DCI) const {
10685   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10686     return SDValue();
10687 
10688   SelectionDAG &DAG = DCI.DAG;
10689   EVT VT = N->getValueType(0);
10690 
10691   SDLoc SL(N);
10692   SDValue LHS = N->getOperand(0);
10693   SDValue RHS = N->getOperand(1);
10694 
10695   // These should really be instruction patterns, but writing patterns with
10696   // source modiifiers is a pain.
10697 
10698   // fadd (fadd (a, a), b) -> mad 2.0, a, b
10699   if (LHS.getOpcode() == ISD::FADD) {
10700     SDValue A = LHS.getOperand(0);
10701     if (A == LHS.getOperand(1)) {
10702       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10703       if (FusedOp != 0) {
10704         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10705         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10706       }
10707     }
10708   }
10709 
10710   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10711   if (RHS.getOpcode() == ISD::FADD) {
10712     SDValue A = RHS.getOperand(0);
10713     if (A == RHS.getOperand(1)) {
10714       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10715       if (FusedOp != 0) {
10716         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10717         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10718       }
10719     }
10720   }
10721 
10722   return SDValue();
10723 }
10724 
10725 SDValue SITargetLowering::performFSubCombine(SDNode *N,
10726                                              DAGCombinerInfo &DCI) const {
10727   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10728     return SDValue();
10729 
10730   SelectionDAG &DAG = DCI.DAG;
10731   SDLoc SL(N);
10732   EVT VT = N->getValueType(0);
10733   assert(!VT.isVector());
10734 
10735   // Try to get the fneg to fold into the source modifier. This undoes generic
10736   // DAG combines and folds them into the mad.
10737   //
10738   // Only do this if we are not trying to support denormals. v_mad_f32 does
10739   // not support denormals ever.
10740   SDValue LHS = N->getOperand(0);
10741   SDValue RHS = N->getOperand(1);
10742   if (LHS.getOpcode() == ISD::FADD) {
10743     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10744     SDValue A = LHS.getOperand(0);
10745     if (A == LHS.getOperand(1)) {
10746       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10747       if (FusedOp != 0){
10748         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10749         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10750 
10751         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10752       }
10753     }
10754   }
10755 
10756   if (RHS.getOpcode() == ISD::FADD) {
10757     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10758 
10759     SDValue A = RHS.getOperand(0);
10760     if (A == RHS.getOperand(1)) {
10761       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10762       if (FusedOp != 0){
10763         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10764         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10765       }
10766     }
10767   }
10768 
10769   return SDValue();
10770 }
10771 
10772 SDValue SITargetLowering::performFMACombine(SDNode *N,
10773                                             DAGCombinerInfo &DCI) const {
10774   SelectionDAG &DAG = DCI.DAG;
10775   EVT VT = N->getValueType(0);
10776   SDLoc SL(N);
10777 
10778   if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
10779     return SDValue();
10780 
10781   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10782   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10783   SDValue Op1 = N->getOperand(0);
10784   SDValue Op2 = N->getOperand(1);
10785   SDValue FMA = N->getOperand(2);
10786 
10787   if (FMA.getOpcode() != ISD::FMA ||
10788       Op1.getOpcode() != ISD::FP_EXTEND ||
10789       Op2.getOpcode() != ISD::FP_EXTEND)
10790     return SDValue();
10791 
10792   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10793   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10794   // is sufficient to allow generaing fdot2.
10795   const TargetOptions &Options = DAG.getTarget().Options;
10796   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10797       (N->getFlags().hasAllowContract() &&
10798        FMA->getFlags().hasAllowContract())) {
10799     Op1 = Op1.getOperand(0);
10800     Op2 = Op2.getOperand(0);
10801     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10802         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10803       return SDValue();
10804 
10805     SDValue Vec1 = Op1.getOperand(0);
10806     SDValue Idx1 = Op1.getOperand(1);
10807     SDValue Vec2 = Op2.getOperand(0);
10808 
10809     SDValue FMAOp1 = FMA.getOperand(0);
10810     SDValue FMAOp2 = FMA.getOperand(1);
10811     SDValue FMAAcc = FMA.getOperand(2);
10812 
10813     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10814         FMAOp2.getOpcode() != ISD::FP_EXTEND)
10815       return SDValue();
10816 
10817     FMAOp1 = FMAOp1.getOperand(0);
10818     FMAOp2 = FMAOp2.getOperand(0);
10819     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10820         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10821       return SDValue();
10822 
10823     SDValue Vec3 = FMAOp1.getOperand(0);
10824     SDValue Vec4 = FMAOp2.getOperand(0);
10825     SDValue Idx2 = FMAOp1.getOperand(1);
10826 
10827     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10828         // Idx1 and Idx2 cannot be the same.
10829         Idx1 == Idx2)
10830       return SDValue();
10831 
10832     if (Vec1 == Vec2 || Vec3 == Vec4)
10833       return SDValue();
10834 
10835     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10836       return SDValue();
10837 
10838     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10839         (Vec1 == Vec4 && Vec2 == Vec3)) {
10840       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10841                          DAG.getTargetConstant(0, SL, MVT::i1));
10842     }
10843   }
10844   return SDValue();
10845 }
10846 
10847 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10848                                               DAGCombinerInfo &DCI) const {
10849   SelectionDAG &DAG = DCI.DAG;
10850   SDLoc SL(N);
10851 
10852   SDValue LHS = N->getOperand(0);
10853   SDValue RHS = N->getOperand(1);
10854   EVT VT = LHS.getValueType();
10855   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10856 
10857   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10858   if (!CRHS) {
10859     CRHS = dyn_cast<ConstantSDNode>(LHS);
10860     if (CRHS) {
10861       std::swap(LHS, RHS);
10862       CC = getSetCCSwappedOperands(CC);
10863     }
10864   }
10865 
10866   if (CRHS) {
10867     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10868         isBoolSGPR(LHS.getOperand(0))) {
10869       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10870       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10871       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
10872       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
10873       if ((CRHS->isAllOnes() &&
10874            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10875           (CRHS->isZero() &&
10876            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10877         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10878                            DAG.getConstant(-1, SL, MVT::i1));
10879       if ((CRHS->isAllOnes() &&
10880            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10881           (CRHS->isZero() &&
10882            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10883         return LHS.getOperand(0);
10884     }
10885 
10886     const APInt &CRHSVal = CRHS->getAPIntValue();
10887     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10888         LHS.getOpcode() == ISD::SELECT &&
10889         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10890         isa<ConstantSDNode>(LHS.getOperand(2)) &&
10891         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10892         isBoolSGPR(LHS.getOperand(0))) {
10893       // Given CT != FT:
10894       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10895       // setcc (select cc, CT, CF), CF, ne => cc
10896       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10897       // setcc (select cc, CT, CF), CT, eq => cc
10898       const APInt &CT = LHS.getConstantOperandAPInt(1);
10899       const APInt &CF = LHS.getConstantOperandAPInt(2);
10900 
10901       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10902           (CT == CRHSVal && CC == ISD::SETNE))
10903         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10904                            DAG.getConstant(-1, SL, MVT::i1));
10905       if ((CF == CRHSVal && CC == ISD::SETNE) ||
10906           (CT == CRHSVal && CC == ISD::SETEQ))
10907         return LHS.getOperand(0);
10908     }
10909   }
10910 
10911   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10912                                            VT != MVT::f16))
10913     return SDValue();
10914 
10915   // Match isinf/isfinite pattern
10916   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10917   // (fcmp one (fabs x), inf) -> (fp_class x,
10918   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10919   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10920     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10921     if (!CRHS)
10922       return SDValue();
10923 
10924     const APFloat &APF = CRHS->getValueAPF();
10925     if (APF.isInfinity() && !APF.isNegative()) {
10926       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10927                                  SIInstrFlags::N_INFINITY;
10928       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10929                                     SIInstrFlags::P_ZERO |
10930                                     SIInstrFlags::N_NORMAL |
10931                                     SIInstrFlags::P_NORMAL |
10932                                     SIInstrFlags::N_SUBNORMAL |
10933                                     SIInstrFlags::P_SUBNORMAL;
10934       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
10935       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
10936                          DAG.getConstant(Mask, SL, MVT::i32));
10937     }
10938   }
10939 
10940   return SDValue();
10941 }
10942 
10943 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
10944                                                      DAGCombinerInfo &DCI) const {
10945   SelectionDAG &DAG = DCI.DAG;
10946   SDLoc SL(N);
10947   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
10948 
10949   SDValue Src = N->getOperand(0);
10950   SDValue Shift = N->getOperand(0);
10951 
10952   // TODO: Extend type shouldn't matter (assuming legal types).
10953   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
10954     Shift = Shift.getOperand(0);
10955 
10956   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
10957     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
10958     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
10959     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
10960     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
10961     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
10962     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
10963       SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0),
10964                                  SDLoc(Shift.getOperand(0)), MVT::i32);
10965 
10966       unsigned ShiftOffset = 8 * Offset;
10967       if (Shift.getOpcode() == ISD::SHL)
10968         ShiftOffset -= C->getZExtValue();
10969       else
10970         ShiftOffset += C->getZExtValue();
10971 
10972       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
10973         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
10974                            MVT::f32, Shifted);
10975       }
10976     }
10977   }
10978 
10979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10980   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
10981   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
10982     // We simplified Src. If this node is not dead, visit it again so it is
10983     // folded properly.
10984     if (N->getOpcode() != ISD::DELETED_NODE)
10985       DCI.AddToWorklist(N);
10986     return SDValue(N, 0);
10987   }
10988 
10989   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
10990   if (SDValue DemandedSrc =
10991           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
10992     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
10993 
10994   return SDValue();
10995 }
10996 
10997 SDValue SITargetLowering::performClampCombine(SDNode *N,
10998                                               DAGCombinerInfo &DCI) const {
10999   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
11000   if (!CSrc)
11001     return SDValue();
11002 
11003   const MachineFunction &MF = DCI.DAG.getMachineFunction();
11004   const APFloat &F = CSrc->getValueAPF();
11005   APFloat Zero = APFloat::getZero(F.getSemantics());
11006   if (F < Zero ||
11007       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
11008     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
11009   }
11010 
11011   APFloat One(F.getSemantics(), "1.0");
11012   if (F > One)
11013     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
11014 
11015   return SDValue(CSrc, 0);
11016 }
11017 
11018 
11019 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
11020                                             DAGCombinerInfo &DCI) const {
11021   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
11022     return SDValue();
11023   switch (N->getOpcode()) {
11024   case ISD::ADD:
11025     return performAddCombine(N, DCI);
11026   case ISD::SUB:
11027     return performSubCombine(N, DCI);
11028   case ISD::ADDCARRY:
11029   case ISD::SUBCARRY:
11030     return performAddCarrySubCarryCombine(N, DCI);
11031   case ISD::FADD:
11032     return performFAddCombine(N, DCI);
11033   case ISD::FSUB:
11034     return performFSubCombine(N, DCI);
11035   case ISD::SETCC:
11036     return performSetCCCombine(N, DCI);
11037   case ISD::FMAXNUM:
11038   case ISD::FMINNUM:
11039   case ISD::FMAXNUM_IEEE:
11040   case ISD::FMINNUM_IEEE:
11041   case ISD::SMAX:
11042   case ISD::SMIN:
11043   case ISD::UMAX:
11044   case ISD::UMIN:
11045   case AMDGPUISD::FMIN_LEGACY:
11046   case AMDGPUISD::FMAX_LEGACY:
11047     return performMinMaxCombine(N, DCI);
11048   case ISD::FMA:
11049     return performFMACombine(N, DCI);
11050   case ISD::AND:
11051     return performAndCombine(N, DCI);
11052   case ISD::OR:
11053     return performOrCombine(N, DCI);
11054   case ISD::XOR:
11055     return performXorCombine(N, DCI);
11056   case ISD::ZERO_EXTEND:
11057     return performZeroExtendCombine(N, DCI);
11058   case ISD::SIGN_EXTEND_INREG:
11059     return performSignExtendInRegCombine(N , DCI);
11060   case AMDGPUISD::FP_CLASS:
11061     return performClassCombine(N, DCI);
11062   case ISD::FCANONICALIZE:
11063     return performFCanonicalizeCombine(N, DCI);
11064   case AMDGPUISD::RCP:
11065     return performRcpCombine(N, DCI);
11066   case AMDGPUISD::FRACT:
11067   case AMDGPUISD::RSQ:
11068   case AMDGPUISD::RCP_LEGACY:
11069   case AMDGPUISD::RCP_IFLAG:
11070   case AMDGPUISD::RSQ_CLAMP:
11071   case AMDGPUISD::LDEXP: {
11072     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
11073     SDValue Src = N->getOperand(0);
11074     if (Src.isUndef())
11075       return Src;
11076     break;
11077   }
11078   case ISD::SINT_TO_FP:
11079   case ISD::UINT_TO_FP:
11080     return performUCharToFloatCombine(N, DCI);
11081   case AMDGPUISD::CVT_F32_UBYTE0:
11082   case AMDGPUISD::CVT_F32_UBYTE1:
11083   case AMDGPUISD::CVT_F32_UBYTE2:
11084   case AMDGPUISD::CVT_F32_UBYTE3:
11085     return performCvtF32UByteNCombine(N, DCI);
11086   case AMDGPUISD::FMED3:
11087     return performFMed3Combine(N, DCI);
11088   case AMDGPUISD::CVT_PKRTZ_F16_F32:
11089     return performCvtPkRTZCombine(N, DCI);
11090   case AMDGPUISD::CLAMP:
11091     return performClampCombine(N, DCI);
11092   case ISD::SCALAR_TO_VECTOR: {
11093     SelectionDAG &DAG = DCI.DAG;
11094     EVT VT = N->getValueType(0);
11095 
11096     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
11097     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
11098       SDLoc SL(N);
11099       SDValue Src = N->getOperand(0);
11100       EVT EltVT = Src.getValueType();
11101       if (EltVT == MVT::f16)
11102         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
11103 
11104       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
11105       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
11106     }
11107 
11108     break;
11109   }
11110   case ISD::EXTRACT_VECTOR_ELT:
11111     return performExtractVectorEltCombine(N, DCI);
11112   case ISD::INSERT_VECTOR_ELT:
11113     return performInsertVectorEltCombine(N, DCI);
11114   case ISD::LOAD: {
11115     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
11116       return Widended;
11117     LLVM_FALLTHROUGH;
11118   }
11119   default: {
11120     if (!DCI.isBeforeLegalize()) {
11121       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
11122         return performMemSDNodeCombine(MemNode, DCI);
11123     }
11124 
11125     break;
11126   }
11127   }
11128 
11129   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
11130 }
11131 
11132 /// Helper function for adjustWritemask
11133 static unsigned SubIdx2Lane(unsigned Idx) {
11134   switch (Idx) {
11135   default: return ~0u;
11136   case AMDGPU::sub0: return 0;
11137   case AMDGPU::sub1: return 1;
11138   case AMDGPU::sub2: return 2;
11139   case AMDGPU::sub3: return 3;
11140   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
11141   }
11142 }
11143 
11144 /// Adjust the writemask of MIMG instructions
11145 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
11146                                           SelectionDAG &DAG) const {
11147   unsigned Opcode = Node->getMachineOpcode();
11148 
11149   // Subtract 1 because the vdata output is not a MachineSDNode operand.
11150   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
11151   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
11152     return Node; // not implemented for D16
11153 
11154   SDNode *Users[5] = { nullptr };
11155   unsigned Lane = 0;
11156   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
11157   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
11158   unsigned NewDmask = 0;
11159   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
11160   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
11161   bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
11162                   Node->getConstantOperandVal(LWEIdx))
11163                      ? true
11164                      : false;
11165   unsigned TFCLane = 0;
11166   bool HasChain = Node->getNumValues() > 1;
11167 
11168   if (OldDmask == 0) {
11169     // These are folded out, but on the chance it happens don't assert.
11170     return Node;
11171   }
11172 
11173   unsigned OldBitsSet = countPopulation(OldDmask);
11174   // Work out which is the TFE/LWE lane if that is enabled.
11175   if (UsesTFC) {
11176     TFCLane = OldBitsSet;
11177   }
11178 
11179   // Try to figure out the used register components
11180   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
11181        I != E; ++I) {
11182 
11183     // Don't look at users of the chain.
11184     if (I.getUse().getResNo() != 0)
11185       continue;
11186 
11187     // Abort if we can't understand the usage
11188     if (!I->isMachineOpcode() ||
11189         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
11190       return Node;
11191 
11192     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
11193     // Note that subregs are packed, i.e. Lane==0 is the first bit set
11194     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
11195     // set, etc.
11196     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
11197     if (Lane == ~0u)
11198       return Node;
11199 
11200     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
11201     if (UsesTFC && Lane == TFCLane) {
11202       Users[Lane] = *I;
11203     } else {
11204       // Set which texture component corresponds to the lane.
11205       unsigned Comp;
11206       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
11207         Comp = countTrailingZeros(Dmask);
11208         Dmask &= ~(1 << Comp);
11209       }
11210 
11211       // Abort if we have more than one user per component.
11212       if (Users[Lane])
11213         return Node;
11214 
11215       Users[Lane] = *I;
11216       NewDmask |= 1 << Comp;
11217     }
11218   }
11219 
11220   // Don't allow 0 dmask, as hardware assumes one channel enabled.
11221   bool NoChannels = !NewDmask;
11222   if (NoChannels) {
11223     if (!UsesTFC) {
11224       // No uses of the result and not using TFC. Then do nothing.
11225       return Node;
11226     }
11227     // If the original dmask has one channel - then nothing to do
11228     if (OldBitsSet == 1)
11229       return Node;
11230     // Use an arbitrary dmask - required for the instruction to work
11231     NewDmask = 1;
11232   }
11233   // Abort if there's no change
11234   if (NewDmask == OldDmask)
11235     return Node;
11236 
11237   unsigned BitsSet = countPopulation(NewDmask);
11238 
11239   // Check for TFE or LWE - increase the number of channels by one to account
11240   // for the extra return value
11241   // This will need adjustment for D16 if this is also included in
11242   // adjustWriteMask (this function) but at present D16 are excluded.
11243   unsigned NewChannels = BitsSet + UsesTFC;
11244 
11245   int NewOpcode =
11246       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
11247   assert(NewOpcode != -1 &&
11248          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
11249          "failed to find equivalent MIMG op");
11250 
11251   // Adjust the writemask in the node
11252   SmallVector<SDValue, 12> Ops;
11253   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
11254   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
11255   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
11256 
11257   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
11258 
11259   MVT ResultVT = NewChannels == 1 ?
11260     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
11261                            NewChannels == 5 ? 8 : NewChannels);
11262   SDVTList NewVTList = HasChain ?
11263     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
11264 
11265 
11266   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
11267                                               NewVTList, Ops);
11268 
11269   if (HasChain) {
11270     // Update chain.
11271     DAG.setNodeMemRefs(NewNode, Node->memoperands());
11272     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11273   }
11274 
11275   if (NewChannels == 1) {
11276     assert(Node->hasNUsesOfValue(1, 0));
11277     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11278                                       SDLoc(Node), Users[Lane]->getValueType(0),
11279                                       SDValue(NewNode, 0));
11280     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11281     return nullptr;
11282   }
11283 
11284   // Update the users of the node with the new indices
11285   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11286     SDNode *User = Users[i];
11287     if (!User) {
11288       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11289       // Users[0] is still nullptr because channel 0 doesn't really have a use.
11290       if (i || !NoChannels)
11291         continue;
11292     } else {
11293       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11294       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11295     }
11296 
11297     switch (Idx) {
11298     default: break;
11299     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11300     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11301     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11302     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11303     }
11304   }
11305 
11306   DAG.RemoveDeadNode(Node);
11307   return nullptr;
11308 }
11309 
11310 static bool isFrameIndexOp(SDValue Op) {
11311   if (Op.getOpcode() == ISD::AssertZext)
11312     Op = Op.getOperand(0);
11313 
11314   return isa<FrameIndexSDNode>(Op);
11315 }
11316 
11317 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11318 /// with frame index operands.
11319 /// LLVM assumes that inputs are to these instructions are registers.
11320 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11321                                                         SelectionDAG &DAG) const {
11322   if (Node->getOpcode() == ISD::CopyToReg) {
11323     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11324     SDValue SrcVal = Node->getOperand(2);
11325 
11326     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11327     // to try understanding copies to physical registers.
11328     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11329       SDLoc SL(Node);
11330       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11331       SDValue VReg = DAG.getRegister(
11332         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11333 
11334       SDNode *Glued = Node->getGluedNode();
11335       SDValue ToVReg
11336         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11337                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11338       SDValue ToResultReg
11339         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11340                            VReg, ToVReg.getValue(1));
11341       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11342       DAG.RemoveDeadNode(Node);
11343       return ToResultReg.getNode();
11344     }
11345   }
11346 
11347   SmallVector<SDValue, 8> Ops;
11348   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11349     if (!isFrameIndexOp(Node->getOperand(i))) {
11350       Ops.push_back(Node->getOperand(i));
11351       continue;
11352     }
11353 
11354     SDLoc DL(Node);
11355     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11356                                      Node->getOperand(i).getValueType(),
11357                                      Node->getOperand(i)), 0));
11358   }
11359 
11360   return DAG.UpdateNodeOperands(Node, Ops);
11361 }
11362 
11363 /// Fold the instructions after selecting them.
11364 /// Returns null if users were already updated.
11365 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11366                                           SelectionDAG &DAG) const {
11367   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11368   unsigned Opcode = Node->getMachineOpcode();
11369 
11370   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11371       !TII->isGather4(Opcode) &&
11372       AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11373     return adjustWritemask(Node, DAG);
11374   }
11375 
11376   if (Opcode == AMDGPU::INSERT_SUBREG ||
11377       Opcode == AMDGPU::REG_SEQUENCE) {
11378     legalizeTargetIndependentNode(Node, DAG);
11379     return Node;
11380   }
11381 
11382   switch (Opcode) {
11383   case AMDGPU::V_DIV_SCALE_F32_e64:
11384   case AMDGPU::V_DIV_SCALE_F64_e64: {
11385     // Satisfy the operand register constraint when one of the inputs is
11386     // undefined. Ordinarily each undef value will have its own implicit_def of
11387     // a vreg, so force these to use a single register.
11388     SDValue Src0 = Node->getOperand(1);
11389     SDValue Src1 = Node->getOperand(3);
11390     SDValue Src2 = Node->getOperand(5);
11391 
11392     if ((Src0.isMachineOpcode() &&
11393          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11394         (Src0 == Src1 || Src0 == Src2))
11395       break;
11396 
11397     MVT VT = Src0.getValueType().getSimpleVT();
11398     const TargetRegisterClass *RC =
11399         getRegClassFor(VT, Src0.getNode()->isDivergent());
11400 
11401     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11402     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11403 
11404     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11405                                       UndefReg, Src0, SDValue());
11406 
11407     // src0 must be the same register as src1 or src2, even if the value is
11408     // undefined, so make sure we don't violate this constraint.
11409     if (Src0.isMachineOpcode() &&
11410         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11411       if (Src1.isMachineOpcode() &&
11412           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11413         Src0 = Src1;
11414       else if (Src2.isMachineOpcode() &&
11415                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11416         Src0 = Src2;
11417       else {
11418         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11419         Src0 = UndefReg;
11420         Src1 = UndefReg;
11421       }
11422     } else
11423       break;
11424 
11425     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11426     Ops[1] = Src0;
11427     Ops[3] = Src1;
11428     Ops[5] = Src2;
11429     Ops.push_back(ImpDef.getValue(1));
11430     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11431   }
11432   default:
11433     break;
11434   }
11435 
11436   return Node;
11437 }
11438 
11439 // Any MIMG instructions that use tfe or lwe require an initialization of the
11440 // result register that will be written in the case of a memory access failure.
11441 // The required code is also added to tie this init code to the result of the
11442 // img instruction.
11443 void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
11444   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11445   const SIRegisterInfo &TRI = TII->getRegisterInfo();
11446   MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
11447   MachineBasicBlock &MBB = *MI.getParent();
11448 
11449   MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
11450   MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
11451   MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
11452 
11453   if (!TFE && !LWE) // intersect_ray
11454     return;
11455 
11456   unsigned TFEVal = TFE ? TFE->getImm() : 0;
11457   unsigned LWEVal = LWE->getImm();
11458   unsigned D16Val = D16 ? D16->getImm() : 0;
11459 
11460   if (!TFEVal && !LWEVal)
11461     return;
11462 
11463   // At least one of TFE or LWE are non-zero
11464   // We have to insert a suitable initialization of the result value and
11465   // tie this to the dest of the image instruction.
11466 
11467   const DebugLoc &DL = MI.getDebugLoc();
11468 
11469   int DstIdx =
11470       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
11471 
11472   // Calculate which dword we have to initialize to 0.
11473   MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
11474 
11475   // check that dmask operand is found.
11476   assert(MO_Dmask && "Expected dmask operand in instruction");
11477 
11478   unsigned dmask = MO_Dmask->getImm();
11479   // Determine the number of active lanes taking into account the
11480   // Gather4 special case
11481   unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask);
11482 
11483   bool Packed = !Subtarget->hasUnpackedD16VMem();
11484 
11485   unsigned InitIdx =
11486       D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
11487 
11488   // Abandon attempt if the dst size isn't large enough
11489   // - this is in fact an error but this is picked up elsewhere and
11490   // reported correctly.
11491   uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
11492   if (DstSize < InitIdx)
11493     return;
11494 
11495   // Create a register for the intialization value.
11496   Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11497   unsigned NewDst = 0; // Final initialized value will be in here
11498 
11499   // If PRTStrictNull feature is enabled (the default) then initialize
11500   // all the result registers to 0, otherwise just the error indication
11501   // register (VGPRn+1)
11502   unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
11503   unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
11504 
11505   BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
11506   for (; SizeLeft; SizeLeft--, CurrIdx++) {
11507     NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11508     // Initialize dword
11509     Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
11510     BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
11511       .addImm(0);
11512     // Insert into the super-reg
11513     BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
11514       .addReg(PrevDst)
11515       .addReg(SubReg)
11516       .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
11517 
11518     PrevDst = NewDst;
11519   }
11520 
11521   // Add as an implicit operand
11522   MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
11523 
11524   // Tie the just added implicit operand to the dst
11525   MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
11526 }
11527 
11528 /// Assign the register class depending on the number of
11529 /// bits set in the writemask
11530 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11531                                                      SDNode *Node) const {
11532   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11533 
11534   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11535 
11536   if (TII->isVOP3(MI.getOpcode())) {
11537     // Make sure constant bus requirements are respected.
11538     TII->legalizeOperandsVOP3(MRI, MI);
11539 
11540     // Prefer VGPRs over AGPRs in mAI instructions where possible.
11541     // This saves a chain-copy of registers and better ballance register
11542     // use between vgpr and agpr as agpr tuples tend to be big.
11543     if (MI.getDesc().OpInfo) {
11544       unsigned Opc = MI.getOpcode();
11545       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11546       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11547                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11548         if (I == -1)
11549           break;
11550         MachineOperand &Op = MI.getOperand(I);
11551         if (!Op.isReg() || !Op.getReg().isVirtual())
11552           continue;
11553         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11554         if (!TRI->hasAGPRs(RC))
11555           continue;
11556         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11557         if (!Src || !Src->isCopy() ||
11558             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11559           continue;
11560         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11561         // All uses of agpr64 and agpr32 can also accept vgpr except for
11562         // v_accvgpr_read, but we do not produce agpr reads during selection,
11563         // so no use checks are needed.
11564         MRI.setRegClass(Op.getReg(), NewRC);
11565       }
11566     }
11567 
11568     return;
11569   }
11570 
11571   // Replace unused atomics with the no return version.
11572   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11573   if (NoRetAtomicOp != -1) {
11574     if (!Node->hasAnyUseOfValue(0)) {
11575       int CPolIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
11576                                                AMDGPU::OpName::cpol);
11577       if (CPolIdx != -1) {
11578         MachineOperand &CPol = MI.getOperand(CPolIdx);
11579         CPol.setImm(CPol.getImm() & ~AMDGPU::CPol::GLC);
11580       }
11581       MI.RemoveOperand(0);
11582       MI.setDesc(TII->get(NoRetAtomicOp));
11583       return;
11584     }
11585 
11586     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11587     // instruction, because the return type of these instructions is a vec2 of
11588     // the memory type, so it can be tied to the input operand.
11589     // This means these instructions always have a use, so we need to add a
11590     // special case to check if the atomic has only one extract_subreg use,
11591     // which itself has no uses.
11592     if ((Node->hasNUsesOfValue(1, 0) &&
11593          Node->use_begin()->isMachineOpcode() &&
11594          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11595          !Node->use_begin()->hasAnyUseOfValue(0))) {
11596       Register Def = MI.getOperand(0).getReg();
11597 
11598       // Change this into a noret atomic.
11599       MI.setDesc(TII->get(NoRetAtomicOp));
11600       MI.RemoveOperand(0);
11601 
11602       // If we only remove the def operand from the atomic instruction, the
11603       // extract_subreg will be left with a use of a vreg without a def.
11604       // So we need to insert an implicit_def to avoid machine verifier
11605       // errors.
11606       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11607               TII->get(AMDGPU::IMPLICIT_DEF), Def);
11608     }
11609     return;
11610   }
11611 
11612   if (TII->isMIMG(MI) && !MI.mayStore())
11613     AddIMGInit(MI);
11614 }
11615 
11616 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11617                               uint64_t Val) {
11618   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11619   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11620 }
11621 
11622 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11623                                                 const SDLoc &DL,
11624                                                 SDValue Ptr) const {
11625   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11626 
11627   // Build the half of the subregister with the constants before building the
11628   // full 128-bit register. If we are building multiple resource descriptors,
11629   // this will allow CSEing of the 2-component register.
11630   const SDValue Ops0[] = {
11631     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11632     buildSMovImm32(DAG, DL, 0),
11633     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11634     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11635     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11636   };
11637 
11638   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11639                                                 MVT::v2i32, Ops0), 0);
11640 
11641   // Combine the constants and the pointer.
11642   const SDValue Ops1[] = {
11643     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11644     Ptr,
11645     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11646     SubRegHi,
11647     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11648   };
11649 
11650   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11651 }
11652 
11653 /// Return a resource descriptor with the 'Add TID' bit enabled
11654 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11655 ///        of the resource descriptor) to create an offset, which is added to
11656 ///        the resource pointer.
11657 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11658                                            SDValue Ptr, uint32_t RsrcDword1,
11659                                            uint64_t RsrcDword2And3) const {
11660   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11661   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11662   if (RsrcDword1) {
11663     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11664                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11665                     0);
11666   }
11667 
11668   SDValue DataLo = buildSMovImm32(DAG, DL,
11669                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
11670   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11671 
11672   const SDValue Ops[] = {
11673     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11674     PtrLo,
11675     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11676     PtrHi,
11677     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11678     DataLo,
11679     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11680     DataHi,
11681     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11682   };
11683 
11684   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11685 }
11686 
11687 //===----------------------------------------------------------------------===//
11688 //                         SI Inline Assembly Support
11689 //===----------------------------------------------------------------------===//
11690 
11691 std::pair<unsigned, const TargetRegisterClass *>
11692 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
11693                                                StringRef Constraint,
11694                                                MVT VT) const {
11695   const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
11696 
11697   const TargetRegisterClass *RC = nullptr;
11698   if (Constraint.size() == 1) {
11699     const unsigned BitWidth = VT.getSizeInBits();
11700     switch (Constraint[0]) {
11701     default:
11702       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11703     case 's':
11704     case 'r':
11705       switch (BitWidth) {
11706       case 16:
11707         RC = &AMDGPU::SReg_32RegClass;
11708         break;
11709       case 64:
11710         RC = &AMDGPU::SGPR_64RegClass;
11711         break;
11712       default:
11713         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11714         if (!RC)
11715           return std::make_pair(0U, nullptr);
11716         break;
11717       }
11718       break;
11719     case 'v':
11720       switch (BitWidth) {
11721       case 16:
11722         RC = &AMDGPU::VGPR_32RegClass;
11723         break;
11724       default:
11725         RC = TRI->getVGPRClassForBitWidth(BitWidth);
11726         if (!RC)
11727           return std::make_pair(0U, nullptr);
11728         break;
11729       }
11730       break;
11731     case 'a':
11732       if (!Subtarget->hasMAIInsts())
11733         break;
11734       switch (BitWidth) {
11735       case 16:
11736         RC = &AMDGPU::AGPR_32RegClass;
11737         break;
11738       default:
11739         RC = TRI->getAGPRClassForBitWidth(BitWidth);
11740         if (!RC)
11741           return std::make_pair(0U, nullptr);
11742         break;
11743       }
11744       break;
11745     }
11746     // We actually support i128, i16 and f16 as inline parameters
11747     // even if they are not reported as legal
11748     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11749                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11750       return std::make_pair(0U, RC);
11751   }
11752 
11753   if (Constraint.startswith("{") && Constraint.endswith("}")) {
11754     StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
11755     if (RegName.consume_front("v")) {
11756       RC = &AMDGPU::VGPR_32RegClass;
11757     } else if (RegName.consume_front("s")) {
11758       RC = &AMDGPU::SGPR_32RegClass;
11759     } else if (RegName.consume_front("a")) {
11760       RC = &AMDGPU::AGPR_32RegClass;
11761     }
11762 
11763     if (RC) {
11764       uint32_t Idx;
11765       if (RegName.consume_front("[")) {
11766         uint32_t End;
11767         bool Failed = RegName.consumeInteger(10, Idx);
11768         Failed |= !RegName.consume_front(":");
11769         Failed |= RegName.consumeInteger(10, End);
11770         Failed |= !RegName.consume_back("]");
11771         if (!Failed) {
11772           uint32_t Width = (End - Idx + 1) * 32;
11773           MCRegister Reg = RC->getRegister(Idx);
11774           if (SIRegisterInfo::isVGPRClass(RC))
11775             RC = TRI->getVGPRClassForBitWidth(Width);
11776           else if (SIRegisterInfo::isSGPRClass(RC))
11777             RC = TRI->getSGPRClassForBitWidth(Width);
11778           else if (SIRegisterInfo::isAGPRClass(RC))
11779             RC = TRI->getAGPRClassForBitWidth(Width);
11780           if (RC) {
11781             Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
11782             return std::make_pair(Reg, RC);
11783           }
11784         }
11785       } else {
11786         bool Failed = RegName.getAsInteger(10, Idx);
11787         if (!Failed && Idx < RC->getNumRegs())
11788           return std::make_pair(RC->getRegister(Idx), RC);
11789       }
11790     }
11791   }
11792 
11793   auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11794   if (Ret.first)
11795     Ret.second = TRI->getPhysRegClass(Ret.first);
11796 
11797   return Ret;
11798 }
11799 
11800 static bool isImmConstraint(StringRef Constraint) {
11801   if (Constraint.size() == 1) {
11802     switch (Constraint[0]) {
11803     default: break;
11804     case 'I':
11805     case 'J':
11806     case 'A':
11807     case 'B':
11808     case 'C':
11809       return true;
11810     }
11811   } else if (Constraint == "DA" ||
11812              Constraint == "DB") {
11813     return true;
11814   }
11815   return false;
11816 }
11817 
11818 SITargetLowering::ConstraintType
11819 SITargetLowering::getConstraintType(StringRef Constraint) const {
11820   if (Constraint.size() == 1) {
11821     switch (Constraint[0]) {
11822     default: break;
11823     case 's':
11824     case 'v':
11825     case 'a':
11826       return C_RegisterClass;
11827     }
11828   }
11829   if (isImmConstraint(Constraint)) {
11830     return C_Other;
11831   }
11832   return TargetLowering::getConstraintType(Constraint);
11833 }
11834 
11835 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11836   if (!AMDGPU::isInlinableIntLiteral(Val)) {
11837     Val = Val & maskTrailingOnes<uint64_t>(Size);
11838   }
11839   return Val;
11840 }
11841 
11842 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11843                                                     std::string &Constraint,
11844                                                     std::vector<SDValue> &Ops,
11845                                                     SelectionDAG &DAG) const {
11846   if (isImmConstraint(Constraint)) {
11847     uint64_t Val;
11848     if (getAsmOperandConstVal(Op, Val) &&
11849         checkAsmConstraintVal(Op, Constraint, Val)) {
11850       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11851       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11852     }
11853   } else {
11854     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11855   }
11856 }
11857 
11858 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11859   unsigned Size = Op.getScalarValueSizeInBits();
11860   if (Size > 64)
11861     return false;
11862 
11863   if (Size == 16 && !Subtarget->has16BitInsts())
11864     return false;
11865 
11866   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11867     Val = C->getSExtValue();
11868     return true;
11869   }
11870   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11871     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11872     return true;
11873   }
11874   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11875     if (Size != 16 || Op.getNumOperands() != 2)
11876       return false;
11877     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11878       return false;
11879     if (ConstantSDNode *C = V->getConstantSplatNode()) {
11880       Val = C->getSExtValue();
11881       return true;
11882     }
11883     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11884       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11885       return true;
11886     }
11887   }
11888 
11889   return false;
11890 }
11891 
11892 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11893                                              const std::string &Constraint,
11894                                              uint64_t Val) const {
11895   if (Constraint.size() == 1) {
11896     switch (Constraint[0]) {
11897     case 'I':
11898       return AMDGPU::isInlinableIntLiteral(Val);
11899     case 'J':
11900       return isInt<16>(Val);
11901     case 'A':
11902       return checkAsmConstraintValA(Op, Val);
11903     case 'B':
11904       return isInt<32>(Val);
11905     case 'C':
11906       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11907              AMDGPU::isInlinableIntLiteral(Val);
11908     default:
11909       break;
11910     }
11911   } else if (Constraint.size() == 2) {
11912     if (Constraint == "DA") {
11913       int64_t HiBits = static_cast<int32_t>(Val >> 32);
11914       int64_t LoBits = static_cast<int32_t>(Val);
11915       return checkAsmConstraintValA(Op, HiBits, 32) &&
11916              checkAsmConstraintValA(Op, LoBits, 32);
11917     }
11918     if (Constraint == "DB") {
11919       return true;
11920     }
11921   }
11922   llvm_unreachable("Invalid asm constraint");
11923 }
11924 
11925 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11926                                               uint64_t Val,
11927                                               unsigned MaxSize) const {
11928   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11929   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11930   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11931       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11932       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
11933     return true;
11934   }
11935   return false;
11936 }
11937 
11938 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
11939   switch (UnalignedClassID) {
11940   case AMDGPU::VReg_64RegClassID:
11941     return AMDGPU::VReg_64_Align2RegClassID;
11942   case AMDGPU::VReg_96RegClassID:
11943     return AMDGPU::VReg_96_Align2RegClassID;
11944   case AMDGPU::VReg_128RegClassID:
11945     return AMDGPU::VReg_128_Align2RegClassID;
11946   case AMDGPU::VReg_160RegClassID:
11947     return AMDGPU::VReg_160_Align2RegClassID;
11948   case AMDGPU::VReg_192RegClassID:
11949     return AMDGPU::VReg_192_Align2RegClassID;
11950   case AMDGPU::VReg_224RegClassID:
11951     return AMDGPU::VReg_224_Align2RegClassID;
11952   case AMDGPU::VReg_256RegClassID:
11953     return AMDGPU::VReg_256_Align2RegClassID;
11954   case AMDGPU::VReg_512RegClassID:
11955     return AMDGPU::VReg_512_Align2RegClassID;
11956   case AMDGPU::VReg_1024RegClassID:
11957     return AMDGPU::VReg_1024_Align2RegClassID;
11958   case AMDGPU::AReg_64RegClassID:
11959     return AMDGPU::AReg_64_Align2RegClassID;
11960   case AMDGPU::AReg_96RegClassID:
11961     return AMDGPU::AReg_96_Align2RegClassID;
11962   case AMDGPU::AReg_128RegClassID:
11963     return AMDGPU::AReg_128_Align2RegClassID;
11964   case AMDGPU::AReg_160RegClassID:
11965     return AMDGPU::AReg_160_Align2RegClassID;
11966   case AMDGPU::AReg_192RegClassID:
11967     return AMDGPU::AReg_192_Align2RegClassID;
11968   case AMDGPU::AReg_256RegClassID:
11969     return AMDGPU::AReg_256_Align2RegClassID;
11970   case AMDGPU::AReg_512RegClassID:
11971     return AMDGPU::AReg_512_Align2RegClassID;
11972   case AMDGPU::AReg_1024RegClassID:
11973     return AMDGPU::AReg_1024_Align2RegClassID;
11974   default:
11975     return -1;
11976   }
11977 }
11978 
11979 // Figure out which registers should be reserved for stack access. Only after
11980 // the function is legalized do we know all of the non-spill stack objects or if
11981 // calls are present.
11982 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
11983   MachineRegisterInfo &MRI = MF.getRegInfo();
11984   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11985   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
11986   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11987   const SIInstrInfo *TII = ST.getInstrInfo();
11988 
11989   if (Info->isEntryFunction()) {
11990     // Callable functions have fixed registers used for stack access.
11991     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
11992   }
11993 
11994   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
11995                              Info->getStackPtrOffsetReg()));
11996   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
11997     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
11998 
11999   // We need to worry about replacing the default register with itself in case
12000   // of MIR testcases missing the MFI.
12001   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
12002     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
12003 
12004   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
12005     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
12006 
12007   Info->limitOccupancy(MF);
12008 
12009   if (ST.isWave32() && !MF.empty()) {
12010     for (auto &MBB : MF) {
12011       for (auto &MI : MBB) {
12012         TII->fixImplicitOperands(MI);
12013       }
12014     }
12015   }
12016 
12017   // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
12018   // classes if required. Ideally the register class constraints would differ
12019   // per-subtarget, but there's no easy way to achieve that right now. This is
12020   // not a problem for VGPRs because the correctly aligned VGPR class is implied
12021   // from using them as the register class for legal types.
12022   if (ST.needsAlignedVGPRs()) {
12023     for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
12024       const Register Reg = Register::index2VirtReg(I);
12025       const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
12026       if (!RC)
12027         continue;
12028       int NewClassID = getAlignedAGPRClassID(RC->getID());
12029       if (NewClassID != -1)
12030         MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
12031     }
12032   }
12033 
12034   TargetLoweringBase::finalizeLowering(MF);
12035 }
12036 
12037 void SITargetLowering::computeKnownBitsForFrameIndex(
12038   const int FI, KnownBits &Known, const MachineFunction &MF) const {
12039   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
12040 
12041   // Set the high bits to zero based on the maximum allowed scratch size per
12042   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
12043   // calculation won't overflow, so assume the sign bit is never set.
12044   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
12045 }
12046 
12047 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
12048                                    KnownBits &Known, unsigned Dim) {
12049   unsigned MaxValue =
12050       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
12051   Known.Zero.setHighBits(countLeadingZeros(MaxValue));
12052 }
12053 
12054 void SITargetLowering::computeKnownBitsForTargetInstr(
12055     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
12056     const MachineRegisterInfo &MRI, unsigned Depth) const {
12057   const MachineInstr *MI = MRI.getVRegDef(R);
12058   switch (MI->getOpcode()) {
12059   case AMDGPU::G_INTRINSIC: {
12060     switch (MI->getIntrinsicID()) {
12061     case Intrinsic::amdgcn_workitem_id_x:
12062       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
12063       break;
12064     case Intrinsic::amdgcn_workitem_id_y:
12065       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
12066       break;
12067     case Intrinsic::amdgcn_workitem_id_z:
12068       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
12069       break;
12070     case Intrinsic::amdgcn_mbcnt_lo:
12071     case Intrinsic::amdgcn_mbcnt_hi: {
12072       // These return at most the wavefront size - 1.
12073       unsigned Size = MRI.getType(R).getSizeInBits();
12074       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
12075       break;
12076     }
12077     case Intrinsic::amdgcn_groupstaticsize: {
12078       // We can report everything over the maximum size as 0. We can't report
12079       // based on the actual size because we don't know if it's accurate or not
12080       // at any given point.
12081       Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
12082       break;
12083     }
12084     }
12085     break;
12086   }
12087   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
12088     Known.Zero.setHighBits(24);
12089     break;
12090   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
12091     Known.Zero.setHighBits(16);
12092     break;
12093   }
12094 }
12095 
12096 Align SITargetLowering::computeKnownAlignForTargetInstr(
12097   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
12098   unsigned Depth) const {
12099   const MachineInstr *MI = MRI.getVRegDef(R);
12100   switch (MI->getOpcode()) {
12101   case AMDGPU::G_INTRINSIC:
12102   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
12103     // FIXME: Can this move to generic code? What about the case where the call
12104     // site specifies a lower alignment?
12105     Intrinsic::ID IID = MI->getIntrinsicID();
12106     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
12107     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
12108     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
12109       return *RetAlign;
12110     return Align(1);
12111   }
12112   default:
12113     return Align(1);
12114   }
12115 }
12116 
12117 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
12118   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
12119   const Align CacheLineAlign = Align(64);
12120 
12121   // Pre-GFX10 target did not benefit from loop alignment
12122   if (!ML || DisableLoopAlignment ||
12123       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
12124       getSubtarget()->hasInstFwdPrefetchBug())
12125     return PrefAlign;
12126 
12127   // On GFX10 I$ is 4 x 64 bytes cache lines.
12128   // By default prefetcher keeps one cache line behind and reads two ahead.
12129   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
12130   // behind and one ahead.
12131   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
12132   // If loop fits 64 bytes it always spans no more than two cache lines and
12133   // does not need an alignment.
12134   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
12135   // Else if loop is less or equal 192 bytes we need two lines behind.
12136 
12137   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12138   const MachineBasicBlock *Header = ML->getHeader();
12139   if (Header->getAlignment() != PrefAlign)
12140     return Header->getAlignment(); // Already processed.
12141 
12142   unsigned LoopSize = 0;
12143   for (const MachineBasicBlock *MBB : ML->blocks()) {
12144     // If inner loop block is aligned assume in average half of the alignment
12145     // size to be added as nops.
12146     if (MBB != Header)
12147       LoopSize += MBB->getAlignment().value() / 2;
12148 
12149     for (const MachineInstr &MI : *MBB) {
12150       LoopSize += TII->getInstSizeInBytes(MI);
12151       if (LoopSize > 192)
12152         return PrefAlign;
12153     }
12154   }
12155 
12156   if (LoopSize <= 64)
12157     return PrefAlign;
12158 
12159   if (LoopSize <= 128)
12160     return CacheLineAlign;
12161 
12162   // If any of parent loops is surrounded by prefetch instructions do not
12163   // insert new for inner loop, which would reset parent's settings.
12164   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
12165     if (MachineBasicBlock *Exit = P->getExitBlock()) {
12166       auto I = Exit->getFirstNonDebugInstr();
12167       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
12168         return CacheLineAlign;
12169     }
12170   }
12171 
12172   MachineBasicBlock *Pre = ML->getLoopPreheader();
12173   MachineBasicBlock *Exit = ML->getExitBlock();
12174 
12175   if (Pre && Exit) {
12176     BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
12177             TII->get(AMDGPU::S_INST_PREFETCH))
12178       .addImm(1); // prefetch 2 lines behind PC
12179 
12180     BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
12181             TII->get(AMDGPU::S_INST_PREFETCH))
12182       .addImm(2); // prefetch 1 line behind PC
12183   }
12184 
12185   return CacheLineAlign;
12186 }
12187 
12188 LLVM_ATTRIBUTE_UNUSED
12189 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
12190   assert(N->getOpcode() == ISD::CopyFromReg);
12191   do {
12192     // Follow the chain until we find an INLINEASM node.
12193     N = N->getOperand(0).getNode();
12194     if (N->getOpcode() == ISD::INLINEASM ||
12195         N->getOpcode() == ISD::INLINEASM_BR)
12196       return true;
12197   } while (N->getOpcode() == ISD::CopyFromReg);
12198   return false;
12199 }
12200 
12201 bool SITargetLowering::isSDNodeSourceOfDivergence(
12202     const SDNode *N, FunctionLoweringInfo *FLI,
12203     LegacyDivergenceAnalysis *KDA) const {
12204   switch (N->getOpcode()) {
12205   case ISD::CopyFromReg: {
12206     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
12207     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
12208     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12209     Register Reg = R->getReg();
12210 
12211     // FIXME: Why does this need to consider isLiveIn?
12212     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
12213       return !TRI->isSGPRReg(MRI, Reg);
12214 
12215     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
12216       return KDA->isDivergent(V);
12217 
12218     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
12219     return !TRI->isSGPRReg(MRI, Reg);
12220   }
12221   case ISD::LOAD: {
12222     const LoadSDNode *L = cast<LoadSDNode>(N);
12223     unsigned AS = L->getAddressSpace();
12224     // A flat load may access private memory.
12225     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
12226   }
12227   case ISD::CALLSEQ_END:
12228     return true;
12229   case ISD::INTRINSIC_WO_CHAIN:
12230     return AMDGPU::isIntrinsicSourceOfDivergence(
12231         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
12232   case ISD::INTRINSIC_W_CHAIN:
12233     return AMDGPU::isIntrinsicSourceOfDivergence(
12234         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
12235   case AMDGPUISD::ATOMIC_CMP_SWAP:
12236   case AMDGPUISD::ATOMIC_INC:
12237   case AMDGPUISD::ATOMIC_DEC:
12238   case AMDGPUISD::ATOMIC_LOAD_FMIN:
12239   case AMDGPUISD::ATOMIC_LOAD_FMAX:
12240   case AMDGPUISD::BUFFER_ATOMIC_SWAP:
12241   case AMDGPUISD::BUFFER_ATOMIC_ADD:
12242   case AMDGPUISD::BUFFER_ATOMIC_SUB:
12243   case AMDGPUISD::BUFFER_ATOMIC_SMIN:
12244   case AMDGPUISD::BUFFER_ATOMIC_UMIN:
12245   case AMDGPUISD::BUFFER_ATOMIC_SMAX:
12246   case AMDGPUISD::BUFFER_ATOMIC_UMAX:
12247   case AMDGPUISD::BUFFER_ATOMIC_AND:
12248   case AMDGPUISD::BUFFER_ATOMIC_OR:
12249   case AMDGPUISD::BUFFER_ATOMIC_XOR:
12250   case AMDGPUISD::BUFFER_ATOMIC_INC:
12251   case AMDGPUISD::BUFFER_ATOMIC_DEC:
12252   case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
12253   case AMDGPUISD::BUFFER_ATOMIC_CSUB:
12254   case AMDGPUISD::BUFFER_ATOMIC_FADD:
12255   case AMDGPUISD::BUFFER_ATOMIC_FMIN:
12256   case AMDGPUISD::BUFFER_ATOMIC_FMAX:
12257     // Target-specific read-modify-write atomics are sources of divergence.
12258     return true;
12259   default:
12260     if (auto *A = dyn_cast<AtomicSDNode>(N)) {
12261       // Generic read-modify-write atomics are sources of divergence.
12262       return A->readMem() && A->writeMem();
12263     }
12264     return false;
12265   }
12266 }
12267 
12268 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
12269                                                EVT VT) const {
12270   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
12271   case MVT::f32:
12272     return hasFP32Denormals(DAG.getMachineFunction());
12273   case MVT::f64:
12274   case MVT::f16:
12275     return hasFP64FP16Denormals(DAG.getMachineFunction());
12276   default:
12277     return false;
12278   }
12279 }
12280 
12281 bool SITargetLowering::denormalsEnabledForType(LLT Ty,
12282                                                MachineFunction &MF) const {
12283   switch (Ty.getScalarSizeInBits()) {
12284   case 32:
12285     return hasFP32Denormals(MF);
12286   case 64:
12287   case 16:
12288     return hasFP64FP16Denormals(MF);
12289   default:
12290     return false;
12291   }
12292 }
12293 
12294 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
12295                                                     const SelectionDAG &DAG,
12296                                                     bool SNaN,
12297                                                     unsigned Depth) const {
12298   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
12299     const MachineFunction &MF = DAG.getMachineFunction();
12300     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12301 
12302     if (Info->getMode().DX10Clamp)
12303       return true; // Clamped to 0.
12304     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
12305   }
12306 
12307   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
12308                                                             SNaN, Depth);
12309 }
12310 
12311 // Global FP atomic instructions have a hardcoded FP mode and do not support
12312 // FP32 denormals, and only support v2f16 denormals.
12313 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
12314   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
12315   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
12316   if (&Flt == &APFloat::IEEEsingle())
12317     return DenormMode == DenormalMode::getPreserveSign();
12318   return DenormMode == DenormalMode::getIEEE();
12319 }
12320 
12321 TargetLowering::AtomicExpansionKind
12322 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
12323 
12324   auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) {
12325     OptimizationRemarkEmitter ORE(RMW->getFunction());
12326     LLVMContext &Ctx = RMW->getFunction()->getContext();
12327     SmallVector<StringRef> SSNs;
12328     Ctx.getSyncScopeNames(SSNs);
12329     auto MemScope = SSNs[RMW->getSyncScopeID()].empty()
12330                         ? "system"
12331                         : SSNs[RMW->getSyncScopeID()];
12332     ORE.emit([&]() {
12333       return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
12334              << "Hardware instruction generated for atomic "
12335              << RMW->getOperationName(RMW->getOperation())
12336              << " operation at memory scope " << MemScope
12337              << " due to an unsafe request.";
12338     });
12339     return Kind;
12340   };
12341 
12342   switch (RMW->getOperation()) {
12343   case AtomicRMWInst::FAdd: {
12344     Type *Ty = RMW->getType();
12345 
12346     // We don't have a way to support 16-bit atomics now, so just leave them
12347     // as-is.
12348     if (Ty->isHalfTy())
12349       return AtomicExpansionKind::None;
12350 
12351     if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
12352       return AtomicExpansionKind::CmpXChg;
12353 
12354     unsigned AS = RMW->getPointerAddressSpace();
12355 
12356     if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) &&
12357          Subtarget->hasAtomicFaddInsts()) {
12358       // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
12359       // floating point atomic instructions. May generate more efficient code,
12360       // but may not respect rounding and denormal modes, and may give incorrect
12361       // results for certain memory destinations.
12362       if (RMW->getFunction()
12363               ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12364               .getValueAsString() != "true")
12365         return AtomicExpansionKind::CmpXChg;
12366 
12367       if (Subtarget->hasGFX90AInsts()) {
12368         if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS)
12369           return AtomicExpansionKind::CmpXChg;
12370 
12371         auto SSID = RMW->getSyncScopeID();
12372         if (SSID == SyncScope::System ||
12373             SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"))
12374           return AtomicExpansionKind::CmpXChg;
12375 
12376         return ReportUnsafeHWInst(AtomicExpansionKind::None);
12377       }
12378 
12379       if (AS == AMDGPUAS::FLAT_ADDRESS)
12380         return AtomicExpansionKind::CmpXChg;
12381 
12382       return RMW->use_empty() ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12383                               : AtomicExpansionKind::CmpXChg;
12384     }
12385 
12386     // DS FP atomics do repect the denormal mode, but the rounding mode is fixed
12387     // to round-to-nearest-even.
12388     // The only exception is DS_ADD_F64 which never flushes regardless of mode.
12389     if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) {
12390       if (!Ty->isDoubleTy())
12391         return AtomicExpansionKind::None;
12392 
12393       if (fpModeMatchesGlobalFPAtomicMode(RMW))
12394         return AtomicExpansionKind::None;
12395 
12396       return RMW->getFunction()
12397                          ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12398                          .getValueAsString() == "true"
12399                  ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12400                  : AtomicExpansionKind::CmpXChg;
12401     }
12402 
12403     return AtomicExpansionKind::CmpXChg;
12404   }
12405   default:
12406     break;
12407   }
12408 
12409   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
12410 }
12411 
12412 const TargetRegisterClass *
12413 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
12414   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
12415   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12416   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
12417     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
12418                                                : &AMDGPU::SReg_32RegClass;
12419   if (!TRI->isSGPRClass(RC) && !isDivergent)
12420     return TRI->getEquivalentSGPRClass(RC);
12421   else if (TRI->isSGPRClass(RC) && isDivergent)
12422     return TRI->getEquivalentVGPRClass(RC);
12423 
12424   return RC;
12425 }
12426 
12427 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
12428 // uniform values (as produced by the mask results of control flow intrinsics)
12429 // used outside of divergent blocks. The phi users need to also be treated as
12430 // always uniform.
12431 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
12432                       unsigned WaveSize) {
12433   // FIXME: We asssume we never cast the mask results of a control flow
12434   // intrinsic.
12435   // Early exit if the type won't be consistent as a compile time hack.
12436   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
12437   if (!IT || IT->getBitWidth() != WaveSize)
12438     return false;
12439 
12440   if (!isa<Instruction>(V))
12441     return false;
12442   if (!Visited.insert(V).second)
12443     return false;
12444   bool Result = false;
12445   for (auto U : V->users()) {
12446     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
12447       if (V == U->getOperand(1)) {
12448         switch (Intrinsic->getIntrinsicID()) {
12449         default:
12450           Result = false;
12451           break;
12452         case Intrinsic::amdgcn_if_break:
12453         case Intrinsic::amdgcn_if:
12454         case Intrinsic::amdgcn_else:
12455           Result = true;
12456           break;
12457         }
12458       }
12459       if (V == U->getOperand(0)) {
12460         switch (Intrinsic->getIntrinsicID()) {
12461         default:
12462           Result = false;
12463           break;
12464         case Intrinsic::amdgcn_end_cf:
12465         case Intrinsic::amdgcn_loop:
12466           Result = true;
12467           break;
12468         }
12469       }
12470     } else {
12471       Result = hasCFUser(U, Visited, WaveSize);
12472     }
12473     if (Result)
12474       break;
12475   }
12476   return Result;
12477 }
12478 
12479 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
12480                                                const Value *V) const {
12481   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
12482     if (CI->isInlineAsm()) {
12483       // FIXME: This cannot give a correct answer. This should only trigger in
12484       // the case where inline asm returns mixed SGPR and VGPR results, used
12485       // outside the defining block. We don't have a specific result to
12486       // consider, so this assumes if any value is SGPR, the overall register
12487       // also needs to be SGPR.
12488       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
12489       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
12490           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
12491       for (auto &TC : TargetConstraints) {
12492         if (TC.Type == InlineAsm::isOutput) {
12493           ComputeConstraintToUse(TC, SDValue());
12494           const TargetRegisterClass *RC = getRegForInlineAsmConstraint(
12495               SIRI, TC.ConstraintCode, TC.ConstraintVT).second;
12496           if (RC && SIRI->isSGPRClass(RC))
12497             return true;
12498         }
12499       }
12500     }
12501   }
12502   SmallPtrSet<const Value *, 16> Visited;
12503   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
12504 }
12505 
12506 std::pair<InstructionCost, MVT>
12507 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
12508                                           Type *Ty) const {
12509   std::pair<InstructionCost, MVT> Cost =
12510       TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
12511   auto Size = DL.getTypeSizeInBits(Ty);
12512   // Maximum load or store can handle 8 dwords for scalar and 4 for
12513   // vector ALU. Let's assume anything above 8 dwords is expensive
12514   // even if legal.
12515   if (Size <= 256)
12516     return Cost;
12517 
12518   Cost.first += (Size + 255) / 256;
12519   return Cost;
12520 }
12521