1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Custom DAG lowering for SI
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifdef _MSC_VER
16 // Provide M_PI.
17 #define _USE_MATH_DEFINES
18 #include <cmath>
19 #endif
20 
21 #include "AMDGPU.h"
22 #include "AMDGPUIntrinsicInfo.h"
23 #include "AMDGPUSubtarget.h"
24 #include "SIISelLowering.h"
25 #include "SIInstrInfo.h"
26 #include "SIMachineFunctionInfo.h"
27 #include "SIRegisterInfo.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SelectionDAG.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Function.h"
37 
38 using namespace llvm;
39 
40 static cl::opt<bool> EnableVGPRIndexMode(
41   "amdgpu-vgpr-index-mode",
42   cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
43   cl::init(false));
44 
45 
46 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
47   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
48   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
49     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
50       return AMDGPU::SGPR0 + Reg;
51     }
52   }
53   llvm_unreachable("Cannot allocate sgpr");
54 }
55 
56 SITargetLowering::SITargetLowering(const TargetMachine &TM,
57                                    const SISubtarget &STI)
58     : AMDGPUTargetLowering(TM, STI) {
59   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
60   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
61 
62   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
63   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
64 
65   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
66   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
67   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
68 
69   addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
70   addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
71 
72   addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
73   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
74 
75   addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
76   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
77 
78   addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
79   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
80 
81   computeRegisterProperties(STI.getRegisterInfo());
82 
83   // We need to custom lower vector stores from local memory
84   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
85   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
86   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
87   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
88   setOperationAction(ISD::LOAD, MVT::i1, Custom);
89 
90   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
91   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
92   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
93   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
94   setOperationAction(ISD::STORE, MVT::i1, Custom);
95 
96   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
97   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
98   setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
99 
100   setOperationAction(ISD::SELECT, MVT::i1, Promote);
101   setOperationAction(ISD::SELECT, MVT::i64, Custom);
102   setOperationAction(ISD::SELECT, MVT::f64, Promote);
103   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
104 
105   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
106   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
107   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
108   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
109   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
110 
111   setOperationAction(ISD::SETCC, MVT::i1, Promote);
112   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
113   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
114 
115   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
116   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
117 
118   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
119   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
120   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
121   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
122   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
123   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
124   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
125 
126   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
127   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
128   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
129 
130   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
131   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
132   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
133   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
134   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
135   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
136 
137   // We only support LOAD/STORE and vector manipulation ops for vectors
138   // with > 4 elements.
139   for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) {
140     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
141       switch (Op) {
142       case ISD::LOAD:
143       case ISD::STORE:
144       case ISD::BUILD_VECTOR:
145       case ISD::BITCAST:
146       case ISD::EXTRACT_VECTOR_ELT:
147       case ISD::INSERT_VECTOR_ELT:
148       case ISD::INSERT_SUBVECTOR:
149       case ISD::EXTRACT_SUBVECTOR:
150       case ISD::SCALAR_TO_VECTOR:
151         break;
152       case ISD::CONCAT_VECTORS:
153         setOperationAction(Op, VT, Custom);
154         break;
155       default:
156         setOperationAction(Op, VT, Expand);
157         break;
158       }
159     }
160   }
161 
162   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
163   // is expanded to avoid having two separate loops in case the index is a VGPR.
164 
165   // Most operations are naturally 32-bit vector operations. We only support
166   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
167   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
168     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
169     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
170 
171     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
172     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
173 
174     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
175     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
176 
177     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
178     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
179   }
180 
181   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
182   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
183   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
184   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
185 
186   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
187   // and output demarshalling
188   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
189   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
190 
191   // We can't return success/failure, only the old value,
192   // let LLVM add the comparison
193   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
194   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
195 
196   if (getSubtarget()->hasFlatAddressSpace()) {
197     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
198     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
199   }
200 
201   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
202   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
203 
204   // On SI this is s_memtime and s_memrealtime on VI.
205   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
206   setOperationAction(ISD::TRAP, MVT::Other, Custom);
207 
208   setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
209   setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
210 
211   if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) {
212     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
213     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
214     setOperationAction(ISD::FRINT, MVT::f64, Legal);
215   }
216 
217   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
218 
219   setOperationAction(ISD::FSIN, MVT::f32, Custom);
220   setOperationAction(ISD::FCOS, MVT::f32, Custom);
221   setOperationAction(ISD::FDIV, MVT::f32, Custom);
222   setOperationAction(ISD::FDIV, MVT::f64, Custom);
223 
224   setTargetDAGCombine(ISD::FADD);
225   setTargetDAGCombine(ISD::FSUB);
226   setTargetDAGCombine(ISD::FMINNUM);
227   setTargetDAGCombine(ISD::FMAXNUM);
228   setTargetDAGCombine(ISD::SMIN);
229   setTargetDAGCombine(ISD::SMAX);
230   setTargetDAGCombine(ISD::UMIN);
231   setTargetDAGCombine(ISD::UMAX);
232   setTargetDAGCombine(ISD::SETCC);
233   setTargetDAGCombine(ISD::AND);
234   setTargetDAGCombine(ISD::OR);
235   setTargetDAGCombine(ISD::XOR);
236   setTargetDAGCombine(ISD::UINT_TO_FP);
237   setTargetDAGCombine(ISD::FCANONICALIZE);
238 
239   // All memory operations. Some folding on the pointer operand is done to help
240   // matching the constant offsets in the addressing modes.
241   setTargetDAGCombine(ISD::LOAD);
242   setTargetDAGCombine(ISD::STORE);
243   setTargetDAGCombine(ISD::ATOMIC_LOAD);
244   setTargetDAGCombine(ISD::ATOMIC_STORE);
245   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
246   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
247   setTargetDAGCombine(ISD::ATOMIC_SWAP);
248   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
249   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
250   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
251   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
252   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
253   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
254   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
255   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
256   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
257   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
258 
259   setSchedulingPreference(Sched::RegPressure);
260 }
261 
262 const SISubtarget *SITargetLowering::getSubtarget() const {
263   return static_cast<const SISubtarget *>(Subtarget);
264 }
265 
266 //===----------------------------------------------------------------------===//
267 // TargetLowering queries
268 //===----------------------------------------------------------------------===//
269 
270 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
271                                           const CallInst &CI,
272                                           unsigned IntrID) const {
273   switch (IntrID) {
274   case Intrinsic::amdgcn_atomic_inc:
275   case Intrinsic::amdgcn_atomic_dec:
276     Info.opc = ISD::INTRINSIC_W_CHAIN;
277     Info.memVT = MVT::getVT(CI.getType());
278     Info.ptrVal = CI.getOperand(0);
279     Info.align = 0;
280     Info.vol = false;
281     Info.readMem = true;
282     Info.writeMem = true;
283     return true;
284   default:
285     return false;
286   }
287 }
288 
289 bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
290                                           EVT) const {
291   // SI has some legal vector types, but no legal vector operations. Say no
292   // shuffles are legal in order to prefer scalarizing some vector operations.
293   return false;
294 }
295 
296 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
297   // Flat instructions do not have offsets, and only have the register
298   // address.
299   return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
300 }
301 
302 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
303   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
304   // additionally can do r + r + i with addr64. 32-bit has more addressing
305   // mode options. Depending on the resource constant, it can also do
306   // (i64 r0) + (i32 r1) * (i14 i).
307   //
308   // Private arrays end up using a scratch buffer most of the time, so also
309   // assume those use MUBUF instructions. Scratch loads / stores are currently
310   // implemented as mubuf instructions with offen bit set, so slightly
311   // different than the normal addr64.
312   if (!isUInt<12>(AM.BaseOffs))
313     return false;
314 
315   // FIXME: Since we can split immediate into soffset and immediate offset,
316   // would it make sense to allow any immediate?
317 
318   switch (AM.Scale) {
319   case 0: // r + i or just i, depending on HasBaseReg.
320     return true;
321   case 1:
322     return true; // We have r + r or r + i.
323   case 2:
324     if (AM.HasBaseReg) {
325       // Reject 2 * r + r.
326       return false;
327     }
328 
329     // Allow 2 * r as r + r
330     // Or  2 * r + i is allowed as r + r + i.
331     return true;
332   default: // Don't allow n * r
333     return false;
334   }
335 }
336 
337 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
338                                              const AddrMode &AM, Type *Ty,
339                                              unsigned AS) const {
340   // No global is ever allowed as a base.
341   if (AM.BaseGV)
342     return false;
343 
344   switch (AS) {
345   case AMDGPUAS::GLOBAL_ADDRESS: {
346     if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
347       // Assume the we will use FLAT for all global memory accesses
348       // on VI.
349       // FIXME: This assumption is currently wrong.  On VI we still use
350       // MUBUF instructions for the r + i addressing mode.  As currently
351       // implemented, the MUBUF instructions only work on buffer < 4GB.
352       // It may be possible to support > 4GB buffers with MUBUF instructions,
353       // by setting the stride value in the resource descriptor which would
354       // increase the size limit to (stride * 4GB).  However, this is risky,
355       // because it has never been validated.
356       return isLegalFlatAddressingMode(AM);
357     }
358 
359     return isLegalMUBUFAddressingMode(AM);
360   }
361   case AMDGPUAS::CONSTANT_ADDRESS: {
362     // If the offset isn't a multiple of 4, it probably isn't going to be
363     // correctly aligned.
364     // FIXME: Can we get the real alignment here?
365     if (AM.BaseOffs % 4 != 0)
366       return isLegalMUBUFAddressingMode(AM);
367 
368     // There are no SMRD extloads, so if we have to do a small type access we
369     // will use a MUBUF load.
370     // FIXME?: We also need to do this if unaligned, but we don't know the
371     // alignment here.
372     if (DL.getTypeStoreSize(Ty) < 4)
373       return isLegalMUBUFAddressingMode(AM);
374 
375     if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
376       // SMRD instructions have an 8-bit, dword offset on SI.
377       if (!isUInt<8>(AM.BaseOffs / 4))
378         return false;
379     } else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) {
380       // On CI+, this can also be a 32-bit literal constant offset. If it fits
381       // in 8-bits, it can use a smaller encoding.
382       if (!isUInt<32>(AM.BaseOffs / 4))
383         return false;
384     } else if (Subtarget->getGeneration() == SISubtarget::VOLCANIC_ISLANDS) {
385       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
386       if (!isUInt<20>(AM.BaseOffs))
387         return false;
388     } else
389       llvm_unreachable("unhandled generation");
390 
391     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
392       return true;
393 
394     if (AM.Scale == 1 && AM.HasBaseReg)
395       return true;
396 
397     return false;
398   }
399 
400   case AMDGPUAS::PRIVATE_ADDRESS:
401     return isLegalMUBUFAddressingMode(AM);
402 
403   case AMDGPUAS::LOCAL_ADDRESS:
404   case AMDGPUAS::REGION_ADDRESS: {
405     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
406     // field.
407     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
408     // an 8-bit dword offset but we don't know the alignment here.
409     if (!isUInt<16>(AM.BaseOffs))
410       return false;
411 
412     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
413       return true;
414 
415     if (AM.Scale == 1 && AM.HasBaseReg)
416       return true;
417 
418     return false;
419   }
420   case AMDGPUAS::FLAT_ADDRESS:
421   case AMDGPUAS::UNKNOWN_ADDRESS_SPACE:
422     // For an unknown address space, this usually means that this is for some
423     // reason being used for pure arithmetic, and not based on some addressing
424     // computation. We don't have instructions that compute pointers with any
425     // addressing modes, so treat them as having no offset like flat
426     // instructions.
427     return isLegalFlatAddressingMode(AM);
428 
429   default:
430     llvm_unreachable("unhandled address space");
431   }
432 }
433 
434 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
435                                                       unsigned AddrSpace,
436                                                       unsigned Align,
437                                                       bool *IsFast) const {
438   if (IsFast)
439     *IsFast = false;
440 
441   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
442   // which isn't a simple VT.
443   // Until MVT is extended to handle this, simply check for the size and
444   // rely on the condition below: allow accesses if the size is a multiple of 4.
445   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
446                            VT.getStoreSize() > 16)) {
447     return false;
448   }
449 
450   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
451       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
452     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
453     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
454     // with adjacent offsets.
455     bool AlignedBy4 = (Align % 4 == 0);
456     if (IsFast)
457       *IsFast = AlignedBy4;
458 
459     return AlignedBy4;
460   }
461 
462   if (Subtarget->hasUnalignedBufferAccess()) {
463     // If we have an uniform constant load, it still requires using a slow
464     // buffer instruction if unaligned.
465     if (IsFast) {
466       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) ?
467         (Align % 4 == 0) : true;
468     }
469 
470     return true;
471   }
472 
473   // Smaller than dword value must be aligned.
474   if (VT.bitsLT(MVT::i32))
475     return false;
476 
477   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
478   // byte-address are ignored, thus forcing Dword alignment.
479   // This applies to private, global, and constant memory.
480   if (IsFast)
481     *IsFast = true;
482 
483   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
484 }
485 
486 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
487                                           unsigned SrcAlign, bool IsMemset,
488                                           bool ZeroMemset,
489                                           bool MemcpyStrSrc,
490                                           MachineFunction &MF) const {
491   // FIXME: Should account for address space here.
492 
493   // The default fallback uses the private pointer size as a guess for a type to
494   // use. Make sure we switch these to 64-bit accesses.
495 
496   if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
497     return MVT::v4i32;
498 
499   if (Size >= 8 && DstAlign >= 4)
500     return MVT::v2i32;
501 
502   // Use the default.
503   return MVT::Other;
504 }
505 
506 static bool isFlatGlobalAddrSpace(unsigned AS) {
507   return AS == AMDGPUAS::GLOBAL_ADDRESS ||
508     AS == AMDGPUAS::FLAT_ADDRESS ||
509     AS == AMDGPUAS::CONSTANT_ADDRESS;
510 }
511 
512 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
513                                            unsigned DestAS) const {
514   return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
515 }
516 
517 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
518   const MemSDNode *MemNode = cast<MemSDNode>(N);
519   const Value *Ptr = MemNode->getMemOperand()->getValue();
520 
521   // UndefValue means this is a load of a kernel input.  These are uniform.
522   // Sometimes LDS instructions have constant pointers.
523   // If Ptr is null, then that means this mem operand contains a
524   // PseudoSourceValue like GOT.
525   if (!Ptr || isa<UndefValue>(Ptr) || isa<Argument>(Ptr) ||
526       isa<Constant>(Ptr) || isa<GlobalValue>(Ptr))
527     return true;
528 
529   const Instruction *I = dyn_cast<Instruction>(Ptr);
530   return I && I->getMetadata("amdgpu.uniform");
531 }
532 
533 TargetLoweringBase::LegalizeTypeAction
534 SITargetLowering::getPreferredVectorAction(EVT VT) const {
535   if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
536     return TypeSplitVector;
537 
538   return TargetLoweringBase::getPreferredVectorAction(VT);
539 }
540 
541 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
542                                                          Type *Ty) const {
543   // FIXME: Could be smarter if called for vector constants.
544   return true;
545 }
546 
547 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
548 
549   // i16 is not desirable unless it is a load or a store.
550   if (VT == MVT::i16 && Op != ISD::LOAD && Op != ISD::STORE)
551     return false;
552 
553   // SimplifySetCC uses this function to determine whether or not it should
554   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
555   if (VT == MVT::i1 && Op == ISD::SETCC)
556     return false;
557 
558   return TargetLowering::isTypeDesirableForOp(Op, VT);
559 }
560 
561 SDValue SITargetLowering::LowerParameterPtr(SelectionDAG &DAG,
562                                             const SDLoc &SL, SDValue Chain,
563                                             unsigned Offset) const {
564   const DataLayout &DL = DAG.getDataLayout();
565   MachineFunction &MF = DAG.getMachineFunction();
566   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
567   unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
568 
569   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
570   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
571   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
572                                        MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
573   return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
574                      DAG.getConstant(Offset, SL, PtrVT));
575 }
576 SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
577                                          const SDLoc &SL, SDValue Chain,
578                                          unsigned Offset, bool Signed) const {
579   const DataLayout &DL = DAG.getDataLayout();
580   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
581   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
582   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
583   SDValue PtrOffset = DAG.getUNDEF(PtrVT);
584   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
585 
586   unsigned Align = DL.getABITypeAlignment(Ty);
587 
588   ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
589   if (MemVT.isFloatingPoint())
590     ExtTy = ISD::EXTLOAD;
591 
592   SDValue Ptr = LowerParameterPtr(DAG, SL, Chain, Offset);
593   return DAG.getLoad(ISD::UNINDEXED, ExtTy, VT, SL, Chain, Ptr, PtrOffset,
594                      PtrInfo, MemVT, Align,
595                      MachineMemOperand::MONonTemporal |
596                          MachineMemOperand::MODereferenceable |
597                          MachineMemOperand::MOInvariant);
598 }
599 
600 SDValue SITargetLowering::LowerFormalArguments(
601     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
602     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
603     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
604   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
605 
606   MachineFunction &MF = DAG.getMachineFunction();
607   FunctionType *FType = MF.getFunction()->getFunctionType();
608   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
609   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
610 
611   if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
612     const Function *Fn = MF.getFunction();
613     DiagnosticInfoUnsupported NoGraphicsHSA(
614         *Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
615     DAG.getContext()->diagnose(NoGraphicsHSA);
616     return DAG.getEntryNode();
617   }
618 
619   // Create stack objects that are used for emitting debugger prologue if
620   // "amdgpu-debugger-emit-prologue" attribute was specified.
621   if (ST.debuggerEmitPrologue())
622     createDebuggerPrologueStackObjects(MF);
623 
624   SmallVector<ISD::InputArg, 16> Splits;
625   BitVector Skipped(Ins.size());
626 
627   for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
628     const ISD::InputArg &Arg = Ins[i];
629 
630     // First check if it's a PS input addr
631     if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() &&
632         !Arg.Flags.isByVal() && PSInputNum <= 15) {
633 
634       if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
635         // We can safely skip PS inputs
636         Skipped.set(i);
637         ++PSInputNum;
638         continue;
639       }
640 
641       Info->markPSInputAllocated(PSInputNum);
642       if (Arg.Used)
643         Info->PSInputEna |= 1 << PSInputNum;
644 
645       ++PSInputNum;
646     }
647 
648     if (AMDGPU::isShader(CallConv)) {
649       // Second split vertices into their elements
650       if (Arg.VT.isVector()) {
651         ISD::InputArg NewArg = Arg;
652         NewArg.Flags.setSplit();
653         NewArg.VT = Arg.VT.getVectorElementType();
654 
655         // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
656         // three or five element vertex only needs three or five registers,
657         // NOT four or eight.
658         Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
659         unsigned NumElements = ParamType->getVectorNumElements();
660 
661         for (unsigned j = 0; j != NumElements; ++j) {
662           Splits.push_back(NewArg);
663           NewArg.PartOffset += NewArg.VT.getStoreSize();
664         }
665       } else {
666         Splits.push_back(Arg);
667       }
668     }
669   }
670 
671   SmallVector<CCValAssign, 16> ArgLocs;
672   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
673                  *DAG.getContext());
674 
675   // At least one interpolation mode must be enabled or else the GPU will hang.
676   //
677   // Check PSInputAddr instead of PSInputEna. The idea is that if the user set
678   // PSInputAddr, the user wants to enable some bits after the compilation
679   // based on run-time states. Since we can't know what the final PSInputEna
680   // will look like, so we shouldn't do anything here and the user should take
681   // responsibility for the correct programming.
682   //
683   // Otherwise, the following restrictions apply:
684   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
685   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
686   //   enabled too.
687   if (CallConv == CallingConv::AMDGPU_PS &&
688       ((Info->getPSInputAddr() & 0x7F) == 0 ||
689        ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11)))) {
690     CCInfo.AllocateReg(AMDGPU::VGPR0);
691     CCInfo.AllocateReg(AMDGPU::VGPR1);
692     Info->markPSInputAllocated(0);
693     Info->PSInputEna |= 1;
694   }
695 
696   if (!AMDGPU::isShader(CallConv)) {
697     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
698   } else {
699     assert(!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() &&
700            !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
701            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
702            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
703            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
704            !Info->hasWorkItemIDZ());
705   }
706 
707   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
708   if (Info->hasPrivateSegmentBuffer()) {
709     unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI);
710     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass);
711     CCInfo.AllocateReg(PrivateSegmentBufferReg);
712   }
713 
714   if (Info->hasDispatchPtr()) {
715     unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI);
716     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SReg_64RegClass);
717     CCInfo.AllocateReg(DispatchPtrReg);
718   }
719 
720   if (Info->hasQueuePtr()) {
721     unsigned QueuePtrReg = Info->addQueuePtr(*TRI);
722     MF.addLiveIn(QueuePtrReg, &AMDGPU::SReg_64RegClass);
723     CCInfo.AllocateReg(QueuePtrReg);
724   }
725 
726   if (Info->hasKernargSegmentPtr()) {
727     unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI);
728     MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
729     CCInfo.AllocateReg(InputPtrReg);
730   }
731 
732   if (Info->hasDispatchID()) {
733     unsigned DispatchIDReg = Info->addDispatchID(*TRI);
734     MF.addLiveIn(DispatchIDReg, &AMDGPU::SReg_64RegClass);
735     CCInfo.AllocateReg(DispatchIDReg);
736   }
737 
738   if (Info->hasFlatScratchInit()) {
739     unsigned FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
740     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SReg_64RegClass);
741     CCInfo.AllocateReg(FlatScratchInitReg);
742   }
743 
744   if (!AMDGPU::isShader(CallConv))
745     analyzeFormalArgumentsCompute(CCInfo, Ins);
746   else
747     AnalyzeFormalArguments(CCInfo, Splits);
748 
749   SmallVector<SDValue, 16> Chains;
750 
751   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
752 
753     const ISD::InputArg &Arg = Ins[i];
754     if (Skipped[i]) {
755       InVals.push_back(DAG.getUNDEF(Arg.VT));
756       continue;
757     }
758 
759     CCValAssign &VA = ArgLocs[ArgIdx++];
760     MVT VT = VA.getLocVT();
761 
762     if (VA.isMemLoc()) {
763       VT = Ins[i].VT;
764       EVT MemVT = VA.getLocVT();
765       const unsigned Offset = Subtarget->getExplicitKernelArgOffset() +
766                               VA.getLocMemOffset();
767       // The first 36 bytes of the input buffer contains information about
768       // thread group and global sizes.
769       SDValue Arg = LowerParameter(DAG, VT, MemVT,  DL, Chain,
770                                    Offset, Ins[i].Flags.isSExt());
771       Chains.push_back(Arg.getValue(1));
772 
773       auto *ParamTy =
774         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
775       if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
776           ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
777         // On SI local pointers are just offsets into LDS, so they are always
778         // less than 16-bits.  On CI and newer they could potentially be
779         // real pointers, so we can't guarantee their size.
780         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
781                           DAG.getValueType(MVT::i16));
782       }
783 
784       InVals.push_back(Arg);
785       Info->setABIArgOffset(Offset + MemVT.getStoreSize());
786       continue;
787     }
788     assert(VA.isRegLoc() && "Parameter must be in a register!");
789 
790     unsigned Reg = VA.getLocReg();
791 
792     if (VT == MVT::i64) {
793       // For now assume it is a pointer
794       Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
795                                      &AMDGPU::SReg_64RegClass);
796       Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
797       SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
798       InVals.push_back(Copy);
799       continue;
800     }
801 
802     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
803 
804     Reg = MF.addLiveIn(Reg, RC);
805     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
806 
807     if (Arg.VT.isVector()) {
808 
809       // Build a vector from the registers
810       Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
811       unsigned NumElements = ParamType->getVectorNumElements();
812 
813       SmallVector<SDValue, 4> Regs;
814       Regs.push_back(Val);
815       for (unsigned j = 1; j != NumElements; ++j) {
816         Reg = ArgLocs[ArgIdx++].getLocReg();
817         Reg = MF.addLiveIn(Reg, RC);
818 
819         SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
820         Regs.push_back(Copy);
821       }
822 
823       // Fill up the missing vector elements
824       NumElements = Arg.VT.getVectorNumElements() - NumElements;
825       Regs.append(NumElements, DAG.getUNDEF(VT));
826 
827       InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs));
828       continue;
829     }
830 
831     InVals.push_back(Val);
832   }
833 
834   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
835   // these from the dispatch pointer.
836 
837   // Start adding system SGPRs.
838   if (Info->hasWorkGroupIDX()) {
839     unsigned Reg = Info->addWorkGroupIDX();
840     MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
841     CCInfo.AllocateReg(Reg);
842   }
843 
844   if (Info->hasWorkGroupIDY()) {
845     unsigned Reg = Info->addWorkGroupIDY();
846     MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
847     CCInfo.AllocateReg(Reg);
848   }
849 
850   if (Info->hasWorkGroupIDZ()) {
851     unsigned Reg = Info->addWorkGroupIDZ();
852     MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
853     CCInfo.AllocateReg(Reg);
854   }
855 
856   if (Info->hasWorkGroupInfo()) {
857     unsigned Reg = Info->addWorkGroupInfo();
858     MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
859     CCInfo.AllocateReg(Reg);
860   }
861 
862   if (Info->hasPrivateSegmentWaveByteOffset()) {
863     // Scratch wave offset passed in system SGPR.
864     unsigned PrivateSegmentWaveByteOffsetReg;
865 
866     if (AMDGPU::isShader(CallConv)) {
867       PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
868       Info->setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
869     } else
870       PrivateSegmentWaveByteOffsetReg = Info->addPrivateSegmentWaveByteOffset();
871 
872     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
873     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
874   }
875 
876   // Now that we've figured out where the scratch register inputs are, see if
877   // should reserve the arguments and use them directly.
878   bool HasStackObjects = MF.getFrameInfo().hasStackObjects();
879   // Record that we know we have non-spill stack objects so we don't need to
880   // check all stack objects later.
881   if (HasStackObjects)
882     Info->setHasNonSpillStackObjects(true);
883 
884   // Everything live out of a block is spilled with fast regalloc, so it's
885   // almost certain that spilling will be required.
886   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
887     HasStackObjects = true;
888 
889   if (ST.isAmdCodeObjectV2()) {
890     if (HasStackObjects) {
891       // If we have stack objects, we unquestionably need the private buffer
892       // resource. For the Code Object V2 ABI, this will be the first 4 user
893       // SGPR inputs. We can reserve those and use them directly.
894 
895       unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue(
896         MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
897       Info->setScratchRSrcReg(PrivateSegmentBufferReg);
898 
899       unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue(
900         MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
901       Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
902     } else {
903       unsigned ReservedBufferReg
904         = TRI->reservedPrivateSegmentBufferReg(MF);
905       unsigned ReservedOffsetReg
906         = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
907 
908       // We tentatively reserve the last registers (skipping the last two
909       // which may contain VCC). After register allocation, we'll replace
910       // these with the ones immediately after those which were really
911       // allocated. In the prologue copies will be inserted from the argument
912       // to these reserved registers.
913       Info->setScratchRSrcReg(ReservedBufferReg);
914       Info->setScratchWaveOffsetReg(ReservedOffsetReg);
915     }
916   } else {
917     unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF);
918 
919     // Without HSA, relocations are used for the scratch pointer and the
920     // buffer resource setup is always inserted in the prologue. Scratch wave
921     // offset is still in an input SGPR.
922     Info->setScratchRSrcReg(ReservedBufferReg);
923 
924     if (HasStackObjects) {
925       unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue(
926         MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
927       Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg);
928     } else {
929       unsigned ReservedOffsetReg
930         = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
931       Info->setScratchWaveOffsetReg(ReservedOffsetReg);
932     }
933   }
934 
935   if (Info->hasWorkItemIDX()) {
936     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
937     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
938     CCInfo.AllocateReg(Reg);
939   }
940 
941   if (Info->hasWorkItemIDY()) {
942     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
943     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
944     CCInfo.AllocateReg(Reg);
945   }
946 
947   if (Info->hasWorkItemIDZ()) {
948     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
949     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
950     CCInfo.AllocateReg(Reg);
951   }
952 
953   if (Chains.empty())
954     return Chain;
955 
956   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
957 }
958 
959 SDValue
960 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
961                               bool isVarArg,
962                               const SmallVectorImpl<ISD::OutputArg> &Outs,
963                               const SmallVectorImpl<SDValue> &OutVals,
964                               const SDLoc &DL, SelectionDAG &DAG) const {
965   MachineFunction &MF = DAG.getMachineFunction();
966   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
967 
968   if (!AMDGPU::isShader(CallConv))
969     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
970                                              OutVals, DL, DAG);
971 
972   Info->setIfReturnsVoid(Outs.size() == 0);
973 
974   SmallVector<ISD::OutputArg, 48> Splits;
975   SmallVector<SDValue, 48> SplitVals;
976 
977   // Split vectors into their elements.
978   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
979     const ISD::OutputArg &Out = Outs[i];
980 
981     if (Out.VT.isVector()) {
982       MVT VT = Out.VT.getVectorElementType();
983       ISD::OutputArg NewOut = Out;
984       NewOut.Flags.setSplit();
985       NewOut.VT = VT;
986 
987       // We want the original number of vector elements here, e.g.
988       // three or five, not four or eight.
989       unsigned NumElements = Out.ArgVT.getVectorNumElements();
990 
991       for (unsigned j = 0; j != NumElements; ++j) {
992         SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
993                                    DAG.getConstant(j, DL, MVT::i32));
994         SplitVals.push_back(Elem);
995         Splits.push_back(NewOut);
996         NewOut.PartOffset += NewOut.VT.getStoreSize();
997       }
998     } else {
999       SplitVals.push_back(OutVals[i]);
1000       Splits.push_back(Out);
1001     }
1002   }
1003 
1004   // CCValAssign - represent the assignment of the return value to a location.
1005   SmallVector<CCValAssign, 48> RVLocs;
1006 
1007   // CCState - Info about the registers and stack slots.
1008   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1009                  *DAG.getContext());
1010 
1011   // Analyze outgoing return values.
1012   AnalyzeReturn(CCInfo, Splits);
1013 
1014   SDValue Flag;
1015   SmallVector<SDValue, 48> RetOps;
1016   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1017 
1018   // Copy the result values into the output registers.
1019   for (unsigned i = 0, realRVLocIdx = 0;
1020        i != RVLocs.size();
1021        ++i, ++realRVLocIdx) {
1022     CCValAssign &VA = RVLocs[i];
1023     assert(VA.isRegLoc() && "Can only return in registers!");
1024 
1025     SDValue Arg = SplitVals[realRVLocIdx];
1026 
1027     // Copied from other backends.
1028     switch (VA.getLocInfo()) {
1029     default: llvm_unreachable("Unknown loc info!");
1030     case CCValAssign::Full:
1031       break;
1032     case CCValAssign::BCvt:
1033       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1034       break;
1035     }
1036 
1037     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
1038     Flag = Chain.getValue(1);
1039     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1040   }
1041 
1042   // Update chain and glue.
1043   RetOps[0] = Chain;
1044   if (Flag.getNode())
1045     RetOps.push_back(Flag);
1046 
1047   unsigned Opc = Info->returnsVoid() ? AMDGPUISD::ENDPGM : AMDGPUISD::RETURN;
1048   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
1049 }
1050 
1051 unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
1052                                              SelectionDAG &DAG) const {
1053   unsigned Reg = StringSwitch<unsigned>(RegName)
1054     .Case("m0", AMDGPU::M0)
1055     .Case("exec", AMDGPU::EXEC)
1056     .Case("exec_lo", AMDGPU::EXEC_LO)
1057     .Case("exec_hi", AMDGPU::EXEC_HI)
1058     .Case("flat_scratch", AMDGPU::FLAT_SCR)
1059     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
1060     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
1061     .Default(AMDGPU::NoRegister);
1062 
1063   if (Reg == AMDGPU::NoRegister) {
1064     report_fatal_error(Twine("invalid register name \""
1065                              + StringRef(RegName)  + "\"."));
1066 
1067   }
1068 
1069   if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
1070       Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
1071     report_fatal_error(Twine("invalid register \""
1072                              + StringRef(RegName)  + "\" for subtarget."));
1073   }
1074 
1075   switch (Reg) {
1076   case AMDGPU::M0:
1077   case AMDGPU::EXEC_LO:
1078   case AMDGPU::EXEC_HI:
1079   case AMDGPU::FLAT_SCR_LO:
1080   case AMDGPU::FLAT_SCR_HI:
1081     if (VT.getSizeInBits() == 32)
1082       return Reg;
1083     break;
1084   case AMDGPU::EXEC:
1085   case AMDGPU::FLAT_SCR:
1086     if (VT.getSizeInBits() == 64)
1087       return Reg;
1088     break;
1089   default:
1090     llvm_unreachable("missing register type checking");
1091   }
1092 
1093   report_fatal_error(Twine("invalid type for register \""
1094                            + StringRef(RegName) + "\"."));
1095 }
1096 
1097 // If kill is not the last instruction, split the block so kill is always a
1098 // proper terminator.
1099 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
1100                                                     MachineBasicBlock *BB) const {
1101   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1102 
1103   MachineBasicBlock::iterator SplitPoint(&MI);
1104   ++SplitPoint;
1105 
1106   if (SplitPoint == BB->end()) {
1107     // Don't bother with a new block.
1108     MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR));
1109     return BB;
1110   }
1111 
1112   MachineFunction *MF = BB->getParent();
1113   MachineBasicBlock *SplitBB
1114     = MF->CreateMachineBasicBlock(BB->getBasicBlock());
1115 
1116   MF->insert(++MachineFunction::iterator(BB), SplitBB);
1117   SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
1118 
1119   SplitBB->transferSuccessorsAndUpdatePHIs(BB);
1120   BB->addSuccessor(SplitBB);
1121 
1122   MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR));
1123   return SplitBB;
1124 }
1125 
1126 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
1127 // wavefront. If the value is uniform and just happens to be in a VGPR, this
1128 // will only do one iteration. In the worst case, this will loop 64 times.
1129 //
1130 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
1131 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
1132   const SIInstrInfo *TII,
1133   MachineRegisterInfo &MRI,
1134   MachineBasicBlock &OrigBB,
1135   MachineBasicBlock &LoopBB,
1136   const DebugLoc &DL,
1137   const MachineOperand &IdxReg,
1138   unsigned InitReg,
1139   unsigned ResultReg,
1140   unsigned PhiReg,
1141   unsigned InitSaveExecReg,
1142   int Offset,
1143   bool UseGPRIdxMode) {
1144   MachineBasicBlock::iterator I = LoopBB.begin();
1145 
1146   unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1147   unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1148   unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
1149   unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1150 
1151   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
1152     .addReg(InitReg)
1153     .addMBB(&OrigBB)
1154     .addReg(ResultReg)
1155     .addMBB(&LoopBB);
1156 
1157   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
1158     .addReg(InitSaveExecReg)
1159     .addMBB(&OrigBB)
1160     .addReg(NewExec)
1161     .addMBB(&LoopBB);
1162 
1163   // Read the next variant <- also loop target.
1164   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
1165     .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
1166 
1167   // Compare the just read M0 value to all possible Idx values.
1168   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
1169     .addReg(CurrentIdxReg)
1170     .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
1171 
1172   if (UseGPRIdxMode) {
1173     unsigned IdxReg;
1174     if (Offset == 0) {
1175       IdxReg = CurrentIdxReg;
1176     } else {
1177       IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
1178       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
1179         .addReg(CurrentIdxReg, RegState::Kill)
1180         .addImm(Offset);
1181     }
1182 
1183     MachineInstr *SetIdx =
1184       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_IDX))
1185       .addReg(IdxReg, RegState::Kill);
1186     SetIdx->getOperand(2).setIsUndef();
1187   } else {
1188     // Move index from VCC into M0
1189     if (Offset == 0) {
1190       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
1191         .addReg(CurrentIdxReg, RegState::Kill);
1192     } else {
1193       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
1194         .addReg(CurrentIdxReg, RegState::Kill)
1195         .addImm(Offset);
1196     }
1197   }
1198 
1199   // Update EXEC, save the original EXEC value to VCC.
1200   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec)
1201     .addReg(CondReg, RegState::Kill);
1202 
1203   MRI.setSimpleHint(NewExec, CondReg);
1204 
1205   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
1206   MachineInstr *InsertPt =
1207     BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
1208     .addReg(AMDGPU::EXEC)
1209     .addReg(NewExec);
1210 
1211   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
1212   // s_cbranch_scc0?
1213 
1214   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
1215   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
1216     .addMBB(&LoopBB);
1217 
1218   return InsertPt->getIterator();
1219 }
1220 
1221 // This has slightly sub-optimal regalloc when the source vector is killed by
1222 // the read. The register allocator does not understand that the kill is
1223 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
1224 // subregister from it, using 1 more VGPR than necessary. This was saved when
1225 // this was expanded after register allocation.
1226 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
1227                                                   MachineBasicBlock &MBB,
1228                                                   MachineInstr &MI,
1229                                                   unsigned InitResultReg,
1230                                                   unsigned PhiReg,
1231                                                   int Offset,
1232                                                   bool UseGPRIdxMode) {
1233   MachineFunction *MF = MBB.getParent();
1234   MachineRegisterInfo &MRI = MF->getRegInfo();
1235   const DebugLoc &DL = MI.getDebugLoc();
1236   MachineBasicBlock::iterator I(&MI);
1237 
1238   unsigned DstReg = MI.getOperand(0).getReg();
1239   unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1240   unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1241 
1242   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
1243 
1244   // Save the EXEC mask
1245   BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec)
1246     .addReg(AMDGPU::EXEC);
1247 
1248   // To insert the loop we need to split the block. Move everything after this
1249   // point to a new block, and insert a new empty block between the two.
1250   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
1251   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
1252   MachineFunction::iterator MBBI(MBB);
1253   ++MBBI;
1254 
1255   MF->insert(MBBI, LoopBB);
1256   MF->insert(MBBI, RemainderBB);
1257 
1258   LoopBB->addSuccessor(LoopBB);
1259   LoopBB->addSuccessor(RemainderBB);
1260 
1261   // Move the rest of the block into a new block.
1262   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
1263   RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
1264 
1265   MBB.addSuccessor(LoopBB);
1266 
1267   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
1268 
1269   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
1270                                       InitResultReg, DstReg, PhiReg, TmpExec,
1271                                       Offset, UseGPRIdxMode);
1272 
1273   MachineBasicBlock::iterator First = RemainderBB->begin();
1274   BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
1275     .addReg(SaveExec);
1276 
1277   MI.eraseFromParent();
1278 
1279   return InsPt;
1280 }
1281 
1282 // Returns subreg index, offset
1283 static std::pair<unsigned, int>
1284 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
1285                             const TargetRegisterClass *SuperRC,
1286                             unsigned VecReg,
1287                             int Offset) {
1288   int NumElts = SuperRC->getSize() / 4;
1289 
1290   // Skip out of bounds offsets, or else we would end up using an undefined
1291   // register.
1292   if (Offset >= NumElts || Offset < 0)
1293     return std::make_pair(AMDGPU::sub0, Offset);
1294 
1295   return std::make_pair(AMDGPU::sub0 + Offset, 0);
1296 }
1297 
1298 // Return true if the index is an SGPR and was set.
1299 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
1300                                  MachineRegisterInfo &MRI,
1301                                  MachineInstr &MI,
1302                                  int Offset,
1303                                  bool UseGPRIdxMode,
1304                                  bool IsIndirectSrc) {
1305   MachineBasicBlock *MBB = MI.getParent();
1306   const DebugLoc &DL = MI.getDebugLoc();
1307   MachineBasicBlock::iterator I(&MI);
1308 
1309   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
1310   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
1311 
1312   assert(Idx->getReg() != AMDGPU::NoRegister);
1313 
1314   if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
1315     return false;
1316 
1317   if (UseGPRIdxMode) {
1318     unsigned IdxMode = IsIndirectSrc ?
1319       VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
1320     if (Offset == 0) {
1321       MachineInstr *SetOn =
1322         BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
1323         .addOperand(*Idx)
1324         .addImm(IdxMode);
1325 
1326       SetOn->getOperand(3).setIsUndef();
1327     } else {
1328       unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
1329       BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
1330         .addOperand(*Idx)
1331         .addImm(Offset);
1332       MachineInstr *SetOn =
1333         BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
1334         .addReg(Tmp, RegState::Kill)
1335         .addImm(IdxMode);
1336 
1337       SetOn->getOperand(3).setIsUndef();
1338     }
1339 
1340     return true;
1341   }
1342 
1343   if (Offset == 0) {
1344     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
1345       .addOperand(*Idx);
1346   } else {
1347     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
1348       .addOperand(*Idx)
1349       .addImm(Offset);
1350   }
1351 
1352   return true;
1353 }
1354 
1355 // Control flow needs to be inserted if indexing with a VGPR.
1356 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
1357                                           MachineBasicBlock &MBB,
1358                                           const SISubtarget &ST) {
1359   const SIInstrInfo *TII = ST.getInstrInfo();
1360   const SIRegisterInfo &TRI = TII->getRegisterInfo();
1361   MachineFunction *MF = MBB.getParent();
1362   MachineRegisterInfo &MRI = MF->getRegInfo();
1363 
1364   unsigned Dst = MI.getOperand(0).getReg();
1365   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
1366   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
1367 
1368   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
1369 
1370   unsigned SubReg;
1371   std::tie(SubReg, Offset)
1372     = computeIndirectRegAndOffset(TRI, VecRC, SrcVec->getReg(), Offset);
1373 
1374   bool UseGPRIdxMode = ST.hasVGPRIndexMode() && EnableVGPRIndexMode;
1375 
1376   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
1377     MachineBasicBlock::iterator I(&MI);
1378     const DebugLoc &DL = MI.getDebugLoc();
1379 
1380     if (UseGPRIdxMode) {
1381       // TODO: Look at the uses to avoid the copy. This may require rescheduling
1382       // to avoid interfering with other uses, so probably requires a new
1383       // optimization pass.
1384       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
1385         .addReg(SrcVec->getReg(), RegState::Undef, SubReg)
1386         .addReg(SrcVec->getReg(), RegState::Implicit)
1387         .addReg(AMDGPU::M0, RegState::Implicit);
1388       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
1389     } else {
1390       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
1391         .addReg(SrcVec->getReg(), RegState::Undef, SubReg)
1392         .addReg(SrcVec->getReg(), RegState::Implicit);
1393     }
1394 
1395     MI.eraseFromParent();
1396 
1397     return &MBB;
1398   }
1399 
1400 
1401   const DebugLoc &DL = MI.getDebugLoc();
1402   MachineBasicBlock::iterator I(&MI);
1403 
1404   unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
1405   unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
1406 
1407   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
1408 
1409   if (UseGPRIdxMode) {
1410     MachineInstr *SetOn = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
1411       .addImm(0) // Reset inside loop.
1412       .addImm(VGPRIndexMode::SRC0_ENABLE);
1413     SetOn->getOperand(3).setIsUndef();
1414 
1415 
1416     // Disable again after the loop.
1417     BuildMI(MBB, std::next(I), DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
1418   }
1419 
1420   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, UseGPRIdxMode);
1421   MachineBasicBlock *LoopBB = InsPt->getParent();
1422 
1423   if (UseGPRIdxMode) {
1424     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
1425       .addReg(SrcVec->getReg(), RegState::Undef, SubReg)
1426       .addReg(SrcVec->getReg(), RegState::Implicit)
1427       .addReg(AMDGPU::M0, RegState::Implicit);
1428   } else {
1429     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
1430       .addReg(SrcVec->getReg(), RegState::Undef, SubReg)
1431       .addReg(SrcVec->getReg(), RegState::Implicit);
1432   }
1433 
1434   return LoopBB;
1435 }
1436 
1437 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
1438                                           MachineBasicBlock &MBB,
1439                                           const SISubtarget &ST) {
1440   const SIInstrInfo *TII = ST.getInstrInfo();
1441   const SIRegisterInfo &TRI = TII->getRegisterInfo();
1442   MachineFunction *MF = MBB.getParent();
1443   MachineRegisterInfo &MRI = MF->getRegInfo();
1444 
1445   unsigned Dst = MI.getOperand(0).getReg();
1446   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
1447   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
1448   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
1449   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
1450   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
1451 
1452   // This can be an immediate, but will be folded later.
1453   assert(Val->getReg());
1454 
1455   unsigned SubReg;
1456   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
1457                                                          SrcVec->getReg(),
1458                                                          Offset);
1459   bool UseGPRIdxMode = ST.hasVGPRIndexMode() && EnableVGPRIndexMode;
1460 
1461   if (Idx->getReg() == AMDGPU::NoRegister) {
1462     MachineBasicBlock::iterator I(&MI);
1463     const DebugLoc &DL = MI.getDebugLoc();
1464 
1465     assert(Offset == 0);
1466 
1467     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
1468       .addOperand(*SrcVec)
1469       .addOperand(*Val)
1470       .addImm(SubReg);
1471 
1472     MI.eraseFromParent();
1473     return &MBB;
1474   }
1475 
1476   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
1477     MachineBasicBlock::iterator I(&MI);
1478     const DebugLoc &DL = MI.getDebugLoc();
1479 
1480     if (UseGPRIdxMode) {
1481       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
1482         .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
1483         .addOperand(*Val)
1484         .addReg(Dst, RegState::ImplicitDefine)
1485         .addReg(SrcVec->getReg(), RegState::Implicit)
1486         .addReg(AMDGPU::M0, RegState::Implicit);
1487 
1488       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
1489     } else {
1490       const MCInstrDesc &MovRelDesc = TII->get(AMDGPU::V_MOVRELD_B32_e32);
1491 
1492       MachineInstr *MovRel =
1493         BuildMI(MBB, I, DL, MovRelDesc)
1494         .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
1495         .addOperand(*Val)
1496         .addReg(Dst, RegState::ImplicitDefine)
1497         .addReg(SrcVec->getReg(), RegState::Implicit);
1498 
1499       const int ImpDefIdx = MovRelDesc.getNumOperands() +
1500         MovRelDesc.getNumImplicitUses();
1501       const int ImpUseIdx = ImpDefIdx + 1;
1502 
1503       MovRel->tieOperands(ImpDefIdx, ImpUseIdx);
1504     }
1505 
1506     MI.eraseFromParent();
1507     return &MBB;
1508   }
1509 
1510   if (Val->isReg())
1511     MRI.clearKillFlags(Val->getReg());
1512 
1513   const DebugLoc &DL = MI.getDebugLoc();
1514 
1515   if (UseGPRIdxMode) {
1516     MachineBasicBlock::iterator I(&MI);
1517 
1518     MachineInstr *SetOn = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
1519       .addImm(0) // Reset inside loop.
1520       .addImm(VGPRIndexMode::DST_ENABLE);
1521     SetOn->getOperand(3).setIsUndef();
1522 
1523     // Disable again after the loop.
1524     BuildMI(MBB, std::next(I), DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
1525   }
1526 
1527   unsigned PhiReg = MRI.createVirtualRegister(VecRC);
1528 
1529   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
1530                               Offset, UseGPRIdxMode);
1531   MachineBasicBlock *LoopBB = InsPt->getParent();
1532 
1533   if (UseGPRIdxMode) {
1534     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
1535       .addReg(PhiReg, RegState::Undef, SubReg) // vdst
1536       .addOperand(*Val) // src0
1537       .addReg(Dst, RegState::ImplicitDefine)
1538       .addReg(PhiReg, RegState::Implicit)
1539       .addReg(AMDGPU::M0, RegState::Implicit);
1540   } else {
1541     const MCInstrDesc &MovRelDesc = TII->get(AMDGPU::V_MOVRELD_B32_e32);
1542     // vdst is not actually read and just provides the base register index.
1543     MachineInstr *MovRel =
1544       BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
1545     .addReg(PhiReg, RegState::Undef, SubReg) // vdst
1546     .addOperand(*Val)
1547     .addReg(Dst, RegState::ImplicitDefine)
1548     .addReg(PhiReg, RegState::Implicit);
1549 
1550     const int ImpDefIdx = MovRelDesc.getNumOperands() +
1551       MovRelDesc.getNumImplicitUses();
1552     const int ImpUseIdx = ImpDefIdx + 1;
1553 
1554     MovRel->tieOperands(ImpDefIdx, ImpUseIdx);
1555   }
1556 
1557   return LoopBB;
1558 }
1559 
1560 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
1561   MachineInstr &MI, MachineBasicBlock *BB) const {
1562   switch (MI.getOpcode()) {
1563   case AMDGPU::SI_INIT_M0: {
1564     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1565     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
1566             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
1567       .addOperand(MI.getOperand(0));
1568     MI.eraseFromParent();
1569     return BB;
1570   }
1571   case AMDGPU::GET_GROUPSTATICSIZE: {
1572     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1573 
1574     MachineFunction *MF = BB->getParent();
1575     SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
1576     DebugLoc DL = MI.getDebugLoc();
1577     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
1578       .addOperand(MI.getOperand(0))
1579       .addImm(MFI->getLDSSize());
1580     MI.eraseFromParent();
1581     return BB;
1582   }
1583   case AMDGPU::SI_INDIRECT_SRC_V1:
1584   case AMDGPU::SI_INDIRECT_SRC_V2:
1585   case AMDGPU::SI_INDIRECT_SRC_V4:
1586   case AMDGPU::SI_INDIRECT_SRC_V8:
1587   case AMDGPU::SI_INDIRECT_SRC_V16:
1588     return emitIndirectSrc(MI, *BB, *getSubtarget());
1589   case AMDGPU::SI_INDIRECT_DST_V1:
1590   case AMDGPU::SI_INDIRECT_DST_V2:
1591   case AMDGPU::SI_INDIRECT_DST_V4:
1592   case AMDGPU::SI_INDIRECT_DST_V8:
1593   case AMDGPU::SI_INDIRECT_DST_V16:
1594     return emitIndirectDst(MI, *BB, *getSubtarget());
1595   case AMDGPU::SI_KILL:
1596     return splitKillBlock(MI, BB);
1597   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
1598     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
1599     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1600 
1601     unsigned Dst = MI.getOperand(0).getReg();
1602     unsigned Src0 = MI.getOperand(1).getReg();
1603     unsigned Src1 = MI.getOperand(2).getReg();
1604     const DebugLoc &DL = MI.getDebugLoc();
1605     unsigned SrcCond = MI.getOperand(3).getReg();
1606 
1607     unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
1608     unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
1609 
1610     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
1611       .addReg(Src0, 0, AMDGPU::sub0)
1612       .addReg(Src1, 0, AMDGPU::sub0)
1613       .addReg(SrcCond);
1614     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
1615       .addReg(Src0, 0, AMDGPU::sub1)
1616       .addReg(Src1, 0, AMDGPU::sub1)
1617       .addReg(SrcCond);
1618 
1619     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
1620       .addReg(DstLo)
1621       .addImm(AMDGPU::sub0)
1622       .addReg(DstHi)
1623       .addImm(AMDGPU::sub1);
1624     MI.eraseFromParent();
1625     return BB;
1626   }
1627   default:
1628     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1629   }
1630 }
1631 
1632 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1633   // This currently forces unfolding various combinations of fsub into fma with
1634   // free fneg'd operands. As long as we have fast FMA (controlled by
1635   // isFMAFasterThanFMulAndFAdd), we should perform these.
1636 
1637   // When fma is quarter rate, for f64 where add / sub are at best half rate,
1638   // most of these combines appear to be cycle neutral but save on instruction
1639   // count / code size.
1640   return true;
1641 }
1642 
1643 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
1644                                          EVT VT) const {
1645   if (!VT.isVector()) {
1646     return MVT::i1;
1647   }
1648   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
1649 }
1650 
1651 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const {
1652   return MVT::i32;
1653 }
1654 
1655 // Answering this is somewhat tricky and depends on the specific device which
1656 // have different rates for fma or all f64 operations.
1657 //
1658 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
1659 // regardless of which device (although the number of cycles differs between
1660 // devices), so it is always profitable for f64.
1661 //
1662 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
1663 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
1664 // which we can always do even without fused FP ops since it returns the same
1665 // result as the separate operations and since it is always full
1666 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
1667 // however does not support denormals, so we do report fma as faster if we have
1668 // a fast fma device and require denormals.
1669 //
1670 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
1671   VT = VT.getScalarType();
1672 
1673   if (!VT.isSimple())
1674     return false;
1675 
1676   switch (VT.getSimpleVT().SimpleTy) {
1677   case MVT::f32:
1678     // This is as fast on some subtargets. However, we always have full rate f32
1679     // mad available which returns the same result as the separate operations
1680     // which we should prefer over fma. We can't use this if we want to support
1681     // denormals, so only report this in these cases.
1682     return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
1683   case MVT::f64:
1684     return true;
1685   default:
1686     break;
1687   }
1688 
1689   return false;
1690 }
1691 
1692 //===----------------------------------------------------------------------===//
1693 // Custom DAG Lowering Operations
1694 //===----------------------------------------------------------------------===//
1695 
1696 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
1697   switch (Op.getOpcode()) {
1698   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
1699   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
1700   case ISD::LOAD: {
1701     SDValue Result = LowerLOAD(Op, DAG);
1702     assert((!Result.getNode() ||
1703             Result.getNode()->getNumValues() == 2) &&
1704            "Load should return a value and a chain");
1705     return Result;
1706   }
1707 
1708   case ISD::FSIN:
1709   case ISD::FCOS:
1710     return LowerTrig(Op, DAG);
1711   case ISD::SELECT: return LowerSELECT(Op, DAG);
1712   case ISD::FDIV: return LowerFDIV(Op, DAG);
1713   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
1714   case ISD::STORE: return LowerSTORE(Op, DAG);
1715   case ISD::GlobalAddress: {
1716     MachineFunction &MF = DAG.getMachineFunction();
1717     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1718     return LowerGlobalAddress(MFI, Op, DAG);
1719   }
1720   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1721   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
1722   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
1723   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
1724   case ISD::TRAP: return lowerTRAP(Op, DAG);
1725   }
1726   return SDValue();
1727 }
1728 
1729 /// \brief Helper function for LowerBRCOND
1730 static SDNode *findUser(SDValue Value, unsigned Opcode) {
1731 
1732   SDNode *Parent = Value.getNode();
1733   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
1734        I != E; ++I) {
1735 
1736     if (I.getUse().get() != Value)
1737       continue;
1738 
1739     if (I->getOpcode() == Opcode)
1740       return *I;
1741   }
1742   return nullptr;
1743 }
1744 
1745 bool SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
1746   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
1747     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
1748     case AMDGPUIntrinsic::amdgcn_if:
1749     case AMDGPUIntrinsic::amdgcn_else:
1750     case AMDGPUIntrinsic::amdgcn_end_cf:
1751     case AMDGPUIntrinsic::amdgcn_loop:
1752       return true;
1753     default:
1754       return false;
1755     }
1756   }
1757 
1758   if (Intr->getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
1759     switch (cast<ConstantSDNode>(Intr->getOperand(0))->getZExtValue()) {
1760     case AMDGPUIntrinsic::amdgcn_break:
1761     case AMDGPUIntrinsic::amdgcn_if_break:
1762     case AMDGPUIntrinsic::amdgcn_else_break:
1763       return true;
1764     default:
1765       return false;
1766     }
1767   }
1768 
1769   return false;
1770 }
1771 
1772 void SITargetLowering::createDebuggerPrologueStackObjects(
1773     MachineFunction &MF) const {
1774   // Create stack objects that are used for emitting debugger prologue.
1775   //
1776   // Debugger prologue writes work group IDs and work item IDs to scratch memory
1777   // at fixed location in the following format:
1778   //   offset 0:  work group ID x
1779   //   offset 4:  work group ID y
1780   //   offset 8:  work group ID z
1781   //   offset 16: work item ID x
1782   //   offset 20: work item ID y
1783   //   offset 24: work item ID z
1784   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1785   int ObjectIdx = 0;
1786 
1787   // For each dimension:
1788   for (unsigned i = 0; i < 3; ++i) {
1789     // Create fixed stack object for work group ID.
1790     ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true);
1791     Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx);
1792     // Create fixed stack object for work item ID.
1793     ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true);
1794     Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx);
1795   }
1796 }
1797 
1798 /// This transforms the control flow intrinsics to get the branch destination as
1799 /// last parameter, also switches branch target with BR if the need arise
1800 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
1801                                       SelectionDAG &DAG) const {
1802 
1803   SDLoc DL(BRCOND);
1804 
1805   SDNode *Intr = BRCOND.getOperand(1).getNode();
1806   SDValue Target = BRCOND.getOperand(2);
1807   SDNode *BR = nullptr;
1808   SDNode *SetCC = nullptr;
1809 
1810   if (Intr->getOpcode() == ISD::SETCC) {
1811     // As long as we negate the condition everything is fine
1812     SetCC = Intr;
1813     Intr = SetCC->getOperand(0).getNode();
1814 
1815   } else {
1816     // Get the target from BR if we don't negate the condition
1817     BR = findUser(BRCOND, ISD::BR);
1818     Target = BR->getOperand(1);
1819   }
1820 
1821   // FIXME: This changes the types of the intrinsics instead of introducing new
1822   // nodes with the correct types.
1823   // e.g. llvm.amdgcn.loop
1824 
1825   // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
1826   // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
1827 
1828   if (!isCFIntrinsic(Intr)) {
1829     // This is a uniform branch so we don't need to legalize.
1830     return BRCOND;
1831   }
1832 
1833   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
1834                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
1835 
1836   assert(!SetCC ||
1837         (SetCC->getConstantOperandVal(1) == 1 &&
1838          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
1839                                                              ISD::SETNE));
1840 
1841   // operands of the new intrinsic call
1842   SmallVector<SDValue, 4> Ops;
1843   if (HaveChain)
1844     Ops.push_back(BRCOND.getOperand(0));
1845 
1846   Ops.append(Intr->op_begin() + (HaveChain ?  1 : 0), Intr->op_end());
1847   Ops.push_back(Target);
1848 
1849   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
1850 
1851   // build the new intrinsic call
1852   SDNode *Result = DAG.getNode(
1853     Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
1854     DAG.getVTList(Res), Ops).getNode();
1855 
1856   if (!HaveChain) {
1857     SDValue Ops[] =  {
1858       SDValue(Result, 0),
1859       BRCOND.getOperand(0)
1860     };
1861 
1862     Result = DAG.getMergeValues(Ops, DL).getNode();
1863   }
1864 
1865   if (BR) {
1866     // Give the branch instruction our target
1867     SDValue Ops[] = {
1868       BR->getOperand(0),
1869       BRCOND.getOperand(2)
1870     };
1871     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
1872     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
1873     BR = NewBR.getNode();
1874   }
1875 
1876   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
1877 
1878   // Copy the intrinsic results to registers
1879   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
1880     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
1881     if (!CopyToReg)
1882       continue;
1883 
1884     Chain = DAG.getCopyToReg(
1885       Chain, DL,
1886       CopyToReg->getOperand(1),
1887       SDValue(Result, i - 1),
1888       SDValue());
1889 
1890     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
1891   }
1892 
1893   // Remove the old intrinsic from the chain
1894   DAG.ReplaceAllUsesOfValueWith(
1895     SDValue(Intr, Intr->getNumValues() - 1),
1896     Intr->getOperand(0));
1897 
1898   return Chain;
1899 }
1900 
1901 SDValue SITargetLowering::getSegmentAperture(unsigned AS,
1902                                              SelectionDAG &DAG) const {
1903   SDLoc SL;
1904   MachineFunction &MF = DAG.getMachineFunction();
1905   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1906   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
1907   assert(UserSGPR != AMDGPU::NoRegister);
1908 
1909   SDValue QueuePtr = CreateLiveInRegister(
1910     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
1911 
1912   // Offset into amd_queue_t for group_segment_aperture_base_hi /
1913   // private_segment_aperture_base_hi.
1914   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
1915 
1916   SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, QueuePtr,
1917                             DAG.getConstant(StructOffset, SL, MVT::i64));
1918 
1919   // TODO: Use custom target PseudoSourceValue.
1920   // TODO: We should use the value from the IR intrinsic call, but it might not
1921   // be available and how do we get it?
1922   Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
1923                                               AMDGPUAS::CONSTANT_ADDRESS));
1924 
1925   MachinePointerInfo PtrInfo(V, StructOffset);
1926   return DAG.getLoad(MVT::i32, SL, QueuePtr.getValue(1), Ptr, PtrInfo,
1927                      MinAlign(64, StructOffset),
1928                      MachineMemOperand::MODereferenceable |
1929                          MachineMemOperand::MOInvariant);
1930 }
1931 
1932 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
1933                                              SelectionDAG &DAG) const {
1934   SDLoc SL(Op);
1935   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
1936 
1937   SDValue Src = ASC->getOperand(0);
1938 
1939   // FIXME: Really support non-0 null pointers.
1940   SDValue SegmentNullPtr = DAG.getConstant(-1, SL, MVT::i32);
1941   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
1942 
1943   // flat -> local/private
1944   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
1945     if (ASC->getDestAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1946         ASC->getDestAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
1947       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
1948       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
1949 
1950       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
1951                          NonNull, Ptr, SegmentNullPtr);
1952     }
1953   }
1954 
1955   // local/private -> flat
1956   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
1957     if (ASC->getSrcAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1958         ASC->getSrcAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
1959       SDValue NonNull
1960         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
1961 
1962       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), DAG);
1963       SDValue CvtPtr
1964         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
1965 
1966       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
1967                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
1968                          FlatNullPtr);
1969     }
1970   }
1971 
1972   // global <-> flat are no-ops and never emitted.
1973 
1974   const MachineFunction &MF = DAG.getMachineFunction();
1975   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
1976     *MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
1977   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
1978 
1979   return DAG.getUNDEF(ASC->getValueType(0));
1980 }
1981 
1982 static bool shouldEmitFixup(const GlobalValue *GV,
1983                             const TargetMachine &TM) {
1984   // FIXME: We need to emit global variables in constant address space in a
1985   // separate section, and use relocations.
1986   return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS;
1987 }
1988 
1989 static bool shouldEmitGOTReloc(const GlobalValue *GV,
1990                                const TargetMachine &TM) {
1991   return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
1992          !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
1993 }
1994 
1995 static bool shouldEmitPCReloc(const GlobalValue *GV,
1996                               const TargetMachine &TM) {
1997   return !shouldEmitFixup(GV, TM) && !shouldEmitGOTReloc(GV, TM);
1998 }
1999 
2000 bool
2001 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
2002   // We can fold offsets for anything that doesn't require a GOT relocation.
2003   return GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
2004          !shouldEmitGOTReloc(GA->getGlobal(), getTargetMachine());
2005 }
2006 
2007 static SDValue buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
2008                                       SDLoc DL, unsigned Offset, EVT PtrVT,
2009                                       unsigned GAFlags = SIInstrInfo::MO_NONE) {
2010   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
2011   // lowered to the following code sequence:
2012   //
2013   // For constant address space:
2014   //   s_getpc_b64 s[0:1]
2015   //   s_add_u32 s0, s0, $symbol
2016   //   s_addc_u32 s1, s1, 0
2017   //
2018   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
2019   //   a fixup or relocation is emitted to replace $symbol with a literal
2020   //   constant, which is a pc-relative offset from the encoding of the $symbol
2021   //   operand to the global variable.
2022   //
2023   // For global address space:
2024   //   s_getpc_b64 s[0:1]
2025   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
2026   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
2027   //
2028   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
2029   //   fixups or relocations are emitted to replace $symbol@*@lo and
2030   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
2031   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
2032   //   operand to the global variable.
2033   //
2034   // What we want here is an offset from the value returned by s_getpc
2035   // (which is the address of the s_add_u32 instruction) to the global
2036   // variable, but since the encoding of $symbol starts 4 bytes after the start
2037   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
2038   // small. This requires us to add 4 to the global variable offset in order to
2039   // compute the correct address.
2040   SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
2041                                              GAFlags);
2042   SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
2043                                              GAFlags == SIInstrInfo::MO_NONE ?
2044                                              GAFlags : GAFlags + 1);
2045   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
2046 }
2047 
2048 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
2049                                              SDValue Op,
2050                                              SelectionDAG &DAG) const {
2051   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
2052 
2053   if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS &&
2054       GSD->getAddressSpace() != AMDGPUAS::GLOBAL_ADDRESS)
2055     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
2056 
2057   SDLoc DL(GSD);
2058   const GlobalValue *GV = GSD->getGlobal();
2059   EVT PtrVT = Op.getValueType();
2060 
2061   if (shouldEmitFixup(GV, getTargetMachine()))
2062     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
2063   else if (shouldEmitPCReloc(GV, getTargetMachine()))
2064     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
2065                                    SIInstrInfo::MO_REL32);
2066 
2067   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
2068                                             SIInstrInfo::MO_GOTPCREL32);
2069 
2070   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
2071   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
2072   const DataLayout &DataLayout = DAG.getDataLayout();
2073   unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
2074   // FIXME: Use a PseudoSourceValue once those can be assigned an address space.
2075   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
2076 
2077   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
2078                      MachineMemOperand::MODereferenceable |
2079                          MachineMemOperand::MOInvariant);
2080 }
2081 
2082 SDValue SITargetLowering::lowerTRAP(SDValue Op,
2083                                     SelectionDAG &DAG) const {
2084   const MachineFunction &MF = DAG.getMachineFunction();
2085   DiagnosticInfoUnsupported NoTrap(*MF.getFunction(),
2086                                    "trap handler not supported",
2087                                    Op.getDebugLoc(),
2088                                    DS_Warning);
2089   DAG.getContext()->diagnose(NoTrap);
2090 
2091   // Emit s_endpgm.
2092 
2093   // FIXME: This should really be selected to s_trap, but that requires
2094   // setting up the trap handler for it o do anything.
2095   return DAG.getNode(AMDGPUISD::ENDPGM, SDLoc(Op), MVT::Other,
2096                      Op.getOperand(0));
2097 }
2098 
2099 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
2100                                    const SDLoc &DL, SDValue V) const {
2101   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
2102   // the destination register.
2103   //
2104   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
2105   // so we will end up with redundant moves to m0.
2106   //
2107   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
2108 
2109   // A Null SDValue creates a glue result.
2110   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
2111                                   V, Chain);
2112   return SDValue(M0, 0);
2113 }
2114 
2115 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
2116                                                  SDValue Op,
2117                                                  MVT VT,
2118                                                  unsigned Offset) const {
2119   SDLoc SL(Op);
2120   SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL,
2121                                  DAG.getEntryNode(), Offset, false);
2122   // The local size values will have the hi 16-bits as zero.
2123   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
2124                      DAG.getValueType(VT));
2125 }
2126 
2127 static SDValue emitNonHSAIntrinsicError(SelectionDAG& DAG, SDLoc DL, EVT VT) {
2128   DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
2129                                       "non-hsa intrinsic with hsa target",
2130                                       DL.getDebugLoc());
2131   DAG.getContext()->diagnose(BadIntrin);
2132   return DAG.getUNDEF(VT);
2133 }
2134 
2135 static SDValue emitRemovedIntrinsicError(SelectionDAG& DAG, SDLoc DL, EVT VT) {
2136   DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
2137                                       "intrinsic not supported on subtarget",
2138                                       DL.getDebugLoc());
2139   DAG.getContext()->diagnose(BadIntrin);
2140   return DAG.getUNDEF(VT);
2141 }
2142 
2143 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2144                                                   SelectionDAG &DAG) const {
2145   MachineFunction &MF = DAG.getMachineFunction();
2146   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
2147   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2148 
2149   EVT VT = Op.getValueType();
2150   SDLoc DL(Op);
2151   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2152 
2153   // TODO: Should this propagate fast-math-flags?
2154 
2155   switch (IntrinsicID) {
2156   case Intrinsic::amdgcn_dispatch_ptr:
2157   case Intrinsic::amdgcn_queue_ptr: {
2158     if (!Subtarget->isAmdCodeObjectV2()) {
2159       DiagnosticInfoUnsupported BadIntrin(
2160           *MF.getFunction(), "unsupported hsa intrinsic without hsa target",
2161           DL.getDebugLoc());
2162       DAG.getContext()->diagnose(BadIntrin);
2163       return DAG.getUNDEF(VT);
2164     }
2165 
2166     auto Reg = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
2167       SIRegisterInfo::DISPATCH_PTR : SIRegisterInfo::QUEUE_PTR;
2168     return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
2169                                 TRI->getPreloadedValue(MF, Reg), VT);
2170   }
2171   case Intrinsic::amdgcn_implicitarg_ptr: {
2172     unsigned offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT);
2173     return LowerParameterPtr(DAG, DL, DAG.getEntryNode(), offset);
2174   }
2175   case Intrinsic::amdgcn_kernarg_segment_ptr: {
2176     unsigned Reg
2177       = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
2178     return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
2179   }
2180   case Intrinsic::amdgcn_dispatch_id: {
2181     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::DISPATCH_ID);
2182     return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
2183   }
2184   case Intrinsic::amdgcn_rcp:
2185     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
2186   case Intrinsic::amdgcn_rsq:
2187   case AMDGPUIntrinsic::AMDGPU_rsq: // Legacy name
2188     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
2189   case Intrinsic::amdgcn_rsq_legacy: {
2190     if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
2191       return emitRemovedIntrinsicError(DAG, DL, VT);
2192 
2193     return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
2194   }
2195   case Intrinsic::amdgcn_rcp_legacy: {
2196     if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
2197       return emitRemovedIntrinsicError(DAG, DL, VT);
2198     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
2199   }
2200   case Intrinsic::amdgcn_rsq_clamp: {
2201     if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
2202       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
2203 
2204     Type *Type = VT.getTypeForEVT(*DAG.getContext());
2205     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
2206     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
2207 
2208     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
2209     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
2210                               DAG.getConstantFP(Max, DL, VT));
2211     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
2212                        DAG.getConstantFP(Min, DL, VT));
2213   }
2214   case Intrinsic::r600_read_ngroups_x:
2215     if (Subtarget->isAmdHsaOS())
2216       return emitNonHSAIntrinsicError(DAG, DL, VT);
2217 
2218     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2219                           SI::KernelInputOffsets::NGROUPS_X, false);
2220   case Intrinsic::r600_read_ngroups_y:
2221     if (Subtarget->isAmdHsaOS())
2222       return emitNonHSAIntrinsicError(DAG, DL, VT);
2223 
2224     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2225                           SI::KernelInputOffsets::NGROUPS_Y, false);
2226   case Intrinsic::r600_read_ngroups_z:
2227     if (Subtarget->isAmdHsaOS())
2228       return emitNonHSAIntrinsicError(DAG, DL, VT);
2229 
2230     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2231                           SI::KernelInputOffsets::NGROUPS_Z, false);
2232   case Intrinsic::r600_read_global_size_x:
2233     if (Subtarget->isAmdHsaOS())
2234       return emitNonHSAIntrinsicError(DAG, DL, VT);
2235 
2236     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2237                           SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
2238   case Intrinsic::r600_read_global_size_y:
2239     if (Subtarget->isAmdHsaOS())
2240       return emitNonHSAIntrinsicError(DAG, DL, VT);
2241 
2242     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2243                           SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
2244   case Intrinsic::r600_read_global_size_z:
2245     if (Subtarget->isAmdHsaOS())
2246       return emitNonHSAIntrinsicError(DAG, DL, VT);
2247 
2248     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2249                           SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
2250   case Intrinsic::r600_read_local_size_x:
2251     if (Subtarget->isAmdHsaOS())
2252       return emitNonHSAIntrinsicError(DAG, DL, VT);
2253 
2254     return lowerImplicitZextParam(DAG, Op, MVT::i16,
2255                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
2256   case Intrinsic::r600_read_local_size_y:
2257     if (Subtarget->isAmdHsaOS())
2258       return emitNonHSAIntrinsicError(DAG, DL, VT);
2259 
2260     return lowerImplicitZextParam(DAG, Op, MVT::i16,
2261                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
2262   case Intrinsic::r600_read_local_size_z:
2263     if (Subtarget->isAmdHsaOS())
2264       return emitNonHSAIntrinsicError(DAG, DL, VT);
2265 
2266     return lowerImplicitZextParam(DAG, Op, MVT::i16,
2267                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
2268   case Intrinsic::amdgcn_workgroup_id_x:
2269   case Intrinsic::r600_read_tgid_x:
2270     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
2271       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
2272   case Intrinsic::amdgcn_workgroup_id_y:
2273   case Intrinsic::r600_read_tgid_y:
2274     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
2275       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
2276   case Intrinsic::amdgcn_workgroup_id_z:
2277   case Intrinsic::r600_read_tgid_z:
2278     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
2279       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
2280   case Intrinsic::amdgcn_workitem_id_x:
2281   case Intrinsic::r600_read_tidig_x:
2282     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
2283       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
2284   case Intrinsic::amdgcn_workitem_id_y:
2285   case Intrinsic::r600_read_tidig_y:
2286     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
2287       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
2288   case Intrinsic::amdgcn_workitem_id_z:
2289   case Intrinsic::r600_read_tidig_z:
2290     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
2291       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
2292   case AMDGPUIntrinsic::SI_load_const: {
2293     SDValue Ops[] = {
2294       Op.getOperand(1),
2295       Op.getOperand(2)
2296     };
2297 
2298     MachineMemOperand *MMO = MF.getMachineMemOperand(
2299         MachinePointerInfo(),
2300         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
2301             MachineMemOperand::MOInvariant,
2302         VT.getStoreSize(), 4);
2303     return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
2304                                    Op->getVTList(), Ops, VT, MMO);
2305   }
2306   case AMDGPUIntrinsic::amdgcn_fdiv_fast: {
2307     return lowerFDIV_FAST(Op, DAG);
2308   }
2309   case AMDGPUIntrinsic::SI_vs_load_input:
2310     return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
2311                        Op.getOperand(1),
2312                        Op.getOperand(2),
2313                        Op.getOperand(3));
2314 
2315   case AMDGPUIntrinsic::SI_fs_constant: {
2316     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
2317     SDValue Glue = M0.getValue(1);
2318     return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
2319                        DAG.getConstant(2, DL, MVT::i32), // P0
2320                        Op.getOperand(1), Op.getOperand(2), Glue);
2321   }
2322   case AMDGPUIntrinsic::SI_packf16:
2323     if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef())
2324       return DAG.getUNDEF(MVT::i32);
2325     return Op;
2326   case AMDGPUIntrinsic::SI_fs_interp: {
2327     SDValue IJ = Op.getOperand(4);
2328     SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
2329                             DAG.getConstant(0, DL, MVT::i32));
2330     SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
2331                             DAG.getConstant(1, DL, MVT::i32));
2332     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
2333     SDValue Glue = M0.getValue(1);
2334     SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
2335                              DAG.getVTList(MVT::f32, MVT::Glue),
2336                              I, Op.getOperand(1), Op.getOperand(2), Glue);
2337     Glue = SDValue(P1.getNode(), 1);
2338     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
2339                              Op.getOperand(1), Op.getOperand(2), Glue);
2340   }
2341   case Intrinsic::amdgcn_interp_p1: {
2342     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
2343     SDValue Glue = M0.getValue(1);
2344     return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
2345                        Op.getOperand(2), Op.getOperand(3), Glue);
2346   }
2347   case Intrinsic::amdgcn_interp_p2: {
2348     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
2349     SDValue Glue = SDValue(M0.getNode(), 1);
2350     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
2351                        Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
2352                        Glue);
2353   }
2354   case Intrinsic::amdgcn_sin:
2355     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
2356 
2357   case Intrinsic::amdgcn_cos:
2358     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
2359 
2360   case Intrinsic::amdgcn_log_clamp: {
2361     if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
2362       return SDValue();
2363 
2364     DiagnosticInfoUnsupported BadIntrin(
2365       *MF.getFunction(), "intrinsic not supported on subtarget",
2366       DL.getDebugLoc());
2367       DAG.getContext()->diagnose(BadIntrin);
2368       return DAG.getUNDEF(VT);
2369   }
2370   case Intrinsic::amdgcn_ldexp:
2371     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
2372                        Op.getOperand(1), Op.getOperand(2));
2373 
2374   case Intrinsic::amdgcn_fract:
2375     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
2376 
2377   case Intrinsic::amdgcn_class:
2378     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
2379                        Op.getOperand(1), Op.getOperand(2));
2380   case Intrinsic::amdgcn_div_fmas:
2381     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
2382                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
2383                        Op.getOperand(4));
2384 
2385   case Intrinsic::amdgcn_div_fixup:
2386     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
2387                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
2388 
2389   case Intrinsic::amdgcn_trig_preop:
2390     return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
2391                        Op.getOperand(1), Op.getOperand(2));
2392   case Intrinsic::amdgcn_div_scale: {
2393     // 3rd parameter required to be a constant.
2394     const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
2395     if (!Param)
2396       return DAG.getUNDEF(VT);
2397 
2398     // Translate to the operands expected by the machine instruction. The
2399     // first parameter must be the same as the first instruction.
2400     SDValue Numerator = Op.getOperand(1);
2401     SDValue Denominator = Op.getOperand(2);
2402 
2403     // Note this order is opposite of the machine instruction's operations,
2404     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
2405     // intrinsic has the numerator as the first operand to match a normal
2406     // division operation.
2407 
2408     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
2409 
2410     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
2411                        Denominator, Numerator);
2412   }
2413   case Intrinsic::amdgcn_icmp: {
2414     const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
2415     int CondCode = CD->getSExtValue();
2416 
2417     if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
2418         CondCode >= ICmpInst::Predicate::BAD_ICMP_PREDICATE)
2419       return DAG.getUNDEF(VT);
2420 
2421     ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
2422     ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
2423     return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
2424                        Op.getOperand(2), DAG.getCondCode(CCOpcode));
2425   }
2426   case Intrinsic::amdgcn_fcmp: {
2427     const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
2428     int CondCode = CD->getSExtValue();
2429 
2430     if (CondCode <= FCmpInst::Predicate::FCMP_FALSE ||
2431         CondCode >= FCmpInst::Predicate::FCMP_TRUE)
2432       return DAG.getUNDEF(VT);
2433 
2434     FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
2435     ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
2436     return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
2437                        Op.getOperand(2), DAG.getCondCode(CCOpcode));
2438   }
2439   case Intrinsic::amdgcn_fmul_legacy:
2440     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
2441                        Op.getOperand(1), Op.getOperand(2));
2442   case Intrinsic::amdgcn_sffbh:
2443   case AMDGPUIntrinsic::AMDGPU_flbit_i32: // Legacy name.
2444     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
2445   default:
2446     return AMDGPUTargetLowering::LowerOperation(Op, DAG);
2447   }
2448 }
2449 
2450 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2451                                                  SelectionDAG &DAG) const {
2452   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2453   switch (IntrID) {
2454   case Intrinsic::amdgcn_atomic_inc:
2455   case Intrinsic::amdgcn_atomic_dec: {
2456     MemSDNode *M = cast<MemSDNode>(Op);
2457     unsigned Opc = (IntrID == Intrinsic::amdgcn_atomic_inc) ?
2458       AMDGPUISD::ATOMIC_INC : AMDGPUISD::ATOMIC_DEC;
2459     SDValue Ops[] = {
2460       M->getOperand(0), // Chain
2461       M->getOperand(2), // Ptr
2462       M->getOperand(3)  // Value
2463     };
2464 
2465     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
2466                                    M->getMemoryVT(), M->getMemOperand());
2467   }
2468   default:
2469     return SDValue();
2470   }
2471 }
2472 
2473 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
2474                                               SelectionDAG &DAG) const {
2475   MachineFunction &MF = DAG.getMachineFunction();
2476   SDLoc DL(Op);
2477   SDValue Chain = Op.getOperand(0);
2478   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2479 
2480   switch (IntrinsicID) {
2481   case AMDGPUIntrinsic::SI_sendmsg: {
2482     Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
2483     SDValue Glue = Chain.getValue(1);
2484     return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
2485                        Op.getOperand(2), Glue);
2486   }
2487   case AMDGPUIntrinsic::SI_tbuffer_store: {
2488     SDValue Ops[] = {
2489       Chain,
2490       Op.getOperand(2),
2491       Op.getOperand(3),
2492       Op.getOperand(4),
2493       Op.getOperand(5),
2494       Op.getOperand(6),
2495       Op.getOperand(7),
2496       Op.getOperand(8),
2497       Op.getOperand(9),
2498       Op.getOperand(10),
2499       Op.getOperand(11),
2500       Op.getOperand(12),
2501       Op.getOperand(13),
2502       Op.getOperand(14)
2503     };
2504 
2505     EVT VT = Op.getOperand(3).getValueType();
2506 
2507     MachineMemOperand *MMO = MF.getMachineMemOperand(
2508       MachinePointerInfo(),
2509       MachineMemOperand::MOStore,
2510       VT.getStoreSize(), 4);
2511     return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
2512                                    Op->getVTList(), Ops, VT, MMO);
2513   }
2514   case AMDGPUIntrinsic::AMDGPU_kill: {
2515     SDValue Src = Op.getOperand(2);
2516     if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Src)) {
2517       if (!K->isNegative())
2518         return Chain;
2519 
2520       SDValue NegOne = DAG.getTargetConstant(FloatToBits(-1.0f), DL, MVT::i32);
2521       return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, NegOne);
2522     }
2523 
2524     SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Src);
2525     return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, Cast);
2526   }
2527   default:
2528     return SDValue();
2529   }
2530 }
2531 
2532 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2533   SDLoc DL(Op);
2534   LoadSDNode *Load = cast<LoadSDNode>(Op);
2535   ISD::LoadExtType ExtType = Load->getExtensionType();
2536   EVT MemVT = Load->getMemoryVT();
2537 
2538   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
2539     assert(MemVT == MVT::i1 && "Only i1 non-extloads expected");
2540     // FIXME: Copied from PPC
2541     // First, load into 32 bits, then truncate to 1 bit.
2542 
2543     SDValue Chain = Load->getChain();
2544     SDValue BasePtr = Load->getBasePtr();
2545     MachineMemOperand *MMO = Load->getMemOperand();
2546 
2547     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
2548                                    BasePtr, MVT::i8, MMO);
2549 
2550     SDValue Ops[] = {
2551       DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
2552       NewLD.getValue(1)
2553     };
2554 
2555     return DAG.getMergeValues(Ops, DL);
2556   }
2557 
2558   if (!MemVT.isVector())
2559     return SDValue();
2560 
2561   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
2562          "Custom lowering for non-i32 vectors hasn't been implemented.");
2563 
2564   unsigned AS = Load->getAddressSpace();
2565   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
2566                           AS, Load->getAlignment())) {
2567     SDValue Ops[2];
2568     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2569     return DAG.getMergeValues(Ops, DL);
2570   }
2571 
2572   unsigned NumElements = MemVT.getVectorNumElements();
2573   switch (AS) {
2574   case AMDGPUAS::CONSTANT_ADDRESS:
2575     if (isMemOpUniform(Load))
2576       return SDValue();
2577     // Non-uniform loads will be selected to MUBUF instructions, so they
2578     // have the same legalization requires ments as global and private
2579     // loads.
2580     //
2581     LLVM_FALLTHROUGH;
2582   case AMDGPUAS::GLOBAL_ADDRESS:
2583   case AMDGPUAS::FLAT_ADDRESS:
2584     if (NumElements > 4)
2585       return SplitVectorLoad(Op, DAG);
2586     // v4 loads are supported for private and global memory.
2587     return SDValue();
2588   case AMDGPUAS::PRIVATE_ADDRESS: {
2589     // Depending on the setting of the private_element_size field in the
2590     // resource descriptor, we can only make private accesses up to a certain
2591     // size.
2592     switch (Subtarget->getMaxPrivateElementSize()) {
2593     case 4:
2594       return scalarizeVectorLoad(Load, DAG);
2595     case 8:
2596       if (NumElements > 2)
2597         return SplitVectorLoad(Op, DAG);
2598       return SDValue();
2599     case 16:
2600       // Same as global/flat
2601       if (NumElements > 4)
2602         return SplitVectorLoad(Op, DAG);
2603       return SDValue();
2604     default:
2605       llvm_unreachable("unsupported private_element_size");
2606     }
2607   }
2608   case AMDGPUAS::LOCAL_ADDRESS: {
2609     if (NumElements > 2)
2610       return SplitVectorLoad(Op, DAG);
2611 
2612     if (NumElements == 2)
2613       return SDValue();
2614 
2615     // If properly aligned, if we split we might be able to use ds_read_b64.
2616     return SplitVectorLoad(Op, DAG);
2617   }
2618   default:
2619     return SDValue();
2620   }
2621 }
2622 
2623 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2624   if (Op.getValueType() != MVT::i64)
2625     return SDValue();
2626 
2627   SDLoc DL(Op);
2628   SDValue Cond = Op.getOperand(0);
2629 
2630   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2631   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2632 
2633   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
2634   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
2635 
2636   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
2637   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
2638 
2639   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
2640 
2641   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
2642   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
2643 
2644   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
2645 
2646   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
2647   return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
2648 }
2649 
2650 // Catch division cases where we can use shortcuts with rcp and rsq
2651 // instructions.
2652 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
2653                                               SelectionDAG &DAG) const {
2654   SDLoc SL(Op);
2655   SDValue LHS = Op.getOperand(0);
2656   SDValue RHS = Op.getOperand(1);
2657   EVT VT = Op.getValueType();
2658   bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
2659 
2660   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
2661     if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals()))) {
2662 
2663       if (CLHS->isExactlyValue(1.0)) {
2664         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
2665         // the CI documentation has a worst case error of 1 ulp.
2666         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
2667         // use it as long as we aren't trying to use denormals.
2668 
2669         // 1.0 / sqrt(x) -> rsq(x)
2670         //
2671         // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
2672         // error seems really high at 2^29 ULP.
2673         if (RHS.getOpcode() == ISD::FSQRT)
2674           return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
2675 
2676         // 1.0 / x -> rcp(x)
2677         return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
2678       }
2679 
2680       // Same as for 1.0, but expand the sign out of the constant.
2681       if (CLHS->isExactlyValue(-1.0)) {
2682         // -1.0 / x -> rcp (fneg x)
2683         SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
2684         return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
2685       }
2686     }
2687   }
2688 
2689   const SDNodeFlags *Flags = Op->getFlags();
2690 
2691   if (Unsafe || Flags->hasAllowReciprocal()) {
2692     // Turn into multiply by the reciprocal.
2693     // x / y -> x * (1.0 / y)
2694     SDNodeFlags Flags;
2695     Flags.setUnsafeAlgebra(true);
2696     SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
2697     return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags);
2698   }
2699 
2700   return SDValue();
2701 }
2702 
2703 // Faster 2.5 ULP division that does not support denormals.
2704 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
2705   SDLoc SL(Op);
2706   SDValue LHS = Op.getOperand(1);
2707   SDValue RHS = Op.getOperand(2);
2708 
2709   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
2710 
2711   const APFloat K0Val(BitsToFloat(0x6f800000));
2712   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
2713 
2714   const APFloat K1Val(BitsToFloat(0x2f800000));
2715   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
2716 
2717   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
2718 
2719   EVT SetCCVT =
2720     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
2721 
2722   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
2723 
2724   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
2725 
2726   // TODO: Should this propagate fast-math-flags?
2727   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
2728 
2729   // rcp does not support denormals.
2730   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
2731 
2732   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
2733 
2734   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
2735 }
2736 
2737 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
2738   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
2739     return FastLowered;
2740 
2741   SDLoc SL(Op);
2742   SDValue LHS = Op.getOperand(0);
2743   SDValue RHS = Op.getOperand(1);
2744 
2745   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
2746 
2747   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
2748 
2749   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, RHS, RHS, LHS);
2750   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, LHS, RHS, LHS);
2751 
2752   // Denominator is scaled to not be denormal, so using rcp is ok.
2753   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, DenominatorScaled);
2754 
2755   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, DenominatorScaled);
2756 
2757   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, ApproxRcp, One);
2758   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, ApproxRcp);
2759 
2760   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, NumeratorScaled, Fma1);
2761 
2762   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, NumeratorScaled);
2763   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul);
2764   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, NumeratorScaled);
2765 
2766   SDValue Scale = NumeratorScaled.getValue(1);
2767   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, Fma4, Fma1, Fma3, Scale);
2768 
2769   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
2770 }
2771 
2772 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
2773   if (DAG.getTarget().Options.UnsafeFPMath)
2774     return lowerFastUnsafeFDIV(Op, DAG);
2775 
2776   SDLoc SL(Op);
2777   SDValue X = Op.getOperand(0);
2778   SDValue Y = Op.getOperand(1);
2779 
2780   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2781 
2782   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
2783 
2784   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
2785 
2786   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
2787 
2788   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
2789 
2790   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
2791 
2792   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
2793 
2794   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
2795 
2796   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
2797 
2798   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
2799   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
2800 
2801   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
2802                              NegDivScale0, Mul, DivScale1);
2803 
2804   SDValue Scale;
2805 
2806   if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
2807     // Workaround a hardware bug on SI where the condition output from div_scale
2808     // is not usable.
2809 
2810     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
2811 
2812     // Figure out if the scale to use for div_fmas.
2813     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2814     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
2815     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
2816     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
2817 
2818     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
2819     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
2820 
2821     SDValue Scale0Hi
2822       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
2823     SDValue Scale1Hi
2824       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
2825 
2826     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
2827     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
2828     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
2829   } else {
2830     Scale = DivScale1.getValue(1);
2831   }
2832 
2833   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
2834                              Fma4, Fma3, Mul, Scale);
2835 
2836   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
2837 }
2838 
2839 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
2840   EVT VT = Op.getValueType();
2841 
2842   if (VT == MVT::f32)
2843     return LowerFDIV32(Op, DAG);
2844 
2845   if (VT == MVT::f64)
2846     return LowerFDIV64(Op, DAG);
2847 
2848   llvm_unreachable("Unexpected type for fdiv");
2849 }
2850 
2851 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2852   SDLoc DL(Op);
2853   StoreSDNode *Store = cast<StoreSDNode>(Op);
2854   EVT VT = Store->getMemoryVT();
2855 
2856   if (VT == MVT::i1) {
2857     return DAG.getTruncStore(Store->getChain(), DL,
2858        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
2859        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
2860   }
2861 
2862   assert(VT.isVector() &&
2863          Store->getValue().getValueType().getScalarType() == MVT::i32);
2864 
2865   unsigned AS = Store->getAddressSpace();
2866   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
2867                           AS, Store->getAlignment())) {
2868     return expandUnalignedStore(Store, DAG);
2869   }
2870 
2871   unsigned NumElements = VT.getVectorNumElements();
2872   switch (AS) {
2873   case AMDGPUAS::GLOBAL_ADDRESS:
2874   case AMDGPUAS::FLAT_ADDRESS:
2875     if (NumElements > 4)
2876       return SplitVectorStore(Op, DAG);
2877     return SDValue();
2878   case AMDGPUAS::PRIVATE_ADDRESS: {
2879     switch (Subtarget->getMaxPrivateElementSize()) {
2880     case 4:
2881       return scalarizeVectorStore(Store, DAG);
2882     case 8:
2883       if (NumElements > 2)
2884         return SplitVectorStore(Op, DAG);
2885       return SDValue();
2886     case 16:
2887       if (NumElements > 4)
2888         return SplitVectorStore(Op, DAG);
2889       return SDValue();
2890     default:
2891       llvm_unreachable("unsupported private_element_size");
2892     }
2893   }
2894   case AMDGPUAS::LOCAL_ADDRESS: {
2895     if (NumElements > 2)
2896       return SplitVectorStore(Op, DAG);
2897 
2898     if (NumElements == 2)
2899       return Op;
2900 
2901     // If properly aligned, if we split we might be able to use ds_write_b64.
2902     return SplitVectorStore(Op, DAG);
2903   }
2904   default:
2905     llvm_unreachable("unhandled address space");
2906   }
2907 }
2908 
2909 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
2910   SDLoc DL(Op);
2911   EVT VT = Op.getValueType();
2912   SDValue Arg = Op.getOperand(0);
2913   // TODO: Should this propagate fast-math-flags?
2914   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
2915                                   DAG.getNode(ISD::FMUL, DL, VT, Arg,
2916                                               DAG.getConstantFP(0.5/M_PI, DL,
2917                                                                 VT)));
2918 
2919   switch (Op.getOpcode()) {
2920   case ISD::FCOS:
2921     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
2922   case ISD::FSIN:
2923     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
2924   default:
2925     llvm_unreachable("Wrong trig opcode");
2926   }
2927 }
2928 
2929 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
2930   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
2931   assert(AtomicNode->isCompareAndSwap());
2932   unsigned AS = AtomicNode->getAddressSpace();
2933 
2934   // No custom lowering required for local address space
2935   if (!isFlatGlobalAddrSpace(AS))
2936     return Op;
2937 
2938   // Non-local address space requires custom lowering for atomic compare
2939   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
2940   SDLoc DL(Op);
2941   SDValue ChainIn = Op.getOperand(0);
2942   SDValue Addr = Op.getOperand(1);
2943   SDValue Old = Op.getOperand(2);
2944   SDValue New = Op.getOperand(3);
2945   EVT VT = Op.getValueType();
2946   MVT SimpleVT = VT.getSimpleVT();
2947   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
2948 
2949   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
2950   SDValue Ops[] = { ChainIn, Addr, NewOld };
2951 
2952   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
2953                                  Ops, VT, AtomicNode->getMemOperand());
2954 }
2955 
2956 //===----------------------------------------------------------------------===//
2957 // Custom DAG optimizations
2958 //===----------------------------------------------------------------------===//
2959 
2960 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
2961                                                      DAGCombinerInfo &DCI) const {
2962   EVT VT = N->getValueType(0);
2963   EVT ScalarVT = VT.getScalarType();
2964   if (ScalarVT != MVT::f32)
2965     return SDValue();
2966 
2967   SelectionDAG &DAG = DCI.DAG;
2968   SDLoc DL(N);
2969 
2970   SDValue Src = N->getOperand(0);
2971   EVT SrcVT = Src.getValueType();
2972 
2973   // TODO: We could try to match extracting the higher bytes, which would be
2974   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
2975   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
2976   // about in practice.
2977   if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
2978     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
2979       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
2980       DCI.AddToWorklist(Cvt.getNode());
2981       return Cvt;
2982     }
2983   }
2984 
2985   return SDValue();
2986 }
2987 
2988 /// \brief Return true if the given offset Size in bytes can be folded into
2989 /// the immediate offsets of a memory instruction for the given address space.
2990 static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
2991                           const SISubtarget &STI) {
2992   switch (AS) {
2993   case AMDGPUAS::GLOBAL_ADDRESS: {
2994     // MUBUF instructions a 12-bit offset in bytes.
2995     return isUInt<12>(OffsetSize);
2996   }
2997   case AMDGPUAS::CONSTANT_ADDRESS: {
2998     // SMRD instructions have an 8-bit offset in dwords on SI and
2999     // a 20-bit offset in bytes on VI.
3000     if (STI.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
3001       return isUInt<20>(OffsetSize);
3002     else
3003       return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
3004   }
3005   case AMDGPUAS::LOCAL_ADDRESS:
3006   case AMDGPUAS::REGION_ADDRESS: {
3007     // The single offset versions have a 16-bit offset in bytes.
3008     return isUInt<16>(OffsetSize);
3009   }
3010   case AMDGPUAS::PRIVATE_ADDRESS:
3011   // Indirect register addressing does not use any offsets.
3012   default:
3013     return 0;
3014   }
3015 }
3016 
3017 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
3018 
3019 // This is a variant of
3020 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
3021 //
3022 // The normal DAG combiner will do this, but only if the add has one use since
3023 // that would increase the number of instructions.
3024 //
3025 // This prevents us from seeing a constant offset that can be folded into a
3026 // memory instruction's addressing mode. If we know the resulting add offset of
3027 // a pointer can be folded into an addressing offset, we can replace the pointer
3028 // operand with the add of new constant offset. This eliminates one of the uses,
3029 // and may allow the remaining use to also be simplified.
3030 //
3031 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
3032                                                unsigned AddrSpace,
3033                                                DAGCombinerInfo &DCI) const {
3034   SDValue N0 = N->getOperand(0);
3035   SDValue N1 = N->getOperand(1);
3036 
3037   if (N0.getOpcode() != ISD::ADD)
3038     return SDValue();
3039 
3040   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
3041   if (!CN1)
3042     return SDValue();
3043 
3044   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3045   if (!CAdd)
3046     return SDValue();
3047 
3048   // If the resulting offset is too large, we can't fold it into the addressing
3049   // mode offset.
3050   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
3051   if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *getSubtarget()))
3052     return SDValue();
3053 
3054   SelectionDAG &DAG = DCI.DAG;
3055   SDLoc SL(N);
3056   EVT VT = N->getValueType(0);
3057 
3058   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
3059   SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
3060 
3061   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
3062 }
3063 
3064 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
3065   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
3066          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
3067          (Opc == ISD::XOR && Val == 0);
3068 }
3069 
3070 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
3071 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
3072 // integer combine opportunities since most 64-bit operations are decomposed
3073 // this way.  TODO: We won't want this for SALU especially if it is an inline
3074 // immediate.
3075 SDValue SITargetLowering::splitBinaryBitConstantOp(
3076   DAGCombinerInfo &DCI,
3077   const SDLoc &SL,
3078   unsigned Opc, SDValue LHS,
3079   const ConstantSDNode *CRHS) const {
3080   uint64_t Val = CRHS->getZExtValue();
3081   uint32_t ValLo = Lo_32(Val);
3082   uint32_t ValHi = Hi_32(Val);
3083   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3084 
3085     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
3086          bitOpWithConstantIsReducible(Opc, ValHi)) ||
3087         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
3088     // If we need to materialize a 64-bit immediate, it will be split up later
3089     // anyway. Avoid creating the harder to understand 64-bit immediate
3090     // materialization.
3091     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
3092   }
3093 
3094   return SDValue();
3095 }
3096 
3097 SDValue SITargetLowering::performAndCombine(SDNode *N,
3098                                             DAGCombinerInfo &DCI) const {
3099   if (DCI.isBeforeLegalize())
3100     return SDValue();
3101 
3102   SelectionDAG &DAG = DCI.DAG;
3103   EVT VT = N->getValueType(0);
3104   SDValue LHS = N->getOperand(0);
3105   SDValue RHS = N->getOperand(1);
3106 
3107 
3108   if (VT == MVT::i64) {
3109     const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
3110     if (CRHS) {
3111       if (SDValue Split
3112           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
3113         return Split;
3114     }
3115   }
3116 
3117   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
3118   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
3119   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
3120     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
3121     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
3122 
3123     SDValue X = LHS.getOperand(0);
3124     SDValue Y = RHS.getOperand(0);
3125     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
3126       return SDValue();
3127 
3128     if (LCC == ISD::SETO) {
3129       if (X != LHS.getOperand(1))
3130         return SDValue();
3131 
3132       if (RCC == ISD::SETUNE) {
3133         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
3134         if (!C1 || !C1->isInfinity() || C1->isNegative())
3135           return SDValue();
3136 
3137         const uint32_t Mask = SIInstrFlags::N_NORMAL |
3138                               SIInstrFlags::N_SUBNORMAL |
3139                               SIInstrFlags::N_ZERO |
3140                               SIInstrFlags::P_ZERO |
3141                               SIInstrFlags::P_SUBNORMAL |
3142                               SIInstrFlags::P_NORMAL;
3143 
3144         static_assert(((~(SIInstrFlags::S_NAN |
3145                           SIInstrFlags::Q_NAN |
3146                           SIInstrFlags::N_INFINITY |
3147                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
3148                       "mask not equal");
3149 
3150         SDLoc DL(N);
3151         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
3152                            X, DAG.getConstant(Mask, DL, MVT::i32));
3153       }
3154     }
3155   }
3156 
3157   return SDValue();
3158 }
3159 
3160 SDValue SITargetLowering::performOrCombine(SDNode *N,
3161                                            DAGCombinerInfo &DCI) const {
3162   SelectionDAG &DAG = DCI.DAG;
3163   SDValue LHS = N->getOperand(0);
3164   SDValue RHS = N->getOperand(1);
3165 
3166   EVT VT = N->getValueType(0);
3167   if (VT == MVT::i1) {
3168     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
3169     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
3170         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
3171       SDValue Src = LHS.getOperand(0);
3172       if (Src != RHS.getOperand(0))
3173         return SDValue();
3174 
3175       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
3176       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
3177       if (!CLHS || !CRHS)
3178         return SDValue();
3179 
3180       // Only 10 bits are used.
3181       static const uint32_t MaxMask = 0x3ff;
3182 
3183       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
3184       SDLoc DL(N);
3185       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
3186                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
3187     }
3188 
3189     return SDValue();
3190   }
3191 
3192   if (VT != MVT::i64)
3193     return SDValue();
3194 
3195   // TODO: This could be a generic combine with a predicate for extracting the
3196   // high half of an integer being free.
3197 
3198   // (or i64:x, (zero_extend i32:y)) ->
3199   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
3200   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
3201       RHS.getOpcode() != ISD::ZERO_EXTEND)
3202     std::swap(LHS, RHS);
3203 
3204   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
3205     SDValue ExtSrc = RHS.getOperand(0);
3206     EVT SrcVT = ExtSrc.getValueType();
3207     if (SrcVT == MVT::i32) {
3208       SDLoc SL(N);
3209       SDValue LowLHS, HiBits;
3210       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
3211       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
3212 
3213       DCI.AddToWorklist(LowOr.getNode());
3214       DCI.AddToWorklist(HiBits.getNode());
3215 
3216       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3217                                 LowOr, HiBits);
3218       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3219     }
3220   }
3221 
3222   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3223   if (CRHS) {
3224     if (SDValue Split
3225           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
3226       return Split;
3227   }
3228 
3229   return SDValue();
3230 }
3231 
3232 SDValue SITargetLowering::performXorCombine(SDNode *N,
3233                                             DAGCombinerInfo &DCI) const {
3234   EVT VT = N->getValueType(0);
3235   if (VT != MVT::i64)
3236     return SDValue();
3237 
3238   SDValue LHS = N->getOperand(0);
3239   SDValue RHS = N->getOperand(1);
3240 
3241   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
3242   if (CRHS) {
3243     if (SDValue Split
3244           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
3245       return Split;
3246   }
3247 
3248   return SDValue();
3249 }
3250 
3251 SDValue SITargetLowering::performClassCombine(SDNode *N,
3252                                               DAGCombinerInfo &DCI) const {
3253   SelectionDAG &DAG = DCI.DAG;
3254   SDValue Mask = N->getOperand(1);
3255 
3256   // fp_class x, 0 -> false
3257   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
3258     if (CMask->isNullValue())
3259       return DAG.getConstant(0, SDLoc(N), MVT::i1);
3260   }
3261 
3262   if (N->getOperand(0).isUndef())
3263     return DAG.getUNDEF(MVT::i1);
3264 
3265   return SDValue();
3266 }
3267 
3268 // Constant fold canonicalize.
3269 SDValue SITargetLowering::performFCanonicalizeCombine(
3270   SDNode *N,
3271   DAGCombinerInfo &DCI) const {
3272   ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3273   if (!CFP)
3274     return SDValue();
3275 
3276   SelectionDAG &DAG = DCI.DAG;
3277   const APFloat &C = CFP->getValueAPF();
3278 
3279   // Flush denormals to 0 if not enabled.
3280   if (C.isDenormal()) {
3281     EVT VT = N->getValueType(0);
3282     if (VT == MVT::f32 && !Subtarget->hasFP32Denormals())
3283       return DAG.getConstantFP(0.0, SDLoc(N), VT);
3284 
3285     if (VT == MVT::f64 && !Subtarget->hasFP64Denormals())
3286       return DAG.getConstantFP(0.0, SDLoc(N), VT);
3287   }
3288 
3289   if (C.isNaN()) {
3290     EVT VT = N->getValueType(0);
3291     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
3292     if (C.isSignaling()) {
3293       // Quiet a signaling NaN.
3294       return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
3295     }
3296 
3297     // Make sure it is the canonical NaN bitpattern.
3298     //
3299     // TODO: Can we use -1 as the canonical NaN value since it's an inline
3300     // immediate?
3301     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
3302       return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
3303   }
3304 
3305   return SDValue(CFP, 0);
3306 }
3307 
3308 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
3309   switch (Opc) {
3310   case ISD::FMAXNUM:
3311     return AMDGPUISD::FMAX3;
3312   case ISD::SMAX:
3313     return AMDGPUISD::SMAX3;
3314   case ISD::UMAX:
3315     return AMDGPUISD::UMAX3;
3316   case ISD::FMINNUM:
3317     return AMDGPUISD::FMIN3;
3318   case ISD::SMIN:
3319     return AMDGPUISD::SMIN3;
3320   case ISD::UMIN:
3321     return AMDGPUISD::UMIN3;
3322   default:
3323     llvm_unreachable("Not a min/max opcode");
3324   }
3325 }
3326 
3327 static SDValue performIntMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL,
3328                                         SDValue Op0, SDValue Op1, bool Signed) {
3329   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
3330   if (!K1)
3331     return SDValue();
3332 
3333   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
3334   if (!K0)
3335     return SDValue();
3336 
3337   if (Signed) {
3338     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
3339       return SDValue();
3340   } else {
3341     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
3342       return SDValue();
3343   }
3344 
3345   EVT VT = K0->getValueType(0);
3346   return DAG.getNode(Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3, SL, VT,
3347                      Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
3348 }
3349 
3350 static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
3351   if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
3352     return true;
3353 
3354   return DAG.isKnownNeverNaN(Op);
3355 }
3356 
3357 static SDValue performFPMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL,
3358                                        SDValue Op0, SDValue Op1) {
3359   ConstantFPSDNode *K1 = dyn_cast<ConstantFPSDNode>(Op1);
3360   if (!K1)
3361     return SDValue();
3362 
3363   ConstantFPSDNode *K0 = dyn_cast<ConstantFPSDNode>(Op0.getOperand(1));
3364   if (!K0)
3365     return SDValue();
3366 
3367   // Ordered >= (although NaN inputs should have folded away by now).
3368   APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
3369   if (Cmp == APFloat::cmpGreaterThan)
3370     return SDValue();
3371 
3372   // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
3373   // signaling NaN gives a quiet NaN. The quiet NaN input to the min would then
3374   // give the other result, which is different from med3 with a NaN input.
3375   SDValue Var = Op0.getOperand(0);
3376   if (!isKnownNeverSNan(DAG, Var))
3377     return SDValue();
3378 
3379   return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
3380                      Var, SDValue(K0, 0), SDValue(K1, 0));
3381 }
3382 
3383 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
3384                                                DAGCombinerInfo &DCI) const {
3385   SelectionDAG &DAG = DCI.DAG;
3386 
3387   unsigned Opc = N->getOpcode();
3388   SDValue Op0 = N->getOperand(0);
3389   SDValue Op1 = N->getOperand(1);
3390 
3391   // Only do this if the inner op has one use since this will just increases
3392   // register pressure for no benefit.
3393 
3394   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY) {
3395     // max(max(a, b), c) -> max3(a, b, c)
3396     // min(min(a, b), c) -> min3(a, b, c)
3397     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
3398       SDLoc DL(N);
3399       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
3400                          DL,
3401                          N->getValueType(0),
3402                          Op0.getOperand(0),
3403                          Op0.getOperand(1),
3404                          Op1);
3405     }
3406 
3407     // Try commuted.
3408     // max(a, max(b, c)) -> max3(a, b, c)
3409     // min(a, min(b, c)) -> min3(a, b, c)
3410     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
3411       SDLoc DL(N);
3412       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
3413                          DL,
3414                          N->getValueType(0),
3415                          Op0,
3416                          Op1.getOperand(0),
3417                          Op1.getOperand(1));
3418     }
3419   }
3420 
3421   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
3422   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
3423     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
3424       return Med3;
3425   }
3426 
3427   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
3428     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
3429       return Med3;
3430   }
3431 
3432   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
3433   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
3434        (Opc == AMDGPUISD::FMIN_LEGACY &&
3435         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
3436       N->getValueType(0) == MVT::f32 && Op0.hasOneUse()) {
3437     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
3438       return Res;
3439   }
3440 
3441   return SDValue();
3442 }
3443 
3444 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
3445                                               DAGCombinerInfo &DCI) const {
3446   SelectionDAG &DAG = DCI.DAG;
3447   SDLoc SL(N);
3448 
3449   SDValue LHS = N->getOperand(0);
3450   SDValue RHS = N->getOperand(1);
3451   EVT VT = LHS.getValueType();
3452 
3453   if (VT != MVT::f32 && VT != MVT::f64)
3454     return SDValue();
3455 
3456   // Match isinf pattern
3457   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
3458   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
3459   if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
3460     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3461     if (!CRHS)
3462       return SDValue();
3463 
3464     const APFloat &APF = CRHS->getValueAPF();
3465     if (APF.isInfinity() && !APF.isNegative()) {
3466       unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
3467       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
3468                          DAG.getConstant(Mask, SL, MVT::i32));
3469     }
3470   }
3471 
3472   return SDValue();
3473 }
3474 
3475 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
3476                                             DAGCombinerInfo &DCI) const {
3477   SelectionDAG &DAG = DCI.DAG;
3478   SDLoc DL(N);
3479 
3480   switch (N->getOpcode()) {
3481   default:
3482     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
3483   case ISD::SETCC:
3484     return performSetCCCombine(N, DCI);
3485   case ISD::FMAXNUM:
3486   case ISD::FMINNUM:
3487   case ISD::SMAX:
3488   case ISD::SMIN:
3489   case ISD::UMAX:
3490   case ISD::UMIN:
3491   case AMDGPUISD::FMIN_LEGACY:
3492   case AMDGPUISD::FMAX_LEGACY: {
3493     if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
3494         N->getValueType(0) != MVT::f64 &&
3495         getTargetMachine().getOptLevel() > CodeGenOpt::None)
3496       return performMinMaxCombine(N, DCI);
3497     break;
3498   }
3499 
3500   case AMDGPUISD::CVT_F32_UBYTE0:
3501   case AMDGPUISD::CVT_F32_UBYTE1:
3502   case AMDGPUISD::CVT_F32_UBYTE2:
3503   case AMDGPUISD::CVT_F32_UBYTE3: {
3504     unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
3505     SDValue Src = N->getOperand(0);
3506 
3507     // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
3508     if (Src.getOpcode() == ISD::SRL) {
3509       // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
3510       // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
3511       // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
3512 
3513       if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(1))) {
3514         unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
3515         if (SrcOffset < 32 && SrcOffset % 8 == 0) {
3516           return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, DL,
3517                              MVT::f32, Src.getOperand(0));
3518         }
3519       }
3520     }
3521 
3522     APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
3523 
3524     APInt KnownZero, KnownOne;
3525     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3526                                           !DCI.isBeforeLegalizeOps());
3527     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3528     if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
3529         TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
3530       DCI.CommitTargetLoweringOpt(TLO);
3531     }
3532 
3533     break;
3534   }
3535 
3536   case ISD::UINT_TO_FP: {
3537     return performUCharToFloatCombine(N, DCI);
3538   }
3539   case ISD::FADD: {
3540     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3541       break;
3542 
3543     EVT VT = N->getValueType(0);
3544     if (VT != MVT::f32)
3545       break;
3546 
3547     // Only do this if we are not trying to support denormals. v_mad_f32 does
3548     // not support denormals ever.
3549     if (Subtarget->hasFP32Denormals())
3550       break;
3551 
3552     SDValue LHS = N->getOperand(0);
3553     SDValue RHS = N->getOperand(1);
3554 
3555     // These should really be instruction patterns, but writing patterns with
3556     // source modiifiers is a pain.
3557 
3558     // fadd (fadd (a, a), b) -> mad 2.0, a, b
3559     if (LHS.getOpcode() == ISD::FADD) {
3560       SDValue A = LHS.getOperand(0);
3561       if (A == LHS.getOperand(1)) {
3562         const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
3563         return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
3564       }
3565     }
3566 
3567     // fadd (b, fadd (a, a)) -> mad 2.0, a, b
3568     if (RHS.getOpcode() == ISD::FADD) {
3569       SDValue A = RHS.getOperand(0);
3570       if (A == RHS.getOperand(1)) {
3571         const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
3572         return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
3573       }
3574     }
3575 
3576     return SDValue();
3577   }
3578   case ISD::FSUB: {
3579     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3580       break;
3581 
3582     EVT VT = N->getValueType(0);
3583 
3584     // Try to get the fneg to fold into the source modifier. This undoes generic
3585     // DAG combines and folds them into the mad.
3586     //
3587     // Only do this if we are not trying to support denormals. v_mad_f32 does
3588     // not support denormals ever.
3589     if (VT == MVT::f32 &&
3590         !Subtarget->hasFP32Denormals()) {
3591       SDValue LHS = N->getOperand(0);
3592       SDValue RHS = N->getOperand(1);
3593       if (LHS.getOpcode() == ISD::FADD) {
3594         // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
3595 
3596         SDValue A = LHS.getOperand(0);
3597         if (A == LHS.getOperand(1)) {
3598           const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
3599           SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
3600 
3601           return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
3602         }
3603       }
3604 
3605       if (RHS.getOpcode() == ISD::FADD) {
3606         // (fsub c, (fadd a, a)) -> mad -2.0, a, c
3607 
3608         SDValue A = RHS.getOperand(0);
3609         if (A == RHS.getOperand(1)) {
3610           const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32);
3611           return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
3612         }
3613       }
3614 
3615       return SDValue();
3616     }
3617 
3618     break;
3619   }
3620   case ISD::LOAD:
3621   case ISD::STORE:
3622   case ISD::ATOMIC_LOAD:
3623   case ISD::ATOMIC_STORE:
3624   case ISD::ATOMIC_CMP_SWAP:
3625   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3626   case ISD::ATOMIC_SWAP:
3627   case ISD::ATOMIC_LOAD_ADD:
3628   case ISD::ATOMIC_LOAD_SUB:
3629   case ISD::ATOMIC_LOAD_AND:
3630   case ISD::ATOMIC_LOAD_OR:
3631   case ISD::ATOMIC_LOAD_XOR:
3632   case ISD::ATOMIC_LOAD_NAND:
3633   case ISD::ATOMIC_LOAD_MIN:
3634   case ISD::ATOMIC_LOAD_MAX:
3635   case ISD::ATOMIC_LOAD_UMIN:
3636   case ISD::ATOMIC_LOAD_UMAX:
3637   case AMDGPUISD::ATOMIC_INC:
3638   case AMDGPUISD::ATOMIC_DEC: { // TODO: Target mem intrinsics.
3639     if (DCI.isBeforeLegalize())
3640       break;
3641 
3642     MemSDNode *MemNode = cast<MemSDNode>(N);
3643     SDValue Ptr = MemNode->getBasePtr();
3644 
3645     // TODO: We could also do this for multiplies.
3646     unsigned AS = MemNode->getAddressSpace();
3647     if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
3648       SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
3649       if (NewPtr) {
3650         SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
3651 
3652         NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
3653         return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
3654       }
3655     }
3656     break;
3657   }
3658   case ISD::AND:
3659     return performAndCombine(N, DCI);
3660   case ISD::OR:
3661     return performOrCombine(N, DCI);
3662   case ISD::XOR:
3663     return performXorCombine(N, DCI);
3664   case AMDGPUISD::FP_CLASS:
3665     return performClassCombine(N, DCI);
3666   case ISD::FCANONICALIZE:
3667     return performFCanonicalizeCombine(N, DCI);
3668   case AMDGPUISD::FRACT:
3669   case AMDGPUISD::RCP:
3670   case AMDGPUISD::RSQ:
3671   case AMDGPUISD::RCP_LEGACY:
3672   case AMDGPUISD::RSQ_LEGACY:
3673   case AMDGPUISD::RSQ_CLAMP:
3674   case AMDGPUISD::LDEXP: {
3675     SDValue Src = N->getOperand(0);
3676     if (Src.isUndef())
3677       return Src;
3678     break;
3679   }
3680   }
3681   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
3682 }
3683 
3684 /// \brief Helper function for adjustWritemask
3685 static unsigned SubIdx2Lane(unsigned Idx) {
3686   switch (Idx) {
3687   default: return 0;
3688   case AMDGPU::sub0: return 0;
3689   case AMDGPU::sub1: return 1;
3690   case AMDGPU::sub2: return 2;
3691   case AMDGPU::sub3: return 3;
3692   }
3693 }
3694 
3695 /// \brief Adjust the writemask of MIMG instructions
3696 void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
3697                                        SelectionDAG &DAG) const {
3698   SDNode *Users[4] = { };
3699   unsigned Lane = 0;
3700   unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3;
3701   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
3702   unsigned NewDmask = 0;
3703 
3704   // Try to figure out the used register components
3705   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
3706        I != E; ++I) {
3707 
3708     // Abort if we can't understand the usage
3709     if (!I->isMachineOpcode() ||
3710         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
3711       return;
3712 
3713     // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
3714     // Note that subregs are packed, i.e. Lane==0 is the first bit set
3715     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
3716     // set, etc.
3717     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
3718 
3719     // Set which texture component corresponds to the lane.
3720     unsigned Comp;
3721     for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
3722       assert(Dmask);
3723       Comp = countTrailingZeros(Dmask);
3724       Dmask &= ~(1 << Comp);
3725     }
3726 
3727     // Abort if we have more than one user per component
3728     if (Users[Lane])
3729       return;
3730 
3731     Users[Lane] = *I;
3732     NewDmask |= 1 << Comp;
3733   }
3734 
3735   // Abort if there's no change
3736   if (NewDmask == OldDmask)
3737     return;
3738 
3739   // Adjust the writemask in the node
3740   std::vector<SDValue> Ops;
3741   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
3742   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
3743   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
3744   Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
3745 
3746   // If we only got one lane, replace it with a copy
3747   // (if NewDmask has only one bit set...)
3748   if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
3749     SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
3750                                        MVT::i32);
3751     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
3752                                       SDLoc(), Users[Lane]->getValueType(0),
3753                                       SDValue(Node, 0), RC);
3754     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
3755     return;
3756   }
3757 
3758   // Update the users of the node with the new indices
3759   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
3760 
3761     SDNode *User = Users[i];
3762     if (!User)
3763       continue;
3764 
3765     SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
3766     DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
3767 
3768     switch (Idx) {
3769     default: break;
3770     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
3771     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
3772     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
3773     }
3774   }
3775 }
3776 
3777 static bool isFrameIndexOp(SDValue Op) {
3778   if (Op.getOpcode() == ISD::AssertZext)
3779     Op = Op.getOperand(0);
3780 
3781   return isa<FrameIndexSDNode>(Op);
3782 }
3783 
3784 /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
3785 /// with frame index operands.
3786 /// LLVM assumes that inputs are to these instructions are registers.
3787 void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
3788                                                      SelectionDAG &DAG) const {
3789 
3790   SmallVector<SDValue, 8> Ops;
3791   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
3792     if (!isFrameIndexOp(Node->getOperand(i))) {
3793       Ops.push_back(Node->getOperand(i));
3794       continue;
3795     }
3796 
3797     SDLoc DL(Node);
3798     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
3799                                      Node->getOperand(i).getValueType(),
3800                                      Node->getOperand(i)), 0));
3801   }
3802 
3803   DAG.UpdateNodeOperands(Node, Ops);
3804 }
3805 
3806 /// \brief Fold the instructions after selecting them.
3807 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
3808                                           SelectionDAG &DAG) const {
3809   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3810   unsigned Opcode = Node->getMachineOpcode();
3811 
3812   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
3813       !TII->isGather4(Opcode))
3814     adjustWritemask(Node, DAG);
3815 
3816   if (Opcode == AMDGPU::INSERT_SUBREG ||
3817       Opcode == AMDGPU::REG_SEQUENCE) {
3818     legalizeTargetIndependentNode(Node, DAG);
3819     return Node;
3820   }
3821   return Node;
3822 }
3823 
3824 /// \brief Assign the register class depending on the number of
3825 /// bits set in the writemask
3826 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3827                                                      SDNode *Node) const {
3828   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3829 
3830   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3831 
3832   if (TII->isVOP3(MI.getOpcode())) {
3833     // Make sure constant bus requirements are respected.
3834     TII->legalizeOperandsVOP3(MRI, MI);
3835     return;
3836   }
3837 
3838   if (TII->isMIMG(MI)) {
3839     unsigned VReg = MI.getOperand(0).getReg();
3840     unsigned DmaskIdx = MI.getNumOperands() == 12 ? 3 : 4;
3841     unsigned Writemask = MI.getOperand(DmaskIdx).getImm();
3842     unsigned BitsSet = 0;
3843     for (unsigned i = 0; i < 4; ++i)
3844       BitsSet += Writemask & (1 << i) ? 1 : 0;
3845 
3846     const TargetRegisterClass *RC;
3847     switch (BitsSet) {
3848     default: return;
3849     case 1:  RC = &AMDGPU::VGPR_32RegClass; break;
3850     case 2:  RC = &AMDGPU::VReg_64RegClass; break;
3851     case 3:  RC = &AMDGPU::VReg_96RegClass; break;
3852     }
3853 
3854     unsigned NewOpcode = TII->getMaskedMIMGOp(MI.getOpcode(), BitsSet);
3855     MI.setDesc(TII->get(NewOpcode));
3856     MRI.setRegClass(VReg, RC);
3857     return;
3858   }
3859 
3860   // Replace unused atomics with the no return version.
3861   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
3862   if (NoRetAtomicOp != -1) {
3863     if (!Node->hasAnyUseOfValue(0)) {
3864       MI.setDesc(TII->get(NoRetAtomicOp));
3865       MI.RemoveOperand(0);
3866       return;
3867     }
3868 
3869     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
3870     // instruction, because the return type of these instructions is a vec2 of
3871     // the memory type, so it can be tied to the input operand.
3872     // This means these instructions always have a use, so we need to add a
3873     // special case to check if the atomic has only one extract_subreg use,
3874     // which itself has no uses.
3875     if ((Node->hasNUsesOfValue(1, 0) &&
3876          Node->use_begin()->isMachineOpcode() &&
3877          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
3878          !Node->use_begin()->hasAnyUseOfValue(0))) {
3879       unsigned Def = MI.getOperand(0).getReg();
3880 
3881       // Change this into a noret atomic.
3882       MI.setDesc(TII->get(NoRetAtomicOp));
3883       MI.RemoveOperand(0);
3884 
3885       // If we only remove the def operand from the atomic instruction, the
3886       // extract_subreg will be left with a use of a vreg without a def.
3887       // So we need to insert an implicit_def to avoid machine verifier
3888       // errors.
3889       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
3890               TII->get(AMDGPU::IMPLICIT_DEF), Def);
3891     }
3892     return;
3893   }
3894 }
3895 
3896 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
3897                               uint64_t Val) {
3898   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
3899   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
3900 }
3901 
3902 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
3903                                                 const SDLoc &DL,
3904                                                 SDValue Ptr) const {
3905   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3906 
3907   // Build the half of the subregister with the constants before building the
3908   // full 128-bit register. If we are building multiple resource descriptors,
3909   // this will allow CSEing of the 2-component register.
3910   const SDValue Ops0[] = {
3911     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
3912     buildSMovImm32(DAG, DL, 0),
3913     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
3914     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
3915     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
3916   };
3917 
3918   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
3919                                                 MVT::v2i32, Ops0), 0);
3920 
3921   // Combine the constants and the pointer.
3922   const SDValue Ops1[] = {
3923     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
3924     Ptr,
3925     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
3926     SubRegHi,
3927     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
3928   };
3929 
3930   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
3931 }
3932 
3933 /// \brief Return a resource descriptor with the 'Add TID' bit enabled
3934 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
3935 ///        of the resource descriptor) to create an offset, which is added to
3936 ///        the resource pointer.
3937 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
3938                                            SDValue Ptr, uint32_t RsrcDword1,
3939                                            uint64_t RsrcDword2And3) const {
3940   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
3941   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
3942   if (RsrcDword1) {
3943     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
3944                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
3945                     0);
3946   }
3947 
3948   SDValue DataLo = buildSMovImm32(DAG, DL,
3949                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
3950   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
3951 
3952   const SDValue Ops[] = {
3953     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
3954     PtrLo,
3955     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
3956     PtrHi,
3957     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
3958     DataLo,
3959     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
3960     DataHi,
3961     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
3962   };
3963 
3964   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
3965 }
3966 
3967 SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
3968                                                const TargetRegisterClass *RC,
3969                                                unsigned Reg, EVT VT) const {
3970   SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
3971 
3972   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
3973                             cast<RegisterSDNode>(VReg)->getReg(), VT);
3974 }
3975 
3976 //===----------------------------------------------------------------------===//
3977 //                         SI Inline Assembly Support
3978 //===----------------------------------------------------------------------===//
3979 
3980 std::pair<unsigned, const TargetRegisterClass *>
3981 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3982                                                StringRef Constraint,
3983                                                MVT VT) const {
3984 
3985   if (Constraint.size() == 1) {
3986     switch (Constraint[0]) {
3987     case 's':
3988     case 'r':
3989       switch (VT.getSizeInBits()) {
3990       default:
3991         return std::make_pair(0U, nullptr);
3992       case 32:
3993         return std::make_pair(0U, &AMDGPU::SReg_32RegClass);
3994       case 64:
3995         return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
3996       case 128:
3997         return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
3998       case 256:
3999         return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
4000       }
4001 
4002     case 'v':
4003       switch (VT.getSizeInBits()) {
4004       default:
4005         return std::make_pair(0U, nullptr);
4006       case 32:
4007         return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
4008       case 64:
4009         return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
4010       case 96:
4011         return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
4012       case 128:
4013         return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
4014       case 256:
4015         return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
4016       case 512:
4017         return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
4018       }
4019     }
4020   }
4021 
4022   if (Constraint.size() > 1) {
4023     const TargetRegisterClass *RC = nullptr;
4024     if (Constraint[1] == 'v') {
4025       RC = &AMDGPU::VGPR_32RegClass;
4026     } else if (Constraint[1] == 's') {
4027       RC = &AMDGPU::SGPR_32RegClass;
4028     }
4029 
4030     if (RC) {
4031       uint32_t Idx;
4032       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
4033       if (!Failed && Idx < RC->getNumRegs())
4034         return std::make_pair(RC->getRegister(Idx), RC);
4035     }
4036   }
4037   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4038 }
4039 
4040 SITargetLowering::ConstraintType
4041 SITargetLowering::getConstraintType(StringRef Constraint) const {
4042   if (Constraint.size() == 1) {
4043     switch (Constraint[0]) {
4044     default: break;
4045     case 's':
4046     case 'v':
4047       return C_RegisterClass;
4048     }
4049   }
4050   return TargetLowering::getConstraintType(Constraint);
4051 }
4052