1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/BinaryFormat/ELF.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
27 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/IntrinsicsAMDGPU.h"
33 #include "llvm/IR/IntrinsicsR600.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/KnownBits.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "si-lower"
40 
41 STATISTIC(NumTailCalls, "Number of tail calls");
42 
43 static cl::opt<bool> DisableLoopAlignment(
44   "amdgpu-disable-loop-alignment",
45   cl::desc("Do not align and prefetch loops"),
46   cl::init(false));
47 
48 static cl::opt<bool> VGPRReserveforSGPRSpill(
49     "amdgpu-reserve-vgpr-for-sgpr-spill",
50     cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true));
51 
52 static cl::opt<bool> UseDivergentRegisterIndexing(
53   "amdgpu-use-divergent-register-indexing",
54   cl::Hidden,
55   cl::desc("Use indirect register addressing for divergent indexes"),
56   cl::init(false));
57 
58 static bool hasFP32Denormals(const MachineFunction &MF) {
59   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
60   return Info->getMode().allFP32Denormals();
61 }
62 
63 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
64   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
65   return Info->getMode().allFP64FP16Denormals();
66 }
67 
68 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
69   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
70   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
71     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
72       return AMDGPU::SGPR0 + Reg;
73     }
74   }
75   llvm_unreachable("Cannot allocate sgpr");
76 }
77 
78 SITargetLowering::SITargetLowering(const TargetMachine &TM,
79                                    const GCNSubtarget &STI)
80     : AMDGPUTargetLowering(TM, STI),
81       Subtarget(&STI) {
82   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
83   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
84 
85   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
86   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
87 
88   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
89 
90   const SIRegisterInfo *TRI = STI.getRegisterInfo();
91   const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
92 
93   addRegisterClass(MVT::f64, V64RegClass);
94   addRegisterClass(MVT::v2f32, V64RegClass);
95 
96   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
97   addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
98 
99   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
100   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
101 
102   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
103   addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
104 
105   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
106   addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
107 
108   addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
109   addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
110 
111   addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
112   addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
113 
114   addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
115   addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
116 
117   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
118   addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
119 
120   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
121   addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
122 
123   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
124   addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
125 
126   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
127   addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
128 
129   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
130   addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
131 
132   if (Subtarget->has16BitInsts()) {
133     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
134     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
135 
136     // Unless there are also VOP3P operations, not operations are really legal.
137     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
138     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
139     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
140     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
141   }
142 
143   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
144   addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
145 
146   computeRegisterProperties(Subtarget->getRegisterInfo());
147 
148   // The boolean content concept here is too inflexible. Compares only ever
149   // really produce a 1-bit result. Any copy/extend from these will turn into a
150   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
151   // it's what most targets use.
152   setBooleanContents(ZeroOrOneBooleanContent);
153   setBooleanVectorContents(ZeroOrOneBooleanContent);
154 
155   // We need to custom lower vector stores from local memory
156   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
157   setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
158   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
159   setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
160   setOperationAction(ISD::LOAD, MVT::v6i32, Custom);
161   setOperationAction(ISD::LOAD, MVT::v7i32, Custom);
162   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
163   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
164   setOperationAction(ISD::LOAD, MVT::i1, Custom);
165   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
166 
167   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
168   setOperationAction(ISD::STORE, MVT::v3i32, Custom);
169   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
170   setOperationAction(ISD::STORE, MVT::v5i32, Custom);
171   setOperationAction(ISD::STORE, MVT::v6i32, Custom);
172   setOperationAction(ISD::STORE, MVT::v7i32, Custom);
173   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
174   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
175   setOperationAction(ISD::STORE, MVT::i1, Custom);
176   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
177 
178   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
179   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
180   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
181   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
182   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
183   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
184   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
185   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
186   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
187   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
188   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
189   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
190   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
191   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
192   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
193   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
194 
195   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
196   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
197   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
198   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
199   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
200   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
201   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
202 
203   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
204   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
205 
206   setOperationAction(ISD::SELECT, MVT::i1, Promote);
207   setOperationAction(ISD::SELECT, MVT::i64, Custom);
208   setOperationAction(ISD::SELECT, MVT::f64, Promote);
209   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
210 
211   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
212   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
213   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
214   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
215   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
216 
217   setOperationAction(ISD::SETCC, MVT::i1, Promote);
218   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
219   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
220   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
221 
222   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
223   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
224   setOperationAction(ISD::TRUNCATE, MVT::v3i32, Expand);
225   setOperationAction(ISD::FP_ROUND, MVT::v3f32, Expand);
226   setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
227   setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
228   setOperationAction(ISD::TRUNCATE, MVT::v5i32, Expand);
229   setOperationAction(ISD::FP_ROUND, MVT::v5f32, Expand);
230   setOperationAction(ISD::TRUNCATE, MVT::v6i32, Expand);
231   setOperationAction(ISD::FP_ROUND, MVT::v6f32, Expand);
232   setOperationAction(ISD::TRUNCATE, MVT::v7i32, Expand);
233   setOperationAction(ISD::FP_ROUND, MVT::v7f32, Expand);
234   setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
235   setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
236   setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
237   setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
238 
239   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
240   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
241   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
242   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
243   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
244   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
245   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
246   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
247 
248   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
249   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
250   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
251   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
252   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
253   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
254 
255   setOperationAction(ISD::UADDO, MVT::i32, Legal);
256   setOperationAction(ISD::USUBO, MVT::i32, Legal);
257 
258   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
259   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
260 
261   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
262   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
263   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
264 
265 #if 0
266   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
267   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
268 #endif
269 
270   // We only support LOAD/STORE and vector manipulation ops for vectors
271   // with > 4 elements.
272   for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
273                   MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
274                   MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32,
275                   MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
276                   MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) {
277     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
278       switch (Op) {
279       case ISD::LOAD:
280       case ISD::STORE:
281       case ISD::BUILD_VECTOR:
282       case ISD::BITCAST:
283       case ISD::EXTRACT_VECTOR_ELT:
284       case ISD::INSERT_VECTOR_ELT:
285       case ISD::EXTRACT_SUBVECTOR:
286       case ISD::SCALAR_TO_VECTOR:
287         break;
288       case ISD::INSERT_SUBVECTOR:
289       case ISD::CONCAT_VECTORS:
290         setOperationAction(Op, VT, Custom);
291         break;
292       default:
293         setOperationAction(Op, VT, Expand);
294         break;
295       }
296     }
297   }
298 
299   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
300 
301   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
302   // is expanded to avoid having two separate loops in case the index is a VGPR.
303 
304   // Most operations are naturally 32-bit vector operations. We only support
305   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
306   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
307     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
308     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
309 
310     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
311     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
312 
313     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
314     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
315 
316     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
317     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
318   }
319 
320   for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
321     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
322     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
323 
324     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
325     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
326 
327     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
328     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
329 
330     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
331     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
332   }
333 
334   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
335     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
336     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
337 
338     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
339     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
340 
341     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
342     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
343 
344     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
345     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
346   }
347 
348   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
349     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
350     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
351 
352     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
353     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
354 
355     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
356     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
357 
358     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
359     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
360   }
361 
362   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
363     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
364     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
365 
366     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
367     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
368 
369     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
370     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
371 
372     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
373     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
374   }
375 
376   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
377   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
378   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
379   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
380 
381   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
382   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
383 
384   // Avoid stack access for these.
385   // TODO: Generalize to more vector types.
386   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
387   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
388   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
389   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
390 
391   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
392   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
393   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
394   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
395   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
396   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
397 
398   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
399   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
400   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
401   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
402 
403   // Deal with vec3 vector operations when widened to vec4.
404   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
405   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
406   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
407   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
408 
409   // Deal with vec5/6/7 vector operations when widened to vec8.
410   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
411   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
412   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6i32, Custom);
413   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6f32, Custom);
414   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7i32, Custom);
415   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7f32, Custom);
416   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
417   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
418 
419   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
420   // and output demarshalling
421   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
422   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
423 
424   // We can't return success/failure, only the old value,
425   // let LLVM add the comparison
426   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
427   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
428 
429   if (Subtarget->hasFlatAddressSpace()) {
430     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
431     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
432   }
433 
434   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
435   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
436 
437   // FIXME: This should be narrowed to i32, but that only happens if i64 is
438   // illegal.
439   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
440   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
441   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
442 
443   // On SI this is s_memtime and s_memrealtime on VI.
444   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
445   setOperationAction(ISD::TRAP, MVT::Other, Custom);
446   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
447 
448   if (Subtarget->has16BitInsts()) {
449     setOperationAction(ISD::FPOW, MVT::f16, Promote);
450     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
451     setOperationAction(ISD::FLOG, MVT::f16, Custom);
452     setOperationAction(ISD::FEXP, MVT::f16, Custom);
453     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
454   }
455 
456   if (Subtarget->hasMadMacF32Insts())
457     setOperationAction(ISD::FMAD, MVT::f32, Legal);
458 
459   if (!Subtarget->hasBFI()) {
460     // fcopysign can be done in a single instruction with BFI.
461     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
462     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
463   }
464 
465   if (!Subtarget->hasBCNT(32))
466     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
467 
468   if (!Subtarget->hasBCNT(64))
469     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
470 
471   if (Subtarget->hasFFBH()) {
472     setOperationAction(ISD::CTLZ, MVT::i32, Custom);
473     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
474   }
475 
476   if (Subtarget->hasFFBL()) {
477     setOperationAction(ISD::CTTZ, MVT::i32, Custom);
478     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
479   }
480 
481   // We only really have 32-bit BFE instructions (and 16-bit on VI).
482   //
483   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
484   // effort to match them now. We want this to be false for i64 cases when the
485   // extraction isn't restricted to the upper or lower half. Ideally we would
486   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
487   // span the midpoint are probably relatively rare, so don't worry about them
488   // for now.
489   if (Subtarget->hasBFE())
490     setHasExtractBitsInsn(true);
491 
492   // Clamp modifier on add/sub
493   if (Subtarget->hasIntClamp()) {
494     setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
495     setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
496   }
497 
498   if (Subtarget->hasAddNoCarry()) {
499     setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
500     setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
501     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
502     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
503   }
504 
505   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
506   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
507   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
508   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
509 
510 
511   // These are really only legal for ieee_mode functions. We should be avoiding
512   // them for functions that don't have ieee_mode enabled, so just say they are
513   // legal.
514   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
515   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
516   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
517   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
518 
519 
520   if (Subtarget->haveRoundOpsF64()) {
521     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
522     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
523     setOperationAction(ISD::FRINT, MVT::f64, Legal);
524   } else {
525     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
526     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
527     setOperationAction(ISD::FRINT, MVT::f64, Custom);
528     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
529   }
530 
531   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
532 
533   setOperationAction(ISD::FSIN, MVT::f32, Custom);
534   setOperationAction(ISD::FCOS, MVT::f32, Custom);
535   setOperationAction(ISD::FDIV, MVT::f32, Custom);
536   setOperationAction(ISD::FDIV, MVT::f64, Custom);
537 
538   if (Subtarget->has16BitInsts()) {
539     setOperationAction(ISD::Constant, MVT::i16, Legal);
540 
541     setOperationAction(ISD::SMIN, MVT::i16, Legal);
542     setOperationAction(ISD::SMAX, MVT::i16, Legal);
543 
544     setOperationAction(ISD::UMIN, MVT::i16, Legal);
545     setOperationAction(ISD::UMAX, MVT::i16, Legal);
546 
547     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
548     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
549 
550     setOperationAction(ISD::ROTR, MVT::i16, Expand);
551     setOperationAction(ISD::ROTL, MVT::i16, Expand);
552 
553     setOperationAction(ISD::SDIV, MVT::i16, Promote);
554     setOperationAction(ISD::UDIV, MVT::i16, Promote);
555     setOperationAction(ISD::SREM, MVT::i16, Promote);
556     setOperationAction(ISD::UREM, MVT::i16, Promote);
557     setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
558     setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
559 
560     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
561 
562     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
563     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
564     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
565     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
566     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
567 
568     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
569 
570     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
571 
572     setOperationAction(ISD::LOAD, MVT::i16, Custom);
573 
574     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
575 
576     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
577     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
578     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
579     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
580 
581     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Custom);
582     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Custom);
583 
584     // F16 - Constant Actions.
585     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
586 
587     // F16 - Load/Store Actions.
588     setOperationAction(ISD::LOAD, MVT::f16, Promote);
589     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
590     setOperationAction(ISD::STORE, MVT::f16, Promote);
591     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
592 
593     // F16 - VOP1 Actions.
594     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
595     setOperationAction(ISD::FCOS, MVT::f16, Custom);
596     setOperationAction(ISD::FSIN, MVT::f16, Custom);
597 
598     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
599     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
600 
601     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
602     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
603     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
604     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
605     setOperationAction(ISD::FROUND, MVT::f16, Custom);
606 
607     // F16 - VOP2 Actions.
608     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
609     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
610 
611     setOperationAction(ISD::FDIV, MVT::f16, Custom);
612 
613     // F16 - VOP3 Actions.
614     setOperationAction(ISD::FMA, MVT::f16, Legal);
615     if (STI.hasMadF16())
616       setOperationAction(ISD::FMAD, MVT::f16, Legal);
617 
618     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
619       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
620         switch (Op) {
621         case ISD::LOAD:
622         case ISD::STORE:
623         case ISD::BUILD_VECTOR:
624         case ISD::BITCAST:
625         case ISD::EXTRACT_VECTOR_ELT:
626         case ISD::INSERT_VECTOR_ELT:
627         case ISD::INSERT_SUBVECTOR:
628         case ISD::EXTRACT_SUBVECTOR:
629         case ISD::SCALAR_TO_VECTOR:
630           break;
631         case ISD::CONCAT_VECTORS:
632           setOperationAction(Op, VT, Custom);
633           break;
634         default:
635           setOperationAction(Op, VT, Expand);
636           break;
637         }
638       }
639     }
640 
641     // v_perm_b32 can handle either of these.
642     setOperationAction(ISD::BSWAP, MVT::i16, Legal);
643     setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
644     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
645 
646     // XXX - Do these do anything? Vector constants turn into build_vector.
647     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
648     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
649 
650     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
651     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
652 
653     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
654     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
655     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
656     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
657 
658     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
659     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
660     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
661     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
662 
663     setOperationAction(ISD::AND, MVT::v2i16, Promote);
664     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
665     setOperationAction(ISD::OR, MVT::v2i16, Promote);
666     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
667     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
668     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
669 
670     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
671     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
672     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
673     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
674 
675     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
676     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
677     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
678     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
679 
680     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
681     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
682     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
683     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
684 
685     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
686     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
687     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
688 
689     if (!Subtarget->hasVOP3PInsts()) {
690       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
691       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
692     }
693 
694     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
695     // This isn't really legal, but this avoids the legalizer unrolling it (and
696     // allows matching fneg (fabs x) patterns)
697     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
698 
699     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
700     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
701     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
702     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
703 
704     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
705     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
706 
707     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
708     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
709   }
710 
711   if (Subtarget->hasVOP3PInsts()) {
712     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
713     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
714     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
715     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
716     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
717     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
718     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
719     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
720     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
721     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
722 
723     setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
724     setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
725     setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
726     setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
727 
728     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
729     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
730     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
731 
732     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
733     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
734 
735     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
736 
737     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
738     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
739 
740     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
741     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
742 
743     setOperationAction(ISD::SHL, MVT::v4i16, Custom);
744     setOperationAction(ISD::SRA, MVT::v4i16, Custom);
745     setOperationAction(ISD::SRL, MVT::v4i16, Custom);
746     setOperationAction(ISD::ADD, MVT::v4i16, Custom);
747     setOperationAction(ISD::SUB, MVT::v4i16, Custom);
748     setOperationAction(ISD::MUL, MVT::v4i16, Custom);
749 
750     setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
751     setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
752     setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
753     setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
754 
755     setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom);
756     setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom);
757     setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom);
758     setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom);
759 
760     setOperationAction(ISD::FADD, MVT::v4f16, Custom);
761     setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
762     setOperationAction(ISD::FMA, MVT::v4f16, Custom);
763 
764     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
765     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
766 
767     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
768     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
769     setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
770 
771     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
772     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
773     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
774 
775     if (Subtarget->hasPackedFP32Ops()) {
776       setOperationAction(ISD::FADD, MVT::v2f32, Legal);
777       setOperationAction(ISD::FMUL, MVT::v2f32, Legal);
778       setOperationAction(ISD::FMA,  MVT::v2f32, Legal);
779       setOperationAction(ISD::FNEG, MVT::v2f32, Legal);
780 
781       for (MVT VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32 }) {
782         setOperationAction(ISD::FADD, VT, Custom);
783         setOperationAction(ISD::FMUL, VT, Custom);
784         setOperationAction(ISD::FMA, VT, Custom);
785       }
786     }
787   }
788 
789   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
790   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
791 
792   if (Subtarget->has16BitInsts()) {
793     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
794     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
795     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
796     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
797   } else {
798     // Legalization hack.
799     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
800     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
801 
802     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
803     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
804   }
805 
806   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
807     setOperationAction(ISD::SELECT, VT, Custom);
808   }
809 
810   setOperationAction(ISD::SMULO, MVT::i64, Custom);
811   setOperationAction(ISD::UMULO, MVT::i64, Custom);
812 
813   if (Subtarget->hasMad64_32()) {
814     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
815     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
816   }
817 
818   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
819   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
820   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
821   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
822   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
823   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
824   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
825 
826   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
827   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
828   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
829   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
830   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
831   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
832   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
833   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
834   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
835   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
836   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
837 
838   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
839   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
840   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
841   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
842   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
843   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
844   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
845   setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
846   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
847   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
848 
849   setTargetDAGCombine(ISD::ADD);
850   setTargetDAGCombine(ISD::ADDCARRY);
851   setTargetDAGCombine(ISD::SUB);
852   setTargetDAGCombine(ISD::SUBCARRY);
853   setTargetDAGCombine(ISD::FADD);
854   setTargetDAGCombine(ISD::FSUB);
855   setTargetDAGCombine(ISD::FMINNUM);
856   setTargetDAGCombine(ISD::FMAXNUM);
857   setTargetDAGCombine(ISD::FMINNUM_IEEE);
858   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
859   setTargetDAGCombine(ISD::FMA);
860   setTargetDAGCombine(ISD::SMIN);
861   setTargetDAGCombine(ISD::SMAX);
862   setTargetDAGCombine(ISD::UMIN);
863   setTargetDAGCombine(ISD::UMAX);
864   setTargetDAGCombine(ISD::SETCC);
865   setTargetDAGCombine(ISD::AND);
866   setTargetDAGCombine(ISD::OR);
867   setTargetDAGCombine(ISD::XOR);
868   setTargetDAGCombine(ISD::SINT_TO_FP);
869   setTargetDAGCombine(ISD::UINT_TO_FP);
870   setTargetDAGCombine(ISD::FCANONICALIZE);
871   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
872   setTargetDAGCombine(ISD::ZERO_EXTEND);
873   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
874   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
875   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
876 
877   // All memory operations. Some folding on the pointer operand is done to help
878   // matching the constant offsets in the addressing modes.
879   setTargetDAGCombine(ISD::LOAD);
880   setTargetDAGCombine(ISD::STORE);
881   setTargetDAGCombine(ISD::ATOMIC_LOAD);
882   setTargetDAGCombine(ISD::ATOMIC_STORE);
883   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
884   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
885   setTargetDAGCombine(ISD::ATOMIC_SWAP);
886   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
887   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
888   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
889   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
890   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
891   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
892   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
893   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
894   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
895   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
896   setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
897   setTargetDAGCombine(ISD::INTRINSIC_VOID);
898   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
899 
900   // FIXME: In other contexts we pretend this is a per-function property.
901   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
902 
903   setSchedulingPreference(Sched::RegPressure);
904 }
905 
906 const GCNSubtarget *SITargetLowering::getSubtarget() const {
907   return Subtarget;
908 }
909 
910 //===----------------------------------------------------------------------===//
911 // TargetLowering queries
912 //===----------------------------------------------------------------------===//
913 
914 // v_mad_mix* support a conversion from f16 to f32.
915 //
916 // There is only one special case when denormals are enabled we don't currently,
917 // where this is OK to use.
918 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
919                                        EVT DestVT, EVT SrcVT) const {
920   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
921           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
922     DestVT.getScalarType() == MVT::f32 &&
923     SrcVT.getScalarType() == MVT::f16 &&
924     // TODO: This probably only requires no input flushing?
925     !hasFP32Denormals(DAG.getMachineFunction());
926 }
927 
928 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
929                                        LLT DestTy, LLT SrcTy) const {
930   return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
931           (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
932          DestTy.getScalarSizeInBits() == 32 &&
933          SrcTy.getScalarSizeInBits() == 16 &&
934          // TODO: This probably only requires no input flushing?
935          !hasFP32Denormals(*MI.getMF());
936 }
937 
938 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
939   // SI has some legal vector types, but no legal vector operations. Say no
940   // shuffles are legal in order to prefer scalarizing some vector operations.
941   return false;
942 }
943 
944 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
945                                                     CallingConv::ID CC,
946                                                     EVT VT) const {
947   if (CC == CallingConv::AMDGPU_KERNEL)
948     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
949 
950   if (VT.isVector()) {
951     EVT ScalarVT = VT.getScalarType();
952     unsigned Size = ScalarVT.getSizeInBits();
953     if (Size == 16) {
954       if (Subtarget->has16BitInsts())
955         return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
956       return VT.isInteger() ? MVT::i32 : MVT::f32;
957     }
958 
959     if (Size < 16)
960       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
961     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
962   }
963 
964   if (VT.getSizeInBits() > 32)
965     return MVT::i32;
966 
967   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
968 }
969 
970 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
971                                                          CallingConv::ID CC,
972                                                          EVT VT) const {
973   if (CC == CallingConv::AMDGPU_KERNEL)
974     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
975 
976   if (VT.isVector()) {
977     unsigned NumElts = VT.getVectorNumElements();
978     EVT ScalarVT = VT.getScalarType();
979     unsigned Size = ScalarVT.getSizeInBits();
980 
981     // FIXME: Should probably promote 8-bit vectors to i16.
982     if (Size == 16 && Subtarget->has16BitInsts())
983       return (NumElts + 1) / 2;
984 
985     if (Size <= 32)
986       return NumElts;
987 
988     if (Size > 32)
989       return NumElts * ((Size + 31) / 32);
990   } else if (VT.getSizeInBits() > 32)
991     return (VT.getSizeInBits() + 31) / 32;
992 
993   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
994 }
995 
996 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
997   LLVMContext &Context, CallingConv::ID CC,
998   EVT VT, EVT &IntermediateVT,
999   unsigned &NumIntermediates, MVT &RegisterVT) const {
1000   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
1001     unsigned NumElts = VT.getVectorNumElements();
1002     EVT ScalarVT = VT.getScalarType();
1003     unsigned Size = ScalarVT.getSizeInBits();
1004     // FIXME: We should fix the ABI to be the same on targets without 16-bit
1005     // support, but unless we can properly handle 3-vectors, it will be still be
1006     // inconsistent.
1007     if (Size == 16 && Subtarget->has16BitInsts()) {
1008       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
1009       IntermediateVT = RegisterVT;
1010       NumIntermediates = (NumElts + 1) / 2;
1011       return NumIntermediates;
1012     }
1013 
1014     if (Size == 32) {
1015       RegisterVT = ScalarVT.getSimpleVT();
1016       IntermediateVT = RegisterVT;
1017       NumIntermediates = NumElts;
1018       return NumIntermediates;
1019     }
1020 
1021     if (Size < 16 && Subtarget->has16BitInsts()) {
1022       // FIXME: Should probably form v2i16 pieces
1023       RegisterVT = MVT::i16;
1024       IntermediateVT = ScalarVT;
1025       NumIntermediates = NumElts;
1026       return NumIntermediates;
1027     }
1028 
1029 
1030     if (Size != 16 && Size <= 32) {
1031       RegisterVT = MVT::i32;
1032       IntermediateVT = ScalarVT;
1033       NumIntermediates = NumElts;
1034       return NumIntermediates;
1035     }
1036 
1037     if (Size > 32) {
1038       RegisterVT = MVT::i32;
1039       IntermediateVT = RegisterVT;
1040       NumIntermediates = NumElts * ((Size + 31) / 32);
1041       return NumIntermediates;
1042     }
1043   }
1044 
1045   return TargetLowering::getVectorTypeBreakdownForCallingConv(
1046     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1047 }
1048 
1049 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
1050   assert(DMaskLanes != 0);
1051 
1052   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1053     unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
1054     return EVT::getVectorVT(Ty->getContext(),
1055                             EVT::getEVT(VT->getElementType()),
1056                             NumElts);
1057   }
1058 
1059   return EVT::getEVT(Ty);
1060 }
1061 
1062 // Peek through TFE struct returns to only use the data size.
1063 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
1064   auto *ST = dyn_cast<StructType>(Ty);
1065   if (!ST)
1066     return memVTFromImageData(Ty, DMaskLanes);
1067 
1068   // Some intrinsics return an aggregate type - special case to work out the
1069   // correct memVT.
1070   //
1071   // Only limited forms of aggregate type currently expected.
1072   if (ST->getNumContainedTypes() != 2 ||
1073       !ST->getContainedType(1)->isIntegerTy(32))
1074     return EVT();
1075   return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
1076 }
1077 
1078 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1079                                           const CallInst &CI,
1080                                           MachineFunction &MF,
1081                                           unsigned IntrID) const {
1082   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1083           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1084     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1085                                                   (Intrinsic::ID)IntrID);
1086     if (Attr.hasFnAttr(Attribute::ReadNone))
1087       return false;
1088 
1089     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1090 
1091     if (RsrcIntr->IsImage) {
1092       Info.ptrVal =
1093           MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1094       Info.align.reset();
1095     } else {
1096       Info.ptrVal =
1097           MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1098     }
1099 
1100     Info.flags = MachineMemOperand::MODereferenceable;
1101     if (Attr.hasFnAttr(Attribute::ReadOnly)) {
1102       unsigned DMaskLanes = 4;
1103 
1104       if (RsrcIntr->IsImage) {
1105         const AMDGPU::ImageDimIntrinsicInfo *Intr
1106           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1107         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1108           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1109 
1110         if (!BaseOpcode->Gather4) {
1111           // If this isn't a gather, we may have excess loaded elements in the
1112           // IR type. Check the dmask for the real number of elements loaded.
1113           unsigned DMask
1114             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1115           DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1116         }
1117 
1118         Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1119       } else
1120         Info.memVT = EVT::getEVT(CI.getType());
1121 
1122       // FIXME: What does alignment mean for an image?
1123       Info.opc = ISD::INTRINSIC_W_CHAIN;
1124       Info.flags |= MachineMemOperand::MOLoad;
1125     } else if (Attr.hasFnAttr(Attribute::WriteOnly)) {
1126       Info.opc = ISD::INTRINSIC_VOID;
1127 
1128       Type *DataTy = CI.getArgOperand(0)->getType();
1129       if (RsrcIntr->IsImage) {
1130         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1131         unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1132         Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1133       } else
1134         Info.memVT = EVT::getEVT(DataTy);
1135 
1136       Info.flags |= MachineMemOperand::MOStore;
1137     } else {
1138       // Atomic
1139       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1140                                             ISD::INTRINSIC_W_CHAIN;
1141       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1142       Info.flags = MachineMemOperand::MOLoad |
1143                    MachineMemOperand::MOStore |
1144                    MachineMemOperand::MODereferenceable;
1145 
1146       // XXX - Should this be volatile without known ordering?
1147       Info.flags |= MachineMemOperand::MOVolatile;
1148     }
1149     return true;
1150   }
1151 
1152   switch (IntrID) {
1153   case Intrinsic::amdgcn_atomic_inc:
1154   case Intrinsic::amdgcn_atomic_dec:
1155   case Intrinsic::amdgcn_ds_ordered_add:
1156   case Intrinsic::amdgcn_ds_ordered_swap:
1157   case Intrinsic::amdgcn_ds_fadd:
1158   case Intrinsic::amdgcn_ds_fmin:
1159   case Intrinsic::amdgcn_ds_fmax: {
1160     Info.opc = ISD::INTRINSIC_W_CHAIN;
1161     Info.memVT = MVT::getVT(CI.getType());
1162     Info.ptrVal = CI.getOperand(0);
1163     Info.align.reset();
1164     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1165 
1166     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1167     if (!Vol->isZero())
1168       Info.flags |= MachineMemOperand::MOVolatile;
1169 
1170     return true;
1171   }
1172   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1173     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1174 
1175     Info.opc = ISD::INTRINSIC_W_CHAIN;
1176     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1177     Info.ptrVal =
1178         MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1179     Info.align.reset();
1180     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1181 
1182     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1183     if (!Vol || !Vol->isZero())
1184       Info.flags |= MachineMemOperand::MOVolatile;
1185 
1186     return true;
1187   }
1188   case Intrinsic::amdgcn_ds_append:
1189   case Intrinsic::amdgcn_ds_consume: {
1190     Info.opc = ISD::INTRINSIC_W_CHAIN;
1191     Info.memVT = MVT::getVT(CI.getType());
1192     Info.ptrVal = CI.getOperand(0);
1193     Info.align.reset();
1194     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1195 
1196     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1197     if (!Vol->isZero())
1198       Info.flags |= MachineMemOperand::MOVolatile;
1199 
1200     return true;
1201   }
1202   case Intrinsic::amdgcn_global_atomic_csub: {
1203     Info.opc = ISD::INTRINSIC_W_CHAIN;
1204     Info.memVT = MVT::getVT(CI.getType());
1205     Info.ptrVal = CI.getOperand(0);
1206     Info.align.reset();
1207     Info.flags = MachineMemOperand::MOLoad |
1208                  MachineMemOperand::MOStore |
1209                  MachineMemOperand::MOVolatile;
1210     return true;
1211   }
1212   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1213     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1214     Info.opc = ISD::INTRINSIC_W_CHAIN;
1215     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1216     Info.ptrVal =
1217         MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1218     Info.align.reset();
1219     Info.flags = MachineMemOperand::MOLoad |
1220                  MachineMemOperand::MODereferenceable;
1221     return true;
1222   }
1223   case Intrinsic::amdgcn_global_atomic_fadd:
1224   case Intrinsic::amdgcn_global_atomic_fmin:
1225   case Intrinsic::amdgcn_global_atomic_fmax:
1226   case Intrinsic::amdgcn_flat_atomic_fadd:
1227   case Intrinsic::amdgcn_flat_atomic_fmin:
1228   case Intrinsic::amdgcn_flat_atomic_fmax: {
1229     Info.opc = ISD::INTRINSIC_W_CHAIN;
1230     Info.memVT = MVT::getVT(CI.getType());
1231     Info.ptrVal = CI.getOperand(0);
1232     Info.align.reset();
1233     Info.flags = MachineMemOperand::MOLoad |
1234                  MachineMemOperand::MOStore |
1235                  MachineMemOperand::MODereferenceable |
1236                  MachineMemOperand::MOVolatile;
1237     return true;
1238   }
1239   case Intrinsic::amdgcn_ds_gws_init:
1240   case Intrinsic::amdgcn_ds_gws_barrier:
1241   case Intrinsic::amdgcn_ds_gws_sema_v:
1242   case Intrinsic::amdgcn_ds_gws_sema_br:
1243   case Intrinsic::amdgcn_ds_gws_sema_p:
1244   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1245     Info.opc = ISD::INTRINSIC_VOID;
1246 
1247     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1248     Info.ptrVal =
1249         MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1250 
1251     // This is an abstract access, but we need to specify a type and size.
1252     Info.memVT = MVT::i32;
1253     Info.size = 4;
1254     Info.align = Align(4);
1255 
1256     Info.flags = MachineMemOperand::MOStore;
1257     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1258       Info.flags = MachineMemOperand::MOLoad;
1259     return true;
1260   }
1261   default:
1262     return false;
1263   }
1264 }
1265 
1266 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1267                                             SmallVectorImpl<Value*> &Ops,
1268                                             Type *&AccessTy) const {
1269   switch (II->getIntrinsicID()) {
1270   case Intrinsic::amdgcn_atomic_inc:
1271   case Intrinsic::amdgcn_atomic_dec:
1272   case Intrinsic::amdgcn_ds_ordered_add:
1273   case Intrinsic::amdgcn_ds_ordered_swap:
1274   case Intrinsic::amdgcn_ds_append:
1275   case Intrinsic::amdgcn_ds_consume:
1276   case Intrinsic::amdgcn_ds_fadd:
1277   case Intrinsic::amdgcn_ds_fmin:
1278   case Intrinsic::amdgcn_ds_fmax:
1279   case Intrinsic::amdgcn_global_atomic_fadd:
1280   case Intrinsic::amdgcn_flat_atomic_fadd:
1281   case Intrinsic::amdgcn_flat_atomic_fmin:
1282   case Intrinsic::amdgcn_flat_atomic_fmax:
1283   case Intrinsic::amdgcn_global_atomic_csub: {
1284     Value *Ptr = II->getArgOperand(0);
1285     AccessTy = II->getType();
1286     Ops.push_back(Ptr);
1287     return true;
1288   }
1289   default:
1290     return false;
1291   }
1292 }
1293 
1294 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1295   if (!Subtarget->hasFlatInstOffsets()) {
1296     // Flat instructions do not have offsets, and only have the register
1297     // address.
1298     return AM.BaseOffs == 0 && AM.Scale == 0;
1299   }
1300 
1301   return AM.Scale == 0 &&
1302          (AM.BaseOffs == 0 ||
1303           Subtarget->getInstrInfo()->isLegalFLATOffset(
1304               AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1305 }
1306 
1307 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1308   if (Subtarget->hasFlatGlobalInsts())
1309     return AM.Scale == 0 &&
1310            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1311                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1312                                     SIInstrFlags::FlatGlobal));
1313 
1314   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1315       // Assume the we will use FLAT for all global memory accesses
1316       // on VI.
1317       // FIXME: This assumption is currently wrong.  On VI we still use
1318       // MUBUF instructions for the r + i addressing mode.  As currently
1319       // implemented, the MUBUF instructions only work on buffer < 4GB.
1320       // It may be possible to support > 4GB buffers with MUBUF instructions,
1321       // by setting the stride value in the resource descriptor which would
1322       // increase the size limit to (stride * 4GB).  However, this is risky,
1323       // because it has never been validated.
1324     return isLegalFlatAddressingMode(AM);
1325   }
1326 
1327   return isLegalMUBUFAddressingMode(AM);
1328 }
1329 
1330 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1331   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1332   // additionally can do r + r + i with addr64. 32-bit has more addressing
1333   // mode options. Depending on the resource constant, it can also do
1334   // (i64 r0) + (i32 r1) * (i14 i).
1335   //
1336   // Private arrays end up using a scratch buffer most of the time, so also
1337   // assume those use MUBUF instructions. Scratch loads / stores are currently
1338   // implemented as mubuf instructions with offen bit set, so slightly
1339   // different than the normal addr64.
1340   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1341     return false;
1342 
1343   // FIXME: Since we can split immediate into soffset and immediate offset,
1344   // would it make sense to allow any immediate?
1345 
1346   switch (AM.Scale) {
1347   case 0: // r + i or just i, depending on HasBaseReg.
1348     return true;
1349   case 1:
1350     return true; // We have r + r or r + i.
1351   case 2:
1352     if (AM.HasBaseReg) {
1353       // Reject 2 * r + r.
1354       return false;
1355     }
1356 
1357     // Allow 2 * r as r + r
1358     // Or  2 * r + i is allowed as r + r + i.
1359     return true;
1360   default: // Don't allow n * r
1361     return false;
1362   }
1363 }
1364 
1365 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1366                                              const AddrMode &AM, Type *Ty,
1367                                              unsigned AS, Instruction *I) const {
1368   // No global is ever allowed as a base.
1369   if (AM.BaseGV)
1370     return false;
1371 
1372   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1373     return isLegalGlobalAddressingMode(AM);
1374 
1375   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1376       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1377       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1378     // If the offset isn't a multiple of 4, it probably isn't going to be
1379     // correctly aligned.
1380     // FIXME: Can we get the real alignment here?
1381     if (AM.BaseOffs % 4 != 0)
1382       return isLegalMUBUFAddressingMode(AM);
1383 
1384     // There are no SMRD extloads, so if we have to do a small type access we
1385     // will use a MUBUF load.
1386     // FIXME?: We also need to do this if unaligned, but we don't know the
1387     // alignment here.
1388     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1389       return isLegalGlobalAddressingMode(AM);
1390 
1391     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1392       // SMRD instructions have an 8-bit, dword offset on SI.
1393       if (!isUInt<8>(AM.BaseOffs / 4))
1394         return false;
1395     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1396       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1397       // in 8-bits, it can use a smaller encoding.
1398       if (!isUInt<32>(AM.BaseOffs / 4))
1399         return false;
1400     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1401       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1402       if (!isUInt<20>(AM.BaseOffs))
1403         return false;
1404     } else
1405       llvm_unreachable("unhandled generation");
1406 
1407     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1408       return true;
1409 
1410     if (AM.Scale == 1 && AM.HasBaseReg)
1411       return true;
1412 
1413     return false;
1414 
1415   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1416     return isLegalMUBUFAddressingMode(AM);
1417   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1418              AS == AMDGPUAS::REGION_ADDRESS) {
1419     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1420     // field.
1421     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1422     // an 8-bit dword offset but we don't know the alignment here.
1423     if (!isUInt<16>(AM.BaseOffs))
1424       return false;
1425 
1426     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1427       return true;
1428 
1429     if (AM.Scale == 1 && AM.HasBaseReg)
1430       return true;
1431 
1432     return false;
1433   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1434              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1435     // For an unknown address space, this usually means that this is for some
1436     // reason being used for pure arithmetic, and not based on some addressing
1437     // computation. We don't have instructions that compute pointers with any
1438     // addressing modes, so treat them as having no offset like flat
1439     // instructions.
1440     return isLegalFlatAddressingMode(AM);
1441   }
1442 
1443   // Assume a user alias of global for unknown address spaces.
1444   return isLegalGlobalAddressingMode(AM);
1445 }
1446 
1447 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1448                                         const MachineFunction &MF) const {
1449   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1450     return (MemVT.getSizeInBits() <= 4 * 32);
1451   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1452     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1453     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1454   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1455     return (MemVT.getSizeInBits() <= 2 * 32);
1456   }
1457   return true;
1458 }
1459 
1460 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1461     unsigned Size, unsigned AddrSpace, Align Alignment,
1462     MachineMemOperand::Flags Flags, bool *IsFast) const {
1463   if (IsFast)
1464     *IsFast = false;
1465 
1466   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1467       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1468     // Check if alignment requirements for ds_read/write instructions are
1469     // disabled.
1470     if (Subtarget->hasUnalignedDSAccessEnabled() &&
1471         !Subtarget->hasLDSMisalignedBug()) {
1472       if (IsFast)
1473         *IsFast = Alignment != Align(2);
1474       return true;
1475     }
1476 
1477     // Either, the alignment requirements are "enabled", or there is an
1478     // unaligned LDS access related hardware bug though alignment requirements
1479     // are "disabled". In either case, we need to check for proper alignment
1480     // requirements.
1481     //
1482     if (Size == 64) {
1483       // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1484       // can do a 4 byte aligned, 8 byte access in a single operation using
1485       // ds_read2/write2_b32 with adjacent offsets.
1486       bool AlignedBy4 = Alignment >= Align(4);
1487       if (IsFast)
1488         *IsFast = AlignedBy4;
1489 
1490       return AlignedBy4;
1491     }
1492     if (Size == 96) {
1493       // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1494       // gfx8 and older.
1495       bool AlignedBy16 = Alignment >= Align(16);
1496       if (IsFast)
1497         *IsFast = AlignedBy16;
1498 
1499       return AlignedBy16;
1500     }
1501     if (Size == 128) {
1502       // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1503       // gfx8 and older, but  we can do a 8 byte aligned, 16 byte access in a
1504       // single operation using ds_read2/write2_b64.
1505       bool AlignedBy8 = Alignment >= Align(8);
1506       if (IsFast)
1507         *IsFast = AlignedBy8;
1508 
1509       return AlignedBy8;
1510     }
1511   }
1512 
1513   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1514     bool AlignedBy4 = Alignment >= Align(4);
1515     if (IsFast)
1516       *IsFast = AlignedBy4;
1517 
1518     return AlignedBy4 ||
1519            Subtarget->enableFlatScratch() ||
1520            Subtarget->hasUnalignedScratchAccess();
1521   }
1522 
1523   // FIXME: We have to be conservative here and assume that flat operations
1524   // will access scratch.  If we had access to the IR function, then we
1525   // could determine if any private memory was used in the function.
1526   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1527       !Subtarget->hasUnalignedScratchAccess()) {
1528     bool AlignedBy4 = Alignment >= Align(4);
1529     if (IsFast)
1530       *IsFast = AlignedBy4;
1531 
1532     return AlignedBy4;
1533   }
1534 
1535   if (Subtarget->hasUnalignedBufferAccessEnabled() &&
1536       !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1537         AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1538     // If we have an uniform constant load, it still requires using a slow
1539     // buffer instruction if unaligned.
1540     if (IsFast) {
1541       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1542       // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1543       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1544                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1545         Alignment >= Align(4) : Alignment != Align(2);
1546     }
1547 
1548     return true;
1549   }
1550 
1551   // Smaller than dword value must be aligned.
1552   if (Size < 32)
1553     return false;
1554 
1555   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1556   // byte-address are ignored, thus forcing Dword alignment.
1557   // This applies to private, global, and constant memory.
1558   if (IsFast)
1559     *IsFast = true;
1560 
1561   return Size >= 32 && Alignment >= Align(4);
1562 }
1563 
1564 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1565     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1566     bool *IsFast) const {
1567   if (IsFast)
1568     *IsFast = false;
1569 
1570   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1571   // which isn't a simple VT.
1572   // Until MVT is extended to handle this, simply check for the size and
1573   // rely on the condition below: allow accesses if the size is a multiple of 4.
1574   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1575                            VT.getStoreSize() > 16)) {
1576     return false;
1577   }
1578 
1579   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1580                                             Alignment, Flags, IsFast);
1581 }
1582 
1583 EVT SITargetLowering::getOptimalMemOpType(
1584     const MemOp &Op, const AttributeList &FuncAttributes) const {
1585   // FIXME: Should account for address space here.
1586 
1587   // The default fallback uses the private pointer size as a guess for a type to
1588   // use. Make sure we switch these to 64-bit accesses.
1589 
1590   if (Op.size() >= 16 &&
1591       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1592     return MVT::v4i32;
1593 
1594   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1595     return MVT::v2i32;
1596 
1597   // Use the default.
1598   return MVT::Other;
1599 }
1600 
1601 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1602   const MemSDNode *MemNode = cast<MemSDNode>(N);
1603   const Value *Ptr = MemNode->getMemOperand()->getValue();
1604   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1605   return I && I->getMetadata("amdgpu.noclobber");
1606 }
1607 
1608 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1609   return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1610          AS == AMDGPUAS::PRIVATE_ADDRESS;
1611 }
1612 
1613 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1614                                            unsigned DestAS) const {
1615   // Flat -> private/local is a simple truncate.
1616   // Flat -> global is no-op
1617   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1618     return true;
1619 
1620   const GCNTargetMachine &TM =
1621       static_cast<const GCNTargetMachine &>(getTargetMachine());
1622   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1623 }
1624 
1625 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1626   const MemSDNode *MemNode = cast<MemSDNode>(N);
1627 
1628   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1629 }
1630 
1631 TargetLoweringBase::LegalizeTypeAction
1632 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1633   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1634       VT.getScalarType().bitsLE(MVT::i16))
1635     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1636   return TargetLoweringBase::getPreferredVectorAction(VT);
1637 }
1638 
1639 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1640                                                          Type *Ty) const {
1641   // FIXME: Could be smarter if called for vector constants.
1642   return true;
1643 }
1644 
1645 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1646   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1647     switch (Op) {
1648     case ISD::LOAD:
1649     case ISD::STORE:
1650 
1651     // These operations are done with 32-bit instructions anyway.
1652     case ISD::AND:
1653     case ISD::OR:
1654     case ISD::XOR:
1655     case ISD::SELECT:
1656       // TODO: Extensions?
1657       return true;
1658     default:
1659       return false;
1660     }
1661   }
1662 
1663   // SimplifySetCC uses this function to determine whether or not it should
1664   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1665   if (VT == MVT::i1 && Op == ISD::SETCC)
1666     return false;
1667 
1668   return TargetLowering::isTypeDesirableForOp(Op, VT);
1669 }
1670 
1671 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1672                                                    const SDLoc &SL,
1673                                                    SDValue Chain,
1674                                                    uint64_t Offset) const {
1675   const DataLayout &DL = DAG.getDataLayout();
1676   MachineFunction &MF = DAG.getMachineFunction();
1677   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1678 
1679   const ArgDescriptor *InputPtrReg;
1680   const TargetRegisterClass *RC;
1681   LLT ArgTy;
1682   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1683 
1684   std::tie(InputPtrReg, RC, ArgTy) =
1685       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1686 
1687   // We may not have the kernarg segment argument if we have no kernel
1688   // arguments.
1689   if (!InputPtrReg)
1690     return DAG.getConstant(0, SL, PtrVT);
1691 
1692   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1693   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1694     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1695 
1696   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1697 }
1698 
1699 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1700                                             const SDLoc &SL) const {
1701   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1702                                                FIRST_IMPLICIT);
1703   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1704 }
1705 
1706 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1707                                          const SDLoc &SL, SDValue Val,
1708                                          bool Signed,
1709                                          const ISD::InputArg *Arg) const {
1710   // First, if it is a widened vector, narrow it.
1711   if (VT.isVector() &&
1712       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1713     EVT NarrowedVT =
1714         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1715                          VT.getVectorNumElements());
1716     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1717                       DAG.getConstant(0, SL, MVT::i32));
1718   }
1719 
1720   // Then convert the vector elements or scalar value.
1721   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1722       VT.bitsLT(MemVT)) {
1723     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1724     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1725   }
1726 
1727   if (MemVT.isFloatingPoint())
1728     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1729   else if (Signed)
1730     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1731   else
1732     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1733 
1734   return Val;
1735 }
1736 
1737 SDValue SITargetLowering::lowerKernargMemParameter(
1738     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1739     uint64_t Offset, Align Alignment, bool Signed,
1740     const ISD::InputArg *Arg) const {
1741   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1742 
1743   // Try to avoid using an extload by loading earlier than the argument address,
1744   // and extracting the relevant bits. The load should hopefully be merged with
1745   // the previous argument.
1746   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1747     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1748     int64_t AlignDownOffset = alignDown(Offset, 4);
1749     int64_t OffsetDiff = Offset - AlignDownOffset;
1750 
1751     EVT IntVT = MemVT.changeTypeToInteger();
1752 
1753     // TODO: If we passed in the base kernel offset we could have a better
1754     // alignment than 4, but we don't really need it.
1755     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1756     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1757                                MachineMemOperand::MODereferenceable |
1758                                    MachineMemOperand::MOInvariant);
1759 
1760     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1761     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1762 
1763     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1764     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1765     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1766 
1767 
1768     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1769   }
1770 
1771   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1772   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1773                              MachineMemOperand::MODereferenceable |
1774                                  MachineMemOperand::MOInvariant);
1775 
1776   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1777   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1778 }
1779 
1780 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1781                                               const SDLoc &SL, SDValue Chain,
1782                                               const ISD::InputArg &Arg) const {
1783   MachineFunction &MF = DAG.getMachineFunction();
1784   MachineFrameInfo &MFI = MF.getFrameInfo();
1785 
1786   if (Arg.Flags.isByVal()) {
1787     unsigned Size = Arg.Flags.getByValSize();
1788     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1789     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1790   }
1791 
1792   unsigned ArgOffset = VA.getLocMemOffset();
1793   unsigned ArgSize = VA.getValVT().getStoreSize();
1794 
1795   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1796 
1797   // Create load nodes to retrieve arguments from the stack.
1798   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1799   SDValue ArgValue;
1800 
1801   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1802   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1803   MVT MemVT = VA.getValVT();
1804 
1805   switch (VA.getLocInfo()) {
1806   default:
1807     break;
1808   case CCValAssign::BCvt:
1809     MemVT = VA.getLocVT();
1810     break;
1811   case CCValAssign::SExt:
1812     ExtType = ISD::SEXTLOAD;
1813     break;
1814   case CCValAssign::ZExt:
1815     ExtType = ISD::ZEXTLOAD;
1816     break;
1817   case CCValAssign::AExt:
1818     ExtType = ISD::EXTLOAD;
1819     break;
1820   }
1821 
1822   ArgValue = DAG.getExtLoad(
1823     ExtType, SL, VA.getLocVT(), Chain, FIN,
1824     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1825     MemVT);
1826   return ArgValue;
1827 }
1828 
1829 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1830   const SIMachineFunctionInfo &MFI,
1831   EVT VT,
1832   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1833   const ArgDescriptor *Reg;
1834   const TargetRegisterClass *RC;
1835   LLT Ty;
1836 
1837   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1838   if (!Reg) {
1839     if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) {
1840       // It's possible for a kernarg intrinsic call to appear in a kernel with
1841       // no allocated segment, in which case we do not add the user sgpr
1842       // argument, so just return null.
1843       return DAG.getConstant(0, SDLoc(), VT);
1844     }
1845 
1846     // It's undefined behavior if a function marked with the amdgpu-no-*
1847     // attributes uses the corresponding intrinsic.
1848     return DAG.getUNDEF(VT);
1849   }
1850 
1851   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1852 }
1853 
1854 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1855                                CallingConv::ID CallConv,
1856                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1857                                FunctionType *FType,
1858                                SIMachineFunctionInfo *Info) {
1859   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1860     const ISD::InputArg *Arg = &Ins[I];
1861 
1862     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1863            "vector type argument should have been split");
1864 
1865     // First check if it's a PS input addr.
1866     if (CallConv == CallingConv::AMDGPU_PS &&
1867         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1868       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1869 
1870       // Inconveniently only the first part of the split is marked as isSplit,
1871       // so skip to the end. We only want to increment PSInputNum once for the
1872       // entire split argument.
1873       if (Arg->Flags.isSplit()) {
1874         while (!Arg->Flags.isSplitEnd()) {
1875           assert((!Arg->VT.isVector() ||
1876                   Arg->VT.getScalarSizeInBits() == 16) &&
1877                  "unexpected vector split in ps argument type");
1878           if (!SkipArg)
1879             Splits.push_back(*Arg);
1880           Arg = &Ins[++I];
1881         }
1882       }
1883 
1884       if (SkipArg) {
1885         // We can safely skip PS inputs.
1886         Skipped.set(Arg->getOrigArgIndex());
1887         ++PSInputNum;
1888         continue;
1889       }
1890 
1891       Info->markPSInputAllocated(PSInputNum);
1892       if (Arg->Used)
1893         Info->markPSInputEnabled(PSInputNum);
1894 
1895       ++PSInputNum;
1896     }
1897 
1898     Splits.push_back(*Arg);
1899   }
1900 }
1901 
1902 // Allocate special inputs passed in VGPRs.
1903 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1904                                                       MachineFunction &MF,
1905                                                       const SIRegisterInfo &TRI,
1906                                                       SIMachineFunctionInfo &Info) const {
1907   const LLT S32 = LLT::scalar(32);
1908   MachineRegisterInfo &MRI = MF.getRegInfo();
1909 
1910   if (Info.hasWorkItemIDX()) {
1911     Register Reg = AMDGPU::VGPR0;
1912     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1913 
1914     CCInfo.AllocateReg(Reg);
1915     unsigned Mask = (Subtarget->hasPackedTID() &&
1916                      Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1917     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1918   }
1919 
1920   if (Info.hasWorkItemIDY()) {
1921     assert(Info.hasWorkItemIDX());
1922     if (Subtarget->hasPackedTID()) {
1923       Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1924                                                         0x3ff << 10));
1925     } else {
1926       unsigned Reg = AMDGPU::VGPR1;
1927       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1928 
1929       CCInfo.AllocateReg(Reg);
1930       Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1931     }
1932   }
1933 
1934   if (Info.hasWorkItemIDZ()) {
1935     assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
1936     if (Subtarget->hasPackedTID()) {
1937       Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1938                                                         0x3ff << 20));
1939     } else {
1940       unsigned Reg = AMDGPU::VGPR2;
1941       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1942 
1943       CCInfo.AllocateReg(Reg);
1944       Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1945     }
1946   }
1947 }
1948 
1949 // Try to allocate a VGPR at the end of the argument list, or if no argument
1950 // VGPRs are left allocating a stack slot.
1951 // If \p Mask is is given it indicates bitfield position in the register.
1952 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1953 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1954                                          ArgDescriptor Arg = ArgDescriptor()) {
1955   if (Arg.isSet())
1956     return ArgDescriptor::createArg(Arg, Mask);
1957 
1958   ArrayRef<MCPhysReg> ArgVGPRs
1959     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1960   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1961   if (RegIdx == ArgVGPRs.size()) {
1962     // Spill to stack required.
1963     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1964 
1965     return ArgDescriptor::createStack(Offset, Mask);
1966   }
1967 
1968   unsigned Reg = ArgVGPRs[RegIdx];
1969   Reg = CCInfo.AllocateReg(Reg);
1970   assert(Reg != AMDGPU::NoRegister);
1971 
1972   MachineFunction &MF = CCInfo.getMachineFunction();
1973   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1974   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1975   return ArgDescriptor::createRegister(Reg, Mask);
1976 }
1977 
1978 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1979                                              const TargetRegisterClass *RC,
1980                                              unsigned NumArgRegs) {
1981   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1982   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1983   if (RegIdx == ArgSGPRs.size())
1984     report_fatal_error("ran out of SGPRs for arguments");
1985 
1986   unsigned Reg = ArgSGPRs[RegIdx];
1987   Reg = CCInfo.AllocateReg(Reg);
1988   assert(Reg != AMDGPU::NoRegister);
1989 
1990   MachineFunction &MF = CCInfo.getMachineFunction();
1991   MF.addLiveIn(Reg, RC);
1992   return ArgDescriptor::createRegister(Reg);
1993 }
1994 
1995 // If this has a fixed position, we still should allocate the register in the
1996 // CCInfo state. Technically we could get away with this for values passed
1997 // outside of the normal argument range.
1998 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
1999                                        const TargetRegisterClass *RC,
2000                                        MCRegister Reg) {
2001   Reg = CCInfo.AllocateReg(Reg);
2002   assert(Reg != AMDGPU::NoRegister);
2003   MachineFunction &MF = CCInfo.getMachineFunction();
2004   MF.addLiveIn(Reg, RC);
2005 }
2006 
2007 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
2008   if (Arg) {
2009     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
2010                                Arg.getRegister());
2011   } else
2012     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
2013 }
2014 
2015 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
2016   if (Arg) {
2017     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
2018                                Arg.getRegister());
2019   } else
2020     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
2021 }
2022 
2023 /// Allocate implicit function VGPR arguments at the end of allocated user
2024 /// arguments.
2025 void SITargetLowering::allocateSpecialInputVGPRs(
2026   CCState &CCInfo, MachineFunction &MF,
2027   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2028   const unsigned Mask = 0x3ff;
2029   ArgDescriptor Arg;
2030 
2031   if (Info.hasWorkItemIDX()) {
2032     Arg = allocateVGPR32Input(CCInfo, Mask);
2033     Info.setWorkItemIDX(Arg);
2034   }
2035 
2036   if (Info.hasWorkItemIDY()) {
2037     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
2038     Info.setWorkItemIDY(Arg);
2039   }
2040 
2041   if (Info.hasWorkItemIDZ())
2042     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2043 }
2044 
2045 /// Allocate implicit function VGPR arguments in fixed registers.
2046 void SITargetLowering::allocateSpecialInputVGPRsFixed(
2047   CCState &CCInfo, MachineFunction &MF,
2048   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2049   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2050   if (!Reg)
2051     report_fatal_error("failed to allocated VGPR for implicit arguments");
2052 
2053   const unsigned Mask = 0x3ff;
2054   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2055   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2056   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2057 }
2058 
2059 void SITargetLowering::allocateSpecialInputSGPRs(
2060   CCState &CCInfo,
2061   MachineFunction &MF,
2062   const SIRegisterInfo &TRI,
2063   SIMachineFunctionInfo &Info) const {
2064   auto &ArgInfo = Info.getArgInfo();
2065 
2066   // We need to allocate these in place regardless of their use.
2067   const bool IsFixed = AMDGPUTargetMachine::EnableFixedFunctionABI;
2068 
2069   // TODO: Unify handling with private memory pointers.
2070   if (IsFixed || Info.hasDispatchPtr())
2071     allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2072 
2073   if (IsFixed || Info.hasQueuePtr())
2074     allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2075 
2076   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2077   // constant offset from the kernarg segment.
2078   if (IsFixed || Info.hasImplicitArgPtr())
2079     allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2080 
2081   if (IsFixed || Info.hasDispatchID())
2082     allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2083 
2084   // flat_scratch_init is not applicable for non-kernel functions.
2085 
2086   if (IsFixed || Info.hasWorkGroupIDX())
2087     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2088 
2089   if (IsFixed || Info.hasWorkGroupIDY())
2090     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2091 
2092   if (IsFixed || Info.hasWorkGroupIDZ())
2093     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2094 }
2095 
2096 // Allocate special inputs passed in user SGPRs.
2097 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2098                                             MachineFunction &MF,
2099                                             const SIRegisterInfo &TRI,
2100                                             SIMachineFunctionInfo &Info) const {
2101   if (Info.hasImplicitBufferPtr()) {
2102     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2103     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2104     CCInfo.AllocateReg(ImplicitBufferPtrReg);
2105   }
2106 
2107   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2108   if (Info.hasPrivateSegmentBuffer()) {
2109     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2110     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2111     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2112   }
2113 
2114   if (Info.hasDispatchPtr()) {
2115     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2116     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2117     CCInfo.AllocateReg(DispatchPtrReg);
2118   }
2119 
2120   if (Info.hasQueuePtr()) {
2121     Register QueuePtrReg = Info.addQueuePtr(TRI);
2122     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2123     CCInfo.AllocateReg(QueuePtrReg);
2124   }
2125 
2126   if (Info.hasKernargSegmentPtr()) {
2127     MachineRegisterInfo &MRI = MF.getRegInfo();
2128     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2129     CCInfo.AllocateReg(InputPtrReg);
2130 
2131     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2132     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2133   }
2134 
2135   if (Info.hasDispatchID()) {
2136     Register DispatchIDReg = Info.addDispatchID(TRI);
2137     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2138     CCInfo.AllocateReg(DispatchIDReg);
2139   }
2140 
2141   if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2142     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2143     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2144     CCInfo.AllocateReg(FlatScratchInitReg);
2145   }
2146 
2147   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2148   // these from the dispatch pointer.
2149 }
2150 
2151 // Allocate special input registers that are initialized per-wave.
2152 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2153                                            MachineFunction &MF,
2154                                            SIMachineFunctionInfo &Info,
2155                                            CallingConv::ID CallConv,
2156                                            bool IsShader) const {
2157   if (Info.hasWorkGroupIDX()) {
2158     Register Reg = Info.addWorkGroupIDX();
2159     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2160     CCInfo.AllocateReg(Reg);
2161   }
2162 
2163   if (Info.hasWorkGroupIDY()) {
2164     Register Reg = Info.addWorkGroupIDY();
2165     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2166     CCInfo.AllocateReg(Reg);
2167   }
2168 
2169   if (Info.hasWorkGroupIDZ()) {
2170     Register Reg = Info.addWorkGroupIDZ();
2171     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2172     CCInfo.AllocateReg(Reg);
2173   }
2174 
2175   if (Info.hasWorkGroupInfo()) {
2176     Register Reg = Info.addWorkGroupInfo();
2177     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2178     CCInfo.AllocateReg(Reg);
2179   }
2180 
2181   if (Info.hasPrivateSegmentWaveByteOffset()) {
2182     // Scratch wave offset passed in system SGPR.
2183     unsigned PrivateSegmentWaveByteOffsetReg;
2184 
2185     if (IsShader) {
2186       PrivateSegmentWaveByteOffsetReg =
2187         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2188 
2189       // This is true if the scratch wave byte offset doesn't have a fixed
2190       // location.
2191       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2192         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2193         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2194       }
2195     } else
2196       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2197 
2198     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2199     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2200   }
2201 }
2202 
2203 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2204                                      MachineFunction &MF,
2205                                      const SIRegisterInfo &TRI,
2206                                      SIMachineFunctionInfo &Info) {
2207   // Now that we've figured out where the scratch register inputs are, see if
2208   // should reserve the arguments and use them directly.
2209   MachineFrameInfo &MFI = MF.getFrameInfo();
2210   bool HasStackObjects = MFI.hasStackObjects();
2211   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2212 
2213   // Record that we know we have non-spill stack objects so we don't need to
2214   // check all stack objects later.
2215   if (HasStackObjects)
2216     Info.setHasNonSpillStackObjects(true);
2217 
2218   // Everything live out of a block is spilled with fast regalloc, so it's
2219   // almost certain that spilling will be required.
2220   if (TM.getOptLevel() == CodeGenOpt::None)
2221     HasStackObjects = true;
2222 
2223   // For now assume stack access is needed in any callee functions, so we need
2224   // the scratch registers to pass in.
2225   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2226 
2227   if (!ST.enableFlatScratch()) {
2228     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2229       // If we have stack objects, we unquestionably need the private buffer
2230       // resource. For the Code Object V2 ABI, this will be the first 4 user
2231       // SGPR inputs. We can reserve those and use them directly.
2232 
2233       Register PrivateSegmentBufferReg =
2234           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2235       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2236     } else {
2237       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2238       // We tentatively reserve the last registers (skipping the last registers
2239       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2240       // we'll replace these with the ones immediately after those which were
2241       // really allocated. In the prologue copies will be inserted from the
2242       // argument to these reserved registers.
2243 
2244       // Without HSA, relocations are used for the scratch pointer and the
2245       // buffer resource setup is always inserted in the prologue. Scratch wave
2246       // offset is still in an input SGPR.
2247       Info.setScratchRSrcReg(ReservedBufferReg);
2248     }
2249   }
2250 
2251   MachineRegisterInfo &MRI = MF.getRegInfo();
2252 
2253   // For entry functions we have to set up the stack pointer if we use it,
2254   // whereas non-entry functions get this "for free". This means there is no
2255   // intrinsic advantage to using S32 over S34 in cases where we do not have
2256   // calls but do need a frame pointer (i.e. if we are requested to have one
2257   // because frame pointer elimination is disabled). To keep things simple we
2258   // only ever use S32 as the call ABI stack pointer, and so using it does not
2259   // imply we need a separate frame pointer.
2260   //
2261   // Try to use s32 as the SP, but move it if it would interfere with input
2262   // arguments. This won't work with calls though.
2263   //
2264   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2265   // registers.
2266   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2267     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2268   } else {
2269     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2270 
2271     if (MFI.hasCalls())
2272       report_fatal_error("call in graphics shader with too many input SGPRs");
2273 
2274     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2275       if (!MRI.isLiveIn(Reg)) {
2276         Info.setStackPtrOffsetReg(Reg);
2277         break;
2278       }
2279     }
2280 
2281     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2282       report_fatal_error("failed to find register for SP");
2283   }
2284 
2285   // hasFP should be accurate for entry functions even before the frame is
2286   // finalized, because it does not rely on the known stack size, only
2287   // properties like whether variable sized objects are present.
2288   if (ST.getFrameLowering()->hasFP(MF)) {
2289     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2290   }
2291 }
2292 
2293 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2294   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2295   return !Info->isEntryFunction();
2296 }
2297 
2298 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2299 
2300 }
2301 
2302 void SITargetLowering::insertCopiesSplitCSR(
2303   MachineBasicBlock *Entry,
2304   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2305   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2306 
2307   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2308   if (!IStart)
2309     return;
2310 
2311   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2312   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2313   MachineBasicBlock::iterator MBBI = Entry->begin();
2314   for (const MCPhysReg *I = IStart; *I; ++I) {
2315     const TargetRegisterClass *RC = nullptr;
2316     if (AMDGPU::SReg_64RegClass.contains(*I))
2317       RC = &AMDGPU::SGPR_64RegClass;
2318     else if (AMDGPU::SReg_32RegClass.contains(*I))
2319       RC = &AMDGPU::SGPR_32RegClass;
2320     else
2321       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2322 
2323     Register NewVR = MRI->createVirtualRegister(RC);
2324     // Create copy from CSR to a virtual register.
2325     Entry->addLiveIn(*I);
2326     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2327       .addReg(*I);
2328 
2329     // Insert the copy-back instructions right before the terminator.
2330     for (auto *Exit : Exits)
2331       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2332               TII->get(TargetOpcode::COPY), *I)
2333         .addReg(NewVR);
2334   }
2335 }
2336 
2337 SDValue SITargetLowering::LowerFormalArguments(
2338     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2339     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2340     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2341   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2342 
2343   MachineFunction &MF = DAG.getMachineFunction();
2344   const Function &Fn = MF.getFunction();
2345   FunctionType *FType = MF.getFunction().getFunctionType();
2346   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2347 
2348   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2349     DiagnosticInfoUnsupported NoGraphicsHSA(
2350         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2351     DAG.getContext()->diagnose(NoGraphicsHSA);
2352     return DAG.getEntryNode();
2353   }
2354 
2355   Info->allocateModuleLDSGlobal(Fn.getParent());
2356 
2357   SmallVector<ISD::InputArg, 16> Splits;
2358   SmallVector<CCValAssign, 16> ArgLocs;
2359   BitVector Skipped(Ins.size());
2360   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2361                  *DAG.getContext());
2362 
2363   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2364   bool IsKernel = AMDGPU::isKernel(CallConv);
2365   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2366 
2367   if (IsGraphics) {
2368     assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2369            (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2370            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2371            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2372            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2373            !Info->hasWorkItemIDZ());
2374   }
2375 
2376   if (CallConv == CallingConv::AMDGPU_PS) {
2377     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2378 
2379     // At least one interpolation mode must be enabled or else the GPU will
2380     // hang.
2381     //
2382     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2383     // set PSInputAddr, the user wants to enable some bits after the compilation
2384     // based on run-time states. Since we can't know what the final PSInputEna
2385     // will look like, so we shouldn't do anything here and the user should take
2386     // responsibility for the correct programming.
2387     //
2388     // Otherwise, the following restrictions apply:
2389     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2390     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2391     //   enabled too.
2392     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2393         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2394       CCInfo.AllocateReg(AMDGPU::VGPR0);
2395       CCInfo.AllocateReg(AMDGPU::VGPR1);
2396       Info->markPSInputAllocated(0);
2397       Info->markPSInputEnabled(0);
2398     }
2399     if (Subtarget->isAmdPalOS()) {
2400       // For isAmdPalOS, the user does not enable some bits after compilation
2401       // based on run-time states; the register values being generated here are
2402       // the final ones set in hardware. Therefore we need to apply the
2403       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2404       // a bit is set in PSInputAddr but not PSInputEnable is where the
2405       // frontend set up an input arg for a particular interpolation mode, but
2406       // nothing uses that input arg. Really we should have an earlier pass
2407       // that removes such an arg.)
2408       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2409       if ((PsInputBits & 0x7F) == 0 ||
2410           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2411         Info->markPSInputEnabled(
2412             countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2413     }
2414   } else if (IsKernel) {
2415     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2416   } else {
2417     Splits.append(Ins.begin(), Ins.end());
2418   }
2419 
2420   if (IsEntryFunc) {
2421     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2422     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2423   } else {
2424     // For the fixed ABI, pass workitem IDs in the last argument register.
2425     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
2426       allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2427   }
2428 
2429   if (IsKernel) {
2430     analyzeFormalArgumentsCompute(CCInfo, Ins);
2431   } else {
2432     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2433     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2434   }
2435 
2436   SmallVector<SDValue, 16> Chains;
2437 
2438   // FIXME: This is the minimum kernel argument alignment. We should improve
2439   // this to the maximum alignment of the arguments.
2440   //
2441   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2442   // kern arg offset.
2443   const Align KernelArgBaseAlign = Align(16);
2444 
2445   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2446     const ISD::InputArg &Arg = Ins[i];
2447     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2448       InVals.push_back(DAG.getUNDEF(Arg.VT));
2449       continue;
2450     }
2451 
2452     CCValAssign &VA = ArgLocs[ArgIdx++];
2453     MVT VT = VA.getLocVT();
2454 
2455     if (IsEntryFunc && VA.isMemLoc()) {
2456       VT = Ins[i].VT;
2457       EVT MemVT = VA.getLocVT();
2458 
2459       const uint64_t Offset = VA.getLocMemOffset();
2460       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2461 
2462       if (Arg.Flags.isByRef()) {
2463         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2464 
2465         const GCNTargetMachine &TM =
2466             static_cast<const GCNTargetMachine &>(getTargetMachine());
2467         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2468                                     Arg.Flags.getPointerAddrSpace())) {
2469           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2470                                      Arg.Flags.getPointerAddrSpace());
2471         }
2472 
2473         InVals.push_back(Ptr);
2474         continue;
2475       }
2476 
2477       SDValue Arg = lowerKernargMemParameter(
2478         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2479       Chains.push_back(Arg.getValue(1));
2480 
2481       auto *ParamTy =
2482         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2483       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2484           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2485                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2486         // On SI local pointers are just offsets into LDS, so they are always
2487         // less than 16-bits.  On CI and newer they could potentially be
2488         // real pointers, so we can't guarantee their size.
2489         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2490                           DAG.getValueType(MVT::i16));
2491       }
2492 
2493       InVals.push_back(Arg);
2494       continue;
2495     } else if (!IsEntryFunc && VA.isMemLoc()) {
2496       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2497       InVals.push_back(Val);
2498       if (!Arg.Flags.isByVal())
2499         Chains.push_back(Val.getValue(1));
2500       continue;
2501     }
2502 
2503     assert(VA.isRegLoc() && "Parameter must be in a register!");
2504 
2505     Register Reg = VA.getLocReg();
2506     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2507     EVT ValVT = VA.getValVT();
2508 
2509     Reg = MF.addLiveIn(Reg, RC);
2510     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2511 
2512     if (Arg.Flags.isSRet()) {
2513       // The return object should be reasonably addressable.
2514 
2515       // FIXME: This helps when the return is a real sret. If it is a
2516       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2517       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2518       unsigned NumBits
2519         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2520       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2521         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2522     }
2523 
2524     // If this is an 8 or 16-bit value, it is really passed promoted
2525     // to 32 bits. Insert an assert[sz]ext to capture this, then
2526     // truncate to the right size.
2527     switch (VA.getLocInfo()) {
2528     case CCValAssign::Full:
2529       break;
2530     case CCValAssign::BCvt:
2531       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2532       break;
2533     case CCValAssign::SExt:
2534       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2535                         DAG.getValueType(ValVT));
2536       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2537       break;
2538     case CCValAssign::ZExt:
2539       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2540                         DAG.getValueType(ValVT));
2541       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2542       break;
2543     case CCValAssign::AExt:
2544       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2545       break;
2546     default:
2547       llvm_unreachable("Unknown loc info!");
2548     }
2549 
2550     InVals.push_back(Val);
2551   }
2552 
2553   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
2554     // Special inputs come after user arguments.
2555     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2556   }
2557 
2558   // Start adding system SGPRs.
2559   if (IsEntryFunc) {
2560     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2561   } else {
2562     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2563     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2564   }
2565 
2566   auto &ArgUsageInfo =
2567     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2568   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2569 
2570   unsigned StackArgSize = CCInfo.getNextStackOffset();
2571   Info->setBytesInStackArgArea(StackArgSize);
2572 
2573   return Chains.empty() ? Chain :
2574     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2575 }
2576 
2577 // TODO: If return values can't fit in registers, we should return as many as
2578 // possible in registers before passing on stack.
2579 bool SITargetLowering::CanLowerReturn(
2580   CallingConv::ID CallConv,
2581   MachineFunction &MF, bool IsVarArg,
2582   const SmallVectorImpl<ISD::OutputArg> &Outs,
2583   LLVMContext &Context) const {
2584   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2585   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2586   // for shaders. Vector types should be explicitly handled by CC.
2587   if (AMDGPU::isEntryFunctionCC(CallConv))
2588     return true;
2589 
2590   SmallVector<CCValAssign, 16> RVLocs;
2591   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2592   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2593 }
2594 
2595 SDValue
2596 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2597                               bool isVarArg,
2598                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2599                               const SmallVectorImpl<SDValue> &OutVals,
2600                               const SDLoc &DL, SelectionDAG &DAG) const {
2601   MachineFunction &MF = DAG.getMachineFunction();
2602   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2603 
2604   if (AMDGPU::isKernel(CallConv)) {
2605     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2606                                              OutVals, DL, DAG);
2607   }
2608 
2609   bool IsShader = AMDGPU::isShader(CallConv);
2610 
2611   Info->setIfReturnsVoid(Outs.empty());
2612   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2613 
2614   // CCValAssign - represent the assignment of the return value to a location.
2615   SmallVector<CCValAssign, 48> RVLocs;
2616   SmallVector<ISD::OutputArg, 48> Splits;
2617 
2618   // CCState - Info about the registers and stack slots.
2619   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2620                  *DAG.getContext());
2621 
2622   // Analyze outgoing return values.
2623   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2624 
2625   SDValue Flag;
2626   SmallVector<SDValue, 48> RetOps;
2627   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2628 
2629   // Add return address for callable functions.
2630   if (!Info->isEntryFunction()) {
2631     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2632     SDValue ReturnAddrReg = CreateLiveInRegister(
2633       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2634 
2635     SDValue ReturnAddrVirtualReg =
2636         DAG.getRegister(MF.getRegInfo().createVirtualRegister(
2637                             CallConv != CallingConv::AMDGPU_Gfx
2638                                 ? &AMDGPU::CCR_SGPR_64RegClass
2639                                 : &AMDGPU::Gfx_CCR_SGPR_64RegClass),
2640                         MVT::i64);
2641     Chain =
2642         DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2643     Flag = Chain.getValue(1);
2644     RetOps.push_back(ReturnAddrVirtualReg);
2645   }
2646 
2647   // Copy the result values into the output registers.
2648   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2649        ++I, ++RealRVLocIdx) {
2650     CCValAssign &VA = RVLocs[I];
2651     assert(VA.isRegLoc() && "Can only return in registers!");
2652     // TODO: Partially return in registers if return values don't fit.
2653     SDValue Arg = OutVals[RealRVLocIdx];
2654 
2655     // Copied from other backends.
2656     switch (VA.getLocInfo()) {
2657     case CCValAssign::Full:
2658       break;
2659     case CCValAssign::BCvt:
2660       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2661       break;
2662     case CCValAssign::SExt:
2663       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2664       break;
2665     case CCValAssign::ZExt:
2666       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2667       break;
2668     case CCValAssign::AExt:
2669       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2670       break;
2671     default:
2672       llvm_unreachable("Unknown loc info!");
2673     }
2674 
2675     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2676     Flag = Chain.getValue(1);
2677     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2678   }
2679 
2680   // FIXME: Does sret work properly?
2681   if (!Info->isEntryFunction()) {
2682     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2683     const MCPhysReg *I =
2684       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2685     if (I) {
2686       for (; *I; ++I) {
2687         if (AMDGPU::SReg_64RegClass.contains(*I))
2688           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2689         else if (AMDGPU::SReg_32RegClass.contains(*I))
2690           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2691         else
2692           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2693       }
2694     }
2695   }
2696 
2697   // Update chain and glue.
2698   RetOps[0] = Chain;
2699   if (Flag.getNode())
2700     RetOps.push_back(Flag);
2701 
2702   unsigned Opc = AMDGPUISD::ENDPGM;
2703   if (!IsWaveEnd) {
2704     if (IsShader)
2705       Opc = AMDGPUISD::RETURN_TO_EPILOG;
2706     else if (CallConv == CallingConv::AMDGPU_Gfx)
2707       Opc = AMDGPUISD::RET_GFX_FLAG;
2708     else
2709       Opc = AMDGPUISD::RET_FLAG;
2710   }
2711 
2712   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2713 }
2714 
2715 SDValue SITargetLowering::LowerCallResult(
2716     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2717     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2718     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2719     SDValue ThisVal) const {
2720   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2721 
2722   // Assign locations to each value returned by this call.
2723   SmallVector<CCValAssign, 16> RVLocs;
2724   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2725                  *DAG.getContext());
2726   CCInfo.AnalyzeCallResult(Ins, RetCC);
2727 
2728   // Copy all of the result registers out of their specified physreg.
2729   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2730     CCValAssign VA = RVLocs[i];
2731     SDValue Val;
2732 
2733     if (VA.isRegLoc()) {
2734       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2735       Chain = Val.getValue(1);
2736       InFlag = Val.getValue(2);
2737     } else if (VA.isMemLoc()) {
2738       report_fatal_error("TODO: return values in memory");
2739     } else
2740       llvm_unreachable("unknown argument location type");
2741 
2742     switch (VA.getLocInfo()) {
2743     case CCValAssign::Full:
2744       break;
2745     case CCValAssign::BCvt:
2746       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2747       break;
2748     case CCValAssign::ZExt:
2749       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2750                         DAG.getValueType(VA.getValVT()));
2751       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2752       break;
2753     case CCValAssign::SExt:
2754       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2755                         DAG.getValueType(VA.getValVT()));
2756       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2757       break;
2758     case CCValAssign::AExt:
2759       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2760       break;
2761     default:
2762       llvm_unreachable("Unknown loc info!");
2763     }
2764 
2765     InVals.push_back(Val);
2766   }
2767 
2768   return Chain;
2769 }
2770 
2771 // Add code to pass special inputs required depending on used features separate
2772 // from the explicit user arguments present in the IR.
2773 void SITargetLowering::passSpecialInputs(
2774     CallLoweringInfo &CLI,
2775     CCState &CCInfo,
2776     const SIMachineFunctionInfo &Info,
2777     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2778     SmallVectorImpl<SDValue> &MemOpChains,
2779     SDValue Chain) const {
2780   // If we don't have a call site, this was a call inserted by
2781   // legalization. These can never use special inputs.
2782   if (!CLI.CB)
2783     return;
2784 
2785   SelectionDAG &DAG = CLI.DAG;
2786   const SDLoc &DL = CLI.DL;
2787 
2788   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2789   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2790 
2791   const AMDGPUFunctionArgInfo *CalleeArgInfo
2792     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2793   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2794     auto &ArgUsageInfo =
2795       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2796     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2797   }
2798 
2799   // TODO: Unify with private memory register handling. This is complicated by
2800   // the fact that at least in kernels, the input argument is not necessarily
2801   // in the same location as the input.
2802   static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
2803                              StringLiteral> ImplicitAttrs[] = {
2804     {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"},
2805     {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" },
2806     {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"},
2807     {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"},
2808     {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"},
2809     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"},
2810     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}
2811   };
2812 
2813   for (auto Attr : ImplicitAttrs) {
2814     const ArgDescriptor *OutgoingArg;
2815     const TargetRegisterClass *ArgRC;
2816     LLT ArgTy;
2817 
2818     AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first;
2819 
2820     // If the callee does not use the attribute value, skip copying the value.
2821     if (CLI.CB->hasFnAttr(Attr.second))
2822       continue;
2823 
2824     std::tie(OutgoingArg, ArgRC, ArgTy) =
2825         CalleeArgInfo->getPreloadedValue(InputID);
2826     if (!OutgoingArg)
2827       continue;
2828 
2829     const ArgDescriptor *IncomingArg;
2830     const TargetRegisterClass *IncomingArgRC;
2831     LLT Ty;
2832     std::tie(IncomingArg, IncomingArgRC, Ty) =
2833         CallerArgInfo.getPreloadedValue(InputID);
2834     assert(IncomingArgRC == ArgRC);
2835 
2836     // All special arguments are ints for now.
2837     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2838     SDValue InputReg;
2839 
2840     if (IncomingArg) {
2841       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2842     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
2843       // The implicit arg ptr is special because it doesn't have a corresponding
2844       // input for kernels, and is computed from the kernarg segment pointer.
2845       InputReg = getImplicitArgPtr(DAG, DL);
2846     } else {
2847       // We may have proven the input wasn't needed, although the ABI is
2848       // requiring it. We just need to allocate the register appropriately.
2849       InputReg = DAG.getUNDEF(ArgVT);
2850     }
2851 
2852     if (OutgoingArg->isRegister()) {
2853       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2854       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2855         report_fatal_error("failed to allocate implicit input argument");
2856     } else {
2857       unsigned SpecialArgOffset =
2858           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2859       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2860                                               SpecialArgOffset);
2861       MemOpChains.push_back(ArgStore);
2862     }
2863   }
2864 
2865   // Pack workitem IDs into a single register or pass it as is if already
2866   // packed.
2867   const ArgDescriptor *OutgoingArg;
2868   const TargetRegisterClass *ArgRC;
2869   LLT Ty;
2870 
2871   std::tie(OutgoingArg, ArgRC, Ty) =
2872       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2873   if (!OutgoingArg)
2874     std::tie(OutgoingArg, ArgRC, Ty) =
2875         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2876   if (!OutgoingArg)
2877     std::tie(OutgoingArg, ArgRC, Ty) =
2878         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2879   if (!OutgoingArg)
2880     return;
2881 
2882   const ArgDescriptor *IncomingArgX = std::get<0>(
2883       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2884   const ArgDescriptor *IncomingArgY = std::get<0>(
2885       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2886   const ArgDescriptor *IncomingArgZ = std::get<0>(
2887       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2888 
2889   SDValue InputReg;
2890   SDLoc SL;
2891 
2892   const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
2893   const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
2894   const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
2895 
2896   // If incoming ids are not packed we need to pack them.
2897   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
2898       NeedWorkItemIDX)
2899     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2900 
2901   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
2902       NeedWorkItemIDY) {
2903     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2904     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2905                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2906     InputReg = InputReg.getNode() ?
2907                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2908   }
2909 
2910   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
2911       NeedWorkItemIDZ) {
2912     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2913     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2914                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2915     InputReg = InputReg.getNode() ?
2916                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2917   }
2918 
2919   if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
2920     // Workitem ids are already packed, any of present incoming arguments
2921     // will carry all required fields.
2922     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2923       IncomingArgX ? *IncomingArgX :
2924       IncomingArgY ? *IncomingArgY :
2925                      *IncomingArgZ, ~0u);
2926     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2927   }
2928 
2929   if (OutgoingArg->isRegister()) {
2930     if (InputReg)
2931       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2932 
2933     CCInfo.AllocateReg(OutgoingArg->getRegister());
2934   } else {
2935     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2936     if (InputReg) {
2937       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2938                                               SpecialArgOffset);
2939       MemOpChains.push_back(ArgStore);
2940     }
2941   }
2942 }
2943 
2944 static bool canGuaranteeTCO(CallingConv::ID CC) {
2945   return CC == CallingConv::Fast;
2946 }
2947 
2948 /// Return true if we might ever do TCO for calls with this calling convention.
2949 static bool mayTailCallThisCC(CallingConv::ID CC) {
2950   switch (CC) {
2951   case CallingConv::C:
2952   case CallingConv::AMDGPU_Gfx:
2953     return true;
2954   default:
2955     return canGuaranteeTCO(CC);
2956   }
2957 }
2958 
2959 bool SITargetLowering::isEligibleForTailCallOptimization(
2960     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2961     const SmallVectorImpl<ISD::OutputArg> &Outs,
2962     const SmallVectorImpl<SDValue> &OutVals,
2963     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2964   if (!mayTailCallThisCC(CalleeCC))
2965     return false;
2966 
2967   // For a divergent call target, we need to do a waterfall loop over the
2968   // possible callees which precludes us from using a simple jump.
2969   if (Callee->isDivergent())
2970     return false;
2971 
2972   MachineFunction &MF = DAG.getMachineFunction();
2973   const Function &CallerF = MF.getFunction();
2974   CallingConv::ID CallerCC = CallerF.getCallingConv();
2975   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2976   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2977 
2978   // Kernels aren't callable, and don't have a live in return address so it
2979   // doesn't make sense to do a tail call with entry functions.
2980   if (!CallerPreserved)
2981     return false;
2982 
2983   bool CCMatch = CallerCC == CalleeCC;
2984 
2985   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2986     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2987       return true;
2988     return false;
2989   }
2990 
2991   // TODO: Can we handle var args?
2992   if (IsVarArg)
2993     return false;
2994 
2995   for (const Argument &Arg : CallerF.args()) {
2996     if (Arg.hasByValAttr())
2997       return false;
2998   }
2999 
3000   LLVMContext &Ctx = *DAG.getContext();
3001 
3002   // Check that the call results are passed in the same way.
3003   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
3004                                   CCAssignFnForCall(CalleeCC, IsVarArg),
3005                                   CCAssignFnForCall(CallerCC, IsVarArg)))
3006     return false;
3007 
3008   // The callee has to preserve all registers the caller needs to preserve.
3009   if (!CCMatch) {
3010     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3011     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3012       return false;
3013   }
3014 
3015   // Nothing more to check if the callee is taking no arguments.
3016   if (Outs.empty())
3017     return true;
3018 
3019   SmallVector<CCValAssign, 16> ArgLocs;
3020   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
3021 
3022   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
3023 
3024   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
3025   // If the stack arguments for this call do not fit into our own save area then
3026   // the call cannot be made tail.
3027   // TODO: Is this really necessary?
3028   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3029     return false;
3030 
3031   const MachineRegisterInfo &MRI = MF.getRegInfo();
3032   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
3033 }
3034 
3035 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3036   if (!CI->isTailCall())
3037     return false;
3038 
3039   const Function *ParentFn = CI->getParent()->getParent();
3040   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
3041     return false;
3042   return true;
3043 }
3044 
3045 // The wave scratch offset register is used as the global base pointer.
3046 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
3047                                     SmallVectorImpl<SDValue> &InVals) const {
3048   SelectionDAG &DAG = CLI.DAG;
3049   const SDLoc &DL = CLI.DL;
3050   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3051   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3052   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3053   SDValue Chain = CLI.Chain;
3054   SDValue Callee = CLI.Callee;
3055   bool &IsTailCall = CLI.IsTailCall;
3056   CallingConv::ID CallConv = CLI.CallConv;
3057   bool IsVarArg = CLI.IsVarArg;
3058   bool IsSibCall = false;
3059   bool IsThisReturn = false;
3060   MachineFunction &MF = DAG.getMachineFunction();
3061 
3062   if (Callee.isUndef() || isNullConstant(Callee)) {
3063     if (!CLI.IsTailCall) {
3064       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
3065         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
3066     }
3067 
3068     return Chain;
3069   }
3070 
3071   if (IsVarArg) {
3072     return lowerUnhandledCall(CLI, InVals,
3073                               "unsupported call to variadic function ");
3074   }
3075 
3076   if (!CLI.CB)
3077     report_fatal_error("unsupported libcall legalization");
3078 
3079   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3080     return lowerUnhandledCall(CLI, InVals,
3081                               "unsupported required tail call to function ");
3082   }
3083 
3084   if (AMDGPU::isShader(CallConv)) {
3085     // Note the issue is with the CC of the called function, not of the call
3086     // itself.
3087     return lowerUnhandledCall(CLI, InVals,
3088                               "unsupported call to a shader function ");
3089   }
3090 
3091   if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
3092       CallConv != CallingConv::AMDGPU_Gfx) {
3093     // Only allow calls with specific calling conventions.
3094     return lowerUnhandledCall(CLI, InVals,
3095                               "unsupported calling convention for call from "
3096                               "graphics shader of function ");
3097   }
3098 
3099   if (IsTailCall) {
3100     IsTailCall = isEligibleForTailCallOptimization(
3101       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3102     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
3103       report_fatal_error("failed to perform tail call elimination on a call "
3104                          "site marked musttail");
3105     }
3106 
3107     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3108 
3109     // A sibling call is one where we're under the usual C ABI and not planning
3110     // to change that but can still do a tail call:
3111     if (!TailCallOpt && IsTailCall)
3112       IsSibCall = true;
3113 
3114     if (IsTailCall)
3115       ++NumTailCalls;
3116   }
3117 
3118   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3119   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3120   SmallVector<SDValue, 8> MemOpChains;
3121 
3122   // Analyze operands of the call, assigning locations to each operand.
3123   SmallVector<CCValAssign, 16> ArgLocs;
3124   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3125   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3126 
3127   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
3128       CallConv != CallingConv::AMDGPU_Gfx) {
3129     // With a fixed ABI, allocate fixed registers before user arguments.
3130     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3131   }
3132 
3133   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3134 
3135   // Get a count of how many bytes are to be pushed on the stack.
3136   unsigned NumBytes = CCInfo.getNextStackOffset();
3137 
3138   if (IsSibCall) {
3139     // Since we're not changing the ABI to make this a tail call, the memory
3140     // operands are already available in the caller's incoming argument space.
3141     NumBytes = 0;
3142   }
3143 
3144   // FPDiff is the byte offset of the call's argument area from the callee's.
3145   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3146   // by this amount for a tail call. In a sibling call it must be 0 because the
3147   // caller will deallocate the entire stack and the callee still expects its
3148   // arguments to begin at SP+0. Completely unused for non-tail calls.
3149   int32_t FPDiff = 0;
3150   MachineFrameInfo &MFI = MF.getFrameInfo();
3151 
3152   // Adjust the stack pointer for the new arguments...
3153   // These operations are automatically eliminated by the prolog/epilog pass
3154   if (!IsSibCall) {
3155     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3156 
3157     if (!Subtarget->enableFlatScratch()) {
3158       SmallVector<SDValue, 4> CopyFromChains;
3159 
3160       // In the HSA case, this should be an identity copy.
3161       SDValue ScratchRSrcReg
3162         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3163       RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3164       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3165       Chain = DAG.getTokenFactor(DL, CopyFromChains);
3166     }
3167   }
3168 
3169   MVT PtrVT = MVT::i32;
3170 
3171   // Walk the register/memloc assignments, inserting copies/loads.
3172   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3173     CCValAssign &VA = ArgLocs[i];
3174     SDValue Arg = OutVals[i];
3175 
3176     // Promote the value if needed.
3177     switch (VA.getLocInfo()) {
3178     case CCValAssign::Full:
3179       break;
3180     case CCValAssign::BCvt:
3181       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3182       break;
3183     case CCValAssign::ZExt:
3184       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3185       break;
3186     case CCValAssign::SExt:
3187       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3188       break;
3189     case CCValAssign::AExt:
3190       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3191       break;
3192     case CCValAssign::FPExt:
3193       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3194       break;
3195     default:
3196       llvm_unreachable("Unknown loc info!");
3197     }
3198 
3199     if (VA.isRegLoc()) {
3200       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3201     } else {
3202       assert(VA.isMemLoc());
3203 
3204       SDValue DstAddr;
3205       MachinePointerInfo DstInfo;
3206 
3207       unsigned LocMemOffset = VA.getLocMemOffset();
3208       int32_t Offset = LocMemOffset;
3209 
3210       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3211       MaybeAlign Alignment;
3212 
3213       if (IsTailCall) {
3214         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3215         unsigned OpSize = Flags.isByVal() ?
3216           Flags.getByValSize() : VA.getValVT().getStoreSize();
3217 
3218         // FIXME: We can have better than the minimum byval required alignment.
3219         Alignment =
3220             Flags.isByVal()
3221                 ? Flags.getNonZeroByValAlign()
3222                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3223 
3224         Offset = Offset + FPDiff;
3225         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3226 
3227         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3228         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3229 
3230         // Make sure any stack arguments overlapping with where we're storing
3231         // are loaded before this eventual operation. Otherwise they'll be
3232         // clobbered.
3233 
3234         // FIXME: Why is this really necessary? This seems to just result in a
3235         // lot of code to copy the stack and write them back to the same
3236         // locations, which are supposed to be immutable?
3237         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3238       } else {
3239         // Stores to the argument stack area are relative to the stack pointer.
3240         SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3241                                         MVT::i32);
3242         DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3243         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3244         Alignment =
3245             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3246       }
3247 
3248       if (Outs[i].Flags.isByVal()) {
3249         SDValue SizeNode =
3250             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3251         SDValue Cpy =
3252             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3253                           Outs[i].Flags.getNonZeroByValAlign(),
3254                           /*isVol = */ false, /*AlwaysInline = */ true,
3255                           /*isTailCall = */ false, DstInfo,
3256                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3257 
3258         MemOpChains.push_back(Cpy);
3259       } else {
3260         SDValue Store =
3261             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3262         MemOpChains.push_back(Store);
3263       }
3264     }
3265   }
3266 
3267   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
3268       CallConv != CallingConv::AMDGPU_Gfx) {
3269     // Copy special input registers after user input arguments.
3270     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3271   }
3272 
3273   if (!MemOpChains.empty())
3274     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3275 
3276   // Build a sequence of copy-to-reg nodes chained together with token chain
3277   // and flag operands which copy the outgoing args into the appropriate regs.
3278   SDValue InFlag;
3279   for (auto &RegToPass : RegsToPass) {
3280     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3281                              RegToPass.second, InFlag);
3282     InFlag = Chain.getValue(1);
3283   }
3284 
3285 
3286   SDValue PhysReturnAddrReg;
3287   if (IsTailCall) {
3288     // Since the return is being combined with the call, we need to pass on the
3289     // return address.
3290 
3291     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3292     SDValue ReturnAddrReg = CreateLiveInRegister(
3293       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3294 
3295     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3296                                         MVT::i64);
3297     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3298     InFlag = Chain.getValue(1);
3299   }
3300 
3301   // We don't usually want to end the call-sequence here because we would tidy
3302   // the frame up *after* the call, however in the ABI-changing tail-call case
3303   // we've carefully laid out the parameters so that when sp is reset they'll be
3304   // in the correct location.
3305   if (IsTailCall && !IsSibCall) {
3306     Chain = DAG.getCALLSEQ_END(Chain,
3307                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3308                                DAG.getTargetConstant(0, DL, MVT::i32),
3309                                InFlag, DL);
3310     InFlag = Chain.getValue(1);
3311   }
3312 
3313   std::vector<SDValue> Ops;
3314   Ops.push_back(Chain);
3315   Ops.push_back(Callee);
3316   // Add a redundant copy of the callee global which will not be legalized, as
3317   // we need direct access to the callee later.
3318   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3319     const GlobalValue *GV = GSD->getGlobal();
3320     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3321   } else {
3322     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3323   }
3324 
3325   if (IsTailCall) {
3326     // Each tail call may have to adjust the stack by a different amount, so
3327     // this information must travel along with the operation for eventual
3328     // consumption by emitEpilogue.
3329     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3330 
3331     Ops.push_back(PhysReturnAddrReg);
3332   }
3333 
3334   // Add argument registers to the end of the list so that they are known live
3335   // into the call.
3336   for (auto &RegToPass : RegsToPass) {
3337     Ops.push_back(DAG.getRegister(RegToPass.first,
3338                                   RegToPass.second.getValueType()));
3339   }
3340 
3341   // Add a register mask operand representing the call-preserved registers.
3342 
3343   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3344   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3345   assert(Mask && "Missing call preserved mask for calling convention");
3346   Ops.push_back(DAG.getRegisterMask(Mask));
3347 
3348   if (InFlag.getNode())
3349     Ops.push_back(InFlag);
3350 
3351   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3352 
3353   // If we're doing a tall call, use a TC_RETURN here rather than an
3354   // actual call instruction.
3355   if (IsTailCall) {
3356     MFI.setHasTailCall();
3357     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3358   }
3359 
3360   // Returns a chain and a flag for retval copy to use.
3361   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3362   Chain = Call.getValue(0);
3363   InFlag = Call.getValue(1);
3364 
3365   uint64_t CalleePopBytes = NumBytes;
3366   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3367                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3368                              InFlag, DL);
3369   if (!Ins.empty())
3370     InFlag = Chain.getValue(1);
3371 
3372   // Handle result values, copying them out of physregs into vregs that we
3373   // return.
3374   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3375                          InVals, IsThisReturn,
3376                          IsThisReturn ? OutVals[0] : SDValue());
3377 }
3378 
3379 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3380 // except for applying the wave size scale to the increment amount.
3381 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3382     SDValue Op, SelectionDAG &DAG) const {
3383   const MachineFunction &MF = DAG.getMachineFunction();
3384   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3385 
3386   SDLoc dl(Op);
3387   EVT VT = Op.getValueType();
3388   SDValue Tmp1 = Op;
3389   SDValue Tmp2 = Op.getValue(1);
3390   SDValue Tmp3 = Op.getOperand(2);
3391   SDValue Chain = Tmp1.getOperand(0);
3392 
3393   Register SPReg = Info->getStackPtrOffsetReg();
3394 
3395   // Chain the dynamic stack allocation so that it doesn't modify the stack
3396   // pointer when other instructions are using the stack.
3397   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3398 
3399   SDValue Size  = Tmp2.getOperand(1);
3400   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3401   Chain = SP.getValue(1);
3402   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3403   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3404   const TargetFrameLowering *TFL = ST.getFrameLowering();
3405   unsigned Opc =
3406     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3407     ISD::ADD : ISD::SUB;
3408 
3409   SDValue ScaledSize = DAG.getNode(
3410       ISD::SHL, dl, VT, Size,
3411       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3412 
3413   Align StackAlign = TFL->getStackAlign();
3414   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3415   if (Alignment && *Alignment > StackAlign) {
3416     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3417                        DAG.getConstant(-(uint64_t)Alignment->value()
3418                                            << ST.getWavefrontSizeLog2(),
3419                                        dl, VT));
3420   }
3421 
3422   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3423   Tmp2 = DAG.getCALLSEQ_END(
3424       Chain, DAG.getIntPtrConstant(0, dl, true),
3425       DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3426 
3427   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3428 }
3429 
3430 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3431                                                   SelectionDAG &DAG) const {
3432   // We only handle constant sizes here to allow non-entry block, static sized
3433   // allocas. A truly dynamic value is more difficult to support because we
3434   // don't know if the size value is uniform or not. If the size isn't uniform,
3435   // we would need to do a wave reduction to get the maximum size to know how
3436   // much to increment the uniform stack pointer.
3437   SDValue Size = Op.getOperand(1);
3438   if (isa<ConstantSDNode>(Size))
3439       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3440 
3441   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3442 }
3443 
3444 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3445                                              const MachineFunction &MF) const {
3446   Register Reg = StringSwitch<Register>(RegName)
3447     .Case("m0", AMDGPU::M0)
3448     .Case("exec", AMDGPU::EXEC)
3449     .Case("exec_lo", AMDGPU::EXEC_LO)
3450     .Case("exec_hi", AMDGPU::EXEC_HI)
3451     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3452     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3453     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3454     .Default(Register());
3455 
3456   if (Reg == AMDGPU::NoRegister) {
3457     report_fatal_error(Twine("invalid register name \""
3458                              + StringRef(RegName)  + "\"."));
3459 
3460   }
3461 
3462   if (!Subtarget->hasFlatScrRegister() &&
3463        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3464     report_fatal_error(Twine("invalid register \""
3465                              + StringRef(RegName)  + "\" for subtarget."));
3466   }
3467 
3468   switch (Reg) {
3469   case AMDGPU::M0:
3470   case AMDGPU::EXEC_LO:
3471   case AMDGPU::EXEC_HI:
3472   case AMDGPU::FLAT_SCR_LO:
3473   case AMDGPU::FLAT_SCR_HI:
3474     if (VT.getSizeInBits() == 32)
3475       return Reg;
3476     break;
3477   case AMDGPU::EXEC:
3478   case AMDGPU::FLAT_SCR:
3479     if (VT.getSizeInBits() == 64)
3480       return Reg;
3481     break;
3482   default:
3483     llvm_unreachable("missing register type checking");
3484   }
3485 
3486   report_fatal_error(Twine("invalid type for register \""
3487                            + StringRef(RegName) + "\"."));
3488 }
3489 
3490 // If kill is not the last instruction, split the block so kill is always a
3491 // proper terminator.
3492 MachineBasicBlock *
3493 SITargetLowering::splitKillBlock(MachineInstr &MI,
3494                                  MachineBasicBlock *BB) const {
3495   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3496   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3497   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3498   return SplitBB;
3499 }
3500 
3501 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3502 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3503 // be the first instruction in the remainder block.
3504 //
3505 /// \returns { LoopBody, Remainder }
3506 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3507 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3508   MachineFunction *MF = MBB.getParent();
3509   MachineBasicBlock::iterator I(&MI);
3510 
3511   // To insert the loop we need to split the block. Move everything after this
3512   // point to a new block, and insert a new empty block between the two.
3513   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3514   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3515   MachineFunction::iterator MBBI(MBB);
3516   ++MBBI;
3517 
3518   MF->insert(MBBI, LoopBB);
3519   MF->insert(MBBI, RemainderBB);
3520 
3521   LoopBB->addSuccessor(LoopBB);
3522   LoopBB->addSuccessor(RemainderBB);
3523 
3524   // Move the rest of the block into a new block.
3525   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3526 
3527   if (InstInLoop) {
3528     auto Next = std::next(I);
3529 
3530     // Move instruction to loop body.
3531     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3532 
3533     // Move the rest of the block.
3534     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3535   } else {
3536     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3537   }
3538 
3539   MBB.addSuccessor(LoopBB);
3540 
3541   return std::make_pair(LoopBB, RemainderBB);
3542 }
3543 
3544 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3545 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3546   MachineBasicBlock *MBB = MI.getParent();
3547   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3548   auto I = MI.getIterator();
3549   auto E = std::next(I);
3550 
3551   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3552     .addImm(0);
3553 
3554   MIBundleBuilder Bundler(*MBB, I, E);
3555   finalizeBundle(*MBB, Bundler.begin());
3556 }
3557 
3558 MachineBasicBlock *
3559 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3560                                          MachineBasicBlock *BB) const {
3561   const DebugLoc &DL = MI.getDebugLoc();
3562 
3563   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3564 
3565   MachineBasicBlock *LoopBB;
3566   MachineBasicBlock *RemainderBB;
3567   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3568 
3569   // Apparently kill flags are only valid if the def is in the same block?
3570   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3571     Src->setIsKill(false);
3572 
3573   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3574 
3575   MachineBasicBlock::iterator I = LoopBB->end();
3576 
3577   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3578     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3579 
3580   // Clear TRAP_STS.MEM_VIOL
3581   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3582     .addImm(0)
3583     .addImm(EncodedReg);
3584 
3585   bundleInstWithWaitcnt(MI);
3586 
3587   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3588 
3589   // Load and check TRAP_STS.MEM_VIOL
3590   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3591     .addImm(EncodedReg);
3592 
3593   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3594   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3595     .addReg(Reg, RegState::Kill)
3596     .addImm(0);
3597   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3598     .addMBB(LoopBB);
3599 
3600   return RemainderBB;
3601 }
3602 
3603 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3604 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3605 // will only do one iteration. In the worst case, this will loop 64 times.
3606 //
3607 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3608 static MachineBasicBlock::iterator
3609 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3610                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3611                        const DebugLoc &DL, const MachineOperand &Idx,
3612                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3613                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3614                        Register &SGPRIdxReg) {
3615 
3616   MachineFunction *MF = OrigBB.getParent();
3617   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3618   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3619   MachineBasicBlock::iterator I = LoopBB.begin();
3620 
3621   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3622   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3623   Register NewExec = MRI.createVirtualRegister(BoolRC);
3624   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3625   Register CondReg = MRI.createVirtualRegister(BoolRC);
3626 
3627   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3628     .addReg(InitReg)
3629     .addMBB(&OrigBB)
3630     .addReg(ResultReg)
3631     .addMBB(&LoopBB);
3632 
3633   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3634     .addReg(InitSaveExecReg)
3635     .addMBB(&OrigBB)
3636     .addReg(NewExec)
3637     .addMBB(&LoopBB);
3638 
3639   // Read the next variant <- also loop target.
3640   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3641       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3642 
3643   // Compare the just read M0 value to all possible Idx values.
3644   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3645       .addReg(CurrentIdxReg)
3646       .addReg(Idx.getReg(), 0, Idx.getSubReg());
3647 
3648   // Update EXEC, save the original EXEC value to VCC.
3649   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3650                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3651           NewExec)
3652     .addReg(CondReg, RegState::Kill);
3653 
3654   MRI.setSimpleHint(NewExec, CondReg);
3655 
3656   if (UseGPRIdxMode) {
3657     if (Offset == 0) {
3658       SGPRIdxReg = CurrentIdxReg;
3659     } else {
3660       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3661       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3662           .addReg(CurrentIdxReg, RegState::Kill)
3663           .addImm(Offset);
3664     }
3665   } else {
3666     // Move index from VCC into M0
3667     if (Offset == 0) {
3668       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3669         .addReg(CurrentIdxReg, RegState::Kill);
3670     } else {
3671       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3672         .addReg(CurrentIdxReg, RegState::Kill)
3673         .addImm(Offset);
3674     }
3675   }
3676 
3677   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3678   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3679   MachineInstr *InsertPt =
3680     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3681                                                   : AMDGPU::S_XOR_B64_term), Exec)
3682       .addReg(Exec)
3683       .addReg(NewExec);
3684 
3685   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3686   // s_cbranch_scc0?
3687 
3688   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3689   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3690     .addMBB(&LoopBB);
3691 
3692   return InsertPt->getIterator();
3693 }
3694 
3695 // This has slightly sub-optimal regalloc when the source vector is killed by
3696 // the read. The register allocator does not understand that the kill is
3697 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3698 // subregister from it, using 1 more VGPR than necessary. This was saved when
3699 // this was expanded after register allocation.
3700 static MachineBasicBlock::iterator
3701 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3702                unsigned InitResultReg, unsigned PhiReg, int Offset,
3703                bool UseGPRIdxMode, Register &SGPRIdxReg) {
3704   MachineFunction *MF = MBB.getParent();
3705   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3706   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3707   MachineRegisterInfo &MRI = MF->getRegInfo();
3708   const DebugLoc &DL = MI.getDebugLoc();
3709   MachineBasicBlock::iterator I(&MI);
3710 
3711   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3712   Register DstReg = MI.getOperand(0).getReg();
3713   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3714   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3715   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3716   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3717 
3718   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3719 
3720   // Save the EXEC mask
3721   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3722     .addReg(Exec);
3723 
3724   MachineBasicBlock *LoopBB;
3725   MachineBasicBlock *RemainderBB;
3726   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3727 
3728   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3729 
3730   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3731                                       InitResultReg, DstReg, PhiReg, TmpExec,
3732                                       Offset, UseGPRIdxMode, SGPRIdxReg);
3733 
3734   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3735   MachineFunction::iterator MBBI(LoopBB);
3736   ++MBBI;
3737   MF->insert(MBBI, LandingPad);
3738   LoopBB->removeSuccessor(RemainderBB);
3739   LandingPad->addSuccessor(RemainderBB);
3740   LoopBB->addSuccessor(LandingPad);
3741   MachineBasicBlock::iterator First = LandingPad->begin();
3742   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3743     .addReg(SaveExec);
3744 
3745   return InsPt;
3746 }
3747 
3748 // Returns subreg index, offset
3749 static std::pair<unsigned, int>
3750 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3751                             const TargetRegisterClass *SuperRC,
3752                             unsigned VecReg,
3753                             int Offset) {
3754   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3755 
3756   // Skip out of bounds offsets, or else we would end up using an undefined
3757   // register.
3758   if (Offset >= NumElts || Offset < 0)
3759     return std::make_pair(AMDGPU::sub0, Offset);
3760 
3761   return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3762 }
3763 
3764 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3765                                  MachineRegisterInfo &MRI, MachineInstr &MI,
3766                                  int Offset) {
3767   MachineBasicBlock *MBB = MI.getParent();
3768   const DebugLoc &DL = MI.getDebugLoc();
3769   MachineBasicBlock::iterator I(&MI);
3770 
3771   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3772 
3773   assert(Idx->getReg() != AMDGPU::NoRegister);
3774 
3775   if (Offset == 0) {
3776     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3777   } else {
3778     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3779         .add(*Idx)
3780         .addImm(Offset);
3781   }
3782 }
3783 
3784 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3785                                    MachineRegisterInfo &MRI, MachineInstr &MI,
3786                                    int Offset) {
3787   MachineBasicBlock *MBB = MI.getParent();
3788   const DebugLoc &DL = MI.getDebugLoc();
3789   MachineBasicBlock::iterator I(&MI);
3790 
3791   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3792 
3793   if (Offset == 0)
3794     return Idx->getReg();
3795 
3796   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3797   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3798       .add(*Idx)
3799       .addImm(Offset);
3800   return Tmp;
3801 }
3802 
3803 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3804                                           MachineBasicBlock &MBB,
3805                                           const GCNSubtarget &ST) {
3806   const SIInstrInfo *TII = ST.getInstrInfo();
3807   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3808   MachineFunction *MF = MBB.getParent();
3809   MachineRegisterInfo &MRI = MF->getRegInfo();
3810 
3811   Register Dst = MI.getOperand(0).getReg();
3812   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3813   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3814   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3815 
3816   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3817   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3818 
3819   unsigned SubReg;
3820   std::tie(SubReg, Offset)
3821     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3822 
3823   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3824 
3825   // Check for a SGPR index.
3826   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3827     MachineBasicBlock::iterator I(&MI);
3828     const DebugLoc &DL = MI.getDebugLoc();
3829 
3830     if (UseGPRIdxMode) {
3831       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3832       // to avoid interfering with other uses, so probably requires a new
3833       // optimization pass.
3834       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3835 
3836       const MCInstrDesc &GPRIDXDesc =
3837           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3838       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3839           .addReg(SrcReg)
3840           .addReg(Idx)
3841           .addImm(SubReg);
3842     } else {
3843       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3844 
3845       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3846         .addReg(SrcReg, 0, SubReg)
3847         .addReg(SrcReg, RegState::Implicit);
3848     }
3849 
3850     MI.eraseFromParent();
3851 
3852     return &MBB;
3853   }
3854 
3855   // Control flow needs to be inserted if indexing with a VGPR.
3856   const DebugLoc &DL = MI.getDebugLoc();
3857   MachineBasicBlock::iterator I(&MI);
3858 
3859   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3860   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3861 
3862   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3863 
3864   Register SGPRIdxReg;
3865   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3866                               UseGPRIdxMode, SGPRIdxReg);
3867 
3868   MachineBasicBlock *LoopBB = InsPt->getParent();
3869 
3870   if (UseGPRIdxMode) {
3871     const MCInstrDesc &GPRIDXDesc =
3872         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3873 
3874     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3875         .addReg(SrcReg)
3876         .addReg(SGPRIdxReg)
3877         .addImm(SubReg);
3878   } else {
3879     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3880       .addReg(SrcReg, 0, SubReg)
3881       .addReg(SrcReg, RegState::Implicit);
3882   }
3883 
3884   MI.eraseFromParent();
3885 
3886   return LoopBB;
3887 }
3888 
3889 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3890                                           MachineBasicBlock &MBB,
3891                                           const GCNSubtarget &ST) {
3892   const SIInstrInfo *TII = ST.getInstrInfo();
3893   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3894   MachineFunction *MF = MBB.getParent();
3895   MachineRegisterInfo &MRI = MF->getRegInfo();
3896 
3897   Register Dst = MI.getOperand(0).getReg();
3898   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3899   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3900   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3901   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3902   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3903   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3904 
3905   // This can be an immediate, but will be folded later.
3906   assert(Val->getReg());
3907 
3908   unsigned SubReg;
3909   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3910                                                          SrcVec->getReg(),
3911                                                          Offset);
3912   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3913 
3914   if (Idx->getReg() == AMDGPU::NoRegister) {
3915     MachineBasicBlock::iterator I(&MI);
3916     const DebugLoc &DL = MI.getDebugLoc();
3917 
3918     assert(Offset == 0);
3919 
3920     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3921         .add(*SrcVec)
3922         .add(*Val)
3923         .addImm(SubReg);
3924 
3925     MI.eraseFromParent();
3926     return &MBB;
3927   }
3928 
3929   // Check for a SGPR index.
3930   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3931     MachineBasicBlock::iterator I(&MI);
3932     const DebugLoc &DL = MI.getDebugLoc();
3933 
3934     if (UseGPRIdxMode) {
3935       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3936 
3937       const MCInstrDesc &GPRIDXDesc =
3938           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3939       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3940           .addReg(SrcVec->getReg())
3941           .add(*Val)
3942           .addReg(Idx)
3943           .addImm(SubReg);
3944     } else {
3945       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3946 
3947       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3948           TRI.getRegSizeInBits(*VecRC), 32, false);
3949       BuildMI(MBB, I, DL, MovRelDesc, Dst)
3950           .addReg(SrcVec->getReg())
3951           .add(*Val)
3952           .addImm(SubReg);
3953     }
3954     MI.eraseFromParent();
3955     return &MBB;
3956   }
3957 
3958   // Control flow needs to be inserted if indexing with a VGPR.
3959   if (Val->isReg())
3960     MRI.clearKillFlags(Val->getReg());
3961 
3962   const DebugLoc &DL = MI.getDebugLoc();
3963 
3964   Register PhiReg = MRI.createVirtualRegister(VecRC);
3965 
3966   Register SGPRIdxReg;
3967   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3968                               UseGPRIdxMode, SGPRIdxReg);
3969   MachineBasicBlock *LoopBB = InsPt->getParent();
3970 
3971   if (UseGPRIdxMode) {
3972     const MCInstrDesc &GPRIDXDesc =
3973         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3974 
3975     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3976         .addReg(PhiReg)
3977         .add(*Val)
3978         .addReg(SGPRIdxReg)
3979         .addImm(AMDGPU::sub0);
3980   } else {
3981     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3982         TRI.getRegSizeInBits(*VecRC), 32, false);
3983     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3984         .addReg(PhiReg)
3985         .add(*Val)
3986         .addImm(AMDGPU::sub0);
3987   }
3988 
3989   MI.eraseFromParent();
3990   return LoopBB;
3991 }
3992 
3993 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3994   MachineInstr &MI, MachineBasicBlock *BB) const {
3995 
3996   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3997   MachineFunction *MF = BB->getParent();
3998   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3999 
4000   switch (MI.getOpcode()) {
4001   case AMDGPU::S_UADDO_PSEUDO:
4002   case AMDGPU::S_USUBO_PSEUDO: {
4003     const DebugLoc &DL = MI.getDebugLoc();
4004     MachineOperand &Dest0 = MI.getOperand(0);
4005     MachineOperand &Dest1 = MI.getOperand(1);
4006     MachineOperand &Src0 = MI.getOperand(2);
4007     MachineOperand &Src1 = MI.getOperand(3);
4008 
4009     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
4010                        ? AMDGPU::S_ADD_I32
4011                        : AMDGPU::S_SUB_I32;
4012     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
4013 
4014     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
4015         .addImm(1)
4016         .addImm(0);
4017 
4018     MI.eraseFromParent();
4019     return BB;
4020   }
4021   case AMDGPU::S_ADD_U64_PSEUDO:
4022   case AMDGPU::S_SUB_U64_PSEUDO: {
4023     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4024     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4025     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4026     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
4027     const DebugLoc &DL = MI.getDebugLoc();
4028 
4029     MachineOperand &Dest = MI.getOperand(0);
4030     MachineOperand &Src0 = MI.getOperand(1);
4031     MachineOperand &Src1 = MI.getOperand(2);
4032 
4033     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4034     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4035 
4036     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
4037         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4038     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
4039         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4040 
4041     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
4042         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4043     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
4044         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4045 
4046     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
4047 
4048     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
4049     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
4050     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
4051     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
4052     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4053         .addReg(DestSub0)
4054         .addImm(AMDGPU::sub0)
4055         .addReg(DestSub1)
4056         .addImm(AMDGPU::sub1);
4057     MI.eraseFromParent();
4058     return BB;
4059   }
4060   case AMDGPU::V_ADD_U64_PSEUDO:
4061   case AMDGPU::V_SUB_U64_PSEUDO: {
4062     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4063     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4064     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4065     const DebugLoc &DL = MI.getDebugLoc();
4066 
4067     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
4068 
4069     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4070 
4071     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4072     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4073 
4074     Register CarryReg = MRI.createVirtualRegister(CarryRC);
4075     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4076 
4077     MachineOperand &Dest = MI.getOperand(0);
4078     MachineOperand &Src0 = MI.getOperand(1);
4079     MachineOperand &Src1 = MI.getOperand(2);
4080 
4081     const TargetRegisterClass *Src0RC = Src0.isReg()
4082                                             ? MRI.getRegClass(Src0.getReg())
4083                                             : &AMDGPU::VReg_64RegClass;
4084     const TargetRegisterClass *Src1RC = Src1.isReg()
4085                                             ? MRI.getRegClass(Src1.getReg())
4086                                             : &AMDGPU::VReg_64RegClass;
4087 
4088     const TargetRegisterClass *Src0SubRC =
4089         TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
4090     const TargetRegisterClass *Src1SubRC =
4091         TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
4092 
4093     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4094         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4095     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4096         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4097 
4098     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4099         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4100     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4101         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4102 
4103     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4104     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4105                                .addReg(CarryReg, RegState::Define)
4106                                .add(SrcReg0Sub0)
4107                                .add(SrcReg1Sub0)
4108                                .addImm(0); // clamp bit
4109 
4110     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4111     MachineInstr *HiHalf =
4112         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4113             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4114             .add(SrcReg0Sub1)
4115             .add(SrcReg1Sub1)
4116             .addReg(CarryReg, RegState::Kill)
4117             .addImm(0); // clamp bit
4118 
4119     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4120         .addReg(DestSub0)
4121         .addImm(AMDGPU::sub0)
4122         .addReg(DestSub1)
4123         .addImm(AMDGPU::sub1);
4124     TII->legalizeOperands(*LoHalf);
4125     TII->legalizeOperands(*HiHalf);
4126     MI.eraseFromParent();
4127     return BB;
4128   }
4129   case AMDGPU::S_ADD_CO_PSEUDO:
4130   case AMDGPU::S_SUB_CO_PSEUDO: {
4131     // This pseudo has a chance to be selected
4132     // only from uniform add/subcarry node. All the VGPR operands
4133     // therefore assumed to be splat vectors.
4134     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4135     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4136     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4137     MachineBasicBlock::iterator MII = MI;
4138     const DebugLoc &DL = MI.getDebugLoc();
4139     MachineOperand &Dest = MI.getOperand(0);
4140     MachineOperand &CarryDest = MI.getOperand(1);
4141     MachineOperand &Src0 = MI.getOperand(2);
4142     MachineOperand &Src1 = MI.getOperand(3);
4143     MachineOperand &Src2 = MI.getOperand(4);
4144     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4145                        ? AMDGPU::S_ADDC_U32
4146                        : AMDGPU::S_SUBB_U32;
4147     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4148       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4149       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4150           .addReg(Src0.getReg());
4151       Src0.setReg(RegOp0);
4152     }
4153     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4154       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4155       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4156           .addReg(Src1.getReg());
4157       Src1.setReg(RegOp1);
4158     }
4159     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4160     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4161       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4162           .addReg(Src2.getReg());
4163       Src2.setReg(RegOp2);
4164     }
4165 
4166     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4167     unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
4168     assert(WaveSize == 64 || WaveSize == 32);
4169 
4170     if (WaveSize == 64) {
4171       if (ST.hasScalarCompareEq64()) {
4172         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4173             .addReg(Src2.getReg())
4174             .addImm(0);
4175       } else {
4176         const TargetRegisterClass *SubRC =
4177             TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4178         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4179             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4180         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4181             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4182         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4183 
4184         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4185             .add(Src2Sub0)
4186             .add(Src2Sub1);
4187 
4188         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4189             .addReg(Src2_32, RegState::Kill)
4190             .addImm(0);
4191       }
4192     } else {
4193       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4194           .addReg(Src2.getReg())
4195           .addImm(0);
4196     }
4197 
4198     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4199 
4200     unsigned SelOpc =
4201         (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
4202 
4203     BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
4204         .addImm(-1)
4205         .addImm(0);
4206 
4207     MI.eraseFromParent();
4208     return BB;
4209   }
4210   case AMDGPU::SI_INIT_M0: {
4211     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4212             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4213         .add(MI.getOperand(0));
4214     MI.eraseFromParent();
4215     return BB;
4216   }
4217   case AMDGPU::GET_GROUPSTATICSIZE: {
4218     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4219            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4220     DebugLoc DL = MI.getDebugLoc();
4221     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4222         .add(MI.getOperand(0))
4223         .addImm(MFI->getLDSSize());
4224     MI.eraseFromParent();
4225     return BB;
4226   }
4227   case AMDGPU::SI_INDIRECT_SRC_V1:
4228   case AMDGPU::SI_INDIRECT_SRC_V2:
4229   case AMDGPU::SI_INDIRECT_SRC_V4:
4230   case AMDGPU::SI_INDIRECT_SRC_V8:
4231   case AMDGPU::SI_INDIRECT_SRC_V16:
4232   case AMDGPU::SI_INDIRECT_SRC_V32:
4233     return emitIndirectSrc(MI, *BB, *getSubtarget());
4234   case AMDGPU::SI_INDIRECT_DST_V1:
4235   case AMDGPU::SI_INDIRECT_DST_V2:
4236   case AMDGPU::SI_INDIRECT_DST_V4:
4237   case AMDGPU::SI_INDIRECT_DST_V8:
4238   case AMDGPU::SI_INDIRECT_DST_V16:
4239   case AMDGPU::SI_INDIRECT_DST_V32:
4240     return emitIndirectDst(MI, *BB, *getSubtarget());
4241   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4242   case AMDGPU::SI_KILL_I1_PSEUDO:
4243     return splitKillBlock(MI, BB);
4244   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4245     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4246     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4247     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4248 
4249     Register Dst = MI.getOperand(0).getReg();
4250     Register Src0 = MI.getOperand(1).getReg();
4251     Register Src1 = MI.getOperand(2).getReg();
4252     const DebugLoc &DL = MI.getDebugLoc();
4253     Register SrcCond = MI.getOperand(3).getReg();
4254 
4255     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4256     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4257     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4258     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4259 
4260     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4261       .addReg(SrcCond);
4262     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4263       .addImm(0)
4264       .addReg(Src0, 0, AMDGPU::sub0)
4265       .addImm(0)
4266       .addReg(Src1, 0, AMDGPU::sub0)
4267       .addReg(SrcCondCopy);
4268     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4269       .addImm(0)
4270       .addReg(Src0, 0, AMDGPU::sub1)
4271       .addImm(0)
4272       .addReg(Src1, 0, AMDGPU::sub1)
4273       .addReg(SrcCondCopy);
4274 
4275     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4276       .addReg(DstLo)
4277       .addImm(AMDGPU::sub0)
4278       .addReg(DstHi)
4279       .addImm(AMDGPU::sub1);
4280     MI.eraseFromParent();
4281     return BB;
4282   }
4283   case AMDGPU::SI_BR_UNDEF: {
4284     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4285     const DebugLoc &DL = MI.getDebugLoc();
4286     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4287                            .add(MI.getOperand(0));
4288     Br->getOperand(1).setIsUndef(true); // read undef SCC
4289     MI.eraseFromParent();
4290     return BB;
4291   }
4292   case AMDGPU::ADJCALLSTACKUP:
4293   case AMDGPU::ADJCALLSTACKDOWN: {
4294     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4295     MachineInstrBuilder MIB(*MF, &MI);
4296     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4297        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4298     return BB;
4299   }
4300   case AMDGPU::SI_CALL_ISEL: {
4301     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4302     const DebugLoc &DL = MI.getDebugLoc();
4303 
4304     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4305 
4306     MachineInstrBuilder MIB;
4307     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4308 
4309     for (const MachineOperand &MO : MI.operands())
4310       MIB.add(MO);
4311 
4312     MIB.cloneMemRefs(MI);
4313     MI.eraseFromParent();
4314     return BB;
4315   }
4316   case AMDGPU::V_ADD_CO_U32_e32:
4317   case AMDGPU::V_SUB_CO_U32_e32:
4318   case AMDGPU::V_SUBREV_CO_U32_e32: {
4319     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4320     const DebugLoc &DL = MI.getDebugLoc();
4321     unsigned Opc = MI.getOpcode();
4322 
4323     bool NeedClampOperand = false;
4324     if (TII->pseudoToMCOpcode(Opc) == -1) {
4325       Opc = AMDGPU::getVOPe64(Opc);
4326       NeedClampOperand = true;
4327     }
4328 
4329     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4330     if (TII->isVOP3(*I)) {
4331       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4332       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4333       I.addReg(TRI->getVCC(), RegState::Define);
4334     }
4335     I.add(MI.getOperand(1))
4336      .add(MI.getOperand(2));
4337     if (NeedClampOperand)
4338       I.addImm(0); // clamp bit for e64 encoding
4339 
4340     TII->legalizeOperands(*I);
4341 
4342     MI.eraseFromParent();
4343     return BB;
4344   }
4345   case AMDGPU::V_ADDC_U32_e32:
4346   case AMDGPU::V_SUBB_U32_e32:
4347   case AMDGPU::V_SUBBREV_U32_e32:
4348     // These instructions have an implicit use of vcc which counts towards the
4349     // constant bus limit.
4350     TII->legalizeOperands(MI);
4351     return BB;
4352   case AMDGPU::DS_GWS_INIT:
4353   case AMDGPU::DS_GWS_SEMA_BR:
4354   case AMDGPU::DS_GWS_BARRIER:
4355     if (Subtarget->needsAlignedVGPRs()) {
4356       // Add implicit aligned super-reg to force alignment on the data operand.
4357       const DebugLoc &DL = MI.getDebugLoc();
4358       MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4359       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
4360       MachineOperand *Op = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
4361       Register DataReg = Op->getReg();
4362       bool IsAGPR = TRI->isAGPR(MRI, DataReg);
4363       Register Undef = MRI.createVirtualRegister(
4364           IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass);
4365       BuildMI(*BB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), Undef);
4366       Register NewVR =
4367           MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass
4368                                            : &AMDGPU::VReg_64_Align2RegClass);
4369       BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), NewVR)
4370           .addReg(DataReg, 0, Op->getSubReg())
4371           .addImm(AMDGPU::sub0)
4372           .addReg(Undef)
4373           .addImm(AMDGPU::sub1);
4374       Op->setReg(NewVR);
4375       Op->setSubReg(AMDGPU::sub0);
4376       MI.addOperand(MachineOperand::CreateReg(NewVR, false, true));
4377     }
4378     LLVM_FALLTHROUGH;
4379   case AMDGPU::DS_GWS_SEMA_V:
4380   case AMDGPU::DS_GWS_SEMA_P:
4381   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4382     // A s_waitcnt 0 is required to be the instruction immediately following.
4383     if (getSubtarget()->hasGWSAutoReplay()) {
4384       bundleInstWithWaitcnt(MI);
4385       return BB;
4386     }
4387 
4388     return emitGWSMemViolTestLoop(MI, BB);
4389   case AMDGPU::S_SETREG_B32: {
4390     // Try to optimize cases that only set the denormal mode or rounding mode.
4391     //
4392     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4393     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4394     // instead.
4395     //
4396     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4397     // allow you to have a no side effect instruction in the output of a
4398     // sideeffecting pattern.
4399     unsigned ID, Offset, Width;
4400     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4401     if (ID != AMDGPU::Hwreg::ID_MODE)
4402       return BB;
4403 
4404     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4405     const unsigned SetMask = WidthMask << Offset;
4406 
4407     if (getSubtarget()->hasDenormModeInst()) {
4408       unsigned SetDenormOp = 0;
4409       unsigned SetRoundOp = 0;
4410 
4411       // The dedicated instructions can only set the whole denorm or round mode
4412       // at once, not a subset of bits in either.
4413       if (SetMask ==
4414           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4415         // If this fully sets both the round and denorm mode, emit the two
4416         // dedicated instructions for these.
4417         SetRoundOp = AMDGPU::S_ROUND_MODE;
4418         SetDenormOp = AMDGPU::S_DENORM_MODE;
4419       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4420         SetRoundOp = AMDGPU::S_ROUND_MODE;
4421       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4422         SetDenormOp = AMDGPU::S_DENORM_MODE;
4423       }
4424 
4425       if (SetRoundOp || SetDenormOp) {
4426         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4427         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4428         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4429           unsigned ImmVal = Def->getOperand(1).getImm();
4430           if (SetRoundOp) {
4431             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4432                 .addImm(ImmVal & 0xf);
4433 
4434             // If we also have the denorm mode, get just the denorm mode bits.
4435             ImmVal >>= 4;
4436           }
4437 
4438           if (SetDenormOp) {
4439             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4440                 .addImm(ImmVal & 0xf);
4441           }
4442 
4443           MI.eraseFromParent();
4444           return BB;
4445         }
4446       }
4447     }
4448 
4449     // If only FP bits are touched, used the no side effects pseudo.
4450     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4451                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4452       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4453 
4454     return BB;
4455   }
4456   default:
4457     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4458   }
4459 }
4460 
4461 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4462   return isTypeLegal(VT.getScalarType());
4463 }
4464 
4465 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4466   // This currently forces unfolding various combinations of fsub into fma with
4467   // free fneg'd operands. As long as we have fast FMA (controlled by
4468   // isFMAFasterThanFMulAndFAdd), we should perform these.
4469 
4470   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4471   // most of these combines appear to be cycle neutral but save on instruction
4472   // count / code size.
4473   return true;
4474 }
4475 
4476 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; }
4477 
4478 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4479                                          EVT VT) const {
4480   if (!VT.isVector()) {
4481     return MVT::i1;
4482   }
4483   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4484 }
4485 
4486 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4487   // TODO: Should i16 be used always if legal? For now it would force VALU
4488   // shifts.
4489   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4490 }
4491 
4492 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4493   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4494              ? Ty.changeElementSize(16)
4495              : Ty.changeElementSize(32);
4496 }
4497 
4498 // Answering this is somewhat tricky and depends on the specific device which
4499 // have different rates for fma or all f64 operations.
4500 //
4501 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4502 // regardless of which device (although the number of cycles differs between
4503 // devices), so it is always profitable for f64.
4504 //
4505 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4506 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4507 // which we can always do even without fused FP ops since it returns the same
4508 // result as the separate operations and since it is always full
4509 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4510 // however does not support denormals, so we do report fma as faster if we have
4511 // a fast fma device and require denormals.
4512 //
4513 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4514                                                   EVT VT) const {
4515   VT = VT.getScalarType();
4516 
4517   switch (VT.getSimpleVT().SimpleTy) {
4518   case MVT::f32: {
4519     // If mad is not available this depends only on if f32 fma is full rate.
4520     if (!Subtarget->hasMadMacF32Insts())
4521       return Subtarget->hasFastFMAF32();
4522 
4523     // Otherwise f32 mad is always full rate and returns the same result as
4524     // the separate operations so should be preferred over fma.
4525     // However does not support denomals.
4526     if (hasFP32Denormals(MF))
4527       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4528 
4529     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4530     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4531   }
4532   case MVT::f64:
4533     return true;
4534   case MVT::f16:
4535     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4536   default:
4537     break;
4538   }
4539 
4540   return false;
4541 }
4542 
4543 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4544                                                   LLT Ty) const {
4545   switch (Ty.getScalarSizeInBits()) {
4546   case 16:
4547     return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
4548   case 32:
4549     return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
4550   case 64:
4551     return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
4552   default:
4553     break;
4554   }
4555 
4556   return false;
4557 }
4558 
4559 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const {
4560   if (!Ty.isScalar())
4561     return false;
4562 
4563   if (Ty.getScalarSizeInBits() == 16)
4564     return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF());
4565   if (Ty.getScalarSizeInBits() == 32)
4566     return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF());
4567 
4568   return false;
4569 }
4570 
4571 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4572                                    const SDNode *N) const {
4573   // TODO: Check future ftz flag
4574   // v_mad_f32/v_mac_f32 do not support denormals.
4575   EVT VT = N->getValueType(0);
4576   if (VT == MVT::f32)
4577     return Subtarget->hasMadMacF32Insts() &&
4578            !hasFP32Denormals(DAG.getMachineFunction());
4579   if (VT == MVT::f16) {
4580     return Subtarget->hasMadF16() &&
4581            !hasFP64FP16Denormals(DAG.getMachineFunction());
4582   }
4583 
4584   return false;
4585 }
4586 
4587 //===----------------------------------------------------------------------===//
4588 // Custom DAG Lowering Operations
4589 //===----------------------------------------------------------------------===//
4590 
4591 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4592 // wider vector type is legal.
4593 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4594                                              SelectionDAG &DAG) const {
4595   unsigned Opc = Op.getOpcode();
4596   EVT VT = Op.getValueType();
4597   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4598 
4599   SDValue Lo, Hi;
4600   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4601 
4602   SDLoc SL(Op);
4603   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4604                              Op->getFlags());
4605   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4606                              Op->getFlags());
4607 
4608   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4609 }
4610 
4611 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4612 // wider vector type is legal.
4613 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4614                                               SelectionDAG &DAG) const {
4615   unsigned Opc = Op.getOpcode();
4616   EVT VT = Op.getValueType();
4617   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4618          VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32);
4619 
4620   SDValue Lo0, Hi0;
4621   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4622   SDValue Lo1, Hi1;
4623   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4624 
4625   SDLoc SL(Op);
4626 
4627   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4628                              Op->getFlags());
4629   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4630                              Op->getFlags());
4631 
4632   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4633 }
4634 
4635 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4636                                               SelectionDAG &DAG) const {
4637   unsigned Opc = Op.getOpcode();
4638   EVT VT = Op.getValueType();
4639   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4640          VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32);
4641 
4642   SDValue Lo0, Hi0;
4643   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4644   SDValue Lo1, Hi1;
4645   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4646   SDValue Lo2, Hi2;
4647   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4648 
4649   SDLoc SL(Op);
4650 
4651   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4652                              Op->getFlags());
4653   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4654                              Op->getFlags());
4655 
4656   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4657 }
4658 
4659 
4660 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4661   switch (Op.getOpcode()) {
4662   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4663   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4664   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4665   case ISD::LOAD: {
4666     SDValue Result = LowerLOAD(Op, DAG);
4667     assert((!Result.getNode() ||
4668             Result.getNode()->getNumValues() == 2) &&
4669            "Load should return a value and a chain");
4670     return Result;
4671   }
4672 
4673   case ISD::FSIN:
4674   case ISD::FCOS:
4675     return LowerTrig(Op, DAG);
4676   case ISD::SELECT: return LowerSELECT(Op, DAG);
4677   case ISD::FDIV: return LowerFDIV(Op, DAG);
4678   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4679   case ISD::STORE: return LowerSTORE(Op, DAG);
4680   case ISD::GlobalAddress: {
4681     MachineFunction &MF = DAG.getMachineFunction();
4682     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4683     return LowerGlobalAddress(MFI, Op, DAG);
4684   }
4685   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4686   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4687   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4688   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4689   case ISD::INSERT_SUBVECTOR:
4690     return lowerINSERT_SUBVECTOR(Op, DAG);
4691   case ISD::INSERT_VECTOR_ELT:
4692     return lowerINSERT_VECTOR_ELT(Op, DAG);
4693   case ISD::EXTRACT_VECTOR_ELT:
4694     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4695   case ISD::VECTOR_SHUFFLE:
4696     return lowerVECTOR_SHUFFLE(Op, DAG);
4697   case ISD::BUILD_VECTOR:
4698     return lowerBUILD_VECTOR(Op, DAG);
4699   case ISD::FP_ROUND:
4700     return lowerFP_ROUND(Op, DAG);
4701   case ISD::TRAP:
4702     return lowerTRAP(Op, DAG);
4703   case ISD::DEBUGTRAP:
4704     return lowerDEBUGTRAP(Op, DAG);
4705   case ISD::FABS:
4706   case ISD::FNEG:
4707   case ISD::FCANONICALIZE:
4708   case ISD::BSWAP:
4709     return splitUnaryVectorOp(Op, DAG);
4710   case ISD::FMINNUM:
4711   case ISD::FMAXNUM:
4712     return lowerFMINNUM_FMAXNUM(Op, DAG);
4713   case ISD::FMA:
4714     return splitTernaryVectorOp(Op, DAG);
4715   case ISD::FP_TO_SINT:
4716   case ISD::FP_TO_UINT:
4717     return LowerFP_TO_INT(Op, DAG);
4718   case ISD::SHL:
4719   case ISD::SRA:
4720   case ISD::SRL:
4721   case ISD::ADD:
4722   case ISD::SUB:
4723   case ISD::MUL:
4724   case ISD::SMIN:
4725   case ISD::SMAX:
4726   case ISD::UMIN:
4727   case ISD::UMAX:
4728   case ISD::FADD:
4729   case ISD::FMUL:
4730   case ISD::FMINNUM_IEEE:
4731   case ISD::FMAXNUM_IEEE:
4732   case ISD::UADDSAT:
4733   case ISD::USUBSAT:
4734   case ISD::SADDSAT:
4735   case ISD::SSUBSAT:
4736     return splitBinaryVectorOp(Op, DAG);
4737   case ISD::SMULO:
4738   case ISD::UMULO:
4739     return lowerXMULO(Op, DAG);
4740   case ISD::SMUL_LOHI:
4741   case ISD::UMUL_LOHI:
4742     return lowerXMUL_LOHI(Op, DAG);
4743   case ISD::DYNAMIC_STACKALLOC:
4744     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4745   }
4746   return SDValue();
4747 }
4748 
4749 // Used for D16: Casts the result of an instruction into the right vector,
4750 // packs values if loads return unpacked values.
4751 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4752                                        const SDLoc &DL,
4753                                        SelectionDAG &DAG, bool Unpacked) {
4754   if (!LoadVT.isVector())
4755     return Result;
4756 
4757   // Cast back to the original packed type or to a larger type that is a
4758   // multiple of 32 bit for D16. Widening the return type is a required for
4759   // legalization.
4760   EVT FittingLoadVT = LoadVT;
4761   if ((LoadVT.getVectorNumElements() % 2) == 1) {
4762     FittingLoadVT =
4763         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4764                          LoadVT.getVectorNumElements() + 1);
4765   }
4766 
4767   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4768     // Truncate to v2i16/v4i16.
4769     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4770 
4771     // Workaround legalizer not scalarizing truncate after vector op
4772     // legalization but not creating intermediate vector trunc.
4773     SmallVector<SDValue, 4> Elts;
4774     DAG.ExtractVectorElements(Result, Elts);
4775     for (SDValue &Elt : Elts)
4776       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4777 
4778     // Pad illegal v1i16/v3fi6 to v4i16
4779     if ((LoadVT.getVectorNumElements() % 2) == 1)
4780       Elts.push_back(DAG.getUNDEF(MVT::i16));
4781 
4782     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4783 
4784     // Bitcast to original type (v2f16/v4f16).
4785     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4786   }
4787 
4788   // Cast back to the original packed type.
4789   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4790 }
4791 
4792 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4793                                               MemSDNode *M,
4794                                               SelectionDAG &DAG,
4795                                               ArrayRef<SDValue> Ops,
4796                                               bool IsIntrinsic) const {
4797   SDLoc DL(M);
4798 
4799   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4800   EVT LoadVT = M->getValueType(0);
4801 
4802   EVT EquivLoadVT = LoadVT;
4803   if (LoadVT.isVector()) {
4804     if (Unpacked) {
4805       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4806                                      LoadVT.getVectorNumElements());
4807     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4808       // Widen v3f16 to legal type
4809       EquivLoadVT =
4810           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4811                            LoadVT.getVectorNumElements() + 1);
4812     }
4813   }
4814 
4815   // Change from v4f16/v2f16 to EquivLoadVT.
4816   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4817 
4818   SDValue Load
4819     = DAG.getMemIntrinsicNode(
4820       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4821       VTList, Ops, M->getMemoryVT(),
4822       M->getMemOperand());
4823 
4824   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4825 
4826   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4827 }
4828 
4829 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4830                                              SelectionDAG &DAG,
4831                                              ArrayRef<SDValue> Ops) const {
4832   SDLoc DL(M);
4833   EVT LoadVT = M->getValueType(0);
4834   EVT EltType = LoadVT.getScalarType();
4835   EVT IntVT = LoadVT.changeTypeToInteger();
4836 
4837   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4838 
4839   unsigned Opc =
4840       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4841 
4842   if (IsD16) {
4843     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4844   }
4845 
4846   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4847   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4848     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4849 
4850   if (isTypeLegal(LoadVT)) {
4851     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4852                                M->getMemOperand(), DAG);
4853   }
4854 
4855   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4856   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4857   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4858                                         M->getMemOperand(), DAG);
4859   return DAG.getMergeValues(
4860       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4861       DL);
4862 }
4863 
4864 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4865                                   SDNode *N, SelectionDAG &DAG) {
4866   EVT VT = N->getValueType(0);
4867   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4868   unsigned CondCode = CD->getZExtValue();
4869   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4870     return DAG.getUNDEF(VT);
4871 
4872   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4873 
4874   SDValue LHS = N->getOperand(1);
4875   SDValue RHS = N->getOperand(2);
4876 
4877   SDLoc DL(N);
4878 
4879   EVT CmpVT = LHS.getValueType();
4880   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4881     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4882       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4883     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4884     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4885   }
4886 
4887   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4888 
4889   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4890   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4891 
4892   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4893                               DAG.getCondCode(CCOpcode));
4894   if (VT.bitsEq(CCVT))
4895     return SetCC;
4896   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4897 }
4898 
4899 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4900                                   SDNode *N, SelectionDAG &DAG) {
4901   EVT VT = N->getValueType(0);
4902   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4903 
4904   unsigned CondCode = CD->getZExtValue();
4905   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4906     return DAG.getUNDEF(VT);
4907 
4908   SDValue Src0 = N->getOperand(1);
4909   SDValue Src1 = N->getOperand(2);
4910   EVT CmpVT = Src0.getValueType();
4911   SDLoc SL(N);
4912 
4913   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4914     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4915     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4916   }
4917 
4918   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4919   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4920   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4921   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4922   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4923                               Src1, DAG.getCondCode(CCOpcode));
4924   if (VT.bitsEq(CCVT))
4925     return SetCC;
4926   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4927 }
4928 
4929 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4930                                     SelectionDAG &DAG) {
4931   EVT VT = N->getValueType(0);
4932   SDValue Src = N->getOperand(1);
4933   SDLoc SL(N);
4934 
4935   if (Src.getOpcode() == ISD::SETCC) {
4936     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4937     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4938                        Src.getOperand(1), Src.getOperand(2));
4939   }
4940   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4941     // (ballot 0) -> 0
4942     if (Arg->isZero())
4943       return DAG.getConstant(0, SL, VT);
4944 
4945     // (ballot 1) -> EXEC/EXEC_LO
4946     if (Arg->isOne()) {
4947       Register Exec;
4948       if (VT.getScalarSizeInBits() == 32)
4949         Exec = AMDGPU::EXEC_LO;
4950       else if (VT.getScalarSizeInBits() == 64)
4951         Exec = AMDGPU::EXEC;
4952       else
4953         return SDValue();
4954 
4955       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4956     }
4957   }
4958 
4959   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4960   // ISD::SETNE)
4961   return DAG.getNode(
4962       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4963       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4964 }
4965 
4966 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4967                                           SmallVectorImpl<SDValue> &Results,
4968                                           SelectionDAG &DAG) const {
4969   switch (N->getOpcode()) {
4970   case ISD::INSERT_VECTOR_ELT: {
4971     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4972       Results.push_back(Res);
4973     return;
4974   }
4975   case ISD::EXTRACT_VECTOR_ELT: {
4976     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4977       Results.push_back(Res);
4978     return;
4979   }
4980   case ISD::INTRINSIC_WO_CHAIN: {
4981     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4982     switch (IID) {
4983     case Intrinsic::amdgcn_cvt_pkrtz: {
4984       SDValue Src0 = N->getOperand(1);
4985       SDValue Src1 = N->getOperand(2);
4986       SDLoc SL(N);
4987       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4988                                 Src0, Src1);
4989       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4990       return;
4991     }
4992     case Intrinsic::amdgcn_cvt_pknorm_i16:
4993     case Intrinsic::amdgcn_cvt_pknorm_u16:
4994     case Intrinsic::amdgcn_cvt_pk_i16:
4995     case Intrinsic::amdgcn_cvt_pk_u16: {
4996       SDValue Src0 = N->getOperand(1);
4997       SDValue Src1 = N->getOperand(2);
4998       SDLoc SL(N);
4999       unsigned Opcode;
5000 
5001       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
5002         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
5003       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
5004         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
5005       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
5006         Opcode = AMDGPUISD::CVT_PK_I16_I32;
5007       else
5008         Opcode = AMDGPUISD::CVT_PK_U16_U32;
5009 
5010       EVT VT = N->getValueType(0);
5011       if (isTypeLegal(VT))
5012         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
5013       else {
5014         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
5015         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
5016       }
5017       return;
5018     }
5019     }
5020     break;
5021   }
5022   case ISD::INTRINSIC_W_CHAIN: {
5023     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
5024       if (Res.getOpcode() == ISD::MERGE_VALUES) {
5025         // FIXME: Hacky
5026         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
5027           Results.push_back(Res.getOperand(I));
5028         }
5029       } else {
5030         Results.push_back(Res);
5031         Results.push_back(Res.getValue(1));
5032       }
5033       return;
5034     }
5035 
5036     break;
5037   }
5038   case ISD::SELECT: {
5039     SDLoc SL(N);
5040     EVT VT = N->getValueType(0);
5041     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
5042     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
5043     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
5044 
5045     EVT SelectVT = NewVT;
5046     if (NewVT.bitsLT(MVT::i32)) {
5047       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
5048       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
5049       SelectVT = MVT::i32;
5050     }
5051 
5052     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
5053                                     N->getOperand(0), LHS, RHS);
5054 
5055     if (NewVT != SelectVT)
5056       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
5057     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
5058     return;
5059   }
5060   case ISD::FNEG: {
5061     if (N->getValueType(0) != MVT::v2f16)
5062       break;
5063 
5064     SDLoc SL(N);
5065     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5066 
5067     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
5068                              BC,
5069                              DAG.getConstant(0x80008000, SL, MVT::i32));
5070     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5071     return;
5072   }
5073   case ISD::FABS: {
5074     if (N->getValueType(0) != MVT::v2f16)
5075       break;
5076 
5077     SDLoc SL(N);
5078     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5079 
5080     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
5081                              BC,
5082                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
5083     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5084     return;
5085   }
5086   default:
5087     break;
5088   }
5089 }
5090 
5091 /// Helper function for LowerBRCOND
5092 static SDNode *findUser(SDValue Value, unsigned Opcode) {
5093 
5094   SDNode *Parent = Value.getNode();
5095   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
5096        I != E; ++I) {
5097 
5098     if (I.getUse().get() != Value)
5099       continue;
5100 
5101     if (I->getOpcode() == Opcode)
5102       return *I;
5103   }
5104   return nullptr;
5105 }
5106 
5107 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
5108   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
5109     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
5110     case Intrinsic::amdgcn_if:
5111       return AMDGPUISD::IF;
5112     case Intrinsic::amdgcn_else:
5113       return AMDGPUISD::ELSE;
5114     case Intrinsic::amdgcn_loop:
5115       return AMDGPUISD::LOOP;
5116     case Intrinsic::amdgcn_end_cf:
5117       llvm_unreachable("should not occur");
5118     default:
5119       return 0;
5120     }
5121   }
5122 
5123   // break, if_break, else_break are all only used as inputs to loop, not
5124   // directly as branch conditions.
5125   return 0;
5126 }
5127 
5128 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
5129   const Triple &TT = getTargetMachine().getTargetTriple();
5130   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5131           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5132          AMDGPU::shouldEmitConstantsToTextSection(TT);
5133 }
5134 
5135 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
5136   // FIXME: Either avoid relying on address space here or change the default
5137   // address space for functions to avoid the explicit check.
5138   return (GV->getValueType()->isFunctionTy() ||
5139           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
5140          !shouldEmitFixup(GV) &&
5141          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5142 }
5143 
5144 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5145   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5146 }
5147 
5148 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5149   if (!GV->hasExternalLinkage())
5150     return true;
5151 
5152   const auto OS = getTargetMachine().getTargetTriple().getOS();
5153   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5154 }
5155 
5156 /// This transforms the control flow intrinsics to get the branch destination as
5157 /// last parameter, also switches branch target with BR if the need arise
5158 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5159                                       SelectionDAG &DAG) const {
5160   SDLoc DL(BRCOND);
5161 
5162   SDNode *Intr = BRCOND.getOperand(1).getNode();
5163   SDValue Target = BRCOND.getOperand(2);
5164   SDNode *BR = nullptr;
5165   SDNode *SetCC = nullptr;
5166 
5167   if (Intr->getOpcode() == ISD::SETCC) {
5168     // As long as we negate the condition everything is fine
5169     SetCC = Intr;
5170     Intr = SetCC->getOperand(0).getNode();
5171 
5172   } else {
5173     // Get the target from BR if we don't negate the condition
5174     BR = findUser(BRCOND, ISD::BR);
5175     assert(BR && "brcond missing unconditional branch user");
5176     Target = BR->getOperand(1);
5177   }
5178 
5179   unsigned CFNode = isCFIntrinsic(Intr);
5180   if (CFNode == 0) {
5181     // This is a uniform branch so we don't need to legalize.
5182     return BRCOND;
5183   }
5184 
5185   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5186                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5187 
5188   assert(!SetCC ||
5189         (SetCC->getConstantOperandVal(1) == 1 &&
5190          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5191                                                              ISD::SETNE));
5192 
5193   // operands of the new intrinsic call
5194   SmallVector<SDValue, 4> Ops;
5195   if (HaveChain)
5196     Ops.push_back(BRCOND.getOperand(0));
5197 
5198   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
5199   Ops.push_back(Target);
5200 
5201   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5202 
5203   // build the new intrinsic call
5204   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5205 
5206   if (!HaveChain) {
5207     SDValue Ops[] =  {
5208       SDValue(Result, 0),
5209       BRCOND.getOperand(0)
5210     };
5211 
5212     Result = DAG.getMergeValues(Ops, DL).getNode();
5213   }
5214 
5215   if (BR) {
5216     // Give the branch instruction our target
5217     SDValue Ops[] = {
5218       BR->getOperand(0),
5219       BRCOND.getOperand(2)
5220     };
5221     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5222     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5223   }
5224 
5225   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5226 
5227   // Copy the intrinsic results to registers
5228   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5229     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5230     if (!CopyToReg)
5231       continue;
5232 
5233     Chain = DAG.getCopyToReg(
5234       Chain, DL,
5235       CopyToReg->getOperand(1),
5236       SDValue(Result, i - 1),
5237       SDValue());
5238 
5239     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5240   }
5241 
5242   // Remove the old intrinsic from the chain
5243   DAG.ReplaceAllUsesOfValueWith(
5244     SDValue(Intr, Intr->getNumValues() - 1),
5245     Intr->getOperand(0));
5246 
5247   return Chain;
5248 }
5249 
5250 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5251                                           SelectionDAG &DAG) const {
5252   MVT VT = Op.getSimpleValueType();
5253   SDLoc DL(Op);
5254   // Checking the depth
5255   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5256     return DAG.getConstant(0, DL, VT);
5257 
5258   MachineFunction &MF = DAG.getMachineFunction();
5259   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5260   // Check for kernel and shader functions
5261   if (Info->isEntryFunction())
5262     return DAG.getConstant(0, DL, VT);
5263 
5264   MachineFrameInfo &MFI = MF.getFrameInfo();
5265   // There is a call to @llvm.returnaddress in this function
5266   MFI.setReturnAddressIsTaken(true);
5267 
5268   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5269   // Get the return address reg and mark it as an implicit live-in
5270   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5271 
5272   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5273 }
5274 
5275 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5276                                             SDValue Op,
5277                                             const SDLoc &DL,
5278                                             EVT VT) const {
5279   return Op.getValueType().bitsLE(VT) ?
5280       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5281     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5282                 DAG.getTargetConstant(0, DL, MVT::i32));
5283 }
5284 
5285 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5286   assert(Op.getValueType() == MVT::f16 &&
5287          "Do not know how to custom lower FP_ROUND for non-f16 type");
5288 
5289   SDValue Src = Op.getOperand(0);
5290   EVT SrcVT = Src.getValueType();
5291   if (SrcVT != MVT::f64)
5292     return Op;
5293 
5294   SDLoc DL(Op);
5295 
5296   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5297   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5298   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5299 }
5300 
5301 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5302                                                SelectionDAG &DAG) const {
5303   EVT VT = Op.getValueType();
5304   const MachineFunction &MF = DAG.getMachineFunction();
5305   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5306   bool IsIEEEMode = Info->getMode().IEEE;
5307 
5308   // FIXME: Assert during selection that this is only selected for
5309   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5310   // mode functions, but this happens to be OK since it's only done in cases
5311   // where there is known no sNaN.
5312   if (IsIEEEMode)
5313     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5314 
5315   if (VT == MVT::v4f16)
5316     return splitBinaryVectorOp(Op, DAG);
5317   return Op;
5318 }
5319 
5320 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5321   EVT VT = Op.getValueType();
5322   SDLoc SL(Op);
5323   SDValue LHS = Op.getOperand(0);
5324   SDValue RHS = Op.getOperand(1);
5325   bool isSigned = Op.getOpcode() == ISD::SMULO;
5326 
5327   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5328     const APInt &C = RHSC->getAPIntValue();
5329     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5330     if (C.isPowerOf2()) {
5331       // smulo(x, signed_min) is same as umulo(x, signed_min).
5332       bool UseArithShift = isSigned && !C.isMinSignedValue();
5333       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5334       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5335       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5336           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5337                       SL, VT, Result, ShiftAmt),
5338           LHS, ISD::SETNE);
5339       return DAG.getMergeValues({ Result, Overflow }, SL);
5340     }
5341   }
5342 
5343   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5344   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5345                             SL, VT, LHS, RHS);
5346 
5347   SDValue Sign = isSigned
5348     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5349                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5350     : DAG.getConstant(0, SL, VT);
5351   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5352 
5353   return DAG.getMergeValues({ Result, Overflow }, SL);
5354 }
5355 
5356 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
5357   if (Op->isDivergent()) {
5358     // Select to V_MAD_[IU]64_[IU]32.
5359     return Op;
5360   }
5361   if (Subtarget->hasSMulHi()) {
5362     // Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
5363     return SDValue();
5364   }
5365   // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
5366   // calculate the high part, so we might as well do the whole thing with
5367   // V_MAD_[IU]64_[IU]32.
5368   return Op;
5369 }
5370 
5371 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5372   if (!Subtarget->isTrapHandlerEnabled() ||
5373       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5374     return lowerTrapEndpgm(Op, DAG);
5375 
5376   if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) {
5377     switch (*HsaAbiVer) {
5378     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
5379     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
5380       return lowerTrapHsaQueuePtr(Op, DAG);
5381     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
5382       return Subtarget->supportsGetDoorbellID() ?
5383           lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG);
5384     }
5385   }
5386 
5387   llvm_unreachable("Unknown trap handler");
5388 }
5389 
5390 SDValue SITargetLowering::lowerTrapEndpgm(
5391     SDValue Op, SelectionDAG &DAG) const {
5392   SDLoc SL(Op);
5393   SDValue Chain = Op.getOperand(0);
5394   return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5395 }
5396 
5397 SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5398     SDValue Op, SelectionDAG &DAG) const {
5399   SDLoc SL(Op);
5400   SDValue Chain = Op.getOperand(0);
5401 
5402   MachineFunction &MF = DAG.getMachineFunction();
5403   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5404   Register UserSGPR = Info->getQueuePtrUserSGPR();
5405 
5406   SDValue QueuePtr;
5407   if (UserSGPR == AMDGPU::NoRegister) {
5408     // We probably are in a function incorrectly marked with
5409     // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the trap,
5410     // so just use a null pointer.
5411     QueuePtr = DAG.getConstant(0, SL, MVT::i64);
5412   } else {
5413     QueuePtr = CreateLiveInRegister(
5414       DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5415   }
5416 
5417   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5418   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5419                                    QueuePtr, SDValue());
5420 
5421   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5422   SDValue Ops[] = {
5423     ToReg,
5424     DAG.getTargetConstant(TrapID, SL, MVT::i16),
5425     SGPR01,
5426     ToReg.getValue(1)
5427   };
5428   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5429 }
5430 
5431 SDValue SITargetLowering::lowerTrapHsa(
5432     SDValue Op, SelectionDAG &DAG) const {
5433   SDLoc SL(Op);
5434   SDValue Chain = Op.getOperand(0);
5435 
5436   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5437   SDValue Ops[] = {
5438     Chain,
5439     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5440   };
5441   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5442 }
5443 
5444 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5445   SDLoc SL(Op);
5446   SDValue Chain = Op.getOperand(0);
5447   MachineFunction &MF = DAG.getMachineFunction();
5448 
5449   if (!Subtarget->isTrapHandlerEnabled() ||
5450       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5451     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5452                                      "debugtrap handler not supported",
5453                                      Op.getDebugLoc(),
5454                                      DS_Warning);
5455     LLVMContext &Ctx = MF.getFunction().getContext();
5456     Ctx.diagnose(NoTrap);
5457     return Chain;
5458   }
5459 
5460   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5461   SDValue Ops[] = {
5462     Chain,
5463     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5464   };
5465   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5466 }
5467 
5468 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5469                                              SelectionDAG &DAG) const {
5470   // FIXME: Use inline constants (src_{shared, private}_base) instead.
5471   if (Subtarget->hasApertureRegs()) {
5472     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5473         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5474         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5475     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5476         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5477         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5478     unsigned Encoding =
5479         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5480         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5481         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5482 
5483     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5484     SDValue ApertureReg = SDValue(
5485         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5486     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5487     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5488   }
5489 
5490   MachineFunction &MF = DAG.getMachineFunction();
5491   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5492   Register UserSGPR = Info->getQueuePtrUserSGPR();
5493   if (UserSGPR == AMDGPU::NoRegister) {
5494     // We probably are in a function incorrectly marked with
5495     // amdgpu-no-queue-ptr. This is undefined.
5496     return DAG.getUNDEF(MVT::i32);
5497   }
5498 
5499   SDValue QueuePtr = CreateLiveInRegister(
5500     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5501 
5502   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5503   // private_segment_aperture_base_hi.
5504   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5505 
5506   SDValue Ptr =
5507       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5508 
5509   // TODO: Use custom target PseudoSourceValue.
5510   // TODO: We should use the value from the IR intrinsic call, but it might not
5511   // be available and how do we get it?
5512   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5513   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5514                      commonAlignment(Align(64), StructOffset),
5515                      MachineMemOperand::MODereferenceable |
5516                          MachineMemOperand::MOInvariant);
5517 }
5518 
5519 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5520                                              SelectionDAG &DAG) const {
5521   SDLoc SL(Op);
5522   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5523 
5524   SDValue Src = ASC->getOperand(0);
5525   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5526 
5527   const AMDGPUTargetMachine &TM =
5528     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5529 
5530   // flat -> local/private
5531   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5532     unsigned DestAS = ASC->getDestAddressSpace();
5533 
5534     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5535         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5536       unsigned NullVal = TM.getNullPointerValue(DestAS);
5537       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5538       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5539       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5540 
5541       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
5542                          NonNull, Ptr, SegmentNullPtr);
5543     }
5544   }
5545 
5546   // local/private -> flat
5547   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5548     unsigned SrcAS = ASC->getSrcAddressSpace();
5549 
5550     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5551         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5552       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5553       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5554 
5555       SDValue NonNull
5556         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5557 
5558       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5559       SDValue CvtPtr
5560         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5561 
5562       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
5563                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
5564                          FlatNullPtr);
5565     }
5566   }
5567 
5568   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5569       Src.getValueType() == MVT::i64)
5570     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5571 
5572   // global <-> flat are no-ops and never emitted.
5573 
5574   const MachineFunction &MF = DAG.getMachineFunction();
5575   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5576     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5577   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5578 
5579   return DAG.getUNDEF(ASC->getValueType(0));
5580 }
5581 
5582 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5583 // the small vector and inserting them into the big vector. That is better than
5584 // the default expansion of doing it via a stack slot. Even though the use of
5585 // the stack slot would be optimized away afterwards, the stack slot itself
5586 // remains.
5587 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5588                                                 SelectionDAG &DAG) const {
5589   SDValue Vec = Op.getOperand(0);
5590   SDValue Ins = Op.getOperand(1);
5591   SDValue Idx = Op.getOperand(2);
5592   EVT VecVT = Vec.getValueType();
5593   EVT InsVT = Ins.getValueType();
5594   EVT EltVT = VecVT.getVectorElementType();
5595   unsigned InsNumElts = InsVT.getVectorNumElements();
5596   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5597   SDLoc SL(Op);
5598 
5599   for (unsigned I = 0; I != InsNumElts; ++I) {
5600     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5601                               DAG.getConstant(I, SL, MVT::i32));
5602     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5603                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5604   }
5605   return Vec;
5606 }
5607 
5608 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5609                                                  SelectionDAG &DAG) const {
5610   SDValue Vec = Op.getOperand(0);
5611   SDValue InsVal = Op.getOperand(1);
5612   SDValue Idx = Op.getOperand(2);
5613   EVT VecVT = Vec.getValueType();
5614   EVT EltVT = VecVT.getVectorElementType();
5615   unsigned VecSize = VecVT.getSizeInBits();
5616   unsigned EltSize = EltVT.getSizeInBits();
5617 
5618 
5619   assert(VecSize <= 64);
5620 
5621   unsigned NumElts = VecVT.getVectorNumElements();
5622   SDLoc SL(Op);
5623   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5624 
5625   if (NumElts == 4 && EltSize == 16 && KIdx) {
5626     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5627 
5628     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5629                                  DAG.getConstant(0, SL, MVT::i32));
5630     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5631                                  DAG.getConstant(1, SL, MVT::i32));
5632 
5633     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5634     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5635 
5636     unsigned Idx = KIdx->getZExtValue();
5637     bool InsertLo = Idx < 2;
5638     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5639       InsertLo ? LoVec : HiVec,
5640       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5641       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5642 
5643     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5644 
5645     SDValue Concat = InsertLo ?
5646       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5647       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5648 
5649     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5650   }
5651 
5652   if (isa<ConstantSDNode>(Idx))
5653     return SDValue();
5654 
5655   MVT IntVT = MVT::getIntegerVT(VecSize);
5656 
5657   // Avoid stack access for dynamic indexing.
5658   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5659 
5660   // Create a congruent vector with the target value in each element so that
5661   // the required element can be masked and ORed into the target vector.
5662   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5663                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5664 
5665   assert(isPowerOf2_32(EltSize));
5666   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5667 
5668   // Convert vector index to bit-index.
5669   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5670 
5671   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5672   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5673                             DAG.getConstant(0xffff, SL, IntVT),
5674                             ScaledIdx);
5675 
5676   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5677   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5678                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5679 
5680   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5681   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5682 }
5683 
5684 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5685                                                   SelectionDAG &DAG) const {
5686   SDLoc SL(Op);
5687 
5688   EVT ResultVT = Op.getValueType();
5689   SDValue Vec = Op.getOperand(0);
5690   SDValue Idx = Op.getOperand(1);
5691   EVT VecVT = Vec.getValueType();
5692   unsigned VecSize = VecVT.getSizeInBits();
5693   EVT EltVT = VecVT.getVectorElementType();
5694   assert(VecSize <= 64);
5695 
5696   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5697 
5698   // Make sure we do any optimizations that will make it easier to fold
5699   // source modifiers before obscuring it with bit operations.
5700 
5701   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5702   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5703     return Combined;
5704 
5705   unsigned EltSize = EltVT.getSizeInBits();
5706   assert(isPowerOf2_32(EltSize));
5707 
5708   MVT IntVT = MVT::getIntegerVT(VecSize);
5709   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5710 
5711   // Convert vector index to bit-index (* EltSize)
5712   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5713 
5714   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5715   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5716 
5717   if (ResultVT == MVT::f16) {
5718     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5719     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5720   }
5721 
5722   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5723 }
5724 
5725 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5726   assert(Elt % 2 == 0);
5727   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5728 }
5729 
5730 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5731                                               SelectionDAG &DAG) const {
5732   SDLoc SL(Op);
5733   EVT ResultVT = Op.getValueType();
5734   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5735 
5736   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5737   EVT EltVT = PackVT.getVectorElementType();
5738   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5739 
5740   // vector_shuffle <0,1,6,7> lhs, rhs
5741   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5742   //
5743   // vector_shuffle <6,7,2,3> lhs, rhs
5744   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5745   //
5746   // vector_shuffle <6,7,0,1> lhs, rhs
5747   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5748 
5749   // Avoid scalarizing when both halves are reading from consecutive elements.
5750   SmallVector<SDValue, 4> Pieces;
5751   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5752     if (elementPairIsContiguous(SVN->getMask(), I)) {
5753       const int Idx = SVN->getMaskElt(I);
5754       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5755       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5756       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5757                                     PackVT, SVN->getOperand(VecIdx),
5758                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5759       Pieces.push_back(SubVec);
5760     } else {
5761       const int Idx0 = SVN->getMaskElt(I);
5762       const int Idx1 = SVN->getMaskElt(I + 1);
5763       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5764       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5765       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5766       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5767 
5768       SDValue Vec0 = SVN->getOperand(VecIdx0);
5769       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5770                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5771 
5772       SDValue Vec1 = SVN->getOperand(VecIdx1);
5773       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5774                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5775       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5776     }
5777   }
5778 
5779   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5780 }
5781 
5782 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5783                                             SelectionDAG &DAG) const {
5784   SDLoc SL(Op);
5785   EVT VT = Op.getValueType();
5786 
5787   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
5788     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
5789 
5790     // Turn into pair of packed build_vectors.
5791     // TODO: Special case for constants that can be materialized with s_mov_b64.
5792     SDValue Lo = DAG.getBuildVector(HalfVT, SL,
5793                                     { Op.getOperand(0), Op.getOperand(1) });
5794     SDValue Hi = DAG.getBuildVector(HalfVT, SL,
5795                                     { Op.getOperand(2), Op.getOperand(3) });
5796 
5797     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
5798     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
5799 
5800     SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
5801     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5802   }
5803 
5804   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5805   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5806 
5807   SDValue Lo = Op.getOperand(0);
5808   SDValue Hi = Op.getOperand(1);
5809 
5810   // Avoid adding defined bits with the zero_extend.
5811   if (Hi.isUndef()) {
5812     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5813     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5814     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5815   }
5816 
5817   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5818   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5819 
5820   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5821                               DAG.getConstant(16, SL, MVT::i32));
5822   if (Lo.isUndef())
5823     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5824 
5825   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5826   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5827 
5828   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5829   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5830 }
5831 
5832 bool
5833 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5834   // We can fold offsets for anything that doesn't require a GOT relocation.
5835   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5836           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5837           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5838          !shouldEmitGOTReloc(GA->getGlobal());
5839 }
5840 
5841 static SDValue
5842 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5843                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
5844                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5845   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5846   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5847   // lowered to the following code sequence:
5848   //
5849   // For constant address space:
5850   //   s_getpc_b64 s[0:1]
5851   //   s_add_u32 s0, s0, $symbol
5852   //   s_addc_u32 s1, s1, 0
5853   //
5854   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5855   //   a fixup or relocation is emitted to replace $symbol with a literal
5856   //   constant, which is a pc-relative offset from the encoding of the $symbol
5857   //   operand to the global variable.
5858   //
5859   // For global address space:
5860   //   s_getpc_b64 s[0:1]
5861   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5862   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5863   //
5864   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5865   //   fixups or relocations are emitted to replace $symbol@*@lo and
5866   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5867   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5868   //   operand to the global variable.
5869   //
5870   // What we want here is an offset from the value returned by s_getpc
5871   // (which is the address of the s_add_u32 instruction) to the global
5872   // variable, but since the encoding of $symbol starts 4 bytes after the start
5873   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5874   // small. This requires us to add 4 to the global variable offset in order to
5875   // compute the correct address. Similarly for the s_addc_u32 instruction, the
5876   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5877   // instruction.
5878   SDValue PtrLo =
5879       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5880   SDValue PtrHi;
5881   if (GAFlags == SIInstrInfo::MO_NONE) {
5882     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5883   } else {
5884     PtrHi =
5885         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5886   }
5887   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5888 }
5889 
5890 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5891                                              SDValue Op,
5892                                              SelectionDAG &DAG) const {
5893   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5894   SDLoc DL(GSD);
5895   EVT PtrVT = Op.getValueType();
5896 
5897   const GlobalValue *GV = GSD->getGlobal();
5898   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5899        shouldUseLDSConstAddress(GV)) ||
5900       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5901       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
5902     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5903         GV->hasExternalLinkage()) {
5904       Type *Ty = GV->getValueType();
5905       // HIP uses an unsized array `extern __shared__ T s[]` or similar
5906       // zero-sized type in other languages to declare the dynamic shared
5907       // memory which size is not known at the compile time. They will be
5908       // allocated by the runtime and placed directly after the static
5909       // allocated ones. They all share the same offset.
5910       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
5911         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
5912         // Adjust alignment for that dynamic shared memory array.
5913         MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
5914         return SDValue(
5915             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
5916       }
5917     }
5918     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5919   }
5920 
5921   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5922     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5923                                             SIInstrInfo::MO_ABS32_LO);
5924     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5925   }
5926 
5927   if (shouldEmitFixup(GV))
5928     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5929   else if (shouldEmitPCReloc(GV))
5930     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5931                                    SIInstrInfo::MO_REL32);
5932 
5933   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5934                                             SIInstrInfo::MO_GOTPCREL32);
5935 
5936   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5937   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5938   const DataLayout &DataLayout = DAG.getDataLayout();
5939   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
5940   MachinePointerInfo PtrInfo
5941     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5942 
5943   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
5944                      MachineMemOperand::MODereferenceable |
5945                          MachineMemOperand::MOInvariant);
5946 }
5947 
5948 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5949                                    const SDLoc &DL, SDValue V) const {
5950   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5951   // the destination register.
5952   //
5953   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5954   // so we will end up with redundant moves to m0.
5955   //
5956   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5957 
5958   // A Null SDValue creates a glue result.
5959   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5960                                   V, Chain);
5961   return SDValue(M0, 0);
5962 }
5963 
5964 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5965                                                  SDValue Op,
5966                                                  MVT VT,
5967                                                  unsigned Offset) const {
5968   SDLoc SL(Op);
5969   SDValue Param = lowerKernargMemParameter(
5970       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
5971   // The local size values will have the hi 16-bits as zero.
5972   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5973                      DAG.getValueType(VT));
5974 }
5975 
5976 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5977                                         EVT VT) {
5978   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5979                                       "non-hsa intrinsic with hsa target",
5980                                       DL.getDebugLoc());
5981   DAG.getContext()->diagnose(BadIntrin);
5982   return DAG.getUNDEF(VT);
5983 }
5984 
5985 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5986                                          EVT VT) {
5987   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5988                                       "intrinsic not supported on subtarget",
5989                                       DL.getDebugLoc());
5990   DAG.getContext()->diagnose(BadIntrin);
5991   return DAG.getUNDEF(VT);
5992 }
5993 
5994 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5995                                     ArrayRef<SDValue> Elts) {
5996   assert(!Elts.empty());
5997   MVT Type;
5998   unsigned NumElts = Elts.size();
5999 
6000   if (NumElts <= 8) {
6001     Type = MVT::getVectorVT(MVT::f32, NumElts);
6002   } else {
6003     assert(Elts.size() <= 16);
6004     Type = MVT::v16f32;
6005     NumElts = 16;
6006   }
6007 
6008   SmallVector<SDValue, 16> VecElts(NumElts);
6009   for (unsigned i = 0; i < Elts.size(); ++i) {
6010     SDValue Elt = Elts[i];
6011     if (Elt.getValueType() != MVT::f32)
6012       Elt = DAG.getBitcast(MVT::f32, Elt);
6013     VecElts[i] = Elt;
6014   }
6015   for (unsigned i = Elts.size(); i < NumElts; ++i)
6016     VecElts[i] = DAG.getUNDEF(MVT::f32);
6017 
6018   if (NumElts == 1)
6019     return VecElts[0];
6020   return DAG.getBuildVector(Type, DL, VecElts);
6021 }
6022 
6023 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
6024                               SDValue Src, int ExtraElts) {
6025   EVT SrcVT = Src.getValueType();
6026 
6027   SmallVector<SDValue, 8> Elts;
6028 
6029   if (SrcVT.isVector())
6030     DAG.ExtractVectorElements(Src, Elts);
6031   else
6032     Elts.push_back(Src);
6033 
6034   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
6035   while (ExtraElts--)
6036     Elts.push_back(Undef);
6037 
6038   return DAG.getBuildVector(CastVT, DL, Elts);
6039 }
6040 
6041 // Re-construct the required return value for a image load intrinsic.
6042 // This is more complicated due to the optional use TexFailCtrl which means the required
6043 // return type is an aggregate
6044 static SDValue constructRetValue(SelectionDAG &DAG,
6045                                  MachineSDNode *Result,
6046                                  ArrayRef<EVT> ResultTypes,
6047                                  bool IsTexFail, bool Unpacked, bool IsD16,
6048                                  int DMaskPop, int NumVDataDwords,
6049                                  const SDLoc &DL) {
6050   // Determine the required return type. This is the same regardless of IsTexFail flag
6051   EVT ReqRetVT = ResultTypes[0];
6052   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
6053   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6054     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
6055 
6056   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6057     DMaskPop : (DMaskPop + 1) / 2;
6058 
6059   MVT DataDwordVT = NumDataDwords == 1 ?
6060     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
6061 
6062   MVT MaskPopVT = MaskPopDwords == 1 ?
6063     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
6064 
6065   SDValue Data(Result, 0);
6066   SDValue TexFail;
6067 
6068   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
6069     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
6070     if (MaskPopVT.isVector()) {
6071       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
6072                          SDValue(Result, 0), ZeroIdx);
6073     } else {
6074       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
6075                          SDValue(Result, 0), ZeroIdx);
6076     }
6077   }
6078 
6079   if (DataDwordVT.isVector())
6080     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
6081                           NumDataDwords - MaskPopDwords);
6082 
6083   if (IsD16)
6084     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
6085 
6086   EVT LegalReqRetVT = ReqRetVT;
6087   if (!ReqRetVT.isVector()) {
6088     if (!Data.getValueType().isInteger())
6089       Data = DAG.getNode(ISD::BITCAST, DL,
6090                          Data.getValueType().changeTypeToInteger(), Data);
6091     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
6092   } else {
6093     // We need to widen the return vector to a legal type
6094     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
6095         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
6096       LegalReqRetVT =
6097           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
6098                            ReqRetVT.getVectorNumElements() + 1);
6099     }
6100   }
6101   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
6102 
6103   if (IsTexFail) {
6104     TexFail =
6105         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
6106                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
6107 
6108     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
6109   }
6110 
6111   if (Result->getNumValues() == 1)
6112     return Data;
6113 
6114   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
6115 }
6116 
6117 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
6118                          SDValue *LWE, bool &IsTexFail) {
6119   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
6120 
6121   uint64_t Value = TexFailCtrlConst->getZExtValue();
6122   if (Value) {
6123     IsTexFail = true;
6124   }
6125 
6126   SDLoc DL(TexFailCtrlConst);
6127   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
6128   Value &= ~(uint64_t)0x1;
6129   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
6130   Value &= ~(uint64_t)0x2;
6131 
6132   return Value == 0;
6133 }
6134 
6135 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
6136                                       MVT PackVectorVT,
6137                                       SmallVectorImpl<SDValue> &PackedAddrs,
6138                                       unsigned DimIdx, unsigned EndIdx,
6139                                       unsigned NumGradients) {
6140   SDLoc DL(Op);
6141   for (unsigned I = DimIdx; I < EndIdx; I++) {
6142     SDValue Addr = Op.getOperand(I);
6143 
6144     // Gradients are packed with undef for each coordinate.
6145     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
6146     // 1D: undef,dx/dh; undef,dx/dv
6147     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
6148     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
6149     if (((I + 1) >= EndIdx) ||
6150         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
6151                                          I == DimIdx + NumGradients - 1))) {
6152       if (Addr.getValueType() != MVT::i16)
6153         Addr = DAG.getBitcast(MVT::i16, Addr);
6154       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
6155     } else {
6156       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
6157       I++;
6158     }
6159     Addr = DAG.getBitcast(MVT::f32, Addr);
6160     PackedAddrs.push_back(Addr);
6161   }
6162 }
6163 
6164 SDValue SITargetLowering::lowerImage(SDValue Op,
6165                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
6166                                      SelectionDAG &DAG, bool WithChain) const {
6167   SDLoc DL(Op);
6168   MachineFunction &MF = DAG.getMachineFunction();
6169   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
6170   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
6171       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
6172   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
6173   const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
6174       AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
6175   const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
6176       AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
6177   unsigned IntrOpcode = Intr->BaseOpcode;
6178   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6179 
6180   SmallVector<EVT, 3> ResultTypes(Op->values());
6181   SmallVector<EVT, 3> OrigResultTypes(Op->values());
6182   bool IsD16 = false;
6183   bool IsG16 = false;
6184   bool IsA16 = false;
6185   SDValue VData;
6186   int NumVDataDwords;
6187   bool AdjustRetType = false;
6188 
6189   // Offset of intrinsic arguments
6190   const unsigned ArgOffset = WithChain ? 2 : 1;
6191 
6192   unsigned DMask;
6193   unsigned DMaskLanes = 0;
6194 
6195   if (BaseOpcode->Atomic) {
6196     VData = Op.getOperand(2);
6197 
6198     bool Is64Bit = VData.getValueType() == MVT::i64;
6199     if (BaseOpcode->AtomicX2) {
6200       SDValue VData2 = Op.getOperand(3);
6201       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6202                                  {VData, VData2});
6203       if (Is64Bit)
6204         VData = DAG.getBitcast(MVT::v4i32, VData);
6205 
6206       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6207       DMask = Is64Bit ? 0xf : 0x3;
6208       NumVDataDwords = Is64Bit ? 4 : 2;
6209     } else {
6210       DMask = Is64Bit ? 0x3 : 0x1;
6211       NumVDataDwords = Is64Bit ? 2 : 1;
6212     }
6213   } else {
6214     auto *DMaskConst =
6215         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6216     DMask = DMaskConst->getZExtValue();
6217     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6218 
6219     if (BaseOpcode->Store) {
6220       VData = Op.getOperand(2);
6221 
6222       MVT StoreVT = VData.getSimpleValueType();
6223       if (StoreVT.getScalarType() == MVT::f16) {
6224         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6225           return Op; // D16 is unsupported for this instruction
6226 
6227         IsD16 = true;
6228         VData = handleD16VData(VData, DAG, true);
6229       }
6230 
6231       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6232     } else {
6233       // Work out the num dwords based on the dmask popcount and underlying type
6234       // and whether packing is supported.
6235       MVT LoadVT = ResultTypes[0].getSimpleVT();
6236       if (LoadVT.getScalarType() == MVT::f16) {
6237         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6238           return Op; // D16 is unsupported for this instruction
6239 
6240         IsD16 = true;
6241       }
6242 
6243       // Confirm that the return type is large enough for the dmask specified
6244       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6245           (!LoadVT.isVector() && DMaskLanes > 1))
6246           return Op;
6247 
6248       // The sq block of gfx8 and gfx9 do not estimate register use correctly
6249       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6250       // instructions.
6251       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6252           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6253         NumVDataDwords = (DMaskLanes + 1) / 2;
6254       else
6255         NumVDataDwords = DMaskLanes;
6256 
6257       AdjustRetType = true;
6258     }
6259   }
6260 
6261   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6262   SmallVector<SDValue, 4> VAddrs;
6263 
6264   // Optimize _L to _LZ when _L is zero
6265   if (LZMappingInfo) {
6266     if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>(
6267             Op.getOperand(ArgOffset + Intr->LodIndex))) {
6268       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
6269         IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
6270         VAddrEnd--;                      // remove 'lod'
6271       }
6272     }
6273   }
6274 
6275   // Optimize _mip away, when 'lod' is zero
6276   if (MIPMappingInfo) {
6277     if (auto *ConstantLod = dyn_cast<ConstantSDNode>(
6278             Op.getOperand(ArgOffset + Intr->MipIndex))) {
6279       if (ConstantLod->isZero()) {
6280         IntrOpcode = MIPMappingInfo->NONMIP;  // set new opcode to variant without _mip
6281         VAddrEnd--;                           // remove 'mip'
6282       }
6283     }
6284   }
6285 
6286   // Push back extra arguments.
6287   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++)
6288     VAddrs.push_back(Op.getOperand(ArgOffset + I));
6289 
6290   // Check for 16 bit addresses or derivatives and pack if true.
6291   MVT VAddrVT =
6292       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6293   MVT VAddrScalarVT = VAddrVT.getScalarType();
6294   MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6295   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6296 
6297   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6298   VAddrScalarVT = VAddrVT.getScalarType();
6299   MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6300   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6301 
6302   if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6303     // 16 bit gradients are supported, but are tied to the A16 control
6304     // so both gradients and addresses must be 16 bit
6305     LLVM_DEBUG(
6306         dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6307                   "require 16 bit args for both gradients and addresses");
6308     return Op;
6309   }
6310 
6311   if (IsA16) {
6312     if (!ST->hasA16()) {
6313       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6314                            "support 16 bit addresses\n");
6315       return Op;
6316     }
6317   }
6318 
6319   // We've dealt with incorrect input so we know that if IsA16, IsG16
6320   // are set then we have to compress/pack operands (either address,
6321   // gradient or both)
6322   // In the case where a16 and gradients are tied (no G16 support) then we
6323   // have already verified that both IsA16 and IsG16 are true
6324   if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6325     // Activate g16
6326     const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6327         AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6328     IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6329   }
6330 
6331   // Add gradients (packed or unpacked)
6332   if (IsG16) {
6333     // Pack the gradients
6334     // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6335     packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6336                               ArgOffset + Intr->GradientStart,
6337                               ArgOffset + Intr->CoordStart, Intr->NumGradients);
6338   } else {
6339     for (unsigned I = ArgOffset + Intr->GradientStart;
6340          I < ArgOffset + Intr->CoordStart; I++)
6341       VAddrs.push_back(Op.getOperand(I));
6342   }
6343 
6344   // Add addresses (packed or unpacked)
6345   if (IsA16) {
6346     packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6347                               ArgOffset + Intr->CoordStart, VAddrEnd,
6348                               0 /* No gradients */);
6349   } else {
6350     // Add uncompressed address
6351     for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6352       VAddrs.push_back(Op.getOperand(I));
6353   }
6354 
6355   // If the register allocator cannot place the address registers contiguously
6356   // without introducing moves, then using the non-sequential address encoding
6357   // is always preferable, since it saves VALU instructions and is usually a
6358   // wash in terms of code size or even better.
6359   //
6360   // However, we currently have no way of hinting to the register allocator that
6361   // MIMG addresses should be placed contiguously when it is possible to do so,
6362   // so force non-NSA for the common 2-address case as a heuristic.
6363   //
6364   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6365   // allocation when possible.
6366   bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) &&
6367                 VAddrs.size() >= 3 &&
6368                 VAddrs.size() <= (unsigned)ST->getNSAMaxSize();
6369   SDValue VAddr;
6370   if (!UseNSA)
6371     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6372 
6373   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6374   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6375   SDValue Unorm;
6376   if (!BaseOpcode->Sampler) {
6377     Unorm = True;
6378   } else {
6379     auto UnormConst =
6380         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6381 
6382     Unorm = UnormConst->getZExtValue() ? True : False;
6383   }
6384 
6385   SDValue TFE;
6386   SDValue LWE;
6387   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6388   bool IsTexFail = false;
6389   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6390     return Op;
6391 
6392   if (IsTexFail) {
6393     if (!DMaskLanes) {
6394       // Expecting to get an error flag since TFC is on - and dmask is 0
6395       // Force dmask to be at least 1 otherwise the instruction will fail
6396       DMask = 0x1;
6397       DMaskLanes = 1;
6398       NumVDataDwords = 1;
6399     }
6400     NumVDataDwords += 1;
6401     AdjustRetType = true;
6402   }
6403 
6404   // Has something earlier tagged that the return type needs adjusting
6405   // This happens if the instruction is a load or has set TexFailCtrl flags
6406   if (AdjustRetType) {
6407     // NumVDataDwords reflects the true number of dwords required in the return type
6408     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6409       // This is a no-op load. This can be eliminated
6410       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6411       if (isa<MemSDNode>(Op))
6412         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6413       return Undef;
6414     }
6415 
6416     EVT NewVT = NumVDataDwords > 1 ?
6417                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6418                 : MVT::i32;
6419 
6420     ResultTypes[0] = NewVT;
6421     if (ResultTypes.size() == 3) {
6422       // Original result was aggregate type used for TexFailCtrl results
6423       // The actual instruction returns as a vector type which has now been
6424       // created. Remove the aggregate result.
6425       ResultTypes.erase(&ResultTypes[1]);
6426     }
6427   }
6428 
6429   unsigned CPol = cast<ConstantSDNode>(
6430       Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6431   if (BaseOpcode->Atomic)
6432     CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6433   if (CPol & ~AMDGPU::CPol::ALL)
6434     return Op;
6435 
6436   SmallVector<SDValue, 26> Ops;
6437   if (BaseOpcode->Store || BaseOpcode->Atomic)
6438     Ops.push_back(VData); // vdata
6439   if (UseNSA)
6440     append_range(Ops, VAddrs);
6441   else
6442     Ops.push_back(VAddr);
6443   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6444   if (BaseOpcode->Sampler)
6445     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6446   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6447   if (IsGFX10Plus)
6448     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6449   Ops.push_back(Unorm);
6450   Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6451   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6452                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6453   if (IsGFX10Plus)
6454     Ops.push_back(IsA16 ? True : False);
6455   if (!Subtarget->hasGFX90AInsts()) {
6456     Ops.push_back(TFE); //tfe
6457   } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6458     report_fatal_error("TFE is not supported on this GPU");
6459   }
6460   Ops.push_back(LWE); // lwe
6461   if (!IsGFX10Plus)
6462     Ops.push_back(DimInfo->DA ? True : False);
6463   if (BaseOpcode->HasD16)
6464     Ops.push_back(IsD16 ? True : False);
6465   if (isa<MemSDNode>(Op))
6466     Ops.push_back(Op.getOperand(0)); // chain
6467 
6468   int NumVAddrDwords =
6469       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6470   int Opcode = -1;
6471 
6472   if (IsGFX10Plus) {
6473     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6474                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6475                                           : AMDGPU::MIMGEncGfx10Default,
6476                                    NumVDataDwords, NumVAddrDwords);
6477   } else {
6478     if (Subtarget->hasGFX90AInsts()) {
6479       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
6480                                      NumVDataDwords, NumVAddrDwords);
6481       if (Opcode == -1)
6482         report_fatal_error(
6483             "requested image instruction is not supported on this GPU");
6484     }
6485     if (Opcode == -1 &&
6486         Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6487       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6488                                      NumVDataDwords, NumVAddrDwords);
6489     if (Opcode == -1)
6490       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6491                                      NumVDataDwords, NumVAddrDwords);
6492   }
6493   assert(Opcode != -1);
6494 
6495   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6496   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6497     MachineMemOperand *MemRef = MemOp->getMemOperand();
6498     DAG.setNodeMemRefs(NewNode, {MemRef});
6499   }
6500 
6501   if (BaseOpcode->AtomicX2) {
6502     SmallVector<SDValue, 1> Elt;
6503     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6504     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6505   }
6506   if (BaseOpcode->Store)
6507     return SDValue(NewNode, 0);
6508   return constructRetValue(DAG, NewNode,
6509                            OrigResultTypes, IsTexFail,
6510                            Subtarget->hasUnpackedD16VMem(), IsD16,
6511                            DMaskLanes, NumVDataDwords, DL);
6512 }
6513 
6514 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6515                                        SDValue Offset, SDValue CachePolicy,
6516                                        SelectionDAG &DAG) const {
6517   MachineFunction &MF = DAG.getMachineFunction();
6518 
6519   const DataLayout &DataLayout = DAG.getDataLayout();
6520   Align Alignment =
6521       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6522 
6523   MachineMemOperand *MMO = MF.getMachineMemOperand(
6524       MachinePointerInfo(),
6525       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6526           MachineMemOperand::MOInvariant,
6527       VT.getStoreSize(), Alignment);
6528 
6529   if (!Offset->isDivergent()) {
6530     SDValue Ops[] = {
6531         Rsrc,
6532         Offset, // Offset
6533         CachePolicy
6534     };
6535 
6536     // Widen vec3 load to vec4.
6537     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6538       EVT WidenedVT =
6539           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6540       auto WidenedOp = DAG.getMemIntrinsicNode(
6541           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6542           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6543       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6544                                    DAG.getVectorIdxConstant(0, DL));
6545       return Subvector;
6546     }
6547 
6548     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6549                                    DAG.getVTList(VT), Ops, VT, MMO);
6550   }
6551 
6552   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6553   // assume that the buffer is unswizzled.
6554   SmallVector<SDValue, 4> Loads;
6555   unsigned NumLoads = 1;
6556   MVT LoadVT = VT.getSimpleVT();
6557   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6558   assert((LoadVT.getScalarType() == MVT::i32 ||
6559           LoadVT.getScalarType() == MVT::f32));
6560 
6561   if (NumElts == 8 || NumElts == 16) {
6562     NumLoads = NumElts / 4;
6563     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6564   }
6565 
6566   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6567   SDValue Ops[] = {
6568       DAG.getEntryNode(),                               // Chain
6569       Rsrc,                                             // rsrc
6570       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6571       {},                                               // voffset
6572       {},                                               // soffset
6573       {},                                               // offset
6574       CachePolicy,                                      // cachepolicy
6575       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6576   };
6577 
6578   // Use the alignment to ensure that the required offsets will fit into the
6579   // immediate offsets.
6580   setBufferOffsets(Offset, DAG, &Ops[3],
6581                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6582 
6583   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6584   for (unsigned i = 0; i < NumLoads; ++i) {
6585     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6586     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6587                                         LoadVT, MMO, DAG));
6588   }
6589 
6590   if (NumElts == 8 || NumElts == 16)
6591     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6592 
6593   return Loads[0];
6594 }
6595 
6596 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6597                                                   SelectionDAG &DAG) const {
6598   MachineFunction &MF = DAG.getMachineFunction();
6599   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6600 
6601   EVT VT = Op.getValueType();
6602   SDLoc DL(Op);
6603   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6604 
6605   // TODO: Should this propagate fast-math-flags?
6606 
6607   switch (IntrinsicID) {
6608   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6609     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6610       return emitNonHSAIntrinsicError(DAG, DL, VT);
6611     return getPreloadedValue(DAG, *MFI, VT,
6612                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6613   }
6614   case Intrinsic::amdgcn_dispatch_ptr:
6615   case Intrinsic::amdgcn_queue_ptr: {
6616     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6617       DiagnosticInfoUnsupported BadIntrin(
6618           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6619           DL.getDebugLoc());
6620       DAG.getContext()->diagnose(BadIntrin);
6621       return DAG.getUNDEF(VT);
6622     }
6623 
6624     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6625       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6626     return getPreloadedValue(DAG, *MFI, VT, RegID);
6627   }
6628   case Intrinsic::amdgcn_implicitarg_ptr: {
6629     if (MFI->isEntryFunction())
6630       return getImplicitArgPtr(DAG, DL);
6631     return getPreloadedValue(DAG, *MFI, VT,
6632                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6633   }
6634   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6635     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6636       // This only makes sense to call in a kernel, so just lower to null.
6637       return DAG.getConstant(0, DL, VT);
6638     }
6639 
6640     return getPreloadedValue(DAG, *MFI, VT,
6641                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6642   }
6643   case Intrinsic::amdgcn_dispatch_id: {
6644     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6645   }
6646   case Intrinsic::amdgcn_rcp:
6647     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6648   case Intrinsic::amdgcn_rsq:
6649     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6650   case Intrinsic::amdgcn_rsq_legacy:
6651     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6652       return emitRemovedIntrinsicError(DAG, DL, VT);
6653     return SDValue();
6654   case Intrinsic::amdgcn_rcp_legacy:
6655     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6656       return emitRemovedIntrinsicError(DAG, DL, VT);
6657     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6658   case Intrinsic::amdgcn_rsq_clamp: {
6659     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6660       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6661 
6662     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6663     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6664     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6665 
6666     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6667     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6668                               DAG.getConstantFP(Max, DL, VT));
6669     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6670                        DAG.getConstantFP(Min, DL, VT));
6671   }
6672   case Intrinsic::r600_read_ngroups_x:
6673     if (Subtarget->isAmdHsaOS())
6674       return emitNonHSAIntrinsicError(DAG, DL, VT);
6675 
6676     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6677                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6678                                     false);
6679   case Intrinsic::r600_read_ngroups_y:
6680     if (Subtarget->isAmdHsaOS())
6681       return emitNonHSAIntrinsicError(DAG, DL, VT);
6682 
6683     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6684                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6685                                     false);
6686   case Intrinsic::r600_read_ngroups_z:
6687     if (Subtarget->isAmdHsaOS())
6688       return emitNonHSAIntrinsicError(DAG, DL, VT);
6689 
6690     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6691                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6692                                     false);
6693   case Intrinsic::r600_read_global_size_x:
6694     if (Subtarget->isAmdHsaOS())
6695       return emitNonHSAIntrinsicError(DAG, DL, VT);
6696 
6697     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6698                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6699                                     Align(4), false);
6700   case Intrinsic::r600_read_global_size_y:
6701     if (Subtarget->isAmdHsaOS())
6702       return emitNonHSAIntrinsicError(DAG, DL, VT);
6703 
6704     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6705                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6706                                     Align(4), false);
6707   case Intrinsic::r600_read_global_size_z:
6708     if (Subtarget->isAmdHsaOS())
6709       return emitNonHSAIntrinsicError(DAG, DL, VT);
6710 
6711     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6712                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6713                                     Align(4), false);
6714   case Intrinsic::r600_read_local_size_x:
6715     if (Subtarget->isAmdHsaOS())
6716       return emitNonHSAIntrinsicError(DAG, DL, VT);
6717 
6718     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6719                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6720   case Intrinsic::r600_read_local_size_y:
6721     if (Subtarget->isAmdHsaOS())
6722       return emitNonHSAIntrinsicError(DAG, DL, VT);
6723 
6724     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6725                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6726   case Intrinsic::r600_read_local_size_z:
6727     if (Subtarget->isAmdHsaOS())
6728       return emitNonHSAIntrinsicError(DAG, DL, VT);
6729 
6730     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6731                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6732   case Intrinsic::amdgcn_workgroup_id_x:
6733     return getPreloadedValue(DAG, *MFI, VT,
6734                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6735   case Intrinsic::amdgcn_workgroup_id_y:
6736     return getPreloadedValue(DAG, *MFI, VT,
6737                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6738   case Intrinsic::amdgcn_workgroup_id_z:
6739     return getPreloadedValue(DAG, *MFI, VT,
6740                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6741   case Intrinsic::amdgcn_workitem_id_x:
6742     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6743                           SDLoc(DAG.getEntryNode()),
6744                           MFI->getArgInfo().WorkItemIDX);
6745   case Intrinsic::amdgcn_workitem_id_y:
6746     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6747                           SDLoc(DAG.getEntryNode()),
6748                           MFI->getArgInfo().WorkItemIDY);
6749   case Intrinsic::amdgcn_workitem_id_z:
6750     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6751                           SDLoc(DAG.getEntryNode()),
6752                           MFI->getArgInfo().WorkItemIDZ);
6753   case Intrinsic::amdgcn_wavefrontsize:
6754     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6755                            SDLoc(Op), MVT::i32);
6756   case Intrinsic::amdgcn_s_buffer_load: {
6757     unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6758     if (CPol & ~AMDGPU::CPol::ALL)
6759       return Op;
6760     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6761                         DAG);
6762   }
6763   case Intrinsic::amdgcn_fdiv_fast:
6764     return lowerFDIV_FAST(Op, DAG);
6765   case Intrinsic::amdgcn_sin:
6766     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6767 
6768   case Intrinsic::amdgcn_cos:
6769     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6770 
6771   case Intrinsic::amdgcn_mul_u24:
6772     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6773   case Intrinsic::amdgcn_mul_i24:
6774     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6775 
6776   case Intrinsic::amdgcn_log_clamp: {
6777     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6778       return SDValue();
6779 
6780     return emitRemovedIntrinsicError(DAG, DL, VT);
6781   }
6782   case Intrinsic::amdgcn_ldexp:
6783     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6784                        Op.getOperand(1), Op.getOperand(2));
6785 
6786   case Intrinsic::amdgcn_fract:
6787     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6788 
6789   case Intrinsic::amdgcn_class:
6790     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6791                        Op.getOperand(1), Op.getOperand(2));
6792   case Intrinsic::amdgcn_div_fmas:
6793     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6794                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6795                        Op.getOperand(4));
6796 
6797   case Intrinsic::amdgcn_div_fixup:
6798     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6799                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6800 
6801   case Intrinsic::amdgcn_div_scale: {
6802     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6803 
6804     // Translate to the operands expected by the machine instruction. The
6805     // first parameter must be the same as the first instruction.
6806     SDValue Numerator = Op.getOperand(1);
6807     SDValue Denominator = Op.getOperand(2);
6808 
6809     // Note this order is opposite of the machine instruction's operations,
6810     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6811     // intrinsic has the numerator as the first operand to match a normal
6812     // division operation.
6813 
6814     SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
6815 
6816     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6817                        Denominator, Numerator);
6818   }
6819   case Intrinsic::amdgcn_icmp: {
6820     // There is a Pat that handles this variant, so return it as-is.
6821     if (Op.getOperand(1).getValueType() == MVT::i1 &&
6822         Op.getConstantOperandVal(2) == 0 &&
6823         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6824       return Op;
6825     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6826   }
6827   case Intrinsic::amdgcn_fcmp: {
6828     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6829   }
6830   case Intrinsic::amdgcn_ballot:
6831     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6832   case Intrinsic::amdgcn_fmed3:
6833     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6834                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6835   case Intrinsic::amdgcn_fdot2:
6836     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6837                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6838                        Op.getOperand(4));
6839   case Intrinsic::amdgcn_fmul_legacy:
6840     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6841                        Op.getOperand(1), Op.getOperand(2));
6842   case Intrinsic::amdgcn_sffbh:
6843     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6844   case Intrinsic::amdgcn_sbfe:
6845     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6846                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6847   case Intrinsic::amdgcn_ubfe:
6848     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6849                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6850   case Intrinsic::amdgcn_cvt_pkrtz:
6851   case Intrinsic::amdgcn_cvt_pknorm_i16:
6852   case Intrinsic::amdgcn_cvt_pknorm_u16:
6853   case Intrinsic::amdgcn_cvt_pk_i16:
6854   case Intrinsic::amdgcn_cvt_pk_u16: {
6855     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6856     EVT VT = Op.getValueType();
6857     unsigned Opcode;
6858 
6859     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6860       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6861     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6862       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6863     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6864       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6865     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6866       Opcode = AMDGPUISD::CVT_PK_I16_I32;
6867     else
6868       Opcode = AMDGPUISD::CVT_PK_U16_U32;
6869 
6870     if (isTypeLegal(VT))
6871       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6872 
6873     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6874                                Op.getOperand(1), Op.getOperand(2));
6875     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6876   }
6877   case Intrinsic::amdgcn_fmad_ftz:
6878     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6879                        Op.getOperand(2), Op.getOperand(3));
6880 
6881   case Intrinsic::amdgcn_if_break:
6882     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6883                                       Op->getOperand(1), Op->getOperand(2)), 0);
6884 
6885   case Intrinsic::amdgcn_groupstaticsize: {
6886     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6887     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6888       return Op;
6889 
6890     const Module *M = MF.getFunction().getParent();
6891     const GlobalValue *GV =
6892         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6893     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6894                                             SIInstrInfo::MO_ABS32_LO);
6895     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6896   }
6897   case Intrinsic::amdgcn_is_shared:
6898   case Intrinsic::amdgcn_is_private: {
6899     SDLoc SL(Op);
6900     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6901       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6902     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6903     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6904                                  Op.getOperand(1));
6905 
6906     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6907                                 DAG.getConstant(1, SL, MVT::i32));
6908     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6909   }
6910   case Intrinsic::amdgcn_alignbit:
6911     return DAG.getNode(ISD::FSHR, DL, VT,
6912                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6913   case Intrinsic::amdgcn_perm:
6914     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
6915                        Op.getOperand(2), Op.getOperand(3));
6916   case Intrinsic::amdgcn_reloc_constant: {
6917     Module *M = const_cast<Module *>(MF.getFunction().getParent());
6918     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
6919     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
6920     auto RelocSymbol = cast<GlobalVariable>(
6921         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
6922     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
6923                                             SIInstrInfo::MO_ABS32_LO);
6924     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6925   }
6926   default:
6927     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6928             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6929       return lowerImage(Op, ImageDimIntr, DAG, false);
6930 
6931     return Op;
6932   }
6933 }
6934 
6935 /// Update \p MMO based on the offset inputs to an intrinsic.
6936 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset,
6937                             SDValue SOffset, SDValue Offset,
6938                             SDValue VIndex = SDValue()) {
6939   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6940       !isa<ConstantSDNode>(Offset)) {
6941     // The combined offset is not known to be constant, so we cannot represent
6942     // it in the MMO. Give up.
6943     MMO->setValue((Value *)nullptr);
6944     return;
6945   }
6946 
6947   if (VIndex && (!isa<ConstantSDNode>(VIndex) ||
6948                  !cast<ConstantSDNode>(VIndex)->isZero())) {
6949     // The strided index component of the address is not known to be zero, so we
6950     // cannot represent it in the MMO. Give up.
6951     MMO->setValue((Value *)nullptr);
6952     return;
6953   }
6954 
6955   MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() +
6956                  cast<ConstantSDNode>(SOffset)->getSExtValue() +
6957                  cast<ConstantSDNode>(Offset)->getSExtValue());
6958 }
6959 
6960 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
6961                                                      SelectionDAG &DAG,
6962                                                      unsigned NewOpcode) const {
6963   SDLoc DL(Op);
6964 
6965   SDValue VData = Op.getOperand(2);
6966   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6967   SDValue Ops[] = {
6968     Op.getOperand(0), // Chain
6969     VData,            // vdata
6970     Op.getOperand(3), // rsrc
6971     DAG.getConstant(0, DL, MVT::i32), // vindex
6972     Offsets.first,    // voffset
6973     Op.getOperand(5), // soffset
6974     Offsets.second,   // offset
6975     Op.getOperand(6), // cachepolicy
6976     DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6977   };
6978 
6979   auto *M = cast<MemSDNode>(Op);
6980   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
6981 
6982   EVT MemVT = VData.getValueType();
6983   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6984                                  M->getMemOperand());
6985 }
6986 
6987 // Return a value to use for the idxen operand by examining the vindex operand.
6988 static unsigned getIdxEn(SDValue VIndex) {
6989   if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex))
6990     // No need to set idxen if vindex is known to be zero.
6991     return VIndexC->getZExtValue() != 0;
6992   return 1;
6993 }
6994 
6995 SDValue
6996 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
6997                                                 unsigned NewOpcode) const {
6998   SDLoc DL(Op);
6999 
7000   SDValue VData = Op.getOperand(2);
7001   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7002   SDValue Ops[] = {
7003     Op.getOperand(0), // Chain
7004     VData,            // vdata
7005     Op.getOperand(3), // rsrc
7006     Op.getOperand(4), // vindex
7007     Offsets.first,    // voffset
7008     Op.getOperand(6), // soffset
7009     Offsets.second,   // offset
7010     Op.getOperand(7), // cachepolicy
7011     DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7012   };
7013 
7014   auto *M = cast<MemSDNode>(Op);
7015   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7016 
7017   EVT MemVT = VData.getValueType();
7018   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7019                                  M->getMemOperand());
7020 }
7021 
7022 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
7023                                                  SelectionDAG &DAG) const {
7024   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7025   SDLoc DL(Op);
7026 
7027   switch (IntrID) {
7028   case Intrinsic::amdgcn_ds_ordered_add:
7029   case Intrinsic::amdgcn_ds_ordered_swap: {
7030     MemSDNode *M = cast<MemSDNode>(Op);
7031     SDValue Chain = M->getOperand(0);
7032     SDValue M0 = M->getOperand(2);
7033     SDValue Value = M->getOperand(3);
7034     unsigned IndexOperand = M->getConstantOperandVal(7);
7035     unsigned WaveRelease = M->getConstantOperandVal(8);
7036     unsigned WaveDone = M->getConstantOperandVal(9);
7037 
7038     unsigned OrderedCountIndex = IndexOperand & 0x3f;
7039     IndexOperand &= ~0x3f;
7040     unsigned CountDw = 0;
7041 
7042     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
7043       CountDw = (IndexOperand >> 24) & 0xf;
7044       IndexOperand &= ~(0xf << 24);
7045 
7046       if (CountDw < 1 || CountDw > 4) {
7047         report_fatal_error(
7048             "ds_ordered_count: dword count must be between 1 and 4");
7049       }
7050     }
7051 
7052     if (IndexOperand)
7053       report_fatal_error("ds_ordered_count: bad index operand");
7054 
7055     if (WaveDone && !WaveRelease)
7056       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
7057 
7058     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
7059     unsigned ShaderType =
7060         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
7061     unsigned Offset0 = OrderedCountIndex << 2;
7062     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
7063                        (Instruction << 4);
7064 
7065     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
7066       Offset1 |= (CountDw - 1) << 6;
7067 
7068     unsigned Offset = Offset0 | (Offset1 << 8);
7069 
7070     SDValue Ops[] = {
7071       Chain,
7072       Value,
7073       DAG.getTargetConstant(Offset, DL, MVT::i16),
7074       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
7075     };
7076     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
7077                                    M->getVTList(), Ops, M->getMemoryVT(),
7078                                    M->getMemOperand());
7079   }
7080   case Intrinsic::amdgcn_ds_fadd: {
7081     MemSDNode *M = cast<MemSDNode>(Op);
7082     unsigned Opc;
7083     switch (IntrID) {
7084     case Intrinsic::amdgcn_ds_fadd:
7085       Opc = ISD::ATOMIC_LOAD_FADD;
7086       break;
7087     }
7088 
7089     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
7090                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
7091                          M->getMemOperand());
7092   }
7093   case Intrinsic::amdgcn_atomic_inc:
7094   case Intrinsic::amdgcn_atomic_dec:
7095   case Intrinsic::amdgcn_ds_fmin:
7096   case Intrinsic::amdgcn_ds_fmax: {
7097     MemSDNode *M = cast<MemSDNode>(Op);
7098     unsigned Opc;
7099     switch (IntrID) {
7100     case Intrinsic::amdgcn_atomic_inc:
7101       Opc = AMDGPUISD::ATOMIC_INC;
7102       break;
7103     case Intrinsic::amdgcn_atomic_dec:
7104       Opc = AMDGPUISD::ATOMIC_DEC;
7105       break;
7106     case Intrinsic::amdgcn_ds_fmin:
7107       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
7108       break;
7109     case Intrinsic::amdgcn_ds_fmax:
7110       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
7111       break;
7112     default:
7113       llvm_unreachable("Unknown intrinsic!");
7114     }
7115     SDValue Ops[] = {
7116       M->getOperand(0), // Chain
7117       M->getOperand(2), // Ptr
7118       M->getOperand(3)  // Value
7119     };
7120 
7121     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
7122                                    M->getMemoryVT(), M->getMemOperand());
7123   }
7124   case Intrinsic::amdgcn_buffer_load:
7125   case Intrinsic::amdgcn_buffer_load_format: {
7126     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7127     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7128     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7129     SDValue Ops[] = {
7130       Op.getOperand(0), // Chain
7131       Op.getOperand(2), // rsrc
7132       Op.getOperand(3), // vindex
7133       SDValue(),        // voffset -- will be set by setBufferOffsets
7134       SDValue(),        // soffset -- will be set by setBufferOffsets
7135       SDValue(),        // offset -- will be set by setBufferOffsets
7136       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7137       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7138     };
7139     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
7140 
7141     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
7142         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
7143 
7144     EVT VT = Op.getValueType();
7145     EVT IntVT = VT.changeTypeToInteger();
7146     auto *M = cast<MemSDNode>(Op);
7147     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7148     EVT LoadVT = Op.getValueType();
7149 
7150     if (LoadVT.getScalarType() == MVT::f16)
7151       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
7152                                  M, DAG, Ops);
7153 
7154     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
7155     if (LoadVT.getScalarType() == MVT::i8 ||
7156         LoadVT.getScalarType() == MVT::i16)
7157       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
7158 
7159     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
7160                                M->getMemOperand(), DAG);
7161   }
7162   case Intrinsic::amdgcn_raw_buffer_load:
7163   case Intrinsic::amdgcn_raw_buffer_load_format: {
7164     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
7165 
7166     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7167     SDValue Ops[] = {
7168       Op.getOperand(0), // Chain
7169       Op.getOperand(2), // rsrc
7170       DAG.getConstant(0, DL, MVT::i32), // vindex
7171       Offsets.first,    // voffset
7172       Op.getOperand(4), // soffset
7173       Offsets.second,   // offset
7174       Op.getOperand(5), // cachepolicy, swizzled buffer
7175       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7176     };
7177 
7178     auto *M = cast<MemSDNode>(Op);
7179     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]);
7180     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
7181   }
7182   case Intrinsic::amdgcn_struct_buffer_load:
7183   case Intrinsic::amdgcn_struct_buffer_load_format: {
7184     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7185 
7186     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7187     SDValue Ops[] = {
7188       Op.getOperand(0), // Chain
7189       Op.getOperand(2), // rsrc
7190       Op.getOperand(3), // vindex
7191       Offsets.first,    // voffset
7192       Op.getOperand(5), // soffset
7193       Offsets.second,   // offset
7194       Op.getOperand(6), // cachepolicy, swizzled buffer
7195       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7196     };
7197 
7198     auto *M = cast<MemSDNode>(Op);
7199     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7200     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7201   }
7202   case Intrinsic::amdgcn_tbuffer_load: {
7203     MemSDNode *M = cast<MemSDNode>(Op);
7204     EVT LoadVT = Op.getValueType();
7205 
7206     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7207     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7208     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7209     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7210     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7211     SDValue Ops[] = {
7212       Op.getOperand(0),  // Chain
7213       Op.getOperand(2),  // rsrc
7214       Op.getOperand(3),  // vindex
7215       Op.getOperand(4),  // voffset
7216       Op.getOperand(5),  // soffset
7217       Op.getOperand(6),  // offset
7218       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7219       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7220       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7221     };
7222 
7223     if (LoadVT.getScalarType() == MVT::f16)
7224       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7225                                  M, DAG, Ops);
7226     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7227                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7228                                DAG);
7229   }
7230   case Intrinsic::amdgcn_raw_tbuffer_load: {
7231     MemSDNode *M = cast<MemSDNode>(Op);
7232     EVT LoadVT = Op.getValueType();
7233     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7234 
7235     SDValue Ops[] = {
7236       Op.getOperand(0),  // Chain
7237       Op.getOperand(2),  // rsrc
7238       DAG.getConstant(0, DL, MVT::i32), // vindex
7239       Offsets.first,     // voffset
7240       Op.getOperand(4),  // soffset
7241       Offsets.second,    // offset
7242       Op.getOperand(5),  // format
7243       Op.getOperand(6),  // cachepolicy, swizzled buffer
7244       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7245     };
7246 
7247     if (LoadVT.getScalarType() == MVT::f16)
7248       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7249                                  M, DAG, Ops);
7250     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7251                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7252                                DAG);
7253   }
7254   case Intrinsic::amdgcn_struct_tbuffer_load: {
7255     MemSDNode *M = cast<MemSDNode>(Op);
7256     EVT LoadVT = Op.getValueType();
7257     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7258 
7259     SDValue Ops[] = {
7260       Op.getOperand(0),  // Chain
7261       Op.getOperand(2),  // rsrc
7262       Op.getOperand(3),  // vindex
7263       Offsets.first,     // voffset
7264       Op.getOperand(5),  // soffset
7265       Offsets.second,    // offset
7266       Op.getOperand(6),  // format
7267       Op.getOperand(7),  // cachepolicy, swizzled buffer
7268       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7269     };
7270 
7271     if (LoadVT.getScalarType() == MVT::f16)
7272       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7273                                  M, DAG, Ops);
7274     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7275                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7276                                DAG);
7277   }
7278   case Intrinsic::amdgcn_buffer_atomic_swap:
7279   case Intrinsic::amdgcn_buffer_atomic_add:
7280   case Intrinsic::amdgcn_buffer_atomic_sub:
7281   case Intrinsic::amdgcn_buffer_atomic_csub:
7282   case Intrinsic::amdgcn_buffer_atomic_smin:
7283   case Intrinsic::amdgcn_buffer_atomic_umin:
7284   case Intrinsic::amdgcn_buffer_atomic_smax:
7285   case Intrinsic::amdgcn_buffer_atomic_umax:
7286   case Intrinsic::amdgcn_buffer_atomic_and:
7287   case Intrinsic::amdgcn_buffer_atomic_or:
7288   case Intrinsic::amdgcn_buffer_atomic_xor:
7289   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7290     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7291     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7292     SDValue Ops[] = {
7293       Op.getOperand(0), // Chain
7294       Op.getOperand(2), // vdata
7295       Op.getOperand(3), // rsrc
7296       Op.getOperand(4), // vindex
7297       SDValue(),        // voffset -- will be set by setBufferOffsets
7298       SDValue(),        // soffset -- will be set by setBufferOffsets
7299       SDValue(),        // offset -- will be set by setBufferOffsets
7300       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7301       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7302     };
7303     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7304 
7305     EVT VT = Op.getValueType();
7306 
7307     auto *M = cast<MemSDNode>(Op);
7308     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7309     unsigned Opcode = 0;
7310 
7311     switch (IntrID) {
7312     case Intrinsic::amdgcn_buffer_atomic_swap:
7313       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7314       break;
7315     case Intrinsic::amdgcn_buffer_atomic_add:
7316       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7317       break;
7318     case Intrinsic::amdgcn_buffer_atomic_sub:
7319       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7320       break;
7321     case Intrinsic::amdgcn_buffer_atomic_csub:
7322       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7323       break;
7324     case Intrinsic::amdgcn_buffer_atomic_smin:
7325       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7326       break;
7327     case Intrinsic::amdgcn_buffer_atomic_umin:
7328       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7329       break;
7330     case Intrinsic::amdgcn_buffer_atomic_smax:
7331       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7332       break;
7333     case Intrinsic::amdgcn_buffer_atomic_umax:
7334       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7335       break;
7336     case Intrinsic::amdgcn_buffer_atomic_and:
7337       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7338       break;
7339     case Intrinsic::amdgcn_buffer_atomic_or:
7340       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7341       break;
7342     case Intrinsic::amdgcn_buffer_atomic_xor:
7343       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7344       break;
7345     case Intrinsic::amdgcn_buffer_atomic_fadd:
7346       if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7347         DiagnosticInfoUnsupported
7348           NoFpRet(DAG.getMachineFunction().getFunction(),
7349                   "return versions of fp atomics not supported",
7350                   DL.getDebugLoc(), DS_Error);
7351         DAG.getContext()->diagnose(NoFpRet);
7352         return SDValue();
7353       }
7354       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7355       break;
7356     default:
7357       llvm_unreachable("unhandled atomic opcode");
7358     }
7359 
7360     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7361                                    M->getMemOperand());
7362   }
7363   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7364     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7365   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7366     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7367   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7368     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7369   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7370     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7371   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7372     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7373   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7374     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7375   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7376     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7377   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7378     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7379   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7380     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7381   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7382     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7383   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7384     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7385   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7386     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7387   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7388     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7389   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7390     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7391   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7392     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7393   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7394     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7395   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7396     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7397   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7398     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7399   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7400     return lowerStructBufferAtomicIntrin(Op, DAG,
7401                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7402   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7403     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7404   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7405     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7406   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7407     return lowerStructBufferAtomicIntrin(Op, DAG,
7408                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7409   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7410     return lowerStructBufferAtomicIntrin(Op, DAG,
7411                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7412   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7413     return lowerStructBufferAtomicIntrin(Op, DAG,
7414                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7415   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7416     return lowerStructBufferAtomicIntrin(Op, DAG,
7417                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7418   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7419     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7420   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7421     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7422   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7423     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7424   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7425     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7426   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7427     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7428 
7429   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7430     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7431     unsigned IdxEn = getIdxEn(Op.getOperand(5));
7432     SDValue Ops[] = {
7433       Op.getOperand(0), // Chain
7434       Op.getOperand(2), // src
7435       Op.getOperand(3), // cmp
7436       Op.getOperand(4), // rsrc
7437       Op.getOperand(5), // vindex
7438       SDValue(),        // voffset -- will be set by setBufferOffsets
7439       SDValue(),        // soffset -- will be set by setBufferOffsets
7440       SDValue(),        // offset -- will be set by setBufferOffsets
7441       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7442       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7443     };
7444     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7445 
7446     EVT VT = Op.getValueType();
7447     auto *M = cast<MemSDNode>(Op);
7448     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7449 
7450     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7451                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7452   }
7453   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7454     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7455     SDValue Ops[] = {
7456       Op.getOperand(0), // Chain
7457       Op.getOperand(2), // src
7458       Op.getOperand(3), // cmp
7459       Op.getOperand(4), // rsrc
7460       DAG.getConstant(0, DL, MVT::i32), // vindex
7461       Offsets.first,    // voffset
7462       Op.getOperand(6), // soffset
7463       Offsets.second,   // offset
7464       Op.getOperand(7), // cachepolicy
7465       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7466     };
7467     EVT VT = Op.getValueType();
7468     auto *M = cast<MemSDNode>(Op);
7469     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]);
7470 
7471     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7472                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7473   }
7474   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7475     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7476     SDValue Ops[] = {
7477       Op.getOperand(0), // Chain
7478       Op.getOperand(2), // src
7479       Op.getOperand(3), // cmp
7480       Op.getOperand(4), // rsrc
7481       Op.getOperand(5), // vindex
7482       Offsets.first,    // voffset
7483       Op.getOperand(7), // soffset
7484       Offsets.second,   // offset
7485       Op.getOperand(8), // cachepolicy
7486       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7487     };
7488     EVT VT = Op.getValueType();
7489     auto *M = cast<MemSDNode>(Op);
7490     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7491 
7492     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7493                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7494   }
7495   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7496     MemSDNode *M = cast<MemSDNode>(Op);
7497     SDValue NodePtr = M->getOperand(2);
7498     SDValue RayExtent = M->getOperand(3);
7499     SDValue RayOrigin = M->getOperand(4);
7500     SDValue RayDir = M->getOperand(5);
7501     SDValue RayInvDir = M->getOperand(6);
7502     SDValue TDescr = M->getOperand(7);
7503 
7504     assert(NodePtr.getValueType() == MVT::i32 ||
7505            NodePtr.getValueType() == MVT::i64);
7506     assert(RayDir.getValueType() == MVT::v3f16 ||
7507            RayDir.getValueType() == MVT::v3f32);
7508 
7509     if (!Subtarget->hasGFX10_AEncoding()) {
7510       emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
7511       return SDValue();
7512     }
7513 
7514     const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7515     const bool Is64 = NodePtr.getValueType() == MVT::i64;
7516     const unsigned NumVDataDwords = 4;
7517     const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7518     const bool UseNSA = Subtarget->hasNSAEncoding() &&
7519                         NumVAddrDwords <= Subtarget->getNSAMaxSize();
7520     const unsigned BaseOpcodes[2][2] = {
7521         {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7522         {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7523          AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7524     int Opcode;
7525     if (UseNSA) {
7526       Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7527                                      AMDGPU::MIMGEncGfx10NSA, NumVDataDwords,
7528                                      NumVAddrDwords);
7529     } else {
7530       Opcode = AMDGPU::getMIMGOpcode(
7531           BaseOpcodes[Is64][IsA16], AMDGPU::MIMGEncGfx10Default, NumVDataDwords,
7532           PowerOf2Ceil(NumVAddrDwords));
7533     }
7534     assert(Opcode != -1);
7535 
7536     SmallVector<SDValue, 16> Ops;
7537 
7538     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7539       SmallVector<SDValue, 3> Lanes;
7540       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7541       if (Lanes[0].getValueSizeInBits() == 32) {
7542         for (unsigned I = 0; I < 3; ++I)
7543           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7544       } else {
7545         if (IsAligned) {
7546           Ops.push_back(
7547             DAG.getBitcast(MVT::i32,
7548                            DAG.getBuildVector(MVT::v2f16, DL,
7549                                               { Lanes[0], Lanes[1] })));
7550           Ops.push_back(Lanes[2]);
7551         } else {
7552           SDValue Elt0 = Ops.pop_back_val();
7553           Ops.push_back(
7554             DAG.getBitcast(MVT::i32,
7555                            DAG.getBuildVector(MVT::v2f16, DL,
7556                                               { Elt0, Lanes[0] })));
7557           Ops.push_back(
7558             DAG.getBitcast(MVT::i32,
7559                            DAG.getBuildVector(MVT::v2f16, DL,
7560                                               { Lanes[1], Lanes[2] })));
7561         }
7562       }
7563     };
7564 
7565     if (Is64)
7566       DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7567     else
7568       Ops.push_back(NodePtr);
7569 
7570     Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7571     packLanes(RayOrigin, true);
7572     packLanes(RayDir, true);
7573     packLanes(RayInvDir, false);
7574 
7575     if (!UseNSA) {
7576       // Build a single vector containing all the operands so far prepared.
7577       if (NumVAddrDwords > 8) {
7578         SDValue Undef = DAG.getUNDEF(MVT::i32);
7579         Ops.append(16 - Ops.size(), Undef);
7580       }
7581       assert(Ops.size() == 8 || Ops.size() == 16);
7582       SDValue MergedOps = DAG.getBuildVector(
7583           Ops.size() == 16 ? MVT::v16i32 : MVT::v8i32, DL, Ops);
7584       Ops.clear();
7585       Ops.push_back(MergedOps);
7586     }
7587 
7588     Ops.push_back(TDescr);
7589     if (IsA16)
7590       Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7591     Ops.push_back(M->getChain());
7592 
7593     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7594     MachineMemOperand *MemRef = M->getMemOperand();
7595     DAG.setNodeMemRefs(NewNode, {MemRef});
7596     return SDValue(NewNode, 0);
7597   }
7598   case Intrinsic::amdgcn_global_atomic_fadd:
7599     if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7600       DiagnosticInfoUnsupported
7601         NoFpRet(DAG.getMachineFunction().getFunction(),
7602                 "return versions of fp atomics not supported",
7603                 DL.getDebugLoc(), DS_Error);
7604       DAG.getContext()->diagnose(NoFpRet);
7605       return SDValue();
7606     }
7607     LLVM_FALLTHROUGH;
7608   case Intrinsic::amdgcn_global_atomic_fmin:
7609   case Intrinsic::amdgcn_global_atomic_fmax:
7610   case Intrinsic::amdgcn_flat_atomic_fadd:
7611   case Intrinsic::amdgcn_flat_atomic_fmin:
7612   case Intrinsic::amdgcn_flat_atomic_fmax: {
7613     MemSDNode *M = cast<MemSDNode>(Op);
7614     SDValue Ops[] = {
7615       M->getOperand(0), // Chain
7616       M->getOperand(2), // Ptr
7617       M->getOperand(3)  // Value
7618     };
7619     unsigned Opcode = 0;
7620     switch (IntrID) {
7621     case Intrinsic::amdgcn_global_atomic_fadd:
7622     case Intrinsic::amdgcn_flat_atomic_fadd: {
7623       EVT VT = Op.getOperand(3).getValueType();
7624       return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7625                            DAG.getVTList(VT, MVT::Other), Ops,
7626                            M->getMemOperand());
7627     }
7628     case Intrinsic::amdgcn_global_atomic_fmin:
7629     case Intrinsic::amdgcn_flat_atomic_fmin: {
7630       Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
7631       break;
7632     }
7633     case Intrinsic::amdgcn_global_atomic_fmax:
7634     case Intrinsic::amdgcn_flat_atomic_fmax: {
7635       Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
7636       break;
7637     }
7638     default:
7639       llvm_unreachable("unhandled atomic opcode");
7640     }
7641     return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
7642                                    M->getVTList(), Ops, M->getMemoryVT(),
7643                                    M->getMemOperand());
7644   }
7645   default:
7646 
7647     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7648             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7649       return lowerImage(Op, ImageDimIntr, DAG, true);
7650 
7651     return SDValue();
7652   }
7653 }
7654 
7655 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7656 // dwordx4 if on SI.
7657 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7658                                               SDVTList VTList,
7659                                               ArrayRef<SDValue> Ops, EVT MemVT,
7660                                               MachineMemOperand *MMO,
7661                                               SelectionDAG &DAG) const {
7662   EVT VT = VTList.VTs[0];
7663   EVT WidenedVT = VT;
7664   EVT WidenedMemVT = MemVT;
7665   if (!Subtarget->hasDwordx3LoadStores() &&
7666       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7667     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7668                                  WidenedVT.getVectorElementType(), 4);
7669     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7670                                     WidenedMemVT.getVectorElementType(), 4);
7671     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7672   }
7673 
7674   assert(VTList.NumVTs == 2);
7675   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7676 
7677   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7678                                        WidenedMemVT, MMO);
7679   if (WidenedVT != VT) {
7680     auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7681                                DAG.getVectorIdxConstant(0, DL));
7682     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7683   }
7684   return NewOp;
7685 }
7686 
7687 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7688                                          bool ImageStore) const {
7689   EVT StoreVT = VData.getValueType();
7690 
7691   // No change for f16 and legal vector D16 types.
7692   if (!StoreVT.isVector())
7693     return VData;
7694 
7695   SDLoc DL(VData);
7696   unsigned NumElements = StoreVT.getVectorNumElements();
7697 
7698   if (Subtarget->hasUnpackedD16VMem()) {
7699     // We need to unpack the packed data to store.
7700     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7701     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7702 
7703     EVT EquivStoreVT =
7704         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7705     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7706     return DAG.UnrollVectorOp(ZExt.getNode());
7707   }
7708 
7709   // The sq block of gfx8.1 does not estimate register use correctly for d16
7710   // image store instructions. The data operand is computed as if it were not a
7711   // d16 image instruction.
7712   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7713     // Bitcast to i16
7714     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7715     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7716 
7717     // Decompose into scalars
7718     SmallVector<SDValue, 4> Elts;
7719     DAG.ExtractVectorElements(IntVData, Elts);
7720 
7721     // Group pairs of i16 into v2i16 and bitcast to i32
7722     SmallVector<SDValue, 4> PackedElts;
7723     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7724       SDValue Pair =
7725           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7726       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7727       PackedElts.push_back(IntPair);
7728     }
7729     if ((NumElements % 2) == 1) {
7730       // Handle v3i16
7731       unsigned I = Elts.size() / 2;
7732       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7733                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7734       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7735       PackedElts.push_back(IntPair);
7736     }
7737 
7738     // Pad using UNDEF
7739     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7740 
7741     // Build final vector
7742     EVT VecVT =
7743         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7744     return DAG.getBuildVector(VecVT, DL, PackedElts);
7745   }
7746 
7747   if (NumElements == 3) {
7748     EVT IntStoreVT =
7749         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7750     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7751 
7752     EVT WidenedStoreVT = EVT::getVectorVT(
7753         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7754     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7755                                          WidenedStoreVT.getStoreSizeInBits());
7756     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7757     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7758   }
7759 
7760   assert(isTypeLegal(StoreVT));
7761   return VData;
7762 }
7763 
7764 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7765                                               SelectionDAG &DAG) const {
7766   SDLoc DL(Op);
7767   SDValue Chain = Op.getOperand(0);
7768   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7769   MachineFunction &MF = DAG.getMachineFunction();
7770 
7771   switch (IntrinsicID) {
7772   case Intrinsic::amdgcn_exp_compr: {
7773     SDValue Src0 = Op.getOperand(4);
7774     SDValue Src1 = Op.getOperand(5);
7775     // Hack around illegal type on SI by directly selecting it.
7776     if (isTypeLegal(Src0.getValueType()))
7777       return SDValue();
7778 
7779     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7780     SDValue Undef = DAG.getUNDEF(MVT::f32);
7781     const SDValue Ops[] = {
7782       Op.getOperand(2), // tgt
7783       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7784       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7785       Undef, // src2
7786       Undef, // src3
7787       Op.getOperand(7), // vm
7788       DAG.getTargetConstant(1, DL, MVT::i1), // compr
7789       Op.getOperand(3), // en
7790       Op.getOperand(0) // Chain
7791     };
7792 
7793     unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7794     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7795   }
7796   case Intrinsic::amdgcn_s_barrier: {
7797     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7798       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7799       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7800       if (WGSize <= ST.getWavefrontSize())
7801         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7802                                           Op.getOperand(0)), 0);
7803     }
7804     return SDValue();
7805   };
7806   case Intrinsic::amdgcn_tbuffer_store: {
7807     SDValue VData = Op.getOperand(2);
7808     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7809     if (IsD16)
7810       VData = handleD16VData(VData, DAG);
7811     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7812     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7813     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7814     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7815     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7816     SDValue Ops[] = {
7817       Chain,
7818       VData,             // vdata
7819       Op.getOperand(3),  // rsrc
7820       Op.getOperand(4),  // vindex
7821       Op.getOperand(5),  // voffset
7822       Op.getOperand(6),  // soffset
7823       Op.getOperand(7),  // offset
7824       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7825       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7826       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7827     };
7828     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7829                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7830     MemSDNode *M = cast<MemSDNode>(Op);
7831     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7832                                    M->getMemoryVT(), M->getMemOperand());
7833   }
7834 
7835   case Intrinsic::amdgcn_struct_tbuffer_store: {
7836     SDValue VData = Op.getOperand(2);
7837     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7838     if (IsD16)
7839       VData = handleD16VData(VData, DAG);
7840     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7841     SDValue Ops[] = {
7842       Chain,
7843       VData,             // vdata
7844       Op.getOperand(3),  // rsrc
7845       Op.getOperand(4),  // vindex
7846       Offsets.first,     // voffset
7847       Op.getOperand(6),  // soffset
7848       Offsets.second,    // offset
7849       Op.getOperand(7),  // format
7850       Op.getOperand(8),  // cachepolicy, swizzled buffer
7851       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7852     };
7853     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7854                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7855     MemSDNode *M = cast<MemSDNode>(Op);
7856     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7857                                    M->getMemoryVT(), M->getMemOperand());
7858   }
7859 
7860   case Intrinsic::amdgcn_raw_tbuffer_store: {
7861     SDValue VData = Op.getOperand(2);
7862     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7863     if (IsD16)
7864       VData = handleD16VData(VData, DAG);
7865     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7866     SDValue Ops[] = {
7867       Chain,
7868       VData,             // vdata
7869       Op.getOperand(3),  // rsrc
7870       DAG.getConstant(0, DL, MVT::i32), // vindex
7871       Offsets.first,     // voffset
7872       Op.getOperand(5),  // soffset
7873       Offsets.second,    // offset
7874       Op.getOperand(6),  // format
7875       Op.getOperand(7),  // cachepolicy, swizzled buffer
7876       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7877     };
7878     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7879                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7880     MemSDNode *M = cast<MemSDNode>(Op);
7881     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7882                                    M->getMemoryVT(), M->getMemOperand());
7883   }
7884 
7885   case Intrinsic::amdgcn_buffer_store:
7886   case Intrinsic::amdgcn_buffer_store_format: {
7887     SDValue VData = Op.getOperand(2);
7888     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7889     if (IsD16)
7890       VData = handleD16VData(VData, DAG);
7891     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7892     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7893     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7894     SDValue Ops[] = {
7895       Chain,
7896       VData,
7897       Op.getOperand(3), // rsrc
7898       Op.getOperand(4), // vindex
7899       SDValue(), // voffset -- will be set by setBufferOffsets
7900       SDValue(), // soffset -- will be set by setBufferOffsets
7901       SDValue(), // offset -- will be set by setBufferOffsets
7902       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7903       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7904     };
7905     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7906 
7907     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
7908                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7909     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7910     MemSDNode *M = cast<MemSDNode>(Op);
7911     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7912 
7913     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7914     EVT VDataType = VData.getValueType().getScalarType();
7915     if (VDataType == MVT::i8 || VDataType == MVT::i16)
7916       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7917 
7918     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7919                                    M->getMemoryVT(), M->getMemOperand());
7920   }
7921 
7922   case Intrinsic::amdgcn_raw_buffer_store:
7923   case Intrinsic::amdgcn_raw_buffer_store_format: {
7924     const bool IsFormat =
7925         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
7926 
7927     SDValue VData = Op.getOperand(2);
7928     EVT VDataVT = VData.getValueType();
7929     EVT EltType = VDataVT.getScalarType();
7930     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7931     if (IsD16) {
7932       VData = handleD16VData(VData, DAG);
7933       VDataVT = VData.getValueType();
7934     }
7935 
7936     if (!isTypeLegal(VDataVT)) {
7937       VData =
7938           DAG.getNode(ISD::BITCAST, DL,
7939                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7940     }
7941 
7942     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7943     SDValue Ops[] = {
7944       Chain,
7945       VData,
7946       Op.getOperand(3), // rsrc
7947       DAG.getConstant(0, DL, MVT::i32), // vindex
7948       Offsets.first,    // voffset
7949       Op.getOperand(5), // soffset
7950       Offsets.second,   // offset
7951       Op.getOperand(6), // cachepolicy, swizzled buffer
7952       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7953     };
7954     unsigned Opc =
7955         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7956     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7957     MemSDNode *M = cast<MemSDNode>(Op);
7958     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
7959 
7960     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7961     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7962       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7963 
7964     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7965                                    M->getMemoryVT(), M->getMemOperand());
7966   }
7967 
7968   case Intrinsic::amdgcn_struct_buffer_store:
7969   case Intrinsic::amdgcn_struct_buffer_store_format: {
7970     const bool IsFormat =
7971         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7972 
7973     SDValue VData = Op.getOperand(2);
7974     EVT VDataVT = VData.getValueType();
7975     EVT EltType = VDataVT.getScalarType();
7976     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7977 
7978     if (IsD16) {
7979       VData = handleD16VData(VData, DAG);
7980       VDataVT = VData.getValueType();
7981     }
7982 
7983     if (!isTypeLegal(VDataVT)) {
7984       VData =
7985           DAG.getNode(ISD::BITCAST, DL,
7986                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7987     }
7988 
7989     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7990     SDValue Ops[] = {
7991       Chain,
7992       VData,
7993       Op.getOperand(3), // rsrc
7994       Op.getOperand(4), // vindex
7995       Offsets.first,    // voffset
7996       Op.getOperand(6), // soffset
7997       Offsets.second,   // offset
7998       Op.getOperand(7), // cachepolicy, swizzled buffer
7999       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8000     };
8001     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
8002                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8003     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8004     MemSDNode *M = cast<MemSDNode>(Op);
8005     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8006 
8007     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8008     EVT VDataType = VData.getValueType().getScalarType();
8009     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8010       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8011 
8012     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8013                                    M->getMemoryVT(), M->getMemOperand());
8014   }
8015   case Intrinsic::amdgcn_end_cf:
8016     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
8017                                       Op->getOperand(2), Chain), 0);
8018 
8019   default: {
8020     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
8021             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
8022       return lowerImage(Op, ImageDimIntr, DAG, true);
8023 
8024     return Op;
8025   }
8026   }
8027 }
8028 
8029 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
8030 // offset (the offset that is included in bounds checking and swizzling, to be
8031 // split between the instruction's voffset and immoffset fields) and soffset
8032 // (the offset that is excluded from bounds checking and swizzling, to go in
8033 // the instruction's soffset field).  This function takes the first kind of
8034 // offset and figures out how to split it between voffset and immoffset.
8035 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
8036     SDValue Offset, SelectionDAG &DAG) const {
8037   SDLoc DL(Offset);
8038   const unsigned MaxImm = 4095;
8039   SDValue N0 = Offset;
8040   ConstantSDNode *C1 = nullptr;
8041 
8042   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
8043     N0 = SDValue();
8044   else if (DAG.isBaseWithConstantOffset(N0)) {
8045     C1 = cast<ConstantSDNode>(N0.getOperand(1));
8046     N0 = N0.getOperand(0);
8047   }
8048 
8049   if (C1) {
8050     unsigned ImmOffset = C1->getZExtValue();
8051     // If the immediate value is too big for the immoffset field, put the value
8052     // and -4096 into the immoffset field so that the value that is copied/added
8053     // for the voffset field is a multiple of 4096, and it stands more chance
8054     // of being CSEd with the copy/add for another similar load/store.
8055     // However, do not do that rounding down to a multiple of 4096 if that is a
8056     // negative number, as it appears to be illegal to have a negative offset
8057     // in the vgpr, even if adding the immediate offset makes it positive.
8058     unsigned Overflow = ImmOffset & ~MaxImm;
8059     ImmOffset -= Overflow;
8060     if ((int32_t)Overflow < 0) {
8061       Overflow += ImmOffset;
8062       ImmOffset = 0;
8063     }
8064     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
8065     if (Overflow) {
8066       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
8067       if (!N0)
8068         N0 = OverflowVal;
8069       else {
8070         SDValue Ops[] = { N0, OverflowVal };
8071         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
8072       }
8073     }
8074   }
8075   if (!N0)
8076     N0 = DAG.getConstant(0, DL, MVT::i32);
8077   if (!C1)
8078     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
8079   return {N0, SDValue(C1, 0)};
8080 }
8081 
8082 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
8083 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
8084 // pointed to by Offsets.
8085 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
8086                                         SelectionDAG &DAG, SDValue *Offsets,
8087                                         Align Alignment) const {
8088   SDLoc DL(CombinedOffset);
8089   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
8090     uint32_t Imm = C->getZExtValue();
8091     uint32_t SOffset, ImmOffset;
8092     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
8093                                  Alignment)) {
8094       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
8095       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8096       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8097       return;
8098     }
8099   }
8100   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
8101     SDValue N0 = CombinedOffset.getOperand(0);
8102     SDValue N1 = CombinedOffset.getOperand(1);
8103     uint32_t SOffset, ImmOffset;
8104     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
8105     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
8106                                                 Subtarget, Alignment)) {
8107       Offsets[0] = N0;
8108       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8109       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8110       return;
8111     }
8112   }
8113   Offsets[0] = CombinedOffset;
8114   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
8115   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
8116 }
8117 
8118 // Handle 8 bit and 16 bit buffer loads
8119 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
8120                                                      EVT LoadVT, SDLoc DL,
8121                                                      ArrayRef<SDValue> Ops,
8122                                                      MemSDNode *M) const {
8123   EVT IntVT = LoadVT.changeTypeToInteger();
8124   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
8125          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
8126 
8127   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
8128   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
8129                                                Ops, IntVT,
8130                                                M->getMemOperand());
8131   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
8132   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
8133 
8134   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
8135 }
8136 
8137 // Handle 8 bit and 16 bit buffer stores
8138 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
8139                                                       EVT VDataType, SDLoc DL,
8140                                                       SDValue Ops[],
8141                                                       MemSDNode *M) const {
8142   if (VDataType == MVT::f16)
8143     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
8144 
8145   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
8146   Ops[1] = BufferStoreExt;
8147   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
8148                                  AMDGPUISD::BUFFER_STORE_SHORT;
8149   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
8150   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
8151                                      M->getMemOperand());
8152 }
8153 
8154 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
8155                                  ISD::LoadExtType ExtType, SDValue Op,
8156                                  const SDLoc &SL, EVT VT) {
8157   if (VT.bitsLT(Op.getValueType()))
8158     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
8159 
8160   switch (ExtType) {
8161   case ISD::SEXTLOAD:
8162     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
8163   case ISD::ZEXTLOAD:
8164     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
8165   case ISD::EXTLOAD:
8166     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
8167   case ISD::NON_EXTLOAD:
8168     return Op;
8169   }
8170 
8171   llvm_unreachable("invalid ext type");
8172 }
8173 
8174 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
8175   SelectionDAG &DAG = DCI.DAG;
8176   if (Ld->getAlignment() < 4 || Ld->isDivergent())
8177     return SDValue();
8178 
8179   // FIXME: Constant loads should all be marked invariant.
8180   unsigned AS = Ld->getAddressSpace();
8181   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
8182       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8183       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
8184     return SDValue();
8185 
8186   // Don't do this early, since it may interfere with adjacent load merging for
8187   // illegal types. We can avoid losing alignment information for exotic types
8188   // pre-legalize.
8189   EVT MemVT = Ld->getMemoryVT();
8190   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
8191       MemVT.getSizeInBits() >= 32)
8192     return SDValue();
8193 
8194   SDLoc SL(Ld);
8195 
8196   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
8197          "unexpected vector extload");
8198 
8199   // TODO: Drop only high part of range.
8200   SDValue Ptr = Ld->getBasePtr();
8201   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
8202                                 MVT::i32, SL, Ld->getChain(), Ptr,
8203                                 Ld->getOffset(),
8204                                 Ld->getPointerInfo(), MVT::i32,
8205                                 Ld->getAlignment(),
8206                                 Ld->getMemOperand()->getFlags(),
8207                                 Ld->getAAInfo(),
8208                                 nullptr); // Drop ranges
8209 
8210   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
8211   if (MemVT.isFloatingPoint()) {
8212     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
8213            "unexpected fp extload");
8214     TruncVT = MemVT.changeTypeToInteger();
8215   }
8216 
8217   SDValue Cvt = NewLoad;
8218   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
8219     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
8220                       DAG.getValueType(TruncVT));
8221   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
8222              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
8223     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
8224   } else {
8225     assert(Ld->getExtensionType() == ISD::EXTLOAD);
8226   }
8227 
8228   EVT VT = Ld->getValueType(0);
8229   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8230 
8231   DCI.AddToWorklist(Cvt.getNode());
8232 
8233   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8234   // the appropriate extension from the 32-bit load.
8235   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8236   DCI.AddToWorklist(Cvt.getNode());
8237 
8238   // Handle conversion back to floating point if necessary.
8239   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8240 
8241   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8242 }
8243 
8244 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8245   SDLoc DL(Op);
8246   LoadSDNode *Load = cast<LoadSDNode>(Op);
8247   ISD::LoadExtType ExtType = Load->getExtensionType();
8248   EVT MemVT = Load->getMemoryVT();
8249 
8250   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8251     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8252       return SDValue();
8253 
8254     // FIXME: Copied from PPC
8255     // First, load into 32 bits, then truncate to 1 bit.
8256 
8257     SDValue Chain = Load->getChain();
8258     SDValue BasePtr = Load->getBasePtr();
8259     MachineMemOperand *MMO = Load->getMemOperand();
8260 
8261     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8262 
8263     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8264                                    BasePtr, RealMemVT, MMO);
8265 
8266     if (!MemVT.isVector()) {
8267       SDValue Ops[] = {
8268         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8269         NewLD.getValue(1)
8270       };
8271 
8272       return DAG.getMergeValues(Ops, DL);
8273     }
8274 
8275     SmallVector<SDValue, 3> Elts;
8276     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8277       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8278                                 DAG.getConstant(I, DL, MVT::i32));
8279 
8280       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8281     }
8282 
8283     SDValue Ops[] = {
8284       DAG.getBuildVector(MemVT, DL, Elts),
8285       NewLD.getValue(1)
8286     };
8287 
8288     return DAG.getMergeValues(Ops, DL);
8289   }
8290 
8291   if (!MemVT.isVector())
8292     return SDValue();
8293 
8294   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8295          "Custom lowering for non-i32 vectors hasn't been implemented.");
8296 
8297   unsigned Alignment = Load->getAlignment();
8298   unsigned AS = Load->getAddressSpace();
8299   if (Subtarget->hasLDSMisalignedBug() &&
8300       AS == AMDGPUAS::FLAT_ADDRESS &&
8301       Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8302     return SplitVectorLoad(Op, DAG);
8303   }
8304 
8305   MachineFunction &MF = DAG.getMachineFunction();
8306   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8307   // If there is a possibilty that flat instruction access scratch memory
8308   // then we need to use the same legalization rules we use for private.
8309   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8310       !Subtarget->hasMultiDwordFlatScratchAddressing())
8311     AS = MFI->hasFlatScratchInit() ?
8312          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8313 
8314   unsigned NumElements = MemVT.getVectorNumElements();
8315 
8316   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8317       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8318     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
8319       if (MemVT.isPow2VectorType())
8320         return SDValue();
8321       return WidenOrSplitVectorLoad(Op, DAG);
8322     }
8323     // Non-uniform loads will be selected to MUBUF instructions, so they
8324     // have the same legalization requirements as global and private
8325     // loads.
8326     //
8327   }
8328 
8329   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8330       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8331       AS == AMDGPUAS::GLOBAL_ADDRESS) {
8332     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8333         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8334         Alignment >= 4 && NumElements < 32) {
8335       if (MemVT.isPow2VectorType())
8336         return SDValue();
8337       return WidenOrSplitVectorLoad(Op, DAG);
8338     }
8339     // Non-uniform loads will be selected to MUBUF instructions, so they
8340     // have the same legalization requirements as global and private
8341     // loads.
8342     //
8343   }
8344   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8345       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8346       AS == AMDGPUAS::GLOBAL_ADDRESS ||
8347       AS == AMDGPUAS::FLAT_ADDRESS) {
8348     if (NumElements > 4)
8349       return SplitVectorLoad(Op, DAG);
8350     // v3 loads not supported on SI.
8351     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8352       return WidenOrSplitVectorLoad(Op, DAG);
8353 
8354     // v3 and v4 loads are supported for private and global memory.
8355     return SDValue();
8356   }
8357   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8358     // Depending on the setting of the private_element_size field in the
8359     // resource descriptor, we can only make private accesses up to a certain
8360     // size.
8361     switch (Subtarget->getMaxPrivateElementSize()) {
8362     case 4: {
8363       SDValue Ops[2];
8364       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8365       return DAG.getMergeValues(Ops, DL);
8366     }
8367     case 8:
8368       if (NumElements > 2)
8369         return SplitVectorLoad(Op, DAG);
8370       return SDValue();
8371     case 16:
8372       // Same as global/flat
8373       if (NumElements > 4)
8374         return SplitVectorLoad(Op, DAG);
8375       // v3 loads not supported on SI.
8376       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8377         return WidenOrSplitVectorLoad(Op, DAG);
8378 
8379       return SDValue();
8380     default:
8381       llvm_unreachable("unsupported private_element_size");
8382     }
8383   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8384     // Use ds_read_b128 or ds_read_b96 when possible.
8385     if (Subtarget->hasDS96AndDS128() &&
8386         ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8387          MemVT.getStoreSize() == 12) &&
8388         allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8389                                            Load->getAlign()))
8390       return SDValue();
8391 
8392     if (NumElements > 2)
8393       return SplitVectorLoad(Op, DAG);
8394 
8395     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8396     // address is negative, then the instruction is incorrectly treated as
8397     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8398     // loads here to avoid emitting ds_read2_b32. We may re-combine the
8399     // load later in the SILoadStoreOptimizer.
8400     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8401         NumElements == 2 && MemVT.getStoreSize() == 8 &&
8402         Load->getAlignment() < 8) {
8403       return SplitVectorLoad(Op, DAG);
8404     }
8405   }
8406 
8407   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8408                                       MemVT, *Load->getMemOperand())) {
8409     SDValue Ops[2];
8410     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8411     return DAG.getMergeValues(Ops, DL);
8412   }
8413 
8414   return SDValue();
8415 }
8416 
8417 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8418   EVT VT = Op.getValueType();
8419   assert(VT.getSizeInBits() == 64);
8420 
8421   SDLoc DL(Op);
8422   SDValue Cond = Op.getOperand(0);
8423 
8424   if (Subtarget->hasScalarCompareEq64() && Op->getOperand(0)->hasOneUse() &&
8425       !Op->isDivergent()) {
8426     if (VT == MVT::i64)
8427       return Op;
8428     SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(1));
8429     SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(2));
8430     return DAG.getNode(ISD::BITCAST, DL, VT,
8431                        DAG.getSelect(DL, MVT::i64, Cond, LHS, RHS));
8432   }
8433 
8434   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8435   SDValue One = DAG.getConstant(1, DL, MVT::i32);
8436 
8437   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8438   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8439 
8440   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8441   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8442 
8443   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8444 
8445   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8446   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8447 
8448   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8449 
8450   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8451   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8452 }
8453 
8454 // Catch division cases where we can use shortcuts with rcp and rsq
8455 // instructions.
8456 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8457                                               SelectionDAG &DAG) const {
8458   SDLoc SL(Op);
8459   SDValue LHS = Op.getOperand(0);
8460   SDValue RHS = Op.getOperand(1);
8461   EVT VT = Op.getValueType();
8462   const SDNodeFlags Flags = Op->getFlags();
8463 
8464   bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8465 
8466   // Without !fpmath accuracy information, we can't do more because we don't
8467   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8468   if (!AllowInaccurateRcp)
8469     return SDValue();
8470 
8471   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8472     if (CLHS->isExactlyValue(1.0)) {
8473       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8474       // the CI documentation has a worst case error of 1 ulp.
8475       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8476       // use it as long as we aren't trying to use denormals.
8477       //
8478       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8479 
8480       // 1.0 / sqrt(x) -> rsq(x)
8481 
8482       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8483       // error seems really high at 2^29 ULP.
8484       if (RHS.getOpcode() == ISD::FSQRT)
8485         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8486 
8487       // 1.0 / x -> rcp(x)
8488       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8489     }
8490 
8491     // Same as for 1.0, but expand the sign out of the constant.
8492     if (CLHS->isExactlyValue(-1.0)) {
8493       // -1.0 / x -> rcp (fneg x)
8494       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8495       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8496     }
8497   }
8498 
8499   // Turn into multiply by the reciprocal.
8500   // x / y -> x * (1.0 / y)
8501   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8502   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8503 }
8504 
8505 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8506                                                 SelectionDAG &DAG) const {
8507   SDLoc SL(Op);
8508   SDValue X = Op.getOperand(0);
8509   SDValue Y = Op.getOperand(1);
8510   EVT VT = Op.getValueType();
8511   const SDNodeFlags Flags = Op->getFlags();
8512 
8513   bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8514                             DAG.getTarget().Options.UnsafeFPMath;
8515   if (!AllowInaccurateDiv)
8516     return SDValue();
8517 
8518   SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8519   SDValue One = DAG.getConstantFP(1.0, SL, VT);
8520 
8521   SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8522   SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8523 
8524   R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8525   SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8526   R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8527   SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8528   SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8529   return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8530 }
8531 
8532 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8533                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8534                           SDNodeFlags Flags) {
8535   if (GlueChain->getNumValues() <= 1) {
8536     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8537   }
8538 
8539   assert(GlueChain->getNumValues() == 3);
8540 
8541   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8542   switch (Opcode) {
8543   default: llvm_unreachable("no chain equivalent for opcode");
8544   case ISD::FMUL:
8545     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8546     break;
8547   }
8548 
8549   return DAG.getNode(Opcode, SL, VTList,
8550                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8551                      Flags);
8552 }
8553 
8554 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8555                            EVT VT, SDValue A, SDValue B, SDValue C,
8556                            SDValue GlueChain, SDNodeFlags Flags) {
8557   if (GlueChain->getNumValues() <= 1) {
8558     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8559   }
8560 
8561   assert(GlueChain->getNumValues() == 3);
8562 
8563   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8564   switch (Opcode) {
8565   default: llvm_unreachable("no chain equivalent for opcode");
8566   case ISD::FMA:
8567     Opcode = AMDGPUISD::FMA_W_CHAIN;
8568     break;
8569   }
8570 
8571   return DAG.getNode(Opcode, SL, VTList,
8572                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8573                      Flags);
8574 }
8575 
8576 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8577   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8578     return FastLowered;
8579 
8580   SDLoc SL(Op);
8581   SDValue Src0 = Op.getOperand(0);
8582   SDValue Src1 = Op.getOperand(1);
8583 
8584   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8585   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8586 
8587   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8588   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8589 
8590   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8591   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8592 
8593   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8594 }
8595 
8596 // Faster 2.5 ULP division that does not support denormals.
8597 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8598   SDLoc SL(Op);
8599   SDValue LHS = Op.getOperand(1);
8600   SDValue RHS = Op.getOperand(2);
8601 
8602   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8603 
8604   const APFloat K0Val(BitsToFloat(0x6f800000));
8605   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8606 
8607   const APFloat K1Val(BitsToFloat(0x2f800000));
8608   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8609 
8610   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8611 
8612   EVT SetCCVT =
8613     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8614 
8615   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8616 
8617   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8618 
8619   // TODO: Should this propagate fast-math-flags?
8620   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8621 
8622   // rcp does not support denormals.
8623   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8624 
8625   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8626 
8627   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8628 }
8629 
8630 // Returns immediate value for setting the F32 denorm mode when using the
8631 // S_DENORM_MODE instruction.
8632 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8633                                     const SDLoc &SL, const GCNSubtarget *ST) {
8634   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8635   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8636                                 ? FP_DENORM_FLUSH_NONE
8637                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8638 
8639   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8640   return DAG.getTargetConstant(Mode, SL, MVT::i32);
8641 }
8642 
8643 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8644   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8645     return FastLowered;
8646 
8647   // The selection matcher assumes anything with a chain selecting to a
8648   // mayRaiseFPException machine instruction. Since we're introducing a chain
8649   // here, we need to explicitly report nofpexcept for the regular fdiv
8650   // lowering.
8651   SDNodeFlags Flags = Op->getFlags();
8652   Flags.setNoFPExcept(true);
8653 
8654   SDLoc SL(Op);
8655   SDValue LHS = Op.getOperand(0);
8656   SDValue RHS = Op.getOperand(1);
8657 
8658   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8659 
8660   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8661 
8662   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8663                                           {RHS, RHS, LHS}, Flags);
8664   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8665                                         {LHS, RHS, LHS}, Flags);
8666 
8667   // Denominator is scaled to not be denormal, so using rcp is ok.
8668   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8669                                   DenominatorScaled, Flags);
8670   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8671                                      DenominatorScaled, Flags);
8672 
8673   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8674                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8675                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8676   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8677 
8678   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8679 
8680   if (!HasFP32Denormals) {
8681     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8682     // lowering. The chain dependence is insufficient, and we need glue. We do
8683     // not need the glue variants in a strictfp function.
8684 
8685     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8686 
8687     SDNode *EnableDenorm;
8688     if (Subtarget->hasDenormModeInst()) {
8689       const SDValue EnableDenormValue =
8690           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8691 
8692       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8693                                  DAG.getEntryNode(), EnableDenormValue).getNode();
8694     } else {
8695       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
8696                                                         SL, MVT::i32);
8697       EnableDenorm =
8698           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8699                              {EnableDenormValue, BitField, DAG.getEntryNode()});
8700     }
8701 
8702     SDValue Ops[3] = {
8703       NegDivScale0,
8704       SDValue(EnableDenorm, 0),
8705       SDValue(EnableDenorm, 1)
8706     };
8707 
8708     NegDivScale0 = DAG.getMergeValues(Ops, SL);
8709   }
8710 
8711   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8712                              ApproxRcp, One, NegDivScale0, Flags);
8713 
8714   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8715                              ApproxRcp, Fma0, Flags);
8716 
8717   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8718                            Fma1, Fma1, Flags);
8719 
8720   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8721                              NumeratorScaled, Mul, Flags);
8722 
8723   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8724                              Fma2, Fma1, Mul, Fma2, Flags);
8725 
8726   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8727                              NumeratorScaled, Fma3, Flags);
8728 
8729   if (!HasFP32Denormals) {
8730     SDNode *DisableDenorm;
8731     if (Subtarget->hasDenormModeInst()) {
8732       const SDValue DisableDenormValue =
8733           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
8734 
8735       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8736                                   Fma4.getValue(1), DisableDenormValue,
8737                                   Fma4.getValue(2)).getNode();
8738     } else {
8739       const SDValue DisableDenormValue =
8740           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
8741 
8742       DisableDenorm = DAG.getMachineNode(
8743           AMDGPU::S_SETREG_B32, SL, MVT::Other,
8744           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8745     }
8746 
8747     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8748                                       SDValue(DisableDenorm, 0), DAG.getRoot());
8749     DAG.setRoot(OutputChain);
8750   }
8751 
8752   SDValue Scale = NumeratorScaled.getValue(1);
8753   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8754                              {Fma4, Fma1, Fma3, Scale}, Flags);
8755 
8756   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8757 }
8758 
8759 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8760   if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
8761     return FastLowered;
8762 
8763   SDLoc SL(Op);
8764   SDValue X = Op.getOperand(0);
8765   SDValue Y = Op.getOperand(1);
8766 
8767   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8768 
8769   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8770 
8771   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8772 
8773   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8774 
8775   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8776 
8777   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8778 
8779   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8780 
8781   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8782 
8783   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8784 
8785   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8786   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8787 
8788   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8789                              NegDivScale0, Mul, DivScale1);
8790 
8791   SDValue Scale;
8792 
8793   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8794     // Workaround a hardware bug on SI where the condition output from div_scale
8795     // is not usable.
8796 
8797     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8798 
8799     // Figure out if the scale to use for div_fmas.
8800     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8801     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8802     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8803     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8804 
8805     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8806     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8807 
8808     SDValue Scale0Hi
8809       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8810     SDValue Scale1Hi
8811       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8812 
8813     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8814     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8815     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8816   } else {
8817     Scale = DivScale1.getValue(1);
8818   }
8819 
8820   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8821                              Fma4, Fma3, Mul, Scale);
8822 
8823   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8824 }
8825 
8826 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8827   EVT VT = Op.getValueType();
8828 
8829   if (VT == MVT::f32)
8830     return LowerFDIV32(Op, DAG);
8831 
8832   if (VT == MVT::f64)
8833     return LowerFDIV64(Op, DAG);
8834 
8835   if (VT == MVT::f16)
8836     return LowerFDIV16(Op, DAG);
8837 
8838   llvm_unreachable("Unexpected type for fdiv");
8839 }
8840 
8841 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8842   SDLoc DL(Op);
8843   StoreSDNode *Store = cast<StoreSDNode>(Op);
8844   EVT VT = Store->getMemoryVT();
8845 
8846   if (VT == MVT::i1) {
8847     return DAG.getTruncStore(Store->getChain(), DL,
8848        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8849        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8850   }
8851 
8852   assert(VT.isVector() &&
8853          Store->getValue().getValueType().getScalarType() == MVT::i32);
8854 
8855   unsigned AS = Store->getAddressSpace();
8856   if (Subtarget->hasLDSMisalignedBug() &&
8857       AS == AMDGPUAS::FLAT_ADDRESS &&
8858       Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8859     return SplitVectorStore(Op, DAG);
8860   }
8861 
8862   MachineFunction &MF = DAG.getMachineFunction();
8863   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8864   // If there is a possibilty that flat instruction access scratch memory
8865   // then we need to use the same legalization rules we use for private.
8866   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8867       !Subtarget->hasMultiDwordFlatScratchAddressing())
8868     AS = MFI->hasFlatScratchInit() ?
8869          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8870 
8871   unsigned NumElements = VT.getVectorNumElements();
8872   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8873       AS == AMDGPUAS::FLAT_ADDRESS) {
8874     if (NumElements > 4)
8875       return SplitVectorStore(Op, DAG);
8876     // v3 stores not supported on SI.
8877     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8878       return SplitVectorStore(Op, DAG);
8879 
8880     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8881                                         VT, *Store->getMemOperand()))
8882       return expandUnalignedStore(Store, DAG);
8883 
8884     return SDValue();
8885   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8886     switch (Subtarget->getMaxPrivateElementSize()) {
8887     case 4:
8888       return scalarizeVectorStore(Store, DAG);
8889     case 8:
8890       if (NumElements > 2)
8891         return SplitVectorStore(Op, DAG);
8892       return SDValue();
8893     case 16:
8894       if (NumElements > 4 ||
8895           (NumElements == 3 && !Subtarget->enableFlatScratch()))
8896         return SplitVectorStore(Op, DAG);
8897       return SDValue();
8898     default:
8899       llvm_unreachable("unsupported private_element_size");
8900     }
8901   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8902     // Use ds_write_b128 or ds_write_b96 when possible.
8903     if (Subtarget->hasDS96AndDS128() &&
8904         ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
8905          (VT.getStoreSize() == 12)) &&
8906         allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
8907                                            Store->getAlign()))
8908       return SDValue();
8909 
8910     if (NumElements > 2)
8911       return SplitVectorStore(Op, DAG);
8912 
8913     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8914     // address is negative, then the instruction is incorrectly treated as
8915     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8916     // stores here to avoid emitting ds_write2_b32. We may re-combine the
8917     // store later in the SILoadStoreOptimizer.
8918     if (!Subtarget->hasUsableDSOffset() &&
8919         NumElements == 2 && VT.getStoreSize() == 8 &&
8920         Store->getAlignment() < 8) {
8921       return SplitVectorStore(Op, DAG);
8922     }
8923 
8924     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8925                                         VT, *Store->getMemOperand())) {
8926       if (VT.isVector())
8927         return SplitVectorStore(Op, DAG);
8928       return expandUnalignedStore(Store, DAG);
8929     }
8930 
8931     return SDValue();
8932   } else {
8933     llvm_unreachable("unhandled address space");
8934   }
8935 }
8936 
8937 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
8938   SDLoc DL(Op);
8939   EVT VT = Op.getValueType();
8940   SDValue Arg = Op.getOperand(0);
8941   SDValue TrigVal;
8942 
8943   // Propagate fast-math flags so that the multiply we introduce can be folded
8944   // if Arg is already the result of a multiply by constant.
8945   auto Flags = Op->getFlags();
8946 
8947   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
8948 
8949   if (Subtarget->hasTrigReducedRange()) {
8950     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8951     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
8952   } else {
8953     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8954   }
8955 
8956   switch (Op.getOpcode()) {
8957   case ISD::FCOS:
8958     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
8959   case ISD::FSIN:
8960     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
8961   default:
8962     llvm_unreachable("Wrong trig opcode");
8963   }
8964 }
8965 
8966 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8967   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8968   assert(AtomicNode->isCompareAndSwap());
8969   unsigned AS = AtomicNode->getAddressSpace();
8970 
8971   // No custom lowering required for local address space
8972   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
8973     return Op;
8974 
8975   // Non-local address space requires custom lowering for atomic compare
8976   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8977   SDLoc DL(Op);
8978   SDValue ChainIn = Op.getOperand(0);
8979   SDValue Addr = Op.getOperand(1);
8980   SDValue Old = Op.getOperand(2);
8981   SDValue New = Op.getOperand(3);
8982   EVT VT = Op.getValueType();
8983   MVT SimpleVT = VT.getSimpleVT();
8984   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8985 
8986   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8987   SDValue Ops[] = { ChainIn, Addr, NewOld };
8988 
8989   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8990                                  Ops, VT, AtomicNode->getMemOperand());
8991 }
8992 
8993 //===----------------------------------------------------------------------===//
8994 // Custom DAG optimizations
8995 //===----------------------------------------------------------------------===//
8996 
8997 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8998                                                      DAGCombinerInfo &DCI) const {
8999   EVT VT = N->getValueType(0);
9000   EVT ScalarVT = VT.getScalarType();
9001   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
9002     return SDValue();
9003 
9004   SelectionDAG &DAG = DCI.DAG;
9005   SDLoc DL(N);
9006 
9007   SDValue Src = N->getOperand(0);
9008   EVT SrcVT = Src.getValueType();
9009 
9010   // TODO: We could try to match extracting the higher bytes, which would be
9011   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
9012   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
9013   // about in practice.
9014   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
9015     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
9016       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
9017       DCI.AddToWorklist(Cvt.getNode());
9018 
9019       // For the f16 case, fold to a cast to f32 and then cast back to f16.
9020       if (ScalarVT != MVT::f32) {
9021         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
9022                           DAG.getTargetConstant(0, DL, MVT::i32));
9023       }
9024       return Cvt;
9025     }
9026   }
9027 
9028   return SDValue();
9029 }
9030 
9031 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
9032 
9033 // This is a variant of
9034 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
9035 //
9036 // The normal DAG combiner will do this, but only if the add has one use since
9037 // that would increase the number of instructions.
9038 //
9039 // This prevents us from seeing a constant offset that can be folded into a
9040 // memory instruction's addressing mode. If we know the resulting add offset of
9041 // a pointer can be folded into an addressing offset, we can replace the pointer
9042 // operand with the add of new constant offset. This eliminates one of the uses,
9043 // and may allow the remaining use to also be simplified.
9044 //
9045 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
9046                                                unsigned AddrSpace,
9047                                                EVT MemVT,
9048                                                DAGCombinerInfo &DCI) const {
9049   SDValue N0 = N->getOperand(0);
9050   SDValue N1 = N->getOperand(1);
9051 
9052   // We only do this to handle cases where it's profitable when there are
9053   // multiple uses of the add, so defer to the standard combine.
9054   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
9055       N0->hasOneUse())
9056     return SDValue();
9057 
9058   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
9059   if (!CN1)
9060     return SDValue();
9061 
9062   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9063   if (!CAdd)
9064     return SDValue();
9065 
9066   // If the resulting offset is too large, we can't fold it into the addressing
9067   // mode offset.
9068   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
9069   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
9070 
9071   AddrMode AM;
9072   AM.HasBaseReg = true;
9073   AM.BaseOffs = Offset.getSExtValue();
9074   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
9075     return SDValue();
9076 
9077   SelectionDAG &DAG = DCI.DAG;
9078   SDLoc SL(N);
9079   EVT VT = N->getValueType(0);
9080 
9081   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
9082   SDValue COffset = DAG.getConstant(Offset, SL, VT);
9083 
9084   SDNodeFlags Flags;
9085   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
9086                           (N0.getOpcode() == ISD::OR ||
9087                            N0->getFlags().hasNoUnsignedWrap()));
9088 
9089   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
9090 }
9091 
9092 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
9093 /// by the chain and intrinsic ID. Theoretically we would also need to check the
9094 /// specific intrinsic, but they all place the pointer operand first.
9095 static unsigned getBasePtrIndex(const MemSDNode *N) {
9096   switch (N->getOpcode()) {
9097   case ISD::STORE:
9098   case ISD::INTRINSIC_W_CHAIN:
9099   case ISD::INTRINSIC_VOID:
9100     return 2;
9101   default:
9102     return 1;
9103   }
9104 }
9105 
9106 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
9107                                                   DAGCombinerInfo &DCI) const {
9108   SelectionDAG &DAG = DCI.DAG;
9109   SDLoc SL(N);
9110 
9111   unsigned PtrIdx = getBasePtrIndex(N);
9112   SDValue Ptr = N->getOperand(PtrIdx);
9113 
9114   // TODO: We could also do this for multiplies.
9115   if (Ptr.getOpcode() == ISD::SHL) {
9116     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
9117                                           N->getMemoryVT(), DCI);
9118     if (NewPtr) {
9119       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
9120 
9121       NewOps[PtrIdx] = NewPtr;
9122       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
9123     }
9124   }
9125 
9126   return SDValue();
9127 }
9128 
9129 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
9130   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
9131          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
9132          (Opc == ISD::XOR && Val == 0);
9133 }
9134 
9135 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
9136 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
9137 // integer combine opportunities since most 64-bit operations are decomposed
9138 // this way.  TODO: We won't want this for SALU especially if it is an inline
9139 // immediate.
9140 SDValue SITargetLowering::splitBinaryBitConstantOp(
9141   DAGCombinerInfo &DCI,
9142   const SDLoc &SL,
9143   unsigned Opc, SDValue LHS,
9144   const ConstantSDNode *CRHS) const {
9145   uint64_t Val = CRHS->getZExtValue();
9146   uint32_t ValLo = Lo_32(Val);
9147   uint32_t ValHi = Hi_32(Val);
9148   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9149 
9150     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
9151          bitOpWithConstantIsReducible(Opc, ValHi)) ||
9152         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
9153     // If we need to materialize a 64-bit immediate, it will be split up later
9154     // anyway. Avoid creating the harder to understand 64-bit immediate
9155     // materialization.
9156     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
9157   }
9158 
9159   return SDValue();
9160 }
9161 
9162 // Returns true if argument is a boolean value which is not serialized into
9163 // memory or argument and does not require v_cndmask_b32 to be deserialized.
9164 static bool isBoolSGPR(SDValue V) {
9165   if (V.getValueType() != MVT::i1)
9166     return false;
9167   switch (V.getOpcode()) {
9168   default:
9169     break;
9170   case ISD::SETCC:
9171   case AMDGPUISD::FP_CLASS:
9172     return true;
9173   case ISD::AND:
9174   case ISD::OR:
9175   case ISD::XOR:
9176     return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
9177   }
9178   return false;
9179 }
9180 
9181 // If a constant has all zeroes or all ones within each byte return it.
9182 // Otherwise return 0.
9183 static uint32_t getConstantPermuteMask(uint32_t C) {
9184   // 0xff for any zero byte in the mask
9185   uint32_t ZeroByteMask = 0;
9186   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
9187   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
9188   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
9189   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
9190   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
9191   if ((NonZeroByteMask & C) != NonZeroByteMask)
9192     return 0; // Partial bytes selected.
9193   return C;
9194 }
9195 
9196 // Check if a node selects whole bytes from its operand 0 starting at a byte
9197 // boundary while masking the rest. Returns select mask as in the v_perm_b32
9198 // or -1 if not succeeded.
9199 // Note byte select encoding:
9200 // value 0-3 selects corresponding source byte;
9201 // value 0xc selects zero;
9202 // value 0xff selects 0xff.
9203 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
9204   assert(V.getValueSizeInBits() == 32);
9205 
9206   if (V.getNumOperands() != 2)
9207     return ~0;
9208 
9209   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
9210   if (!N1)
9211     return ~0;
9212 
9213   uint32_t C = N1->getZExtValue();
9214 
9215   switch (V.getOpcode()) {
9216   default:
9217     break;
9218   case ISD::AND:
9219     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9220       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
9221     }
9222     break;
9223 
9224   case ISD::OR:
9225     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9226       return (0x03020100 & ~ConstMask) | ConstMask;
9227     }
9228     break;
9229 
9230   case ISD::SHL:
9231     if (C % 8)
9232       return ~0;
9233 
9234     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
9235 
9236   case ISD::SRL:
9237     if (C % 8)
9238       return ~0;
9239 
9240     return uint32_t(0x0c0c0c0c03020100ull >> C);
9241   }
9242 
9243   return ~0;
9244 }
9245 
9246 SDValue SITargetLowering::performAndCombine(SDNode *N,
9247                                             DAGCombinerInfo &DCI) const {
9248   if (DCI.isBeforeLegalize())
9249     return SDValue();
9250 
9251   SelectionDAG &DAG = DCI.DAG;
9252   EVT VT = N->getValueType(0);
9253   SDValue LHS = N->getOperand(0);
9254   SDValue RHS = N->getOperand(1);
9255 
9256 
9257   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9258   if (VT == MVT::i64 && CRHS) {
9259     if (SDValue Split
9260         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
9261       return Split;
9262   }
9263 
9264   if (CRHS && VT == MVT::i32) {
9265     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
9266     // nb = number of trailing zeroes in mask
9267     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
9268     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
9269     uint64_t Mask = CRHS->getZExtValue();
9270     unsigned Bits = countPopulation(Mask);
9271     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9272         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9273       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9274         unsigned Shift = CShift->getZExtValue();
9275         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9276         unsigned Offset = NB + Shift;
9277         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9278           SDLoc SL(N);
9279           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9280                                     LHS->getOperand(0),
9281                                     DAG.getConstant(Offset, SL, MVT::i32),
9282                                     DAG.getConstant(Bits, SL, MVT::i32));
9283           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9284           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9285                                     DAG.getValueType(NarrowVT));
9286           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9287                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9288           return Shl;
9289         }
9290       }
9291     }
9292 
9293     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9294     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9295         isa<ConstantSDNode>(LHS.getOperand(2))) {
9296       uint32_t Sel = getConstantPermuteMask(Mask);
9297       if (!Sel)
9298         return SDValue();
9299 
9300       // Select 0xc for all zero bytes
9301       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9302       SDLoc DL(N);
9303       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9304                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9305     }
9306   }
9307 
9308   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9309   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9310   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9311     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9312     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9313 
9314     SDValue X = LHS.getOperand(0);
9315     SDValue Y = RHS.getOperand(0);
9316     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9317       return SDValue();
9318 
9319     if (LCC == ISD::SETO) {
9320       if (X != LHS.getOperand(1))
9321         return SDValue();
9322 
9323       if (RCC == ISD::SETUNE) {
9324         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9325         if (!C1 || !C1->isInfinity() || C1->isNegative())
9326           return SDValue();
9327 
9328         const uint32_t Mask = SIInstrFlags::N_NORMAL |
9329                               SIInstrFlags::N_SUBNORMAL |
9330                               SIInstrFlags::N_ZERO |
9331                               SIInstrFlags::P_ZERO |
9332                               SIInstrFlags::P_SUBNORMAL |
9333                               SIInstrFlags::P_NORMAL;
9334 
9335         static_assert(((~(SIInstrFlags::S_NAN |
9336                           SIInstrFlags::Q_NAN |
9337                           SIInstrFlags::N_INFINITY |
9338                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9339                       "mask not equal");
9340 
9341         SDLoc DL(N);
9342         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9343                            X, DAG.getConstant(Mask, DL, MVT::i32));
9344       }
9345     }
9346   }
9347 
9348   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9349     std::swap(LHS, RHS);
9350 
9351   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9352       RHS.hasOneUse()) {
9353     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9354     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9355     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9356     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9357     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9358         (RHS.getOperand(0) == LHS.getOperand(0) &&
9359          LHS.getOperand(0) == LHS.getOperand(1))) {
9360       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9361       unsigned NewMask = LCC == ISD::SETO ?
9362         Mask->getZExtValue() & ~OrdMask :
9363         Mask->getZExtValue() & OrdMask;
9364 
9365       SDLoc DL(N);
9366       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9367                          DAG.getConstant(NewMask, DL, MVT::i32));
9368     }
9369   }
9370 
9371   if (VT == MVT::i32 &&
9372       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9373     // and x, (sext cc from i1) => select cc, x, 0
9374     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9375       std::swap(LHS, RHS);
9376     if (isBoolSGPR(RHS.getOperand(0)))
9377       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9378                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9379   }
9380 
9381   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9382   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9383   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9384       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9385     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9386     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9387     if (LHSMask != ~0u && RHSMask != ~0u) {
9388       // Canonicalize the expression in an attempt to have fewer unique masks
9389       // and therefore fewer registers used to hold the masks.
9390       if (LHSMask > RHSMask) {
9391         std::swap(LHSMask, RHSMask);
9392         std::swap(LHS, RHS);
9393       }
9394 
9395       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9396       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9397       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9398       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9399 
9400       // Check of we need to combine values from two sources within a byte.
9401       if (!(LHSUsedLanes & RHSUsedLanes) &&
9402           // If we select high and lower word keep it for SDWA.
9403           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9404           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9405         // Each byte in each mask is either selector mask 0-3, or has higher
9406         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9407         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9408         // mask which is not 0xff wins. By anding both masks we have a correct
9409         // result except that 0x0c shall be corrected to give 0x0c only.
9410         uint32_t Mask = LHSMask & RHSMask;
9411         for (unsigned I = 0; I < 32; I += 8) {
9412           uint32_t ByteSel = 0xff << I;
9413           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9414             Mask &= (0x0c << I) & 0xffffffff;
9415         }
9416 
9417         // Add 4 to each active LHS lane. It will not affect any existing 0xff
9418         // or 0x0c.
9419         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9420         SDLoc DL(N);
9421 
9422         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9423                            LHS.getOperand(0), RHS.getOperand(0),
9424                            DAG.getConstant(Sel, DL, MVT::i32));
9425       }
9426     }
9427   }
9428 
9429   return SDValue();
9430 }
9431 
9432 SDValue SITargetLowering::performOrCombine(SDNode *N,
9433                                            DAGCombinerInfo &DCI) const {
9434   SelectionDAG &DAG = DCI.DAG;
9435   SDValue LHS = N->getOperand(0);
9436   SDValue RHS = N->getOperand(1);
9437 
9438   EVT VT = N->getValueType(0);
9439   if (VT == MVT::i1) {
9440     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9441     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9442         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9443       SDValue Src = LHS.getOperand(0);
9444       if (Src != RHS.getOperand(0))
9445         return SDValue();
9446 
9447       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9448       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9449       if (!CLHS || !CRHS)
9450         return SDValue();
9451 
9452       // Only 10 bits are used.
9453       static const uint32_t MaxMask = 0x3ff;
9454 
9455       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9456       SDLoc DL(N);
9457       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9458                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
9459     }
9460 
9461     return SDValue();
9462   }
9463 
9464   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9465   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9466       LHS.getOpcode() == AMDGPUISD::PERM &&
9467       isa<ConstantSDNode>(LHS.getOperand(2))) {
9468     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9469     if (!Sel)
9470       return SDValue();
9471 
9472     Sel |= LHS.getConstantOperandVal(2);
9473     SDLoc DL(N);
9474     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9475                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9476   }
9477 
9478   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9479   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9480   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9481       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9482     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9483     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9484     if (LHSMask != ~0u && RHSMask != ~0u) {
9485       // Canonicalize the expression in an attempt to have fewer unique masks
9486       // and therefore fewer registers used to hold the masks.
9487       if (LHSMask > RHSMask) {
9488         std::swap(LHSMask, RHSMask);
9489         std::swap(LHS, RHS);
9490       }
9491 
9492       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9493       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9494       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9495       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9496 
9497       // Check of we need to combine values from two sources within a byte.
9498       if (!(LHSUsedLanes & RHSUsedLanes) &&
9499           // If we select high and lower word keep it for SDWA.
9500           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9501           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9502         // Kill zero bytes selected by other mask. Zero value is 0xc.
9503         LHSMask &= ~RHSUsedLanes;
9504         RHSMask &= ~LHSUsedLanes;
9505         // Add 4 to each active LHS lane
9506         LHSMask |= LHSUsedLanes & 0x04040404;
9507         // Combine masks
9508         uint32_t Sel = LHSMask | RHSMask;
9509         SDLoc DL(N);
9510 
9511         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9512                            LHS.getOperand(0), RHS.getOperand(0),
9513                            DAG.getConstant(Sel, DL, MVT::i32));
9514       }
9515     }
9516   }
9517 
9518   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9519     return SDValue();
9520 
9521   // TODO: This could be a generic combine with a predicate for extracting the
9522   // high half of an integer being free.
9523 
9524   // (or i64:x, (zero_extend i32:y)) ->
9525   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9526   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9527       RHS.getOpcode() != ISD::ZERO_EXTEND)
9528     std::swap(LHS, RHS);
9529 
9530   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9531     SDValue ExtSrc = RHS.getOperand(0);
9532     EVT SrcVT = ExtSrc.getValueType();
9533     if (SrcVT == MVT::i32) {
9534       SDLoc SL(N);
9535       SDValue LowLHS, HiBits;
9536       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9537       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9538 
9539       DCI.AddToWorklist(LowOr.getNode());
9540       DCI.AddToWorklist(HiBits.getNode());
9541 
9542       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9543                                 LowOr, HiBits);
9544       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9545     }
9546   }
9547 
9548   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9549   if (CRHS) {
9550     if (SDValue Split
9551           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
9552                                      N->getOperand(0), CRHS))
9553       return Split;
9554   }
9555 
9556   return SDValue();
9557 }
9558 
9559 SDValue SITargetLowering::performXorCombine(SDNode *N,
9560                                             DAGCombinerInfo &DCI) const {
9561   EVT VT = N->getValueType(0);
9562   if (VT != MVT::i64)
9563     return SDValue();
9564 
9565   SDValue LHS = N->getOperand(0);
9566   SDValue RHS = N->getOperand(1);
9567 
9568   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9569   if (CRHS) {
9570     if (SDValue Split
9571           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9572       return Split;
9573   }
9574 
9575   return SDValue();
9576 }
9577 
9578 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9579                                                    DAGCombinerInfo &DCI) const {
9580   if (!Subtarget->has16BitInsts() ||
9581       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9582     return SDValue();
9583 
9584   EVT VT = N->getValueType(0);
9585   if (VT != MVT::i32)
9586     return SDValue();
9587 
9588   SDValue Src = N->getOperand(0);
9589   if (Src.getValueType() != MVT::i16)
9590     return SDValue();
9591 
9592   return SDValue();
9593 }
9594 
9595 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9596                                                         DAGCombinerInfo &DCI)
9597                                                         const {
9598   SDValue Src = N->getOperand(0);
9599   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9600 
9601   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9602       VTSign->getVT() == MVT::i8) ||
9603       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9604       VTSign->getVT() == MVT::i16)) &&
9605       Src.hasOneUse()) {
9606     auto *M = cast<MemSDNode>(Src);
9607     SDValue Ops[] = {
9608       Src.getOperand(0), // Chain
9609       Src.getOperand(1), // rsrc
9610       Src.getOperand(2), // vindex
9611       Src.getOperand(3), // voffset
9612       Src.getOperand(4), // soffset
9613       Src.getOperand(5), // offset
9614       Src.getOperand(6),
9615       Src.getOperand(7)
9616     };
9617     // replace with BUFFER_LOAD_BYTE/SHORT
9618     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9619                                          Src.getOperand(0).getValueType());
9620     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9621                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9622     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9623                                                           ResList,
9624                                                           Ops, M->getMemoryVT(),
9625                                                           M->getMemOperand());
9626     return DCI.DAG.getMergeValues({BufferLoadSignExt,
9627                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
9628   }
9629   return SDValue();
9630 }
9631 
9632 SDValue SITargetLowering::performClassCombine(SDNode *N,
9633                                               DAGCombinerInfo &DCI) const {
9634   SelectionDAG &DAG = DCI.DAG;
9635   SDValue Mask = N->getOperand(1);
9636 
9637   // fp_class x, 0 -> false
9638   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9639     if (CMask->isZero())
9640       return DAG.getConstant(0, SDLoc(N), MVT::i1);
9641   }
9642 
9643   if (N->getOperand(0).isUndef())
9644     return DAG.getUNDEF(MVT::i1);
9645 
9646   return SDValue();
9647 }
9648 
9649 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9650                                             DAGCombinerInfo &DCI) const {
9651   EVT VT = N->getValueType(0);
9652   SDValue N0 = N->getOperand(0);
9653 
9654   if (N0.isUndef())
9655     return N0;
9656 
9657   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9658                          N0.getOpcode() == ISD::SINT_TO_FP)) {
9659     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9660                            N->getFlags());
9661   }
9662 
9663   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9664     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9665                            N0.getOperand(0), N->getFlags());
9666   }
9667 
9668   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9669 }
9670 
9671 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9672                                        unsigned MaxDepth) const {
9673   unsigned Opcode = Op.getOpcode();
9674   if (Opcode == ISD::FCANONICALIZE)
9675     return true;
9676 
9677   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9678     auto F = CFP->getValueAPF();
9679     if (F.isNaN() && F.isSignaling())
9680       return false;
9681     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9682   }
9683 
9684   // If source is a result of another standard FP operation it is already in
9685   // canonical form.
9686   if (MaxDepth == 0)
9687     return false;
9688 
9689   switch (Opcode) {
9690   // These will flush denorms if required.
9691   case ISD::FADD:
9692   case ISD::FSUB:
9693   case ISD::FMUL:
9694   case ISD::FCEIL:
9695   case ISD::FFLOOR:
9696   case ISD::FMA:
9697   case ISD::FMAD:
9698   case ISD::FSQRT:
9699   case ISD::FDIV:
9700   case ISD::FREM:
9701   case ISD::FP_ROUND:
9702   case ISD::FP_EXTEND:
9703   case AMDGPUISD::FMUL_LEGACY:
9704   case AMDGPUISD::FMAD_FTZ:
9705   case AMDGPUISD::RCP:
9706   case AMDGPUISD::RSQ:
9707   case AMDGPUISD::RSQ_CLAMP:
9708   case AMDGPUISD::RCP_LEGACY:
9709   case AMDGPUISD::RCP_IFLAG:
9710   case AMDGPUISD::DIV_SCALE:
9711   case AMDGPUISD::DIV_FMAS:
9712   case AMDGPUISD::DIV_FIXUP:
9713   case AMDGPUISD::FRACT:
9714   case AMDGPUISD::LDEXP:
9715   case AMDGPUISD::CVT_PKRTZ_F16_F32:
9716   case AMDGPUISD::CVT_F32_UBYTE0:
9717   case AMDGPUISD::CVT_F32_UBYTE1:
9718   case AMDGPUISD::CVT_F32_UBYTE2:
9719   case AMDGPUISD::CVT_F32_UBYTE3:
9720     return true;
9721 
9722   // It can/will be lowered or combined as a bit operation.
9723   // Need to check their input recursively to handle.
9724   case ISD::FNEG:
9725   case ISD::FABS:
9726   case ISD::FCOPYSIGN:
9727     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9728 
9729   case ISD::FSIN:
9730   case ISD::FCOS:
9731   case ISD::FSINCOS:
9732     return Op.getValueType().getScalarType() != MVT::f16;
9733 
9734   case ISD::FMINNUM:
9735   case ISD::FMAXNUM:
9736   case ISD::FMINNUM_IEEE:
9737   case ISD::FMAXNUM_IEEE:
9738   case AMDGPUISD::CLAMP:
9739   case AMDGPUISD::FMED3:
9740   case AMDGPUISD::FMAX3:
9741   case AMDGPUISD::FMIN3: {
9742     // FIXME: Shouldn't treat the generic operations different based these.
9743     // However, we aren't really required to flush the result from
9744     // minnum/maxnum..
9745 
9746     // snans will be quieted, so we only need to worry about denormals.
9747     if (Subtarget->supportsMinMaxDenormModes() ||
9748         denormalsEnabledForType(DAG, Op.getValueType()))
9749       return true;
9750 
9751     // Flushing may be required.
9752     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9753     // targets need to check their input recursively.
9754 
9755     // FIXME: Does this apply with clamp? It's implemented with max.
9756     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9757       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9758         return false;
9759     }
9760 
9761     return true;
9762   }
9763   case ISD::SELECT: {
9764     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9765            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9766   }
9767   case ISD::BUILD_VECTOR: {
9768     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9769       SDValue SrcOp = Op.getOperand(i);
9770       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9771         return false;
9772     }
9773 
9774     return true;
9775   }
9776   case ISD::EXTRACT_VECTOR_ELT:
9777   case ISD::EXTRACT_SUBVECTOR: {
9778     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9779   }
9780   case ISD::INSERT_VECTOR_ELT: {
9781     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9782            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9783   }
9784   case ISD::UNDEF:
9785     // Could be anything.
9786     return false;
9787 
9788   case ISD::BITCAST:
9789     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9790   case ISD::TRUNCATE: {
9791     // Hack round the mess we make when legalizing extract_vector_elt
9792     if (Op.getValueType() == MVT::i16) {
9793       SDValue TruncSrc = Op.getOperand(0);
9794       if (TruncSrc.getValueType() == MVT::i32 &&
9795           TruncSrc.getOpcode() == ISD::BITCAST &&
9796           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9797         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9798       }
9799     }
9800     return false;
9801   }
9802   case ISD::INTRINSIC_WO_CHAIN: {
9803     unsigned IntrinsicID
9804       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9805     // TODO: Handle more intrinsics
9806     switch (IntrinsicID) {
9807     case Intrinsic::amdgcn_cvt_pkrtz:
9808     case Intrinsic::amdgcn_cubeid:
9809     case Intrinsic::amdgcn_frexp_mant:
9810     case Intrinsic::amdgcn_fdot2:
9811     case Intrinsic::amdgcn_rcp:
9812     case Intrinsic::amdgcn_rsq:
9813     case Intrinsic::amdgcn_rsq_clamp:
9814     case Intrinsic::amdgcn_rcp_legacy:
9815     case Intrinsic::amdgcn_rsq_legacy:
9816     case Intrinsic::amdgcn_trig_preop:
9817       return true;
9818     default:
9819       break;
9820     }
9821 
9822     LLVM_FALLTHROUGH;
9823   }
9824   default:
9825     return denormalsEnabledForType(DAG, Op.getValueType()) &&
9826            DAG.isKnownNeverSNaN(Op);
9827   }
9828 
9829   llvm_unreachable("invalid operation");
9830 }
9831 
9832 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
9833                                        unsigned MaxDepth) const {
9834   MachineRegisterInfo &MRI = MF.getRegInfo();
9835   MachineInstr *MI = MRI.getVRegDef(Reg);
9836   unsigned Opcode = MI->getOpcode();
9837 
9838   if (Opcode == AMDGPU::G_FCANONICALIZE)
9839     return true;
9840 
9841   Optional<FPValueAndVReg> FCR;
9842   // Constant splat (can be padded with undef) or scalar constant.
9843   if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) {
9844     if (FCR->Value.isSignaling())
9845       return false;
9846     return !FCR->Value.isDenormal() ||
9847            denormalsEnabledForType(MRI.getType(FCR->VReg), MF);
9848   }
9849 
9850   if (MaxDepth == 0)
9851     return false;
9852 
9853   switch (Opcode) {
9854   case AMDGPU::G_FMINNUM_IEEE:
9855   case AMDGPU::G_FMAXNUM_IEEE: {
9856     if (Subtarget->supportsMinMaxDenormModes() ||
9857         denormalsEnabledForType(MRI.getType(Reg), MF))
9858       return true;
9859     for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
9860       if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
9861         return false;
9862     return true;
9863   }
9864   default:
9865     return denormalsEnabledForType(MRI.getType(Reg), MF) &&
9866            isKnownNeverSNaN(Reg, MRI);
9867   }
9868 
9869   llvm_unreachable("invalid operation");
9870 }
9871 
9872 // Constant fold canonicalize.
9873 SDValue SITargetLowering::getCanonicalConstantFP(
9874   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9875   // Flush denormals to 0 if not enabled.
9876   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9877     return DAG.getConstantFP(0.0, SL, VT);
9878 
9879   if (C.isNaN()) {
9880     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9881     if (C.isSignaling()) {
9882       // Quiet a signaling NaN.
9883       // FIXME: Is this supposed to preserve payload bits?
9884       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9885     }
9886 
9887     // Make sure it is the canonical NaN bitpattern.
9888     //
9889     // TODO: Can we use -1 as the canonical NaN value since it's an inline
9890     // immediate?
9891     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9892       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9893   }
9894 
9895   // Already canonical.
9896   return DAG.getConstantFP(C, SL, VT);
9897 }
9898 
9899 static bool vectorEltWillFoldAway(SDValue Op) {
9900   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9901 }
9902 
9903 SDValue SITargetLowering::performFCanonicalizeCombine(
9904   SDNode *N,
9905   DAGCombinerInfo &DCI) const {
9906   SelectionDAG &DAG = DCI.DAG;
9907   SDValue N0 = N->getOperand(0);
9908   EVT VT = N->getValueType(0);
9909 
9910   // fcanonicalize undef -> qnan
9911   if (N0.isUndef()) {
9912     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
9913     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
9914   }
9915 
9916   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
9917     EVT VT = N->getValueType(0);
9918     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
9919   }
9920 
9921   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
9922   //                                                   (fcanonicalize k)
9923   //
9924   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
9925 
9926   // TODO: This could be better with wider vectors that will be split to v2f16,
9927   // and to consider uses since there aren't that many packed operations.
9928   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
9929       isTypeLegal(MVT::v2f16)) {
9930     SDLoc SL(N);
9931     SDValue NewElts[2];
9932     SDValue Lo = N0.getOperand(0);
9933     SDValue Hi = N0.getOperand(1);
9934     EVT EltVT = Lo.getValueType();
9935 
9936     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
9937       for (unsigned I = 0; I != 2; ++I) {
9938         SDValue Op = N0.getOperand(I);
9939         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9940           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
9941                                               CFP->getValueAPF());
9942         } else if (Op.isUndef()) {
9943           // Handled below based on what the other operand is.
9944           NewElts[I] = Op;
9945         } else {
9946           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
9947         }
9948       }
9949 
9950       // If one half is undef, and one is constant, perfer a splat vector rather
9951       // than the normal qNaN. If it's a register, prefer 0.0 since that's
9952       // cheaper to use and may be free with a packed operation.
9953       if (NewElts[0].isUndef()) {
9954         if (isa<ConstantFPSDNode>(NewElts[1]))
9955           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
9956             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
9957       }
9958 
9959       if (NewElts[1].isUndef()) {
9960         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
9961           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
9962       }
9963 
9964       return DAG.getBuildVector(VT, SL, NewElts);
9965     }
9966   }
9967 
9968   unsigned SrcOpc = N0.getOpcode();
9969 
9970   // If it's free to do so, push canonicalizes further up the source, which may
9971   // find a canonical source.
9972   //
9973   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9974   // sNaNs.
9975   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9976     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9977     if (CRHS && N0.hasOneUse()) {
9978       SDLoc SL(N);
9979       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9980                                    N0.getOperand(0));
9981       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9982       DCI.AddToWorklist(Canon0.getNode());
9983 
9984       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9985     }
9986   }
9987 
9988   return isCanonicalized(DAG, N0) ? N0 : SDValue();
9989 }
9990 
9991 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9992   switch (Opc) {
9993   case ISD::FMAXNUM:
9994   case ISD::FMAXNUM_IEEE:
9995     return AMDGPUISD::FMAX3;
9996   case ISD::SMAX:
9997     return AMDGPUISD::SMAX3;
9998   case ISD::UMAX:
9999     return AMDGPUISD::UMAX3;
10000   case ISD::FMINNUM:
10001   case ISD::FMINNUM_IEEE:
10002     return AMDGPUISD::FMIN3;
10003   case ISD::SMIN:
10004     return AMDGPUISD::SMIN3;
10005   case ISD::UMIN:
10006     return AMDGPUISD::UMIN3;
10007   default:
10008     llvm_unreachable("Not a min/max opcode");
10009   }
10010 }
10011 
10012 SDValue SITargetLowering::performIntMed3ImmCombine(
10013   SelectionDAG &DAG, const SDLoc &SL,
10014   SDValue Op0, SDValue Op1, bool Signed) const {
10015   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
10016   if (!K1)
10017     return SDValue();
10018 
10019   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
10020   if (!K0)
10021     return SDValue();
10022 
10023   if (Signed) {
10024     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
10025       return SDValue();
10026   } else {
10027     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
10028       return SDValue();
10029   }
10030 
10031   EVT VT = K0->getValueType(0);
10032   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
10033   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
10034     return DAG.getNode(Med3Opc, SL, VT,
10035                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
10036   }
10037 
10038   // If there isn't a 16-bit med3 operation, convert to 32-bit.
10039   if (VT == MVT::i16) {
10040     MVT NVT = MVT::i32;
10041     unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10042 
10043     SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
10044     SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
10045     SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
10046 
10047     SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
10048     return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
10049   }
10050 
10051   return SDValue();
10052 }
10053 
10054 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
10055   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
10056     return C;
10057 
10058   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
10059     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
10060       return C;
10061   }
10062 
10063   return nullptr;
10064 }
10065 
10066 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
10067                                                   const SDLoc &SL,
10068                                                   SDValue Op0,
10069                                                   SDValue Op1) const {
10070   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
10071   if (!K1)
10072     return SDValue();
10073 
10074   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
10075   if (!K0)
10076     return SDValue();
10077 
10078   // Ordered >= (although NaN inputs should have folded away by now).
10079   if (K0->getValueAPF() > K1->getValueAPF())
10080     return SDValue();
10081 
10082   const MachineFunction &MF = DAG.getMachineFunction();
10083   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10084 
10085   // TODO: Check IEEE bit enabled?
10086   EVT VT = Op0.getValueType();
10087   if (Info->getMode().DX10Clamp) {
10088     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
10089     // hardware fmed3 behavior converting to a min.
10090     // FIXME: Should this be allowing -0.0?
10091     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
10092       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
10093   }
10094 
10095   // med3 for f16 is only available on gfx9+, and not available for v2f16.
10096   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
10097     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
10098     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
10099     // then give the other result, which is different from med3 with a NaN
10100     // input.
10101     SDValue Var = Op0.getOperand(0);
10102     if (!DAG.isKnownNeverSNaN(Var))
10103       return SDValue();
10104 
10105     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10106 
10107     if ((!K0->hasOneUse() ||
10108          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
10109         (!K1->hasOneUse() ||
10110          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
10111       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
10112                          Var, SDValue(K0, 0), SDValue(K1, 0));
10113     }
10114   }
10115 
10116   return SDValue();
10117 }
10118 
10119 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
10120                                                DAGCombinerInfo &DCI) const {
10121   SelectionDAG &DAG = DCI.DAG;
10122 
10123   EVT VT = N->getValueType(0);
10124   unsigned Opc = N->getOpcode();
10125   SDValue Op0 = N->getOperand(0);
10126   SDValue Op1 = N->getOperand(1);
10127 
10128   // Only do this if the inner op has one use since this will just increases
10129   // register pressure for no benefit.
10130 
10131   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
10132       !VT.isVector() &&
10133       (VT == MVT::i32 || VT == MVT::f32 ||
10134        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
10135     // max(max(a, b), c) -> max3(a, b, c)
10136     // min(min(a, b), c) -> min3(a, b, c)
10137     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
10138       SDLoc DL(N);
10139       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10140                          DL,
10141                          N->getValueType(0),
10142                          Op0.getOperand(0),
10143                          Op0.getOperand(1),
10144                          Op1);
10145     }
10146 
10147     // Try commuted.
10148     // max(a, max(b, c)) -> max3(a, b, c)
10149     // min(a, min(b, c)) -> min3(a, b, c)
10150     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
10151       SDLoc DL(N);
10152       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10153                          DL,
10154                          N->getValueType(0),
10155                          Op0,
10156                          Op1.getOperand(0),
10157                          Op1.getOperand(1));
10158     }
10159   }
10160 
10161   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
10162   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
10163     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
10164       return Med3;
10165   }
10166 
10167   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
10168     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
10169       return Med3;
10170   }
10171 
10172   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
10173   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
10174        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
10175        (Opc == AMDGPUISD::FMIN_LEGACY &&
10176         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
10177       (VT == MVT::f32 || VT == MVT::f64 ||
10178        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
10179        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
10180       Op0.hasOneUse()) {
10181     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
10182       return Res;
10183   }
10184 
10185   return SDValue();
10186 }
10187 
10188 static bool isClampZeroToOne(SDValue A, SDValue B) {
10189   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
10190     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
10191       // FIXME: Should this be allowing -0.0?
10192       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
10193              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
10194     }
10195   }
10196 
10197   return false;
10198 }
10199 
10200 // FIXME: Should only worry about snans for version with chain.
10201 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
10202                                               DAGCombinerInfo &DCI) const {
10203   EVT VT = N->getValueType(0);
10204   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
10205   // NaNs. With a NaN input, the order of the operands may change the result.
10206 
10207   SelectionDAG &DAG = DCI.DAG;
10208   SDLoc SL(N);
10209 
10210   SDValue Src0 = N->getOperand(0);
10211   SDValue Src1 = N->getOperand(1);
10212   SDValue Src2 = N->getOperand(2);
10213 
10214   if (isClampZeroToOne(Src0, Src1)) {
10215     // const_a, const_b, x -> clamp is safe in all cases including signaling
10216     // nans.
10217     // FIXME: Should this be allowing -0.0?
10218     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
10219   }
10220 
10221   const MachineFunction &MF = DAG.getMachineFunction();
10222   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10223 
10224   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
10225   // handling no dx10-clamp?
10226   if (Info->getMode().DX10Clamp) {
10227     // If NaNs is clamped to 0, we are free to reorder the inputs.
10228 
10229     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10230       std::swap(Src0, Src1);
10231 
10232     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
10233       std::swap(Src1, Src2);
10234 
10235     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10236       std::swap(Src0, Src1);
10237 
10238     if (isClampZeroToOne(Src1, Src2))
10239       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
10240   }
10241 
10242   return SDValue();
10243 }
10244 
10245 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
10246                                                  DAGCombinerInfo &DCI) const {
10247   SDValue Src0 = N->getOperand(0);
10248   SDValue Src1 = N->getOperand(1);
10249   if (Src0.isUndef() && Src1.isUndef())
10250     return DCI.DAG.getUNDEF(N->getValueType(0));
10251   return SDValue();
10252 }
10253 
10254 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10255 // expanded into a set of cmp/select instructions.
10256 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10257                                                 unsigned NumElem,
10258                                                 bool IsDivergentIdx) {
10259   if (UseDivergentRegisterIndexing)
10260     return false;
10261 
10262   unsigned VecSize = EltSize * NumElem;
10263 
10264   // Sub-dword vectors of size 2 dword or less have better implementation.
10265   if (VecSize <= 64 && EltSize < 32)
10266     return false;
10267 
10268   // Always expand the rest of sub-dword instructions, otherwise it will be
10269   // lowered via memory.
10270   if (EltSize < 32)
10271     return true;
10272 
10273   // Always do this if var-idx is divergent, otherwise it will become a loop.
10274   if (IsDivergentIdx)
10275     return true;
10276 
10277   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10278   unsigned NumInsts = NumElem /* Number of compares */ +
10279                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10280   return NumInsts <= 16;
10281 }
10282 
10283 static bool shouldExpandVectorDynExt(SDNode *N) {
10284   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10285   if (isa<ConstantSDNode>(Idx))
10286     return false;
10287 
10288   SDValue Vec = N->getOperand(0);
10289   EVT VecVT = Vec.getValueType();
10290   EVT EltVT = VecVT.getVectorElementType();
10291   unsigned EltSize = EltVT.getSizeInBits();
10292   unsigned NumElem = VecVT.getVectorNumElements();
10293 
10294   return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
10295                                                     Idx->isDivergent());
10296 }
10297 
10298 SDValue SITargetLowering::performExtractVectorEltCombine(
10299   SDNode *N, DAGCombinerInfo &DCI) const {
10300   SDValue Vec = N->getOperand(0);
10301   SelectionDAG &DAG = DCI.DAG;
10302 
10303   EVT VecVT = Vec.getValueType();
10304   EVT EltVT = VecVT.getVectorElementType();
10305 
10306   if ((Vec.getOpcode() == ISD::FNEG ||
10307        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10308     SDLoc SL(N);
10309     EVT EltVT = N->getValueType(0);
10310     SDValue Idx = N->getOperand(1);
10311     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10312                               Vec.getOperand(0), Idx);
10313     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10314   }
10315 
10316   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10317   //    =>
10318   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10319   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10320   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10321   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10322     SDLoc SL(N);
10323     EVT EltVT = N->getValueType(0);
10324     SDValue Idx = N->getOperand(1);
10325     unsigned Opc = Vec.getOpcode();
10326 
10327     switch(Opc) {
10328     default:
10329       break;
10330       // TODO: Support other binary operations.
10331     case ISD::FADD:
10332     case ISD::FSUB:
10333     case ISD::FMUL:
10334     case ISD::ADD:
10335     case ISD::UMIN:
10336     case ISD::UMAX:
10337     case ISD::SMIN:
10338     case ISD::SMAX:
10339     case ISD::FMAXNUM:
10340     case ISD::FMINNUM:
10341     case ISD::FMAXNUM_IEEE:
10342     case ISD::FMINNUM_IEEE: {
10343       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10344                                  Vec.getOperand(0), Idx);
10345       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10346                                  Vec.getOperand(1), Idx);
10347 
10348       DCI.AddToWorklist(Elt0.getNode());
10349       DCI.AddToWorklist(Elt1.getNode());
10350       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10351     }
10352     }
10353   }
10354 
10355   unsigned VecSize = VecVT.getSizeInBits();
10356   unsigned EltSize = EltVT.getSizeInBits();
10357 
10358   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10359   if (::shouldExpandVectorDynExt(N)) {
10360     SDLoc SL(N);
10361     SDValue Idx = N->getOperand(1);
10362     SDValue V;
10363     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10364       SDValue IC = DAG.getVectorIdxConstant(I, SL);
10365       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10366       if (I == 0)
10367         V = Elt;
10368       else
10369         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10370     }
10371     return V;
10372   }
10373 
10374   if (!DCI.isBeforeLegalize())
10375     return SDValue();
10376 
10377   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10378   // elements. This exposes more load reduction opportunities by replacing
10379   // multiple small extract_vector_elements with a single 32-bit extract.
10380   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10381   if (isa<MemSDNode>(Vec) &&
10382       EltSize <= 16 &&
10383       EltVT.isByteSized() &&
10384       VecSize > 32 &&
10385       VecSize % 32 == 0 &&
10386       Idx) {
10387     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10388 
10389     unsigned BitIndex = Idx->getZExtValue() * EltSize;
10390     unsigned EltIdx = BitIndex / 32;
10391     unsigned LeftoverBitIdx = BitIndex % 32;
10392     SDLoc SL(N);
10393 
10394     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10395     DCI.AddToWorklist(Cast.getNode());
10396 
10397     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10398                               DAG.getConstant(EltIdx, SL, MVT::i32));
10399     DCI.AddToWorklist(Elt.getNode());
10400     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10401                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10402     DCI.AddToWorklist(Srl.getNode());
10403 
10404     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10405     DCI.AddToWorklist(Trunc.getNode());
10406     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10407   }
10408 
10409   return SDValue();
10410 }
10411 
10412 SDValue
10413 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10414                                                 DAGCombinerInfo &DCI) const {
10415   SDValue Vec = N->getOperand(0);
10416   SDValue Idx = N->getOperand(2);
10417   EVT VecVT = Vec.getValueType();
10418   EVT EltVT = VecVT.getVectorElementType();
10419 
10420   // INSERT_VECTOR_ELT (<n x e>, var-idx)
10421   // => BUILD_VECTOR n x select (e, const-idx)
10422   if (!::shouldExpandVectorDynExt(N))
10423     return SDValue();
10424 
10425   SelectionDAG &DAG = DCI.DAG;
10426   SDLoc SL(N);
10427   SDValue Ins = N->getOperand(1);
10428   EVT IdxVT = Idx.getValueType();
10429 
10430   SmallVector<SDValue, 16> Ops;
10431   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10432     SDValue IC = DAG.getConstant(I, SL, IdxVT);
10433     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10434     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10435     Ops.push_back(V);
10436   }
10437 
10438   return DAG.getBuildVector(VecVT, SL, Ops);
10439 }
10440 
10441 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10442                                           const SDNode *N0,
10443                                           const SDNode *N1) const {
10444   EVT VT = N0->getValueType(0);
10445 
10446   // Only do this if we are not trying to support denormals. v_mad_f32 does not
10447   // support denormals ever.
10448   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10449        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10450         getSubtarget()->hasMadF16())) &&
10451        isOperationLegal(ISD::FMAD, VT))
10452     return ISD::FMAD;
10453 
10454   const TargetOptions &Options = DAG.getTarget().Options;
10455   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10456        (N0->getFlags().hasAllowContract() &&
10457         N1->getFlags().hasAllowContract())) &&
10458       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10459     return ISD::FMA;
10460   }
10461 
10462   return 0;
10463 }
10464 
10465 // For a reassociatable opcode perform:
10466 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10467 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10468                                                SelectionDAG &DAG) const {
10469   EVT VT = N->getValueType(0);
10470   if (VT != MVT::i32 && VT != MVT::i64)
10471     return SDValue();
10472 
10473   unsigned Opc = N->getOpcode();
10474   SDValue Op0 = N->getOperand(0);
10475   SDValue Op1 = N->getOperand(1);
10476 
10477   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10478     return SDValue();
10479 
10480   if (Op0->isDivergent())
10481     std::swap(Op0, Op1);
10482 
10483   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10484     return SDValue();
10485 
10486   SDValue Op2 = Op1.getOperand(1);
10487   Op1 = Op1.getOperand(0);
10488   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10489     return SDValue();
10490 
10491   if (Op1->isDivergent())
10492     std::swap(Op1, Op2);
10493 
10494   // If either operand is constant this will conflict with
10495   // DAGCombiner::ReassociateOps().
10496   if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
10497       DAG.isConstantIntBuildVectorOrConstantInt(Op1))
10498     return SDValue();
10499 
10500   SDLoc SL(N);
10501   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10502   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10503 }
10504 
10505 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10506                            EVT VT,
10507                            SDValue N0, SDValue N1, SDValue N2,
10508                            bool Signed) {
10509   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10510   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10511   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10512   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10513 }
10514 
10515 SDValue SITargetLowering::performAddCombine(SDNode *N,
10516                                             DAGCombinerInfo &DCI) const {
10517   SelectionDAG &DAG = DCI.DAG;
10518   EVT VT = N->getValueType(0);
10519   SDLoc SL(N);
10520   SDValue LHS = N->getOperand(0);
10521   SDValue RHS = N->getOperand(1);
10522 
10523   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10524       && Subtarget->hasMad64_32() &&
10525       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10526       VT.getScalarSizeInBits() <= 64) {
10527     if (LHS.getOpcode() != ISD::MUL)
10528       std::swap(LHS, RHS);
10529 
10530     SDValue MulLHS = LHS.getOperand(0);
10531     SDValue MulRHS = LHS.getOperand(1);
10532     SDValue AddRHS = RHS;
10533 
10534     // TODO: Maybe restrict if SGPR inputs.
10535     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10536         numBitsUnsigned(MulRHS, DAG) <= 32) {
10537       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10538       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10539       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10540       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10541     }
10542 
10543     if (numBitsSigned(MulLHS, DAG) <= 32 && numBitsSigned(MulRHS, DAG) <= 32) {
10544       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10545       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10546       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10547       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10548     }
10549 
10550     return SDValue();
10551   }
10552 
10553   if (SDValue V = reassociateScalarOps(N, DAG)) {
10554     return V;
10555   }
10556 
10557   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10558     return SDValue();
10559 
10560   // add x, zext (setcc) => addcarry x, 0, setcc
10561   // add x, sext (setcc) => subcarry x, 0, setcc
10562   unsigned Opc = LHS.getOpcode();
10563   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10564       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10565     std::swap(RHS, LHS);
10566 
10567   Opc = RHS.getOpcode();
10568   switch (Opc) {
10569   default: break;
10570   case ISD::ZERO_EXTEND:
10571   case ISD::SIGN_EXTEND:
10572   case ISD::ANY_EXTEND: {
10573     auto Cond = RHS.getOperand(0);
10574     // If this won't be a real VOPC output, we would still need to insert an
10575     // extra instruction anyway.
10576     if (!isBoolSGPR(Cond))
10577       break;
10578     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10579     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10580     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10581     return DAG.getNode(Opc, SL, VTList, Args);
10582   }
10583   case ISD::ADDCARRY: {
10584     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10585     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10586     if (!C || C->getZExtValue() != 0) break;
10587     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10588     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10589   }
10590   }
10591   return SDValue();
10592 }
10593 
10594 SDValue SITargetLowering::performSubCombine(SDNode *N,
10595                                             DAGCombinerInfo &DCI) const {
10596   SelectionDAG &DAG = DCI.DAG;
10597   EVT VT = N->getValueType(0);
10598 
10599   if (VT != MVT::i32)
10600     return SDValue();
10601 
10602   SDLoc SL(N);
10603   SDValue LHS = N->getOperand(0);
10604   SDValue RHS = N->getOperand(1);
10605 
10606   // sub x, zext (setcc) => subcarry x, 0, setcc
10607   // sub x, sext (setcc) => addcarry x, 0, setcc
10608   unsigned Opc = RHS.getOpcode();
10609   switch (Opc) {
10610   default: break;
10611   case ISD::ZERO_EXTEND:
10612   case ISD::SIGN_EXTEND:
10613   case ISD::ANY_EXTEND: {
10614     auto Cond = RHS.getOperand(0);
10615     // If this won't be a real VOPC output, we would still need to insert an
10616     // extra instruction anyway.
10617     if (!isBoolSGPR(Cond))
10618       break;
10619     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10620     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10621     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10622     return DAG.getNode(Opc, SL, VTList, Args);
10623   }
10624   }
10625 
10626   if (LHS.getOpcode() == ISD::SUBCARRY) {
10627     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10628     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10629     if (!C || !C->isZero())
10630       return SDValue();
10631     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10632     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10633   }
10634   return SDValue();
10635 }
10636 
10637 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10638   DAGCombinerInfo &DCI) const {
10639 
10640   if (N->getValueType(0) != MVT::i32)
10641     return SDValue();
10642 
10643   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10644   if (!C || C->getZExtValue() != 0)
10645     return SDValue();
10646 
10647   SelectionDAG &DAG = DCI.DAG;
10648   SDValue LHS = N->getOperand(0);
10649 
10650   // addcarry (add x, y), 0, cc => addcarry x, y, cc
10651   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10652   unsigned LHSOpc = LHS.getOpcode();
10653   unsigned Opc = N->getOpcode();
10654   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10655       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10656     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10657     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10658   }
10659   return SDValue();
10660 }
10661 
10662 SDValue SITargetLowering::performFAddCombine(SDNode *N,
10663                                              DAGCombinerInfo &DCI) const {
10664   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10665     return SDValue();
10666 
10667   SelectionDAG &DAG = DCI.DAG;
10668   EVT VT = N->getValueType(0);
10669 
10670   SDLoc SL(N);
10671   SDValue LHS = N->getOperand(0);
10672   SDValue RHS = N->getOperand(1);
10673 
10674   // These should really be instruction patterns, but writing patterns with
10675   // source modiifiers is a pain.
10676 
10677   // fadd (fadd (a, a), b) -> mad 2.0, a, b
10678   if (LHS.getOpcode() == ISD::FADD) {
10679     SDValue A = LHS.getOperand(0);
10680     if (A == LHS.getOperand(1)) {
10681       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10682       if (FusedOp != 0) {
10683         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10684         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10685       }
10686     }
10687   }
10688 
10689   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10690   if (RHS.getOpcode() == ISD::FADD) {
10691     SDValue A = RHS.getOperand(0);
10692     if (A == RHS.getOperand(1)) {
10693       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10694       if (FusedOp != 0) {
10695         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10696         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10697       }
10698     }
10699   }
10700 
10701   return SDValue();
10702 }
10703 
10704 SDValue SITargetLowering::performFSubCombine(SDNode *N,
10705                                              DAGCombinerInfo &DCI) const {
10706   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10707     return SDValue();
10708 
10709   SelectionDAG &DAG = DCI.DAG;
10710   SDLoc SL(N);
10711   EVT VT = N->getValueType(0);
10712   assert(!VT.isVector());
10713 
10714   // Try to get the fneg to fold into the source modifier. This undoes generic
10715   // DAG combines and folds them into the mad.
10716   //
10717   // Only do this if we are not trying to support denormals. v_mad_f32 does
10718   // not support denormals ever.
10719   SDValue LHS = N->getOperand(0);
10720   SDValue RHS = N->getOperand(1);
10721   if (LHS.getOpcode() == ISD::FADD) {
10722     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10723     SDValue A = LHS.getOperand(0);
10724     if (A == LHS.getOperand(1)) {
10725       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10726       if (FusedOp != 0){
10727         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10728         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10729 
10730         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10731       }
10732     }
10733   }
10734 
10735   if (RHS.getOpcode() == ISD::FADD) {
10736     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10737 
10738     SDValue A = RHS.getOperand(0);
10739     if (A == RHS.getOperand(1)) {
10740       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10741       if (FusedOp != 0){
10742         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10743         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10744       }
10745     }
10746   }
10747 
10748   return SDValue();
10749 }
10750 
10751 SDValue SITargetLowering::performFMACombine(SDNode *N,
10752                                             DAGCombinerInfo &DCI) const {
10753   SelectionDAG &DAG = DCI.DAG;
10754   EVT VT = N->getValueType(0);
10755   SDLoc SL(N);
10756 
10757   if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
10758     return SDValue();
10759 
10760   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10761   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10762   SDValue Op1 = N->getOperand(0);
10763   SDValue Op2 = N->getOperand(1);
10764   SDValue FMA = N->getOperand(2);
10765 
10766   if (FMA.getOpcode() != ISD::FMA ||
10767       Op1.getOpcode() != ISD::FP_EXTEND ||
10768       Op2.getOpcode() != ISD::FP_EXTEND)
10769     return SDValue();
10770 
10771   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10772   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10773   // is sufficient to allow generaing fdot2.
10774   const TargetOptions &Options = DAG.getTarget().Options;
10775   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10776       (N->getFlags().hasAllowContract() &&
10777        FMA->getFlags().hasAllowContract())) {
10778     Op1 = Op1.getOperand(0);
10779     Op2 = Op2.getOperand(0);
10780     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10781         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10782       return SDValue();
10783 
10784     SDValue Vec1 = Op1.getOperand(0);
10785     SDValue Idx1 = Op1.getOperand(1);
10786     SDValue Vec2 = Op2.getOperand(0);
10787 
10788     SDValue FMAOp1 = FMA.getOperand(0);
10789     SDValue FMAOp2 = FMA.getOperand(1);
10790     SDValue FMAAcc = FMA.getOperand(2);
10791 
10792     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10793         FMAOp2.getOpcode() != ISD::FP_EXTEND)
10794       return SDValue();
10795 
10796     FMAOp1 = FMAOp1.getOperand(0);
10797     FMAOp2 = FMAOp2.getOperand(0);
10798     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10799         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10800       return SDValue();
10801 
10802     SDValue Vec3 = FMAOp1.getOperand(0);
10803     SDValue Vec4 = FMAOp2.getOperand(0);
10804     SDValue Idx2 = FMAOp1.getOperand(1);
10805 
10806     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10807         // Idx1 and Idx2 cannot be the same.
10808         Idx1 == Idx2)
10809       return SDValue();
10810 
10811     if (Vec1 == Vec2 || Vec3 == Vec4)
10812       return SDValue();
10813 
10814     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10815       return SDValue();
10816 
10817     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10818         (Vec1 == Vec4 && Vec2 == Vec3)) {
10819       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10820                          DAG.getTargetConstant(0, SL, MVT::i1));
10821     }
10822   }
10823   return SDValue();
10824 }
10825 
10826 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10827                                               DAGCombinerInfo &DCI) const {
10828   SelectionDAG &DAG = DCI.DAG;
10829   SDLoc SL(N);
10830 
10831   SDValue LHS = N->getOperand(0);
10832   SDValue RHS = N->getOperand(1);
10833   EVT VT = LHS.getValueType();
10834   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10835 
10836   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10837   if (!CRHS) {
10838     CRHS = dyn_cast<ConstantSDNode>(LHS);
10839     if (CRHS) {
10840       std::swap(LHS, RHS);
10841       CC = getSetCCSwappedOperands(CC);
10842     }
10843   }
10844 
10845   if (CRHS) {
10846     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10847         isBoolSGPR(LHS.getOperand(0))) {
10848       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10849       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10850       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
10851       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
10852       if ((CRHS->isAllOnes() &&
10853            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10854           (CRHS->isZero() &&
10855            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10856         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10857                            DAG.getConstant(-1, SL, MVT::i1));
10858       if ((CRHS->isAllOnes() &&
10859            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10860           (CRHS->isZero() &&
10861            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10862         return LHS.getOperand(0);
10863     }
10864 
10865     const APInt &CRHSVal = CRHS->getAPIntValue();
10866     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10867         LHS.getOpcode() == ISD::SELECT &&
10868         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10869         isa<ConstantSDNode>(LHS.getOperand(2)) &&
10870         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10871         isBoolSGPR(LHS.getOperand(0))) {
10872       // Given CT != FT:
10873       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10874       // setcc (select cc, CT, CF), CF, ne => cc
10875       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10876       // setcc (select cc, CT, CF), CT, eq => cc
10877       const APInt &CT = LHS.getConstantOperandAPInt(1);
10878       const APInt &CF = LHS.getConstantOperandAPInt(2);
10879 
10880       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10881           (CT == CRHSVal && CC == ISD::SETNE))
10882         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10883                            DAG.getConstant(-1, SL, MVT::i1));
10884       if ((CF == CRHSVal && CC == ISD::SETNE) ||
10885           (CT == CRHSVal && CC == ISD::SETEQ))
10886         return LHS.getOperand(0);
10887     }
10888   }
10889 
10890   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10891                                            VT != MVT::f16))
10892     return SDValue();
10893 
10894   // Match isinf/isfinite pattern
10895   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10896   // (fcmp one (fabs x), inf) -> (fp_class x,
10897   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10898   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10899     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10900     if (!CRHS)
10901       return SDValue();
10902 
10903     const APFloat &APF = CRHS->getValueAPF();
10904     if (APF.isInfinity() && !APF.isNegative()) {
10905       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10906                                  SIInstrFlags::N_INFINITY;
10907       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10908                                     SIInstrFlags::P_ZERO |
10909                                     SIInstrFlags::N_NORMAL |
10910                                     SIInstrFlags::P_NORMAL |
10911                                     SIInstrFlags::N_SUBNORMAL |
10912                                     SIInstrFlags::P_SUBNORMAL;
10913       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
10914       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
10915                          DAG.getConstant(Mask, SL, MVT::i32));
10916     }
10917   }
10918 
10919   return SDValue();
10920 }
10921 
10922 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
10923                                                      DAGCombinerInfo &DCI) const {
10924   SelectionDAG &DAG = DCI.DAG;
10925   SDLoc SL(N);
10926   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
10927 
10928   SDValue Src = N->getOperand(0);
10929   SDValue Shift = N->getOperand(0);
10930 
10931   // TODO: Extend type shouldn't matter (assuming legal types).
10932   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
10933     Shift = Shift.getOperand(0);
10934 
10935   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
10936     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
10937     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
10938     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
10939     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
10940     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
10941     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
10942       SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0),
10943                                  SDLoc(Shift.getOperand(0)), MVT::i32);
10944 
10945       unsigned ShiftOffset = 8 * Offset;
10946       if (Shift.getOpcode() == ISD::SHL)
10947         ShiftOffset -= C->getZExtValue();
10948       else
10949         ShiftOffset += C->getZExtValue();
10950 
10951       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
10952         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
10953                            MVT::f32, Shifted);
10954       }
10955     }
10956   }
10957 
10958   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10959   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
10960   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
10961     // We simplified Src. If this node is not dead, visit it again so it is
10962     // folded properly.
10963     if (N->getOpcode() != ISD::DELETED_NODE)
10964       DCI.AddToWorklist(N);
10965     return SDValue(N, 0);
10966   }
10967 
10968   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
10969   if (SDValue DemandedSrc =
10970           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
10971     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
10972 
10973   return SDValue();
10974 }
10975 
10976 SDValue SITargetLowering::performClampCombine(SDNode *N,
10977                                               DAGCombinerInfo &DCI) const {
10978   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
10979   if (!CSrc)
10980     return SDValue();
10981 
10982   const MachineFunction &MF = DCI.DAG.getMachineFunction();
10983   const APFloat &F = CSrc->getValueAPF();
10984   APFloat Zero = APFloat::getZero(F.getSemantics());
10985   if (F < Zero ||
10986       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
10987     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
10988   }
10989 
10990   APFloat One(F.getSemantics(), "1.0");
10991   if (F > One)
10992     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
10993 
10994   return SDValue(CSrc, 0);
10995 }
10996 
10997 
10998 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
10999                                             DAGCombinerInfo &DCI) const {
11000   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
11001     return SDValue();
11002   switch (N->getOpcode()) {
11003   case ISD::ADD:
11004     return performAddCombine(N, DCI);
11005   case ISD::SUB:
11006     return performSubCombine(N, DCI);
11007   case ISD::ADDCARRY:
11008   case ISD::SUBCARRY:
11009     return performAddCarrySubCarryCombine(N, DCI);
11010   case ISD::FADD:
11011     return performFAddCombine(N, DCI);
11012   case ISD::FSUB:
11013     return performFSubCombine(N, DCI);
11014   case ISD::SETCC:
11015     return performSetCCCombine(N, DCI);
11016   case ISD::FMAXNUM:
11017   case ISD::FMINNUM:
11018   case ISD::FMAXNUM_IEEE:
11019   case ISD::FMINNUM_IEEE:
11020   case ISD::SMAX:
11021   case ISD::SMIN:
11022   case ISD::UMAX:
11023   case ISD::UMIN:
11024   case AMDGPUISD::FMIN_LEGACY:
11025   case AMDGPUISD::FMAX_LEGACY:
11026     return performMinMaxCombine(N, DCI);
11027   case ISD::FMA:
11028     return performFMACombine(N, DCI);
11029   case ISD::AND:
11030     return performAndCombine(N, DCI);
11031   case ISD::OR:
11032     return performOrCombine(N, DCI);
11033   case ISD::XOR:
11034     return performXorCombine(N, DCI);
11035   case ISD::ZERO_EXTEND:
11036     return performZeroExtendCombine(N, DCI);
11037   case ISD::SIGN_EXTEND_INREG:
11038     return performSignExtendInRegCombine(N , DCI);
11039   case AMDGPUISD::FP_CLASS:
11040     return performClassCombine(N, DCI);
11041   case ISD::FCANONICALIZE:
11042     return performFCanonicalizeCombine(N, DCI);
11043   case AMDGPUISD::RCP:
11044     return performRcpCombine(N, DCI);
11045   case AMDGPUISD::FRACT:
11046   case AMDGPUISD::RSQ:
11047   case AMDGPUISD::RCP_LEGACY:
11048   case AMDGPUISD::RCP_IFLAG:
11049   case AMDGPUISD::RSQ_CLAMP:
11050   case AMDGPUISD::LDEXP: {
11051     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
11052     SDValue Src = N->getOperand(0);
11053     if (Src.isUndef())
11054       return Src;
11055     break;
11056   }
11057   case ISD::SINT_TO_FP:
11058   case ISD::UINT_TO_FP:
11059     return performUCharToFloatCombine(N, DCI);
11060   case AMDGPUISD::CVT_F32_UBYTE0:
11061   case AMDGPUISD::CVT_F32_UBYTE1:
11062   case AMDGPUISD::CVT_F32_UBYTE2:
11063   case AMDGPUISD::CVT_F32_UBYTE3:
11064     return performCvtF32UByteNCombine(N, DCI);
11065   case AMDGPUISD::FMED3:
11066     return performFMed3Combine(N, DCI);
11067   case AMDGPUISD::CVT_PKRTZ_F16_F32:
11068     return performCvtPkRTZCombine(N, DCI);
11069   case AMDGPUISD::CLAMP:
11070     return performClampCombine(N, DCI);
11071   case ISD::SCALAR_TO_VECTOR: {
11072     SelectionDAG &DAG = DCI.DAG;
11073     EVT VT = N->getValueType(0);
11074 
11075     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
11076     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
11077       SDLoc SL(N);
11078       SDValue Src = N->getOperand(0);
11079       EVT EltVT = Src.getValueType();
11080       if (EltVT == MVT::f16)
11081         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
11082 
11083       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
11084       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
11085     }
11086 
11087     break;
11088   }
11089   case ISD::EXTRACT_VECTOR_ELT:
11090     return performExtractVectorEltCombine(N, DCI);
11091   case ISD::INSERT_VECTOR_ELT:
11092     return performInsertVectorEltCombine(N, DCI);
11093   case ISD::LOAD: {
11094     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
11095       return Widended;
11096     LLVM_FALLTHROUGH;
11097   }
11098   default: {
11099     if (!DCI.isBeforeLegalize()) {
11100       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
11101         return performMemSDNodeCombine(MemNode, DCI);
11102     }
11103 
11104     break;
11105   }
11106   }
11107 
11108   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
11109 }
11110 
11111 /// Helper function for adjustWritemask
11112 static unsigned SubIdx2Lane(unsigned Idx) {
11113   switch (Idx) {
11114   default: return ~0u;
11115   case AMDGPU::sub0: return 0;
11116   case AMDGPU::sub1: return 1;
11117   case AMDGPU::sub2: return 2;
11118   case AMDGPU::sub3: return 3;
11119   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
11120   }
11121 }
11122 
11123 /// Adjust the writemask of MIMG instructions
11124 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
11125                                           SelectionDAG &DAG) const {
11126   unsigned Opcode = Node->getMachineOpcode();
11127 
11128   // Subtract 1 because the vdata output is not a MachineSDNode operand.
11129   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
11130   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
11131     return Node; // not implemented for D16
11132 
11133   SDNode *Users[5] = { nullptr };
11134   unsigned Lane = 0;
11135   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
11136   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
11137   unsigned NewDmask = 0;
11138   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
11139   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
11140   bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
11141                   Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
11142   unsigned TFCLane = 0;
11143   bool HasChain = Node->getNumValues() > 1;
11144 
11145   if (OldDmask == 0) {
11146     // These are folded out, but on the chance it happens don't assert.
11147     return Node;
11148   }
11149 
11150   unsigned OldBitsSet = countPopulation(OldDmask);
11151   // Work out which is the TFE/LWE lane if that is enabled.
11152   if (UsesTFC) {
11153     TFCLane = OldBitsSet;
11154   }
11155 
11156   // Try to figure out the used register components
11157   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
11158        I != E; ++I) {
11159 
11160     // Don't look at users of the chain.
11161     if (I.getUse().getResNo() != 0)
11162       continue;
11163 
11164     // Abort if we can't understand the usage
11165     if (!I->isMachineOpcode() ||
11166         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
11167       return Node;
11168 
11169     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
11170     // Note that subregs are packed, i.e. Lane==0 is the first bit set
11171     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
11172     // set, etc.
11173     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
11174     if (Lane == ~0u)
11175       return Node;
11176 
11177     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
11178     if (UsesTFC && Lane == TFCLane) {
11179       Users[Lane] = *I;
11180     } else {
11181       // Set which texture component corresponds to the lane.
11182       unsigned Comp;
11183       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
11184         Comp = countTrailingZeros(Dmask);
11185         Dmask &= ~(1 << Comp);
11186       }
11187 
11188       // Abort if we have more than one user per component.
11189       if (Users[Lane])
11190         return Node;
11191 
11192       Users[Lane] = *I;
11193       NewDmask |= 1 << Comp;
11194     }
11195   }
11196 
11197   // Don't allow 0 dmask, as hardware assumes one channel enabled.
11198   bool NoChannels = !NewDmask;
11199   if (NoChannels) {
11200     if (!UsesTFC) {
11201       // No uses of the result and not using TFC. Then do nothing.
11202       return Node;
11203     }
11204     // If the original dmask has one channel - then nothing to do
11205     if (OldBitsSet == 1)
11206       return Node;
11207     // Use an arbitrary dmask - required for the instruction to work
11208     NewDmask = 1;
11209   }
11210   // Abort if there's no change
11211   if (NewDmask == OldDmask)
11212     return Node;
11213 
11214   unsigned BitsSet = countPopulation(NewDmask);
11215 
11216   // Check for TFE or LWE - increase the number of channels by one to account
11217   // for the extra return value
11218   // This will need adjustment for D16 if this is also included in
11219   // adjustWriteMask (this function) but at present D16 are excluded.
11220   unsigned NewChannels = BitsSet + UsesTFC;
11221 
11222   int NewOpcode =
11223       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
11224   assert(NewOpcode != -1 &&
11225          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
11226          "failed to find equivalent MIMG op");
11227 
11228   // Adjust the writemask in the node
11229   SmallVector<SDValue, 12> Ops;
11230   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
11231   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
11232   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
11233 
11234   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
11235 
11236   MVT ResultVT = NewChannels == 1 ?
11237     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
11238                            NewChannels == 5 ? 8 : NewChannels);
11239   SDVTList NewVTList = HasChain ?
11240     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
11241 
11242 
11243   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
11244                                               NewVTList, Ops);
11245 
11246   if (HasChain) {
11247     // Update chain.
11248     DAG.setNodeMemRefs(NewNode, Node->memoperands());
11249     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11250   }
11251 
11252   if (NewChannels == 1) {
11253     assert(Node->hasNUsesOfValue(1, 0));
11254     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11255                                       SDLoc(Node), Users[Lane]->getValueType(0),
11256                                       SDValue(NewNode, 0));
11257     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11258     return nullptr;
11259   }
11260 
11261   // Update the users of the node with the new indices
11262   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11263     SDNode *User = Users[i];
11264     if (!User) {
11265       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11266       // Users[0] is still nullptr because channel 0 doesn't really have a use.
11267       if (i || !NoChannels)
11268         continue;
11269     } else {
11270       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11271       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11272     }
11273 
11274     switch (Idx) {
11275     default: break;
11276     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11277     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11278     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11279     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11280     }
11281   }
11282 
11283   DAG.RemoveDeadNode(Node);
11284   return nullptr;
11285 }
11286 
11287 static bool isFrameIndexOp(SDValue Op) {
11288   if (Op.getOpcode() == ISD::AssertZext)
11289     Op = Op.getOperand(0);
11290 
11291   return isa<FrameIndexSDNode>(Op);
11292 }
11293 
11294 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11295 /// with frame index operands.
11296 /// LLVM assumes that inputs are to these instructions are registers.
11297 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11298                                                         SelectionDAG &DAG) const {
11299   if (Node->getOpcode() == ISD::CopyToReg) {
11300     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11301     SDValue SrcVal = Node->getOperand(2);
11302 
11303     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11304     // to try understanding copies to physical registers.
11305     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11306       SDLoc SL(Node);
11307       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11308       SDValue VReg = DAG.getRegister(
11309         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11310 
11311       SDNode *Glued = Node->getGluedNode();
11312       SDValue ToVReg
11313         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11314                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11315       SDValue ToResultReg
11316         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11317                            VReg, ToVReg.getValue(1));
11318       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11319       DAG.RemoveDeadNode(Node);
11320       return ToResultReg.getNode();
11321     }
11322   }
11323 
11324   SmallVector<SDValue, 8> Ops;
11325   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11326     if (!isFrameIndexOp(Node->getOperand(i))) {
11327       Ops.push_back(Node->getOperand(i));
11328       continue;
11329     }
11330 
11331     SDLoc DL(Node);
11332     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11333                                      Node->getOperand(i).getValueType(),
11334                                      Node->getOperand(i)), 0));
11335   }
11336 
11337   return DAG.UpdateNodeOperands(Node, Ops);
11338 }
11339 
11340 /// Fold the instructions after selecting them.
11341 /// Returns null if users were already updated.
11342 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11343                                           SelectionDAG &DAG) const {
11344   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11345   unsigned Opcode = Node->getMachineOpcode();
11346 
11347   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11348       !TII->isGather4(Opcode) &&
11349       AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11350     return adjustWritemask(Node, DAG);
11351   }
11352 
11353   if (Opcode == AMDGPU::INSERT_SUBREG ||
11354       Opcode == AMDGPU::REG_SEQUENCE) {
11355     legalizeTargetIndependentNode(Node, DAG);
11356     return Node;
11357   }
11358 
11359   switch (Opcode) {
11360   case AMDGPU::V_DIV_SCALE_F32_e64:
11361   case AMDGPU::V_DIV_SCALE_F64_e64: {
11362     // Satisfy the operand register constraint when one of the inputs is
11363     // undefined. Ordinarily each undef value will have its own implicit_def of
11364     // a vreg, so force these to use a single register.
11365     SDValue Src0 = Node->getOperand(1);
11366     SDValue Src1 = Node->getOperand(3);
11367     SDValue Src2 = Node->getOperand(5);
11368 
11369     if ((Src0.isMachineOpcode() &&
11370          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11371         (Src0 == Src1 || Src0 == Src2))
11372       break;
11373 
11374     MVT VT = Src0.getValueType().getSimpleVT();
11375     const TargetRegisterClass *RC =
11376         getRegClassFor(VT, Src0.getNode()->isDivergent());
11377 
11378     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11379     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11380 
11381     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11382                                       UndefReg, Src0, SDValue());
11383 
11384     // src0 must be the same register as src1 or src2, even if the value is
11385     // undefined, so make sure we don't violate this constraint.
11386     if (Src0.isMachineOpcode() &&
11387         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11388       if (Src1.isMachineOpcode() &&
11389           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11390         Src0 = Src1;
11391       else if (Src2.isMachineOpcode() &&
11392                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11393         Src0 = Src2;
11394       else {
11395         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11396         Src0 = UndefReg;
11397         Src1 = UndefReg;
11398       }
11399     } else
11400       break;
11401 
11402     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11403     Ops[1] = Src0;
11404     Ops[3] = Src1;
11405     Ops[5] = Src2;
11406     Ops.push_back(ImpDef.getValue(1));
11407     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11408   }
11409   default:
11410     break;
11411   }
11412 
11413   return Node;
11414 }
11415 
11416 // Any MIMG instructions that use tfe or lwe require an initialization of the
11417 // result register that will be written in the case of a memory access failure.
11418 // The required code is also added to tie this init code to the result of the
11419 // img instruction.
11420 void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
11421   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11422   const SIRegisterInfo &TRI = TII->getRegisterInfo();
11423   MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
11424   MachineBasicBlock &MBB = *MI.getParent();
11425 
11426   MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
11427   MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
11428   MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
11429 
11430   if (!TFE && !LWE) // intersect_ray
11431     return;
11432 
11433   unsigned TFEVal = TFE ? TFE->getImm() : 0;
11434   unsigned LWEVal = LWE->getImm();
11435   unsigned D16Val = D16 ? D16->getImm() : 0;
11436 
11437   if (!TFEVal && !LWEVal)
11438     return;
11439 
11440   // At least one of TFE or LWE are non-zero
11441   // We have to insert a suitable initialization of the result value and
11442   // tie this to the dest of the image instruction.
11443 
11444   const DebugLoc &DL = MI.getDebugLoc();
11445 
11446   int DstIdx =
11447       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
11448 
11449   // Calculate which dword we have to initialize to 0.
11450   MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
11451 
11452   // check that dmask operand is found.
11453   assert(MO_Dmask && "Expected dmask operand in instruction");
11454 
11455   unsigned dmask = MO_Dmask->getImm();
11456   // Determine the number of active lanes taking into account the
11457   // Gather4 special case
11458   unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask);
11459 
11460   bool Packed = !Subtarget->hasUnpackedD16VMem();
11461 
11462   unsigned InitIdx =
11463       D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
11464 
11465   // Abandon attempt if the dst size isn't large enough
11466   // - this is in fact an error but this is picked up elsewhere and
11467   // reported correctly.
11468   uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
11469   if (DstSize < InitIdx)
11470     return;
11471 
11472   // Create a register for the intialization value.
11473   Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11474   unsigned NewDst = 0; // Final initialized value will be in here
11475 
11476   // If PRTStrictNull feature is enabled (the default) then initialize
11477   // all the result registers to 0, otherwise just the error indication
11478   // register (VGPRn+1)
11479   unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
11480   unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
11481 
11482   BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
11483   for (; SizeLeft; SizeLeft--, CurrIdx++) {
11484     NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11485     // Initialize dword
11486     Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
11487     BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
11488       .addImm(0);
11489     // Insert into the super-reg
11490     BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
11491       .addReg(PrevDst)
11492       .addReg(SubReg)
11493       .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
11494 
11495     PrevDst = NewDst;
11496   }
11497 
11498   // Add as an implicit operand
11499   MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
11500 
11501   // Tie the just added implicit operand to the dst
11502   MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
11503 }
11504 
11505 /// Assign the register class depending on the number of
11506 /// bits set in the writemask
11507 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11508                                                      SDNode *Node) const {
11509   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11510 
11511   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11512 
11513   if (TII->isVOP3(MI.getOpcode())) {
11514     // Make sure constant bus requirements are respected.
11515     TII->legalizeOperandsVOP3(MRI, MI);
11516 
11517     // Prefer VGPRs over AGPRs in mAI instructions where possible.
11518     // This saves a chain-copy of registers and better ballance register
11519     // use between vgpr and agpr as agpr tuples tend to be big.
11520     if (MI.getDesc().OpInfo) {
11521       unsigned Opc = MI.getOpcode();
11522       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11523       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11524                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11525         if (I == -1)
11526           break;
11527         MachineOperand &Op = MI.getOperand(I);
11528         if (!Op.isReg() || !Op.getReg().isVirtual())
11529           continue;
11530         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11531         if (!TRI->hasAGPRs(RC))
11532           continue;
11533         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11534         if (!Src || !Src->isCopy() ||
11535             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11536           continue;
11537         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11538         // All uses of agpr64 and agpr32 can also accept vgpr except for
11539         // v_accvgpr_read, but we do not produce agpr reads during selection,
11540         // so no use checks are needed.
11541         MRI.setRegClass(Op.getReg(), NewRC);
11542       }
11543     }
11544 
11545     return;
11546   }
11547 
11548   // Replace unused atomics with the no return version.
11549   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11550   if (NoRetAtomicOp != -1) {
11551     if (!Node->hasAnyUseOfValue(0)) {
11552       int CPolIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
11553                                                AMDGPU::OpName::cpol);
11554       if (CPolIdx != -1) {
11555         MachineOperand &CPol = MI.getOperand(CPolIdx);
11556         CPol.setImm(CPol.getImm() & ~AMDGPU::CPol::GLC);
11557       }
11558       MI.RemoveOperand(0);
11559       MI.setDesc(TII->get(NoRetAtomicOp));
11560       return;
11561     }
11562 
11563     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11564     // instruction, because the return type of these instructions is a vec2 of
11565     // the memory type, so it can be tied to the input operand.
11566     // This means these instructions always have a use, so we need to add a
11567     // special case to check if the atomic has only one extract_subreg use,
11568     // which itself has no uses.
11569     if ((Node->hasNUsesOfValue(1, 0) &&
11570          Node->use_begin()->isMachineOpcode() &&
11571          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11572          !Node->use_begin()->hasAnyUseOfValue(0))) {
11573       Register Def = MI.getOperand(0).getReg();
11574 
11575       // Change this into a noret atomic.
11576       MI.setDesc(TII->get(NoRetAtomicOp));
11577       MI.RemoveOperand(0);
11578 
11579       // If we only remove the def operand from the atomic instruction, the
11580       // extract_subreg will be left with a use of a vreg without a def.
11581       // So we need to insert an implicit_def to avoid machine verifier
11582       // errors.
11583       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11584               TII->get(AMDGPU::IMPLICIT_DEF), Def);
11585     }
11586     return;
11587   }
11588 
11589   if (TII->isMIMG(MI) && !MI.mayStore())
11590     AddIMGInit(MI);
11591 }
11592 
11593 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11594                               uint64_t Val) {
11595   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11596   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11597 }
11598 
11599 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11600                                                 const SDLoc &DL,
11601                                                 SDValue Ptr) const {
11602   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11603 
11604   // Build the half of the subregister with the constants before building the
11605   // full 128-bit register. If we are building multiple resource descriptors,
11606   // this will allow CSEing of the 2-component register.
11607   const SDValue Ops0[] = {
11608     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11609     buildSMovImm32(DAG, DL, 0),
11610     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11611     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11612     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11613   };
11614 
11615   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11616                                                 MVT::v2i32, Ops0), 0);
11617 
11618   // Combine the constants and the pointer.
11619   const SDValue Ops1[] = {
11620     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11621     Ptr,
11622     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11623     SubRegHi,
11624     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11625   };
11626 
11627   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11628 }
11629 
11630 /// Return a resource descriptor with the 'Add TID' bit enabled
11631 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11632 ///        of the resource descriptor) to create an offset, which is added to
11633 ///        the resource pointer.
11634 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11635                                            SDValue Ptr, uint32_t RsrcDword1,
11636                                            uint64_t RsrcDword2And3) const {
11637   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11638   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11639   if (RsrcDword1) {
11640     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11641                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11642                     0);
11643   }
11644 
11645   SDValue DataLo = buildSMovImm32(DAG, DL,
11646                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
11647   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11648 
11649   const SDValue Ops[] = {
11650     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11651     PtrLo,
11652     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11653     PtrHi,
11654     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11655     DataLo,
11656     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11657     DataHi,
11658     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11659   };
11660 
11661   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11662 }
11663 
11664 //===----------------------------------------------------------------------===//
11665 //                         SI Inline Assembly Support
11666 //===----------------------------------------------------------------------===//
11667 
11668 std::pair<unsigned, const TargetRegisterClass *>
11669 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
11670                                                StringRef Constraint,
11671                                                MVT VT) const {
11672   const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
11673 
11674   const TargetRegisterClass *RC = nullptr;
11675   if (Constraint.size() == 1) {
11676     const unsigned BitWidth = VT.getSizeInBits();
11677     switch (Constraint[0]) {
11678     default:
11679       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11680     case 's':
11681     case 'r':
11682       switch (BitWidth) {
11683       case 16:
11684         RC = &AMDGPU::SReg_32RegClass;
11685         break;
11686       case 64:
11687         RC = &AMDGPU::SGPR_64RegClass;
11688         break;
11689       default:
11690         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11691         if (!RC)
11692           return std::make_pair(0U, nullptr);
11693         break;
11694       }
11695       break;
11696     case 'v':
11697       switch (BitWidth) {
11698       case 16:
11699         RC = &AMDGPU::VGPR_32RegClass;
11700         break;
11701       default:
11702         RC = TRI->getVGPRClassForBitWidth(BitWidth);
11703         if (!RC)
11704           return std::make_pair(0U, nullptr);
11705         break;
11706       }
11707       break;
11708     case 'a':
11709       if (!Subtarget->hasMAIInsts())
11710         break;
11711       switch (BitWidth) {
11712       case 16:
11713         RC = &AMDGPU::AGPR_32RegClass;
11714         break;
11715       default:
11716         RC = TRI->getAGPRClassForBitWidth(BitWidth);
11717         if (!RC)
11718           return std::make_pair(0U, nullptr);
11719         break;
11720       }
11721       break;
11722     }
11723     // We actually support i128, i16 and f16 as inline parameters
11724     // even if they are not reported as legal
11725     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11726                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11727       return std::make_pair(0U, RC);
11728   }
11729 
11730   if (Constraint.size() > 1) {
11731     if (Constraint[1] == 'v') {
11732       RC = &AMDGPU::VGPR_32RegClass;
11733     } else if (Constraint[1] == 's') {
11734       RC = &AMDGPU::SGPR_32RegClass;
11735     } else if (Constraint[1] == 'a') {
11736       RC = &AMDGPU::AGPR_32RegClass;
11737     }
11738 
11739     if (RC) {
11740       uint32_t Idx;
11741       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
11742       if (!Failed && Idx < RC->getNumRegs())
11743         return std::make_pair(RC->getRegister(Idx), RC);
11744     }
11745   }
11746 
11747   // FIXME: Returns VS_32 for physical SGPR constraints
11748   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11749 }
11750 
11751 static bool isImmConstraint(StringRef Constraint) {
11752   if (Constraint.size() == 1) {
11753     switch (Constraint[0]) {
11754     default: break;
11755     case 'I':
11756     case 'J':
11757     case 'A':
11758     case 'B':
11759     case 'C':
11760       return true;
11761     }
11762   } else if (Constraint == "DA" ||
11763              Constraint == "DB") {
11764     return true;
11765   }
11766   return false;
11767 }
11768 
11769 SITargetLowering::ConstraintType
11770 SITargetLowering::getConstraintType(StringRef Constraint) const {
11771   if (Constraint.size() == 1) {
11772     switch (Constraint[0]) {
11773     default: break;
11774     case 's':
11775     case 'v':
11776     case 'a':
11777       return C_RegisterClass;
11778     }
11779   }
11780   if (isImmConstraint(Constraint)) {
11781     return C_Other;
11782   }
11783   return TargetLowering::getConstraintType(Constraint);
11784 }
11785 
11786 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11787   if (!AMDGPU::isInlinableIntLiteral(Val)) {
11788     Val = Val & maskTrailingOnes<uint64_t>(Size);
11789   }
11790   return Val;
11791 }
11792 
11793 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11794                                                     std::string &Constraint,
11795                                                     std::vector<SDValue> &Ops,
11796                                                     SelectionDAG &DAG) const {
11797   if (isImmConstraint(Constraint)) {
11798     uint64_t Val;
11799     if (getAsmOperandConstVal(Op, Val) &&
11800         checkAsmConstraintVal(Op, Constraint, Val)) {
11801       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11802       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11803     }
11804   } else {
11805     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11806   }
11807 }
11808 
11809 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11810   unsigned Size = Op.getScalarValueSizeInBits();
11811   if (Size > 64)
11812     return false;
11813 
11814   if (Size == 16 && !Subtarget->has16BitInsts())
11815     return false;
11816 
11817   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11818     Val = C->getSExtValue();
11819     return true;
11820   }
11821   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11822     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11823     return true;
11824   }
11825   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11826     if (Size != 16 || Op.getNumOperands() != 2)
11827       return false;
11828     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11829       return false;
11830     if (ConstantSDNode *C = V->getConstantSplatNode()) {
11831       Val = C->getSExtValue();
11832       return true;
11833     }
11834     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11835       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11836       return true;
11837     }
11838   }
11839 
11840   return false;
11841 }
11842 
11843 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11844                                              const std::string &Constraint,
11845                                              uint64_t Val) const {
11846   if (Constraint.size() == 1) {
11847     switch (Constraint[0]) {
11848     case 'I':
11849       return AMDGPU::isInlinableIntLiteral(Val);
11850     case 'J':
11851       return isInt<16>(Val);
11852     case 'A':
11853       return checkAsmConstraintValA(Op, Val);
11854     case 'B':
11855       return isInt<32>(Val);
11856     case 'C':
11857       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11858              AMDGPU::isInlinableIntLiteral(Val);
11859     default:
11860       break;
11861     }
11862   } else if (Constraint.size() == 2) {
11863     if (Constraint == "DA") {
11864       int64_t HiBits = static_cast<int32_t>(Val >> 32);
11865       int64_t LoBits = static_cast<int32_t>(Val);
11866       return checkAsmConstraintValA(Op, HiBits, 32) &&
11867              checkAsmConstraintValA(Op, LoBits, 32);
11868     }
11869     if (Constraint == "DB") {
11870       return true;
11871     }
11872   }
11873   llvm_unreachable("Invalid asm constraint");
11874 }
11875 
11876 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11877                                               uint64_t Val,
11878                                               unsigned MaxSize) const {
11879   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11880   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11881   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11882       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11883       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
11884     return true;
11885   }
11886   return false;
11887 }
11888 
11889 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
11890   switch (UnalignedClassID) {
11891   case AMDGPU::VReg_64RegClassID:
11892     return AMDGPU::VReg_64_Align2RegClassID;
11893   case AMDGPU::VReg_96RegClassID:
11894     return AMDGPU::VReg_96_Align2RegClassID;
11895   case AMDGPU::VReg_128RegClassID:
11896     return AMDGPU::VReg_128_Align2RegClassID;
11897   case AMDGPU::VReg_160RegClassID:
11898     return AMDGPU::VReg_160_Align2RegClassID;
11899   case AMDGPU::VReg_192RegClassID:
11900     return AMDGPU::VReg_192_Align2RegClassID;
11901   case AMDGPU::VReg_224RegClassID:
11902     return AMDGPU::VReg_224_Align2RegClassID;
11903   case AMDGPU::VReg_256RegClassID:
11904     return AMDGPU::VReg_256_Align2RegClassID;
11905   case AMDGPU::VReg_512RegClassID:
11906     return AMDGPU::VReg_512_Align2RegClassID;
11907   case AMDGPU::VReg_1024RegClassID:
11908     return AMDGPU::VReg_1024_Align2RegClassID;
11909   case AMDGPU::AReg_64RegClassID:
11910     return AMDGPU::AReg_64_Align2RegClassID;
11911   case AMDGPU::AReg_96RegClassID:
11912     return AMDGPU::AReg_96_Align2RegClassID;
11913   case AMDGPU::AReg_128RegClassID:
11914     return AMDGPU::AReg_128_Align2RegClassID;
11915   case AMDGPU::AReg_160RegClassID:
11916     return AMDGPU::AReg_160_Align2RegClassID;
11917   case AMDGPU::AReg_192RegClassID:
11918     return AMDGPU::AReg_192_Align2RegClassID;
11919   case AMDGPU::AReg_256RegClassID:
11920     return AMDGPU::AReg_256_Align2RegClassID;
11921   case AMDGPU::AReg_512RegClassID:
11922     return AMDGPU::AReg_512_Align2RegClassID;
11923   case AMDGPU::AReg_1024RegClassID:
11924     return AMDGPU::AReg_1024_Align2RegClassID;
11925   default:
11926     return -1;
11927   }
11928 }
11929 
11930 // Figure out which registers should be reserved for stack access. Only after
11931 // the function is legalized do we know all of the non-spill stack objects or if
11932 // calls are present.
11933 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
11934   MachineRegisterInfo &MRI = MF.getRegInfo();
11935   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11936   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
11937   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11938   const SIInstrInfo *TII = ST.getInstrInfo();
11939 
11940   if (Info->isEntryFunction()) {
11941     // Callable functions have fixed registers used for stack access.
11942     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
11943   }
11944 
11945   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
11946                              Info->getStackPtrOffsetReg()));
11947   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
11948     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
11949 
11950   // We need to worry about replacing the default register with itself in case
11951   // of MIR testcases missing the MFI.
11952   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
11953     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
11954 
11955   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
11956     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
11957 
11958   Info->limitOccupancy(MF);
11959 
11960   if (ST.isWave32() && !MF.empty()) {
11961     for (auto &MBB : MF) {
11962       for (auto &MI : MBB) {
11963         TII->fixImplicitOperands(MI);
11964       }
11965     }
11966   }
11967 
11968   // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
11969   // classes if required. Ideally the register class constraints would differ
11970   // per-subtarget, but there's no easy way to achieve that right now. This is
11971   // not a problem for VGPRs because the correctly aligned VGPR class is implied
11972   // from using them as the register class for legal types.
11973   if (ST.needsAlignedVGPRs()) {
11974     for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
11975       const Register Reg = Register::index2VirtReg(I);
11976       const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
11977       if (!RC)
11978         continue;
11979       int NewClassID = getAlignedAGPRClassID(RC->getID());
11980       if (NewClassID != -1)
11981         MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
11982     }
11983   }
11984 
11985   TargetLoweringBase::finalizeLowering(MF);
11986 
11987   // Allocate a VGPR for future SGPR Spill if
11988   // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used
11989   // FIXME: We won't need this hack if we split SGPR allocation from VGPR
11990   if (VGPRReserveforSGPRSpill && TRI->spillSGPRToVGPR() &&
11991       !Info->VGPRReservedForSGPRSpill && !Info->isEntryFunction())
11992     Info->reserveVGPRforSGPRSpills(MF);
11993 }
11994 
11995 void SITargetLowering::computeKnownBitsForFrameIndex(
11996   const int FI, KnownBits &Known, const MachineFunction &MF) const {
11997   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
11998 
11999   // Set the high bits to zero based on the maximum allowed scratch size per
12000   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
12001   // calculation won't overflow, so assume the sign bit is never set.
12002   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
12003 }
12004 
12005 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
12006                                    KnownBits &Known, unsigned Dim) {
12007   unsigned MaxValue =
12008       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
12009   Known.Zero.setHighBits(countLeadingZeros(MaxValue));
12010 }
12011 
12012 void SITargetLowering::computeKnownBitsForTargetInstr(
12013     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
12014     const MachineRegisterInfo &MRI, unsigned Depth) const {
12015   const MachineInstr *MI = MRI.getVRegDef(R);
12016   switch (MI->getOpcode()) {
12017   case AMDGPU::G_INTRINSIC: {
12018     switch (MI->getIntrinsicID()) {
12019     case Intrinsic::amdgcn_workitem_id_x:
12020       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
12021       break;
12022     case Intrinsic::amdgcn_workitem_id_y:
12023       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
12024       break;
12025     case Intrinsic::amdgcn_workitem_id_z:
12026       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
12027       break;
12028     case Intrinsic::amdgcn_mbcnt_lo:
12029     case Intrinsic::amdgcn_mbcnt_hi: {
12030       // These return at most the wavefront size - 1.
12031       unsigned Size = MRI.getType(R).getSizeInBits();
12032       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
12033       break;
12034     }
12035     case Intrinsic::amdgcn_groupstaticsize: {
12036       // We can report everything over the maximum size as 0. We can't report
12037       // based on the actual size because we don't know if it's accurate or not
12038       // at any given point.
12039       Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
12040       break;
12041     }
12042     }
12043     break;
12044   }
12045   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
12046     Known.Zero.setHighBits(24);
12047     break;
12048   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
12049     Known.Zero.setHighBits(16);
12050     break;
12051   }
12052 }
12053 
12054 Align SITargetLowering::computeKnownAlignForTargetInstr(
12055   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
12056   unsigned Depth) const {
12057   const MachineInstr *MI = MRI.getVRegDef(R);
12058   switch (MI->getOpcode()) {
12059   case AMDGPU::G_INTRINSIC:
12060   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
12061     // FIXME: Can this move to generic code? What about the case where the call
12062     // site specifies a lower alignment?
12063     Intrinsic::ID IID = MI->getIntrinsicID();
12064     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
12065     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
12066     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
12067       return *RetAlign;
12068     return Align(1);
12069   }
12070   default:
12071     return Align(1);
12072   }
12073 }
12074 
12075 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
12076   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
12077   const Align CacheLineAlign = Align(64);
12078 
12079   // Pre-GFX10 target did not benefit from loop alignment
12080   if (!ML || DisableLoopAlignment ||
12081       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
12082       getSubtarget()->hasInstFwdPrefetchBug())
12083     return PrefAlign;
12084 
12085   // On GFX10 I$ is 4 x 64 bytes cache lines.
12086   // By default prefetcher keeps one cache line behind and reads two ahead.
12087   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
12088   // behind and one ahead.
12089   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
12090   // If loop fits 64 bytes it always spans no more than two cache lines and
12091   // does not need an alignment.
12092   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
12093   // Else if loop is less or equal 192 bytes we need two lines behind.
12094 
12095   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12096   const MachineBasicBlock *Header = ML->getHeader();
12097   if (Header->getAlignment() != PrefAlign)
12098     return Header->getAlignment(); // Already processed.
12099 
12100   unsigned LoopSize = 0;
12101   for (const MachineBasicBlock *MBB : ML->blocks()) {
12102     // If inner loop block is aligned assume in average half of the alignment
12103     // size to be added as nops.
12104     if (MBB != Header)
12105       LoopSize += MBB->getAlignment().value() / 2;
12106 
12107     for (const MachineInstr &MI : *MBB) {
12108       LoopSize += TII->getInstSizeInBytes(MI);
12109       if (LoopSize > 192)
12110         return PrefAlign;
12111     }
12112   }
12113 
12114   if (LoopSize <= 64)
12115     return PrefAlign;
12116 
12117   if (LoopSize <= 128)
12118     return CacheLineAlign;
12119 
12120   // If any of parent loops is surrounded by prefetch instructions do not
12121   // insert new for inner loop, which would reset parent's settings.
12122   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
12123     if (MachineBasicBlock *Exit = P->getExitBlock()) {
12124       auto I = Exit->getFirstNonDebugInstr();
12125       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
12126         return CacheLineAlign;
12127     }
12128   }
12129 
12130   MachineBasicBlock *Pre = ML->getLoopPreheader();
12131   MachineBasicBlock *Exit = ML->getExitBlock();
12132 
12133   if (Pre && Exit) {
12134     BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
12135             TII->get(AMDGPU::S_INST_PREFETCH))
12136       .addImm(1); // prefetch 2 lines behind PC
12137 
12138     BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
12139             TII->get(AMDGPU::S_INST_PREFETCH))
12140       .addImm(2); // prefetch 1 line behind PC
12141   }
12142 
12143   return CacheLineAlign;
12144 }
12145 
12146 LLVM_ATTRIBUTE_UNUSED
12147 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
12148   assert(N->getOpcode() == ISD::CopyFromReg);
12149   do {
12150     // Follow the chain until we find an INLINEASM node.
12151     N = N->getOperand(0).getNode();
12152     if (N->getOpcode() == ISD::INLINEASM ||
12153         N->getOpcode() == ISD::INLINEASM_BR)
12154       return true;
12155   } while (N->getOpcode() == ISD::CopyFromReg);
12156   return false;
12157 }
12158 
12159 bool SITargetLowering::isSDNodeSourceOfDivergence(
12160     const SDNode *N, FunctionLoweringInfo *FLI,
12161     LegacyDivergenceAnalysis *KDA) const {
12162   switch (N->getOpcode()) {
12163   case ISD::CopyFromReg: {
12164     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
12165     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
12166     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12167     Register Reg = R->getReg();
12168 
12169     // FIXME: Why does this need to consider isLiveIn?
12170     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
12171       return !TRI->isSGPRReg(MRI, Reg);
12172 
12173     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
12174       return KDA->isDivergent(V);
12175 
12176     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
12177     return !TRI->isSGPRReg(MRI, Reg);
12178   }
12179   case ISD::LOAD: {
12180     const LoadSDNode *L = cast<LoadSDNode>(N);
12181     unsigned AS = L->getAddressSpace();
12182     // A flat load may access private memory.
12183     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
12184   }
12185   case ISD::CALLSEQ_END:
12186     return true;
12187   case ISD::INTRINSIC_WO_CHAIN:
12188     return AMDGPU::isIntrinsicSourceOfDivergence(
12189         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
12190   case ISD::INTRINSIC_W_CHAIN:
12191     return AMDGPU::isIntrinsicSourceOfDivergence(
12192         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
12193   case AMDGPUISD::ATOMIC_CMP_SWAP:
12194   case AMDGPUISD::ATOMIC_INC:
12195   case AMDGPUISD::ATOMIC_DEC:
12196   case AMDGPUISD::ATOMIC_LOAD_FMIN:
12197   case AMDGPUISD::ATOMIC_LOAD_FMAX:
12198   case AMDGPUISD::BUFFER_ATOMIC_SWAP:
12199   case AMDGPUISD::BUFFER_ATOMIC_ADD:
12200   case AMDGPUISD::BUFFER_ATOMIC_SUB:
12201   case AMDGPUISD::BUFFER_ATOMIC_SMIN:
12202   case AMDGPUISD::BUFFER_ATOMIC_UMIN:
12203   case AMDGPUISD::BUFFER_ATOMIC_SMAX:
12204   case AMDGPUISD::BUFFER_ATOMIC_UMAX:
12205   case AMDGPUISD::BUFFER_ATOMIC_AND:
12206   case AMDGPUISD::BUFFER_ATOMIC_OR:
12207   case AMDGPUISD::BUFFER_ATOMIC_XOR:
12208   case AMDGPUISD::BUFFER_ATOMIC_INC:
12209   case AMDGPUISD::BUFFER_ATOMIC_DEC:
12210   case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
12211   case AMDGPUISD::BUFFER_ATOMIC_CSUB:
12212   case AMDGPUISD::BUFFER_ATOMIC_FADD:
12213   case AMDGPUISD::BUFFER_ATOMIC_FMIN:
12214   case AMDGPUISD::BUFFER_ATOMIC_FMAX:
12215     // Target-specific read-modify-write atomics are sources of divergence.
12216     return true;
12217   default:
12218     if (auto *A = dyn_cast<AtomicSDNode>(N)) {
12219       // Generic read-modify-write atomics are sources of divergence.
12220       return A->readMem() && A->writeMem();
12221     }
12222     return false;
12223   }
12224 }
12225 
12226 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
12227                                                EVT VT) const {
12228   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
12229   case MVT::f32:
12230     return hasFP32Denormals(DAG.getMachineFunction());
12231   case MVT::f64:
12232   case MVT::f16:
12233     return hasFP64FP16Denormals(DAG.getMachineFunction());
12234   default:
12235     return false;
12236   }
12237 }
12238 
12239 bool SITargetLowering::denormalsEnabledForType(LLT Ty,
12240                                                MachineFunction &MF) const {
12241   switch (Ty.getScalarSizeInBits()) {
12242   case 32:
12243     return hasFP32Denormals(MF);
12244   case 64:
12245   case 16:
12246     return hasFP64FP16Denormals(MF);
12247   default:
12248     return false;
12249   }
12250 }
12251 
12252 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
12253                                                     const SelectionDAG &DAG,
12254                                                     bool SNaN,
12255                                                     unsigned Depth) const {
12256   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
12257     const MachineFunction &MF = DAG.getMachineFunction();
12258     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12259 
12260     if (Info->getMode().DX10Clamp)
12261       return true; // Clamped to 0.
12262     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
12263   }
12264 
12265   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
12266                                                             SNaN, Depth);
12267 }
12268 
12269 // Global FP atomic instructions have a hardcoded FP mode and do not support
12270 // FP32 denormals, and only support v2f16 denormals.
12271 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
12272   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
12273   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
12274   if (&Flt == &APFloat::IEEEsingle())
12275     return DenormMode == DenormalMode::getPreserveSign();
12276   return DenormMode == DenormalMode::getIEEE();
12277 }
12278 
12279 TargetLowering::AtomicExpansionKind
12280 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
12281 
12282   auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) {
12283     OptimizationRemarkEmitter ORE(RMW->getFunction());
12284     LLVMContext &Ctx = RMW->getFunction()->getContext();
12285     SmallVector<StringRef> SSNs;
12286     Ctx.getSyncScopeNames(SSNs);
12287     auto MemScope = SSNs[RMW->getSyncScopeID()].empty()
12288                         ? "system"
12289                         : SSNs[RMW->getSyncScopeID()];
12290     ORE.emit([&]() {
12291       return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
12292              << "Hardware instruction generated for atomic "
12293              << RMW->getOperationName(RMW->getOperation())
12294              << " operation at memory scope " << MemScope
12295              << " due to an unsafe request.";
12296     });
12297     return Kind;
12298   };
12299 
12300   switch (RMW->getOperation()) {
12301   case AtomicRMWInst::FAdd: {
12302     Type *Ty = RMW->getType();
12303 
12304     // We don't have a way to support 16-bit atomics now, so just leave them
12305     // as-is.
12306     if (Ty->isHalfTy())
12307       return AtomicExpansionKind::None;
12308 
12309     if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
12310       return AtomicExpansionKind::CmpXChg;
12311 
12312     unsigned AS = RMW->getPointerAddressSpace();
12313 
12314     if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) &&
12315          Subtarget->hasAtomicFaddInsts()) {
12316       // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
12317       // floating point atomic instructions. May generate more efficient code,
12318       // but may not respect rounding and denormal modes, and may give incorrect
12319       // results for certain memory destinations.
12320       if (RMW->getFunction()
12321               ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12322               .getValueAsString() != "true")
12323         return AtomicExpansionKind::CmpXChg;
12324 
12325       if (Subtarget->hasGFX90AInsts()) {
12326         if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS)
12327           return AtomicExpansionKind::CmpXChg;
12328 
12329         auto SSID = RMW->getSyncScopeID();
12330         if (SSID == SyncScope::System ||
12331             SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"))
12332           return AtomicExpansionKind::CmpXChg;
12333 
12334         return ReportUnsafeHWInst(AtomicExpansionKind::None);
12335       }
12336 
12337       if (AS == AMDGPUAS::FLAT_ADDRESS)
12338         return AtomicExpansionKind::CmpXChg;
12339 
12340       return RMW->use_empty() ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12341                               : AtomicExpansionKind::CmpXChg;
12342     }
12343 
12344     // DS FP atomics do repect the denormal mode, but the rounding mode is fixed
12345     // to round-to-nearest-even.
12346     // The only exception is DS_ADD_F64 which never flushes regardless of mode.
12347     if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) {
12348       if (!Ty->isDoubleTy())
12349         return AtomicExpansionKind::None;
12350 
12351       if (fpModeMatchesGlobalFPAtomicMode(RMW))
12352         return AtomicExpansionKind::None;
12353 
12354       return RMW->getFunction()
12355                          ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12356                          .getValueAsString() == "true"
12357                  ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12358                  : AtomicExpansionKind::CmpXChg;
12359     }
12360 
12361     return AtomicExpansionKind::CmpXChg;
12362   }
12363   default:
12364     break;
12365   }
12366 
12367   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
12368 }
12369 
12370 const TargetRegisterClass *
12371 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
12372   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
12373   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12374   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
12375     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
12376                                                : &AMDGPU::SReg_32RegClass;
12377   if (!TRI->isSGPRClass(RC) && !isDivergent)
12378     return TRI->getEquivalentSGPRClass(RC);
12379   else if (TRI->isSGPRClass(RC) && isDivergent)
12380     return TRI->getEquivalentVGPRClass(RC);
12381 
12382   return RC;
12383 }
12384 
12385 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
12386 // uniform values (as produced by the mask results of control flow intrinsics)
12387 // used outside of divergent blocks. The phi users need to also be treated as
12388 // always uniform.
12389 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
12390                       unsigned WaveSize) {
12391   // FIXME: We asssume we never cast the mask results of a control flow
12392   // intrinsic.
12393   // Early exit if the type won't be consistent as a compile time hack.
12394   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
12395   if (!IT || IT->getBitWidth() != WaveSize)
12396     return false;
12397 
12398   if (!isa<Instruction>(V))
12399     return false;
12400   if (!Visited.insert(V).second)
12401     return false;
12402   bool Result = false;
12403   for (auto U : V->users()) {
12404     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
12405       if (V == U->getOperand(1)) {
12406         switch (Intrinsic->getIntrinsicID()) {
12407         default:
12408           Result = false;
12409           break;
12410         case Intrinsic::amdgcn_if_break:
12411         case Intrinsic::amdgcn_if:
12412         case Intrinsic::amdgcn_else:
12413           Result = true;
12414           break;
12415         }
12416       }
12417       if (V == U->getOperand(0)) {
12418         switch (Intrinsic->getIntrinsicID()) {
12419         default:
12420           Result = false;
12421           break;
12422         case Intrinsic::amdgcn_end_cf:
12423         case Intrinsic::amdgcn_loop:
12424           Result = true;
12425           break;
12426         }
12427       }
12428     } else {
12429       Result = hasCFUser(U, Visited, WaveSize);
12430     }
12431     if (Result)
12432       break;
12433   }
12434   return Result;
12435 }
12436 
12437 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
12438                                                const Value *V) const {
12439   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
12440     if (CI->isInlineAsm()) {
12441       // FIXME: This cannot give a correct answer. This should only trigger in
12442       // the case where inline asm returns mixed SGPR and VGPR results, used
12443       // outside the defining block. We don't have a specific result to
12444       // consider, so this assumes if any value is SGPR, the overall register
12445       // also needs to be SGPR.
12446       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
12447       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
12448           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
12449       for (auto &TC : TargetConstraints) {
12450         if (TC.Type == InlineAsm::isOutput) {
12451           ComputeConstraintToUse(TC, SDValue());
12452           unsigned AssignedReg;
12453           const TargetRegisterClass *RC;
12454           std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
12455               SIRI, TC.ConstraintCode, TC.ConstraintVT);
12456           if (RC) {
12457             MachineRegisterInfo &MRI = MF.getRegInfo();
12458             if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
12459               return true;
12460             else if (SIRI->isSGPRClass(RC))
12461               return true;
12462           }
12463         }
12464       }
12465     }
12466   }
12467   SmallPtrSet<const Value *, 16> Visited;
12468   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
12469 }
12470 
12471 std::pair<InstructionCost, MVT>
12472 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
12473                                           Type *Ty) const {
12474   std::pair<InstructionCost, MVT> Cost =
12475       TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
12476   auto Size = DL.getTypeSizeInBits(Ty);
12477   // Maximum load or store can handle 8 dwords for scalar and 4 for
12478   // vector ALU. Let's assume anything above 8 dwords is expensive
12479   // even if legal.
12480   if (Size <= 256)
12481     return Cost;
12482 
12483   Cost.first += (Size + 255) / 256;
12484   return Cost;
12485 }
12486