1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #if defined(_MSC_VER) || defined(__MINGW32__)
15 // Provide M_PI.
16 #define _USE_MATH_DEFINES
17 #endif
18 
19 #include "SIISelLowering.h"
20 #include "AMDGPU.h"
21 #include "AMDGPUSubtarget.h"
22 #include "AMDGPUTargetMachine.h"
23 #include "SIDefines.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIRegisterInfo.h"
27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
28 #include "Utils/AMDGPUBaseInfo.h"
29 #include "llvm/ADT/APFloat.h"
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/BitVector.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/CallingConvLower.h"
40 #include "llvm/CodeGen/DAGCombine.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetCallingConv.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/DebugLoc.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/DiagnosticInfo.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/GlobalValue.h"
63 #include "llvm/IR/InstrTypes.h"
64 #include "llvm/IR/Instruction.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CodeGen.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/KnownBits.h"
74 #include "llvm/Support/MachineValueType.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Target/TargetOptions.h"
77 #include <cassert>
78 #include <cmath>
79 #include <cstdint>
80 #include <iterator>
81 #include <tuple>
82 #include <utility>
83 #include <vector>
84 
85 using namespace llvm;
86 
87 #define DEBUG_TYPE "si-lower"
88 
89 STATISTIC(NumTailCalls, "Number of tail calls");
90 
91 static cl::opt<bool> EnableVGPRIndexMode(
92   "amdgpu-vgpr-index-mode",
93   cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
94   cl::init(false));
95 
96 static cl::opt<bool> DisableLoopAlignment(
97   "amdgpu-disable-loop-alignment",
98   cl::desc("Do not align and prefetch loops"),
99   cl::init(false));
100 
101 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
102   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
103   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
104     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
105       return AMDGPU::SGPR0 + Reg;
106     }
107   }
108   llvm_unreachable("Cannot allocate sgpr");
109 }
110 
111 SITargetLowering::SITargetLowering(const TargetMachine &TM,
112                                    const GCNSubtarget &STI)
113     : AMDGPUTargetLowering(TM, STI),
114       Subtarget(&STI) {
115   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
116   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
117 
118   addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
119   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
120 
121   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
122   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
123   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
124 
125   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
126   addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
127 
128   addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
129   addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
130 
131   addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
132   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
133 
134   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
135   addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
136 
137   addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
138   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
139 
140   addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
141   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
142 
143   if (Subtarget->has16BitInsts()) {
144     addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
145     addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
146 
147     // Unless there are also VOP3P operations, not operations are really legal.
148     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass);
149     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass);
150     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
151     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
152   }
153 
154   computeRegisterProperties(Subtarget->getRegisterInfo());
155 
156   // We need to custom lower vector stores from local memory
157   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
158   setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
159   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
160   setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
161   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
162   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
163   setOperationAction(ISD::LOAD, MVT::i1, Custom);
164   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
165 
166   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
167   setOperationAction(ISD::STORE, MVT::v3i32, Custom);
168   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
169   setOperationAction(ISD::STORE, MVT::v5i32, Custom);
170   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
171   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
172   setOperationAction(ISD::STORE, MVT::i1, Custom);
173   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
174 
175   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
176   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
177   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
178   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
179   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
180   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
181   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
182   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
183   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
184   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
185 
186   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
187   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
188 
189   setOperationAction(ISD::SELECT, MVT::i1, Promote);
190   setOperationAction(ISD::SELECT, MVT::i64, Custom);
191   setOperationAction(ISD::SELECT, MVT::f64, Promote);
192   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
193 
194   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
195   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
196   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
197   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
198   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
199 
200   setOperationAction(ISD::SETCC, MVT::i1, Promote);
201   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
202   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
203   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
204 
205   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
206   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
207 
208   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
209   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
210   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
211   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
212   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
213   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
214   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
215 
216   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
217   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
218   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
219   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
220   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
221   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
222   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
223 
224   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
225   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
226   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
227   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
228   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
229   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
230 
231   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
232   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
233   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
234   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
235   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
236   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
237 
238   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
239   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
240   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
241   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
242   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
243   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
244 
245   setOperationAction(ISD::UADDO, MVT::i32, Legal);
246   setOperationAction(ISD::USUBO, MVT::i32, Legal);
247 
248   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
249   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
250 
251   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
252   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
253   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
254 
255 #if 0
256   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
257   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
258 #endif
259 
260   // We only support LOAD/STORE and vector manipulation ops for vectors
261   // with > 4 elements.
262   for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
263         MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, MVT::v32i32 }) {
264     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
265       switch (Op) {
266       case ISD::LOAD:
267       case ISD::STORE:
268       case ISD::BUILD_VECTOR:
269       case ISD::BITCAST:
270       case ISD::EXTRACT_VECTOR_ELT:
271       case ISD::INSERT_VECTOR_ELT:
272       case ISD::INSERT_SUBVECTOR:
273       case ISD::EXTRACT_SUBVECTOR:
274       case ISD::SCALAR_TO_VECTOR:
275         break;
276       case ISD::CONCAT_VECTORS:
277         setOperationAction(Op, VT, Custom);
278         break;
279       default:
280         setOperationAction(Op, VT, Expand);
281         break;
282       }
283     }
284   }
285 
286   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
287 
288   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
289   // is expanded to avoid having two separate loops in case the index is a VGPR.
290 
291   // Most operations are naturally 32-bit vector operations. We only support
292   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
293   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
294     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
295     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
296 
297     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
298     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
299 
300     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
301     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
302 
303     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
304     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
305   }
306 
307   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
308   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
309   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
310   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
311 
312   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
313   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
314 
315   // Avoid stack access for these.
316   // TODO: Generalize to more vector types.
317   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
318   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
319   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
320   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
321 
322   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
323   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
324   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
325   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
326   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
327 
328   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
329   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
330   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
331 
332   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
333   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
334   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
335   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
336 
337   // Deal with vec3 vector operations when widened to vec4.
338   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Expand);
339   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Expand);
340   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Expand);
341   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Expand);
342 
343   // Deal with vec5 vector operations when widened to vec8.
344   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Expand);
345   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Expand);
346   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Expand);
347   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Expand);
348 
349   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
350   // and output demarshalling
351   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
352   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
353 
354   // We can't return success/failure, only the old value,
355   // let LLVM add the comparison
356   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
357   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
358 
359   if (Subtarget->hasFlatAddressSpace()) {
360     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
361     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
362   }
363 
364   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
365   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
366 
367   // On SI this is s_memtime and s_memrealtime on VI.
368   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
369   setOperationAction(ISD::TRAP, MVT::Other, Custom);
370   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
371 
372   if (Subtarget->has16BitInsts()) {
373     setOperationAction(ISD::FLOG, MVT::f16, Custom);
374     setOperationAction(ISD::FEXP, MVT::f16, Custom);
375     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
376   }
377 
378   // v_mad_f32 does not support denormals according to some sources.
379   if (!Subtarget->hasFP32Denormals())
380     setOperationAction(ISD::FMAD, MVT::f32, Legal);
381 
382   if (!Subtarget->hasBFI()) {
383     // fcopysign can be done in a single instruction with BFI.
384     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
385     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
386   }
387 
388   if (!Subtarget->hasBCNT(32))
389     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
390 
391   if (!Subtarget->hasBCNT(64))
392     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
393 
394   if (Subtarget->hasFFBH())
395     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
396 
397   if (Subtarget->hasFFBL())
398     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
399 
400   // We only really have 32-bit BFE instructions (and 16-bit on VI).
401   //
402   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
403   // effort to match them now. We want this to be false for i64 cases when the
404   // extraction isn't restricted to the upper or lower half. Ideally we would
405   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
406   // span the midpoint are probably relatively rare, so don't worry about them
407   // for now.
408   if (Subtarget->hasBFE())
409     setHasExtractBitsInsn(true);
410 
411   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
412   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
413   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
414   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
415 
416 
417   // These are really only legal for ieee_mode functions. We should be avoiding
418   // them for functions that don't have ieee_mode enabled, so just say they are
419   // legal.
420   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
421   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
422   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
423   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
424 
425 
426   if (Subtarget->haveRoundOpsF64()) {
427     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
428     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
429     setOperationAction(ISD::FRINT, MVT::f64, Legal);
430   } else {
431     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
432     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
433     setOperationAction(ISD::FRINT, MVT::f64, Custom);
434     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
435   }
436 
437   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
438 
439   setOperationAction(ISD::FSIN, MVT::f32, Custom);
440   setOperationAction(ISD::FCOS, MVT::f32, Custom);
441   setOperationAction(ISD::FDIV, MVT::f32, Custom);
442   setOperationAction(ISD::FDIV, MVT::f64, Custom);
443 
444   if (Subtarget->has16BitInsts()) {
445     setOperationAction(ISD::Constant, MVT::i16, Legal);
446 
447     setOperationAction(ISD::SMIN, MVT::i16, Legal);
448     setOperationAction(ISD::SMAX, MVT::i16, Legal);
449 
450     setOperationAction(ISD::UMIN, MVT::i16, Legal);
451     setOperationAction(ISD::UMAX, MVT::i16, Legal);
452 
453     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
454     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
455 
456     setOperationAction(ISD::ROTR, MVT::i16, Promote);
457     setOperationAction(ISD::ROTL, MVT::i16, Promote);
458 
459     setOperationAction(ISD::SDIV, MVT::i16, Promote);
460     setOperationAction(ISD::UDIV, MVT::i16, Promote);
461     setOperationAction(ISD::SREM, MVT::i16, Promote);
462     setOperationAction(ISD::UREM, MVT::i16, Promote);
463 
464     setOperationAction(ISD::BSWAP, MVT::i16, Promote);
465     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
466 
467     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
468     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
469     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
470     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
471     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
472 
473     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
474 
475     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
476 
477     setOperationAction(ISD::LOAD, MVT::i16, Custom);
478 
479     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
480 
481     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
482     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
483     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
484     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
485 
486     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
487     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
488     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
489     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
490 
491     // F16 - Constant Actions.
492     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
493 
494     // F16 - Load/Store Actions.
495     setOperationAction(ISD::LOAD, MVT::f16, Promote);
496     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
497     setOperationAction(ISD::STORE, MVT::f16, Promote);
498     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
499 
500     // F16 - VOP1 Actions.
501     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
502     setOperationAction(ISD::FCOS, MVT::f16, Promote);
503     setOperationAction(ISD::FSIN, MVT::f16, Promote);
504     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
505     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
506     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
507     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
508     setOperationAction(ISD::FROUND, MVT::f16, Custom);
509 
510     // F16 - VOP2 Actions.
511     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
512     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
513 
514     setOperationAction(ISD::FDIV, MVT::f16, Custom);
515 
516     // F16 - VOP3 Actions.
517     setOperationAction(ISD::FMA, MVT::f16, Legal);
518     if (!Subtarget->hasFP16Denormals() && STI.hasMadF16())
519       setOperationAction(ISD::FMAD, MVT::f16, Legal);
520 
521     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
522       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
523         switch (Op) {
524         case ISD::LOAD:
525         case ISD::STORE:
526         case ISD::BUILD_VECTOR:
527         case ISD::BITCAST:
528         case ISD::EXTRACT_VECTOR_ELT:
529         case ISD::INSERT_VECTOR_ELT:
530         case ISD::INSERT_SUBVECTOR:
531         case ISD::EXTRACT_SUBVECTOR:
532         case ISD::SCALAR_TO_VECTOR:
533           break;
534         case ISD::CONCAT_VECTORS:
535           setOperationAction(Op, VT, Custom);
536           break;
537         default:
538           setOperationAction(Op, VT, Expand);
539           break;
540         }
541       }
542     }
543 
544     // XXX - Do these do anything? Vector constants turn into build_vector.
545     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
546     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
547 
548     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
549     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
550 
551     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
552     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
553     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
554     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
555 
556     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
557     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
558     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
559     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
560 
561     setOperationAction(ISD::AND, MVT::v2i16, Promote);
562     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
563     setOperationAction(ISD::OR, MVT::v2i16, Promote);
564     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
565     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
566     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
567 
568     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
569     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
570     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
571     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
572 
573     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
574     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
575     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
576     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
577 
578     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
579     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
580     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
581     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
582 
583     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
584     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
585     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
586 
587     if (!Subtarget->hasVOP3PInsts()) {
588       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
589       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
590     }
591 
592     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
593     // This isn't really legal, but this avoids the legalizer unrolling it (and
594     // allows matching fneg (fabs x) patterns)
595     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
596 
597     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
598     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
599     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
600     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
601 
602     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
603     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
604 
605     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
606     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
607   }
608 
609   if (Subtarget->hasVOP3PInsts()) {
610     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
611     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
612     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
613     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
614     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
615     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
616     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
617     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
618     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
619     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
620 
621     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
622     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
623     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
624 
625     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
626     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
627 
628     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
629 
630     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
631     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
632 
633     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
634     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
635 
636     setOperationAction(ISD::SHL, MVT::v4i16, Custom);
637     setOperationAction(ISD::SRA, MVT::v4i16, Custom);
638     setOperationAction(ISD::SRL, MVT::v4i16, Custom);
639     setOperationAction(ISD::ADD, MVT::v4i16, Custom);
640     setOperationAction(ISD::SUB, MVT::v4i16, Custom);
641     setOperationAction(ISD::MUL, MVT::v4i16, Custom);
642 
643     setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
644     setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
645     setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
646     setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
647 
648     setOperationAction(ISD::FADD, MVT::v4f16, Custom);
649     setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
650 
651     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
652     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
653 
654     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
655     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
656     setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
657 
658     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
659     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
660     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
661   }
662 
663   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
664   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
665 
666   if (Subtarget->has16BitInsts()) {
667     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
668     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
669     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
670     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
671   } else {
672     // Legalization hack.
673     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
674     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
675 
676     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
677     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
678   }
679 
680   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
681     setOperationAction(ISD::SELECT, VT, Custom);
682   }
683 
684   setTargetDAGCombine(ISD::ADD);
685   setTargetDAGCombine(ISD::ADDCARRY);
686   setTargetDAGCombine(ISD::SUB);
687   setTargetDAGCombine(ISD::SUBCARRY);
688   setTargetDAGCombine(ISD::FADD);
689   setTargetDAGCombine(ISD::FSUB);
690   setTargetDAGCombine(ISD::FMINNUM);
691   setTargetDAGCombine(ISD::FMAXNUM);
692   setTargetDAGCombine(ISD::FMINNUM_IEEE);
693   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
694   setTargetDAGCombine(ISD::FMA);
695   setTargetDAGCombine(ISD::SMIN);
696   setTargetDAGCombine(ISD::SMAX);
697   setTargetDAGCombine(ISD::UMIN);
698   setTargetDAGCombine(ISD::UMAX);
699   setTargetDAGCombine(ISD::SETCC);
700   setTargetDAGCombine(ISD::AND);
701   setTargetDAGCombine(ISD::OR);
702   setTargetDAGCombine(ISD::XOR);
703   setTargetDAGCombine(ISD::SINT_TO_FP);
704   setTargetDAGCombine(ISD::UINT_TO_FP);
705   setTargetDAGCombine(ISD::FCANONICALIZE);
706   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
707   setTargetDAGCombine(ISD::ZERO_EXTEND);
708   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
709   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
710   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
711 
712   // All memory operations. Some folding on the pointer operand is done to help
713   // matching the constant offsets in the addressing modes.
714   setTargetDAGCombine(ISD::LOAD);
715   setTargetDAGCombine(ISD::STORE);
716   setTargetDAGCombine(ISD::ATOMIC_LOAD);
717   setTargetDAGCombine(ISD::ATOMIC_STORE);
718   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
719   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
720   setTargetDAGCombine(ISD::ATOMIC_SWAP);
721   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
722   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
723   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
724   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
725   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
726   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
727   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
728   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
729   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
730   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
731   setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
732 
733   setSchedulingPreference(Sched::RegPressure);
734 }
735 
736 const GCNSubtarget *SITargetLowering::getSubtarget() const {
737   return Subtarget;
738 }
739 
740 //===----------------------------------------------------------------------===//
741 // TargetLowering queries
742 //===----------------------------------------------------------------------===//
743 
744 // v_mad_mix* support a conversion from f16 to f32.
745 //
746 // There is only one special case when denormals are enabled we don't currently,
747 // where this is OK to use.
748 bool SITargetLowering::isFPExtFoldable(unsigned Opcode,
749                                            EVT DestVT, EVT SrcVT) const {
750   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
751           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
752          DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
753          SrcVT.getScalarType() == MVT::f16;
754 }
755 
756 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
757   // SI has some legal vector types, but no legal vector operations. Say no
758   // shuffles are legal in order to prefer scalarizing some vector operations.
759   return false;
760 }
761 
762 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
763                                                     CallingConv::ID CC,
764                                                     EVT VT) const {
765   // TODO: Consider splitting all arguments into 32-bit pieces.
766   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
767     EVT ScalarVT = VT.getScalarType();
768     unsigned Size = ScalarVT.getSizeInBits();
769     if (Size == 32)
770       return ScalarVT.getSimpleVT();
771 
772     if (Size == 64)
773       return MVT::i32;
774 
775     if (Size == 16 && Subtarget->has16BitInsts())
776       return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
777   }
778 
779   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
780 }
781 
782 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
783                                                          CallingConv::ID CC,
784                                                          EVT VT) const {
785   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
786     unsigned NumElts = VT.getVectorNumElements();
787     EVT ScalarVT = VT.getScalarType();
788     unsigned Size = ScalarVT.getSizeInBits();
789 
790     if (Size == 32)
791       return NumElts;
792 
793     if (Size == 64)
794       return 2 * NumElts;
795 
796     if (Size == 16 && Subtarget->has16BitInsts())
797       return (VT.getVectorNumElements() + 1) / 2;
798   }
799 
800   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
801 }
802 
803 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
804   LLVMContext &Context, CallingConv::ID CC,
805   EVT VT, EVT &IntermediateVT,
806   unsigned &NumIntermediates, MVT &RegisterVT) const {
807   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
808     unsigned NumElts = VT.getVectorNumElements();
809     EVT ScalarVT = VT.getScalarType();
810     unsigned Size = ScalarVT.getSizeInBits();
811     if (Size == 32) {
812       RegisterVT = ScalarVT.getSimpleVT();
813       IntermediateVT = RegisterVT;
814       NumIntermediates = NumElts;
815       return NumIntermediates;
816     }
817 
818     if (Size == 64) {
819       RegisterVT = MVT::i32;
820       IntermediateVT = RegisterVT;
821       NumIntermediates = 2 * NumElts;
822       return NumIntermediates;
823     }
824 
825     // FIXME: We should fix the ABI to be the same on targets without 16-bit
826     // support, but unless we can properly handle 3-vectors, it will be still be
827     // inconsistent.
828     if (Size == 16 && Subtarget->has16BitInsts()) {
829       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
830       IntermediateVT = RegisterVT;
831       NumIntermediates = (NumElts + 1) / 2;
832       return NumIntermediates;
833     }
834   }
835 
836   return TargetLowering::getVectorTypeBreakdownForCallingConv(
837     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
838 }
839 
840 static MVT memVTFromAggregate(Type *Ty) {
841   // Only limited forms of aggregate type currently expected.
842   assert(Ty->isStructTy() && "Expected struct type");
843 
844 
845   Type *ElementType = nullptr;
846   unsigned NumElts;
847   if (Ty->getContainedType(0)->isVectorTy()) {
848     VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0));
849     ElementType = VecComponent->getElementType();
850     NumElts = VecComponent->getNumElements();
851   } else {
852     ElementType = Ty->getContainedType(0);
853     NumElts = 1;
854   }
855 
856   assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type");
857 
858   // Calculate the size of the memVT type from the aggregate
859   unsigned Pow2Elts = 0;
860   unsigned ElementSize;
861   switch (ElementType->getTypeID()) {
862     default:
863       llvm_unreachable("Unknown type!");
864     case Type::IntegerTyID:
865       ElementSize = cast<IntegerType>(ElementType)->getBitWidth();
866       break;
867     case Type::HalfTyID:
868       ElementSize = 16;
869       break;
870     case Type::FloatTyID:
871       ElementSize = 32;
872       break;
873   }
874   unsigned AdditionalElts = ElementSize == 16 ? 2 : 1;
875   Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts);
876 
877   return MVT::getVectorVT(MVT::getVT(ElementType, false),
878                           Pow2Elts);
879 }
880 
881 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
882                                           const CallInst &CI,
883                                           MachineFunction &MF,
884                                           unsigned IntrID) const {
885   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
886           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
887     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
888                                                   (Intrinsic::ID)IntrID);
889     if (Attr.hasFnAttribute(Attribute::ReadNone))
890       return false;
891 
892     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
893 
894     if (RsrcIntr->IsImage) {
895       Info.ptrVal = MFI->getImagePSV(
896         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
897         CI.getArgOperand(RsrcIntr->RsrcArg));
898       Info.align = 0;
899     } else {
900       Info.ptrVal = MFI->getBufferPSV(
901         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
902         CI.getArgOperand(RsrcIntr->RsrcArg));
903     }
904 
905     Info.flags = MachineMemOperand::MODereferenceable;
906     if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
907       Info.opc = ISD::INTRINSIC_W_CHAIN;
908       Info.memVT = MVT::getVT(CI.getType(), true);
909       if (Info.memVT == MVT::Other) {
910         // Some intrinsics return an aggregate type - special case to work out
911         // the correct memVT
912         Info.memVT = memVTFromAggregate(CI.getType());
913       }
914       Info.flags |= MachineMemOperand::MOLoad;
915     } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
916       Info.opc = ISD::INTRINSIC_VOID;
917       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
918       Info.flags |= MachineMemOperand::MOStore;
919     } else {
920       // Atomic
921       Info.opc = ISD::INTRINSIC_W_CHAIN;
922       Info.memVT = MVT::getVT(CI.getType());
923       Info.flags = MachineMemOperand::MOLoad |
924                    MachineMemOperand::MOStore |
925                    MachineMemOperand::MODereferenceable;
926 
927       // XXX - Should this be volatile without known ordering?
928       Info.flags |= MachineMemOperand::MOVolatile;
929     }
930     return true;
931   }
932 
933   switch (IntrID) {
934   case Intrinsic::amdgcn_atomic_inc:
935   case Intrinsic::amdgcn_atomic_dec:
936   case Intrinsic::amdgcn_ds_ordered_add:
937   case Intrinsic::amdgcn_ds_ordered_swap:
938   case Intrinsic::amdgcn_ds_fadd:
939   case Intrinsic::amdgcn_ds_fmin:
940   case Intrinsic::amdgcn_ds_fmax: {
941     Info.opc = ISD::INTRINSIC_W_CHAIN;
942     Info.memVT = MVT::getVT(CI.getType());
943     Info.ptrVal = CI.getOperand(0);
944     Info.align = 0;
945     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
946 
947     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
948     if (!Vol->isZero())
949       Info.flags |= MachineMemOperand::MOVolatile;
950 
951     return true;
952   }
953   case Intrinsic::amdgcn_ds_append:
954   case Intrinsic::amdgcn_ds_consume: {
955     Info.opc = ISD::INTRINSIC_W_CHAIN;
956     Info.memVT = MVT::getVT(CI.getType());
957     Info.ptrVal = CI.getOperand(0);
958     Info.align = 0;
959     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
960 
961     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
962     if (!Vol->isZero())
963       Info.flags |= MachineMemOperand::MOVolatile;
964 
965     return true;
966   }
967   case Intrinsic::amdgcn_ds_gws_init:
968   case Intrinsic::amdgcn_ds_gws_barrier:
969   case Intrinsic::amdgcn_ds_gws_sema_v:
970   case Intrinsic::amdgcn_ds_gws_sema_br:
971   case Intrinsic::amdgcn_ds_gws_sema_p:
972   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
973     Info.opc = ISD::INTRINSIC_VOID;
974 
975     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
976     Info.ptrVal =
977         MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
978 
979     // This is an abstract access, but we need to specify a type and size.
980     Info.memVT = MVT::i32;
981     Info.size = 4;
982     Info.align = 4;
983 
984     Info.flags = MachineMemOperand::MOStore;
985     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
986       Info.flags = MachineMemOperand::MOLoad;
987     return true;
988   }
989   default:
990     return false;
991   }
992 }
993 
994 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
995                                             SmallVectorImpl<Value*> &Ops,
996                                             Type *&AccessTy) const {
997   switch (II->getIntrinsicID()) {
998   case Intrinsic::amdgcn_atomic_inc:
999   case Intrinsic::amdgcn_atomic_dec:
1000   case Intrinsic::amdgcn_ds_ordered_add:
1001   case Intrinsic::amdgcn_ds_ordered_swap:
1002   case Intrinsic::amdgcn_ds_fadd:
1003   case Intrinsic::amdgcn_ds_fmin:
1004   case Intrinsic::amdgcn_ds_fmax: {
1005     Value *Ptr = II->getArgOperand(0);
1006     AccessTy = II->getType();
1007     Ops.push_back(Ptr);
1008     return true;
1009   }
1010   default:
1011     return false;
1012   }
1013 }
1014 
1015 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1016   if (!Subtarget->hasFlatInstOffsets()) {
1017     // Flat instructions do not have offsets, and only have the register
1018     // address.
1019     return AM.BaseOffs == 0 && AM.Scale == 0;
1020   }
1021 
1022   // GFX9 added a 13-bit signed offset. When using regular flat instructions,
1023   // the sign bit is ignored and is treated as a 12-bit unsigned offset.
1024 
1025   // GFX10 shrinked signed offset to 12 bits. When using regular flat
1026   // instructions, the sign bit is also ignored and is treated as 11-bit
1027   // unsigned offset.
1028 
1029   if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
1030     return isUInt<11>(AM.BaseOffs) && AM.Scale == 0;
1031 
1032   // Just r + i
1033   return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
1034 }
1035 
1036 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1037   if (Subtarget->hasFlatGlobalInsts())
1038     return isInt<13>(AM.BaseOffs) && AM.Scale == 0;
1039 
1040   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1041       // Assume the we will use FLAT for all global memory accesses
1042       // on VI.
1043       // FIXME: This assumption is currently wrong.  On VI we still use
1044       // MUBUF instructions for the r + i addressing mode.  As currently
1045       // implemented, the MUBUF instructions only work on buffer < 4GB.
1046       // It may be possible to support > 4GB buffers with MUBUF instructions,
1047       // by setting the stride value in the resource descriptor which would
1048       // increase the size limit to (stride * 4GB).  However, this is risky,
1049       // because it has never been validated.
1050     return isLegalFlatAddressingMode(AM);
1051   }
1052 
1053   return isLegalMUBUFAddressingMode(AM);
1054 }
1055 
1056 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1057   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1058   // additionally can do r + r + i with addr64. 32-bit has more addressing
1059   // mode options. Depending on the resource constant, it can also do
1060   // (i64 r0) + (i32 r1) * (i14 i).
1061   //
1062   // Private arrays end up using a scratch buffer most of the time, so also
1063   // assume those use MUBUF instructions. Scratch loads / stores are currently
1064   // implemented as mubuf instructions with offen bit set, so slightly
1065   // different than the normal addr64.
1066   if (!isUInt<12>(AM.BaseOffs))
1067     return false;
1068 
1069   // FIXME: Since we can split immediate into soffset and immediate offset,
1070   // would it make sense to allow any immediate?
1071 
1072   switch (AM.Scale) {
1073   case 0: // r + i or just i, depending on HasBaseReg.
1074     return true;
1075   case 1:
1076     return true; // We have r + r or r + i.
1077   case 2:
1078     if (AM.HasBaseReg) {
1079       // Reject 2 * r + r.
1080       return false;
1081     }
1082 
1083     // Allow 2 * r as r + r
1084     // Or  2 * r + i is allowed as r + r + i.
1085     return true;
1086   default: // Don't allow n * r
1087     return false;
1088   }
1089 }
1090 
1091 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1092                                              const AddrMode &AM, Type *Ty,
1093                                              unsigned AS, Instruction *I) const {
1094   // No global is ever allowed as a base.
1095   if (AM.BaseGV)
1096     return false;
1097 
1098   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1099     return isLegalGlobalAddressingMode(AM);
1100 
1101   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1102       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1103       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1104     // If the offset isn't a multiple of 4, it probably isn't going to be
1105     // correctly aligned.
1106     // FIXME: Can we get the real alignment here?
1107     if (AM.BaseOffs % 4 != 0)
1108       return isLegalMUBUFAddressingMode(AM);
1109 
1110     // There are no SMRD extloads, so if we have to do a small type access we
1111     // will use a MUBUF load.
1112     // FIXME?: We also need to do this if unaligned, but we don't know the
1113     // alignment here.
1114     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1115       return isLegalGlobalAddressingMode(AM);
1116 
1117     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1118       // SMRD instructions have an 8-bit, dword offset on SI.
1119       if (!isUInt<8>(AM.BaseOffs / 4))
1120         return false;
1121     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1122       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1123       // in 8-bits, it can use a smaller encoding.
1124       if (!isUInt<32>(AM.BaseOffs / 4))
1125         return false;
1126     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1127       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1128       if (!isUInt<20>(AM.BaseOffs))
1129         return false;
1130     } else
1131       llvm_unreachable("unhandled generation");
1132 
1133     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1134       return true;
1135 
1136     if (AM.Scale == 1 && AM.HasBaseReg)
1137       return true;
1138 
1139     return false;
1140 
1141   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1142     return isLegalMUBUFAddressingMode(AM);
1143   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1144              AS == AMDGPUAS::REGION_ADDRESS) {
1145     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1146     // field.
1147     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1148     // an 8-bit dword offset but we don't know the alignment here.
1149     if (!isUInt<16>(AM.BaseOffs))
1150       return false;
1151 
1152     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1153       return true;
1154 
1155     if (AM.Scale == 1 && AM.HasBaseReg)
1156       return true;
1157 
1158     return false;
1159   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1160              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1161     // For an unknown address space, this usually means that this is for some
1162     // reason being used for pure arithmetic, and not based on some addressing
1163     // computation. We don't have instructions that compute pointers with any
1164     // addressing modes, so treat them as having no offset like flat
1165     // instructions.
1166     return isLegalFlatAddressingMode(AM);
1167   } else {
1168     llvm_unreachable("unhandled address space");
1169   }
1170 }
1171 
1172 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1173                                         const SelectionDAG &DAG) const {
1174   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1175     return (MemVT.getSizeInBits() <= 4 * 32);
1176   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1177     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1178     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1179   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1180     return (MemVT.getSizeInBits() <= 2 * 32);
1181   }
1182   return true;
1183 }
1184 
1185 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1186     EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1187     bool *IsFast) const {
1188   if (IsFast)
1189     *IsFast = false;
1190 
1191   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1192   // which isn't a simple VT.
1193   // Until MVT is extended to handle this, simply check for the size and
1194   // rely on the condition below: allow accesses if the size is a multiple of 4.
1195   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1196                            VT.getStoreSize() > 16)) {
1197     return false;
1198   }
1199 
1200   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1201       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1202     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1203     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1204     // with adjacent offsets.
1205     bool AlignedBy4 = (Align % 4 == 0);
1206     if (IsFast)
1207       *IsFast = AlignedBy4;
1208 
1209     return AlignedBy4;
1210   }
1211 
1212   // FIXME: We have to be conservative here and assume that flat operations
1213   // will access scratch.  If we had access to the IR function, then we
1214   // could determine if any private memory was used in the function.
1215   if (!Subtarget->hasUnalignedScratchAccess() &&
1216       (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
1217        AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
1218     bool AlignedBy4 = Align >= 4;
1219     if (IsFast)
1220       *IsFast = AlignedBy4;
1221 
1222     return AlignedBy4;
1223   }
1224 
1225   if (Subtarget->hasUnalignedBufferAccess()) {
1226     // If we have an uniform constant load, it still requires using a slow
1227     // buffer instruction if unaligned.
1228     if (IsFast) {
1229       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1230                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1231         (Align % 4 == 0) : true;
1232     }
1233 
1234     return true;
1235   }
1236 
1237   // Smaller than dword value must be aligned.
1238   if (VT.bitsLT(MVT::i32))
1239     return false;
1240 
1241   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1242   // byte-address are ignored, thus forcing Dword alignment.
1243   // This applies to private, global, and constant memory.
1244   if (IsFast)
1245     *IsFast = true;
1246 
1247   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
1248 }
1249 
1250 EVT SITargetLowering::getOptimalMemOpType(
1251     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
1252     bool ZeroMemset, bool MemcpyStrSrc,
1253     const AttributeList &FuncAttributes) const {
1254   // FIXME: Should account for address space here.
1255 
1256   // The default fallback uses the private pointer size as a guess for a type to
1257   // use. Make sure we switch these to 64-bit accesses.
1258 
1259   if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
1260     return MVT::v4i32;
1261 
1262   if (Size >= 8 && DstAlign >= 4)
1263     return MVT::v2i32;
1264 
1265   // Use the default.
1266   return MVT::Other;
1267 }
1268 
1269 static bool isFlatGlobalAddrSpace(unsigned AS) {
1270   return AS == AMDGPUAS::GLOBAL_ADDRESS ||
1271          AS == AMDGPUAS::FLAT_ADDRESS ||
1272          AS == AMDGPUAS::CONSTANT_ADDRESS ||
1273          AS > AMDGPUAS::MAX_AMDGPU_ADDRESS;
1274 }
1275 
1276 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1277                                            unsigned DestAS) const {
1278   return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
1279 }
1280 
1281 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1282   const MemSDNode *MemNode = cast<MemSDNode>(N);
1283   const Value *Ptr = MemNode->getMemOperand()->getValue();
1284   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1285   return I && I->getMetadata("amdgpu.noclobber");
1286 }
1287 
1288 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1289                                            unsigned DestAS) const {
1290   // Flat -> private/local is a simple truncate.
1291   // Flat -> global is no-op
1292   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1293     return true;
1294 
1295   return isNoopAddrSpaceCast(SrcAS, DestAS);
1296 }
1297 
1298 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1299   const MemSDNode *MemNode = cast<MemSDNode>(N);
1300 
1301   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1302 }
1303 
1304 TargetLoweringBase::LegalizeTypeAction
1305 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1306   if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
1307     return TypeSplitVector;
1308 
1309   return TargetLoweringBase::getPreferredVectorAction(VT);
1310 }
1311 
1312 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1313                                                          Type *Ty) const {
1314   // FIXME: Could be smarter if called for vector constants.
1315   return true;
1316 }
1317 
1318 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1319   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1320     switch (Op) {
1321     case ISD::LOAD:
1322     case ISD::STORE:
1323 
1324     // These operations are done with 32-bit instructions anyway.
1325     case ISD::AND:
1326     case ISD::OR:
1327     case ISD::XOR:
1328     case ISD::SELECT:
1329       // TODO: Extensions?
1330       return true;
1331     default:
1332       return false;
1333     }
1334   }
1335 
1336   // SimplifySetCC uses this function to determine whether or not it should
1337   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1338   if (VT == MVT::i1 && Op == ISD::SETCC)
1339     return false;
1340 
1341   return TargetLowering::isTypeDesirableForOp(Op, VT);
1342 }
1343 
1344 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1345                                                    const SDLoc &SL,
1346                                                    SDValue Chain,
1347                                                    uint64_t Offset) const {
1348   const DataLayout &DL = DAG.getDataLayout();
1349   MachineFunction &MF = DAG.getMachineFunction();
1350   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1351 
1352   const ArgDescriptor *InputPtrReg;
1353   const TargetRegisterClass *RC;
1354 
1355   std::tie(InputPtrReg, RC)
1356     = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1357 
1358   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1359   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1360   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1361     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1362 
1363   return DAG.getObjectPtrOffset(SL, BasePtr, Offset);
1364 }
1365 
1366 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1367                                             const SDLoc &SL) const {
1368   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1369                                                FIRST_IMPLICIT);
1370   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1371 }
1372 
1373 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1374                                          const SDLoc &SL, SDValue Val,
1375                                          bool Signed,
1376                                          const ISD::InputArg *Arg) const {
1377   // First, if it is a widened vector, narrow it.
1378   if (VT.isVector() &&
1379       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1380     EVT NarrowedVT =
1381         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1382                          VT.getVectorNumElements());
1383     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1384                       DAG.getConstant(0, SL, MVT::i32));
1385   }
1386 
1387   // Then convert the vector elements or scalar value.
1388   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1389       VT.bitsLT(MemVT)) {
1390     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1391     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1392   }
1393 
1394   if (MemVT.isFloatingPoint())
1395     Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
1396   else if (Signed)
1397     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1398   else
1399     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1400 
1401   return Val;
1402 }
1403 
1404 SDValue SITargetLowering::lowerKernargMemParameter(
1405   SelectionDAG &DAG, EVT VT, EVT MemVT,
1406   const SDLoc &SL, SDValue Chain,
1407   uint64_t Offset, unsigned Align, bool Signed,
1408   const ISD::InputArg *Arg) const {
1409   Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
1410   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
1411   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
1412 
1413   // Try to avoid using an extload by loading earlier than the argument address,
1414   // and extracting the relevant bits. The load should hopefully be merged with
1415   // the previous argument.
1416   if (MemVT.getStoreSize() < 4 && Align < 4) {
1417     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1418     int64_t AlignDownOffset = alignDown(Offset, 4);
1419     int64_t OffsetDiff = Offset - AlignDownOffset;
1420 
1421     EVT IntVT = MemVT.changeTypeToInteger();
1422 
1423     // TODO: If we passed in the base kernel offset we could have a better
1424     // alignment than 4, but we don't really need it.
1425     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1426     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4,
1427                                MachineMemOperand::MODereferenceable |
1428                                MachineMemOperand::MOInvariant);
1429 
1430     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1431     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1432 
1433     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1434     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1435     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1436 
1437 
1438     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1439   }
1440 
1441   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1442   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
1443                              MachineMemOperand::MODereferenceable |
1444                              MachineMemOperand::MOInvariant);
1445 
1446   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1447   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1448 }
1449 
1450 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1451                                               const SDLoc &SL, SDValue Chain,
1452                                               const ISD::InputArg &Arg) const {
1453   MachineFunction &MF = DAG.getMachineFunction();
1454   MachineFrameInfo &MFI = MF.getFrameInfo();
1455 
1456   if (Arg.Flags.isByVal()) {
1457     unsigned Size = Arg.Flags.getByValSize();
1458     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1459     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1460   }
1461 
1462   unsigned ArgOffset = VA.getLocMemOffset();
1463   unsigned ArgSize = VA.getValVT().getStoreSize();
1464 
1465   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1466 
1467   // Create load nodes to retrieve arguments from the stack.
1468   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1469   SDValue ArgValue;
1470 
1471   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1472   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1473   MVT MemVT = VA.getValVT();
1474 
1475   switch (VA.getLocInfo()) {
1476   default:
1477     break;
1478   case CCValAssign::BCvt:
1479     MemVT = VA.getLocVT();
1480     break;
1481   case CCValAssign::SExt:
1482     ExtType = ISD::SEXTLOAD;
1483     break;
1484   case CCValAssign::ZExt:
1485     ExtType = ISD::ZEXTLOAD;
1486     break;
1487   case CCValAssign::AExt:
1488     ExtType = ISD::EXTLOAD;
1489     break;
1490   }
1491 
1492   ArgValue = DAG.getExtLoad(
1493     ExtType, SL, VA.getLocVT(), Chain, FIN,
1494     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1495     MemVT);
1496   return ArgValue;
1497 }
1498 
1499 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1500   const SIMachineFunctionInfo &MFI,
1501   EVT VT,
1502   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1503   const ArgDescriptor *Reg;
1504   const TargetRegisterClass *RC;
1505 
1506   std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
1507   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1508 }
1509 
1510 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1511                                    CallingConv::ID CallConv,
1512                                    ArrayRef<ISD::InputArg> Ins,
1513                                    BitVector &Skipped,
1514                                    FunctionType *FType,
1515                                    SIMachineFunctionInfo *Info) {
1516   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1517     const ISD::InputArg *Arg = &Ins[I];
1518 
1519     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1520            "vector type argument should have been split");
1521 
1522     // First check if it's a PS input addr.
1523     if (CallConv == CallingConv::AMDGPU_PS &&
1524         !Arg->Flags.isInReg() && !Arg->Flags.isByVal() && PSInputNum <= 15) {
1525 
1526       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1527 
1528       // Inconveniently only the first part of the split is marked as isSplit,
1529       // so skip to the end. We only want to increment PSInputNum once for the
1530       // entire split argument.
1531       if (Arg->Flags.isSplit()) {
1532         while (!Arg->Flags.isSplitEnd()) {
1533           assert(!Arg->VT.isVector() &&
1534                  "unexpected vector split in ps argument type");
1535           if (!SkipArg)
1536             Splits.push_back(*Arg);
1537           Arg = &Ins[++I];
1538         }
1539       }
1540 
1541       if (SkipArg) {
1542         // We can safely skip PS inputs.
1543         Skipped.set(Arg->getOrigArgIndex());
1544         ++PSInputNum;
1545         continue;
1546       }
1547 
1548       Info->markPSInputAllocated(PSInputNum);
1549       if (Arg->Used)
1550         Info->markPSInputEnabled(PSInputNum);
1551 
1552       ++PSInputNum;
1553     }
1554 
1555     Splits.push_back(*Arg);
1556   }
1557 }
1558 
1559 // Allocate special inputs passed in VGPRs.
1560 static void allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1561                                            MachineFunction &MF,
1562                                            const SIRegisterInfo &TRI,
1563                                            SIMachineFunctionInfo &Info) {
1564   if (Info.hasWorkItemIDX()) {
1565     unsigned Reg = AMDGPU::VGPR0;
1566     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1567 
1568     CCInfo.AllocateReg(Reg);
1569     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1570   }
1571 
1572   if (Info.hasWorkItemIDY()) {
1573     unsigned Reg = AMDGPU::VGPR1;
1574     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1575 
1576     CCInfo.AllocateReg(Reg);
1577     Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1578   }
1579 
1580   if (Info.hasWorkItemIDZ()) {
1581     unsigned Reg = AMDGPU::VGPR2;
1582     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1583 
1584     CCInfo.AllocateReg(Reg);
1585     Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1586   }
1587 }
1588 
1589 // Try to allocate a VGPR at the end of the argument list, or if no argument
1590 // VGPRs are left allocating a stack slot.
1591 // If \p Mask is is given it indicates bitfield position in the register.
1592 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1593 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1594                                          ArgDescriptor Arg = ArgDescriptor()) {
1595   if (Arg.isSet())
1596     return ArgDescriptor::createArg(Arg, Mask);
1597 
1598   ArrayRef<MCPhysReg> ArgVGPRs
1599     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1600   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1601   if (RegIdx == ArgVGPRs.size()) {
1602     // Spill to stack required.
1603     int64_t Offset = CCInfo.AllocateStack(4, 4);
1604 
1605     return ArgDescriptor::createStack(Offset, Mask);
1606   }
1607 
1608   unsigned Reg = ArgVGPRs[RegIdx];
1609   Reg = CCInfo.AllocateReg(Reg);
1610   assert(Reg != AMDGPU::NoRegister);
1611 
1612   MachineFunction &MF = CCInfo.getMachineFunction();
1613   MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1614   return ArgDescriptor::createRegister(Reg, Mask);
1615 }
1616 
1617 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1618                                              const TargetRegisterClass *RC,
1619                                              unsigned NumArgRegs) {
1620   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1621   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1622   if (RegIdx == ArgSGPRs.size())
1623     report_fatal_error("ran out of SGPRs for arguments");
1624 
1625   unsigned Reg = ArgSGPRs[RegIdx];
1626   Reg = CCInfo.AllocateReg(Reg);
1627   assert(Reg != AMDGPU::NoRegister);
1628 
1629   MachineFunction &MF = CCInfo.getMachineFunction();
1630   MF.addLiveIn(Reg, RC);
1631   return ArgDescriptor::createRegister(Reg);
1632 }
1633 
1634 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1635   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1636 }
1637 
1638 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1639   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1640 }
1641 
1642 static void allocateSpecialInputVGPRs(CCState &CCInfo,
1643                                       MachineFunction &MF,
1644                                       const SIRegisterInfo &TRI,
1645                                       SIMachineFunctionInfo &Info) {
1646   const unsigned Mask = 0x3ff;
1647   ArgDescriptor Arg;
1648 
1649   if (Info.hasWorkItemIDX()) {
1650     Arg = allocateVGPR32Input(CCInfo, Mask);
1651     Info.setWorkItemIDX(Arg);
1652   }
1653 
1654   if (Info.hasWorkItemIDY()) {
1655     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1656     Info.setWorkItemIDY(Arg);
1657   }
1658 
1659   if (Info.hasWorkItemIDZ())
1660     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1661 }
1662 
1663 static void allocateSpecialInputSGPRs(CCState &CCInfo,
1664                                       MachineFunction &MF,
1665                                       const SIRegisterInfo &TRI,
1666                                       SIMachineFunctionInfo &Info) {
1667   auto &ArgInfo = Info.getArgInfo();
1668 
1669   // TODO: Unify handling with private memory pointers.
1670 
1671   if (Info.hasDispatchPtr())
1672     ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1673 
1674   if (Info.hasQueuePtr())
1675     ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1676 
1677   if (Info.hasKernargSegmentPtr())
1678     ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
1679 
1680   if (Info.hasDispatchID())
1681     ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1682 
1683   // flat_scratch_init is not applicable for non-kernel functions.
1684 
1685   if (Info.hasWorkGroupIDX())
1686     ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1687 
1688   if (Info.hasWorkGroupIDY())
1689     ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1690 
1691   if (Info.hasWorkGroupIDZ())
1692     ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1693 
1694   if (Info.hasImplicitArgPtr())
1695     ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1696 }
1697 
1698 // Allocate special inputs passed in user SGPRs.
1699 static void allocateHSAUserSGPRs(CCState &CCInfo,
1700                                  MachineFunction &MF,
1701                                  const SIRegisterInfo &TRI,
1702                                  SIMachineFunctionInfo &Info) {
1703   if (Info.hasImplicitBufferPtr()) {
1704     unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1705     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1706     CCInfo.AllocateReg(ImplicitBufferPtrReg);
1707   }
1708 
1709   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1710   if (Info.hasPrivateSegmentBuffer()) {
1711     unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1712     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1713     CCInfo.AllocateReg(PrivateSegmentBufferReg);
1714   }
1715 
1716   if (Info.hasDispatchPtr()) {
1717     unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
1718     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1719     CCInfo.AllocateReg(DispatchPtrReg);
1720   }
1721 
1722   if (Info.hasQueuePtr()) {
1723     unsigned QueuePtrReg = Info.addQueuePtr(TRI);
1724     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1725     CCInfo.AllocateReg(QueuePtrReg);
1726   }
1727 
1728   if (Info.hasKernargSegmentPtr()) {
1729     unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI);
1730     MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1731     CCInfo.AllocateReg(InputPtrReg);
1732   }
1733 
1734   if (Info.hasDispatchID()) {
1735     unsigned DispatchIDReg = Info.addDispatchID(TRI);
1736     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1737     CCInfo.AllocateReg(DispatchIDReg);
1738   }
1739 
1740   if (Info.hasFlatScratchInit()) {
1741     unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1742     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1743     CCInfo.AllocateReg(FlatScratchInitReg);
1744   }
1745 
1746   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1747   // these from the dispatch pointer.
1748 }
1749 
1750 // Allocate special input registers that are initialized per-wave.
1751 static void allocateSystemSGPRs(CCState &CCInfo,
1752                                 MachineFunction &MF,
1753                                 SIMachineFunctionInfo &Info,
1754                                 CallingConv::ID CallConv,
1755                                 bool IsShader) {
1756   if (Info.hasWorkGroupIDX()) {
1757     unsigned Reg = Info.addWorkGroupIDX();
1758     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1759     CCInfo.AllocateReg(Reg);
1760   }
1761 
1762   if (Info.hasWorkGroupIDY()) {
1763     unsigned Reg = Info.addWorkGroupIDY();
1764     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1765     CCInfo.AllocateReg(Reg);
1766   }
1767 
1768   if (Info.hasWorkGroupIDZ()) {
1769     unsigned Reg = Info.addWorkGroupIDZ();
1770     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1771     CCInfo.AllocateReg(Reg);
1772   }
1773 
1774   if (Info.hasWorkGroupInfo()) {
1775     unsigned Reg = Info.addWorkGroupInfo();
1776     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1777     CCInfo.AllocateReg(Reg);
1778   }
1779 
1780   if (Info.hasPrivateSegmentWaveByteOffset()) {
1781     // Scratch wave offset passed in system SGPR.
1782     unsigned PrivateSegmentWaveByteOffsetReg;
1783 
1784     if (IsShader) {
1785       PrivateSegmentWaveByteOffsetReg =
1786         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
1787 
1788       // This is true if the scratch wave byte offset doesn't have a fixed
1789       // location.
1790       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
1791         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1792         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1793       }
1794     } else
1795       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
1796 
1797     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1798     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1799   }
1800 }
1801 
1802 static void reservePrivateMemoryRegs(const TargetMachine &TM,
1803                                      MachineFunction &MF,
1804                                      const SIRegisterInfo &TRI,
1805                                      SIMachineFunctionInfo &Info) {
1806   // Now that we've figured out where the scratch register inputs are, see if
1807   // should reserve the arguments and use them directly.
1808   MachineFrameInfo &MFI = MF.getFrameInfo();
1809   bool HasStackObjects = MFI.hasStackObjects();
1810   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1811 
1812   // Record that we know we have non-spill stack objects so we don't need to
1813   // check all stack objects later.
1814   if (HasStackObjects)
1815     Info.setHasNonSpillStackObjects(true);
1816 
1817   // Everything live out of a block is spilled with fast regalloc, so it's
1818   // almost certain that spilling will be required.
1819   if (TM.getOptLevel() == CodeGenOpt::None)
1820     HasStackObjects = true;
1821 
1822   // For now assume stack access is needed in any callee functions, so we need
1823   // the scratch registers to pass in.
1824   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
1825 
1826   if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
1827     // If we have stack objects, we unquestionably need the private buffer
1828     // resource. For the Code Object V2 ABI, this will be the first 4 user
1829     // SGPR inputs. We can reserve those and use them directly.
1830 
1831     unsigned PrivateSegmentBufferReg =
1832         Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
1833     Info.setScratchRSrcReg(PrivateSegmentBufferReg);
1834   } else {
1835     unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
1836     // We tentatively reserve the last registers (skipping the last registers
1837     // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
1838     // we'll replace these with the ones immediately after those which were
1839     // really allocated. In the prologue copies will be inserted from the
1840     // argument to these reserved registers.
1841 
1842     // Without HSA, relocations are used for the scratch pointer and the
1843     // buffer resource setup is always inserted in the prologue. Scratch wave
1844     // offset is still in an input SGPR.
1845     Info.setScratchRSrcReg(ReservedBufferReg);
1846   }
1847 
1848   // hasFP should be accurate for kernels even before the frame is finalized.
1849   if (ST.getFrameLowering()->hasFP(MF)) {
1850     MachineRegisterInfo &MRI = MF.getRegInfo();
1851 
1852     // Try to use s32 as the SP, but move it if it would interfere with input
1853     // arguments. This won't work with calls though.
1854     //
1855     // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
1856     // registers.
1857     if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
1858       Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
1859     } else {
1860       assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
1861 
1862       if (MFI.hasCalls())
1863         report_fatal_error("call in graphics shader with too many input SGPRs");
1864 
1865       for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
1866         if (!MRI.isLiveIn(Reg)) {
1867           Info.setStackPtrOffsetReg(Reg);
1868           break;
1869         }
1870       }
1871 
1872       if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
1873         report_fatal_error("failed to find register for SP");
1874     }
1875 
1876     if (MFI.hasCalls()) {
1877       Info.setScratchWaveOffsetReg(AMDGPU::SGPR33);
1878       Info.setFrameOffsetReg(AMDGPU::SGPR33);
1879     } else {
1880       unsigned ReservedOffsetReg =
1881         TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1882       Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1883       Info.setFrameOffsetReg(ReservedOffsetReg);
1884     }
1885   } else if (RequiresStackAccess) {
1886     assert(!MFI.hasCalls());
1887     // We know there are accesses and they will be done relative to SP, so just
1888     // pin it to the input.
1889     //
1890     // FIXME: Should not do this if inline asm is reading/writing these
1891     // registers.
1892     unsigned PreloadedSP = Info.getPreloadedReg(
1893         AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1894 
1895     Info.setStackPtrOffsetReg(PreloadedSP);
1896     Info.setScratchWaveOffsetReg(PreloadedSP);
1897     Info.setFrameOffsetReg(PreloadedSP);
1898   } else {
1899     assert(!MFI.hasCalls());
1900 
1901     // There may not be stack access at all. There may still be spills, or
1902     // access of a constant pointer (in which cases an extra copy will be
1903     // emitted in the prolog).
1904     unsigned ReservedOffsetReg
1905       = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1906     Info.setStackPtrOffsetReg(ReservedOffsetReg);
1907     Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1908     Info.setFrameOffsetReg(ReservedOffsetReg);
1909   }
1910 }
1911 
1912 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
1913   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
1914   return !Info->isEntryFunction();
1915 }
1916 
1917 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
1918 
1919 }
1920 
1921 void SITargetLowering::insertCopiesSplitCSR(
1922   MachineBasicBlock *Entry,
1923   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
1924   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1925 
1926   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
1927   if (!IStart)
1928     return;
1929 
1930   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1931   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
1932   MachineBasicBlock::iterator MBBI = Entry->begin();
1933   for (const MCPhysReg *I = IStart; *I; ++I) {
1934     const TargetRegisterClass *RC = nullptr;
1935     if (AMDGPU::SReg_64RegClass.contains(*I))
1936       RC = &AMDGPU::SGPR_64RegClass;
1937     else if (AMDGPU::SReg_32RegClass.contains(*I))
1938       RC = &AMDGPU::SGPR_32RegClass;
1939     else
1940       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
1941 
1942     unsigned NewVR = MRI->createVirtualRegister(RC);
1943     // Create copy from CSR to a virtual register.
1944     Entry->addLiveIn(*I);
1945     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
1946       .addReg(*I);
1947 
1948     // Insert the copy-back instructions right before the terminator.
1949     for (auto *Exit : Exits)
1950       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
1951               TII->get(TargetOpcode::COPY), *I)
1952         .addReg(NewVR);
1953   }
1954 }
1955 
1956 SDValue SITargetLowering::LowerFormalArguments(
1957     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1958     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1959     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1960   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1961 
1962   MachineFunction &MF = DAG.getMachineFunction();
1963   const Function &Fn = MF.getFunction();
1964   FunctionType *FType = MF.getFunction().getFunctionType();
1965   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1966 
1967   if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
1968     DiagnosticInfoUnsupported NoGraphicsHSA(
1969         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
1970     DAG.getContext()->diagnose(NoGraphicsHSA);
1971     return DAG.getEntryNode();
1972   }
1973 
1974   SmallVector<ISD::InputArg, 16> Splits;
1975   SmallVector<CCValAssign, 16> ArgLocs;
1976   BitVector Skipped(Ins.size());
1977   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1978                  *DAG.getContext());
1979 
1980   bool IsShader = AMDGPU::isShader(CallConv);
1981   bool IsKernel = AMDGPU::isKernel(CallConv);
1982   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
1983 
1984   if (IsShader) {
1985     processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
1986 
1987     // At least one interpolation mode must be enabled or else the GPU will
1988     // hang.
1989     //
1990     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
1991     // set PSInputAddr, the user wants to enable some bits after the compilation
1992     // based on run-time states. Since we can't know what the final PSInputEna
1993     // will look like, so we shouldn't do anything here and the user should take
1994     // responsibility for the correct programming.
1995     //
1996     // Otherwise, the following restrictions apply:
1997     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
1998     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
1999     //   enabled too.
2000     if (CallConv == CallingConv::AMDGPU_PS) {
2001       if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2002            ((Info->getPSInputAddr() & 0xF) == 0 &&
2003             Info->isPSInputAllocated(11))) {
2004         CCInfo.AllocateReg(AMDGPU::VGPR0);
2005         CCInfo.AllocateReg(AMDGPU::VGPR1);
2006         Info->markPSInputAllocated(0);
2007         Info->markPSInputEnabled(0);
2008       }
2009       if (Subtarget->isAmdPalOS()) {
2010         // For isAmdPalOS, the user does not enable some bits after compilation
2011         // based on run-time states; the register values being generated here are
2012         // the final ones set in hardware. Therefore we need to apply the
2013         // workaround to PSInputAddr and PSInputEnable together.  (The case where
2014         // a bit is set in PSInputAddr but not PSInputEnable is where the
2015         // frontend set up an input arg for a particular interpolation mode, but
2016         // nothing uses that input arg. Really we should have an earlier pass
2017         // that removes such an arg.)
2018         unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2019         if ((PsInputBits & 0x7F) == 0 ||
2020             ((PsInputBits & 0xF) == 0 &&
2021              (PsInputBits >> 11 & 1)))
2022           Info->markPSInputEnabled(
2023               countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2024       }
2025     }
2026 
2027     assert(!Info->hasDispatchPtr() &&
2028            !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
2029            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2030            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2031            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2032            !Info->hasWorkItemIDZ());
2033   } else if (IsKernel) {
2034     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2035   } else {
2036     Splits.append(Ins.begin(), Ins.end());
2037   }
2038 
2039   if (IsEntryFunc) {
2040     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2041     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2042   }
2043 
2044   if (IsKernel) {
2045     analyzeFormalArgumentsCompute(CCInfo, Ins);
2046   } else {
2047     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2048     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2049   }
2050 
2051   SmallVector<SDValue, 16> Chains;
2052 
2053   // FIXME: This is the minimum kernel argument alignment. We should improve
2054   // this to the maximum alignment of the arguments.
2055   //
2056   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2057   // kern arg offset.
2058   const unsigned KernelArgBaseAlign = 16;
2059 
2060    for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2061     const ISD::InputArg &Arg = Ins[i];
2062     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2063       InVals.push_back(DAG.getUNDEF(Arg.VT));
2064       continue;
2065     }
2066 
2067     CCValAssign &VA = ArgLocs[ArgIdx++];
2068     MVT VT = VA.getLocVT();
2069 
2070     if (IsEntryFunc && VA.isMemLoc()) {
2071       VT = Ins[i].VT;
2072       EVT MemVT = VA.getLocVT();
2073 
2074       const uint64_t Offset = VA.getLocMemOffset();
2075       unsigned Align = MinAlign(KernelArgBaseAlign, Offset);
2076 
2077       SDValue Arg = lowerKernargMemParameter(
2078         DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]);
2079       Chains.push_back(Arg.getValue(1));
2080 
2081       auto *ParamTy =
2082         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2083       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2084           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2085                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2086         // On SI local pointers are just offsets into LDS, so they are always
2087         // less than 16-bits.  On CI and newer they could potentially be
2088         // real pointers, so we can't guarantee their size.
2089         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2090                           DAG.getValueType(MVT::i16));
2091       }
2092 
2093       InVals.push_back(Arg);
2094       continue;
2095     } else if (!IsEntryFunc && VA.isMemLoc()) {
2096       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2097       InVals.push_back(Val);
2098       if (!Arg.Flags.isByVal())
2099         Chains.push_back(Val.getValue(1));
2100       continue;
2101     }
2102 
2103     assert(VA.isRegLoc() && "Parameter must be in a register!");
2104 
2105     unsigned Reg = VA.getLocReg();
2106     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2107     EVT ValVT = VA.getValVT();
2108 
2109     Reg = MF.addLiveIn(Reg, RC);
2110     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2111 
2112     if (Arg.Flags.isSRet()) {
2113       // The return object should be reasonably addressable.
2114 
2115       // FIXME: This helps when the return is a real sret. If it is a
2116       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2117       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2118       unsigned NumBits
2119         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2120       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2121         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2122     }
2123 
2124     // If this is an 8 or 16-bit value, it is really passed promoted
2125     // to 32 bits. Insert an assert[sz]ext to capture this, then
2126     // truncate to the right size.
2127     switch (VA.getLocInfo()) {
2128     case CCValAssign::Full:
2129       break;
2130     case CCValAssign::BCvt:
2131       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2132       break;
2133     case CCValAssign::SExt:
2134       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2135                         DAG.getValueType(ValVT));
2136       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2137       break;
2138     case CCValAssign::ZExt:
2139       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2140                         DAG.getValueType(ValVT));
2141       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2142       break;
2143     case CCValAssign::AExt:
2144       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2145       break;
2146     default:
2147       llvm_unreachable("Unknown loc info!");
2148     }
2149 
2150     InVals.push_back(Val);
2151   }
2152 
2153   if (!IsEntryFunc) {
2154     // Special inputs come after user arguments.
2155     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2156   }
2157 
2158   // Start adding system SGPRs.
2159   if (IsEntryFunc) {
2160     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
2161   } else {
2162     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2163     CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
2164     CCInfo.AllocateReg(Info->getFrameOffsetReg());
2165     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2166   }
2167 
2168   auto &ArgUsageInfo =
2169     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2170   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2171 
2172   unsigned StackArgSize = CCInfo.getNextStackOffset();
2173   Info->setBytesInStackArgArea(StackArgSize);
2174 
2175   return Chains.empty() ? Chain :
2176     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2177 }
2178 
2179 // TODO: If return values can't fit in registers, we should return as many as
2180 // possible in registers before passing on stack.
2181 bool SITargetLowering::CanLowerReturn(
2182   CallingConv::ID CallConv,
2183   MachineFunction &MF, bool IsVarArg,
2184   const SmallVectorImpl<ISD::OutputArg> &Outs,
2185   LLVMContext &Context) const {
2186   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2187   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2188   // for shaders. Vector types should be explicitly handled by CC.
2189   if (AMDGPU::isEntryFunctionCC(CallConv))
2190     return true;
2191 
2192   SmallVector<CCValAssign, 16> RVLocs;
2193   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2194   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2195 }
2196 
2197 SDValue
2198 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2199                               bool isVarArg,
2200                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2201                               const SmallVectorImpl<SDValue> &OutVals,
2202                               const SDLoc &DL, SelectionDAG &DAG) const {
2203   MachineFunction &MF = DAG.getMachineFunction();
2204   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2205 
2206   if (AMDGPU::isKernel(CallConv)) {
2207     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2208                                              OutVals, DL, DAG);
2209   }
2210 
2211   bool IsShader = AMDGPU::isShader(CallConv);
2212 
2213   Info->setIfReturnsVoid(Outs.empty());
2214   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2215 
2216   // CCValAssign - represent the assignment of the return value to a location.
2217   SmallVector<CCValAssign, 48> RVLocs;
2218   SmallVector<ISD::OutputArg, 48> Splits;
2219 
2220   // CCState - Info about the registers and stack slots.
2221   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2222                  *DAG.getContext());
2223 
2224   // Analyze outgoing return values.
2225   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2226 
2227   SDValue Flag;
2228   SmallVector<SDValue, 48> RetOps;
2229   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2230 
2231   // Add return address for callable functions.
2232   if (!Info->isEntryFunction()) {
2233     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2234     SDValue ReturnAddrReg = CreateLiveInRegister(
2235       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2236 
2237     // FIXME: Should be able to use a vreg here, but need a way to prevent it
2238     // from being allcoated to a CSR.
2239 
2240     SDValue PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2241                                                 MVT::i64);
2242 
2243     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, Flag);
2244     Flag = Chain.getValue(1);
2245 
2246     RetOps.push_back(PhysReturnAddrReg);
2247   }
2248 
2249   // Copy the result values into the output registers.
2250   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2251        ++I, ++RealRVLocIdx) {
2252     CCValAssign &VA = RVLocs[I];
2253     assert(VA.isRegLoc() && "Can only return in registers!");
2254     // TODO: Partially return in registers if return values don't fit.
2255     SDValue Arg = OutVals[RealRVLocIdx];
2256 
2257     // Copied from other backends.
2258     switch (VA.getLocInfo()) {
2259     case CCValAssign::Full:
2260       break;
2261     case CCValAssign::BCvt:
2262       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2263       break;
2264     case CCValAssign::SExt:
2265       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2266       break;
2267     case CCValAssign::ZExt:
2268       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2269       break;
2270     case CCValAssign::AExt:
2271       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2272       break;
2273     default:
2274       llvm_unreachable("Unknown loc info!");
2275     }
2276 
2277     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2278     Flag = Chain.getValue(1);
2279     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2280   }
2281 
2282   // FIXME: Does sret work properly?
2283   if (!Info->isEntryFunction()) {
2284     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2285     const MCPhysReg *I =
2286       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2287     if (I) {
2288       for (; *I; ++I) {
2289         if (AMDGPU::SReg_64RegClass.contains(*I))
2290           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2291         else if (AMDGPU::SReg_32RegClass.contains(*I))
2292           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2293         else
2294           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2295       }
2296     }
2297   }
2298 
2299   // Update chain and glue.
2300   RetOps[0] = Chain;
2301   if (Flag.getNode())
2302     RetOps.push_back(Flag);
2303 
2304   unsigned Opc = AMDGPUISD::ENDPGM;
2305   if (!IsWaveEnd)
2306     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2307   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2308 }
2309 
2310 SDValue SITargetLowering::LowerCallResult(
2311     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2312     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2313     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2314     SDValue ThisVal) const {
2315   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2316 
2317   // Assign locations to each value returned by this call.
2318   SmallVector<CCValAssign, 16> RVLocs;
2319   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2320                  *DAG.getContext());
2321   CCInfo.AnalyzeCallResult(Ins, RetCC);
2322 
2323   // Copy all of the result registers out of their specified physreg.
2324   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2325     CCValAssign VA = RVLocs[i];
2326     SDValue Val;
2327 
2328     if (VA.isRegLoc()) {
2329       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2330       Chain = Val.getValue(1);
2331       InFlag = Val.getValue(2);
2332     } else if (VA.isMemLoc()) {
2333       report_fatal_error("TODO: return values in memory");
2334     } else
2335       llvm_unreachable("unknown argument location type");
2336 
2337     switch (VA.getLocInfo()) {
2338     case CCValAssign::Full:
2339       break;
2340     case CCValAssign::BCvt:
2341       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2342       break;
2343     case CCValAssign::ZExt:
2344       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2345                         DAG.getValueType(VA.getValVT()));
2346       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2347       break;
2348     case CCValAssign::SExt:
2349       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2350                         DAG.getValueType(VA.getValVT()));
2351       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2352       break;
2353     case CCValAssign::AExt:
2354       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2355       break;
2356     default:
2357       llvm_unreachable("Unknown loc info!");
2358     }
2359 
2360     InVals.push_back(Val);
2361   }
2362 
2363   return Chain;
2364 }
2365 
2366 // Add code to pass special inputs required depending on used features separate
2367 // from the explicit user arguments present in the IR.
2368 void SITargetLowering::passSpecialInputs(
2369     CallLoweringInfo &CLI,
2370     CCState &CCInfo,
2371     const SIMachineFunctionInfo &Info,
2372     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2373     SmallVectorImpl<SDValue> &MemOpChains,
2374     SDValue Chain) const {
2375   // If we don't have a call site, this was a call inserted by
2376   // legalization. These can never use special inputs.
2377   if (!CLI.CS)
2378     return;
2379 
2380   const Function *CalleeFunc = CLI.CS.getCalledFunction();
2381   assert(CalleeFunc);
2382 
2383   SelectionDAG &DAG = CLI.DAG;
2384   const SDLoc &DL = CLI.DL;
2385 
2386   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2387 
2388   auto &ArgUsageInfo =
2389     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2390   const AMDGPUFunctionArgInfo &CalleeArgInfo
2391     = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2392 
2393   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2394 
2395   // TODO: Unify with private memory register handling. This is complicated by
2396   // the fact that at least in kernels, the input argument is not necessarily
2397   // in the same location as the input.
2398   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2399     AMDGPUFunctionArgInfo::DISPATCH_PTR,
2400     AMDGPUFunctionArgInfo::QUEUE_PTR,
2401     AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
2402     AMDGPUFunctionArgInfo::DISPATCH_ID,
2403     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2404     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2405     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
2406     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
2407   };
2408 
2409   for (auto InputID : InputRegs) {
2410     const ArgDescriptor *OutgoingArg;
2411     const TargetRegisterClass *ArgRC;
2412 
2413     std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
2414     if (!OutgoingArg)
2415       continue;
2416 
2417     const ArgDescriptor *IncomingArg;
2418     const TargetRegisterClass *IncomingArgRC;
2419     std::tie(IncomingArg, IncomingArgRC)
2420       = CallerArgInfo.getPreloadedValue(InputID);
2421     assert(IncomingArgRC == ArgRC);
2422 
2423     // All special arguments are ints for now.
2424     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2425     SDValue InputReg;
2426 
2427     if (IncomingArg) {
2428       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2429     } else {
2430       // The implicit arg ptr is special because it doesn't have a corresponding
2431       // input for kernels, and is computed from the kernarg segment pointer.
2432       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2433       InputReg = getImplicitArgPtr(DAG, DL);
2434     }
2435 
2436     if (OutgoingArg->isRegister()) {
2437       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2438     } else {
2439       unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4);
2440       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2441                                               SpecialArgOffset);
2442       MemOpChains.push_back(ArgStore);
2443     }
2444   }
2445 
2446   // Pack workitem IDs into a single register or pass it as is if already
2447   // packed.
2448   const ArgDescriptor *OutgoingArg;
2449   const TargetRegisterClass *ArgRC;
2450 
2451   std::tie(OutgoingArg, ArgRC) =
2452     CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2453   if (!OutgoingArg)
2454     std::tie(OutgoingArg, ArgRC) =
2455       CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2456   if (!OutgoingArg)
2457     std::tie(OutgoingArg, ArgRC) =
2458       CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2459   if (!OutgoingArg)
2460     return;
2461 
2462   const ArgDescriptor *IncomingArgX
2463     = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first;
2464   const ArgDescriptor *IncomingArgY
2465     = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first;
2466   const ArgDescriptor *IncomingArgZ
2467     = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first;
2468 
2469   SDValue InputReg;
2470   SDLoc SL;
2471 
2472   // If incoming ids are not packed we need to pack them.
2473   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo.WorkItemIDX)
2474     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2475 
2476   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo.WorkItemIDY) {
2477     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2478     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2479                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2480     InputReg = InputReg.getNode() ?
2481                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2482   }
2483 
2484   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo.WorkItemIDZ) {
2485     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2486     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2487                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2488     InputReg = InputReg.getNode() ?
2489                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2490   }
2491 
2492   if (!InputReg.getNode()) {
2493     // Workitem ids are already packed, any of present incoming arguments
2494     // will carry all required fields.
2495     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2496       IncomingArgX ? *IncomingArgX :
2497       IncomingArgY ? *IncomingArgY :
2498                      *IncomingArgZ, ~0u);
2499     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2500   }
2501 
2502   if (OutgoingArg->isRegister()) {
2503     RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2504   } else {
2505     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4);
2506     SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2507                                             SpecialArgOffset);
2508     MemOpChains.push_back(ArgStore);
2509   }
2510 }
2511 
2512 static bool canGuaranteeTCO(CallingConv::ID CC) {
2513   return CC == CallingConv::Fast;
2514 }
2515 
2516 /// Return true if we might ever do TCO for calls with this calling convention.
2517 static bool mayTailCallThisCC(CallingConv::ID CC) {
2518   switch (CC) {
2519   case CallingConv::C:
2520     return true;
2521   default:
2522     return canGuaranteeTCO(CC);
2523   }
2524 }
2525 
2526 bool SITargetLowering::isEligibleForTailCallOptimization(
2527     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2528     const SmallVectorImpl<ISD::OutputArg> &Outs,
2529     const SmallVectorImpl<SDValue> &OutVals,
2530     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2531   if (!mayTailCallThisCC(CalleeCC))
2532     return false;
2533 
2534   MachineFunction &MF = DAG.getMachineFunction();
2535   const Function &CallerF = MF.getFunction();
2536   CallingConv::ID CallerCC = CallerF.getCallingConv();
2537   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2538   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2539 
2540   // Kernels aren't callable, and don't have a live in return address so it
2541   // doesn't make sense to do a tail call with entry functions.
2542   if (!CallerPreserved)
2543     return false;
2544 
2545   bool CCMatch = CallerCC == CalleeCC;
2546 
2547   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2548     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2549       return true;
2550     return false;
2551   }
2552 
2553   // TODO: Can we handle var args?
2554   if (IsVarArg)
2555     return false;
2556 
2557   for (const Argument &Arg : CallerF.args()) {
2558     if (Arg.hasByValAttr())
2559       return false;
2560   }
2561 
2562   LLVMContext &Ctx = *DAG.getContext();
2563 
2564   // Check that the call results are passed in the same way.
2565   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2566                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2567                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2568     return false;
2569 
2570   // The callee has to preserve all registers the caller needs to preserve.
2571   if (!CCMatch) {
2572     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2573     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2574       return false;
2575   }
2576 
2577   // Nothing more to check if the callee is taking no arguments.
2578   if (Outs.empty())
2579     return true;
2580 
2581   SmallVector<CCValAssign, 16> ArgLocs;
2582   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2583 
2584   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2585 
2586   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2587   // If the stack arguments for this call do not fit into our own save area then
2588   // the call cannot be made tail.
2589   // TODO: Is this really necessary?
2590   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2591     return false;
2592 
2593   const MachineRegisterInfo &MRI = MF.getRegInfo();
2594   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2595 }
2596 
2597 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2598   if (!CI->isTailCall())
2599     return false;
2600 
2601   const Function *ParentFn = CI->getParent()->getParent();
2602   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2603     return false;
2604 
2605   auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
2606   return (Attr.getValueAsString() != "true");
2607 }
2608 
2609 // The wave scratch offset register is used as the global base pointer.
2610 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2611                                     SmallVectorImpl<SDValue> &InVals) const {
2612   SelectionDAG &DAG = CLI.DAG;
2613   const SDLoc &DL = CLI.DL;
2614   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2615   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2616   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2617   SDValue Chain = CLI.Chain;
2618   SDValue Callee = CLI.Callee;
2619   bool &IsTailCall = CLI.IsTailCall;
2620   CallingConv::ID CallConv = CLI.CallConv;
2621   bool IsVarArg = CLI.IsVarArg;
2622   bool IsSibCall = false;
2623   bool IsThisReturn = false;
2624   MachineFunction &MF = DAG.getMachineFunction();
2625 
2626   if (IsVarArg) {
2627     return lowerUnhandledCall(CLI, InVals,
2628                               "unsupported call to variadic function ");
2629   }
2630 
2631   if (!CLI.CS.getInstruction())
2632     report_fatal_error("unsupported libcall legalization");
2633 
2634   if (!CLI.CS.getCalledFunction()) {
2635     return lowerUnhandledCall(CLI, InVals,
2636                               "unsupported indirect call to function ");
2637   }
2638 
2639   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2640     return lowerUnhandledCall(CLI, InVals,
2641                               "unsupported required tail call to function ");
2642   }
2643 
2644   if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
2645     // Note the issue is with the CC of the calling function, not of the call
2646     // itself.
2647     return lowerUnhandledCall(CLI, InVals,
2648                           "unsupported call from graphics shader of function ");
2649   }
2650 
2651   if (IsTailCall) {
2652     IsTailCall = isEligibleForTailCallOptimization(
2653       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2654     if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
2655       report_fatal_error("failed to perform tail call elimination on a call "
2656                          "site marked musttail");
2657     }
2658 
2659     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2660 
2661     // A sibling call is one where we're under the usual C ABI and not planning
2662     // to change that but can still do a tail call:
2663     if (!TailCallOpt && IsTailCall)
2664       IsSibCall = true;
2665 
2666     if (IsTailCall)
2667       ++NumTailCalls;
2668   }
2669 
2670   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2671 
2672   // Analyze operands of the call, assigning locations to each operand.
2673   SmallVector<CCValAssign, 16> ArgLocs;
2674   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2675   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2676 
2677   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2678 
2679   // Get a count of how many bytes are to be pushed on the stack.
2680   unsigned NumBytes = CCInfo.getNextStackOffset();
2681 
2682   if (IsSibCall) {
2683     // Since we're not changing the ABI to make this a tail call, the memory
2684     // operands are already available in the caller's incoming argument space.
2685     NumBytes = 0;
2686   }
2687 
2688   // FPDiff is the byte offset of the call's argument area from the callee's.
2689   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2690   // by this amount for a tail call. In a sibling call it must be 0 because the
2691   // caller will deallocate the entire stack and the callee still expects its
2692   // arguments to begin at SP+0. Completely unused for non-tail calls.
2693   int32_t FPDiff = 0;
2694   MachineFrameInfo &MFI = MF.getFrameInfo();
2695   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2696 
2697   SDValue CallerSavedFP;
2698 
2699   // Adjust the stack pointer for the new arguments...
2700   // These operations are automatically eliminated by the prolog/epilog pass
2701   if (!IsSibCall) {
2702     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2703 
2704     SmallVector<SDValue, 4> CopyFromChains;
2705 
2706     // In the HSA case, this should be an identity copy.
2707     SDValue ScratchRSrcReg
2708       = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2709     RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2710     CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
2711 
2712     if (!Info->isEntryFunction()) {
2713       // Avoid clobbering this function's FP value. In the current convention
2714       // callee will overwrite this, so do save/restore around the call site.
2715       CallerSavedFP = DAG.getCopyFromReg(Chain, DL,
2716                                          Info->getFrameOffsetReg(), MVT::i32);
2717       CopyFromChains.push_back(CallerSavedFP.getValue(1));
2718     }
2719 
2720     Chain = DAG.getTokenFactor(DL, CopyFromChains);
2721   }
2722 
2723   SmallVector<SDValue, 8> MemOpChains;
2724   MVT PtrVT = MVT::i32;
2725 
2726   // Walk the register/memloc assignments, inserting copies/loads.
2727   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2728        ++i, ++realArgIdx) {
2729     CCValAssign &VA = ArgLocs[i];
2730     SDValue Arg = OutVals[realArgIdx];
2731 
2732     // Promote the value if needed.
2733     switch (VA.getLocInfo()) {
2734     case CCValAssign::Full:
2735       break;
2736     case CCValAssign::BCvt:
2737       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2738       break;
2739     case CCValAssign::ZExt:
2740       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2741       break;
2742     case CCValAssign::SExt:
2743       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2744       break;
2745     case CCValAssign::AExt:
2746       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2747       break;
2748     case CCValAssign::FPExt:
2749       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2750       break;
2751     default:
2752       llvm_unreachable("Unknown loc info!");
2753     }
2754 
2755     if (VA.isRegLoc()) {
2756       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2757     } else {
2758       assert(VA.isMemLoc());
2759 
2760       SDValue DstAddr;
2761       MachinePointerInfo DstInfo;
2762 
2763       unsigned LocMemOffset = VA.getLocMemOffset();
2764       int32_t Offset = LocMemOffset;
2765 
2766       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
2767       unsigned Align = 0;
2768 
2769       if (IsTailCall) {
2770         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2771         unsigned OpSize = Flags.isByVal() ?
2772           Flags.getByValSize() : VA.getValVT().getStoreSize();
2773 
2774         // FIXME: We can have better than the minimum byval required alignment.
2775         Align = Flags.isByVal() ? Flags.getByValAlign() :
2776           MinAlign(Subtarget->getStackAlignment(), Offset);
2777 
2778         Offset = Offset + FPDiff;
2779         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
2780 
2781         DstAddr = DAG.getFrameIndex(FI, PtrVT);
2782         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
2783 
2784         // Make sure any stack arguments overlapping with where we're storing
2785         // are loaded before this eventual operation. Otherwise they'll be
2786         // clobbered.
2787 
2788         // FIXME: Why is this really necessary? This seems to just result in a
2789         // lot of code to copy the stack and write them back to the same
2790         // locations, which are supposed to be immutable?
2791         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
2792       } else {
2793         DstAddr = PtrOff;
2794         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
2795         Align = MinAlign(Subtarget->getStackAlignment(), LocMemOffset);
2796       }
2797 
2798       if (Outs[i].Flags.isByVal()) {
2799         SDValue SizeNode =
2800             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
2801         SDValue Cpy = DAG.getMemcpy(
2802             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2803             /*isVol = */ false, /*AlwaysInline = */ true,
2804             /*isTailCall = */ false, DstInfo,
2805             MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
2806                 *DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS))));
2807 
2808         MemOpChains.push_back(Cpy);
2809       } else {
2810         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Align);
2811         MemOpChains.push_back(Store);
2812       }
2813     }
2814   }
2815 
2816   // Copy special input registers after user input arguments.
2817   passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2818 
2819   if (!MemOpChains.empty())
2820     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2821 
2822   // Build a sequence of copy-to-reg nodes chained together with token chain
2823   // and flag operands which copy the outgoing args into the appropriate regs.
2824   SDValue InFlag;
2825   for (auto &RegToPass : RegsToPass) {
2826     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
2827                              RegToPass.second, InFlag);
2828     InFlag = Chain.getValue(1);
2829   }
2830 
2831 
2832   SDValue PhysReturnAddrReg;
2833   if (IsTailCall) {
2834     // Since the return is being combined with the call, we need to pass on the
2835     // return address.
2836 
2837     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2838     SDValue ReturnAddrReg = CreateLiveInRegister(
2839       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2840 
2841     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2842                                         MVT::i64);
2843     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
2844     InFlag = Chain.getValue(1);
2845   }
2846 
2847   // We don't usually want to end the call-sequence here because we would tidy
2848   // the frame up *after* the call, however in the ABI-changing tail-call case
2849   // we've carefully laid out the parameters so that when sp is reset they'll be
2850   // in the correct location.
2851   if (IsTailCall && !IsSibCall) {
2852     Chain = DAG.getCALLSEQ_END(Chain,
2853                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
2854                                DAG.getTargetConstant(0, DL, MVT::i32),
2855                                InFlag, DL);
2856     InFlag = Chain.getValue(1);
2857   }
2858 
2859   std::vector<SDValue> Ops;
2860   Ops.push_back(Chain);
2861   Ops.push_back(Callee);
2862   // Add a redundant copy of the callee global which will not be legalized, as
2863   // we need direct access to the callee later.
2864   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee);
2865   const GlobalValue *GV = GSD->getGlobal();
2866   Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
2867 
2868   if (IsTailCall) {
2869     // Each tail call may have to adjust the stack by a different amount, so
2870     // this information must travel along with the operation for eventual
2871     // consumption by emitEpilogue.
2872     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
2873 
2874     Ops.push_back(PhysReturnAddrReg);
2875   }
2876 
2877   // Add argument registers to the end of the list so that they are known live
2878   // into the call.
2879   for (auto &RegToPass : RegsToPass) {
2880     Ops.push_back(DAG.getRegister(RegToPass.first,
2881                                   RegToPass.second.getValueType()));
2882   }
2883 
2884   // Add a register mask operand representing the call-preserved registers.
2885 
2886   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
2887   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2888   assert(Mask && "Missing call preserved mask for calling convention");
2889   Ops.push_back(DAG.getRegisterMask(Mask));
2890 
2891   if (InFlag.getNode())
2892     Ops.push_back(InFlag);
2893 
2894   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2895 
2896   // If we're doing a tall call, use a TC_RETURN here rather than an
2897   // actual call instruction.
2898   if (IsTailCall) {
2899     MFI.setHasTailCall();
2900     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
2901   }
2902 
2903   // Returns a chain and a flag for retval copy to use.
2904   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
2905   Chain = Call.getValue(0);
2906   InFlag = Call.getValue(1);
2907 
2908   if (CallerSavedFP) {
2909     SDValue FPReg = DAG.getRegister(Info->getFrameOffsetReg(), MVT::i32);
2910     Chain = DAG.getCopyToReg(Chain, DL, FPReg, CallerSavedFP, InFlag);
2911     InFlag = Chain.getValue(1);
2912   }
2913 
2914   uint64_t CalleePopBytes = NumBytes;
2915   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
2916                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
2917                              InFlag, DL);
2918   if (!Ins.empty())
2919     InFlag = Chain.getValue(1);
2920 
2921   // Handle result values, copying them out of physregs into vregs that we
2922   // return.
2923   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2924                          InVals, IsThisReturn,
2925                          IsThisReturn ? OutVals[0] : SDValue());
2926 }
2927 
2928 unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
2929                                              SelectionDAG &DAG) const {
2930   unsigned Reg = StringSwitch<unsigned>(RegName)
2931     .Case("m0", AMDGPU::M0)
2932     .Case("exec", AMDGPU::EXEC)
2933     .Case("exec_lo", AMDGPU::EXEC_LO)
2934     .Case("exec_hi", AMDGPU::EXEC_HI)
2935     .Case("flat_scratch", AMDGPU::FLAT_SCR)
2936     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
2937     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
2938     .Default(AMDGPU::NoRegister);
2939 
2940   if (Reg == AMDGPU::NoRegister) {
2941     report_fatal_error(Twine("invalid register name \""
2942                              + StringRef(RegName)  + "\"."));
2943 
2944   }
2945 
2946   if (!Subtarget->hasFlatScrRegister() &&
2947        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
2948     report_fatal_error(Twine("invalid register \""
2949                              + StringRef(RegName)  + "\" for subtarget."));
2950   }
2951 
2952   switch (Reg) {
2953   case AMDGPU::M0:
2954   case AMDGPU::EXEC_LO:
2955   case AMDGPU::EXEC_HI:
2956   case AMDGPU::FLAT_SCR_LO:
2957   case AMDGPU::FLAT_SCR_HI:
2958     if (VT.getSizeInBits() == 32)
2959       return Reg;
2960     break;
2961   case AMDGPU::EXEC:
2962   case AMDGPU::FLAT_SCR:
2963     if (VT.getSizeInBits() == 64)
2964       return Reg;
2965     break;
2966   default:
2967     llvm_unreachable("missing register type checking");
2968   }
2969 
2970   report_fatal_error(Twine("invalid type for register \""
2971                            + StringRef(RegName) + "\"."));
2972 }
2973 
2974 // If kill is not the last instruction, split the block so kill is always a
2975 // proper terminator.
2976 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
2977                                                     MachineBasicBlock *BB) const {
2978   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
2979 
2980   MachineBasicBlock::iterator SplitPoint(&MI);
2981   ++SplitPoint;
2982 
2983   if (SplitPoint == BB->end()) {
2984     // Don't bother with a new block.
2985     MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
2986     return BB;
2987   }
2988 
2989   MachineFunction *MF = BB->getParent();
2990   MachineBasicBlock *SplitBB
2991     = MF->CreateMachineBasicBlock(BB->getBasicBlock());
2992 
2993   MF->insert(++MachineFunction::iterator(BB), SplitBB);
2994   SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
2995 
2996   SplitBB->transferSuccessorsAndUpdatePHIs(BB);
2997   BB->addSuccessor(SplitBB);
2998 
2999   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3000   return SplitBB;
3001 }
3002 
3003 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3004 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3005 // be the first instruction in the remainder block.
3006 //
3007 /// \returns { LoopBody, Remainder }
3008 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3009 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3010   MachineFunction *MF = MBB.getParent();
3011   MachineBasicBlock::iterator I(&MI);
3012 
3013   // To insert the loop we need to split the block. Move everything after this
3014   // point to a new block, and insert a new empty block between the two.
3015   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3016   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3017   MachineFunction::iterator MBBI(MBB);
3018   ++MBBI;
3019 
3020   MF->insert(MBBI, LoopBB);
3021   MF->insert(MBBI, RemainderBB);
3022 
3023   LoopBB->addSuccessor(LoopBB);
3024   LoopBB->addSuccessor(RemainderBB);
3025 
3026   // Move the rest of the block into a new block.
3027   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3028 
3029   if (InstInLoop) {
3030     auto Next = std::next(I);
3031 
3032     // Move instruction to loop body.
3033     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3034 
3035     // Move the rest of the block.
3036     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3037   } else {
3038     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3039   }
3040 
3041   MBB.addSuccessor(LoopBB);
3042 
3043   return std::make_pair(LoopBB, RemainderBB);
3044 }
3045 
3046 MachineBasicBlock *
3047 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3048                                          MachineBasicBlock *BB) const {
3049   const DebugLoc &DL = MI.getDebugLoc();
3050 
3051   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3052 
3053   MachineBasicBlock *LoopBB;
3054   MachineBasicBlock *RemainderBB;
3055   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3056 
3057   MachineBasicBlock::iterator Prev = std::prev(MI.getIterator());
3058 
3059   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3060 
3061   MachineBasicBlock::iterator I = LoopBB->end();
3062   MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
3063 
3064   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3065     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3066 
3067   // Clear TRAP_STS.MEM_VIOL
3068   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3069     .addImm(0)
3070     .addImm(EncodedReg);
3071 
3072   // This is a pain, but we're not allowed to have physical register live-ins
3073   // yet. Insert a pair of copies if the VGPR0 hack is necessary.
3074   if (Src && TargetRegisterInfo::isPhysicalRegister(Src->getReg())) {
3075     unsigned Data0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3076     BuildMI(*BB, std::next(Prev), DL, TII->get(AMDGPU::COPY), Data0)
3077       .add(*Src);
3078 
3079     BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::COPY), Src->getReg())
3080       .addReg(Data0);
3081 
3082     MRI.setSimpleHint(Data0, Src->getReg());
3083   }
3084 
3085   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_WAITCNT))
3086     .addImm(0);
3087 
3088   unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3089 
3090   // Load and check TRAP_STS.MEM_VIOL
3091   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3092     .addImm(EncodedReg);
3093 
3094   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3095   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3096     .addReg(Reg, RegState::Kill)
3097     .addImm(0);
3098   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3099     .addMBB(LoopBB);
3100 
3101   return RemainderBB;
3102 }
3103 
3104 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3105 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3106 // will only do one iteration. In the worst case, this will loop 64 times.
3107 //
3108 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3109 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
3110   const SIInstrInfo *TII,
3111   MachineRegisterInfo &MRI,
3112   MachineBasicBlock &OrigBB,
3113   MachineBasicBlock &LoopBB,
3114   const DebugLoc &DL,
3115   const MachineOperand &IdxReg,
3116   unsigned InitReg,
3117   unsigned ResultReg,
3118   unsigned PhiReg,
3119   unsigned InitSaveExecReg,
3120   int Offset,
3121   bool UseGPRIdxMode,
3122   bool IsIndirectSrc) {
3123   MachineFunction *MF = OrigBB.getParent();
3124   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3125   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3126   MachineBasicBlock::iterator I = LoopBB.begin();
3127 
3128   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3129   unsigned PhiExec = MRI.createVirtualRegister(BoolRC);
3130   unsigned NewExec = MRI.createVirtualRegister(BoolRC);
3131   unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3132   unsigned CondReg = MRI.createVirtualRegister(BoolRC);
3133 
3134   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3135     .addReg(InitReg)
3136     .addMBB(&OrigBB)
3137     .addReg(ResultReg)
3138     .addMBB(&LoopBB);
3139 
3140   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3141     .addReg(InitSaveExecReg)
3142     .addMBB(&OrigBB)
3143     .addReg(NewExec)
3144     .addMBB(&LoopBB);
3145 
3146   // Read the next variant <- also loop target.
3147   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3148     .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
3149 
3150   // Compare the just read M0 value to all possible Idx values.
3151   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3152     .addReg(CurrentIdxReg)
3153     .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
3154 
3155   // Update EXEC, save the original EXEC value to VCC.
3156   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3157                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3158           NewExec)
3159     .addReg(CondReg, RegState::Kill);
3160 
3161   MRI.setSimpleHint(NewExec, CondReg);
3162 
3163   if (UseGPRIdxMode) {
3164     unsigned IdxReg;
3165     if (Offset == 0) {
3166       IdxReg = CurrentIdxReg;
3167     } else {
3168       IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3169       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
3170         .addReg(CurrentIdxReg, RegState::Kill)
3171         .addImm(Offset);
3172     }
3173     unsigned IdxMode = IsIndirectSrc ?
3174       AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3175     MachineInstr *SetOn =
3176       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3177       .addReg(IdxReg, RegState::Kill)
3178       .addImm(IdxMode);
3179     SetOn->getOperand(3).setIsUndef();
3180   } else {
3181     // Move index from VCC into M0
3182     if (Offset == 0) {
3183       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3184         .addReg(CurrentIdxReg, RegState::Kill);
3185     } else {
3186       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3187         .addReg(CurrentIdxReg, RegState::Kill)
3188         .addImm(Offset);
3189     }
3190   }
3191 
3192   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3193   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3194   MachineInstr *InsertPt =
3195     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3196                                                   : AMDGPU::S_XOR_B64_term), Exec)
3197       .addReg(Exec)
3198       .addReg(NewExec);
3199 
3200   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3201   // s_cbranch_scc0?
3202 
3203   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3204   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3205     .addMBB(&LoopBB);
3206 
3207   return InsertPt->getIterator();
3208 }
3209 
3210 // This has slightly sub-optimal regalloc when the source vector is killed by
3211 // the read. The register allocator does not understand that the kill is
3212 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3213 // subregister from it, using 1 more VGPR than necessary. This was saved when
3214 // this was expanded after register allocation.
3215 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
3216                                                   MachineBasicBlock &MBB,
3217                                                   MachineInstr &MI,
3218                                                   unsigned InitResultReg,
3219                                                   unsigned PhiReg,
3220                                                   int Offset,
3221                                                   bool UseGPRIdxMode,
3222                                                   bool IsIndirectSrc) {
3223   MachineFunction *MF = MBB.getParent();
3224   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3225   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3226   MachineRegisterInfo &MRI = MF->getRegInfo();
3227   const DebugLoc &DL = MI.getDebugLoc();
3228   MachineBasicBlock::iterator I(&MI);
3229 
3230   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3231   unsigned DstReg = MI.getOperand(0).getReg();
3232   unsigned SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3233   unsigned TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3234   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3235   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3236 
3237   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3238 
3239   // Save the EXEC mask
3240   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3241     .addReg(Exec);
3242 
3243   MachineBasicBlock *LoopBB;
3244   MachineBasicBlock *RemainderBB;
3245   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3246 
3247   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3248 
3249   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3250                                       InitResultReg, DstReg, PhiReg, TmpExec,
3251                                       Offset, UseGPRIdxMode, IsIndirectSrc);
3252 
3253   MachineBasicBlock::iterator First = RemainderBB->begin();
3254   BuildMI(*RemainderBB, First, DL, TII->get(MovExecOpc), Exec)
3255     .addReg(SaveExec);
3256 
3257   return InsPt;
3258 }
3259 
3260 // Returns subreg index, offset
3261 static std::pair<unsigned, int>
3262 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3263                             const TargetRegisterClass *SuperRC,
3264                             unsigned VecReg,
3265                             int Offset) {
3266   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3267 
3268   // Skip out of bounds offsets, or else we would end up using an undefined
3269   // register.
3270   if (Offset >= NumElts || Offset < 0)
3271     return std::make_pair(AMDGPU::sub0, Offset);
3272 
3273   return std::make_pair(AMDGPU::sub0 + Offset, 0);
3274 }
3275 
3276 // Return true if the index is an SGPR and was set.
3277 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3278                                  MachineRegisterInfo &MRI,
3279                                  MachineInstr &MI,
3280                                  int Offset,
3281                                  bool UseGPRIdxMode,
3282                                  bool IsIndirectSrc) {
3283   MachineBasicBlock *MBB = MI.getParent();
3284   const DebugLoc &DL = MI.getDebugLoc();
3285   MachineBasicBlock::iterator I(&MI);
3286 
3287   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3288   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3289 
3290   assert(Idx->getReg() != AMDGPU::NoRegister);
3291 
3292   if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
3293     return false;
3294 
3295   if (UseGPRIdxMode) {
3296     unsigned IdxMode = IsIndirectSrc ?
3297       AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3298     if (Offset == 0) {
3299       MachineInstr *SetOn =
3300           BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3301               .add(*Idx)
3302               .addImm(IdxMode);
3303 
3304       SetOn->getOperand(3).setIsUndef();
3305     } else {
3306       unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3307       BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3308           .add(*Idx)
3309           .addImm(Offset);
3310       MachineInstr *SetOn =
3311         BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3312         .addReg(Tmp, RegState::Kill)
3313         .addImm(IdxMode);
3314 
3315       SetOn->getOperand(3).setIsUndef();
3316     }
3317 
3318     return true;
3319   }
3320 
3321   if (Offset == 0) {
3322     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3323       .add(*Idx);
3324   } else {
3325     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3326       .add(*Idx)
3327       .addImm(Offset);
3328   }
3329 
3330   return true;
3331 }
3332 
3333 // Control flow needs to be inserted if indexing with a VGPR.
3334 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3335                                           MachineBasicBlock &MBB,
3336                                           const GCNSubtarget &ST) {
3337   const SIInstrInfo *TII = ST.getInstrInfo();
3338   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3339   MachineFunction *MF = MBB.getParent();
3340   MachineRegisterInfo &MRI = MF->getRegInfo();
3341 
3342   unsigned Dst = MI.getOperand(0).getReg();
3343   unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3344   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3345 
3346   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3347 
3348   unsigned SubReg;
3349   std::tie(SubReg, Offset)
3350     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3351 
3352   bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
3353 
3354   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
3355     MachineBasicBlock::iterator I(&MI);
3356     const DebugLoc &DL = MI.getDebugLoc();
3357 
3358     if (UseGPRIdxMode) {
3359       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3360       // to avoid interfering with other uses, so probably requires a new
3361       // optimization pass.
3362       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3363         .addReg(SrcReg, RegState::Undef, SubReg)
3364         .addReg(SrcReg, RegState::Implicit)
3365         .addReg(AMDGPU::M0, RegState::Implicit);
3366       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3367     } else {
3368       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3369         .addReg(SrcReg, RegState::Undef, SubReg)
3370         .addReg(SrcReg, RegState::Implicit);
3371     }
3372 
3373     MI.eraseFromParent();
3374 
3375     return &MBB;
3376   }
3377 
3378   const DebugLoc &DL = MI.getDebugLoc();
3379   MachineBasicBlock::iterator I(&MI);
3380 
3381   unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3382   unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3383 
3384   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3385 
3386   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
3387                               Offset, UseGPRIdxMode, true);
3388   MachineBasicBlock *LoopBB = InsPt->getParent();
3389 
3390   if (UseGPRIdxMode) {
3391     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3392       .addReg(SrcReg, RegState::Undef, SubReg)
3393       .addReg(SrcReg, RegState::Implicit)
3394       .addReg(AMDGPU::M0, RegState::Implicit);
3395     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3396   } else {
3397     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3398       .addReg(SrcReg, RegState::Undef, SubReg)
3399       .addReg(SrcReg, RegState::Implicit);
3400   }
3401 
3402   MI.eraseFromParent();
3403 
3404   return LoopBB;
3405 }
3406 
3407 static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
3408                                  const TargetRegisterClass *VecRC) {
3409   switch (TRI.getRegSizeInBits(*VecRC)) {
3410   case 32: // 4 bytes
3411     return AMDGPU::V_MOVRELD_B32_V1;
3412   case 64: // 8 bytes
3413     return AMDGPU::V_MOVRELD_B32_V2;
3414   case 128: // 16 bytes
3415     return AMDGPU::V_MOVRELD_B32_V4;
3416   case 256: // 32 bytes
3417     return AMDGPU::V_MOVRELD_B32_V8;
3418   case 512: // 64 bytes
3419     return AMDGPU::V_MOVRELD_B32_V16;
3420   default:
3421     llvm_unreachable("unsupported size for MOVRELD pseudos");
3422   }
3423 }
3424 
3425 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3426                                           MachineBasicBlock &MBB,
3427                                           const GCNSubtarget &ST) {
3428   const SIInstrInfo *TII = ST.getInstrInfo();
3429   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3430   MachineFunction *MF = MBB.getParent();
3431   MachineRegisterInfo &MRI = MF->getRegInfo();
3432 
3433   unsigned Dst = MI.getOperand(0).getReg();
3434   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3435   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3436   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3437   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3438   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3439 
3440   // This can be an immediate, but will be folded later.
3441   assert(Val->getReg());
3442 
3443   unsigned SubReg;
3444   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3445                                                          SrcVec->getReg(),
3446                                                          Offset);
3447   bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
3448 
3449   if (Idx->getReg() == AMDGPU::NoRegister) {
3450     MachineBasicBlock::iterator I(&MI);
3451     const DebugLoc &DL = MI.getDebugLoc();
3452 
3453     assert(Offset == 0);
3454 
3455     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3456         .add(*SrcVec)
3457         .add(*Val)
3458         .addImm(SubReg);
3459 
3460     MI.eraseFromParent();
3461     return &MBB;
3462   }
3463 
3464   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
3465     MachineBasicBlock::iterator I(&MI);
3466     const DebugLoc &DL = MI.getDebugLoc();
3467 
3468     if (UseGPRIdxMode) {
3469       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3470           .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
3471           .add(*Val)
3472           .addReg(Dst, RegState::ImplicitDefine)
3473           .addReg(SrcVec->getReg(), RegState::Implicit)
3474           .addReg(AMDGPU::M0, RegState::Implicit);
3475 
3476       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3477     } else {
3478       const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3479 
3480       BuildMI(MBB, I, DL, MovRelDesc)
3481           .addReg(Dst, RegState::Define)
3482           .addReg(SrcVec->getReg())
3483           .add(*Val)
3484           .addImm(SubReg - AMDGPU::sub0);
3485     }
3486 
3487     MI.eraseFromParent();
3488     return &MBB;
3489   }
3490 
3491   if (Val->isReg())
3492     MRI.clearKillFlags(Val->getReg());
3493 
3494   const DebugLoc &DL = MI.getDebugLoc();
3495 
3496   unsigned PhiReg = MRI.createVirtualRegister(VecRC);
3497 
3498   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
3499                               Offset, UseGPRIdxMode, false);
3500   MachineBasicBlock *LoopBB = InsPt->getParent();
3501 
3502   if (UseGPRIdxMode) {
3503     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3504         .addReg(PhiReg, RegState::Undef, SubReg) // vdst
3505         .add(*Val)                               // src0
3506         .addReg(Dst, RegState::ImplicitDefine)
3507         .addReg(PhiReg, RegState::Implicit)
3508         .addReg(AMDGPU::M0, RegState::Implicit);
3509     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3510   } else {
3511     const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3512 
3513     BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
3514         .addReg(Dst, RegState::Define)
3515         .addReg(PhiReg)
3516         .add(*Val)
3517         .addImm(SubReg - AMDGPU::sub0);
3518   }
3519 
3520   MI.eraseFromParent();
3521 
3522   return LoopBB;
3523 }
3524 
3525 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3526   MachineInstr &MI, MachineBasicBlock *BB) const {
3527 
3528   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3529   MachineFunction *MF = BB->getParent();
3530   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3531 
3532   if (TII->isMIMG(MI)) {
3533     if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
3534       report_fatal_error("missing mem operand from MIMG instruction");
3535     }
3536     // Add a memoperand for mimg instructions so that they aren't assumed to
3537     // be ordered memory instuctions.
3538 
3539     return BB;
3540   }
3541 
3542   switch (MI.getOpcode()) {
3543   case AMDGPU::S_ADD_U64_PSEUDO:
3544   case AMDGPU::S_SUB_U64_PSEUDO: {
3545     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3546     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3547     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3548     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3549     const DebugLoc &DL = MI.getDebugLoc();
3550 
3551     MachineOperand &Dest = MI.getOperand(0);
3552     MachineOperand &Src0 = MI.getOperand(1);
3553     MachineOperand &Src1 = MI.getOperand(2);
3554 
3555     unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3556     unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3557 
3558     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3559      Src0, BoolRC, AMDGPU::sub0,
3560      &AMDGPU::SReg_32_XM0RegClass);
3561     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3562       Src0, BoolRC, AMDGPU::sub1,
3563       &AMDGPU::SReg_32_XM0RegClass);
3564 
3565     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3566       Src1, BoolRC, AMDGPU::sub0,
3567       &AMDGPU::SReg_32_XM0RegClass);
3568     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3569       Src1, BoolRC, AMDGPU::sub1,
3570       &AMDGPU::SReg_32_XM0RegClass);
3571 
3572     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3573 
3574     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3575     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3576     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3577       .add(Src0Sub0)
3578       .add(Src1Sub0);
3579     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3580       .add(Src0Sub1)
3581       .add(Src1Sub1);
3582     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3583       .addReg(DestSub0)
3584       .addImm(AMDGPU::sub0)
3585       .addReg(DestSub1)
3586       .addImm(AMDGPU::sub1);
3587     MI.eraseFromParent();
3588     return BB;
3589   }
3590   case AMDGPU::SI_INIT_M0: {
3591     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
3592             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3593         .add(MI.getOperand(0));
3594     MI.eraseFromParent();
3595     return BB;
3596   }
3597   case AMDGPU::SI_INIT_EXEC:
3598     // This should be before all vector instructions.
3599     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
3600             AMDGPU::EXEC)
3601         .addImm(MI.getOperand(0).getImm());
3602     MI.eraseFromParent();
3603     return BB;
3604 
3605   case AMDGPU::SI_INIT_EXEC_LO:
3606     // This should be before all vector instructions.
3607     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
3608             AMDGPU::EXEC_LO)
3609         .addImm(MI.getOperand(0).getImm());
3610     MI.eraseFromParent();
3611     return BB;
3612 
3613   case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
3614     // Extract the thread count from an SGPR input and set EXEC accordingly.
3615     // Since BFM can't shift by 64, handle that case with CMP + CMOV.
3616     //
3617     // S_BFE_U32 count, input, {shift, 7}
3618     // S_BFM_B64 exec, count, 0
3619     // S_CMP_EQ_U32 count, 64
3620     // S_CMOV_B64 exec, -1
3621     MachineInstr *FirstMI = &*BB->begin();
3622     MachineRegisterInfo &MRI = MF->getRegInfo();
3623     unsigned InputReg = MI.getOperand(0).getReg();
3624     unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3625     bool Found = false;
3626 
3627     // Move the COPY of the input reg to the beginning, so that we can use it.
3628     for (auto I = BB->begin(); I != &MI; I++) {
3629       if (I->getOpcode() != TargetOpcode::COPY ||
3630           I->getOperand(0).getReg() != InputReg)
3631         continue;
3632 
3633       if (I == FirstMI) {
3634         FirstMI = &*++BB->begin();
3635       } else {
3636         I->removeFromParent();
3637         BB->insert(FirstMI, &*I);
3638       }
3639       Found = true;
3640       break;
3641     }
3642     assert(Found);
3643     (void)Found;
3644 
3645     // This should be before all vector instructions.
3646     unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
3647     bool isWave32 = getSubtarget()->isWave32();
3648     unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3649     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
3650         .addReg(InputReg)
3651         .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
3652     BuildMI(*BB, FirstMI, DebugLoc(),
3653             TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
3654             Exec)
3655         .addReg(CountReg)
3656         .addImm(0);
3657     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
3658         .addReg(CountReg, RegState::Kill)
3659         .addImm(getSubtarget()->getWavefrontSize());
3660     BuildMI(*BB, FirstMI, DebugLoc(),
3661             TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
3662             Exec)
3663         .addImm(-1);
3664     MI.eraseFromParent();
3665     return BB;
3666   }
3667 
3668   case AMDGPU::GET_GROUPSTATICSIZE: {
3669     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
3670            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
3671     DebugLoc DL = MI.getDebugLoc();
3672     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
3673         .add(MI.getOperand(0))
3674         .addImm(MFI->getLDSSize());
3675     MI.eraseFromParent();
3676     return BB;
3677   }
3678   case AMDGPU::SI_INDIRECT_SRC_V1:
3679   case AMDGPU::SI_INDIRECT_SRC_V2:
3680   case AMDGPU::SI_INDIRECT_SRC_V4:
3681   case AMDGPU::SI_INDIRECT_SRC_V8:
3682   case AMDGPU::SI_INDIRECT_SRC_V16:
3683     return emitIndirectSrc(MI, *BB, *getSubtarget());
3684   case AMDGPU::SI_INDIRECT_DST_V1:
3685   case AMDGPU::SI_INDIRECT_DST_V2:
3686   case AMDGPU::SI_INDIRECT_DST_V4:
3687   case AMDGPU::SI_INDIRECT_DST_V8:
3688   case AMDGPU::SI_INDIRECT_DST_V16:
3689     return emitIndirectDst(MI, *BB, *getSubtarget());
3690   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
3691   case AMDGPU::SI_KILL_I1_PSEUDO:
3692     return splitKillBlock(MI, BB);
3693   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
3694     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3695     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3696     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3697 
3698     unsigned Dst = MI.getOperand(0).getReg();
3699     unsigned Src0 = MI.getOperand(1).getReg();
3700     unsigned Src1 = MI.getOperand(2).getReg();
3701     const DebugLoc &DL = MI.getDebugLoc();
3702     unsigned SrcCond = MI.getOperand(3).getReg();
3703 
3704     unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3705     unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3706     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3707     unsigned SrcCondCopy = MRI.createVirtualRegister(CondRC);
3708 
3709     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
3710       .addReg(SrcCond);
3711     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
3712       .addImm(0)
3713       .addReg(Src0, 0, AMDGPU::sub0)
3714       .addImm(0)
3715       .addReg(Src1, 0, AMDGPU::sub0)
3716       .addReg(SrcCondCopy);
3717     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
3718       .addImm(0)
3719       .addReg(Src0, 0, AMDGPU::sub1)
3720       .addImm(0)
3721       .addReg(Src1, 0, AMDGPU::sub1)
3722       .addReg(SrcCondCopy);
3723 
3724     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
3725       .addReg(DstLo)
3726       .addImm(AMDGPU::sub0)
3727       .addReg(DstHi)
3728       .addImm(AMDGPU::sub1);
3729     MI.eraseFromParent();
3730     return BB;
3731   }
3732   case AMDGPU::SI_BR_UNDEF: {
3733     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3734     const DebugLoc &DL = MI.getDebugLoc();
3735     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3736                            .add(MI.getOperand(0));
3737     Br->getOperand(1).setIsUndef(true); // read undef SCC
3738     MI.eraseFromParent();
3739     return BB;
3740   }
3741   case AMDGPU::ADJCALLSTACKUP:
3742   case AMDGPU::ADJCALLSTACKDOWN: {
3743     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
3744     MachineInstrBuilder MIB(*MF, &MI);
3745 
3746     // Add an implicit use of the frame offset reg to prevent the restore copy
3747     // inserted after the call from being reorderd after stack operations in the
3748     // the caller's frame.
3749     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
3750         .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
3751         .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
3752     return BB;
3753   }
3754   case AMDGPU::SI_CALL_ISEL: {
3755     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3756     const DebugLoc &DL = MI.getDebugLoc();
3757 
3758     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
3759 
3760     MachineInstrBuilder MIB;
3761     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
3762 
3763     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
3764       MIB.add(MI.getOperand(I));
3765 
3766     MIB.cloneMemRefs(MI);
3767     MI.eraseFromParent();
3768     return BB;
3769   }
3770   case AMDGPU::V_ADD_I32_e32:
3771   case AMDGPU::V_SUB_I32_e32:
3772   case AMDGPU::V_SUBREV_I32_e32: {
3773     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
3774     const DebugLoc &DL = MI.getDebugLoc();
3775     unsigned Opc = MI.getOpcode();
3776 
3777     bool NeedClampOperand = false;
3778     if (TII->pseudoToMCOpcode(Opc) == -1) {
3779       Opc = AMDGPU::getVOPe64(Opc);
3780       NeedClampOperand = true;
3781     }
3782 
3783     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
3784     if (TII->isVOP3(*I)) {
3785       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3786       const SIRegisterInfo *TRI = ST.getRegisterInfo();
3787       I.addReg(TRI->getVCC(), RegState::Define);
3788     }
3789     I.add(MI.getOperand(1))
3790      .add(MI.getOperand(2));
3791     if (NeedClampOperand)
3792       I.addImm(0); // clamp bit for e64 encoding
3793 
3794     TII->legalizeOperands(*I);
3795 
3796     MI.eraseFromParent();
3797     return BB;
3798   }
3799   case AMDGPU::DS_GWS_INIT:
3800   case AMDGPU::DS_GWS_SEMA_V:
3801   case AMDGPU::DS_GWS_SEMA_BR:
3802   case AMDGPU::DS_GWS_SEMA_P:
3803   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
3804   case AMDGPU::DS_GWS_BARRIER:
3805     if (getSubtarget()->hasGWSAutoReplay())
3806       return BB;
3807     return emitGWSMemViolTestLoop(MI, BB);
3808   default:
3809     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
3810   }
3811 }
3812 
3813 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
3814   return isTypeLegal(VT.getScalarType());
3815 }
3816 
3817 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
3818   // This currently forces unfolding various combinations of fsub into fma with
3819   // free fneg'd operands. As long as we have fast FMA (controlled by
3820   // isFMAFasterThanFMulAndFAdd), we should perform these.
3821 
3822   // When fma is quarter rate, for f64 where add / sub are at best half rate,
3823   // most of these combines appear to be cycle neutral but save on instruction
3824   // count / code size.
3825   return true;
3826 }
3827 
3828 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
3829                                          EVT VT) const {
3830   if (!VT.isVector()) {
3831     return MVT::i1;
3832   }
3833   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
3834 }
3835 
3836 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
3837   // TODO: Should i16 be used always if legal? For now it would force VALU
3838   // shifts.
3839   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
3840 }
3841 
3842 // Answering this is somewhat tricky and depends on the specific device which
3843 // have different rates for fma or all f64 operations.
3844 //
3845 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
3846 // regardless of which device (although the number of cycles differs between
3847 // devices), so it is always profitable for f64.
3848 //
3849 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
3850 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
3851 // which we can always do even without fused FP ops since it returns the same
3852 // result as the separate operations and since it is always full
3853 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
3854 // however does not support denormals, so we do report fma as faster if we have
3855 // a fast fma device and require denormals.
3856 //
3857 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3858   VT = VT.getScalarType();
3859 
3860   switch (VT.getSimpleVT().SimpleTy) {
3861   case MVT::f32: {
3862     // This is as fast on some subtargets. However, we always have full rate f32
3863     // mad available which returns the same result as the separate operations
3864     // which we should prefer over fma. We can't use this if we want to support
3865     // denormals, so only report this in these cases.
3866     if (Subtarget->hasFP32Denormals())
3867       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
3868 
3869     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
3870     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
3871   }
3872   case MVT::f64:
3873     return true;
3874   case MVT::f16:
3875     return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
3876   default:
3877     break;
3878   }
3879 
3880   return false;
3881 }
3882 
3883 //===----------------------------------------------------------------------===//
3884 // Custom DAG Lowering Operations
3885 //===----------------------------------------------------------------------===//
3886 
3887 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3888 // wider vector type is legal.
3889 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
3890                                              SelectionDAG &DAG) const {
3891   unsigned Opc = Op.getOpcode();
3892   EVT VT = Op.getValueType();
3893   assert(VT == MVT::v4f16);
3894 
3895   SDValue Lo, Hi;
3896   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3897 
3898   SDLoc SL(Op);
3899   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
3900                              Op->getFlags());
3901   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
3902                              Op->getFlags());
3903 
3904   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3905 }
3906 
3907 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3908 // wider vector type is legal.
3909 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
3910                                               SelectionDAG &DAG) const {
3911   unsigned Opc = Op.getOpcode();
3912   EVT VT = Op.getValueType();
3913   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
3914 
3915   SDValue Lo0, Hi0;
3916   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
3917   SDValue Lo1, Hi1;
3918   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
3919 
3920   SDLoc SL(Op);
3921 
3922   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
3923                              Op->getFlags());
3924   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
3925                              Op->getFlags());
3926 
3927   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3928 }
3929 
3930 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3931   switch (Op.getOpcode()) {
3932   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
3933   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
3934   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
3935   case ISD::LOAD: {
3936     SDValue Result = LowerLOAD(Op, DAG);
3937     assert((!Result.getNode() ||
3938             Result.getNode()->getNumValues() == 2) &&
3939            "Load should return a value and a chain");
3940     return Result;
3941   }
3942 
3943   case ISD::FSIN:
3944   case ISD::FCOS:
3945     return LowerTrig(Op, DAG);
3946   case ISD::SELECT: return LowerSELECT(Op, DAG);
3947   case ISD::FDIV: return LowerFDIV(Op, DAG);
3948   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
3949   case ISD::STORE: return LowerSTORE(Op, DAG);
3950   case ISD::GlobalAddress: {
3951     MachineFunction &MF = DAG.getMachineFunction();
3952     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
3953     return LowerGlobalAddress(MFI, Op, DAG);
3954   }
3955   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3956   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
3957   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
3958   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
3959   case ISD::INSERT_VECTOR_ELT:
3960     return lowerINSERT_VECTOR_ELT(Op, DAG);
3961   case ISD::EXTRACT_VECTOR_ELT:
3962     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3963   case ISD::VECTOR_SHUFFLE:
3964     return lowerVECTOR_SHUFFLE(Op, DAG);
3965   case ISD::BUILD_VECTOR:
3966     return lowerBUILD_VECTOR(Op, DAG);
3967   case ISD::FP_ROUND:
3968     return lowerFP_ROUND(Op, DAG);
3969   case ISD::TRAP:
3970     return lowerTRAP(Op, DAG);
3971   case ISD::DEBUGTRAP:
3972     return lowerDEBUGTRAP(Op, DAG);
3973   case ISD::FABS:
3974   case ISD::FNEG:
3975   case ISD::FCANONICALIZE:
3976     return splitUnaryVectorOp(Op, DAG);
3977   case ISD::FMINNUM:
3978   case ISD::FMAXNUM:
3979     return lowerFMINNUM_FMAXNUM(Op, DAG);
3980   case ISD::SHL:
3981   case ISD::SRA:
3982   case ISD::SRL:
3983   case ISD::ADD:
3984   case ISD::SUB:
3985   case ISD::MUL:
3986   case ISD::SMIN:
3987   case ISD::SMAX:
3988   case ISD::UMIN:
3989   case ISD::UMAX:
3990   case ISD::FADD:
3991   case ISD::FMUL:
3992   case ISD::FMINNUM_IEEE:
3993   case ISD::FMAXNUM_IEEE:
3994     return splitBinaryVectorOp(Op, DAG);
3995   }
3996   return SDValue();
3997 }
3998 
3999 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4000                                        const SDLoc &DL,
4001                                        SelectionDAG &DAG, bool Unpacked) {
4002   if (!LoadVT.isVector())
4003     return Result;
4004 
4005   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4006     // Truncate to v2i16/v4i16.
4007     EVT IntLoadVT = LoadVT.changeTypeToInteger();
4008 
4009     // Workaround legalizer not scalarizing truncate after vector op
4010     // legalization byt not creating intermediate vector trunc.
4011     SmallVector<SDValue, 4> Elts;
4012     DAG.ExtractVectorElements(Result, Elts);
4013     for (SDValue &Elt : Elts)
4014       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4015 
4016     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4017 
4018     // Bitcast to original type (v2f16/v4f16).
4019     return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4020   }
4021 
4022   // Cast back to the original packed type.
4023   return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4024 }
4025 
4026 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4027                                               MemSDNode *M,
4028                                               SelectionDAG &DAG,
4029                                               ArrayRef<SDValue> Ops,
4030                                               bool IsIntrinsic) const {
4031   SDLoc DL(M);
4032 
4033   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4034   EVT LoadVT = M->getValueType(0);
4035 
4036   EVT EquivLoadVT = LoadVT;
4037   if (Unpacked && LoadVT.isVector()) {
4038     EquivLoadVT = LoadVT.isVector() ?
4039       EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4040                        LoadVT.getVectorNumElements()) : LoadVT;
4041   }
4042 
4043   // Change from v4f16/v2f16 to EquivLoadVT.
4044   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4045 
4046   SDValue Load
4047     = DAG.getMemIntrinsicNode(
4048       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4049       VTList, Ops, M->getMemoryVT(),
4050       M->getMemOperand());
4051   if (!Unpacked) // Just adjusted the opcode.
4052     return Load;
4053 
4054   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4055 
4056   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4057 }
4058 
4059 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4060                                   SDNode *N, SelectionDAG &DAG) {
4061   EVT VT = N->getValueType(0);
4062   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4063   int CondCode = CD->getSExtValue();
4064   if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
4065       CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
4066     return DAG.getUNDEF(VT);
4067 
4068   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4069 
4070   SDValue LHS = N->getOperand(1);
4071   SDValue RHS = N->getOperand(2);
4072 
4073   SDLoc DL(N);
4074 
4075   EVT CmpVT = LHS.getValueType();
4076   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4077     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4078       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4079     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4080     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4081   }
4082 
4083   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4084 
4085   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4086   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4087 
4088   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4089                               DAG.getCondCode(CCOpcode));
4090   if (VT.bitsEq(CCVT))
4091     return SetCC;
4092   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4093 }
4094 
4095 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4096                                   SDNode *N, SelectionDAG &DAG) {
4097   EVT VT = N->getValueType(0);
4098   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4099 
4100   int CondCode = CD->getSExtValue();
4101   if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
4102       CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) {
4103     return DAG.getUNDEF(VT);
4104   }
4105 
4106   SDValue Src0 = N->getOperand(1);
4107   SDValue Src1 = N->getOperand(2);
4108   EVT CmpVT = Src0.getValueType();
4109   SDLoc SL(N);
4110 
4111   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4112     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4113     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4114   }
4115 
4116   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4117   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4118   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4119   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4120   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4121                               Src1, DAG.getCondCode(CCOpcode));
4122   if (VT.bitsEq(CCVT))
4123     return SetCC;
4124   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4125 }
4126 
4127 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4128                                           SmallVectorImpl<SDValue> &Results,
4129                                           SelectionDAG &DAG) const {
4130   switch (N->getOpcode()) {
4131   case ISD::INSERT_VECTOR_ELT: {
4132     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4133       Results.push_back(Res);
4134     return;
4135   }
4136   case ISD::EXTRACT_VECTOR_ELT: {
4137     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4138       Results.push_back(Res);
4139     return;
4140   }
4141   case ISD::INTRINSIC_WO_CHAIN: {
4142     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4143     switch (IID) {
4144     case Intrinsic::amdgcn_cvt_pkrtz: {
4145       SDValue Src0 = N->getOperand(1);
4146       SDValue Src1 = N->getOperand(2);
4147       SDLoc SL(N);
4148       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4149                                 Src0, Src1);
4150       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4151       return;
4152     }
4153     case Intrinsic::amdgcn_cvt_pknorm_i16:
4154     case Intrinsic::amdgcn_cvt_pknorm_u16:
4155     case Intrinsic::amdgcn_cvt_pk_i16:
4156     case Intrinsic::amdgcn_cvt_pk_u16: {
4157       SDValue Src0 = N->getOperand(1);
4158       SDValue Src1 = N->getOperand(2);
4159       SDLoc SL(N);
4160       unsigned Opcode;
4161 
4162       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4163         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4164       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4165         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4166       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4167         Opcode = AMDGPUISD::CVT_PK_I16_I32;
4168       else
4169         Opcode = AMDGPUISD::CVT_PK_U16_U32;
4170 
4171       EVT VT = N->getValueType(0);
4172       if (isTypeLegal(VT))
4173         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4174       else {
4175         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4176         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4177       }
4178       return;
4179     }
4180     }
4181     break;
4182   }
4183   case ISD::INTRINSIC_W_CHAIN: {
4184     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4185       Results.push_back(Res);
4186       Results.push_back(Res.getValue(1));
4187       return;
4188     }
4189 
4190     break;
4191   }
4192   case ISD::SELECT: {
4193     SDLoc SL(N);
4194     EVT VT = N->getValueType(0);
4195     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4196     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4197     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4198 
4199     EVT SelectVT = NewVT;
4200     if (NewVT.bitsLT(MVT::i32)) {
4201       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4202       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4203       SelectVT = MVT::i32;
4204     }
4205 
4206     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4207                                     N->getOperand(0), LHS, RHS);
4208 
4209     if (NewVT != SelectVT)
4210       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4211     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4212     return;
4213   }
4214   case ISD::FNEG: {
4215     if (N->getValueType(0) != MVT::v2f16)
4216       break;
4217 
4218     SDLoc SL(N);
4219     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4220 
4221     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4222                              BC,
4223                              DAG.getConstant(0x80008000, SL, MVT::i32));
4224     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4225     return;
4226   }
4227   case ISD::FABS: {
4228     if (N->getValueType(0) != MVT::v2f16)
4229       break;
4230 
4231     SDLoc SL(N);
4232     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4233 
4234     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4235                              BC,
4236                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4237     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4238     return;
4239   }
4240   default:
4241     break;
4242   }
4243 }
4244 
4245 /// Helper function for LowerBRCOND
4246 static SDNode *findUser(SDValue Value, unsigned Opcode) {
4247 
4248   SDNode *Parent = Value.getNode();
4249   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4250        I != E; ++I) {
4251 
4252     if (I.getUse().get() != Value)
4253       continue;
4254 
4255     if (I->getOpcode() == Opcode)
4256       return *I;
4257   }
4258   return nullptr;
4259 }
4260 
4261 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4262   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4263     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4264     case Intrinsic::amdgcn_if:
4265       return AMDGPUISD::IF;
4266     case Intrinsic::amdgcn_else:
4267       return AMDGPUISD::ELSE;
4268     case Intrinsic::amdgcn_loop:
4269       return AMDGPUISD::LOOP;
4270     case Intrinsic::amdgcn_end_cf:
4271       llvm_unreachable("should not occur");
4272     default:
4273       return 0;
4274     }
4275   }
4276 
4277   // break, if_break, else_break are all only used as inputs to loop, not
4278   // directly as branch conditions.
4279   return 0;
4280 }
4281 
4282 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4283   const Triple &TT = getTargetMachine().getTargetTriple();
4284   return (GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4285           GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4286          AMDGPU::shouldEmitConstantsToTextSection(TT);
4287 }
4288 
4289 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4290   // FIXME: Either avoid relying on address space here or change the default
4291   // address space for functions to avoid the explicit check.
4292   return (GV->getValueType()->isFunctionTy() ||
4293           GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
4294           GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4295           GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4296          !shouldEmitFixup(GV) &&
4297          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
4298 }
4299 
4300 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
4301   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
4302 }
4303 
4304 /// This transforms the control flow intrinsics to get the branch destination as
4305 /// last parameter, also switches branch target with BR if the need arise
4306 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
4307                                       SelectionDAG &DAG) const {
4308   SDLoc DL(BRCOND);
4309 
4310   SDNode *Intr = BRCOND.getOperand(1).getNode();
4311   SDValue Target = BRCOND.getOperand(2);
4312   SDNode *BR = nullptr;
4313   SDNode *SetCC = nullptr;
4314 
4315   if (Intr->getOpcode() == ISD::SETCC) {
4316     // As long as we negate the condition everything is fine
4317     SetCC = Intr;
4318     Intr = SetCC->getOperand(0).getNode();
4319 
4320   } else {
4321     // Get the target from BR if we don't negate the condition
4322     BR = findUser(BRCOND, ISD::BR);
4323     Target = BR->getOperand(1);
4324   }
4325 
4326   // FIXME: This changes the types of the intrinsics instead of introducing new
4327   // nodes with the correct types.
4328   // e.g. llvm.amdgcn.loop
4329 
4330   // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
4331   // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
4332 
4333   unsigned CFNode = isCFIntrinsic(Intr);
4334   if (CFNode == 0) {
4335     // This is a uniform branch so we don't need to legalize.
4336     return BRCOND;
4337   }
4338 
4339   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
4340                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
4341 
4342   assert(!SetCC ||
4343         (SetCC->getConstantOperandVal(1) == 1 &&
4344          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
4345                                                              ISD::SETNE));
4346 
4347   // operands of the new intrinsic call
4348   SmallVector<SDValue, 4> Ops;
4349   if (HaveChain)
4350     Ops.push_back(BRCOND.getOperand(0));
4351 
4352   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
4353   Ops.push_back(Target);
4354 
4355   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
4356 
4357   // build the new intrinsic call
4358   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
4359 
4360   if (!HaveChain) {
4361     SDValue Ops[] =  {
4362       SDValue(Result, 0),
4363       BRCOND.getOperand(0)
4364     };
4365 
4366     Result = DAG.getMergeValues(Ops, DL).getNode();
4367   }
4368 
4369   if (BR) {
4370     // Give the branch instruction our target
4371     SDValue Ops[] = {
4372       BR->getOperand(0),
4373       BRCOND.getOperand(2)
4374     };
4375     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
4376     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
4377     BR = NewBR.getNode();
4378   }
4379 
4380   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
4381 
4382   // Copy the intrinsic results to registers
4383   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
4384     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
4385     if (!CopyToReg)
4386       continue;
4387 
4388     Chain = DAG.getCopyToReg(
4389       Chain, DL,
4390       CopyToReg->getOperand(1),
4391       SDValue(Result, i - 1),
4392       SDValue());
4393 
4394     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
4395   }
4396 
4397   // Remove the old intrinsic from the chain
4398   DAG.ReplaceAllUsesOfValueWith(
4399     SDValue(Intr, Intr->getNumValues() - 1),
4400     Intr->getOperand(0));
4401 
4402   return Chain;
4403 }
4404 
4405 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
4406                                           SelectionDAG &DAG) const {
4407   MVT VT = Op.getSimpleValueType();
4408   SDLoc DL(Op);
4409   // Checking the depth
4410   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
4411     return DAG.getConstant(0, DL, VT);
4412 
4413   MachineFunction &MF = DAG.getMachineFunction();
4414   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4415   // Check for kernel and shader functions
4416   if (Info->isEntryFunction())
4417     return DAG.getConstant(0, DL, VT);
4418 
4419   MachineFrameInfo &MFI = MF.getFrameInfo();
4420   // There is a call to @llvm.returnaddress in this function
4421   MFI.setReturnAddressIsTaken(true);
4422 
4423   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
4424   // Get the return address reg and mark it as an implicit live-in
4425   unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
4426 
4427   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4428 }
4429 
4430 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
4431                                             SDValue Op,
4432                                             const SDLoc &DL,
4433                                             EVT VT) const {
4434   return Op.getValueType().bitsLE(VT) ?
4435       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
4436       DAG.getNode(ISD::FTRUNC, DL, VT, Op);
4437 }
4438 
4439 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
4440   assert(Op.getValueType() == MVT::f16 &&
4441          "Do not know how to custom lower FP_ROUND for non-f16 type");
4442 
4443   SDValue Src = Op.getOperand(0);
4444   EVT SrcVT = Src.getValueType();
4445   if (SrcVT != MVT::f64)
4446     return Op;
4447 
4448   SDLoc DL(Op);
4449 
4450   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
4451   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
4452   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
4453 }
4454 
4455 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
4456                                                SelectionDAG &DAG) const {
4457   EVT VT = Op.getValueType();
4458   const MachineFunction &MF = DAG.getMachineFunction();
4459   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4460   bool IsIEEEMode = Info->getMode().IEEE;
4461 
4462   // FIXME: Assert during eslection that this is only selected for
4463   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
4464   // mode functions, but this happens to be OK since it's only done in cases
4465   // where there is known no sNaN.
4466   if (IsIEEEMode)
4467     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
4468 
4469   if (VT == MVT::v4f16)
4470     return splitBinaryVectorOp(Op, DAG);
4471   return Op;
4472 }
4473 
4474 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
4475   SDLoc SL(Op);
4476   SDValue Chain = Op.getOperand(0);
4477 
4478   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4479       !Subtarget->isTrapHandlerEnabled())
4480     return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
4481 
4482   MachineFunction &MF = DAG.getMachineFunction();
4483   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4484   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4485   assert(UserSGPR != AMDGPU::NoRegister);
4486   SDValue QueuePtr = CreateLiveInRegister(
4487     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4488   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
4489   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
4490                                    QueuePtr, SDValue());
4491   SDValue Ops[] = {
4492     ToReg,
4493     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
4494     SGPR01,
4495     ToReg.getValue(1)
4496   };
4497   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4498 }
4499 
4500 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
4501   SDLoc SL(Op);
4502   SDValue Chain = Op.getOperand(0);
4503   MachineFunction &MF = DAG.getMachineFunction();
4504 
4505   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4506       !Subtarget->isTrapHandlerEnabled()) {
4507     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
4508                                      "debugtrap handler not supported",
4509                                      Op.getDebugLoc(),
4510                                      DS_Warning);
4511     LLVMContext &Ctx = MF.getFunction().getContext();
4512     Ctx.diagnose(NoTrap);
4513     return Chain;
4514   }
4515 
4516   SDValue Ops[] = {
4517     Chain,
4518     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
4519   };
4520   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4521 }
4522 
4523 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
4524                                              SelectionDAG &DAG) const {
4525   // FIXME: Use inline constants (src_{shared, private}_base) instead.
4526   if (Subtarget->hasApertureRegs()) {
4527     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
4528         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
4529         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
4530     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
4531         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
4532         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
4533     unsigned Encoding =
4534         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
4535         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
4536         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
4537 
4538     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
4539     SDValue ApertureReg = SDValue(
4540         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
4541     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
4542     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
4543   }
4544 
4545   MachineFunction &MF = DAG.getMachineFunction();
4546   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4547   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4548   assert(UserSGPR != AMDGPU::NoRegister);
4549 
4550   SDValue QueuePtr = CreateLiveInRegister(
4551     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4552 
4553   // Offset into amd_queue_t for group_segment_aperture_base_hi /
4554   // private_segment_aperture_base_hi.
4555   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
4556 
4557   SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
4558 
4559   // TODO: Use custom target PseudoSourceValue.
4560   // TODO: We should use the value from the IR intrinsic call, but it might not
4561   // be available and how do we get it?
4562   Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
4563                                               AMDGPUAS::CONSTANT_ADDRESS));
4564 
4565   MachinePointerInfo PtrInfo(V, StructOffset);
4566   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
4567                      MinAlign(64, StructOffset),
4568                      MachineMemOperand::MODereferenceable |
4569                          MachineMemOperand::MOInvariant);
4570 }
4571 
4572 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
4573                                              SelectionDAG &DAG) const {
4574   SDLoc SL(Op);
4575   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
4576 
4577   SDValue Src = ASC->getOperand(0);
4578   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
4579 
4580   const AMDGPUTargetMachine &TM =
4581     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
4582 
4583   // flat -> local/private
4584   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4585     unsigned DestAS = ASC->getDestAddressSpace();
4586 
4587     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
4588         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
4589       unsigned NullVal = TM.getNullPointerValue(DestAS);
4590       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4591       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
4592       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
4593 
4594       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
4595                          NonNull, Ptr, SegmentNullPtr);
4596     }
4597   }
4598 
4599   // local/private -> flat
4600   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4601     unsigned SrcAS = ASC->getSrcAddressSpace();
4602 
4603     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
4604         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
4605       unsigned NullVal = TM.getNullPointerValue(SrcAS);
4606       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4607 
4608       SDValue NonNull
4609         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
4610 
4611       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
4612       SDValue CvtPtr
4613         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
4614 
4615       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
4616                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
4617                          FlatNullPtr);
4618     }
4619   }
4620 
4621   // global <-> flat are no-ops and never emitted.
4622 
4623   const MachineFunction &MF = DAG.getMachineFunction();
4624   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
4625     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
4626   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
4627 
4628   return DAG.getUNDEF(ASC->getValueType(0));
4629 }
4630 
4631 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4632                                                  SelectionDAG &DAG) const {
4633   SDValue Vec = Op.getOperand(0);
4634   SDValue InsVal = Op.getOperand(1);
4635   SDValue Idx = Op.getOperand(2);
4636   EVT VecVT = Vec.getValueType();
4637   EVT EltVT = VecVT.getVectorElementType();
4638   unsigned VecSize = VecVT.getSizeInBits();
4639   unsigned EltSize = EltVT.getSizeInBits();
4640 
4641 
4642   assert(VecSize <= 64);
4643 
4644   unsigned NumElts = VecVT.getVectorNumElements();
4645   SDLoc SL(Op);
4646   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
4647 
4648   if (NumElts == 4 && EltSize == 16 && KIdx) {
4649     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
4650 
4651     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4652                                  DAG.getConstant(0, SL, MVT::i32));
4653     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4654                                  DAG.getConstant(1, SL, MVT::i32));
4655 
4656     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
4657     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
4658 
4659     unsigned Idx = KIdx->getZExtValue();
4660     bool InsertLo = Idx < 2;
4661     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
4662       InsertLo ? LoVec : HiVec,
4663       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
4664       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
4665 
4666     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
4667 
4668     SDValue Concat = InsertLo ?
4669       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
4670       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
4671 
4672     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
4673   }
4674 
4675   if (isa<ConstantSDNode>(Idx))
4676     return SDValue();
4677 
4678   MVT IntVT = MVT::getIntegerVT(VecSize);
4679 
4680   // Avoid stack access for dynamic indexing.
4681   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
4682 
4683   // Create a congruent vector with the target value in each element so that
4684   // the required element can be masked and ORed into the target vector.
4685   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
4686                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
4687 
4688   assert(isPowerOf2_32(EltSize));
4689   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4690 
4691   // Convert vector index to bit-index.
4692   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4693 
4694   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4695   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
4696                             DAG.getConstant(0xffff, SL, IntVT),
4697                             ScaledIdx);
4698 
4699   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
4700   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
4701                             DAG.getNOT(SL, BFM, IntVT), BCVec);
4702 
4703   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
4704   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
4705 }
4706 
4707 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4708                                                   SelectionDAG &DAG) const {
4709   SDLoc SL(Op);
4710 
4711   EVT ResultVT = Op.getValueType();
4712   SDValue Vec = Op.getOperand(0);
4713   SDValue Idx = Op.getOperand(1);
4714   EVT VecVT = Vec.getValueType();
4715   unsigned VecSize = VecVT.getSizeInBits();
4716   EVT EltVT = VecVT.getVectorElementType();
4717   assert(VecSize <= 64);
4718 
4719   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
4720 
4721   // Make sure we do any optimizations that will make it easier to fold
4722   // source modifiers before obscuring it with bit operations.
4723 
4724   // XXX - Why doesn't this get called when vector_shuffle is expanded?
4725   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
4726     return Combined;
4727 
4728   unsigned EltSize = EltVT.getSizeInBits();
4729   assert(isPowerOf2_32(EltSize));
4730 
4731   MVT IntVT = MVT::getIntegerVT(VecSize);
4732   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4733 
4734   // Convert vector index to bit-index (* EltSize)
4735   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4736 
4737   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4738   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
4739 
4740   if (ResultVT == MVT::f16) {
4741     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
4742     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4743   }
4744 
4745   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
4746 }
4747 
4748 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
4749   assert(Elt % 2 == 0);
4750   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
4751 }
4752 
4753 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4754                                               SelectionDAG &DAG) const {
4755   SDLoc SL(Op);
4756   EVT ResultVT = Op.getValueType();
4757   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
4758 
4759   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
4760   EVT EltVT = PackVT.getVectorElementType();
4761   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
4762 
4763   // vector_shuffle <0,1,6,7> lhs, rhs
4764   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
4765   //
4766   // vector_shuffle <6,7,2,3> lhs, rhs
4767   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
4768   //
4769   // vector_shuffle <6,7,0,1> lhs, rhs
4770   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
4771 
4772   // Avoid scalarizing when both halves are reading from consecutive elements.
4773   SmallVector<SDValue, 4> Pieces;
4774   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
4775     if (elementPairIsContiguous(SVN->getMask(), I)) {
4776       const int Idx = SVN->getMaskElt(I);
4777       int VecIdx = Idx < SrcNumElts ? 0 : 1;
4778       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
4779       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
4780                                     PackVT, SVN->getOperand(VecIdx),
4781                                     DAG.getConstant(EltIdx, SL, MVT::i32));
4782       Pieces.push_back(SubVec);
4783     } else {
4784       const int Idx0 = SVN->getMaskElt(I);
4785       const int Idx1 = SVN->getMaskElt(I + 1);
4786       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
4787       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
4788       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
4789       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
4790 
4791       SDValue Vec0 = SVN->getOperand(VecIdx0);
4792       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4793                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
4794 
4795       SDValue Vec1 = SVN->getOperand(VecIdx1);
4796       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4797                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
4798       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
4799     }
4800   }
4801 
4802   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
4803 }
4804 
4805 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
4806                                             SelectionDAG &DAG) const {
4807   SDLoc SL(Op);
4808   EVT VT = Op.getValueType();
4809 
4810   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4811     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
4812 
4813     // Turn into pair of packed build_vectors.
4814     // TODO: Special case for constants that can be materialized with s_mov_b64.
4815     SDValue Lo = DAG.getBuildVector(HalfVT, SL,
4816                                     { Op.getOperand(0), Op.getOperand(1) });
4817     SDValue Hi = DAG.getBuildVector(HalfVT, SL,
4818                                     { Op.getOperand(2), Op.getOperand(3) });
4819 
4820     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
4821     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
4822 
4823     SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
4824     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
4825   }
4826 
4827   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
4828   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
4829 
4830   SDValue Lo = Op.getOperand(0);
4831   SDValue Hi = Op.getOperand(1);
4832 
4833   // Avoid adding defined bits with the zero_extend.
4834   if (Hi.isUndef()) {
4835     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
4836     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
4837     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
4838   }
4839 
4840   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
4841   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
4842 
4843   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
4844                               DAG.getConstant(16, SL, MVT::i32));
4845   if (Lo.isUndef())
4846     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
4847 
4848   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
4849   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
4850 
4851   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
4852   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
4853 }
4854 
4855 bool
4856 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4857   // We can fold offsets for anything that doesn't require a GOT relocation.
4858   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
4859           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4860           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4861          !shouldEmitGOTReloc(GA->getGlobal());
4862 }
4863 
4864 static SDValue
4865 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
4866                         const SDLoc &DL, unsigned Offset, EVT PtrVT,
4867                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
4868   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
4869   // lowered to the following code sequence:
4870   //
4871   // For constant address space:
4872   //   s_getpc_b64 s[0:1]
4873   //   s_add_u32 s0, s0, $symbol
4874   //   s_addc_u32 s1, s1, 0
4875   //
4876   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
4877   //   a fixup or relocation is emitted to replace $symbol with a literal
4878   //   constant, which is a pc-relative offset from the encoding of the $symbol
4879   //   operand to the global variable.
4880   //
4881   // For global address space:
4882   //   s_getpc_b64 s[0:1]
4883   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
4884   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
4885   //
4886   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
4887   //   fixups or relocations are emitted to replace $symbol@*@lo and
4888   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
4889   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
4890   //   operand to the global variable.
4891   //
4892   // What we want here is an offset from the value returned by s_getpc
4893   // (which is the address of the s_add_u32 instruction) to the global
4894   // variable, but since the encoding of $symbol starts 4 bytes after the start
4895   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
4896   // small. This requires us to add 4 to the global variable offset in order to
4897   // compute the correct address.
4898   unsigned LoFlags = GAFlags;
4899   if (LoFlags == SIInstrInfo::MO_NONE)
4900     LoFlags = SIInstrInfo::MO_REL32;
4901   SDValue PtrLo =
4902       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, LoFlags);
4903   SDValue PtrHi;
4904   if (GAFlags == SIInstrInfo::MO_NONE) {
4905     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
4906   } else {
4907     PtrHi =
4908         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1);
4909   }
4910   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
4911 }
4912 
4913 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
4914                                              SDValue Op,
4915                                              SelectionDAG &DAG) const {
4916   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
4917   const GlobalValue *GV = GSD->getGlobal();
4918   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
4919        (!GV->hasExternalLinkage() ||
4920         getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4921         getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)) ||
4922       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
4923       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS)
4924     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
4925 
4926   SDLoc DL(GSD);
4927   EVT PtrVT = Op.getValueType();
4928 
4929   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
4930     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
4931                                             SIInstrInfo::MO_ABS32_LO);
4932     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
4933   }
4934 
4935   if (shouldEmitFixup(GV))
4936     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
4937   else if (shouldEmitPCReloc(GV))
4938     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
4939                                    SIInstrInfo::MO_REL32);
4940 
4941   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
4942                                             SIInstrInfo::MO_GOTPCREL32);
4943 
4944   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
4945   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
4946   const DataLayout &DataLayout = DAG.getDataLayout();
4947   unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
4948   MachinePointerInfo PtrInfo
4949     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
4950 
4951   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
4952                      MachineMemOperand::MODereferenceable |
4953                          MachineMemOperand::MOInvariant);
4954 }
4955 
4956 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
4957                                    const SDLoc &DL, SDValue V) const {
4958   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
4959   // the destination register.
4960   //
4961   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
4962   // so we will end up with redundant moves to m0.
4963   //
4964   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
4965 
4966   // A Null SDValue creates a glue result.
4967   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
4968                                   V, Chain);
4969   return SDValue(M0, 0);
4970 }
4971 
4972 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
4973                                                  SDValue Op,
4974                                                  MVT VT,
4975                                                  unsigned Offset) const {
4976   SDLoc SL(Op);
4977   SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
4978                                            DAG.getEntryNode(), Offset, 4, false);
4979   // The local size values will have the hi 16-bits as zero.
4980   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
4981                      DAG.getValueType(VT));
4982 }
4983 
4984 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
4985                                         EVT VT) {
4986   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
4987                                       "non-hsa intrinsic with hsa target",
4988                                       DL.getDebugLoc());
4989   DAG.getContext()->diagnose(BadIntrin);
4990   return DAG.getUNDEF(VT);
4991 }
4992 
4993 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
4994                                          EVT VT) {
4995   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
4996                                       "intrinsic not supported on subtarget",
4997                                       DL.getDebugLoc());
4998   DAG.getContext()->diagnose(BadIntrin);
4999   return DAG.getUNDEF(VT);
5000 }
5001 
5002 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5003                                     ArrayRef<SDValue> Elts) {
5004   assert(!Elts.empty());
5005   MVT Type;
5006   unsigned NumElts;
5007 
5008   if (Elts.size() == 1) {
5009     Type = MVT::f32;
5010     NumElts = 1;
5011   } else if (Elts.size() == 2) {
5012     Type = MVT::v2f32;
5013     NumElts = 2;
5014   } else if (Elts.size() <= 4) {
5015     Type = MVT::v4f32;
5016     NumElts = 4;
5017   } else if (Elts.size() <= 8) {
5018     Type = MVT::v8f32;
5019     NumElts = 8;
5020   } else {
5021     assert(Elts.size() <= 16);
5022     Type = MVT::v16f32;
5023     NumElts = 16;
5024   }
5025 
5026   SmallVector<SDValue, 16> VecElts(NumElts);
5027   for (unsigned i = 0; i < Elts.size(); ++i) {
5028     SDValue Elt = Elts[i];
5029     if (Elt.getValueType() != MVT::f32)
5030       Elt = DAG.getBitcast(MVT::f32, Elt);
5031     VecElts[i] = Elt;
5032   }
5033   for (unsigned i = Elts.size(); i < NumElts; ++i)
5034     VecElts[i] = DAG.getUNDEF(MVT::f32);
5035 
5036   if (NumElts == 1)
5037     return VecElts[0];
5038   return DAG.getBuildVector(Type, DL, VecElts);
5039 }
5040 
5041 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5042                              SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5043   auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5044 
5045   uint64_t Value = CachePolicyConst->getZExtValue();
5046   SDLoc DL(CachePolicy);
5047   if (GLC) {
5048     *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5049     Value &= ~(uint64_t)0x1;
5050   }
5051   if (SLC) {
5052     *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5053     Value &= ~(uint64_t)0x2;
5054   }
5055   if (DLC) {
5056     *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5057     Value &= ~(uint64_t)0x4;
5058   }
5059 
5060   return Value == 0;
5061 }
5062 
5063 // Re-construct the required return value for a image load intrinsic.
5064 // This is more complicated due to the optional use TexFailCtrl which means the required
5065 // return type is an aggregate
5066 static SDValue constructRetValue(SelectionDAG &DAG,
5067                                  MachineSDNode *Result,
5068                                  ArrayRef<EVT> ResultTypes,
5069                                  bool IsTexFail, bool Unpacked, bool IsD16,
5070                                  int DMaskPop, int NumVDataDwords,
5071                                  const SDLoc &DL, LLVMContext &Context) {
5072   // Determine the required return type. This is the same regardless of IsTexFail flag
5073   EVT ReqRetVT = ResultTypes[0];
5074   EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT;
5075   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5076   EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT;
5077   EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts)
5078                                            : AdjEltVT
5079                        : ReqRetVT;
5080 
5081   // Extract data part of the result
5082   // Bitcast the result to the same type as the required return type
5083   int NumElts;
5084   if (IsD16 && !Unpacked)
5085     NumElts = NumVDataDwords << 1;
5086   else
5087     NumElts = NumVDataDwords;
5088 
5089   EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts)
5090                            : AdjEltVT;
5091 
5092   // Special case for v6f16. Rather than add support for this, use v3i32 to
5093   // extract the data elements
5094   bool V6F16Special = false;
5095   if (NumElts == 6) {
5096     CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2);
5097     DMaskPop >>= 1;
5098     ReqRetNumElts >>= 1;
5099     V6F16Special = true;
5100     AdjVT = MVT::v2i32;
5101   }
5102 
5103   SDValue N = SDValue(Result, 0);
5104   SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N);
5105 
5106   // Iterate over the result
5107   SmallVector<SDValue, 4> BVElts;
5108 
5109   if (CastVT.isVector()) {
5110     DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop);
5111   } else {
5112     BVElts.push_back(CastRes);
5113   }
5114   int ExtraElts = ReqRetNumElts - DMaskPop;
5115   while(ExtraElts--)
5116     BVElts.push_back(DAG.getUNDEF(AdjEltVT));
5117 
5118   SDValue PreTFCRes;
5119   if (ReqRetNumElts > 1) {
5120     SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts);
5121     if (IsD16 && Unpacked)
5122       PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked);
5123     else
5124       PreTFCRes = NewVec;
5125   } else {
5126     PreTFCRes = BVElts[0];
5127   }
5128 
5129   if (V6F16Special)
5130     PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes);
5131 
5132   if (!IsTexFail) {
5133     if (Result->getNumValues() > 1)
5134       return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL);
5135     else
5136       return PreTFCRes;
5137   }
5138 
5139   // Extract the TexFail result and insert into aggregate return
5140   SmallVector<SDValue, 1> TFCElt;
5141   DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1);
5142   SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]);
5143   return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL);
5144 }
5145 
5146 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5147                          SDValue *LWE, bool &IsTexFail) {
5148   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5149 
5150   uint64_t Value = TexFailCtrlConst->getZExtValue();
5151   if (Value) {
5152     IsTexFail = true;
5153   }
5154 
5155   SDLoc DL(TexFailCtrlConst);
5156   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5157   Value &= ~(uint64_t)0x1;
5158   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5159   Value &= ~(uint64_t)0x2;
5160 
5161   return Value == 0;
5162 }
5163 
5164 SDValue SITargetLowering::lowerImage(SDValue Op,
5165                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
5166                                      SelectionDAG &DAG) const {
5167   SDLoc DL(Op);
5168   MachineFunction &MF = DAG.getMachineFunction();
5169   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5170   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5171       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5172   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5173   const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5174       AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5175   const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
5176       AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
5177   unsigned IntrOpcode = Intr->BaseOpcode;
5178   bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5179 
5180   SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
5181   SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
5182   bool IsD16 = false;
5183   bool IsA16 = false;
5184   SDValue VData;
5185   int NumVDataDwords;
5186   bool AdjustRetType = false;
5187 
5188   unsigned AddrIdx; // Index of first address argument
5189   unsigned DMask;
5190   unsigned DMaskLanes = 0;
5191 
5192   if (BaseOpcode->Atomic) {
5193     VData = Op.getOperand(2);
5194 
5195     bool Is64Bit = VData.getValueType() == MVT::i64;
5196     if (BaseOpcode->AtomicX2) {
5197       SDValue VData2 = Op.getOperand(3);
5198       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
5199                                  {VData, VData2});
5200       if (Is64Bit)
5201         VData = DAG.getBitcast(MVT::v4i32, VData);
5202 
5203       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
5204       DMask = Is64Bit ? 0xf : 0x3;
5205       NumVDataDwords = Is64Bit ? 4 : 2;
5206       AddrIdx = 4;
5207     } else {
5208       DMask = Is64Bit ? 0x3 : 0x1;
5209       NumVDataDwords = Is64Bit ? 2 : 1;
5210       AddrIdx = 3;
5211     }
5212   } else {
5213     unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1;
5214     auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx));
5215     DMask = DMaskConst->getZExtValue();
5216     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
5217 
5218     if (BaseOpcode->Store) {
5219       VData = Op.getOperand(2);
5220 
5221       MVT StoreVT = VData.getSimpleValueType();
5222       if (StoreVT.getScalarType() == MVT::f16) {
5223         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5224           return Op; // D16 is unsupported for this instruction
5225 
5226         IsD16 = true;
5227         VData = handleD16VData(VData, DAG);
5228       }
5229 
5230       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
5231     } else {
5232       // Work out the num dwords based on the dmask popcount and underlying type
5233       // and whether packing is supported.
5234       MVT LoadVT = ResultTypes[0].getSimpleVT();
5235       if (LoadVT.getScalarType() == MVT::f16) {
5236         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5237           return Op; // D16 is unsupported for this instruction
5238 
5239         IsD16 = true;
5240       }
5241 
5242       // Confirm that the return type is large enough for the dmask specified
5243       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
5244           (!LoadVT.isVector() && DMaskLanes > 1))
5245           return Op;
5246 
5247       if (IsD16 && !Subtarget->hasUnpackedD16VMem())
5248         NumVDataDwords = (DMaskLanes + 1) / 2;
5249       else
5250         NumVDataDwords = DMaskLanes;
5251 
5252       AdjustRetType = true;
5253     }
5254 
5255     AddrIdx = DMaskIdx + 1;
5256   }
5257 
5258   unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0;
5259   unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0;
5260   unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0;
5261   unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients +
5262                        NumCoords + NumLCM;
5263   unsigned NumMIVAddrs = NumVAddrs;
5264 
5265   SmallVector<SDValue, 4> VAddrs;
5266 
5267   // Optimize _L to _LZ when _L is zero
5268   if (LZMappingInfo) {
5269     if (auto ConstantLod =
5270          dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5271       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
5272         IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
5273         NumMIVAddrs--;               // remove 'lod'
5274       }
5275     }
5276   }
5277 
5278   // Optimize _mip away, when 'lod' is zero
5279   if (MIPMappingInfo) {
5280     if (auto ConstantLod =
5281          dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5282       if (ConstantLod->isNullValue()) {
5283         IntrOpcode = MIPMappingInfo->NONMIP;  // set new opcode to variant without _mip
5284         NumMIVAddrs--;               // remove 'lod'
5285       }
5286     }
5287   }
5288 
5289   // Check for 16 bit addresses and pack if true.
5290   unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs;
5291   MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType();
5292   const MVT VAddrScalarVT = VAddrVT.getScalarType();
5293   if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) &&
5294       ST->hasFeature(AMDGPU::FeatureR128A16)) {
5295     IsA16 = true;
5296     const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
5297     for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) {
5298       SDValue AddrLo, AddrHi;
5299       // Push back extra arguments.
5300       if (i < DimIdx) {
5301         AddrLo = Op.getOperand(i);
5302       } else {
5303         AddrLo = Op.getOperand(i);
5304         // Dz/dh, dz/dv and the last odd coord are packed with undef. Also,
5305         // in 1D, derivatives dx/dh and dx/dv are packed with undef.
5306         if (((i + 1) >= (AddrIdx + NumMIVAddrs)) ||
5307             ((NumGradients / 2) % 2 == 1 &&
5308             (i == DimIdx + (NumGradients / 2) - 1 ||
5309              i == DimIdx + NumGradients - 1))) {
5310           AddrHi = DAG.getUNDEF(MVT::f16);
5311         } else {
5312           AddrHi = Op.getOperand(i + 1);
5313           i++;
5314         }
5315         AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT,
5316                              {AddrLo, AddrHi});
5317         AddrLo = DAG.getBitcast(MVT::i32, AddrLo);
5318       }
5319       VAddrs.push_back(AddrLo);
5320     }
5321   } else {
5322     for (unsigned i = 0; i < NumMIVAddrs; ++i)
5323       VAddrs.push_back(Op.getOperand(AddrIdx + i));
5324   }
5325 
5326   // If the register allocator cannot place the address registers contiguously
5327   // without introducing moves, then using the non-sequential address encoding
5328   // is always preferable, since it saves VALU instructions and is usually a
5329   // wash in terms of code size or even better.
5330   //
5331   // However, we currently have no way of hinting to the register allocator that
5332   // MIMG addresses should be placed contiguously when it is possible to do so,
5333   // so force non-NSA for the common 2-address case as a heuristic.
5334   //
5335   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
5336   // allocation when possible.
5337   bool UseNSA =
5338       ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
5339   SDValue VAddr;
5340   if (!UseNSA)
5341     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
5342 
5343   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
5344   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
5345   unsigned CtrlIdx; // Index of texfailctrl argument
5346   SDValue Unorm;
5347   if (!BaseOpcode->Sampler) {
5348     Unorm = True;
5349     CtrlIdx = AddrIdx + NumVAddrs + 1;
5350   } else {
5351     auto UnormConst =
5352         cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2));
5353 
5354     Unorm = UnormConst->getZExtValue() ? True : False;
5355     CtrlIdx = AddrIdx + NumVAddrs + 3;
5356   }
5357 
5358   SDValue TFE;
5359   SDValue LWE;
5360   SDValue TexFail = Op.getOperand(CtrlIdx);
5361   bool IsTexFail = false;
5362   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
5363     return Op;
5364 
5365   if (IsTexFail) {
5366     if (!DMaskLanes) {
5367       // Expecting to get an error flag since TFC is on - and dmask is 0
5368       // Force dmask to be at least 1 otherwise the instruction will fail
5369       DMask = 0x1;
5370       DMaskLanes = 1;
5371       NumVDataDwords = 1;
5372     }
5373     NumVDataDwords += 1;
5374     AdjustRetType = true;
5375   }
5376 
5377   // Has something earlier tagged that the return type needs adjusting
5378   // This happens if the instruction is a load or has set TexFailCtrl flags
5379   if (AdjustRetType) {
5380     // NumVDataDwords reflects the true number of dwords required in the return type
5381     if (DMaskLanes == 0 && !BaseOpcode->Store) {
5382       // This is a no-op load. This can be eliminated
5383       SDValue Undef = DAG.getUNDEF(Op.getValueType());
5384       if (isa<MemSDNode>(Op))
5385         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
5386       return Undef;
5387     }
5388 
5389     EVT NewVT = NumVDataDwords > 1 ?
5390                   EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords)
5391                 : MVT::f32;
5392 
5393     ResultTypes[0] = NewVT;
5394     if (ResultTypes.size() == 3) {
5395       // Original result was aggregate type used for TexFailCtrl results
5396       // The actual instruction returns as a vector type which has now been
5397       // created. Remove the aggregate result.
5398       ResultTypes.erase(&ResultTypes[1]);
5399     }
5400   }
5401 
5402   SDValue GLC;
5403   SDValue SLC;
5404   SDValue DLC;
5405   if (BaseOpcode->Atomic) {
5406     GLC = True; // TODO no-return optimization
5407     if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC,
5408                           IsGFX10 ? &DLC : nullptr))
5409       return Op;
5410   } else {
5411     if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC,
5412                           IsGFX10 ? &DLC : nullptr))
5413       return Op;
5414   }
5415 
5416   SmallVector<SDValue, 26> Ops;
5417   if (BaseOpcode->Store || BaseOpcode->Atomic)
5418     Ops.push_back(VData); // vdata
5419   if (UseNSA) {
5420     for (const SDValue &Addr : VAddrs)
5421       Ops.push_back(Addr);
5422   } else {
5423     Ops.push_back(VAddr);
5424   }
5425   Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc
5426   if (BaseOpcode->Sampler)
5427     Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler
5428   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
5429   if (IsGFX10)
5430     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
5431   Ops.push_back(Unorm);
5432   if (IsGFX10)
5433     Ops.push_back(DLC);
5434   Ops.push_back(GLC);
5435   Ops.push_back(SLC);
5436   Ops.push_back(IsA16 &&  // a16 or r128
5437                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
5438   Ops.push_back(TFE); // tfe
5439   Ops.push_back(LWE); // lwe
5440   if (!IsGFX10)
5441     Ops.push_back(DimInfo->DA ? True : False);
5442   if (BaseOpcode->HasD16)
5443     Ops.push_back(IsD16 ? True : False);
5444   if (isa<MemSDNode>(Op))
5445     Ops.push_back(Op.getOperand(0)); // chain
5446 
5447   int NumVAddrDwords =
5448       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
5449   int Opcode = -1;
5450 
5451   if (IsGFX10) {
5452     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
5453                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
5454                                           : AMDGPU::MIMGEncGfx10Default,
5455                                    NumVDataDwords, NumVAddrDwords);
5456   } else {
5457     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5458       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
5459                                      NumVDataDwords, NumVAddrDwords);
5460     if (Opcode == -1)
5461       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
5462                                      NumVDataDwords, NumVAddrDwords);
5463   }
5464   assert(Opcode != -1);
5465 
5466   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
5467   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
5468     MachineMemOperand *MemRef = MemOp->getMemOperand();
5469     DAG.setNodeMemRefs(NewNode, {MemRef});
5470   }
5471 
5472   if (BaseOpcode->AtomicX2) {
5473     SmallVector<SDValue, 1> Elt;
5474     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
5475     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
5476   } else if (!BaseOpcode->Store) {
5477     return constructRetValue(DAG, NewNode,
5478                              OrigResultTypes, IsTexFail,
5479                              Subtarget->hasUnpackedD16VMem(), IsD16,
5480                              DMaskLanes, NumVDataDwords, DL,
5481                              *DAG.getContext());
5482   }
5483 
5484   return SDValue(NewNode, 0);
5485 }
5486 
5487 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
5488                                        SDValue Offset, SDValue GLC, SDValue DLC,
5489                                        SelectionDAG &DAG) const {
5490   MachineFunction &MF = DAG.getMachineFunction();
5491   MachineMemOperand *MMO = MF.getMachineMemOperand(
5492       MachinePointerInfo(),
5493       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
5494           MachineMemOperand::MOInvariant,
5495       VT.getStoreSize(), VT.getStoreSize());
5496 
5497   if (!Offset->isDivergent()) {
5498     SDValue Ops[] = {
5499         Rsrc,
5500         Offset, // Offset
5501         GLC,
5502         DLC,
5503     };
5504     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
5505                                    DAG.getVTList(VT), Ops, VT, MMO);
5506   }
5507 
5508   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
5509   // assume that the buffer is unswizzled.
5510   SmallVector<SDValue, 4> Loads;
5511   unsigned NumLoads = 1;
5512   MVT LoadVT = VT.getSimpleVT();
5513   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
5514   assert((LoadVT.getScalarType() == MVT::i32 ||
5515           LoadVT.getScalarType() == MVT::f32) &&
5516          isPowerOf2_32(NumElts));
5517 
5518   if (NumElts == 8 || NumElts == 16) {
5519     NumLoads = NumElts == 16 ? 4 : 2;
5520     LoadVT = MVT::v4i32;
5521   }
5522 
5523   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
5524   unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue();
5525   SDValue Ops[] = {
5526       DAG.getEntryNode(),                         // Chain
5527       Rsrc,                                       // rsrc
5528       DAG.getConstant(0, DL, MVT::i32),           // vindex
5529       {},                                         // voffset
5530       {},                                         // soffset
5531       {},                                         // offset
5532       DAG.getConstant(CachePolicy, DL, MVT::i32), // cachepolicy
5533       DAG.getConstant(0, DL, MVT::i1),            // idxen
5534   };
5535 
5536   // Use the alignment to ensure that the required offsets will fit into the
5537   // immediate offsets.
5538   setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4);
5539 
5540   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
5541   for (unsigned i = 0; i < NumLoads; ++i) {
5542     Ops[5] = DAG.getConstant(InstOffset + 16 * i, DL, MVT::i32);
5543     Loads.push_back(DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList,
5544                                             Ops, LoadVT, MMO));
5545   }
5546 
5547   if (VT == MVT::v8i32 || VT == MVT::v16i32)
5548     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
5549 
5550   return Loads[0];
5551 }
5552 
5553 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5554                                                   SelectionDAG &DAG) const {
5555   MachineFunction &MF = DAG.getMachineFunction();
5556   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
5557 
5558   EVT VT = Op.getValueType();
5559   SDLoc DL(Op);
5560   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5561 
5562   // TODO: Should this propagate fast-math-flags?
5563 
5564   switch (IntrinsicID) {
5565   case Intrinsic::amdgcn_implicit_buffer_ptr: {
5566     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
5567       return emitNonHSAIntrinsicError(DAG, DL, VT);
5568     return getPreloadedValue(DAG, *MFI, VT,
5569                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
5570   }
5571   case Intrinsic::amdgcn_dispatch_ptr:
5572   case Intrinsic::amdgcn_queue_ptr: {
5573     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
5574       DiagnosticInfoUnsupported BadIntrin(
5575           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
5576           DL.getDebugLoc());
5577       DAG.getContext()->diagnose(BadIntrin);
5578       return DAG.getUNDEF(VT);
5579     }
5580 
5581     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
5582       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
5583     return getPreloadedValue(DAG, *MFI, VT, RegID);
5584   }
5585   case Intrinsic::amdgcn_implicitarg_ptr: {
5586     if (MFI->isEntryFunction())
5587       return getImplicitArgPtr(DAG, DL);
5588     return getPreloadedValue(DAG, *MFI, VT,
5589                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
5590   }
5591   case Intrinsic::amdgcn_kernarg_segment_ptr: {
5592     return getPreloadedValue(DAG, *MFI, VT,
5593                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
5594   }
5595   case Intrinsic::amdgcn_dispatch_id: {
5596     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
5597   }
5598   case Intrinsic::amdgcn_rcp:
5599     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
5600   case Intrinsic::amdgcn_rsq:
5601     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5602   case Intrinsic::amdgcn_rsq_legacy:
5603     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5604       return emitRemovedIntrinsicError(DAG, DL, VT);
5605 
5606     return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
5607   case Intrinsic::amdgcn_rcp_legacy:
5608     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5609       return emitRemovedIntrinsicError(DAG, DL, VT);
5610     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
5611   case Intrinsic::amdgcn_rsq_clamp: {
5612     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5613       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
5614 
5615     Type *Type = VT.getTypeForEVT(*DAG.getContext());
5616     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
5617     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
5618 
5619     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5620     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
5621                               DAG.getConstantFP(Max, DL, VT));
5622     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
5623                        DAG.getConstantFP(Min, DL, VT));
5624   }
5625   case Intrinsic::r600_read_ngroups_x:
5626     if (Subtarget->isAmdHsaOS())
5627       return emitNonHSAIntrinsicError(DAG, DL, VT);
5628 
5629     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5630                                     SI::KernelInputOffsets::NGROUPS_X, 4, false);
5631   case Intrinsic::r600_read_ngroups_y:
5632     if (Subtarget->isAmdHsaOS())
5633       return emitNonHSAIntrinsicError(DAG, DL, VT);
5634 
5635     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5636                                     SI::KernelInputOffsets::NGROUPS_Y, 4, false);
5637   case Intrinsic::r600_read_ngroups_z:
5638     if (Subtarget->isAmdHsaOS())
5639       return emitNonHSAIntrinsicError(DAG, DL, VT);
5640 
5641     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5642                                     SI::KernelInputOffsets::NGROUPS_Z, 4, false);
5643   case Intrinsic::r600_read_global_size_x:
5644     if (Subtarget->isAmdHsaOS())
5645       return emitNonHSAIntrinsicError(DAG, DL, VT);
5646 
5647     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5648                                     SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false);
5649   case Intrinsic::r600_read_global_size_y:
5650     if (Subtarget->isAmdHsaOS())
5651       return emitNonHSAIntrinsicError(DAG, DL, VT);
5652 
5653     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5654                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false);
5655   case Intrinsic::r600_read_global_size_z:
5656     if (Subtarget->isAmdHsaOS())
5657       return emitNonHSAIntrinsicError(DAG, DL, VT);
5658 
5659     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5660                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false);
5661   case Intrinsic::r600_read_local_size_x:
5662     if (Subtarget->isAmdHsaOS())
5663       return emitNonHSAIntrinsicError(DAG, DL, VT);
5664 
5665     return lowerImplicitZextParam(DAG, Op, MVT::i16,
5666                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
5667   case Intrinsic::r600_read_local_size_y:
5668     if (Subtarget->isAmdHsaOS())
5669       return emitNonHSAIntrinsicError(DAG, DL, VT);
5670 
5671     return lowerImplicitZextParam(DAG, Op, MVT::i16,
5672                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
5673   case Intrinsic::r600_read_local_size_z:
5674     if (Subtarget->isAmdHsaOS())
5675       return emitNonHSAIntrinsicError(DAG, DL, VT);
5676 
5677     return lowerImplicitZextParam(DAG, Op, MVT::i16,
5678                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
5679   case Intrinsic::amdgcn_workgroup_id_x:
5680   case Intrinsic::r600_read_tgid_x:
5681     return getPreloadedValue(DAG, *MFI, VT,
5682                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
5683   case Intrinsic::amdgcn_workgroup_id_y:
5684   case Intrinsic::r600_read_tgid_y:
5685     return getPreloadedValue(DAG, *MFI, VT,
5686                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
5687   case Intrinsic::amdgcn_workgroup_id_z:
5688   case Intrinsic::r600_read_tgid_z:
5689     return getPreloadedValue(DAG, *MFI, VT,
5690                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
5691   case Intrinsic::amdgcn_workitem_id_x:
5692   case Intrinsic::r600_read_tidig_x:
5693     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5694                           SDLoc(DAG.getEntryNode()),
5695                           MFI->getArgInfo().WorkItemIDX);
5696   case Intrinsic::amdgcn_workitem_id_y:
5697   case Intrinsic::r600_read_tidig_y:
5698     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5699                           SDLoc(DAG.getEntryNode()),
5700                           MFI->getArgInfo().WorkItemIDY);
5701   case Intrinsic::amdgcn_workitem_id_z:
5702   case Intrinsic::r600_read_tidig_z:
5703     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5704                           SDLoc(DAG.getEntryNode()),
5705                           MFI->getArgInfo().WorkItemIDZ);
5706   case Intrinsic::amdgcn_wavefrontsize:
5707     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
5708                            SDLoc(Op), MVT::i32);
5709   case Intrinsic::amdgcn_s_buffer_load: {
5710     bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5711     SDValue GLC;
5712     SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
5713     if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
5714                           IsGFX10 ? &DLC : nullptr))
5715       return Op;
5716     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), GLC, DLC,
5717                         DAG);
5718   }
5719   case Intrinsic::amdgcn_fdiv_fast:
5720     return lowerFDIV_FAST(Op, DAG);
5721   case Intrinsic::amdgcn_interp_mov: {
5722     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
5723     SDValue Glue = M0.getValue(1);
5724     return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
5725                        Op.getOperand(2), Op.getOperand(3), Glue);
5726   }
5727   case Intrinsic::amdgcn_interp_p1: {
5728     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
5729     SDValue Glue = M0.getValue(1);
5730     return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
5731                        Op.getOperand(2), Op.getOperand(3), Glue);
5732   }
5733   case Intrinsic::amdgcn_interp_p2: {
5734     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
5735     SDValue Glue = SDValue(M0.getNode(), 1);
5736     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
5737                        Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
5738                        Glue);
5739   }
5740   case Intrinsic::amdgcn_interp_p1_f16: {
5741     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
5742     SDValue Glue = M0.getValue(1);
5743     if (getSubtarget()->getLDSBankCount() == 16) {
5744       // 16 bank LDS
5745       SDValue S = DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
5746                               DAG.getConstant(2, DL, MVT::i32), // P0
5747                               Op.getOperand(2), // Attrchan
5748                               Op.getOperand(3), // Attr
5749                               Glue);
5750       SDValue Ops[] = {
5751         Op.getOperand(1), // Src0
5752         Op.getOperand(2), // Attrchan
5753         Op.getOperand(3), // Attr
5754         DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers
5755         S, // Src2 - holds two f16 values selected by high
5756         DAG.getConstant(0, DL, MVT::i32), // $src2_modifiers
5757         Op.getOperand(4), // high
5758         DAG.getConstant(0, DL, MVT::i1), // $clamp
5759         DAG.getConstant(0, DL, MVT::i32) // $omod
5760       };
5761       return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops);
5762     } else {
5763       // 32 bank LDS
5764       SDValue Ops[] = {
5765         Op.getOperand(1), // Src0
5766         Op.getOperand(2), // Attrchan
5767         Op.getOperand(3), // Attr
5768         DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers
5769         Op.getOperand(4), // high
5770         DAG.getConstant(0, DL, MVT::i1), // $clamp
5771         DAG.getConstant(0, DL, MVT::i32), // $omod
5772         Glue
5773       };
5774       return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops);
5775     }
5776   }
5777   case Intrinsic::amdgcn_interp_p2_f16: {
5778     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(6));
5779     SDValue Glue = SDValue(M0.getNode(), 1);
5780     SDValue Ops[] = {
5781       Op.getOperand(2), // Src0
5782       Op.getOperand(3), // Attrchan
5783       Op.getOperand(4), // Attr
5784       DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers
5785       Op.getOperand(1), // Src2
5786       DAG.getConstant(0, DL, MVT::i32), // $src2_modifiers
5787       Op.getOperand(5), // high
5788       DAG.getConstant(0, DL, MVT::i1), // $clamp
5789       Glue
5790     };
5791     return DAG.getNode(AMDGPUISD::INTERP_P2_F16, DL, MVT::f16, Ops);
5792   }
5793   case Intrinsic::amdgcn_sin:
5794     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
5795 
5796   case Intrinsic::amdgcn_cos:
5797     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
5798 
5799   case Intrinsic::amdgcn_log_clamp: {
5800     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5801       return SDValue();
5802 
5803     DiagnosticInfoUnsupported BadIntrin(
5804       MF.getFunction(), "intrinsic not supported on subtarget",
5805       DL.getDebugLoc());
5806       DAG.getContext()->diagnose(BadIntrin);
5807       return DAG.getUNDEF(VT);
5808   }
5809   case Intrinsic::amdgcn_ldexp:
5810     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
5811                        Op.getOperand(1), Op.getOperand(2));
5812 
5813   case Intrinsic::amdgcn_fract:
5814     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
5815 
5816   case Intrinsic::amdgcn_class:
5817     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
5818                        Op.getOperand(1), Op.getOperand(2));
5819   case Intrinsic::amdgcn_div_fmas:
5820     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
5821                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
5822                        Op.getOperand(4));
5823 
5824   case Intrinsic::amdgcn_div_fixup:
5825     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
5826                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5827 
5828   case Intrinsic::amdgcn_trig_preop:
5829     return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
5830                        Op.getOperand(1), Op.getOperand(2));
5831   case Intrinsic::amdgcn_div_scale: {
5832     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
5833 
5834     // Translate to the operands expected by the machine instruction. The
5835     // first parameter must be the same as the first instruction.
5836     SDValue Numerator = Op.getOperand(1);
5837     SDValue Denominator = Op.getOperand(2);
5838 
5839     // Note this order is opposite of the machine instruction's operations,
5840     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
5841     // intrinsic has the numerator as the first operand to match a normal
5842     // division operation.
5843 
5844     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
5845 
5846     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
5847                        Denominator, Numerator);
5848   }
5849   case Intrinsic::amdgcn_icmp: {
5850     // There is a Pat that handles this variant, so return it as-is.
5851     if (Op.getOperand(1).getValueType() == MVT::i1 &&
5852         Op.getConstantOperandVal(2) == 0 &&
5853         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
5854       return Op;
5855     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
5856   }
5857   case Intrinsic::amdgcn_fcmp: {
5858     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
5859   }
5860   case Intrinsic::amdgcn_fmed3:
5861     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
5862                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5863   case Intrinsic::amdgcn_fdot2:
5864     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
5865                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
5866                        Op.getOperand(4));
5867   case Intrinsic::amdgcn_fmul_legacy:
5868     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
5869                        Op.getOperand(1), Op.getOperand(2));
5870   case Intrinsic::amdgcn_sffbh:
5871     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
5872   case Intrinsic::amdgcn_sbfe:
5873     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
5874                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5875   case Intrinsic::amdgcn_ubfe:
5876     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
5877                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5878   case Intrinsic::amdgcn_cvt_pkrtz:
5879   case Intrinsic::amdgcn_cvt_pknorm_i16:
5880   case Intrinsic::amdgcn_cvt_pknorm_u16:
5881   case Intrinsic::amdgcn_cvt_pk_i16:
5882   case Intrinsic::amdgcn_cvt_pk_u16: {
5883     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
5884     EVT VT = Op.getValueType();
5885     unsigned Opcode;
5886 
5887     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
5888       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
5889     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
5890       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
5891     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
5892       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
5893     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
5894       Opcode = AMDGPUISD::CVT_PK_I16_I32;
5895     else
5896       Opcode = AMDGPUISD::CVT_PK_U16_U32;
5897 
5898     if (isTypeLegal(VT))
5899       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
5900 
5901     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
5902                                Op.getOperand(1), Op.getOperand(2));
5903     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
5904   }
5905   case Intrinsic::amdgcn_wqm: {
5906     SDValue Src = Op.getOperand(1);
5907     return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src),
5908                    0);
5909   }
5910   case Intrinsic::amdgcn_wwm: {
5911     SDValue Src = Op.getOperand(1);
5912     return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src),
5913                    0);
5914   }
5915   case Intrinsic::amdgcn_fmad_ftz:
5916     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
5917                        Op.getOperand(2), Op.getOperand(3));
5918 
5919   case Intrinsic::amdgcn_if_break:
5920     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
5921                                       Op->getOperand(1), Op->getOperand(2)), 0);
5922 
5923   case Intrinsic::amdgcn_groupstaticsize: {
5924     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
5925     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
5926       return Op;
5927 
5928     const Module *M = MF.getFunction().getParent();
5929     const GlobalValue *GV =
5930         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
5931     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
5932                                             SIInstrInfo::MO_ABS32_LO);
5933     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
5934   }
5935   default:
5936     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
5937             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
5938       return lowerImage(Op, ImageDimIntr, DAG);
5939 
5940     return Op;
5941   }
5942 }
5943 
5944 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
5945                                                  SelectionDAG &DAG) const {
5946   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5947   SDLoc DL(Op);
5948 
5949   switch (IntrID) {
5950   case Intrinsic::amdgcn_ds_ordered_add:
5951   case Intrinsic::amdgcn_ds_ordered_swap: {
5952     MemSDNode *M = cast<MemSDNode>(Op);
5953     SDValue Chain = M->getOperand(0);
5954     SDValue M0 = M->getOperand(2);
5955     SDValue Value = M->getOperand(3);
5956     unsigned IndexOperand = M->getConstantOperandVal(7);
5957     unsigned WaveRelease = M->getConstantOperandVal(8);
5958     unsigned WaveDone = M->getConstantOperandVal(9);
5959     unsigned ShaderType;
5960     unsigned Instruction;
5961 
5962     unsigned OrderedCountIndex = IndexOperand & 0x3f;
5963     IndexOperand &= ~0x3f;
5964     unsigned CountDw = 0;
5965 
5966     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
5967       CountDw = (IndexOperand >> 24) & 0xf;
5968       IndexOperand &= ~(0xf << 24);
5969 
5970       if (CountDw < 1 || CountDw > 4) {
5971         report_fatal_error(
5972             "ds_ordered_count: dword count must be between 1 and 4");
5973       }
5974     }
5975 
5976     if (IndexOperand)
5977       report_fatal_error("ds_ordered_count: bad index operand");
5978 
5979     switch (IntrID) {
5980     case Intrinsic::amdgcn_ds_ordered_add:
5981       Instruction = 0;
5982       break;
5983     case Intrinsic::amdgcn_ds_ordered_swap:
5984       Instruction = 1;
5985       break;
5986     }
5987 
5988     if (WaveDone && !WaveRelease)
5989       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
5990 
5991     switch (DAG.getMachineFunction().getFunction().getCallingConv()) {
5992     case CallingConv::AMDGPU_CS:
5993     case CallingConv::AMDGPU_KERNEL:
5994       ShaderType = 0;
5995       break;
5996     case CallingConv::AMDGPU_PS:
5997       ShaderType = 1;
5998       break;
5999     case CallingConv::AMDGPU_VS:
6000       ShaderType = 2;
6001       break;
6002     case CallingConv::AMDGPU_GS:
6003       ShaderType = 3;
6004       break;
6005     default:
6006       report_fatal_error("ds_ordered_count unsupported for this calling conv");
6007     }
6008 
6009     unsigned Offset0 = OrderedCountIndex << 2;
6010     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6011                        (Instruction << 4);
6012 
6013     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6014       Offset1 |= (CountDw - 1) << 6;
6015 
6016     unsigned Offset = Offset0 | (Offset1 << 8);
6017 
6018     SDValue Ops[] = {
6019       Chain,
6020       Value,
6021       DAG.getTargetConstant(Offset, DL, MVT::i16),
6022       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6023     };
6024     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6025                                    M->getVTList(), Ops, M->getMemoryVT(),
6026                                    M->getMemOperand());
6027   }
6028   case Intrinsic::amdgcn_ds_fadd: {
6029     MemSDNode *M = cast<MemSDNode>(Op);
6030     unsigned Opc;
6031     switch (IntrID) {
6032     case Intrinsic::amdgcn_ds_fadd:
6033       Opc = ISD::ATOMIC_LOAD_FADD;
6034       break;
6035     }
6036 
6037     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6038                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
6039                          M->getMemOperand());
6040   }
6041   case Intrinsic::amdgcn_atomic_inc:
6042   case Intrinsic::amdgcn_atomic_dec:
6043   case Intrinsic::amdgcn_ds_fmin:
6044   case Intrinsic::amdgcn_ds_fmax: {
6045     MemSDNode *M = cast<MemSDNode>(Op);
6046     unsigned Opc;
6047     switch (IntrID) {
6048     case Intrinsic::amdgcn_atomic_inc:
6049       Opc = AMDGPUISD::ATOMIC_INC;
6050       break;
6051     case Intrinsic::amdgcn_atomic_dec:
6052       Opc = AMDGPUISD::ATOMIC_DEC;
6053       break;
6054     case Intrinsic::amdgcn_ds_fmin:
6055       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6056       break;
6057     case Intrinsic::amdgcn_ds_fmax:
6058       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6059       break;
6060     default:
6061       llvm_unreachable("Unknown intrinsic!");
6062     }
6063     SDValue Ops[] = {
6064       M->getOperand(0), // Chain
6065       M->getOperand(2), // Ptr
6066       M->getOperand(3)  // Value
6067     };
6068 
6069     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6070                                    M->getMemoryVT(), M->getMemOperand());
6071   }
6072   case Intrinsic::amdgcn_buffer_load:
6073   case Intrinsic::amdgcn_buffer_load_format: {
6074     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6075     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6076     unsigned IdxEn = 1;
6077     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6078       IdxEn = Idx->getZExtValue() != 0;
6079     SDValue Ops[] = {
6080       Op.getOperand(0), // Chain
6081       Op.getOperand(2), // rsrc
6082       Op.getOperand(3), // vindex
6083       SDValue(),        // voffset -- will be set by setBufferOffsets
6084       SDValue(),        // soffset -- will be set by setBufferOffsets
6085       SDValue(),        // offset -- will be set by setBufferOffsets
6086       DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6087       DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
6088     };
6089 
6090     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6091     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6092         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6093 
6094     EVT VT = Op.getValueType();
6095     EVT IntVT = VT.changeTypeToInteger();
6096     auto *M = cast<MemSDNode>(Op);
6097     EVT LoadVT = Op.getValueType();
6098 
6099     if (LoadVT.getScalarType() == MVT::f16)
6100       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6101                                  M, DAG, Ops);
6102 
6103     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6104     if (LoadVT.getScalarType() == MVT::i8 ||
6105         LoadVT.getScalarType() == MVT::i16)
6106       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6107 
6108     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6109                                M->getMemOperand(), DAG);
6110   }
6111   case Intrinsic::amdgcn_raw_buffer_load:
6112   case Intrinsic::amdgcn_raw_buffer_load_format: {
6113     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6114     SDValue Ops[] = {
6115       Op.getOperand(0), // Chain
6116       Op.getOperand(2), // rsrc
6117       DAG.getConstant(0, DL, MVT::i32), // vindex
6118       Offsets.first,    // voffset
6119       Op.getOperand(4), // soffset
6120       Offsets.second,   // offset
6121       Op.getOperand(5), // cachepolicy
6122       DAG.getConstant(0, DL, MVT::i1), // idxen
6123     };
6124 
6125     unsigned Opc = (IntrID == Intrinsic::amdgcn_raw_buffer_load) ?
6126         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6127 
6128     EVT VT = Op.getValueType();
6129     EVT IntVT = VT.changeTypeToInteger();
6130     auto *M = cast<MemSDNode>(Op);
6131     EVT LoadVT = Op.getValueType();
6132 
6133     if (LoadVT.getScalarType() == MVT::f16)
6134       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6135                                  M, DAG, Ops);
6136 
6137     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6138     if (LoadVT.getScalarType() == MVT::i8 ||
6139         LoadVT.getScalarType() == MVT::i16)
6140       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6141 
6142     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6143                                M->getMemOperand(), DAG);
6144   }
6145   case Intrinsic::amdgcn_struct_buffer_load:
6146   case Intrinsic::amdgcn_struct_buffer_load_format: {
6147     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6148     SDValue Ops[] = {
6149       Op.getOperand(0), // Chain
6150       Op.getOperand(2), // rsrc
6151       Op.getOperand(3), // vindex
6152       Offsets.first,    // voffset
6153       Op.getOperand(5), // soffset
6154       Offsets.second,   // offset
6155       Op.getOperand(6), // cachepolicy
6156       DAG.getConstant(1, DL, MVT::i1), // idxen
6157     };
6158 
6159     unsigned Opc = (IntrID == Intrinsic::amdgcn_struct_buffer_load) ?
6160         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6161 
6162     EVT VT = Op.getValueType();
6163     EVT IntVT = VT.changeTypeToInteger();
6164     auto *M = cast<MemSDNode>(Op);
6165     EVT LoadVT = Op.getValueType();
6166 
6167     if (LoadVT.getScalarType() == MVT::f16)
6168       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6169                                  M, DAG, Ops);
6170 
6171     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6172     if (LoadVT.getScalarType() == MVT::i8 ||
6173         LoadVT.getScalarType() == MVT::i16)
6174       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6175 
6176     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6177                                M->getMemOperand(), DAG);
6178   }
6179   case Intrinsic::amdgcn_tbuffer_load: {
6180     MemSDNode *M = cast<MemSDNode>(Op);
6181     EVT LoadVT = Op.getValueType();
6182 
6183     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6184     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6185     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6186     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6187     unsigned IdxEn = 1;
6188     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6189       IdxEn = Idx->getZExtValue() != 0;
6190     SDValue Ops[] = {
6191       Op.getOperand(0),  // Chain
6192       Op.getOperand(2),  // rsrc
6193       Op.getOperand(3),  // vindex
6194       Op.getOperand(4),  // voffset
6195       Op.getOperand(5),  // soffset
6196       Op.getOperand(6),  // offset
6197       DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6198       DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6199       DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
6200     };
6201 
6202     if (LoadVT.getScalarType() == MVT::f16)
6203       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6204                                  M, DAG, Ops);
6205     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6206                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6207                                DAG);
6208   }
6209   case Intrinsic::amdgcn_raw_tbuffer_load: {
6210     MemSDNode *M = cast<MemSDNode>(Op);
6211     EVT LoadVT = Op.getValueType();
6212     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6213 
6214     SDValue Ops[] = {
6215       Op.getOperand(0),  // Chain
6216       Op.getOperand(2),  // rsrc
6217       DAG.getConstant(0, DL, MVT::i32), // vindex
6218       Offsets.first,     // voffset
6219       Op.getOperand(4),  // soffset
6220       Offsets.second,    // offset
6221       Op.getOperand(5),  // format
6222       Op.getOperand(6),  // cachepolicy
6223       DAG.getConstant(0, DL, MVT::i1), // idxen
6224     };
6225 
6226     if (LoadVT.getScalarType() == MVT::f16)
6227       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6228                                  M, DAG, Ops);
6229     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6230                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6231                                DAG);
6232   }
6233   case Intrinsic::amdgcn_struct_tbuffer_load: {
6234     MemSDNode *M = cast<MemSDNode>(Op);
6235     EVT LoadVT = Op.getValueType();
6236     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6237 
6238     SDValue Ops[] = {
6239       Op.getOperand(0),  // Chain
6240       Op.getOperand(2),  // rsrc
6241       Op.getOperand(3),  // vindex
6242       Offsets.first,     // voffset
6243       Op.getOperand(5),  // soffset
6244       Offsets.second,    // offset
6245       Op.getOperand(6),  // format
6246       Op.getOperand(7),  // cachepolicy
6247       DAG.getConstant(1, DL, MVT::i1), // idxen
6248     };
6249 
6250     if (LoadVT.getScalarType() == MVT::f16)
6251       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6252                                  M, DAG, Ops);
6253     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6254                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6255                                DAG);
6256   }
6257   case Intrinsic::amdgcn_buffer_atomic_swap:
6258   case Intrinsic::amdgcn_buffer_atomic_add:
6259   case Intrinsic::amdgcn_buffer_atomic_sub:
6260   case Intrinsic::amdgcn_buffer_atomic_smin:
6261   case Intrinsic::amdgcn_buffer_atomic_umin:
6262   case Intrinsic::amdgcn_buffer_atomic_smax:
6263   case Intrinsic::amdgcn_buffer_atomic_umax:
6264   case Intrinsic::amdgcn_buffer_atomic_and:
6265   case Intrinsic::amdgcn_buffer_atomic_or:
6266   case Intrinsic::amdgcn_buffer_atomic_xor: {
6267     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6268     unsigned IdxEn = 1;
6269     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6270       IdxEn = Idx->getZExtValue() != 0;
6271     SDValue Ops[] = {
6272       Op.getOperand(0), // Chain
6273       Op.getOperand(2), // vdata
6274       Op.getOperand(3), // rsrc
6275       Op.getOperand(4), // vindex
6276       SDValue(),        // voffset -- will be set by setBufferOffsets
6277       SDValue(),        // soffset -- will be set by setBufferOffsets
6278       SDValue(),        // offset -- will be set by setBufferOffsets
6279       DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6280       DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
6281     };
6282     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6283     EVT VT = Op.getValueType();
6284 
6285     auto *M = cast<MemSDNode>(Op);
6286     unsigned Opcode = 0;
6287 
6288     switch (IntrID) {
6289     case Intrinsic::amdgcn_buffer_atomic_swap:
6290       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6291       break;
6292     case Intrinsic::amdgcn_buffer_atomic_add:
6293       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6294       break;
6295     case Intrinsic::amdgcn_buffer_atomic_sub:
6296       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6297       break;
6298     case Intrinsic::amdgcn_buffer_atomic_smin:
6299       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6300       break;
6301     case Intrinsic::amdgcn_buffer_atomic_umin:
6302       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6303       break;
6304     case Intrinsic::amdgcn_buffer_atomic_smax:
6305       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6306       break;
6307     case Intrinsic::amdgcn_buffer_atomic_umax:
6308       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6309       break;
6310     case Intrinsic::amdgcn_buffer_atomic_and:
6311       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6312       break;
6313     case Intrinsic::amdgcn_buffer_atomic_or:
6314       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6315       break;
6316     case Intrinsic::amdgcn_buffer_atomic_xor:
6317       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6318       break;
6319     default:
6320       llvm_unreachable("unhandled atomic opcode");
6321     }
6322 
6323     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6324                                    M->getMemOperand());
6325   }
6326   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6327   case Intrinsic::amdgcn_raw_buffer_atomic_add:
6328   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6329   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6330   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6331   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6332   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6333   case Intrinsic::amdgcn_raw_buffer_atomic_and:
6334   case Intrinsic::amdgcn_raw_buffer_atomic_or:
6335   case Intrinsic::amdgcn_raw_buffer_atomic_xor: {
6336     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6337     SDValue Ops[] = {
6338       Op.getOperand(0), // Chain
6339       Op.getOperand(2), // vdata
6340       Op.getOperand(3), // rsrc
6341       DAG.getConstant(0, DL, MVT::i32), // vindex
6342       Offsets.first,    // voffset
6343       Op.getOperand(5), // soffset
6344       Offsets.second,   // offset
6345       Op.getOperand(6), // cachepolicy
6346       DAG.getConstant(0, DL, MVT::i1), // idxen
6347     };
6348     EVT VT = Op.getValueType();
6349 
6350     auto *M = cast<MemSDNode>(Op);
6351     unsigned Opcode = 0;
6352 
6353     switch (IntrID) {
6354     case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6355       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6356       break;
6357     case Intrinsic::amdgcn_raw_buffer_atomic_add:
6358       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6359       break;
6360     case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6361       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6362       break;
6363     case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6364       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6365       break;
6366     case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6367       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6368       break;
6369     case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6370       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6371       break;
6372     case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6373       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6374       break;
6375     case Intrinsic::amdgcn_raw_buffer_atomic_and:
6376       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6377       break;
6378     case Intrinsic::amdgcn_raw_buffer_atomic_or:
6379       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6380       break;
6381     case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6382       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6383       break;
6384     default:
6385       llvm_unreachable("unhandled atomic opcode");
6386     }
6387 
6388     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6389                                    M->getMemOperand());
6390   }
6391   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6392   case Intrinsic::amdgcn_struct_buffer_atomic_add:
6393   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6394   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6395   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6396   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6397   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6398   case Intrinsic::amdgcn_struct_buffer_atomic_and:
6399   case Intrinsic::amdgcn_struct_buffer_atomic_or:
6400   case Intrinsic::amdgcn_struct_buffer_atomic_xor: {
6401     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6402     SDValue Ops[] = {
6403       Op.getOperand(0), // Chain
6404       Op.getOperand(2), // vdata
6405       Op.getOperand(3), // rsrc
6406       Op.getOperand(4), // vindex
6407       Offsets.first,    // voffset
6408       Op.getOperand(6), // soffset
6409       Offsets.second,   // offset
6410       Op.getOperand(7), // cachepolicy
6411       DAG.getConstant(1, DL, MVT::i1), // idxen
6412     };
6413     EVT VT = Op.getValueType();
6414 
6415     auto *M = cast<MemSDNode>(Op);
6416     unsigned Opcode = 0;
6417 
6418     switch (IntrID) {
6419     case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6420       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6421       break;
6422     case Intrinsic::amdgcn_struct_buffer_atomic_add:
6423       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6424       break;
6425     case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6426       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6427       break;
6428     case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6429       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6430       break;
6431     case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6432       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6433       break;
6434     case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6435       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6436       break;
6437     case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6438       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6439       break;
6440     case Intrinsic::amdgcn_struct_buffer_atomic_and:
6441       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6442       break;
6443     case Intrinsic::amdgcn_struct_buffer_atomic_or:
6444       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6445       break;
6446     case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6447       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6448       break;
6449     default:
6450       llvm_unreachable("unhandled atomic opcode");
6451     }
6452 
6453     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6454                                    M->getMemOperand());
6455   }
6456   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
6457     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6458     unsigned IdxEn = 1;
6459     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
6460       IdxEn = Idx->getZExtValue() != 0;
6461     SDValue Ops[] = {
6462       Op.getOperand(0), // Chain
6463       Op.getOperand(2), // src
6464       Op.getOperand(3), // cmp
6465       Op.getOperand(4), // rsrc
6466       Op.getOperand(5), // vindex
6467       SDValue(),        // voffset -- will be set by setBufferOffsets
6468       SDValue(),        // soffset -- will be set by setBufferOffsets
6469       SDValue(),        // offset -- will be set by setBufferOffsets
6470       DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6471       DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
6472     };
6473     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
6474     EVT VT = Op.getValueType();
6475     auto *M = cast<MemSDNode>(Op);
6476 
6477     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6478                                    Op->getVTList(), Ops, VT, M->getMemOperand());
6479   }
6480   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
6481     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6482     SDValue Ops[] = {
6483       Op.getOperand(0), // Chain
6484       Op.getOperand(2), // src
6485       Op.getOperand(3), // cmp
6486       Op.getOperand(4), // rsrc
6487       DAG.getConstant(0, DL, MVT::i32), // vindex
6488       Offsets.first,    // voffset
6489       Op.getOperand(6), // soffset
6490       Offsets.second,   // offset
6491       Op.getOperand(7), // cachepolicy
6492       DAG.getConstant(0, DL, MVT::i1), // idxen
6493     };
6494     EVT VT = Op.getValueType();
6495     auto *M = cast<MemSDNode>(Op);
6496 
6497     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6498                                    Op->getVTList(), Ops, VT, M->getMemOperand());
6499   }
6500   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
6501     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
6502     SDValue Ops[] = {
6503       Op.getOperand(0), // Chain
6504       Op.getOperand(2), // src
6505       Op.getOperand(3), // cmp
6506       Op.getOperand(4), // rsrc
6507       Op.getOperand(5), // vindex
6508       Offsets.first,    // voffset
6509       Op.getOperand(7), // soffset
6510       Offsets.second,   // offset
6511       Op.getOperand(8), // cachepolicy
6512       DAG.getConstant(1, DL, MVT::i1), // idxen
6513     };
6514     EVT VT = Op.getValueType();
6515     auto *M = cast<MemSDNode>(Op);
6516 
6517     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6518                                    Op->getVTList(), Ops, VT, M->getMemOperand());
6519   }
6520 
6521   default:
6522     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6523             AMDGPU::getImageDimIntrinsicInfo(IntrID))
6524       return lowerImage(Op, ImageDimIntr, DAG);
6525 
6526     return SDValue();
6527   }
6528 }
6529 
6530 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
6531 // dwordx4 if on SI.
6532 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
6533                                               SDVTList VTList,
6534                                               ArrayRef<SDValue> Ops, EVT MemVT,
6535                                               MachineMemOperand *MMO,
6536                                               SelectionDAG &DAG) const {
6537   EVT VT = VTList.VTs[0];
6538   EVT WidenedVT = VT;
6539   EVT WidenedMemVT = MemVT;
6540   if (!Subtarget->hasDwordx3LoadStores() &&
6541       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
6542     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
6543                                  WidenedVT.getVectorElementType(), 4);
6544     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
6545                                     WidenedMemVT.getVectorElementType(), 4);
6546     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
6547   }
6548 
6549   assert(VTList.NumVTs == 2);
6550   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
6551 
6552   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
6553                                        WidenedMemVT, MMO);
6554   if (WidenedVT != VT) {
6555     auto Extract = DAG.getNode(
6556         ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
6557         DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
6558     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
6559   }
6560   return NewOp;
6561 }
6562 
6563 SDValue SITargetLowering::handleD16VData(SDValue VData,
6564                                          SelectionDAG &DAG) const {
6565   EVT StoreVT = VData.getValueType();
6566 
6567   // No change for f16 and legal vector D16 types.
6568   if (!StoreVT.isVector())
6569     return VData;
6570 
6571   SDLoc DL(VData);
6572   assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
6573 
6574   if (Subtarget->hasUnpackedD16VMem()) {
6575     // We need to unpack the packed data to store.
6576     EVT IntStoreVT = StoreVT.changeTypeToInteger();
6577     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
6578 
6579     EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
6580                                         StoreVT.getVectorNumElements());
6581     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
6582     return DAG.UnrollVectorOp(ZExt.getNode());
6583   }
6584 
6585   assert(isTypeLegal(StoreVT));
6586   return VData;
6587 }
6588 
6589 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
6590                                               SelectionDAG &DAG) const {
6591   SDLoc DL(Op);
6592   SDValue Chain = Op.getOperand(0);
6593   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6594   MachineFunction &MF = DAG.getMachineFunction();
6595 
6596   switch (IntrinsicID) {
6597   case Intrinsic::amdgcn_exp: {
6598     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
6599     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
6600     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
6601     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
6602 
6603     const SDValue Ops[] = {
6604       Chain,
6605       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
6606       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
6607       Op.getOperand(4), // src0
6608       Op.getOperand(5), // src1
6609       Op.getOperand(6), // src2
6610       Op.getOperand(7), // src3
6611       DAG.getTargetConstant(0, DL, MVT::i1), // compr
6612       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
6613     };
6614 
6615     unsigned Opc = Done->isNullValue() ?
6616       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
6617     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
6618   }
6619   case Intrinsic::amdgcn_exp_compr: {
6620     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
6621     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
6622     SDValue Src0 = Op.getOperand(4);
6623     SDValue Src1 = Op.getOperand(5);
6624     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
6625     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
6626 
6627     SDValue Undef = DAG.getUNDEF(MVT::f32);
6628     const SDValue Ops[] = {
6629       Chain,
6630       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
6631       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
6632       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
6633       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
6634       Undef, // src2
6635       Undef, // src3
6636       DAG.getTargetConstant(1, DL, MVT::i1), // compr
6637       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
6638     };
6639 
6640     unsigned Opc = Done->isNullValue() ?
6641       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
6642     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
6643   }
6644   case Intrinsic::amdgcn_s_sendmsg:
6645   case Intrinsic::amdgcn_s_sendmsghalt: {
6646     unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ?
6647       AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT;
6648     Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
6649     SDValue Glue = Chain.getValue(1);
6650     return DAG.getNode(NodeOp, DL, MVT::Other, Chain,
6651                        Op.getOperand(2), Glue);
6652   }
6653   case Intrinsic::amdgcn_init_exec: {
6654     return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain,
6655                        Op.getOperand(2));
6656   }
6657   case Intrinsic::amdgcn_init_exec_from_input: {
6658     return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain,
6659                        Op.getOperand(2), Op.getOperand(3));
6660   }
6661   case Intrinsic::amdgcn_s_barrier: {
6662     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
6663       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
6664       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
6665       if (WGSize <= ST.getWavefrontSize())
6666         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
6667                                           Op.getOperand(0)), 0);
6668     }
6669     return SDValue();
6670   };
6671   case Intrinsic::amdgcn_tbuffer_store: {
6672     SDValue VData = Op.getOperand(2);
6673     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6674     if (IsD16)
6675       VData = handleD16VData(VData, DAG);
6676     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6677     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6678     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6679     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
6680     unsigned IdxEn = 1;
6681     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6682       IdxEn = Idx->getZExtValue() != 0;
6683     SDValue Ops[] = {
6684       Chain,
6685       VData,             // vdata
6686       Op.getOperand(3),  // rsrc
6687       Op.getOperand(4),  // vindex
6688       Op.getOperand(5),  // voffset
6689       Op.getOperand(6),  // soffset
6690       Op.getOperand(7),  // offset
6691       DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6692       DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6693       DAG.getConstant(IdxEn, DL, MVT::i1), // idexen
6694     };
6695     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6696                            AMDGPUISD::TBUFFER_STORE_FORMAT;
6697     MemSDNode *M = cast<MemSDNode>(Op);
6698     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6699                                    M->getMemoryVT(), M->getMemOperand());
6700   }
6701 
6702   case Intrinsic::amdgcn_struct_tbuffer_store: {
6703     SDValue VData = Op.getOperand(2);
6704     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6705     if (IsD16)
6706       VData = handleD16VData(VData, DAG);
6707     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6708     SDValue Ops[] = {
6709       Chain,
6710       VData,             // vdata
6711       Op.getOperand(3),  // rsrc
6712       Op.getOperand(4),  // vindex
6713       Offsets.first,     // voffset
6714       Op.getOperand(6),  // soffset
6715       Offsets.second,    // offset
6716       Op.getOperand(7),  // format
6717       Op.getOperand(8),  // cachepolicy
6718       DAG.getConstant(1, DL, MVT::i1), // idexen
6719     };
6720     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6721                            AMDGPUISD::TBUFFER_STORE_FORMAT;
6722     MemSDNode *M = cast<MemSDNode>(Op);
6723     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6724                                    M->getMemoryVT(), M->getMemOperand());
6725   }
6726 
6727   case Intrinsic::amdgcn_raw_tbuffer_store: {
6728     SDValue VData = Op.getOperand(2);
6729     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6730     if (IsD16)
6731       VData = handleD16VData(VData, DAG);
6732     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6733     SDValue Ops[] = {
6734       Chain,
6735       VData,             // vdata
6736       Op.getOperand(3),  // rsrc
6737       DAG.getConstant(0, DL, MVT::i32), // vindex
6738       Offsets.first,     // voffset
6739       Op.getOperand(5),  // soffset
6740       Offsets.second,    // offset
6741       Op.getOperand(6),  // format
6742       Op.getOperand(7),  // cachepolicy
6743       DAG.getConstant(0, DL, MVT::i1), // idexen
6744     };
6745     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6746                            AMDGPUISD::TBUFFER_STORE_FORMAT;
6747     MemSDNode *M = cast<MemSDNode>(Op);
6748     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6749                                    M->getMemoryVT(), M->getMemOperand());
6750   }
6751 
6752   case Intrinsic::amdgcn_buffer_store:
6753   case Intrinsic::amdgcn_buffer_store_format: {
6754     SDValue VData = Op.getOperand(2);
6755     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6756     if (IsD16)
6757       VData = handleD16VData(VData, DAG);
6758     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6759     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6760     unsigned IdxEn = 1;
6761     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6762       IdxEn = Idx->getZExtValue() != 0;
6763     SDValue Ops[] = {
6764       Chain,
6765       VData,
6766       Op.getOperand(3), // rsrc
6767       Op.getOperand(4), // vindex
6768       SDValue(), // voffset -- will be set by setBufferOffsets
6769       SDValue(), // soffset -- will be set by setBufferOffsets
6770       SDValue(), // offset -- will be set by setBufferOffsets
6771       DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6772       DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
6773     };
6774     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6775     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
6776                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
6777     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
6778     MemSDNode *M = cast<MemSDNode>(Op);
6779 
6780     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
6781     EVT VDataType = VData.getValueType().getScalarType();
6782     if (VDataType == MVT::i8 || VDataType == MVT::i16)
6783       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
6784 
6785     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6786                                    M->getMemoryVT(), M->getMemOperand());
6787   }
6788 
6789   case Intrinsic::amdgcn_raw_buffer_store:
6790   case Intrinsic::amdgcn_raw_buffer_store_format: {
6791     SDValue VData = Op.getOperand(2);
6792     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6793     if (IsD16)
6794       VData = handleD16VData(VData, DAG);
6795     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6796     SDValue Ops[] = {
6797       Chain,
6798       VData,
6799       Op.getOperand(3), // rsrc
6800       DAG.getConstant(0, DL, MVT::i32), // vindex
6801       Offsets.first,    // voffset
6802       Op.getOperand(5), // soffset
6803       Offsets.second,   // offset
6804       Op.getOperand(6), // cachepolicy
6805       DAG.getConstant(0, DL, MVT::i1), // idxen
6806     };
6807     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_raw_buffer_store ?
6808                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
6809     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
6810     MemSDNode *M = cast<MemSDNode>(Op);
6811 
6812     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
6813     EVT VDataType = VData.getValueType().getScalarType();
6814     if (VDataType == MVT::i8 || VDataType == MVT::i16)
6815       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
6816 
6817     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6818                                    M->getMemoryVT(), M->getMemOperand());
6819   }
6820 
6821   case Intrinsic::amdgcn_struct_buffer_store:
6822   case Intrinsic::amdgcn_struct_buffer_store_format: {
6823     SDValue VData = Op.getOperand(2);
6824     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6825     if (IsD16)
6826       VData = handleD16VData(VData, DAG);
6827     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6828     SDValue Ops[] = {
6829       Chain,
6830       VData,
6831       Op.getOperand(3), // rsrc
6832       Op.getOperand(4), // vindex
6833       Offsets.first,    // voffset
6834       Op.getOperand(6), // soffset
6835       Offsets.second,   // offset
6836       Op.getOperand(7), // cachepolicy
6837       DAG.getConstant(1, DL, MVT::i1), // idxen
6838     };
6839     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
6840                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
6841     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
6842     MemSDNode *M = cast<MemSDNode>(Op);
6843 
6844     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
6845     EVT VDataType = VData.getValueType().getScalarType();
6846     if (VDataType == MVT::i8 || VDataType == MVT::i16)
6847       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
6848 
6849     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6850                                    M->getMemoryVT(), M->getMemOperand());
6851   }
6852 
6853   case Intrinsic::amdgcn_end_cf:
6854     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
6855                                       Op->getOperand(2), Chain), 0);
6856 
6857   default: {
6858     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6859             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6860       return lowerImage(Op, ImageDimIntr, DAG);
6861 
6862     return Op;
6863   }
6864   }
6865 }
6866 
6867 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
6868 // offset (the offset that is included in bounds checking and swizzling, to be
6869 // split between the instruction's voffset and immoffset fields) and soffset
6870 // (the offset that is excluded from bounds checking and swizzling, to go in
6871 // the instruction's soffset field).  This function takes the first kind of
6872 // offset and figures out how to split it between voffset and immoffset.
6873 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
6874     SDValue Offset, SelectionDAG &DAG) const {
6875   SDLoc DL(Offset);
6876   const unsigned MaxImm = 4095;
6877   SDValue N0 = Offset;
6878   ConstantSDNode *C1 = nullptr;
6879 
6880   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
6881     N0 = SDValue();
6882   else if (DAG.isBaseWithConstantOffset(N0)) {
6883     C1 = cast<ConstantSDNode>(N0.getOperand(1));
6884     N0 = N0.getOperand(0);
6885   }
6886 
6887   if (C1) {
6888     unsigned ImmOffset = C1->getZExtValue();
6889     // If the immediate value is too big for the immoffset field, put the value
6890     // and -4096 into the immoffset field so that the value that is copied/added
6891     // for the voffset field is a multiple of 4096, and it stands more chance
6892     // of being CSEd with the copy/add for another similar load/store.
6893     // However, do not do that rounding down to a multiple of 4096 if that is a
6894     // negative number, as it appears to be illegal to have a negative offset
6895     // in the vgpr, even if adding the immediate offset makes it positive.
6896     unsigned Overflow = ImmOffset & ~MaxImm;
6897     ImmOffset -= Overflow;
6898     if ((int32_t)Overflow < 0) {
6899       Overflow += ImmOffset;
6900       ImmOffset = 0;
6901     }
6902     C1 = cast<ConstantSDNode>(DAG.getConstant(ImmOffset, DL, MVT::i32));
6903     if (Overflow) {
6904       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
6905       if (!N0)
6906         N0 = OverflowVal;
6907       else {
6908         SDValue Ops[] = { N0, OverflowVal };
6909         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
6910       }
6911     }
6912   }
6913   if (!N0)
6914     N0 = DAG.getConstant(0, DL, MVT::i32);
6915   if (!C1)
6916     C1 = cast<ConstantSDNode>(DAG.getConstant(0, DL, MVT::i32));
6917   return {N0, SDValue(C1, 0)};
6918 }
6919 
6920 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
6921 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
6922 // pointed to by Offsets.
6923 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
6924                                         SelectionDAG &DAG, SDValue *Offsets,
6925                                         unsigned Align) const {
6926   SDLoc DL(CombinedOffset);
6927   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
6928     uint32_t Imm = C->getZExtValue();
6929     uint32_t SOffset, ImmOffset;
6930     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) {
6931       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
6932       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
6933       Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32);
6934       return;
6935     }
6936   }
6937   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
6938     SDValue N0 = CombinedOffset.getOperand(0);
6939     SDValue N1 = CombinedOffset.getOperand(1);
6940     uint32_t SOffset, ImmOffset;
6941     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
6942     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
6943                                                 Subtarget, Align)) {
6944       Offsets[0] = N0;
6945       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
6946       Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32);
6947       return;
6948     }
6949   }
6950   Offsets[0] = CombinedOffset;
6951   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
6952   Offsets[2] = DAG.getConstant(0, DL, MVT::i32);
6953 }
6954 
6955 // Handle 8 bit and 16 bit buffer loads
6956 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
6957                                                      EVT LoadVT, SDLoc DL,
6958                                                      ArrayRef<SDValue> Ops,
6959                                                      MemSDNode *M) const {
6960   EVT IntVT = LoadVT.changeTypeToInteger();
6961   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
6962          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
6963 
6964   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
6965   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
6966                                                Ops, IntVT,
6967                                                M->getMemOperand());
6968   SDValue BufferLoadTrunc = DAG.getNode(ISD::TRUNCATE, DL,
6969                                         LoadVT.getScalarType(), BufferLoad);
6970   return DAG.getMergeValues({BufferLoadTrunc, BufferLoad.getValue(1)}, DL);
6971 }
6972 
6973 // Handle 8 bit and 16 bit buffer stores
6974 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
6975                                                       EVT VDataType, SDLoc DL,
6976                                                       SDValue Ops[],
6977                                                       MemSDNode *M) const {
6978   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
6979   Ops[1] = BufferStoreExt;
6980   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
6981                                  AMDGPUISD::BUFFER_STORE_SHORT;
6982   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
6983   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
6984                                      M->getMemOperand());
6985 }
6986 
6987 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
6988                                  ISD::LoadExtType ExtType, SDValue Op,
6989                                  const SDLoc &SL, EVT VT) {
6990   if (VT.bitsLT(Op.getValueType()))
6991     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
6992 
6993   switch (ExtType) {
6994   case ISD::SEXTLOAD:
6995     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
6996   case ISD::ZEXTLOAD:
6997     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
6998   case ISD::EXTLOAD:
6999     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7000   case ISD::NON_EXTLOAD:
7001     return Op;
7002   }
7003 
7004   llvm_unreachable("invalid ext type");
7005 }
7006 
7007 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7008   SelectionDAG &DAG = DCI.DAG;
7009   if (Ld->getAlignment() < 4 || Ld->isDivergent())
7010     return SDValue();
7011 
7012   // FIXME: Constant loads should all be marked invariant.
7013   unsigned AS = Ld->getAddressSpace();
7014   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7015       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7016       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7017     return SDValue();
7018 
7019   // Don't do this early, since it may interfere with adjacent load merging for
7020   // illegal types. We can avoid losing alignment information for exotic types
7021   // pre-legalize.
7022   EVT MemVT = Ld->getMemoryVT();
7023   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7024       MemVT.getSizeInBits() >= 32)
7025     return SDValue();
7026 
7027   SDLoc SL(Ld);
7028 
7029   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
7030          "unexpected vector extload");
7031 
7032   // TODO: Drop only high part of range.
7033   SDValue Ptr = Ld->getBasePtr();
7034   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7035                                 MVT::i32, SL, Ld->getChain(), Ptr,
7036                                 Ld->getOffset(),
7037                                 Ld->getPointerInfo(), MVT::i32,
7038                                 Ld->getAlignment(),
7039                                 Ld->getMemOperand()->getFlags(),
7040                                 Ld->getAAInfo(),
7041                                 nullptr); // Drop ranges
7042 
7043   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7044   if (MemVT.isFloatingPoint()) {
7045     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
7046            "unexpected fp extload");
7047     TruncVT = MemVT.changeTypeToInteger();
7048   }
7049 
7050   SDValue Cvt = NewLoad;
7051   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7052     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7053                       DAG.getValueType(TruncVT));
7054   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
7055              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
7056     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
7057   } else {
7058     assert(Ld->getExtensionType() == ISD::EXTLOAD);
7059   }
7060 
7061   EVT VT = Ld->getValueType(0);
7062   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7063 
7064   DCI.AddToWorklist(Cvt.getNode());
7065 
7066   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
7067   // the appropriate extension from the 32-bit load.
7068   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
7069   DCI.AddToWorklist(Cvt.getNode());
7070 
7071   // Handle conversion back to floating point if necessary.
7072   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
7073 
7074   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
7075 }
7076 
7077 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7078   SDLoc DL(Op);
7079   LoadSDNode *Load = cast<LoadSDNode>(Op);
7080   ISD::LoadExtType ExtType = Load->getExtensionType();
7081   EVT MemVT = Load->getMemoryVT();
7082 
7083   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
7084     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
7085       return SDValue();
7086 
7087     // FIXME: Copied from PPC
7088     // First, load into 32 bits, then truncate to 1 bit.
7089 
7090     SDValue Chain = Load->getChain();
7091     SDValue BasePtr = Load->getBasePtr();
7092     MachineMemOperand *MMO = Load->getMemOperand();
7093 
7094     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
7095 
7096     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
7097                                    BasePtr, RealMemVT, MMO);
7098 
7099     if (!MemVT.isVector()) {
7100       SDValue Ops[] = {
7101         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
7102         NewLD.getValue(1)
7103       };
7104 
7105       return DAG.getMergeValues(Ops, DL);
7106     }
7107 
7108     SmallVector<SDValue, 3> Elts;
7109     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
7110       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
7111                                 DAG.getConstant(I, DL, MVT::i32));
7112 
7113       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
7114     }
7115 
7116     SDValue Ops[] = {
7117       DAG.getBuildVector(MemVT, DL, Elts),
7118       NewLD.getValue(1)
7119     };
7120 
7121     return DAG.getMergeValues(Ops, DL);
7122   }
7123 
7124   if (!MemVT.isVector())
7125     return SDValue();
7126 
7127   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
7128          "Custom lowering for non-i32 vectors hasn't been implemented.");
7129 
7130   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
7131                           *Load->getMemOperand())) {
7132     SDValue Ops[2];
7133     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
7134     return DAG.getMergeValues(Ops, DL);
7135   }
7136 
7137   unsigned Alignment = Load->getAlignment();
7138   unsigned AS = Load->getAddressSpace();
7139   if (Subtarget->hasLDSMisalignedBug() &&
7140       AS == AMDGPUAS::FLAT_ADDRESS &&
7141       Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
7142     return SplitVectorLoad(Op, DAG);
7143   }
7144 
7145   MachineFunction &MF = DAG.getMachineFunction();
7146   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7147   // If there is a possibilty that flat instruction access scratch memory
7148   // then we need to use the same legalization rules we use for private.
7149   if (AS == AMDGPUAS::FLAT_ADDRESS)
7150     AS = MFI->hasFlatScratchInit() ?
7151          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7152 
7153   unsigned NumElements = MemVT.getVectorNumElements();
7154 
7155   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7156       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
7157     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
7158       if (MemVT.isPow2VectorType())
7159         return SDValue();
7160       if (NumElements == 3)
7161         return WidenVectorLoad(Op, DAG);
7162       return SplitVectorLoad(Op, DAG);
7163     }
7164     // Non-uniform loads will be selected to MUBUF instructions, so they
7165     // have the same legalization requirements as global and private
7166     // loads.
7167     //
7168   }
7169 
7170   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7171       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7172       AS == AMDGPUAS::GLOBAL_ADDRESS) {
7173     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
7174         !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
7175         Alignment >= 4 && NumElements < 32) {
7176       if (MemVT.isPow2VectorType())
7177         return SDValue();
7178       if (NumElements == 3)
7179         return WidenVectorLoad(Op, DAG);
7180       return SplitVectorLoad(Op, DAG);
7181     }
7182     // Non-uniform loads will be selected to MUBUF instructions, so they
7183     // have the same legalization requirements as global and private
7184     // loads.
7185     //
7186   }
7187   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7188       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7189       AS == AMDGPUAS::GLOBAL_ADDRESS ||
7190       AS == AMDGPUAS::FLAT_ADDRESS) {
7191     if (NumElements > 4)
7192       return SplitVectorLoad(Op, DAG);
7193     // v3 loads not supported on SI.
7194     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7195       return WidenVectorLoad(Op, DAG);
7196     // v3 and v4 loads are supported for private and global memory.
7197     return SDValue();
7198   }
7199   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7200     // Depending on the setting of the private_element_size field in the
7201     // resource descriptor, we can only make private accesses up to a certain
7202     // size.
7203     switch (Subtarget->getMaxPrivateElementSize()) {
7204     case 4:
7205       return scalarizeVectorLoad(Load, DAG);
7206     case 8:
7207       if (NumElements > 2)
7208         return SplitVectorLoad(Op, DAG);
7209       return SDValue();
7210     case 16:
7211       // Same as global/flat
7212       if (NumElements > 4)
7213         return SplitVectorLoad(Op, DAG);
7214       // v3 loads not supported on SI.
7215       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7216         return WidenVectorLoad(Op, DAG);
7217       return SDValue();
7218     default:
7219       llvm_unreachable("unsupported private_element_size");
7220     }
7221   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7222     // Use ds_read_b128 if possible.
7223     if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
7224         MemVT.getStoreSize() == 16)
7225       return SDValue();
7226 
7227     if (NumElements > 2)
7228       return SplitVectorLoad(Op, DAG);
7229 
7230     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7231     // address is negative, then the instruction is incorrectly treated as
7232     // out-of-bounds even if base + offsets is in bounds. Split vectorized
7233     // loads here to avoid emitting ds_read2_b32. We may re-combine the
7234     // load later in the SILoadStoreOptimizer.
7235     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
7236         NumElements == 2 && MemVT.getStoreSize() == 8 &&
7237         Load->getAlignment() < 8) {
7238       return SplitVectorLoad(Op, DAG);
7239     }
7240   }
7241   return SDValue();
7242 }
7243 
7244 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7245   EVT VT = Op.getValueType();
7246   assert(VT.getSizeInBits() == 64);
7247 
7248   SDLoc DL(Op);
7249   SDValue Cond = Op.getOperand(0);
7250 
7251   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
7252   SDValue One = DAG.getConstant(1, DL, MVT::i32);
7253 
7254   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
7255   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
7256 
7257   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
7258   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
7259 
7260   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
7261 
7262   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
7263   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
7264 
7265   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
7266 
7267   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
7268   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
7269 }
7270 
7271 // Catch division cases where we can use shortcuts with rcp and rsq
7272 // instructions.
7273 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
7274                                               SelectionDAG &DAG) const {
7275   SDLoc SL(Op);
7276   SDValue LHS = Op.getOperand(0);
7277   SDValue RHS = Op.getOperand(1);
7278   EVT VT = Op.getValueType();
7279   const SDNodeFlags Flags = Op->getFlags();
7280   bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal();
7281 
7282   if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
7283     return SDValue();
7284 
7285   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
7286     if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
7287       if (CLHS->isExactlyValue(1.0)) {
7288         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
7289         // the CI documentation has a worst case error of 1 ulp.
7290         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
7291         // use it as long as we aren't trying to use denormals.
7292         //
7293         // v_rcp_f16 and v_rsq_f16 DO support denormals.
7294 
7295         // 1.0 / sqrt(x) -> rsq(x)
7296 
7297         // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
7298         // error seems really high at 2^29 ULP.
7299         if (RHS.getOpcode() == ISD::FSQRT)
7300           return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
7301 
7302         // 1.0 / x -> rcp(x)
7303         return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
7304       }
7305 
7306       // Same as for 1.0, but expand the sign out of the constant.
7307       if (CLHS->isExactlyValue(-1.0)) {
7308         // -1.0 / x -> rcp (fneg x)
7309         SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
7310         return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
7311       }
7312     }
7313   }
7314 
7315   if (Unsafe) {
7316     // Turn into multiply by the reciprocal.
7317     // x / y -> x * (1.0 / y)
7318     SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
7319     return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
7320   }
7321 
7322   return SDValue();
7323 }
7324 
7325 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
7326                           EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
7327   if (GlueChain->getNumValues() <= 1) {
7328     return DAG.getNode(Opcode, SL, VT, A, B);
7329   }
7330 
7331   assert(GlueChain->getNumValues() == 3);
7332 
7333   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
7334   switch (Opcode) {
7335   default: llvm_unreachable("no chain equivalent for opcode");
7336   case ISD::FMUL:
7337     Opcode = AMDGPUISD::FMUL_W_CHAIN;
7338     break;
7339   }
7340 
7341   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
7342                      GlueChain.getValue(2));
7343 }
7344 
7345 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
7346                            EVT VT, SDValue A, SDValue B, SDValue C,
7347                            SDValue GlueChain) {
7348   if (GlueChain->getNumValues() <= 1) {
7349     return DAG.getNode(Opcode, SL, VT, A, B, C);
7350   }
7351 
7352   assert(GlueChain->getNumValues() == 3);
7353 
7354   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
7355   switch (Opcode) {
7356   default: llvm_unreachable("no chain equivalent for opcode");
7357   case ISD::FMA:
7358     Opcode = AMDGPUISD::FMA_W_CHAIN;
7359     break;
7360   }
7361 
7362   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
7363                      GlueChain.getValue(2));
7364 }
7365 
7366 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
7367   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
7368     return FastLowered;
7369 
7370   SDLoc SL(Op);
7371   SDValue Src0 = Op.getOperand(0);
7372   SDValue Src1 = Op.getOperand(1);
7373 
7374   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
7375   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
7376 
7377   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
7378   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
7379 
7380   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
7381   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
7382 
7383   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
7384 }
7385 
7386 // Faster 2.5 ULP division that does not support denormals.
7387 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
7388   SDLoc SL(Op);
7389   SDValue LHS = Op.getOperand(1);
7390   SDValue RHS = Op.getOperand(2);
7391 
7392   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
7393 
7394   const APFloat K0Val(BitsToFloat(0x6f800000));
7395   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
7396 
7397   const APFloat K1Val(BitsToFloat(0x2f800000));
7398   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
7399 
7400   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
7401 
7402   EVT SetCCVT =
7403     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
7404 
7405   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
7406 
7407   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
7408 
7409   // TODO: Should this propagate fast-math-flags?
7410   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
7411 
7412   // rcp does not support denormals.
7413   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
7414 
7415   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
7416 
7417   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
7418 }
7419 
7420 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
7421   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
7422     return FastLowered;
7423 
7424   SDLoc SL(Op);
7425   SDValue LHS = Op.getOperand(0);
7426   SDValue RHS = Op.getOperand(1);
7427 
7428   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
7429 
7430   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
7431 
7432   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
7433                                           RHS, RHS, LHS);
7434   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
7435                                         LHS, RHS, LHS);
7436 
7437   // Denominator is scaled to not be denormal, so using rcp is ok.
7438   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
7439                                   DenominatorScaled);
7440   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
7441                                      DenominatorScaled);
7442 
7443   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
7444                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
7445                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
7446 
7447   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
7448 
7449   if (!Subtarget->hasFP32Denormals()) {
7450     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
7451     const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
7452                                                       SL, MVT::i32);
7453     SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
7454                                        DAG.getEntryNode(),
7455                                        EnableDenormValue, BitField);
7456     SDValue Ops[3] = {
7457       NegDivScale0,
7458       EnableDenorm.getValue(0),
7459       EnableDenorm.getValue(1)
7460     };
7461 
7462     NegDivScale0 = DAG.getMergeValues(Ops, SL);
7463   }
7464 
7465   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
7466                              ApproxRcp, One, NegDivScale0);
7467 
7468   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
7469                              ApproxRcp, Fma0);
7470 
7471   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
7472                            Fma1, Fma1);
7473 
7474   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
7475                              NumeratorScaled, Mul);
7476 
7477   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
7478 
7479   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
7480                              NumeratorScaled, Fma3);
7481 
7482   if (!Subtarget->hasFP32Denormals()) {
7483     const SDValue DisableDenormValue =
7484         DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
7485     SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
7486                                         Fma4.getValue(1),
7487                                         DisableDenormValue,
7488                                         BitField,
7489                                         Fma4.getValue(2));
7490 
7491     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
7492                                       DisableDenorm, DAG.getRoot());
7493     DAG.setRoot(OutputChain);
7494   }
7495 
7496   SDValue Scale = NumeratorScaled.getValue(1);
7497   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
7498                              Fma4, Fma1, Fma3, Scale);
7499 
7500   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
7501 }
7502 
7503 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
7504   if (DAG.getTarget().Options.UnsafeFPMath)
7505     return lowerFastUnsafeFDIV(Op, DAG);
7506 
7507   SDLoc SL(Op);
7508   SDValue X = Op.getOperand(0);
7509   SDValue Y = Op.getOperand(1);
7510 
7511   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
7512 
7513   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
7514 
7515   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
7516 
7517   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
7518 
7519   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
7520 
7521   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
7522 
7523   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
7524 
7525   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
7526 
7527   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
7528 
7529   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
7530   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
7531 
7532   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
7533                              NegDivScale0, Mul, DivScale1);
7534 
7535   SDValue Scale;
7536 
7537   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
7538     // Workaround a hardware bug on SI where the condition output from div_scale
7539     // is not usable.
7540 
7541     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
7542 
7543     // Figure out if the scale to use for div_fmas.
7544     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
7545     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
7546     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
7547     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
7548 
7549     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
7550     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
7551 
7552     SDValue Scale0Hi
7553       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
7554     SDValue Scale1Hi
7555       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
7556 
7557     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
7558     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
7559     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
7560   } else {
7561     Scale = DivScale1.getValue(1);
7562   }
7563 
7564   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
7565                              Fma4, Fma3, Mul, Scale);
7566 
7567   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
7568 }
7569 
7570 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
7571   EVT VT = Op.getValueType();
7572 
7573   if (VT == MVT::f32)
7574     return LowerFDIV32(Op, DAG);
7575 
7576   if (VT == MVT::f64)
7577     return LowerFDIV64(Op, DAG);
7578 
7579   if (VT == MVT::f16)
7580     return LowerFDIV16(Op, DAG);
7581 
7582   llvm_unreachable("Unexpected type for fdiv");
7583 }
7584 
7585 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7586   SDLoc DL(Op);
7587   StoreSDNode *Store = cast<StoreSDNode>(Op);
7588   EVT VT = Store->getMemoryVT();
7589 
7590   if (VT == MVT::i1) {
7591     return DAG.getTruncStore(Store->getChain(), DL,
7592        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
7593        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
7594   }
7595 
7596   assert(VT.isVector() &&
7597          Store->getValue().getValueType().getScalarType() == MVT::i32);
7598 
7599   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
7600                           *Store->getMemOperand())) {
7601     return expandUnalignedStore(Store, DAG);
7602   }
7603 
7604   unsigned AS = Store->getAddressSpace();
7605   if (Subtarget->hasLDSMisalignedBug() &&
7606       AS == AMDGPUAS::FLAT_ADDRESS &&
7607       Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
7608     return SplitVectorStore(Op, DAG);
7609   }
7610 
7611   MachineFunction &MF = DAG.getMachineFunction();
7612   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7613   // If there is a possibilty that flat instruction access scratch memory
7614   // then we need to use the same legalization rules we use for private.
7615   if (AS == AMDGPUAS::FLAT_ADDRESS)
7616     AS = MFI->hasFlatScratchInit() ?
7617          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7618 
7619   unsigned NumElements = VT.getVectorNumElements();
7620   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
7621       AS == AMDGPUAS::FLAT_ADDRESS) {
7622     if (NumElements > 4)
7623       return SplitVectorStore(Op, DAG);
7624     // v3 stores not supported on SI.
7625     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7626       return SplitVectorStore(Op, DAG);
7627     return SDValue();
7628   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7629     switch (Subtarget->getMaxPrivateElementSize()) {
7630     case 4:
7631       return scalarizeVectorStore(Store, DAG);
7632     case 8:
7633       if (NumElements > 2)
7634         return SplitVectorStore(Op, DAG);
7635       return SDValue();
7636     case 16:
7637       if (NumElements > 4 || NumElements == 3)
7638         return SplitVectorStore(Op, DAG);
7639       return SDValue();
7640     default:
7641       llvm_unreachable("unsupported private_element_size");
7642     }
7643   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7644     // Use ds_write_b128 if possible.
7645     if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
7646         VT.getStoreSize() == 16 && NumElements != 3)
7647       return SDValue();
7648 
7649     if (NumElements > 2)
7650       return SplitVectorStore(Op, DAG);
7651 
7652     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7653     // address is negative, then the instruction is incorrectly treated as
7654     // out-of-bounds even if base + offsets is in bounds. Split vectorized
7655     // stores here to avoid emitting ds_write2_b32. We may re-combine the
7656     // store later in the SILoadStoreOptimizer.
7657     if (!Subtarget->hasUsableDSOffset() &&
7658         NumElements == 2 && VT.getStoreSize() == 8 &&
7659         Store->getAlignment() < 8) {
7660       return SplitVectorStore(Op, DAG);
7661     }
7662 
7663     return SDValue();
7664   } else {
7665     llvm_unreachable("unhandled address space");
7666   }
7667 }
7668 
7669 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
7670   SDLoc DL(Op);
7671   EVT VT = Op.getValueType();
7672   SDValue Arg = Op.getOperand(0);
7673   SDValue TrigVal;
7674 
7675   // TODO: Should this propagate fast-math-flags?
7676 
7677   SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT);
7678 
7679   if (Subtarget->hasTrigReducedRange()) {
7680     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
7681     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal);
7682   } else {
7683     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
7684   }
7685 
7686   switch (Op.getOpcode()) {
7687   case ISD::FCOS:
7688     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal);
7689   case ISD::FSIN:
7690     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal);
7691   default:
7692     llvm_unreachable("Wrong trig opcode");
7693   }
7694 }
7695 
7696 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7697   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
7698   assert(AtomicNode->isCompareAndSwap());
7699   unsigned AS = AtomicNode->getAddressSpace();
7700 
7701   // No custom lowering required for local address space
7702   if (!isFlatGlobalAddrSpace(AS))
7703     return Op;
7704 
7705   // Non-local address space requires custom lowering for atomic compare
7706   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
7707   SDLoc DL(Op);
7708   SDValue ChainIn = Op.getOperand(0);
7709   SDValue Addr = Op.getOperand(1);
7710   SDValue Old = Op.getOperand(2);
7711   SDValue New = Op.getOperand(3);
7712   EVT VT = Op.getValueType();
7713   MVT SimpleVT = VT.getSimpleVT();
7714   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
7715 
7716   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
7717   SDValue Ops[] = { ChainIn, Addr, NewOld };
7718 
7719   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
7720                                  Ops, VT, AtomicNode->getMemOperand());
7721 }
7722 
7723 //===----------------------------------------------------------------------===//
7724 // Custom DAG optimizations
7725 //===----------------------------------------------------------------------===//
7726 
7727 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
7728                                                      DAGCombinerInfo &DCI) const {
7729   EVT VT = N->getValueType(0);
7730   EVT ScalarVT = VT.getScalarType();
7731   if (ScalarVT != MVT::f32)
7732     return SDValue();
7733 
7734   SelectionDAG &DAG = DCI.DAG;
7735   SDLoc DL(N);
7736 
7737   SDValue Src = N->getOperand(0);
7738   EVT SrcVT = Src.getValueType();
7739 
7740   // TODO: We could try to match extracting the higher bytes, which would be
7741   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
7742   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
7743   // about in practice.
7744   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
7745     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
7746       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
7747       DCI.AddToWorklist(Cvt.getNode());
7748       return Cvt;
7749     }
7750   }
7751 
7752   return SDValue();
7753 }
7754 
7755 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
7756 
7757 // This is a variant of
7758 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
7759 //
7760 // The normal DAG combiner will do this, but only if the add has one use since
7761 // that would increase the number of instructions.
7762 //
7763 // This prevents us from seeing a constant offset that can be folded into a
7764 // memory instruction's addressing mode. If we know the resulting add offset of
7765 // a pointer can be folded into an addressing offset, we can replace the pointer
7766 // operand with the add of new constant offset. This eliminates one of the uses,
7767 // and may allow the remaining use to also be simplified.
7768 //
7769 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
7770                                                unsigned AddrSpace,
7771                                                EVT MemVT,
7772                                                DAGCombinerInfo &DCI) const {
7773   SDValue N0 = N->getOperand(0);
7774   SDValue N1 = N->getOperand(1);
7775 
7776   // We only do this to handle cases where it's profitable when there are
7777   // multiple uses of the add, so defer to the standard combine.
7778   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
7779       N0->hasOneUse())
7780     return SDValue();
7781 
7782   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
7783   if (!CN1)
7784     return SDValue();
7785 
7786   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
7787   if (!CAdd)
7788     return SDValue();
7789 
7790   // If the resulting offset is too large, we can't fold it into the addressing
7791   // mode offset.
7792   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
7793   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
7794 
7795   AddrMode AM;
7796   AM.HasBaseReg = true;
7797   AM.BaseOffs = Offset.getSExtValue();
7798   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
7799     return SDValue();
7800 
7801   SelectionDAG &DAG = DCI.DAG;
7802   SDLoc SL(N);
7803   EVT VT = N->getValueType(0);
7804 
7805   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
7806   SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
7807 
7808   SDNodeFlags Flags;
7809   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
7810                           (N0.getOpcode() == ISD::OR ||
7811                            N0->getFlags().hasNoUnsignedWrap()));
7812 
7813   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
7814 }
7815 
7816 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
7817                                                   DAGCombinerInfo &DCI) const {
7818   SDValue Ptr = N->getBasePtr();
7819   SelectionDAG &DAG = DCI.DAG;
7820   SDLoc SL(N);
7821 
7822   // TODO: We could also do this for multiplies.
7823   if (Ptr.getOpcode() == ISD::SHL) {
7824     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
7825                                           N->getMemoryVT(), DCI);
7826     if (NewPtr) {
7827       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
7828 
7829       NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
7830       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
7831     }
7832   }
7833 
7834   return SDValue();
7835 }
7836 
7837 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
7838   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
7839          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
7840          (Opc == ISD::XOR && Val == 0);
7841 }
7842 
7843 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
7844 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
7845 // integer combine opportunities since most 64-bit operations are decomposed
7846 // this way.  TODO: We won't want this for SALU especially if it is an inline
7847 // immediate.
7848 SDValue SITargetLowering::splitBinaryBitConstantOp(
7849   DAGCombinerInfo &DCI,
7850   const SDLoc &SL,
7851   unsigned Opc, SDValue LHS,
7852   const ConstantSDNode *CRHS) const {
7853   uint64_t Val = CRHS->getZExtValue();
7854   uint32_t ValLo = Lo_32(Val);
7855   uint32_t ValHi = Hi_32(Val);
7856   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7857 
7858     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
7859          bitOpWithConstantIsReducible(Opc, ValHi)) ||
7860         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
7861     // If we need to materialize a 64-bit immediate, it will be split up later
7862     // anyway. Avoid creating the harder to understand 64-bit immediate
7863     // materialization.
7864     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
7865   }
7866 
7867   return SDValue();
7868 }
7869 
7870 // Returns true if argument is a boolean value which is not serialized into
7871 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
7872 static bool isBoolSGPR(SDValue V) {
7873   if (V.getValueType() != MVT::i1)
7874     return false;
7875   switch (V.getOpcode()) {
7876   default: break;
7877   case ISD::SETCC:
7878   case ISD::AND:
7879   case ISD::OR:
7880   case ISD::XOR:
7881   case AMDGPUISD::FP_CLASS:
7882     return true;
7883   }
7884   return false;
7885 }
7886 
7887 // If a constant has all zeroes or all ones within each byte return it.
7888 // Otherwise return 0.
7889 static uint32_t getConstantPermuteMask(uint32_t C) {
7890   // 0xff for any zero byte in the mask
7891   uint32_t ZeroByteMask = 0;
7892   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
7893   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
7894   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
7895   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
7896   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
7897   if ((NonZeroByteMask & C) != NonZeroByteMask)
7898     return 0; // Partial bytes selected.
7899   return C;
7900 }
7901 
7902 // Check if a node selects whole bytes from its operand 0 starting at a byte
7903 // boundary while masking the rest. Returns select mask as in the v_perm_b32
7904 // or -1 if not succeeded.
7905 // Note byte select encoding:
7906 // value 0-3 selects corresponding source byte;
7907 // value 0xc selects zero;
7908 // value 0xff selects 0xff.
7909 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
7910   assert(V.getValueSizeInBits() == 32);
7911 
7912   if (V.getNumOperands() != 2)
7913     return ~0;
7914 
7915   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
7916   if (!N1)
7917     return ~0;
7918 
7919   uint32_t C = N1->getZExtValue();
7920 
7921   switch (V.getOpcode()) {
7922   default:
7923     break;
7924   case ISD::AND:
7925     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
7926       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
7927     }
7928     break;
7929 
7930   case ISD::OR:
7931     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
7932       return (0x03020100 & ~ConstMask) | ConstMask;
7933     }
7934     break;
7935 
7936   case ISD::SHL:
7937     if (C % 8)
7938       return ~0;
7939 
7940     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
7941 
7942   case ISD::SRL:
7943     if (C % 8)
7944       return ~0;
7945 
7946     return uint32_t(0x0c0c0c0c03020100ull >> C);
7947   }
7948 
7949   return ~0;
7950 }
7951 
7952 SDValue SITargetLowering::performAndCombine(SDNode *N,
7953                                             DAGCombinerInfo &DCI) const {
7954   if (DCI.isBeforeLegalize())
7955     return SDValue();
7956 
7957   SelectionDAG &DAG = DCI.DAG;
7958   EVT VT = N->getValueType(0);
7959   SDValue LHS = N->getOperand(0);
7960   SDValue RHS = N->getOperand(1);
7961 
7962 
7963   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
7964   if (VT == MVT::i64 && CRHS) {
7965     if (SDValue Split
7966         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
7967       return Split;
7968   }
7969 
7970   if (CRHS && VT == MVT::i32) {
7971     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
7972     // nb = number of trailing zeroes in mask
7973     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
7974     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
7975     uint64_t Mask = CRHS->getZExtValue();
7976     unsigned Bits = countPopulation(Mask);
7977     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
7978         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
7979       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
7980         unsigned Shift = CShift->getZExtValue();
7981         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
7982         unsigned Offset = NB + Shift;
7983         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
7984           SDLoc SL(N);
7985           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
7986                                     LHS->getOperand(0),
7987                                     DAG.getConstant(Offset, SL, MVT::i32),
7988                                     DAG.getConstant(Bits, SL, MVT::i32));
7989           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7990           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
7991                                     DAG.getValueType(NarrowVT));
7992           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
7993                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
7994           return Shl;
7995         }
7996       }
7997     }
7998 
7999     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8000     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
8001         isa<ConstantSDNode>(LHS.getOperand(2))) {
8002       uint32_t Sel = getConstantPermuteMask(Mask);
8003       if (!Sel)
8004         return SDValue();
8005 
8006       // Select 0xc for all zero bytes
8007       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
8008       SDLoc DL(N);
8009       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8010                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8011     }
8012   }
8013 
8014   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
8015   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
8016   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
8017     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8018     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
8019 
8020     SDValue X = LHS.getOperand(0);
8021     SDValue Y = RHS.getOperand(0);
8022     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
8023       return SDValue();
8024 
8025     if (LCC == ISD::SETO) {
8026       if (X != LHS.getOperand(1))
8027         return SDValue();
8028 
8029       if (RCC == ISD::SETUNE) {
8030         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
8031         if (!C1 || !C1->isInfinity() || C1->isNegative())
8032           return SDValue();
8033 
8034         const uint32_t Mask = SIInstrFlags::N_NORMAL |
8035                               SIInstrFlags::N_SUBNORMAL |
8036                               SIInstrFlags::N_ZERO |
8037                               SIInstrFlags::P_ZERO |
8038                               SIInstrFlags::P_SUBNORMAL |
8039                               SIInstrFlags::P_NORMAL;
8040 
8041         static_assert(((~(SIInstrFlags::S_NAN |
8042                           SIInstrFlags::Q_NAN |
8043                           SIInstrFlags::N_INFINITY |
8044                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
8045                       "mask not equal");
8046 
8047         SDLoc DL(N);
8048         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8049                            X, DAG.getConstant(Mask, DL, MVT::i32));
8050       }
8051     }
8052   }
8053 
8054   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
8055     std::swap(LHS, RHS);
8056 
8057   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8058       RHS.hasOneUse()) {
8059     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8060     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
8061     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
8062     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8063     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
8064         (RHS.getOperand(0) == LHS.getOperand(0) &&
8065          LHS.getOperand(0) == LHS.getOperand(1))) {
8066       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
8067       unsigned NewMask = LCC == ISD::SETO ?
8068         Mask->getZExtValue() & ~OrdMask :
8069         Mask->getZExtValue() & OrdMask;
8070 
8071       SDLoc DL(N);
8072       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
8073                          DAG.getConstant(NewMask, DL, MVT::i32));
8074     }
8075   }
8076 
8077   if (VT == MVT::i32 &&
8078       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
8079     // and x, (sext cc from i1) => select cc, x, 0
8080     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
8081       std::swap(LHS, RHS);
8082     if (isBoolSGPR(RHS.getOperand(0)))
8083       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
8084                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
8085   }
8086 
8087   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8088   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8089   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8090       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8091     uint32_t LHSMask = getPermuteMask(DAG, LHS);
8092     uint32_t RHSMask = getPermuteMask(DAG, RHS);
8093     if (LHSMask != ~0u && RHSMask != ~0u) {
8094       // Canonicalize the expression in an attempt to have fewer unique masks
8095       // and therefore fewer registers used to hold the masks.
8096       if (LHSMask > RHSMask) {
8097         std::swap(LHSMask, RHSMask);
8098         std::swap(LHS, RHS);
8099       }
8100 
8101       // Select 0xc for each lane used from source operand. Zero has 0xc mask
8102       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8103       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8104       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8105 
8106       // Check of we need to combine values from two sources within a byte.
8107       if (!(LHSUsedLanes & RHSUsedLanes) &&
8108           // If we select high and lower word keep it for SDWA.
8109           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8110           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8111         // Each byte in each mask is either selector mask 0-3, or has higher
8112         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
8113         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
8114         // mask which is not 0xff wins. By anding both masks we have a correct
8115         // result except that 0x0c shall be corrected to give 0x0c only.
8116         uint32_t Mask = LHSMask & RHSMask;
8117         for (unsigned I = 0; I < 32; I += 8) {
8118           uint32_t ByteSel = 0xff << I;
8119           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
8120             Mask &= (0x0c << I) & 0xffffffff;
8121         }
8122 
8123         // Add 4 to each active LHS lane. It will not affect any existing 0xff
8124         // or 0x0c.
8125         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
8126         SDLoc DL(N);
8127 
8128         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8129                            LHS.getOperand(0), RHS.getOperand(0),
8130                            DAG.getConstant(Sel, DL, MVT::i32));
8131       }
8132     }
8133   }
8134 
8135   return SDValue();
8136 }
8137 
8138 SDValue SITargetLowering::performOrCombine(SDNode *N,
8139                                            DAGCombinerInfo &DCI) const {
8140   SelectionDAG &DAG = DCI.DAG;
8141   SDValue LHS = N->getOperand(0);
8142   SDValue RHS = N->getOperand(1);
8143 
8144   EVT VT = N->getValueType(0);
8145   if (VT == MVT::i1) {
8146     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
8147     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8148         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
8149       SDValue Src = LHS.getOperand(0);
8150       if (Src != RHS.getOperand(0))
8151         return SDValue();
8152 
8153       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
8154       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8155       if (!CLHS || !CRHS)
8156         return SDValue();
8157 
8158       // Only 10 bits are used.
8159       static const uint32_t MaxMask = 0x3ff;
8160 
8161       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
8162       SDLoc DL(N);
8163       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8164                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
8165     }
8166 
8167     return SDValue();
8168   }
8169 
8170   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8171   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
8172       LHS.getOpcode() == AMDGPUISD::PERM &&
8173       isa<ConstantSDNode>(LHS.getOperand(2))) {
8174     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
8175     if (!Sel)
8176       return SDValue();
8177 
8178     Sel |= LHS.getConstantOperandVal(2);
8179     SDLoc DL(N);
8180     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8181                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8182   }
8183 
8184   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8185   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8186   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8187       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8188     uint32_t LHSMask = getPermuteMask(DAG, LHS);
8189     uint32_t RHSMask = getPermuteMask(DAG, RHS);
8190     if (LHSMask != ~0u && RHSMask != ~0u) {
8191       // Canonicalize the expression in an attempt to have fewer unique masks
8192       // and therefore fewer registers used to hold the masks.
8193       if (LHSMask > RHSMask) {
8194         std::swap(LHSMask, RHSMask);
8195         std::swap(LHS, RHS);
8196       }
8197 
8198       // Select 0xc for each lane used from source operand. Zero has 0xc mask
8199       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8200       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8201       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8202 
8203       // Check of we need to combine values from two sources within a byte.
8204       if (!(LHSUsedLanes & RHSUsedLanes) &&
8205           // If we select high and lower word keep it for SDWA.
8206           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8207           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8208         // Kill zero bytes selected by other mask. Zero value is 0xc.
8209         LHSMask &= ~RHSUsedLanes;
8210         RHSMask &= ~LHSUsedLanes;
8211         // Add 4 to each active LHS lane
8212         LHSMask |= LHSUsedLanes & 0x04040404;
8213         // Combine masks
8214         uint32_t Sel = LHSMask | RHSMask;
8215         SDLoc DL(N);
8216 
8217         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8218                            LHS.getOperand(0), RHS.getOperand(0),
8219                            DAG.getConstant(Sel, DL, MVT::i32));
8220       }
8221     }
8222   }
8223 
8224   if (VT != MVT::i64)
8225     return SDValue();
8226 
8227   // TODO: This could be a generic combine with a predicate for extracting the
8228   // high half of an integer being free.
8229 
8230   // (or i64:x, (zero_extend i32:y)) ->
8231   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
8232   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
8233       RHS.getOpcode() != ISD::ZERO_EXTEND)
8234     std::swap(LHS, RHS);
8235 
8236   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
8237     SDValue ExtSrc = RHS.getOperand(0);
8238     EVT SrcVT = ExtSrc.getValueType();
8239     if (SrcVT == MVT::i32) {
8240       SDLoc SL(N);
8241       SDValue LowLHS, HiBits;
8242       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
8243       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
8244 
8245       DCI.AddToWorklist(LowOr.getNode());
8246       DCI.AddToWorklist(HiBits.getNode());
8247 
8248       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
8249                                 LowOr, HiBits);
8250       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
8251     }
8252   }
8253 
8254   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
8255   if (CRHS) {
8256     if (SDValue Split
8257           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
8258       return Split;
8259   }
8260 
8261   return SDValue();
8262 }
8263 
8264 SDValue SITargetLowering::performXorCombine(SDNode *N,
8265                                             DAGCombinerInfo &DCI) const {
8266   EVT VT = N->getValueType(0);
8267   if (VT != MVT::i64)
8268     return SDValue();
8269 
8270   SDValue LHS = N->getOperand(0);
8271   SDValue RHS = N->getOperand(1);
8272 
8273   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8274   if (CRHS) {
8275     if (SDValue Split
8276           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
8277       return Split;
8278   }
8279 
8280   return SDValue();
8281 }
8282 
8283 // Instructions that will be lowered with a final instruction that zeros the
8284 // high result bits.
8285 // XXX - probably only need to list legal operations.
8286 static bool fp16SrcZerosHighBits(unsigned Opc) {
8287   switch (Opc) {
8288   case ISD::FADD:
8289   case ISD::FSUB:
8290   case ISD::FMUL:
8291   case ISD::FDIV:
8292   case ISD::FREM:
8293   case ISD::FMA:
8294   case ISD::FMAD:
8295   case ISD::FCANONICALIZE:
8296   case ISD::FP_ROUND:
8297   case ISD::UINT_TO_FP:
8298   case ISD::SINT_TO_FP:
8299   case ISD::FABS:
8300     // Fabs is lowered to a bit operation, but it's an and which will clear the
8301     // high bits anyway.
8302   case ISD::FSQRT:
8303   case ISD::FSIN:
8304   case ISD::FCOS:
8305   case ISD::FPOWI:
8306   case ISD::FPOW:
8307   case ISD::FLOG:
8308   case ISD::FLOG2:
8309   case ISD::FLOG10:
8310   case ISD::FEXP:
8311   case ISD::FEXP2:
8312   case ISD::FCEIL:
8313   case ISD::FTRUNC:
8314   case ISD::FRINT:
8315   case ISD::FNEARBYINT:
8316   case ISD::FROUND:
8317   case ISD::FFLOOR:
8318   case ISD::FMINNUM:
8319   case ISD::FMAXNUM:
8320   case AMDGPUISD::FRACT:
8321   case AMDGPUISD::CLAMP:
8322   case AMDGPUISD::COS_HW:
8323   case AMDGPUISD::SIN_HW:
8324   case AMDGPUISD::FMIN3:
8325   case AMDGPUISD::FMAX3:
8326   case AMDGPUISD::FMED3:
8327   case AMDGPUISD::FMAD_FTZ:
8328   case AMDGPUISD::RCP:
8329   case AMDGPUISD::RSQ:
8330   case AMDGPUISD::RCP_IFLAG:
8331   case AMDGPUISD::LDEXP:
8332     return true;
8333   default:
8334     // fcopysign, select and others may be lowered to 32-bit bit operations
8335     // which don't zero the high bits.
8336     return false;
8337   }
8338 }
8339 
8340 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
8341                                                    DAGCombinerInfo &DCI) const {
8342   if (!Subtarget->has16BitInsts() ||
8343       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
8344     return SDValue();
8345 
8346   EVT VT = N->getValueType(0);
8347   if (VT != MVT::i32)
8348     return SDValue();
8349 
8350   SDValue Src = N->getOperand(0);
8351   if (Src.getValueType() != MVT::i16)
8352     return SDValue();
8353 
8354   // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
8355   // FIXME: It is not universally true that the high bits are zeroed on gfx9.
8356   if (Src.getOpcode() == ISD::BITCAST) {
8357     SDValue BCSrc = Src.getOperand(0);
8358     if (BCSrc.getValueType() == MVT::f16 &&
8359         fp16SrcZerosHighBits(BCSrc.getOpcode()))
8360       return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
8361   }
8362 
8363   return SDValue();
8364 }
8365 
8366 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
8367                                                         DAGCombinerInfo &DCI)
8368                                                         const {
8369   SDValue Src = N->getOperand(0);
8370   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
8371 
8372   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
8373       VTSign->getVT() == MVT::i8) ||
8374       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
8375       VTSign->getVT() == MVT::i16)) &&
8376       Src.hasOneUse()) {
8377     auto *M = cast<MemSDNode>(Src);
8378     SDValue Ops[] = {
8379       Src.getOperand(0), // Chain
8380       Src.getOperand(1), // rsrc
8381       Src.getOperand(2), // vindex
8382       Src.getOperand(3), // voffset
8383       Src.getOperand(4), // soffset
8384       Src.getOperand(5), // offset
8385       Src.getOperand(6),
8386       Src.getOperand(7)
8387     };
8388     // replace with BUFFER_LOAD_BYTE/SHORT
8389     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
8390                                          Src.getOperand(0).getValueType());
8391     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
8392                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
8393     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
8394                                                           ResList,
8395                                                           Ops, M->getMemoryVT(),
8396                                                           M->getMemOperand());
8397     return DCI.DAG.getMergeValues({BufferLoadSignExt,
8398                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
8399   }
8400   return SDValue();
8401 }
8402 
8403 SDValue SITargetLowering::performClassCombine(SDNode *N,
8404                                               DAGCombinerInfo &DCI) const {
8405   SelectionDAG &DAG = DCI.DAG;
8406   SDValue Mask = N->getOperand(1);
8407 
8408   // fp_class x, 0 -> false
8409   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
8410     if (CMask->isNullValue())
8411       return DAG.getConstant(0, SDLoc(N), MVT::i1);
8412   }
8413 
8414   if (N->getOperand(0).isUndef())
8415     return DAG.getUNDEF(MVT::i1);
8416 
8417   return SDValue();
8418 }
8419 
8420 SDValue SITargetLowering::performRcpCombine(SDNode *N,
8421                                             DAGCombinerInfo &DCI) const {
8422   EVT VT = N->getValueType(0);
8423   SDValue N0 = N->getOperand(0);
8424 
8425   if (N0.isUndef())
8426     return N0;
8427 
8428   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
8429                          N0.getOpcode() == ISD::SINT_TO_FP)) {
8430     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
8431                            N->getFlags());
8432   }
8433 
8434   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
8435 }
8436 
8437 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
8438                                        unsigned MaxDepth) const {
8439   unsigned Opcode = Op.getOpcode();
8440   if (Opcode == ISD::FCANONICALIZE)
8441     return true;
8442 
8443   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
8444     auto F = CFP->getValueAPF();
8445     if (F.isNaN() && F.isSignaling())
8446       return false;
8447     return !F.isDenormal() || denormalsEnabledForType(Op.getValueType());
8448   }
8449 
8450   // If source is a result of another standard FP operation it is already in
8451   // canonical form.
8452   if (MaxDepth == 0)
8453     return false;
8454 
8455   switch (Opcode) {
8456   // These will flush denorms if required.
8457   case ISD::FADD:
8458   case ISD::FSUB:
8459   case ISD::FMUL:
8460   case ISD::FCEIL:
8461   case ISD::FFLOOR:
8462   case ISD::FMA:
8463   case ISD::FMAD:
8464   case ISD::FSQRT:
8465   case ISD::FDIV:
8466   case ISD::FREM:
8467   case ISD::FP_ROUND:
8468   case ISD::FP_EXTEND:
8469   case AMDGPUISD::FMUL_LEGACY:
8470   case AMDGPUISD::FMAD_FTZ:
8471   case AMDGPUISD::RCP:
8472   case AMDGPUISD::RSQ:
8473   case AMDGPUISD::RSQ_CLAMP:
8474   case AMDGPUISD::RCP_LEGACY:
8475   case AMDGPUISD::RSQ_LEGACY:
8476   case AMDGPUISD::RCP_IFLAG:
8477   case AMDGPUISD::TRIG_PREOP:
8478   case AMDGPUISD::DIV_SCALE:
8479   case AMDGPUISD::DIV_FMAS:
8480   case AMDGPUISD::DIV_FIXUP:
8481   case AMDGPUISD::FRACT:
8482   case AMDGPUISD::LDEXP:
8483   case AMDGPUISD::CVT_PKRTZ_F16_F32:
8484   case AMDGPUISD::CVT_F32_UBYTE0:
8485   case AMDGPUISD::CVT_F32_UBYTE1:
8486   case AMDGPUISD::CVT_F32_UBYTE2:
8487   case AMDGPUISD::CVT_F32_UBYTE3:
8488     return true;
8489 
8490   // It can/will be lowered or combined as a bit operation.
8491   // Need to check their input recursively to handle.
8492   case ISD::FNEG:
8493   case ISD::FABS:
8494   case ISD::FCOPYSIGN:
8495     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
8496 
8497   case ISD::FSIN:
8498   case ISD::FCOS:
8499   case ISD::FSINCOS:
8500     return Op.getValueType().getScalarType() != MVT::f16;
8501 
8502   case ISD::FMINNUM:
8503   case ISD::FMAXNUM:
8504   case ISD::FMINNUM_IEEE:
8505   case ISD::FMAXNUM_IEEE:
8506   case AMDGPUISD::CLAMP:
8507   case AMDGPUISD::FMED3:
8508   case AMDGPUISD::FMAX3:
8509   case AMDGPUISD::FMIN3: {
8510     // FIXME: Shouldn't treat the generic operations different based these.
8511     // However, we aren't really required to flush the result from
8512     // minnum/maxnum..
8513 
8514     // snans will be quieted, so we only need to worry about denormals.
8515     if (Subtarget->supportsMinMaxDenormModes() ||
8516         denormalsEnabledForType(Op.getValueType()))
8517       return true;
8518 
8519     // Flushing may be required.
8520     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
8521     // targets need to check their input recursively.
8522 
8523     // FIXME: Does this apply with clamp? It's implemented with max.
8524     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
8525       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
8526         return false;
8527     }
8528 
8529     return true;
8530   }
8531   case ISD::SELECT: {
8532     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
8533            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
8534   }
8535   case ISD::BUILD_VECTOR: {
8536     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
8537       SDValue SrcOp = Op.getOperand(i);
8538       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
8539         return false;
8540     }
8541 
8542     return true;
8543   }
8544   case ISD::EXTRACT_VECTOR_ELT:
8545   case ISD::EXTRACT_SUBVECTOR: {
8546     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
8547   }
8548   case ISD::INSERT_VECTOR_ELT: {
8549     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
8550            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
8551   }
8552   case ISD::UNDEF:
8553     // Could be anything.
8554     return false;
8555 
8556   case ISD::BITCAST: {
8557     // Hack round the mess we make when legalizing extract_vector_elt
8558     SDValue Src = Op.getOperand(0);
8559     if (Src.getValueType() == MVT::i16 &&
8560         Src.getOpcode() == ISD::TRUNCATE) {
8561       SDValue TruncSrc = Src.getOperand(0);
8562       if (TruncSrc.getValueType() == MVT::i32 &&
8563           TruncSrc.getOpcode() == ISD::BITCAST &&
8564           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
8565         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
8566       }
8567     }
8568 
8569     return false;
8570   }
8571   case ISD::INTRINSIC_WO_CHAIN: {
8572     unsigned IntrinsicID
8573       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8574     // TODO: Handle more intrinsics
8575     switch (IntrinsicID) {
8576     case Intrinsic::amdgcn_cvt_pkrtz:
8577     case Intrinsic::amdgcn_cubeid:
8578     case Intrinsic::amdgcn_frexp_mant:
8579     case Intrinsic::amdgcn_fdot2:
8580       return true;
8581     default:
8582       break;
8583     }
8584 
8585     LLVM_FALLTHROUGH;
8586   }
8587   default:
8588     return denormalsEnabledForType(Op.getValueType()) &&
8589            DAG.isKnownNeverSNaN(Op);
8590   }
8591 
8592   llvm_unreachable("invalid operation");
8593 }
8594 
8595 // Constant fold canonicalize.
8596 SDValue SITargetLowering::getCanonicalConstantFP(
8597   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
8598   // Flush denormals to 0 if not enabled.
8599   if (C.isDenormal() && !denormalsEnabledForType(VT))
8600     return DAG.getConstantFP(0.0, SL, VT);
8601 
8602   if (C.isNaN()) {
8603     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
8604     if (C.isSignaling()) {
8605       // Quiet a signaling NaN.
8606       // FIXME: Is this supposed to preserve payload bits?
8607       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
8608     }
8609 
8610     // Make sure it is the canonical NaN bitpattern.
8611     //
8612     // TODO: Can we use -1 as the canonical NaN value since it's an inline
8613     // immediate?
8614     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
8615       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
8616   }
8617 
8618   // Already canonical.
8619   return DAG.getConstantFP(C, SL, VT);
8620 }
8621 
8622 static bool vectorEltWillFoldAway(SDValue Op) {
8623   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
8624 }
8625 
8626 SDValue SITargetLowering::performFCanonicalizeCombine(
8627   SDNode *N,
8628   DAGCombinerInfo &DCI) const {
8629   SelectionDAG &DAG = DCI.DAG;
8630   SDValue N0 = N->getOperand(0);
8631   EVT VT = N->getValueType(0);
8632 
8633   // fcanonicalize undef -> qnan
8634   if (N0.isUndef()) {
8635     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
8636     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
8637   }
8638 
8639   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
8640     EVT VT = N->getValueType(0);
8641     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
8642   }
8643 
8644   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
8645   //                                                   (fcanonicalize k)
8646   //
8647   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
8648 
8649   // TODO: This could be better with wider vectors that will be split to v2f16,
8650   // and to consider uses since there aren't that many packed operations.
8651   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
8652       isTypeLegal(MVT::v2f16)) {
8653     SDLoc SL(N);
8654     SDValue NewElts[2];
8655     SDValue Lo = N0.getOperand(0);
8656     SDValue Hi = N0.getOperand(1);
8657     EVT EltVT = Lo.getValueType();
8658 
8659     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
8660       for (unsigned I = 0; I != 2; ++I) {
8661         SDValue Op = N0.getOperand(I);
8662         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
8663           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
8664                                               CFP->getValueAPF());
8665         } else if (Op.isUndef()) {
8666           // Handled below based on what the other operand is.
8667           NewElts[I] = Op;
8668         } else {
8669           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
8670         }
8671       }
8672 
8673       // If one half is undef, and one is constant, perfer a splat vector rather
8674       // than the normal qNaN. If it's a register, prefer 0.0 since that's
8675       // cheaper to use and may be free with a packed operation.
8676       if (NewElts[0].isUndef()) {
8677         if (isa<ConstantFPSDNode>(NewElts[1]))
8678           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
8679             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
8680       }
8681 
8682       if (NewElts[1].isUndef()) {
8683         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
8684           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
8685       }
8686 
8687       return DAG.getBuildVector(VT, SL, NewElts);
8688     }
8689   }
8690 
8691   unsigned SrcOpc = N0.getOpcode();
8692 
8693   // If it's free to do so, push canonicalizes further up the source, which may
8694   // find a canonical source.
8695   //
8696   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
8697   // sNaNs.
8698   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
8699     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
8700     if (CRHS && N0.hasOneUse()) {
8701       SDLoc SL(N);
8702       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
8703                                    N0.getOperand(0));
8704       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
8705       DCI.AddToWorklist(Canon0.getNode());
8706 
8707       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
8708     }
8709   }
8710 
8711   return isCanonicalized(DAG, N0) ? N0 : SDValue();
8712 }
8713 
8714 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
8715   switch (Opc) {
8716   case ISD::FMAXNUM:
8717   case ISD::FMAXNUM_IEEE:
8718     return AMDGPUISD::FMAX3;
8719   case ISD::SMAX:
8720     return AMDGPUISD::SMAX3;
8721   case ISD::UMAX:
8722     return AMDGPUISD::UMAX3;
8723   case ISD::FMINNUM:
8724   case ISD::FMINNUM_IEEE:
8725     return AMDGPUISD::FMIN3;
8726   case ISD::SMIN:
8727     return AMDGPUISD::SMIN3;
8728   case ISD::UMIN:
8729     return AMDGPUISD::UMIN3;
8730   default:
8731     llvm_unreachable("Not a min/max opcode");
8732   }
8733 }
8734 
8735 SDValue SITargetLowering::performIntMed3ImmCombine(
8736   SelectionDAG &DAG, const SDLoc &SL,
8737   SDValue Op0, SDValue Op1, bool Signed) const {
8738   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
8739   if (!K1)
8740     return SDValue();
8741 
8742   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
8743   if (!K0)
8744     return SDValue();
8745 
8746   if (Signed) {
8747     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
8748       return SDValue();
8749   } else {
8750     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
8751       return SDValue();
8752   }
8753 
8754   EVT VT = K0->getValueType(0);
8755   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
8756   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
8757     return DAG.getNode(Med3Opc, SL, VT,
8758                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
8759   }
8760 
8761   // If there isn't a 16-bit med3 operation, convert to 32-bit.
8762   MVT NVT = MVT::i32;
8763   unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8764 
8765   SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
8766   SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
8767   SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
8768 
8769   SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
8770   return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
8771 }
8772 
8773 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
8774   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
8775     return C;
8776 
8777   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
8778     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
8779       return C;
8780   }
8781 
8782   return nullptr;
8783 }
8784 
8785 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
8786                                                   const SDLoc &SL,
8787                                                   SDValue Op0,
8788                                                   SDValue Op1) const {
8789   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
8790   if (!K1)
8791     return SDValue();
8792 
8793   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
8794   if (!K0)
8795     return SDValue();
8796 
8797   // Ordered >= (although NaN inputs should have folded away by now).
8798   APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
8799   if (Cmp == APFloat::cmpGreaterThan)
8800     return SDValue();
8801 
8802   const MachineFunction &MF = DAG.getMachineFunction();
8803   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
8804 
8805   // TODO: Check IEEE bit enabled?
8806   EVT VT = Op0.getValueType();
8807   if (Info->getMode().DX10Clamp) {
8808     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
8809     // hardware fmed3 behavior converting to a min.
8810     // FIXME: Should this be allowing -0.0?
8811     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
8812       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
8813   }
8814 
8815   // med3 for f16 is only available on gfx9+, and not available for v2f16.
8816   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
8817     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
8818     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
8819     // then give the other result, which is different from med3 with a NaN
8820     // input.
8821     SDValue Var = Op0.getOperand(0);
8822     if (!DAG.isKnownNeverSNaN(Var))
8823       return SDValue();
8824 
8825     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8826 
8827     if ((!K0->hasOneUse() ||
8828          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
8829         (!K1->hasOneUse() ||
8830          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
8831       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
8832                          Var, SDValue(K0, 0), SDValue(K1, 0));
8833     }
8834   }
8835 
8836   return SDValue();
8837 }
8838 
8839 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
8840                                                DAGCombinerInfo &DCI) const {
8841   SelectionDAG &DAG = DCI.DAG;
8842 
8843   EVT VT = N->getValueType(0);
8844   unsigned Opc = N->getOpcode();
8845   SDValue Op0 = N->getOperand(0);
8846   SDValue Op1 = N->getOperand(1);
8847 
8848   // Only do this if the inner op has one use since this will just increases
8849   // register pressure for no benefit.
8850 
8851   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
8852       !VT.isVector() &&
8853       (VT == MVT::i32 || VT == MVT::f32 ||
8854        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
8855     // max(max(a, b), c) -> max3(a, b, c)
8856     // min(min(a, b), c) -> min3(a, b, c)
8857     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
8858       SDLoc DL(N);
8859       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
8860                          DL,
8861                          N->getValueType(0),
8862                          Op0.getOperand(0),
8863                          Op0.getOperand(1),
8864                          Op1);
8865     }
8866 
8867     // Try commuted.
8868     // max(a, max(b, c)) -> max3(a, b, c)
8869     // min(a, min(b, c)) -> min3(a, b, c)
8870     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
8871       SDLoc DL(N);
8872       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
8873                          DL,
8874                          N->getValueType(0),
8875                          Op0,
8876                          Op1.getOperand(0),
8877                          Op1.getOperand(1));
8878     }
8879   }
8880 
8881   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
8882   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
8883     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
8884       return Med3;
8885   }
8886 
8887   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
8888     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
8889       return Med3;
8890   }
8891 
8892   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
8893   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
8894        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
8895        (Opc == AMDGPUISD::FMIN_LEGACY &&
8896         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
8897       (VT == MVT::f32 || VT == MVT::f64 ||
8898        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
8899        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
8900       Op0.hasOneUse()) {
8901     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
8902       return Res;
8903   }
8904 
8905   return SDValue();
8906 }
8907 
8908 static bool isClampZeroToOne(SDValue A, SDValue B) {
8909   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
8910     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
8911       // FIXME: Should this be allowing -0.0?
8912       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
8913              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
8914     }
8915   }
8916 
8917   return false;
8918 }
8919 
8920 // FIXME: Should only worry about snans for version with chain.
8921 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
8922                                               DAGCombinerInfo &DCI) const {
8923   EVT VT = N->getValueType(0);
8924   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
8925   // NaNs. With a NaN input, the order of the operands may change the result.
8926 
8927   SelectionDAG &DAG = DCI.DAG;
8928   SDLoc SL(N);
8929 
8930   SDValue Src0 = N->getOperand(0);
8931   SDValue Src1 = N->getOperand(1);
8932   SDValue Src2 = N->getOperand(2);
8933 
8934   if (isClampZeroToOne(Src0, Src1)) {
8935     // const_a, const_b, x -> clamp is safe in all cases including signaling
8936     // nans.
8937     // FIXME: Should this be allowing -0.0?
8938     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
8939   }
8940 
8941   const MachineFunction &MF = DAG.getMachineFunction();
8942   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
8943 
8944   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
8945   // handling no dx10-clamp?
8946   if (Info->getMode().DX10Clamp) {
8947     // If NaNs is clamped to 0, we are free to reorder the inputs.
8948 
8949     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
8950       std::swap(Src0, Src1);
8951 
8952     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
8953       std::swap(Src1, Src2);
8954 
8955     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
8956       std::swap(Src0, Src1);
8957 
8958     if (isClampZeroToOne(Src1, Src2))
8959       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
8960   }
8961 
8962   return SDValue();
8963 }
8964 
8965 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
8966                                                  DAGCombinerInfo &DCI) const {
8967   SDValue Src0 = N->getOperand(0);
8968   SDValue Src1 = N->getOperand(1);
8969   if (Src0.isUndef() && Src1.isUndef())
8970     return DCI.DAG.getUNDEF(N->getValueType(0));
8971   return SDValue();
8972 }
8973 
8974 SDValue SITargetLowering::performExtractVectorEltCombine(
8975   SDNode *N, DAGCombinerInfo &DCI) const {
8976   SDValue Vec = N->getOperand(0);
8977   SelectionDAG &DAG = DCI.DAG;
8978 
8979   EVT VecVT = Vec.getValueType();
8980   EVT EltVT = VecVT.getVectorElementType();
8981 
8982   if ((Vec.getOpcode() == ISD::FNEG ||
8983        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
8984     SDLoc SL(N);
8985     EVT EltVT = N->getValueType(0);
8986     SDValue Idx = N->getOperand(1);
8987     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
8988                               Vec.getOperand(0), Idx);
8989     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
8990   }
8991 
8992   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
8993   //    =>
8994   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
8995   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
8996   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
8997   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
8998     SDLoc SL(N);
8999     EVT EltVT = N->getValueType(0);
9000     SDValue Idx = N->getOperand(1);
9001     unsigned Opc = Vec.getOpcode();
9002 
9003     switch(Opc) {
9004     default:
9005       break;
9006       // TODO: Support other binary operations.
9007     case ISD::FADD:
9008     case ISD::FSUB:
9009     case ISD::FMUL:
9010     case ISD::ADD:
9011     case ISD::UMIN:
9012     case ISD::UMAX:
9013     case ISD::SMIN:
9014     case ISD::SMAX:
9015     case ISD::FMAXNUM:
9016     case ISD::FMINNUM:
9017     case ISD::FMAXNUM_IEEE:
9018     case ISD::FMINNUM_IEEE: {
9019       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9020                                  Vec.getOperand(0), Idx);
9021       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9022                                  Vec.getOperand(1), Idx);
9023 
9024       DCI.AddToWorklist(Elt0.getNode());
9025       DCI.AddToWorklist(Elt1.getNode());
9026       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
9027     }
9028     }
9029   }
9030 
9031   unsigned VecSize = VecVT.getSizeInBits();
9032   unsigned EltSize = EltVT.getSizeInBits();
9033 
9034   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
9035   // This elminates non-constant index and subsequent movrel or scratch access.
9036   // Sub-dword vectors of size 2 dword or less have better implementation.
9037   // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
9038   // instructions.
9039   if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) &&
9040       !isa<ConstantSDNode>(N->getOperand(1))) {
9041     SDLoc SL(N);
9042     SDValue Idx = N->getOperand(1);
9043     EVT IdxVT = Idx.getValueType();
9044     SDValue V;
9045     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9046       SDValue IC = DAG.getConstant(I, SL, IdxVT);
9047       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9048       if (I == 0)
9049         V = Elt;
9050       else
9051         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
9052     }
9053     return V;
9054   }
9055 
9056   if (!DCI.isBeforeLegalize())
9057     return SDValue();
9058 
9059   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
9060   // elements. This exposes more load reduction opportunities by replacing
9061   // multiple small extract_vector_elements with a single 32-bit extract.
9062   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9063   if (isa<MemSDNode>(Vec) &&
9064       EltSize <= 16 &&
9065       EltVT.isByteSized() &&
9066       VecSize > 32 &&
9067       VecSize % 32 == 0 &&
9068       Idx) {
9069     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
9070 
9071     unsigned BitIndex = Idx->getZExtValue() * EltSize;
9072     unsigned EltIdx = BitIndex / 32;
9073     unsigned LeftoverBitIdx = BitIndex % 32;
9074     SDLoc SL(N);
9075 
9076     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
9077     DCI.AddToWorklist(Cast.getNode());
9078 
9079     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
9080                               DAG.getConstant(EltIdx, SL, MVT::i32));
9081     DCI.AddToWorklist(Elt.getNode());
9082     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
9083                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
9084     DCI.AddToWorklist(Srl.getNode());
9085 
9086     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
9087     DCI.AddToWorklist(Trunc.getNode());
9088     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
9089   }
9090 
9091   return SDValue();
9092 }
9093 
9094 SDValue
9095 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
9096                                                 DAGCombinerInfo &DCI) const {
9097   SDValue Vec = N->getOperand(0);
9098   SDValue Idx = N->getOperand(2);
9099   EVT VecVT = Vec.getValueType();
9100   EVT EltVT = VecVT.getVectorElementType();
9101   unsigned VecSize = VecVT.getSizeInBits();
9102   unsigned EltSize = EltVT.getSizeInBits();
9103 
9104   // INSERT_VECTOR_ELT (<n x e>, var-idx)
9105   // => BUILD_VECTOR n x select (e, const-idx)
9106   // This elminates non-constant index and subsequent movrel or scratch access.
9107   // Sub-dword vectors of size 2 dword or less have better implementation.
9108   // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
9109   // instructions.
9110   if (isa<ConstantSDNode>(Idx) ||
9111       VecSize > 256 || (VecSize <= 64 && EltSize < 32))
9112     return SDValue();
9113 
9114   SelectionDAG &DAG = DCI.DAG;
9115   SDLoc SL(N);
9116   SDValue Ins = N->getOperand(1);
9117   EVT IdxVT = Idx.getValueType();
9118 
9119   SmallVector<SDValue, 16> Ops;
9120   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9121     SDValue IC = DAG.getConstant(I, SL, IdxVT);
9122     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9123     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
9124     Ops.push_back(V);
9125   }
9126 
9127   return DAG.getBuildVector(VecVT, SL, Ops);
9128 }
9129 
9130 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
9131                                           const SDNode *N0,
9132                                           const SDNode *N1) const {
9133   EVT VT = N0->getValueType(0);
9134 
9135   // Only do this if we are not trying to support denormals. v_mad_f32 does not
9136   // support denormals ever.
9137   if (((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
9138        (VT == MVT::f16 && !Subtarget->hasFP16Denormals() &&
9139         getSubtarget()->hasMadF16())) &&
9140        isOperationLegal(ISD::FMAD, VT))
9141     return ISD::FMAD;
9142 
9143   const TargetOptions &Options = DAG.getTarget().Options;
9144   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9145        (N0->getFlags().hasAllowContract() &&
9146         N1->getFlags().hasAllowContract())) &&
9147       isFMAFasterThanFMulAndFAdd(VT)) {
9148     return ISD::FMA;
9149   }
9150 
9151   return 0;
9152 }
9153 
9154 // For a reassociatable opcode perform:
9155 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
9156 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
9157                                                SelectionDAG &DAG) const {
9158   EVT VT = N->getValueType(0);
9159   if (VT != MVT::i32 && VT != MVT::i64)
9160     return SDValue();
9161 
9162   unsigned Opc = N->getOpcode();
9163   SDValue Op0 = N->getOperand(0);
9164   SDValue Op1 = N->getOperand(1);
9165 
9166   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
9167     return SDValue();
9168 
9169   if (Op0->isDivergent())
9170     std::swap(Op0, Op1);
9171 
9172   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
9173     return SDValue();
9174 
9175   SDValue Op2 = Op1.getOperand(1);
9176   Op1 = Op1.getOperand(0);
9177   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
9178     return SDValue();
9179 
9180   if (Op1->isDivergent())
9181     std::swap(Op1, Op2);
9182 
9183   // If either operand is constant this will conflict with
9184   // DAGCombiner::ReassociateOps().
9185   if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
9186       DAG.isConstantIntBuildVectorOrConstantInt(Op1))
9187     return SDValue();
9188 
9189   SDLoc SL(N);
9190   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
9191   return DAG.getNode(Opc, SL, VT, Add1, Op2);
9192 }
9193 
9194 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
9195                            EVT VT,
9196                            SDValue N0, SDValue N1, SDValue N2,
9197                            bool Signed) {
9198   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
9199   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
9200   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
9201   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
9202 }
9203 
9204 SDValue SITargetLowering::performAddCombine(SDNode *N,
9205                                             DAGCombinerInfo &DCI) const {
9206   SelectionDAG &DAG = DCI.DAG;
9207   EVT VT = N->getValueType(0);
9208   SDLoc SL(N);
9209   SDValue LHS = N->getOperand(0);
9210   SDValue RHS = N->getOperand(1);
9211 
9212   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
9213       && Subtarget->hasMad64_32() &&
9214       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
9215       VT.getScalarSizeInBits() <= 64) {
9216     if (LHS.getOpcode() != ISD::MUL)
9217       std::swap(LHS, RHS);
9218 
9219     SDValue MulLHS = LHS.getOperand(0);
9220     SDValue MulRHS = LHS.getOperand(1);
9221     SDValue AddRHS = RHS;
9222 
9223     // TODO: Maybe restrict if SGPR inputs.
9224     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
9225         numBitsUnsigned(MulRHS, DAG) <= 32) {
9226       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
9227       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
9228       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
9229       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
9230     }
9231 
9232     if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
9233       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
9234       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
9235       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
9236       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
9237     }
9238 
9239     return SDValue();
9240   }
9241 
9242   if (SDValue V = reassociateScalarOps(N, DAG)) {
9243     return V;
9244   }
9245 
9246   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
9247     return SDValue();
9248 
9249   // add x, zext (setcc) => addcarry x, 0, setcc
9250   // add x, sext (setcc) => subcarry x, 0, setcc
9251   unsigned Opc = LHS.getOpcode();
9252   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
9253       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
9254     std::swap(RHS, LHS);
9255 
9256   Opc = RHS.getOpcode();
9257   switch (Opc) {
9258   default: break;
9259   case ISD::ZERO_EXTEND:
9260   case ISD::SIGN_EXTEND:
9261   case ISD::ANY_EXTEND: {
9262     auto Cond = RHS.getOperand(0);
9263     if (!isBoolSGPR(Cond))
9264       break;
9265     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
9266     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
9267     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
9268     return DAG.getNode(Opc, SL, VTList, Args);
9269   }
9270   case ISD::ADDCARRY: {
9271     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
9272     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9273     if (!C || C->getZExtValue() != 0) break;
9274     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
9275     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
9276   }
9277   }
9278   return SDValue();
9279 }
9280 
9281 SDValue SITargetLowering::performSubCombine(SDNode *N,
9282                                             DAGCombinerInfo &DCI) const {
9283   SelectionDAG &DAG = DCI.DAG;
9284   EVT VT = N->getValueType(0);
9285 
9286   if (VT != MVT::i32)
9287     return SDValue();
9288 
9289   SDLoc SL(N);
9290   SDValue LHS = N->getOperand(0);
9291   SDValue RHS = N->getOperand(1);
9292 
9293   if (LHS.getOpcode() == ISD::SUBCARRY) {
9294     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
9295     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9296     if (!C || !C->isNullValue())
9297       return SDValue();
9298     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
9299     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
9300   }
9301   return SDValue();
9302 }
9303 
9304 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
9305   DAGCombinerInfo &DCI) const {
9306 
9307   if (N->getValueType(0) != MVT::i32)
9308     return SDValue();
9309 
9310   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9311   if (!C || C->getZExtValue() != 0)
9312     return SDValue();
9313 
9314   SelectionDAG &DAG = DCI.DAG;
9315   SDValue LHS = N->getOperand(0);
9316 
9317   // addcarry (add x, y), 0, cc => addcarry x, y, cc
9318   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
9319   unsigned LHSOpc = LHS.getOpcode();
9320   unsigned Opc = N->getOpcode();
9321   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
9322       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
9323     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
9324     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
9325   }
9326   return SDValue();
9327 }
9328 
9329 SDValue SITargetLowering::performFAddCombine(SDNode *N,
9330                                              DAGCombinerInfo &DCI) const {
9331   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9332     return SDValue();
9333 
9334   SelectionDAG &DAG = DCI.DAG;
9335   EVT VT = N->getValueType(0);
9336 
9337   SDLoc SL(N);
9338   SDValue LHS = N->getOperand(0);
9339   SDValue RHS = N->getOperand(1);
9340 
9341   // These should really be instruction patterns, but writing patterns with
9342   // source modiifiers is a pain.
9343 
9344   // fadd (fadd (a, a), b) -> mad 2.0, a, b
9345   if (LHS.getOpcode() == ISD::FADD) {
9346     SDValue A = LHS.getOperand(0);
9347     if (A == LHS.getOperand(1)) {
9348       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
9349       if (FusedOp != 0) {
9350         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9351         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
9352       }
9353     }
9354   }
9355 
9356   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
9357   if (RHS.getOpcode() == ISD::FADD) {
9358     SDValue A = RHS.getOperand(0);
9359     if (A == RHS.getOperand(1)) {
9360       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
9361       if (FusedOp != 0) {
9362         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9363         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
9364       }
9365     }
9366   }
9367 
9368   return SDValue();
9369 }
9370 
9371 SDValue SITargetLowering::performFSubCombine(SDNode *N,
9372                                              DAGCombinerInfo &DCI) const {
9373   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9374     return SDValue();
9375 
9376   SelectionDAG &DAG = DCI.DAG;
9377   SDLoc SL(N);
9378   EVT VT = N->getValueType(0);
9379   assert(!VT.isVector());
9380 
9381   // Try to get the fneg to fold into the source modifier. This undoes generic
9382   // DAG combines and folds them into the mad.
9383   //
9384   // Only do this if we are not trying to support denormals. v_mad_f32 does
9385   // not support denormals ever.
9386   SDValue LHS = N->getOperand(0);
9387   SDValue RHS = N->getOperand(1);
9388   if (LHS.getOpcode() == ISD::FADD) {
9389     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
9390     SDValue A = LHS.getOperand(0);
9391     if (A == LHS.getOperand(1)) {
9392       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
9393       if (FusedOp != 0){
9394         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9395         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
9396 
9397         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
9398       }
9399     }
9400   }
9401 
9402   if (RHS.getOpcode() == ISD::FADD) {
9403     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
9404 
9405     SDValue A = RHS.getOperand(0);
9406     if (A == RHS.getOperand(1)) {
9407       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
9408       if (FusedOp != 0){
9409         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
9410         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
9411       }
9412     }
9413   }
9414 
9415   return SDValue();
9416 }
9417 
9418 SDValue SITargetLowering::performFMACombine(SDNode *N,
9419                                             DAGCombinerInfo &DCI) const {
9420   SelectionDAG &DAG = DCI.DAG;
9421   EVT VT = N->getValueType(0);
9422   SDLoc SL(N);
9423 
9424   if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
9425     return SDValue();
9426 
9427   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
9428   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
9429   SDValue Op1 = N->getOperand(0);
9430   SDValue Op2 = N->getOperand(1);
9431   SDValue FMA = N->getOperand(2);
9432 
9433   if (FMA.getOpcode() != ISD::FMA ||
9434       Op1.getOpcode() != ISD::FP_EXTEND ||
9435       Op2.getOpcode() != ISD::FP_EXTEND)
9436     return SDValue();
9437 
9438   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
9439   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
9440   // is sufficient to allow generaing fdot2.
9441   const TargetOptions &Options = DAG.getTarget().Options;
9442   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9443       (N->getFlags().hasAllowContract() &&
9444        FMA->getFlags().hasAllowContract())) {
9445     Op1 = Op1.getOperand(0);
9446     Op2 = Op2.getOperand(0);
9447     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9448         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9449       return SDValue();
9450 
9451     SDValue Vec1 = Op1.getOperand(0);
9452     SDValue Idx1 = Op1.getOperand(1);
9453     SDValue Vec2 = Op2.getOperand(0);
9454 
9455     SDValue FMAOp1 = FMA.getOperand(0);
9456     SDValue FMAOp2 = FMA.getOperand(1);
9457     SDValue FMAAcc = FMA.getOperand(2);
9458 
9459     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
9460         FMAOp2.getOpcode() != ISD::FP_EXTEND)
9461       return SDValue();
9462 
9463     FMAOp1 = FMAOp1.getOperand(0);
9464     FMAOp2 = FMAOp2.getOperand(0);
9465     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9466         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9467       return SDValue();
9468 
9469     SDValue Vec3 = FMAOp1.getOperand(0);
9470     SDValue Vec4 = FMAOp2.getOperand(0);
9471     SDValue Idx2 = FMAOp1.getOperand(1);
9472 
9473     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
9474         // Idx1 and Idx2 cannot be the same.
9475         Idx1 == Idx2)
9476       return SDValue();
9477 
9478     if (Vec1 == Vec2 || Vec3 == Vec4)
9479       return SDValue();
9480 
9481     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
9482       return SDValue();
9483 
9484     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
9485         (Vec1 == Vec4 && Vec2 == Vec3)) {
9486       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
9487                          DAG.getTargetConstant(0, SL, MVT::i1));
9488     }
9489   }
9490   return SDValue();
9491 }
9492 
9493 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
9494                                               DAGCombinerInfo &DCI) const {
9495   SelectionDAG &DAG = DCI.DAG;
9496   SDLoc SL(N);
9497 
9498   SDValue LHS = N->getOperand(0);
9499   SDValue RHS = N->getOperand(1);
9500   EVT VT = LHS.getValueType();
9501   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
9502 
9503   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
9504   if (!CRHS) {
9505     CRHS = dyn_cast<ConstantSDNode>(LHS);
9506     if (CRHS) {
9507       std::swap(LHS, RHS);
9508       CC = getSetCCSwappedOperands(CC);
9509     }
9510   }
9511 
9512   if (CRHS) {
9513     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
9514         isBoolSGPR(LHS.getOperand(0))) {
9515       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
9516       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
9517       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
9518       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
9519       if ((CRHS->isAllOnesValue() &&
9520            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
9521           (CRHS->isNullValue() &&
9522            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
9523         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
9524                            DAG.getConstant(-1, SL, MVT::i1));
9525       if ((CRHS->isAllOnesValue() &&
9526            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
9527           (CRHS->isNullValue() &&
9528            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
9529         return LHS.getOperand(0);
9530     }
9531 
9532     uint64_t CRHSVal = CRHS->getZExtValue();
9533     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
9534         LHS.getOpcode() == ISD::SELECT &&
9535         isa<ConstantSDNode>(LHS.getOperand(1)) &&
9536         isa<ConstantSDNode>(LHS.getOperand(2)) &&
9537         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
9538         isBoolSGPR(LHS.getOperand(0))) {
9539       // Given CT != FT:
9540       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
9541       // setcc (select cc, CT, CF), CF, ne => cc
9542       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
9543       // setcc (select cc, CT, CF), CT, eq => cc
9544       uint64_t CT = LHS.getConstantOperandVal(1);
9545       uint64_t CF = LHS.getConstantOperandVal(2);
9546 
9547       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
9548           (CT == CRHSVal && CC == ISD::SETNE))
9549         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
9550                            DAG.getConstant(-1, SL, MVT::i1));
9551       if ((CF == CRHSVal && CC == ISD::SETNE) ||
9552           (CT == CRHSVal && CC == ISD::SETEQ))
9553         return LHS.getOperand(0);
9554     }
9555   }
9556 
9557   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
9558                                            VT != MVT::f16))
9559     return SDValue();
9560 
9561   // Match isinf/isfinite pattern
9562   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
9563   // (fcmp one (fabs x), inf) -> (fp_class x,
9564   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
9565   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
9566     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
9567     if (!CRHS)
9568       return SDValue();
9569 
9570     const APFloat &APF = CRHS->getValueAPF();
9571     if (APF.isInfinity() && !APF.isNegative()) {
9572       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
9573                                  SIInstrFlags::N_INFINITY;
9574       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
9575                                     SIInstrFlags::P_ZERO |
9576                                     SIInstrFlags::N_NORMAL |
9577                                     SIInstrFlags::P_NORMAL |
9578                                     SIInstrFlags::N_SUBNORMAL |
9579                                     SIInstrFlags::P_SUBNORMAL;
9580       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
9581       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
9582                          DAG.getConstant(Mask, SL, MVT::i32));
9583     }
9584   }
9585 
9586   return SDValue();
9587 }
9588 
9589 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
9590                                                      DAGCombinerInfo &DCI) const {
9591   SelectionDAG &DAG = DCI.DAG;
9592   SDLoc SL(N);
9593   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
9594 
9595   SDValue Src = N->getOperand(0);
9596   SDValue Srl = N->getOperand(0);
9597   if (Srl.getOpcode() == ISD::ZERO_EXTEND)
9598     Srl = Srl.getOperand(0);
9599 
9600   // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
9601   if (Srl.getOpcode() == ISD::SRL) {
9602     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
9603     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
9604     // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
9605 
9606     if (const ConstantSDNode *C =
9607         dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
9608       Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
9609                                EVT(MVT::i32));
9610 
9611       unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
9612       if (SrcOffset < 32 && SrcOffset % 8 == 0) {
9613         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
9614                            MVT::f32, Srl);
9615       }
9616     }
9617   }
9618 
9619   APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
9620 
9621   KnownBits Known;
9622   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
9623                                         !DCI.isBeforeLegalizeOps());
9624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9625   if (TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
9626     DCI.CommitTargetLoweringOpt(TLO);
9627   }
9628 
9629   return SDValue();
9630 }
9631 
9632 SDValue SITargetLowering::performClampCombine(SDNode *N,
9633                                               DAGCombinerInfo &DCI) const {
9634   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
9635   if (!CSrc)
9636     return SDValue();
9637 
9638   const MachineFunction &MF = DCI.DAG.getMachineFunction();
9639   const APFloat &F = CSrc->getValueAPF();
9640   APFloat Zero = APFloat::getZero(F.getSemantics());
9641   APFloat::cmpResult Cmp0 = F.compare(Zero);
9642   if (Cmp0 == APFloat::cmpLessThan ||
9643       (Cmp0 == APFloat::cmpUnordered &&
9644        MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
9645     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
9646   }
9647 
9648   APFloat One(F.getSemantics(), "1.0");
9649   APFloat::cmpResult Cmp1 = F.compare(One);
9650   if (Cmp1 == APFloat::cmpGreaterThan)
9651     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
9652 
9653   return SDValue(CSrc, 0);
9654 }
9655 
9656 
9657 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
9658                                             DAGCombinerInfo &DCI) const {
9659   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
9660     return SDValue();
9661   switch (N->getOpcode()) {
9662   default:
9663     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
9664   case ISD::ADD:
9665     return performAddCombine(N, DCI);
9666   case ISD::SUB:
9667     return performSubCombine(N, DCI);
9668   case ISD::ADDCARRY:
9669   case ISD::SUBCARRY:
9670     return performAddCarrySubCarryCombine(N, DCI);
9671   case ISD::FADD:
9672     return performFAddCombine(N, DCI);
9673   case ISD::FSUB:
9674     return performFSubCombine(N, DCI);
9675   case ISD::SETCC:
9676     return performSetCCCombine(N, DCI);
9677   case ISD::FMAXNUM:
9678   case ISD::FMINNUM:
9679   case ISD::FMAXNUM_IEEE:
9680   case ISD::FMINNUM_IEEE:
9681   case ISD::SMAX:
9682   case ISD::SMIN:
9683   case ISD::UMAX:
9684   case ISD::UMIN:
9685   case AMDGPUISD::FMIN_LEGACY:
9686   case AMDGPUISD::FMAX_LEGACY:
9687     return performMinMaxCombine(N, DCI);
9688   case ISD::FMA:
9689     return performFMACombine(N, DCI);
9690   case ISD::LOAD: {
9691     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
9692       return Widended;
9693     LLVM_FALLTHROUGH;
9694   }
9695   case ISD::STORE:
9696   case ISD::ATOMIC_LOAD:
9697   case ISD::ATOMIC_STORE:
9698   case ISD::ATOMIC_CMP_SWAP:
9699   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
9700   case ISD::ATOMIC_SWAP:
9701   case ISD::ATOMIC_LOAD_ADD:
9702   case ISD::ATOMIC_LOAD_SUB:
9703   case ISD::ATOMIC_LOAD_AND:
9704   case ISD::ATOMIC_LOAD_OR:
9705   case ISD::ATOMIC_LOAD_XOR:
9706   case ISD::ATOMIC_LOAD_NAND:
9707   case ISD::ATOMIC_LOAD_MIN:
9708   case ISD::ATOMIC_LOAD_MAX:
9709   case ISD::ATOMIC_LOAD_UMIN:
9710   case ISD::ATOMIC_LOAD_UMAX:
9711   case ISD::ATOMIC_LOAD_FADD:
9712   case AMDGPUISD::ATOMIC_INC:
9713   case AMDGPUISD::ATOMIC_DEC:
9714   case AMDGPUISD::ATOMIC_LOAD_FMIN:
9715   case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics.
9716     if (DCI.isBeforeLegalize())
9717       break;
9718     return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
9719   case ISD::AND:
9720     return performAndCombine(N, DCI);
9721   case ISD::OR:
9722     return performOrCombine(N, DCI);
9723   case ISD::XOR:
9724     return performXorCombine(N, DCI);
9725   case ISD::ZERO_EXTEND:
9726     return performZeroExtendCombine(N, DCI);
9727   case ISD::SIGN_EXTEND_INREG:
9728     return performSignExtendInRegCombine(N , DCI);
9729   case AMDGPUISD::FP_CLASS:
9730     return performClassCombine(N, DCI);
9731   case ISD::FCANONICALIZE:
9732     return performFCanonicalizeCombine(N, DCI);
9733   case AMDGPUISD::RCP:
9734     return performRcpCombine(N, DCI);
9735   case AMDGPUISD::FRACT:
9736   case AMDGPUISD::RSQ:
9737   case AMDGPUISD::RCP_LEGACY:
9738   case AMDGPUISD::RSQ_LEGACY:
9739   case AMDGPUISD::RCP_IFLAG:
9740   case AMDGPUISD::RSQ_CLAMP:
9741   case AMDGPUISD::LDEXP: {
9742     SDValue Src = N->getOperand(0);
9743     if (Src.isUndef())
9744       return Src;
9745     break;
9746   }
9747   case ISD::SINT_TO_FP:
9748   case ISD::UINT_TO_FP:
9749     return performUCharToFloatCombine(N, DCI);
9750   case AMDGPUISD::CVT_F32_UBYTE0:
9751   case AMDGPUISD::CVT_F32_UBYTE1:
9752   case AMDGPUISD::CVT_F32_UBYTE2:
9753   case AMDGPUISD::CVT_F32_UBYTE3:
9754     return performCvtF32UByteNCombine(N, DCI);
9755   case AMDGPUISD::FMED3:
9756     return performFMed3Combine(N, DCI);
9757   case AMDGPUISD::CVT_PKRTZ_F16_F32:
9758     return performCvtPkRTZCombine(N, DCI);
9759   case AMDGPUISD::CLAMP:
9760     return performClampCombine(N, DCI);
9761   case ISD::SCALAR_TO_VECTOR: {
9762     SelectionDAG &DAG = DCI.DAG;
9763     EVT VT = N->getValueType(0);
9764 
9765     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
9766     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
9767       SDLoc SL(N);
9768       SDValue Src = N->getOperand(0);
9769       EVT EltVT = Src.getValueType();
9770       if (EltVT == MVT::f16)
9771         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
9772 
9773       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
9774       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
9775     }
9776 
9777     break;
9778   }
9779   case ISD::EXTRACT_VECTOR_ELT:
9780     return performExtractVectorEltCombine(N, DCI);
9781   case ISD::INSERT_VECTOR_ELT:
9782     return performInsertVectorEltCombine(N, DCI);
9783   }
9784   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
9785 }
9786 
9787 /// Helper function for adjustWritemask
9788 static unsigned SubIdx2Lane(unsigned Idx) {
9789   switch (Idx) {
9790   default: return 0;
9791   case AMDGPU::sub0: return 0;
9792   case AMDGPU::sub1: return 1;
9793   case AMDGPU::sub2: return 2;
9794   case AMDGPU::sub3: return 3;
9795   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
9796   }
9797 }
9798 
9799 /// Adjust the writemask of MIMG instructions
9800 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
9801                                           SelectionDAG &DAG) const {
9802   unsigned Opcode = Node->getMachineOpcode();
9803 
9804   // Subtract 1 because the vdata output is not a MachineSDNode operand.
9805   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
9806   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
9807     return Node; // not implemented for D16
9808 
9809   SDNode *Users[5] = { nullptr };
9810   unsigned Lane = 0;
9811   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
9812   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
9813   unsigned NewDmask = 0;
9814   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
9815   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
9816   bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
9817                   Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
9818   unsigned TFCLane = 0;
9819   bool HasChain = Node->getNumValues() > 1;
9820 
9821   if (OldDmask == 0) {
9822     // These are folded out, but on the chance it happens don't assert.
9823     return Node;
9824   }
9825 
9826   unsigned OldBitsSet = countPopulation(OldDmask);
9827   // Work out which is the TFE/LWE lane if that is enabled.
9828   if (UsesTFC) {
9829     TFCLane = OldBitsSet;
9830   }
9831 
9832   // Try to figure out the used register components
9833   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
9834        I != E; ++I) {
9835 
9836     // Don't look at users of the chain.
9837     if (I.getUse().getResNo() != 0)
9838       continue;
9839 
9840     // Abort if we can't understand the usage
9841     if (!I->isMachineOpcode() ||
9842         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
9843       return Node;
9844 
9845     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
9846     // Note that subregs are packed, i.e. Lane==0 is the first bit set
9847     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
9848     // set, etc.
9849     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
9850 
9851     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
9852     if (UsesTFC && Lane == TFCLane) {
9853       Users[Lane] = *I;
9854     } else {
9855       // Set which texture component corresponds to the lane.
9856       unsigned Comp;
9857       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
9858         Comp = countTrailingZeros(Dmask);
9859         Dmask &= ~(1 << Comp);
9860       }
9861 
9862       // Abort if we have more than one user per component.
9863       if (Users[Lane])
9864         return Node;
9865 
9866       Users[Lane] = *I;
9867       NewDmask |= 1 << Comp;
9868     }
9869   }
9870 
9871   // Don't allow 0 dmask, as hardware assumes one channel enabled.
9872   bool NoChannels = !NewDmask;
9873   if (NoChannels) {
9874     if (!UsesTFC) {
9875       // No uses of the result and not using TFC. Then do nothing.
9876       return Node;
9877     }
9878     // If the original dmask has one channel - then nothing to do
9879     if (OldBitsSet == 1)
9880       return Node;
9881     // Use an arbitrary dmask - required for the instruction to work
9882     NewDmask = 1;
9883   }
9884   // Abort if there's no change
9885   if (NewDmask == OldDmask)
9886     return Node;
9887 
9888   unsigned BitsSet = countPopulation(NewDmask);
9889 
9890   // Check for TFE or LWE - increase the number of channels by one to account
9891   // for the extra return value
9892   // This will need adjustment for D16 if this is also included in
9893   // adjustWriteMask (this function) but at present D16 are excluded.
9894   unsigned NewChannels = BitsSet + UsesTFC;
9895 
9896   int NewOpcode =
9897       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
9898   assert(NewOpcode != -1 &&
9899          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
9900          "failed to find equivalent MIMG op");
9901 
9902   // Adjust the writemask in the node
9903   SmallVector<SDValue, 12> Ops;
9904   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
9905   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
9906   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
9907 
9908   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
9909 
9910   MVT ResultVT = NewChannels == 1 ?
9911     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
9912                            NewChannels == 5 ? 8 : NewChannels);
9913   SDVTList NewVTList = HasChain ?
9914     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
9915 
9916 
9917   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
9918                                               NewVTList, Ops);
9919 
9920   if (HasChain) {
9921     // Update chain.
9922     DAG.setNodeMemRefs(NewNode, Node->memoperands());
9923     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
9924   }
9925 
9926   if (NewChannels == 1) {
9927     assert(Node->hasNUsesOfValue(1, 0));
9928     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
9929                                       SDLoc(Node), Users[Lane]->getValueType(0),
9930                                       SDValue(NewNode, 0));
9931     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
9932     return nullptr;
9933   }
9934 
9935   // Update the users of the node with the new indices
9936   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
9937     SDNode *User = Users[i];
9938     if (!User) {
9939       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
9940       // Users[0] is still nullptr because channel 0 doesn't really have a use.
9941       if (i || !NoChannels)
9942         continue;
9943     } else {
9944       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
9945       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
9946     }
9947 
9948     switch (Idx) {
9949     default: break;
9950     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
9951     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
9952     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
9953     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
9954     }
9955   }
9956 
9957   DAG.RemoveDeadNode(Node);
9958   return nullptr;
9959 }
9960 
9961 static bool isFrameIndexOp(SDValue Op) {
9962   if (Op.getOpcode() == ISD::AssertZext)
9963     Op = Op.getOperand(0);
9964 
9965   return isa<FrameIndexSDNode>(Op);
9966 }
9967 
9968 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
9969 /// with frame index operands.
9970 /// LLVM assumes that inputs are to these instructions are registers.
9971 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
9972                                                         SelectionDAG &DAG) const {
9973   if (Node->getOpcode() == ISD::CopyToReg) {
9974     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
9975     SDValue SrcVal = Node->getOperand(2);
9976 
9977     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
9978     // to try understanding copies to physical registers.
9979     if (SrcVal.getValueType() == MVT::i1 &&
9980         TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) {
9981       SDLoc SL(Node);
9982       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
9983       SDValue VReg = DAG.getRegister(
9984         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
9985 
9986       SDNode *Glued = Node->getGluedNode();
9987       SDValue ToVReg
9988         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
9989                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
9990       SDValue ToResultReg
9991         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
9992                            VReg, ToVReg.getValue(1));
9993       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
9994       DAG.RemoveDeadNode(Node);
9995       return ToResultReg.getNode();
9996     }
9997   }
9998 
9999   SmallVector<SDValue, 8> Ops;
10000   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
10001     if (!isFrameIndexOp(Node->getOperand(i))) {
10002       Ops.push_back(Node->getOperand(i));
10003       continue;
10004     }
10005 
10006     SDLoc DL(Node);
10007     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
10008                                      Node->getOperand(i).getValueType(),
10009                                      Node->getOperand(i)), 0));
10010   }
10011 
10012   return DAG.UpdateNodeOperands(Node, Ops);
10013 }
10014 
10015 /// Fold the instructions after selecting them.
10016 /// Returns null if users were already updated.
10017 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
10018                                           SelectionDAG &DAG) const {
10019   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10020   unsigned Opcode = Node->getMachineOpcode();
10021 
10022   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
10023       !TII->isGather4(Opcode)) {
10024     return adjustWritemask(Node, DAG);
10025   }
10026 
10027   if (Opcode == AMDGPU::INSERT_SUBREG ||
10028       Opcode == AMDGPU::REG_SEQUENCE) {
10029     legalizeTargetIndependentNode(Node, DAG);
10030     return Node;
10031   }
10032 
10033   switch (Opcode) {
10034   case AMDGPU::V_DIV_SCALE_F32:
10035   case AMDGPU::V_DIV_SCALE_F64: {
10036     // Satisfy the operand register constraint when one of the inputs is
10037     // undefined. Ordinarily each undef value will have its own implicit_def of
10038     // a vreg, so force these to use a single register.
10039     SDValue Src0 = Node->getOperand(0);
10040     SDValue Src1 = Node->getOperand(1);
10041     SDValue Src2 = Node->getOperand(2);
10042 
10043     if ((Src0.isMachineOpcode() &&
10044          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
10045         (Src0 == Src1 || Src0 == Src2))
10046       break;
10047 
10048     MVT VT = Src0.getValueType().getSimpleVT();
10049     const TargetRegisterClass *RC =
10050         getRegClassFor(VT, Src0.getNode()->isDivergent());
10051 
10052     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10053     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
10054 
10055     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
10056                                       UndefReg, Src0, SDValue());
10057 
10058     // src0 must be the same register as src1 or src2, even if the value is
10059     // undefined, so make sure we don't violate this constraint.
10060     if (Src0.isMachineOpcode() &&
10061         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
10062       if (Src1.isMachineOpcode() &&
10063           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10064         Src0 = Src1;
10065       else if (Src2.isMachineOpcode() &&
10066                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10067         Src0 = Src2;
10068       else {
10069         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
10070         Src0 = UndefReg;
10071         Src1 = UndefReg;
10072       }
10073     } else
10074       break;
10075 
10076     SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
10077     for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
10078       Ops.push_back(Node->getOperand(I));
10079 
10080     Ops.push_back(ImpDef.getValue(1));
10081     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10082   }
10083   case AMDGPU::V_PERMLANE16_B32:
10084   case AMDGPU::V_PERMLANEX16_B32: {
10085     ConstantSDNode *FI = cast<ConstantSDNode>(Node->getOperand(0));
10086     ConstantSDNode *BC = cast<ConstantSDNode>(Node->getOperand(2));
10087     if (!FI->getZExtValue() && !BC->getZExtValue())
10088       break;
10089     SDValue VDstIn = Node->getOperand(6);
10090     if (VDstIn.isMachineOpcode()
10091         && VDstIn.getMachineOpcode() == AMDGPU::IMPLICIT_DEF)
10092       break;
10093     MachineSDNode *ImpDef = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
10094                                                SDLoc(Node), MVT::i32);
10095     SmallVector<SDValue, 8> Ops = { SDValue(FI, 0), Node->getOperand(1),
10096                                     SDValue(BC, 0), Node->getOperand(3),
10097                                     Node->getOperand(4), Node->getOperand(5),
10098                                     SDValue(ImpDef, 0), Node->getOperand(7) };
10099     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10100   }
10101   default:
10102     break;
10103   }
10104 
10105   return Node;
10106 }
10107 
10108 /// Assign the register class depending on the number of
10109 /// bits set in the writemask
10110 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10111                                                      SDNode *Node) const {
10112   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10113 
10114   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
10115 
10116   if (TII->isVOP3(MI.getOpcode())) {
10117     // Make sure constant bus requirements are respected.
10118     TII->legalizeOperandsVOP3(MRI, MI);
10119     return;
10120   }
10121 
10122   // Replace unused atomics with the no return version.
10123   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
10124   if (NoRetAtomicOp != -1) {
10125     if (!Node->hasAnyUseOfValue(0)) {
10126       MI.setDesc(TII->get(NoRetAtomicOp));
10127       MI.RemoveOperand(0);
10128       return;
10129     }
10130 
10131     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
10132     // instruction, because the return type of these instructions is a vec2 of
10133     // the memory type, so it can be tied to the input operand.
10134     // This means these instructions always have a use, so we need to add a
10135     // special case to check if the atomic has only one extract_subreg use,
10136     // which itself has no uses.
10137     if ((Node->hasNUsesOfValue(1, 0) &&
10138          Node->use_begin()->isMachineOpcode() &&
10139          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
10140          !Node->use_begin()->hasAnyUseOfValue(0))) {
10141       unsigned Def = MI.getOperand(0).getReg();
10142 
10143       // Change this into a noret atomic.
10144       MI.setDesc(TII->get(NoRetAtomicOp));
10145       MI.RemoveOperand(0);
10146 
10147       // If we only remove the def operand from the atomic instruction, the
10148       // extract_subreg will be left with a use of a vreg without a def.
10149       // So we need to insert an implicit_def to avoid machine verifier
10150       // errors.
10151       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
10152               TII->get(AMDGPU::IMPLICIT_DEF), Def);
10153     }
10154     return;
10155   }
10156 }
10157 
10158 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
10159                               uint64_t Val) {
10160   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
10161   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
10162 }
10163 
10164 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
10165                                                 const SDLoc &DL,
10166                                                 SDValue Ptr) const {
10167   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10168 
10169   // Build the half of the subregister with the constants before building the
10170   // full 128-bit register. If we are building multiple resource descriptors,
10171   // this will allow CSEing of the 2-component register.
10172   const SDValue Ops0[] = {
10173     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
10174     buildSMovImm32(DAG, DL, 0),
10175     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
10176     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
10177     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
10178   };
10179 
10180   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
10181                                                 MVT::v2i32, Ops0), 0);
10182 
10183   // Combine the constants and the pointer.
10184   const SDValue Ops1[] = {
10185     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
10186     Ptr,
10187     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
10188     SubRegHi,
10189     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
10190   };
10191 
10192   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
10193 }
10194 
10195 /// Return a resource descriptor with the 'Add TID' bit enabled
10196 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
10197 ///        of the resource descriptor) to create an offset, which is added to
10198 ///        the resource pointer.
10199 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
10200                                            SDValue Ptr, uint32_t RsrcDword1,
10201                                            uint64_t RsrcDword2And3) const {
10202   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
10203   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
10204   if (RsrcDword1) {
10205     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
10206                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
10207                     0);
10208   }
10209 
10210   SDValue DataLo = buildSMovImm32(DAG, DL,
10211                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
10212   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
10213 
10214   const SDValue Ops[] = {
10215     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
10216     PtrLo,
10217     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
10218     PtrHi,
10219     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
10220     DataLo,
10221     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
10222     DataHi,
10223     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
10224   };
10225 
10226   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
10227 }
10228 
10229 //===----------------------------------------------------------------------===//
10230 //                         SI Inline Assembly Support
10231 //===----------------------------------------------------------------------===//
10232 
10233 std::pair<unsigned, const TargetRegisterClass *>
10234 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10235                                                StringRef Constraint,
10236                                                MVT VT) const {
10237   const TargetRegisterClass *RC = nullptr;
10238   if (Constraint.size() == 1) {
10239     switch (Constraint[0]) {
10240     default:
10241       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10242     case 's':
10243     case 'r':
10244       switch (VT.getSizeInBits()) {
10245       default:
10246         return std::make_pair(0U, nullptr);
10247       case 32:
10248       case 16:
10249         RC = &AMDGPU::SReg_32_XM0RegClass;
10250         break;
10251       case 64:
10252         RC = &AMDGPU::SGPR_64RegClass;
10253         break;
10254       case 96:
10255         RC = &AMDGPU::SReg_96RegClass;
10256         break;
10257       case 128:
10258         RC = &AMDGPU::SReg_128RegClass;
10259         break;
10260       case 160:
10261         RC = &AMDGPU::SReg_160RegClass;
10262         break;
10263       case 256:
10264         RC = &AMDGPU::SReg_256RegClass;
10265         break;
10266       case 512:
10267         RC = &AMDGPU::SReg_512RegClass;
10268         break;
10269       }
10270       break;
10271     case 'v':
10272       switch (VT.getSizeInBits()) {
10273       default:
10274         return std::make_pair(0U, nullptr);
10275       case 32:
10276       case 16:
10277         RC = &AMDGPU::VGPR_32RegClass;
10278         break;
10279       case 64:
10280         RC = &AMDGPU::VReg_64RegClass;
10281         break;
10282       case 96:
10283         RC = &AMDGPU::VReg_96RegClass;
10284         break;
10285       case 128:
10286         RC = &AMDGPU::VReg_128RegClass;
10287         break;
10288       case 160:
10289         RC = &AMDGPU::VReg_160RegClass;
10290         break;
10291       case 256:
10292         RC = &AMDGPU::VReg_256RegClass;
10293         break;
10294       case 512:
10295         RC = &AMDGPU::VReg_512RegClass;
10296         break;
10297       }
10298       break;
10299     }
10300     // We actually support i128, i16 and f16 as inline parameters
10301     // even if they are not reported as legal
10302     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
10303                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
10304       return std::make_pair(0U, RC);
10305   }
10306 
10307   if (Constraint.size() > 1) {
10308     if (Constraint[1] == 'v') {
10309       RC = &AMDGPU::VGPR_32RegClass;
10310     } else if (Constraint[1] == 's') {
10311       RC = &AMDGPU::SGPR_32RegClass;
10312     }
10313 
10314     if (RC) {
10315       uint32_t Idx;
10316       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
10317       if (!Failed && Idx < RC->getNumRegs())
10318         return std::make_pair(RC->getRegister(Idx), RC);
10319     }
10320   }
10321   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10322 }
10323 
10324 SITargetLowering::ConstraintType
10325 SITargetLowering::getConstraintType(StringRef Constraint) const {
10326   if (Constraint.size() == 1) {
10327     switch (Constraint[0]) {
10328     default: break;
10329     case 's':
10330     case 'v':
10331       return C_RegisterClass;
10332     }
10333   }
10334   return TargetLowering::getConstraintType(Constraint);
10335 }
10336 
10337 // Figure out which registers should be reserved for stack access. Only after
10338 // the function is legalized do we know all of the non-spill stack objects or if
10339 // calls are present.
10340 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
10341   MachineRegisterInfo &MRI = MF.getRegInfo();
10342   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10343   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
10344   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10345 
10346   if (Info->isEntryFunction()) {
10347     // Callable functions have fixed registers used for stack access.
10348     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
10349   }
10350 
10351   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
10352                              Info->getStackPtrOffsetReg()));
10353   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
10354     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
10355 
10356   // We need to worry about replacing the default register with itself in case
10357   // of MIR testcases missing the MFI.
10358   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
10359     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
10360 
10361   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
10362     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
10363 
10364   if (Info->getScratchWaveOffsetReg() != AMDGPU::SCRATCH_WAVE_OFFSET_REG) {
10365     MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
10366                        Info->getScratchWaveOffsetReg());
10367   }
10368 
10369   Info->limitOccupancy(MF);
10370 
10371   if (ST.isWave32() && !MF.empty()) {
10372     // Add VCC_HI def because many instructions marked as imp-use VCC where
10373     // we may only define VCC_LO. If nothing defines VCC_HI we may end up
10374     // having a use of undef.
10375 
10376     const SIInstrInfo *TII = ST.getInstrInfo();
10377     DebugLoc DL;
10378 
10379     MachineBasicBlock &MBB = MF.front();
10380     MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr();
10381     BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI);
10382 
10383     for (auto &MBB : MF) {
10384       for (auto &MI : MBB) {
10385         TII->fixImplicitOperands(MI);
10386       }
10387     }
10388   }
10389 
10390   TargetLoweringBase::finalizeLowering(MF);
10391 }
10392 
10393 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
10394                                                      KnownBits &Known,
10395                                                      const APInt &DemandedElts,
10396                                                      const SelectionDAG &DAG,
10397                                                      unsigned Depth) const {
10398   TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
10399                                                 DAG, Depth);
10400 
10401   // Set the high bits to zero based on the maximum allowed scratch size per
10402   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
10403   // calculation won't overflow, so assume the sign bit is never set.
10404   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
10405 }
10406 
10407 unsigned SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
10408   const unsigned PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
10409   const unsigned CacheLineAlign = 6; // log2(64)
10410 
10411   // Pre-GFX10 target did not benefit from loop alignment
10412   if (!ML || DisableLoopAlignment ||
10413       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
10414       getSubtarget()->hasInstFwdPrefetchBug())
10415     return PrefAlign;
10416 
10417   // On GFX10 I$ is 4 x 64 bytes cache lines.
10418   // By default prefetcher keeps one cache line behind and reads two ahead.
10419   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
10420   // behind and one ahead.
10421   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
10422   // If loop fits 64 bytes it always spans no more than two cache lines and
10423   // does not need an alignment.
10424   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
10425   // Else if loop is less or equal 192 bytes we need two lines behind.
10426 
10427   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10428   const MachineBasicBlock *Header = ML->getHeader();
10429   if (Header->getAlignment() != PrefAlign)
10430     return Header->getAlignment(); // Already processed.
10431 
10432   unsigned LoopSize = 0;
10433   for (const MachineBasicBlock *MBB : ML->blocks()) {
10434     // If inner loop block is aligned assume in average half of the alignment
10435     // size to be added as nops.
10436     if (MBB != Header)
10437       LoopSize += (1 << MBB->getAlignment()) / 2;
10438 
10439     for (const MachineInstr &MI : *MBB) {
10440       LoopSize += TII->getInstSizeInBytes(MI);
10441       if (LoopSize > 192)
10442         return PrefAlign;
10443     }
10444   }
10445 
10446   if (LoopSize <= 64)
10447     return PrefAlign;
10448 
10449   if (LoopSize <= 128)
10450     return CacheLineAlign;
10451 
10452   // If any of parent loops is surrounded by prefetch instructions do not
10453   // insert new for inner loop, which would reset parent's settings.
10454   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
10455     if (MachineBasicBlock *Exit = P->getExitBlock()) {
10456       auto I = Exit->getFirstNonDebugInstr();
10457       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
10458         return CacheLineAlign;
10459     }
10460   }
10461 
10462   MachineBasicBlock *Pre = ML->getLoopPreheader();
10463   MachineBasicBlock *Exit = ML->getExitBlock();
10464 
10465   if (Pre && Exit) {
10466     BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
10467             TII->get(AMDGPU::S_INST_PREFETCH))
10468       .addImm(1); // prefetch 2 lines behind PC
10469 
10470     BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
10471             TII->get(AMDGPU::S_INST_PREFETCH))
10472       .addImm(2); // prefetch 1 line behind PC
10473   }
10474 
10475   return CacheLineAlign;
10476 }
10477 
10478 LLVM_ATTRIBUTE_UNUSED
10479 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
10480   assert(N->getOpcode() == ISD::CopyFromReg);
10481   do {
10482     // Follow the chain until we find an INLINEASM node.
10483     N = N->getOperand(0).getNode();
10484     if (N->getOpcode() == ISD::INLINEASM ||
10485         N->getOpcode() == ISD::INLINEASM_BR)
10486       return true;
10487   } while (N->getOpcode() == ISD::CopyFromReg);
10488   return false;
10489 }
10490 
10491 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
10492   FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const
10493 {
10494   switch (N->getOpcode()) {
10495     case ISD::CopyFromReg:
10496     {
10497       const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
10498       const MachineFunction * MF = FLI->MF;
10499       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
10500       const MachineRegisterInfo &MRI = MF->getRegInfo();
10501       const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo();
10502       unsigned Reg = R->getReg();
10503       if (TRI.isPhysicalRegister(Reg))
10504         return !TRI.isSGPRReg(MRI, Reg);
10505 
10506       if (MRI.isLiveIn(Reg)) {
10507         // workitem.id.x workitem.id.y workitem.id.z
10508         // Any VGPR formal argument is also considered divergent
10509         if (!TRI.isSGPRReg(MRI, Reg))
10510           return true;
10511         // Formal arguments of non-entry functions
10512         // are conservatively considered divergent
10513         else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv()))
10514           return true;
10515         return false;
10516       }
10517       const Value *V = FLI->getValueFromVirtualReg(Reg);
10518       if (V)
10519         return KDA->isDivergent(V);
10520       assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
10521       return !TRI.isSGPRReg(MRI, Reg);
10522     }
10523     break;
10524     case ISD::LOAD: {
10525       const LoadSDNode *L = cast<LoadSDNode>(N);
10526       unsigned AS = L->getAddressSpace();
10527       // A flat load may access private memory.
10528       return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
10529     } break;
10530     case ISD::CALLSEQ_END:
10531     return true;
10532     break;
10533     case ISD::INTRINSIC_WO_CHAIN:
10534     {
10535 
10536     }
10537       return AMDGPU::isIntrinsicSourceOfDivergence(
10538       cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
10539     case ISD::INTRINSIC_W_CHAIN:
10540       return AMDGPU::isIntrinsicSourceOfDivergence(
10541       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
10542     // In some cases intrinsics that are a source of divergence have been
10543     // lowered to AMDGPUISD so we also need to check those too.
10544     case AMDGPUISD::INTERP_MOV:
10545     case AMDGPUISD::INTERP_P1:
10546     case AMDGPUISD::INTERP_P2:
10547       return true;
10548   }
10549   return false;
10550 }
10551 
10552 bool SITargetLowering::denormalsEnabledForType(EVT VT) const {
10553   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
10554   case MVT::f32:
10555     return Subtarget->hasFP32Denormals();
10556   case MVT::f64:
10557     return Subtarget->hasFP64Denormals();
10558   case MVT::f16:
10559     return Subtarget->hasFP16Denormals();
10560   default:
10561     return false;
10562   }
10563 }
10564 
10565 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
10566                                                     const SelectionDAG &DAG,
10567                                                     bool SNaN,
10568                                                     unsigned Depth) const {
10569   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
10570     const MachineFunction &MF = DAG.getMachineFunction();
10571     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10572 
10573     if (Info->getMode().DX10Clamp)
10574       return true; // Clamped to 0.
10575     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
10576   }
10577 
10578   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
10579                                                             SNaN, Depth);
10580 }
10581 
10582 TargetLowering::AtomicExpansionKind
10583 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
10584   switch (RMW->getOperation()) {
10585   case AtomicRMWInst::FAdd: {
10586     Type *Ty = RMW->getType();
10587 
10588     // We don't have a way to support 16-bit atomics now, so just leave them
10589     // as-is.
10590     if (Ty->isHalfTy())
10591       return AtomicExpansionKind::None;
10592 
10593     if (!Ty->isFloatTy())
10594       return AtomicExpansionKind::CmpXChg;
10595 
10596     // TODO: Do have these for flat. Older targets also had them for buffers.
10597     unsigned AS = RMW->getPointerAddressSpace();
10598     return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
10599       AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
10600   }
10601   default:
10602     break;
10603   }
10604 
10605   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
10606 }
10607