1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/ADT/FloatingPointMode.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
28 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/IR/DiagnosticInfo.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/IntrinsicsAMDGPU.h"
35 #include "llvm/IR/IntrinsicsR600.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "si-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 static cl::opt<bool> DisableLoopAlignment(
46   "amdgpu-disable-loop-alignment",
47   cl::desc("Do not align and prefetch loops"),
48   cl::init(false));
49 
50 static cl::opt<bool> UseDivergentRegisterIndexing(
51   "amdgpu-use-divergent-register-indexing",
52   cl::Hidden,
53   cl::desc("Use indirect register addressing for divergent indexes"),
54   cl::init(false));
55 
56 static bool hasFP32Denormals(const MachineFunction &MF) {
57   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
58   return Info->getMode().allFP32Denormals();
59 }
60 
61 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
62   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
63   return Info->getMode().allFP64FP16Denormals();
64 }
65 
66 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
67   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
68   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
69     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
70       return AMDGPU::SGPR0 + Reg;
71     }
72   }
73   llvm_unreachable("Cannot allocate sgpr");
74 }
75 
76 SITargetLowering::SITargetLowering(const TargetMachine &TM,
77                                    const GCNSubtarget &STI)
78     : AMDGPUTargetLowering(TM, STI),
79       Subtarget(&STI) {
80   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
81   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
82 
83   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
84   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
85 
86   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
87 
88   const SIRegisterInfo *TRI = STI.getRegisterInfo();
89   const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
90 
91   addRegisterClass(MVT::f64, V64RegClass);
92   addRegisterClass(MVT::v2f32, V64RegClass);
93 
94   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
95   addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
96 
97   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
98   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
99 
100   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
101   addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
102 
103   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
104   addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
105 
106   addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
107   addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
108 
109   addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
110   addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
111 
112   addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
113   addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
114 
115   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
116   addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
117 
118   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
119   addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
120 
121   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
122   addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
123 
124   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
125   addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
126 
127   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
128   addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
129 
130   if (Subtarget->has16BitInsts()) {
131     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
132     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
133 
134     // Unless there are also VOP3P operations, not operations are really legal.
135     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
136     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
137     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
138     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
139     addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass);
140     addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass);
141   }
142 
143   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
144   addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
145 
146   computeRegisterProperties(Subtarget->getRegisterInfo());
147 
148   // The boolean content concept here is too inflexible. Compares only ever
149   // really produce a 1-bit result. Any copy/extend from these will turn into a
150   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
151   // it's what most targets use.
152   setBooleanContents(ZeroOrOneBooleanContent);
153   setBooleanVectorContents(ZeroOrOneBooleanContent);
154 
155   // We need to custom lower vector stores from local memory
156   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
157   setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
158   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
159   setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
160   setOperationAction(ISD::LOAD, MVT::v6i32, Custom);
161   setOperationAction(ISD::LOAD, MVT::v7i32, Custom);
162   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
163   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
164   setOperationAction(ISD::LOAD, MVT::i1, Custom);
165   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
166 
167   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
168   setOperationAction(ISD::STORE, MVT::v3i32, Custom);
169   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
170   setOperationAction(ISD::STORE, MVT::v5i32, Custom);
171   setOperationAction(ISD::STORE, MVT::v6i32, Custom);
172   setOperationAction(ISD::STORE, MVT::v7i32, Custom);
173   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
174   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
175   setOperationAction(ISD::STORE, MVT::i1, Custom);
176   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
177 
178   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
179   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
180   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
181   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
182   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
183   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
184   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
185   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
186   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
187   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
188   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
189   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
190   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
191   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
192   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
193   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
194 
195   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
196   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
197   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
198   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
199   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
200   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
201   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
202 
203   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
204   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
205 
206   setOperationAction(ISD::SELECT, MVT::i1, Promote);
207   setOperationAction(ISD::SELECT, MVT::i64, Custom);
208   setOperationAction(ISD::SELECT, MVT::f64, Promote);
209   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
210 
211   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
212   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
213   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
214   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
215   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
216 
217   setOperationAction(ISD::SETCC, MVT::i1, Promote);
218   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
219   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
220   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
221 
222   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
223   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
224   setOperationAction(ISD::TRUNCATE, MVT::v3i32, Expand);
225   setOperationAction(ISD::FP_ROUND, MVT::v3f32, Expand);
226   setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
227   setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
228   setOperationAction(ISD::TRUNCATE, MVT::v5i32, Expand);
229   setOperationAction(ISD::FP_ROUND, MVT::v5f32, Expand);
230   setOperationAction(ISD::TRUNCATE, MVT::v6i32, Expand);
231   setOperationAction(ISD::FP_ROUND, MVT::v6f32, Expand);
232   setOperationAction(ISD::TRUNCATE, MVT::v7i32, Expand);
233   setOperationAction(ISD::FP_ROUND, MVT::v7f32, Expand);
234   setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
235   setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
236   setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
237   setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
238 
239   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
240   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
241   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
242   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
243   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
244   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
245   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
246   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
247 
248   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
249   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
250   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
251   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
252   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
253   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
254 
255   setOperationAction(ISD::UADDO, MVT::i32, Legal);
256   setOperationAction(ISD::USUBO, MVT::i32, Legal);
257 
258   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
259   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
260 
261   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
262   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
263   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
264 
265 #if 0
266   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
267   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
268 #endif
269 
270   // We only support LOAD/STORE and vector manipulation ops for vectors
271   // with > 4 elements.
272   for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
273                   MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
274                   MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32,
275                   MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
276                   MVT::v8i16, MVT::v8f16, MVT::v16i64, MVT::v16f64,
277                   MVT::v32i32, MVT::v32f32 }) {
278     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
279       switch (Op) {
280       case ISD::LOAD:
281       case ISD::STORE:
282       case ISD::BUILD_VECTOR:
283       case ISD::BITCAST:
284       case ISD::EXTRACT_VECTOR_ELT:
285       case ISD::INSERT_VECTOR_ELT:
286       case ISD::EXTRACT_SUBVECTOR:
287       case ISD::SCALAR_TO_VECTOR:
288         break;
289       case ISD::INSERT_SUBVECTOR:
290       case ISD::CONCAT_VECTORS:
291         setOperationAction(Op, VT, Custom);
292         break;
293       default:
294         setOperationAction(Op, VT, Expand);
295         break;
296       }
297     }
298   }
299 
300   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
301 
302   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
303   // is expanded to avoid having two separate loops in case the index is a VGPR.
304 
305   // Most operations are naturally 32-bit vector operations. We only support
306   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
307   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
308     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
309     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
310 
311     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
312     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
313 
314     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
315     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
316 
317     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
318     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
319   }
320 
321   for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
322     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
323     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
324 
325     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
326     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
327 
328     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
329     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
330 
331     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
332     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
333   }
334 
335   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
336     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
337     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
338 
339     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
340     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
341 
342     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
343     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
344 
345     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
346     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
347   }
348 
349   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
350     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
351     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
352 
353     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
354     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
355 
356     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
357     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
358 
359     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
360     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
361   }
362 
363   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
364     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
365     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
366 
367     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
368     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
369 
370     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
371     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
372 
373     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
374     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
375   }
376 
377   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
378   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
379   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
380   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
381 
382   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
383   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
384 
385   // Avoid stack access for these.
386   // TODO: Generalize to more vector types.
387   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
388   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
389   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
390   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
391 
392   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
393   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
394   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
395   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
396   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
397   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
398 
399   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
400   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
401   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
402   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
403 
404   // Deal with vec3 vector operations when widened to vec4.
405   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
406   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
407   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
408   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
409 
410   // Deal with vec5/6/7 vector operations when widened to vec8.
411   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
412   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
413   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6i32, Custom);
414   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6f32, Custom);
415   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7i32, Custom);
416   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7f32, Custom);
417   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
418   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
419 
420   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
421   // and output demarshalling
422   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
423   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
424 
425   // We can't return success/failure, only the old value,
426   // let LLVM add the comparison
427   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
428   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
429 
430   if (Subtarget->hasFlatAddressSpace()) {
431     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
432     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
433   }
434 
435   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
436   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
437 
438   // FIXME: This should be narrowed to i32, but that only happens if i64 is
439   // illegal.
440   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
441   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
442   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
443 
444   // On SI this is s_memtime and s_memrealtime on VI.
445   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
446   setOperationAction(ISD::TRAP, MVT::Other, Custom);
447   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
448 
449   if (Subtarget->has16BitInsts()) {
450     setOperationAction(ISD::FPOW, MVT::f16, Promote);
451     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
452     setOperationAction(ISD::FLOG, MVT::f16, Custom);
453     setOperationAction(ISD::FEXP, MVT::f16, Custom);
454     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
455   }
456 
457   if (Subtarget->hasMadMacF32Insts())
458     setOperationAction(ISD::FMAD, MVT::f32, Legal);
459 
460   if (!Subtarget->hasBFI()) {
461     // fcopysign can be done in a single instruction with BFI.
462     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
463     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
464   }
465 
466   if (!Subtarget->hasBCNT(32))
467     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
468 
469   if (!Subtarget->hasBCNT(64))
470     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
471 
472   if (Subtarget->hasFFBH()) {
473     setOperationAction(ISD::CTLZ, MVT::i32, Custom);
474     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
475   }
476 
477   if (Subtarget->hasFFBL()) {
478     setOperationAction(ISD::CTTZ, MVT::i32, Custom);
479     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
480   }
481 
482   // We only really have 32-bit BFE instructions (and 16-bit on VI).
483   //
484   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
485   // effort to match them now. We want this to be false for i64 cases when the
486   // extraction isn't restricted to the upper or lower half. Ideally we would
487   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
488   // span the midpoint are probably relatively rare, so don't worry about them
489   // for now.
490   if (Subtarget->hasBFE())
491     setHasExtractBitsInsn(true);
492 
493   // Clamp modifier on add/sub
494   if (Subtarget->hasIntClamp()) {
495     setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
496     setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
497   }
498 
499   if (Subtarget->hasAddNoCarry()) {
500     setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
501     setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
502     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
503     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
504   }
505 
506   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
507   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
508   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
509   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
510 
511 
512   // These are really only legal for ieee_mode functions. We should be avoiding
513   // them for functions that don't have ieee_mode enabled, so just say they are
514   // legal.
515   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
516   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
517   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
518   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
519 
520 
521   if (Subtarget->haveRoundOpsF64()) {
522     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
523     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
524     setOperationAction(ISD::FRINT, MVT::f64, Legal);
525   } else {
526     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
527     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
528     setOperationAction(ISD::FRINT, MVT::f64, Custom);
529     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
530   }
531 
532   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
533 
534   setOperationAction(ISD::FSIN, MVT::f32, Custom);
535   setOperationAction(ISD::FCOS, MVT::f32, Custom);
536   setOperationAction(ISD::FDIV, MVT::f32, Custom);
537   setOperationAction(ISD::FDIV, MVT::f64, Custom);
538 
539   if (Subtarget->has16BitInsts()) {
540     setOperationAction(ISD::Constant, MVT::i16, Legal);
541 
542     setOperationAction(ISD::SMIN, MVT::i16, Legal);
543     setOperationAction(ISD::SMAX, MVT::i16, Legal);
544 
545     setOperationAction(ISD::UMIN, MVT::i16, Legal);
546     setOperationAction(ISD::UMAX, MVT::i16, Legal);
547 
548     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
549     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
550 
551     setOperationAction(ISD::ROTR, MVT::i16, Expand);
552     setOperationAction(ISD::ROTL, MVT::i16, Expand);
553 
554     setOperationAction(ISD::SDIV, MVT::i16, Promote);
555     setOperationAction(ISD::UDIV, MVT::i16, Promote);
556     setOperationAction(ISD::SREM, MVT::i16, Promote);
557     setOperationAction(ISD::UREM, MVT::i16, Promote);
558     setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
559     setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
560 
561     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
562 
563     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
564     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
565     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
566     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
567     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
568 
569     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
570 
571     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
572 
573     setOperationAction(ISD::LOAD, MVT::i16, Custom);
574 
575     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
576 
577     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
578     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
579     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
580     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
581 
582     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Custom);
583     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Custom);
584 
585     // F16 - Constant Actions.
586     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
587 
588     // F16 - Load/Store Actions.
589     setOperationAction(ISD::LOAD, MVT::f16, Promote);
590     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
591     setOperationAction(ISD::STORE, MVT::f16, Promote);
592     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
593 
594     // F16 - VOP1 Actions.
595     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
596     setOperationAction(ISD::FCOS, MVT::f16, Custom);
597     setOperationAction(ISD::FSIN, MVT::f16, Custom);
598 
599     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
600     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
601 
602     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
603     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
604     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
605     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
606     setOperationAction(ISD::FROUND, MVT::f16, Custom);
607     setOperationAction(ISD::FPTRUNC_ROUND, MVT::f16, Custom);
608 
609     // F16 - VOP2 Actions.
610     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
611     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
612 
613     setOperationAction(ISD::FDIV, MVT::f16, Custom);
614 
615     // F16 - VOP3 Actions.
616     setOperationAction(ISD::FMA, MVT::f16, Legal);
617     if (STI.hasMadF16())
618       setOperationAction(ISD::FMAD, MVT::f16, Legal);
619 
620     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16,
621                    MVT::v8f16}) {
622       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
623         switch (Op) {
624         case ISD::LOAD:
625         case ISD::STORE:
626         case ISD::BUILD_VECTOR:
627         case ISD::BITCAST:
628         case ISD::EXTRACT_VECTOR_ELT:
629         case ISD::INSERT_VECTOR_ELT:
630         case ISD::INSERT_SUBVECTOR:
631         case ISD::EXTRACT_SUBVECTOR:
632         case ISD::SCALAR_TO_VECTOR:
633           break;
634         case ISD::CONCAT_VECTORS:
635           setOperationAction(Op, VT, Custom);
636           break;
637         default:
638           setOperationAction(Op, VT, Expand);
639           break;
640         }
641       }
642     }
643 
644     // v_perm_b32 can handle either of these.
645     setOperationAction(ISD::BSWAP, MVT::i16, Legal);
646     setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
647     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
648 
649     // XXX - Do these do anything? Vector constants turn into build_vector.
650     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
651     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
652 
653     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
654     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
655 
656     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
657     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
658     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
659     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
660 
661     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
662     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
663     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
664     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
665 
666     setOperationAction(ISD::AND, MVT::v2i16, Promote);
667     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
668     setOperationAction(ISD::OR, MVT::v2i16, Promote);
669     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
670     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
671     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
672 
673     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
674     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
675     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
676     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
677 
678     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
679     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
680     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
681     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
682 
683     setOperationAction(ISD::LOAD, MVT::v8i16, Promote);
684     AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32);
685     setOperationAction(ISD::LOAD, MVT::v8f16, Promote);
686     AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32);
687 
688     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
689     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
690     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
691     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
692 
693     setOperationAction(ISD::STORE, MVT::v8i16, Promote);
694     AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32);
695     setOperationAction(ISD::STORE, MVT::v8f16, Promote);
696     AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32);
697 
698     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
699     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
700     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
701     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
702 
703     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
704     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
705     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
706 
707     setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Expand);
708     setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Expand);
709     setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Expand);
710 
711     if (!Subtarget->hasVOP3PInsts()) {
712       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
713       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
714     }
715 
716     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
717     // This isn't really legal, but this avoids the legalizer unrolling it (and
718     // allows matching fneg (fabs x) patterns)
719     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
720 
721     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
722     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
723     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
724     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
725 
726     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
727     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
728     setOperationAction(ISD::FMINNUM_IEEE, MVT::v8f16, Custom);
729     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v8f16, Custom);
730 
731     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
732     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
733     setOperationAction(ISD::FMINNUM, MVT::v8f16, Expand);
734     setOperationAction(ISD::FMAXNUM, MVT::v8f16, Expand);
735 
736     for (MVT Vec16 : { MVT::v8i16, MVT::v8f16 }) {
737       setOperationAction(ISD::BUILD_VECTOR, Vec16, Custom);
738       setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec16, Custom);
739       setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand);
740       setOperationAction(ISD::SCALAR_TO_VECTOR, Vec16, Expand);
741     }
742   }
743 
744   if (Subtarget->hasVOP3PInsts()) {
745     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
746     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
747     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
748     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
749     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
750     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
751     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
752     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
753     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
754     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
755 
756     setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
757     setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
758     setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
759     setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
760 
761     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
762     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
763     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
764 
765     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
766     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
767 
768     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
769 
770     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
771     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
772 
773     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
774     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
775     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f16, Custom);
776     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom);
777 
778     for (MVT VT : { MVT::v4i16, MVT::v8i16 }) {
779       // Split vector operations.
780       setOperationAction(ISD::SHL, VT, Custom);
781       setOperationAction(ISD::SRA, VT, Custom);
782       setOperationAction(ISD::SRL, VT, Custom);
783       setOperationAction(ISD::ADD, VT, Custom);
784       setOperationAction(ISD::SUB, VT, Custom);
785       setOperationAction(ISD::MUL, VT, Custom);
786 
787       setOperationAction(ISD::SMIN, VT, Custom);
788       setOperationAction(ISD::SMAX, VT, Custom);
789       setOperationAction(ISD::UMIN, VT, Custom);
790       setOperationAction(ISD::UMAX, VT, Custom);
791 
792       setOperationAction(ISD::UADDSAT, VT, Custom);
793       setOperationAction(ISD::SADDSAT, VT, Custom);
794       setOperationAction(ISD::USUBSAT, VT, Custom);
795       setOperationAction(ISD::SSUBSAT, VT, Custom);
796     }
797 
798     for (MVT VT : { MVT::v4f16, MVT::v8f16 }) {
799       // Split vector operations.
800       setOperationAction(ISD::FADD, VT, Custom);
801       setOperationAction(ISD::FMUL, VT, Custom);
802       setOperationAction(ISD::FMA, VT, Custom);
803       setOperationAction(ISD::FCANONICALIZE, VT, Custom);
804     }
805 
806     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
807     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
808 
809     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
810     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
811 
812     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
813     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
814     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
815 
816     if (Subtarget->hasPackedFP32Ops()) {
817       setOperationAction(ISD::FADD, MVT::v2f32, Legal);
818       setOperationAction(ISD::FMUL, MVT::v2f32, Legal);
819       setOperationAction(ISD::FMA,  MVT::v2f32, Legal);
820       setOperationAction(ISD::FNEG, MVT::v2f32, Legal);
821 
822       for (MVT VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32 }) {
823         setOperationAction(ISD::FADD, VT, Custom);
824         setOperationAction(ISD::FMUL, VT, Custom);
825         setOperationAction(ISD::FMA, VT, Custom);
826       }
827     }
828   }
829 
830   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
831   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
832 
833   if (Subtarget->has16BitInsts()) {
834     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
835     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
836     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
837     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
838   } else {
839     // Legalization hack.
840     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
841     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
842 
843     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
844     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
845   }
846 
847   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8,
848                   MVT::v8i16, MVT::v8f16 }) {
849     setOperationAction(ISD::SELECT, VT, Custom);
850   }
851 
852   setOperationAction(ISD::SMULO, MVT::i64, Custom);
853   setOperationAction(ISD::UMULO, MVT::i64, Custom);
854 
855   if (Subtarget->hasMad64_32()) {
856     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
857     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
858   }
859 
860   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
861   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
862   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
863   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
864   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
865   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
866   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
867 
868   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
869   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
870   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
871   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
872   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
873   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
874   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
875   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
876   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
877   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
878   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
879 
880   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
881   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
882   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
883   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
884   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
885   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
886   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
887   setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
888   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
889   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
890 
891   setTargetDAGCombine(ISD::ADD);
892   setTargetDAGCombine(ISD::ADDCARRY);
893   setTargetDAGCombine(ISD::SUB);
894   setTargetDAGCombine(ISD::SUBCARRY);
895   setTargetDAGCombine(ISD::FADD);
896   setTargetDAGCombine(ISD::FSUB);
897   setTargetDAGCombine(ISD::FMINNUM);
898   setTargetDAGCombine(ISD::FMAXNUM);
899   setTargetDAGCombine(ISD::FMINNUM_IEEE);
900   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
901   setTargetDAGCombine(ISD::FMA);
902   setTargetDAGCombine(ISD::SMIN);
903   setTargetDAGCombine(ISD::SMAX);
904   setTargetDAGCombine(ISD::UMIN);
905   setTargetDAGCombine(ISD::UMAX);
906   setTargetDAGCombine(ISD::SETCC);
907   setTargetDAGCombine(ISD::AND);
908   setTargetDAGCombine(ISD::OR);
909   setTargetDAGCombine(ISD::XOR);
910   setTargetDAGCombine(ISD::SINT_TO_FP);
911   setTargetDAGCombine(ISD::UINT_TO_FP);
912   setTargetDAGCombine(ISD::FCANONICALIZE);
913   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
914   setTargetDAGCombine(ISD::ZERO_EXTEND);
915   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
916   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
917   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
918 
919   // All memory operations. Some folding on the pointer operand is done to help
920   // matching the constant offsets in the addressing modes.
921   setTargetDAGCombine(ISD::LOAD);
922   setTargetDAGCombine(ISD::STORE);
923   setTargetDAGCombine(ISD::ATOMIC_LOAD);
924   setTargetDAGCombine(ISD::ATOMIC_STORE);
925   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
926   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
927   setTargetDAGCombine(ISD::ATOMIC_SWAP);
928   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
929   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
930   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
931   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
932   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
933   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
934   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
935   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
936   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
937   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
938   setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
939   setTargetDAGCombine(ISD::INTRINSIC_VOID);
940   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
941 
942   // FIXME: In other contexts we pretend this is a per-function property.
943   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
944 
945   setSchedulingPreference(Sched::RegPressure);
946 }
947 
948 const GCNSubtarget *SITargetLowering::getSubtarget() const {
949   return Subtarget;
950 }
951 
952 //===----------------------------------------------------------------------===//
953 // TargetLowering queries
954 //===----------------------------------------------------------------------===//
955 
956 // v_mad_mix* support a conversion from f16 to f32.
957 //
958 // There is only one special case when denormals are enabled we don't currently,
959 // where this is OK to use.
960 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
961                                        EVT DestVT, EVT SrcVT) const {
962   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
963           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
964     DestVT.getScalarType() == MVT::f32 &&
965     SrcVT.getScalarType() == MVT::f16 &&
966     // TODO: This probably only requires no input flushing?
967     !hasFP32Denormals(DAG.getMachineFunction());
968 }
969 
970 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
971                                        LLT DestTy, LLT SrcTy) const {
972   return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
973           (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
974          DestTy.getScalarSizeInBits() == 32 &&
975          SrcTy.getScalarSizeInBits() == 16 &&
976          // TODO: This probably only requires no input flushing?
977          !hasFP32Denormals(*MI.getMF());
978 }
979 
980 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
981   // SI has some legal vector types, but no legal vector operations. Say no
982   // shuffles are legal in order to prefer scalarizing some vector operations.
983   return false;
984 }
985 
986 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
987                                                     CallingConv::ID CC,
988                                                     EVT VT) const {
989   if (CC == CallingConv::AMDGPU_KERNEL)
990     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
991 
992   if (VT.isVector()) {
993     EVT ScalarVT = VT.getScalarType();
994     unsigned Size = ScalarVT.getSizeInBits();
995     if (Size == 16) {
996       if (Subtarget->has16BitInsts())
997         return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
998       return VT.isInteger() ? MVT::i32 : MVT::f32;
999     }
1000 
1001     if (Size < 16)
1002       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
1003     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
1004   }
1005 
1006   if (VT.getSizeInBits() > 32)
1007     return MVT::i32;
1008 
1009   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1010 }
1011 
1012 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1013                                                          CallingConv::ID CC,
1014                                                          EVT VT) const {
1015   if (CC == CallingConv::AMDGPU_KERNEL)
1016     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1017 
1018   if (VT.isVector()) {
1019     unsigned NumElts = VT.getVectorNumElements();
1020     EVT ScalarVT = VT.getScalarType();
1021     unsigned Size = ScalarVT.getSizeInBits();
1022 
1023     // FIXME: Should probably promote 8-bit vectors to i16.
1024     if (Size == 16 && Subtarget->has16BitInsts())
1025       return (NumElts + 1) / 2;
1026 
1027     if (Size <= 32)
1028       return NumElts;
1029 
1030     if (Size > 32)
1031       return NumElts * ((Size + 31) / 32);
1032   } else if (VT.getSizeInBits() > 32)
1033     return (VT.getSizeInBits() + 31) / 32;
1034 
1035   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1036 }
1037 
1038 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
1039   LLVMContext &Context, CallingConv::ID CC,
1040   EVT VT, EVT &IntermediateVT,
1041   unsigned &NumIntermediates, MVT &RegisterVT) const {
1042   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
1043     unsigned NumElts = VT.getVectorNumElements();
1044     EVT ScalarVT = VT.getScalarType();
1045     unsigned Size = ScalarVT.getSizeInBits();
1046     // FIXME: We should fix the ABI to be the same on targets without 16-bit
1047     // support, but unless we can properly handle 3-vectors, it will be still be
1048     // inconsistent.
1049     if (Size == 16 && Subtarget->has16BitInsts()) {
1050       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
1051       IntermediateVT = RegisterVT;
1052       NumIntermediates = (NumElts + 1) / 2;
1053       return NumIntermediates;
1054     }
1055 
1056     if (Size == 32) {
1057       RegisterVT = ScalarVT.getSimpleVT();
1058       IntermediateVT = RegisterVT;
1059       NumIntermediates = NumElts;
1060       return NumIntermediates;
1061     }
1062 
1063     if (Size < 16 && Subtarget->has16BitInsts()) {
1064       // FIXME: Should probably form v2i16 pieces
1065       RegisterVT = MVT::i16;
1066       IntermediateVT = ScalarVT;
1067       NumIntermediates = NumElts;
1068       return NumIntermediates;
1069     }
1070 
1071 
1072     if (Size != 16 && Size <= 32) {
1073       RegisterVT = MVT::i32;
1074       IntermediateVT = ScalarVT;
1075       NumIntermediates = NumElts;
1076       return NumIntermediates;
1077     }
1078 
1079     if (Size > 32) {
1080       RegisterVT = MVT::i32;
1081       IntermediateVT = RegisterVT;
1082       NumIntermediates = NumElts * ((Size + 31) / 32);
1083       return NumIntermediates;
1084     }
1085   }
1086 
1087   return TargetLowering::getVectorTypeBreakdownForCallingConv(
1088     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1089 }
1090 
1091 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
1092   assert(DMaskLanes != 0);
1093 
1094   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1095     unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
1096     return EVT::getVectorVT(Ty->getContext(),
1097                             EVT::getEVT(VT->getElementType()),
1098                             NumElts);
1099   }
1100 
1101   return EVT::getEVT(Ty);
1102 }
1103 
1104 // Peek through TFE struct returns to only use the data size.
1105 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
1106   auto *ST = dyn_cast<StructType>(Ty);
1107   if (!ST)
1108     return memVTFromImageData(Ty, DMaskLanes);
1109 
1110   // Some intrinsics return an aggregate type - special case to work out the
1111   // correct memVT.
1112   //
1113   // Only limited forms of aggregate type currently expected.
1114   if (ST->getNumContainedTypes() != 2 ||
1115       !ST->getContainedType(1)->isIntegerTy(32))
1116     return EVT();
1117   return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
1118 }
1119 
1120 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1121                                           const CallInst &CI,
1122                                           MachineFunction &MF,
1123                                           unsigned IntrID) const {
1124   Info.flags = MachineMemOperand::MONone;
1125   if (CI.hasMetadata(LLVMContext::MD_invariant_load))
1126     Info.flags |= MachineMemOperand::MOInvariant;
1127 
1128   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1129           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1130     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1131                                                   (Intrinsic::ID)IntrID);
1132     if (Attr.hasFnAttr(Attribute::ReadNone))
1133       return false;
1134 
1135     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1136 
1137     if (RsrcIntr->IsImage) {
1138       Info.ptrVal =
1139           MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1140       Info.align.reset();
1141     } else {
1142       Info.ptrVal =
1143           MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1144     }
1145 
1146     Info.flags |= MachineMemOperand::MODereferenceable;
1147     if (Attr.hasFnAttr(Attribute::ReadOnly)) {
1148       unsigned DMaskLanes = 4;
1149 
1150       if (RsrcIntr->IsImage) {
1151         const AMDGPU::ImageDimIntrinsicInfo *Intr
1152           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1153         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1154           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1155 
1156         if (!BaseOpcode->Gather4) {
1157           // If this isn't a gather, we may have excess loaded elements in the
1158           // IR type. Check the dmask for the real number of elements loaded.
1159           unsigned DMask
1160             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1161           DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1162         }
1163 
1164         Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1165       } else
1166         Info.memVT = EVT::getEVT(CI.getType());
1167 
1168       // FIXME: What does alignment mean for an image?
1169       Info.opc = ISD::INTRINSIC_W_CHAIN;
1170       Info.flags |= MachineMemOperand::MOLoad;
1171     } else if (Attr.hasFnAttr(Attribute::WriteOnly)) {
1172       Info.opc = ISD::INTRINSIC_VOID;
1173 
1174       Type *DataTy = CI.getArgOperand(0)->getType();
1175       if (RsrcIntr->IsImage) {
1176         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1177         unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1178         Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1179       } else
1180         Info.memVT = EVT::getEVT(DataTy);
1181 
1182       Info.flags |= MachineMemOperand::MOStore;
1183     } else {
1184       // Atomic
1185       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1186                                             ISD::INTRINSIC_W_CHAIN;
1187       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1188       Info.flags |= MachineMemOperand::MOLoad |
1189                     MachineMemOperand::MOStore |
1190                     MachineMemOperand::MODereferenceable;
1191 
1192       // XXX - Should this be volatile without known ordering?
1193       Info.flags |= MachineMemOperand::MOVolatile;
1194     }
1195     return true;
1196   }
1197 
1198   switch (IntrID) {
1199   case Intrinsic::amdgcn_atomic_inc:
1200   case Intrinsic::amdgcn_atomic_dec:
1201   case Intrinsic::amdgcn_ds_ordered_add:
1202   case Intrinsic::amdgcn_ds_ordered_swap:
1203   case Intrinsic::amdgcn_ds_fadd:
1204   case Intrinsic::amdgcn_ds_fmin:
1205   case Intrinsic::amdgcn_ds_fmax: {
1206     Info.opc = ISD::INTRINSIC_W_CHAIN;
1207     Info.memVT = MVT::getVT(CI.getType());
1208     Info.ptrVal = CI.getOperand(0);
1209     Info.align.reset();
1210     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1211 
1212     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1213     if (!Vol->isZero())
1214       Info.flags |= MachineMemOperand::MOVolatile;
1215 
1216     return true;
1217   }
1218   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1219     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1220 
1221     Info.opc = ISD::INTRINSIC_W_CHAIN;
1222     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1223     Info.ptrVal =
1224         MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1225     Info.align.reset();
1226     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1227 
1228     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1229     if (!Vol || !Vol->isZero())
1230       Info.flags |= MachineMemOperand::MOVolatile;
1231 
1232     return true;
1233   }
1234   case Intrinsic::amdgcn_ds_append:
1235   case Intrinsic::amdgcn_ds_consume: {
1236     Info.opc = ISD::INTRINSIC_W_CHAIN;
1237     Info.memVT = MVT::getVT(CI.getType());
1238     Info.ptrVal = CI.getOperand(0);
1239     Info.align.reset();
1240     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1241 
1242     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1243     if (!Vol->isZero())
1244       Info.flags |= MachineMemOperand::MOVolatile;
1245 
1246     return true;
1247   }
1248   case Intrinsic::amdgcn_global_atomic_csub: {
1249     Info.opc = ISD::INTRINSIC_W_CHAIN;
1250     Info.memVT = MVT::getVT(CI.getType());
1251     Info.ptrVal = CI.getOperand(0);
1252     Info.align.reset();
1253     Info.flags |= MachineMemOperand::MOLoad |
1254                   MachineMemOperand::MOStore |
1255                   MachineMemOperand::MOVolatile;
1256     return true;
1257   }
1258   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1259     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1260     Info.opc = ISD::INTRINSIC_W_CHAIN;
1261     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1262     Info.ptrVal =
1263         MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1264     Info.align.reset();
1265     Info.flags |= MachineMemOperand::MOLoad |
1266                   MachineMemOperand::MODereferenceable;
1267     return true;
1268   }
1269   case Intrinsic::amdgcn_global_atomic_fadd:
1270   case Intrinsic::amdgcn_global_atomic_fmin:
1271   case Intrinsic::amdgcn_global_atomic_fmax:
1272   case Intrinsic::amdgcn_flat_atomic_fadd:
1273   case Intrinsic::amdgcn_flat_atomic_fmin:
1274   case Intrinsic::amdgcn_flat_atomic_fmax:
1275   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1276   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: {
1277     Info.opc = ISD::INTRINSIC_W_CHAIN;
1278     Info.memVT = MVT::getVT(CI.getType());
1279     Info.ptrVal = CI.getOperand(0);
1280     Info.align.reset();
1281     Info.flags |= MachineMemOperand::MOLoad |
1282                   MachineMemOperand::MOStore |
1283                   MachineMemOperand::MODereferenceable |
1284                   MachineMemOperand::MOVolatile;
1285     return true;
1286   }
1287   case Intrinsic::amdgcn_ds_gws_init:
1288   case Intrinsic::amdgcn_ds_gws_barrier:
1289   case Intrinsic::amdgcn_ds_gws_sema_v:
1290   case Intrinsic::amdgcn_ds_gws_sema_br:
1291   case Intrinsic::amdgcn_ds_gws_sema_p:
1292   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1293     Info.opc = ISD::INTRINSIC_VOID;
1294 
1295     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1296     Info.ptrVal =
1297         MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1298 
1299     // This is an abstract access, but we need to specify a type and size.
1300     Info.memVT = MVT::i32;
1301     Info.size = 4;
1302     Info.align = Align(4);
1303 
1304     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1305       Info.flags |= MachineMemOperand::MOLoad;
1306     else
1307       Info.flags |= MachineMemOperand::MOStore;
1308     return true;
1309   }
1310   default:
1311     return false;
1312   }
1313 }
1314 
1315 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1316                                             SmallVectorImpl<Value*> &Ops,
1317                                             Type *&AccessTy) const {
1318   switch (II->getIntrinsicID()) {
1319   case Intrinsic::amdgcn_atomic_inc:
1320   case Intrinsic::amdgcn_atomic_dec:
1321   case Intrinsic::amdgcn_ds_ordered_add:
1322   case Intrinsic::amdgcn_ds_ordered_swap:
1323   case Intrinsic::amdgcn_ds_append:
1324   case Intrinsic::amdgcn_ds_consume:
1325   case Intrinsic::amdgcn_ds_fadd:
1326   case Intrinsic::amdgcn_ds_fmin:
1327   case Intrinsic::amdgcn_ds_fmax:
1328   case Intrinsic::amdgcn_global_atomic_fadd:
1329   case Intrinsic::amdgcn_flat_atomic_fadd:
1330   case Intrinsic::amdgcn_flat_atomic_fmin:
1331   case Intrinsic::amdgcn_flat_atomic_fmax:
1332   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1333   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16:
1334   case Intrinsic::amdgcn_global_atomic_csub: {
1335     Value *Ptr = II->getArgOperand(0);
1336     AccessTy = II->getType();
1337     Ops.push_back(Ptr);
1338     return true;
1339   }
1340   default:
1341     return false;
1342   }
1343 }
1344 
1345 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1346   if (!Subtarget->hasFlatInstOffsets()) {
1347     // Flat instructions do not have offsets, and only have the register
1348     // address.
1349     return AM.BaseOffs == 0 && AM.Scale == 0;
1350   }
1351 
1352   return AM.Scale == 0 &&
1353          (AM.BaseOffs == 0 ||
1354           Subtarget->getInstrInfo()->isLegalFLATOffset(
1355               AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1356 }
1357 
1358 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1359   if (Subtarget->hasFlatGlobalInsts())
1360     return AM.Scale == 0 &&
1361            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1362                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1363                                     SIInstrFlags::FlatGlobal));
1364 
1365   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1366       // Assume the we will use FLAT for all global memory accesses
1367       // on VI.
1368       // FIXME: This assumption is currently wrong.  On VI we still use
1369       // MUBUF instructions for the r + i addressing mode.  As currently
1370       // implemented, the MUBUF instructions only work on buffer < 4GB.
1371       // It may be possible to support > 4GB buffers with MUBUF instructions,
1372       // by setting the stride value in the resource descriptor which would
1373       // increase the size limit to (stride * 4GB).  However, this is risky,
1374       // because it has never been validated.
1375     return isLegalFlatAddressingMode(AM);
1376   }
1377 
1378   return isLegalMUBUFAddressingMode(AM);
1379 }
1380 
1381 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1382   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1383   // additionally can do r + r + i with addr64. 32-bit has more addressing
1384   // mode options. Depending on the resource constant, it can also do
1385   // (i64 r0) + (i32 r1) * (i14 i).
1386   //
1387   // Private arrays end up using a scratch buffer most of the time, so also
1388   // assume those use MUBUF instructions. Scratch loads / stores are currently
1389   // implemented as mubuf instructions with offen bit set, so slightly
1390   // different than the normal addr64.
1391   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1392     return false;
1393 
1394   // FIXME: Since we can split immediate into soffset and immediate offset,
1395   // would it make sense to allow any immediate?
1396 
1397   switch (AM.Scale) {
1398   case 0: // r + i or just i, depending on HasBaseReg.
1399     return true;
1400   case 1:
1401     return true; // We have r + r or r + i.
1402   case 2:
1403     if (AM.HasBaseReg) {
1404       // Reject 2 * r + r.
1405       return false;
1406     }
1407 
1408     // Allow 2 * r as r + r
1409     // Or  2 * r + i is allowed as r + r + i.
1410     return true;
1411   default: // Don't allow n * r
1412     return false;
1413   }
1414 }
1415 
1416 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1417                                              const AddrMode &AM, Type *Ty,
1418                                              unsigned AS, Instruction *I) const {
1419   // No global is ever allowed as a base.
1420   if (AM.BaseGV)
1421     return false;
1422 
1423   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1424     return isLegalGlobalAddressingMode(AM);
1425 
1426   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1427       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1428       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1429     // If the offset isn't a multiple of 4, it probably isn't going to be
1430     // correctly aligned.
1431     // FIXME: Can we get the real alignment here?
1432     if (AM.BaseOffs % 4 != 0)
1433       return isLegalMUBUFAddressingMode(AM);
1434 
1435     // There are no SMRD extloads, so if we have to do a small type access we
1436     // will use a MUBUF load.
1437     // FIXME?: We also need to do this if unaligned, but we don't know the
1438     // alignment here.
1439     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1440       return isLegalGlobalAddressingMode(AM);
1441 
1442     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1443       // SMRD instructions have an 8-bit, dword offset on SI.
1444       if (!isUInt<8>(AM.BaseOffs / 4))
1445         return false;
1446     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1447       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1448       // in 8-bits, it can use a smaller encoding.
1449       if (!isUInt<32>(AM.BaseOffs / 4))
1450         return false;
1451     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1452       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1453       if (!isUInt<20>(AM.BaseOffs))
1454         return false;
1455     } else
1456       llvm_unreachable("unhandled generation");
1457 
1458     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1459       return true;
1460 
1461     if (AM.Scale == 1 && AM.HasBaseReg)
1462       return true;
1463 
1464     return false;
1465 
1466   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1467     return isLegalMUBUFAddressingMode(AM);
1468   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1469              AS == AMDGPUAS::REGION_ADDRESS) {
1470     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1471     // field.
1472     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1473     // an 8-bit dword offset but we don't know the alignment here.
1474     if (!isUInt<16>(AM.BaseOffs))
1475       return false;
1476 
1477     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1478       return true;
1479 
1480     if (AM.Scale == 1 && AM.HasBaseReg)
1481       return true;
1482 
1483     return false;
1484   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1485              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1486     // For an unknown address space, this usually means that this is for some
1487     // reason being used for pure arithmetic, and not based on some addressing
1488     // computation. We don't have instructions that compute pointers with any
1489     // addressing modes, so treat them as having no offset like flat
1490     // instructions.
1491     return isLegalFlatAddressingMode(AM);
1492   }
1493 
1494   // Assume a user alias of global for unknown address spaces.
1495   return isLegalGlobalAddressingMode(AM);
1496 }
1497 
1498 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1499                                         const MachineFunction &MF) const {
1500   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1501     return (MemVT.getSizeInBits() <= 4 * 32);
1502   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1503     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1504     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1505   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1506     return (MemVT.getSizeInBits() <= 2 * 32);
1507   }
1508   return true;
1509 }
1510 
1511 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1512     unsigned Size, unsigned AddrSpace, Align Alignment,
1513     MachineMemOperand::Flags Flags, bool *IsFast) const {
1514   if (IsFast)
1515     *IsFast = false;
1516 
1517   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1518       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1519     // Check if alignment requirements for ds_read/write instructions are
1520     // disabled.
1521     if (Subtarget->hasUnalignedDSAccessEnabled() &&
1522         !Subtarget->hasLDSMisalignedBug()) {
1523       if (IsFast)
1524         *IsFast = Alignment != Align(2);
1525       return true;
1526     }
1527 
1528     // Either, the alignment requirements are "enabled", or there is an
1529     // unaligned LDS access related hardware bug though alignment requirements
1530     // are "disabled". In either case, we need to check for proper alignment
1531     // requirements.
1532     //
1533     if (Size == 64) {
1534       // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1535       // can do a 4 byte aligned, 8 byte access in a single operation using
1536       // ds_read2/write2_b32 with adjacent offsets.
1537       bool AlignedBy4 = Alignment >= Align(4);
1538       if (IsFast)
1539         *IsFast = AlignedBy4;
1540 
1541       return AlignedBy4;
1542     }
1543     if (Size == 96) {
1544       // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1545       // gfx8 and older.
1546       bool AlignedBy16 = Alignment >= Align(16);
1547       if (IsFast)
1548         *IsFast = AlignedBy16;
1549 
1550       return AlignedBy16;
1551     }
1552     if (Size == 128) {
1553       // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1554       // gfx8 and older, but  we can do a 8 byte aligned, 16 byte access in a
1555       // single operation using ds_read2/write2_b64.
1556       bool AlignedBy8 = Alignment >= Align(8);
1557       if (IsFast)
1558         *IsFast = AlignedBy8;
1559 
1560       return AlignedBy8;
1561     }
1562   }
1563 
1564   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1565     bool AlignedBy4 = Alignment >= Align(4);
1566     if (IsFast)
1567       *IsFast = AlignedBy4;
1568 
1569     return AlignedBy4 ||
1570            Subtarget->enableFlatScratch() ||
1571            Subtarget->hasUnalignedScratchAccess();
1572   }
1573 
1574   // FIXME: We have to be conservative here and assume that flat operations
1575   // will access scratch.  If we had access to the IR function, then we
1576   // could determine if any private memory was used in the function.
1577   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1578       !Subtarget->hasUnalignedScratchAccess()) {
1579     bool AlignedBy4 = Alignment >= Align(4);
1580     if (IsFast)
1581       *IsFast = AlignedBy4;
1582 
1583     return AlignedBy4;
1584   }
1585 
1586   if (Subtarget->hasUnalignedBufferAccessEnabled() &&
1587       !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1588         AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1589     // If we have a uniform constant load, it still requires using a slow
1590     // buffer instruction if unaligned.
1591     if (IsFast) {
1592       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1593       // 2-byte alignment is worse than 1 unless doing a 2-byte access.
1594       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1595                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1596         Alignment >= Align(4) : Alignment != Align(2);
1597     }
1598 
1599     return true;
1600   }
1601 
1602   // Smaller than dword value must be aligned.
1603   if (Size < 32)
1604     return false;
1605 
1606   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1607   // byte-address are ignored, thus forcing Dword alignment.
1608   // This applies to private, global, and constant memory.
1609   if (IsFast)
1610     *IsFast = true;
1611 
1612   return Size >= 32 && Alignment >= Align(4);
1613 }
1614 
1615 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1616     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1617     bool *IsFast) const {
1618   if (IsFast)
1619     *IsFast = false;
1620 
1621   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1622   // which isn't a simple VT.
1623   // Until MVT is extended to handle this, simply check for the size and
1624   // rely on the condition below: allow accesses if the size is a multiple of 4.
1625   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1626                            VT.getStoreSize() > 16)) {
1627     return false;
1628   }
1629 
1630   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1631                                             Alignment, Flags, IsFast);
1632 }
1633 
1634 EVT SITargetLowering::getOptimalMemOpType(
1635     const MemOp &Op, const AttributeList &FuncAttributes) const {
1636   // FIXME: Should account for address space here.
1637 
1638   // The default fallback uses the private pointer size as a guess for a type to
1639   // use. Make sure we switch these to 64-bit accesses.
1640 
1641   if (Op.size() >= 16 &&
1642       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1643     return MVT::v4i32;
1644 
1645   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1646     return MVT::v2i32;
1647 
1648   // Use the default.
1649   return MVT::Other;
1650 }
1651 
1652 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1653   const MemSDNode *MemNode = cast<MemSDNode>(N);
1654   return MemNode->getMemOperand()->getFlags() & MONoClobber;
1655 }
1656 
1657 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1658   return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1659          AS == AMDGPUAS::PRIVATE_ADDRESS;
1660 }
1661 
1662 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1663                                            unsigned DestAS) const {
1664   // Flat -> private/local is a simple truncate.
1665   // Flat -> global is no-op
1666   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1667     return true;
1668 
1669   const GCNTargetMachine &TM =
1670       static_cast<const GCNTargetMachine &>(getTargetMachine());
1671   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1672 }
1673 
1674 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1675   const MemSDNode *MemNode = cast<MemSDNode>(N);
1676 
1677   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1678 }
1679 
1680 TargetLoweringBase::LegalizeTypeAction
1681 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1682   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1683       VT.getScalarType().bitsLE(MVT::i16))
1684     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1685   return TargetLoweringBase::getPreferredVectorAction(VT);
1686 }
1687 
1688 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1689                                                          Type *Ty) const {
1690   // FIXME: Could be smarter if called for vector constants.
1691   return true;
1692 }
1693 
1694 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1695   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1696     switch (Op) {
1697     case ISD::LOAD:
1698     case ISD::STORE:
1699 
1700     // These operations are done with 32-bit instructions anyway.
1701     case ISD::AND:
1702     case ISD::OR:
1703     case ISD::XOR:
1704     case ISD::SELECT:
1705       // TODO: Extensions?
1706       return true;
1707     default:
1708       return false;
1709     }
1710   }
1711 
1712   // SimplifySetCC uses this function to determine whether or not it should
1713   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1714   if (VT == MVT::i1 && Op == ISD::SETCC)
1715     return false;
1716 
1717   return TargetLowering::isTypeDesirableForOp(Op, VT);
1718 }
1719 
1720 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1721                                                    const SDLoc &SL,
1722                                                    SDValue Chain,
1723                                                    uint64_t Offset) const {
1724   const DataLayout &DL = DAG.getDataLayout();
1725   MachineFunction &MF = DAG.getMachineFunction();
1726   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1727 
1728   const ArgDescriptor *InputPtrReg;
1729   const TargetRegisterClass *RC;
1730   LLT ArgTy;
1731   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1732 
1733   std::tie(InputPtrReg, RC, ArgTy) =
1734       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1735 
1736   // We may not have the kernarg segment argument if we have no kernel
1737   // arguments.
1738   if (!InputPtrReg)
1739     return DAG.getConstant(0, SL, PtrVT);
1740 
1741   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1742   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1743     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1744 
1745   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1746 }
1747 
1748 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1749                                             const SDLoc &SL) const {
1750   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1751                                                FIRST_IMPLICIT);
1752   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1753 }
1754 
1755 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1756                                          const SDLoc &SL, SDValue Val,
1757                                          bool Signed,
1758                                          const ISD::InputArg *Arg) const {
1759   // First, if it is a widened vector, narrow it.
1760   if (VT.isVector() &&
1761       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1762     EVT NarrowedVT =
1763         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1764                          VT.getVectorNumElements());
1765     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1766                       DAG.getConstant(0, SL, MVT::i32));
1767   }
1768 
1769   // Then convert the vector elements or scalar value.
1770   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1771       VT.bitsLT(MemVT)) {
1772     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1773     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1774   }
1775 
1776   if (MemVT.isFloatingPoint())
1777     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1778   else if (Signed)
1779     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1780   else
1781     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1782 
1783   return Val;
1784 }
1785 
1786 SDValue SITargetLowering::lowerKernargMemParameter(
1787     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1788     uint64_t Offset, Align Alignment, bool Signed,
1789     const ISD::InputArg *Arg) const {
1790   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1791 
1792   // Try to avoid using an extload by loading earlier than the argument address,
1793   // and extracting the relevant bits. The load should hopefully be merged with
1794   // the previous argument.
1795   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1796     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1797     int64_t AlignDownOffset = alignDown(Offset, 4);
1798     int64_t OffsetDiff = Offset - AlignDownOffset;
1799 
1800     EVT IntVT = MemVT.changeTypeToInteger();
1801 
1802     // TODO: If we passed in the base kernel offset we could have a better
1803     // alignment than 4, but we don't really need it.
1804     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1805     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1806                                MachineMemOperand::MODereferenceable |
1807                                    MachineMemOperand::MOInvariant);
1808 
1809     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1810     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1811 
1812     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1813     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1814     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1815 
1816 
1817     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1818   }
1819 
1820   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1821   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1822                              MachineMemOperand::MODereferenceable |
1823                                  MachineMemOperand::MOInvariant);
1824 
1825   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1826   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1827 }
1828 
1829 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1830                                               const SDLoc &SL, SDValue Chain,
1831                                               const ISD::InputArg &Arg) const {
1832   MachineFunction &MF = DAG.getMachineFunction();
1833   MachineFrameInfo &MFI = MF.getFrameInfo();
1834 
1835   if (Arg.Flags.isByVal()) {
1836     unsigned Size = Arg.Flags.getByValSize();
1837     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1838     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1839   }
1840 
1841   unsigned ArgOffset = VA.getLocMemOffset();
1842   unsigned ArgSize = VA.getValVT().getStoreSize();
1843 
1844   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1845 
1846   // Create load nodes to retrieve arguments from the stack.
1847   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1848   SDValue ArgValue;
1849 
1850   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1851   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1852   MVT MemVT = VA.getValVT();
1853 
1854   switch (VA.getLocInfo()) {
1855   default:
1856     break;
1857   case CCValAssign::BCvt:
1858     MemVT = VA.getLocVT();
1859     break;
1860   case CCValAssign::SExt:
1861     ExtType = ISD::SEXTLOAD;
1862     break;
1863   case CCValAssign::ZExt:
1864     ExtType = ISD::ZEXTLOAD;
1865     break;
1866   case CCValAssign::AExt:
1867     ExtType = ISD::EXTLOAD;
1868     break;
1869   }
1870 
1871   ArgValue = DAG.getExtLoad(
1872     ExtType, SL, VA.getLocVT(), Chain, FIN,
1873     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1874     MemVT);
1875   return ArgValue;
1876 }
1877 
1878 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1879   const SIMachineFunctionInfo &MFI,
1880   EVT VT,
1881   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1882   const ArgDescriptor *Reg;
1883   const TargetRegisterClass *RC;
1884   LLT Ty;
1885 
1886   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1887   if (!Reg) {
1888     if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) {
1889       // It's possible for a kernarg intrinsic call to appear in a kernel with
1890       // no allocated segment, in which case we do not add the user sgpr
1891       // argument, so just return null.
1892       return DAG.getConstant(0, SDLoc(), VT);
1893     }
1894 
1895     // It's undefined behavior if a function marked with the amdgpu-no-*
1896     // attributes uses the corresponding intrinsic.
1897     return DAG.getUNDEF(VT);
1898   }
1899 
1900   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1901 }
1902 
1903 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1904                                CallingConv::ID CallConv,
1905                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1906                                FunctionType *FType,
1907                                SIMachineFunctionInfo *Info) {
1908   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1909     const ISD::InputArg *Arg = &Ins[I];
1910 
1911     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1912            "vector type argument should have been split");
1913 
1914     // First check if it's a PS input addr.
1915     if (CallConv == CallingConv::AMDGPU_PS &&
1916         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1917       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1918 
1919       // Inconveniently only the first part of the split is marked as isSplit,
1920       // so skip to the end. We only want to increment PSInputNum once for the
1921       // entire split argument.
1922       if (Arg->Flags.isSplit()) {
1923         while (!Arg->Flags.isSplitEnd()) {
1924           assert((!Arg->VT.isVector() ||
1925                   Arg->VT.getScalarSizeInBits() == 16) &&
1926                  "unexpected vector split in ps argument type");
1927           if (!SkipArg)
1928             Splits.push_back(*Arg);
1929           Arg = &Ins[++I];
1930         }
1931       }
1932 
1933       if (SkipArg) {
1934         // We can safely skip PS inputs.
1935         Skipped.set(Arg->getOrigArgIndex());
1936         ++PSInputNum;
1937         continue;
1938       }
1939 
1940       Info->markPSInputAllocated(PSInputNum);
1941       if (Arg->Used)
1942         Info->markPSInputEnabled(PSInputNum);
1943 
1944       ++PSInputNum;
1945     }
1946 
1947     Splits.push_back(*Arg);
1948   }
1949 }
1950 
1951 // Allocate special inputs passed in VGPRs.
1952 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1953                                                       MachineFunction &MF,
1954                                                       const SIRegisterInfo &TRI,
1955                                                       SIMachineFunctionInfo &Info) const {
1956   const LLT S32 = LLT::scalar(32);
1957   MachineRegisterInfo &MRI = MF.getRegInfo();
1958 
1959   if (Info.hasWorkItemIDX()) {
1960     Register Reg = AMDGPU::VGPR0;
1961     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1962 
1963     CCInfo.AllocateReg(Reg);
1964     unsigned Mask = (Subtarget->hasPackedTID() &&
1965                      Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1966     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1967   }
1968 
1969   if (Info.hasWorkItemIDY()) {
1970     assert(Info.hasWorkItemIDX());
1971     if (Subtarget->hasPackedTID()) {
1972       Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1973                                                         0x3ff << 10));
1974     } else {
1975       unsigned Reg = AMDGPU::VGPR1;
1976       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1977 
1978       CCInfo.AllocateReg(Reg);
1979       Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1980     }
1981   }
1982 
1983   if (Info.hasWorkItemIDZ()) {
1984     assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
1985     if (Subtarget->hasPackedTID()) {
1986       Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1987                                                         0x3ff << 20));
1988     } else {
1989       unsigned Reg = AMDGPU::VGPR2;
1990       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1991 
1992       CCInfo.AllocateReg(Reg);
1993       Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1994     }
1995   }
1996 }
1997 
1998 // Try to allocate a VGPR at the end of the argument list, or if no argument
1999 // VGPRs are left allocating a stack slot.
2000 // If \p Mask is is given it indicates bitfield position in the register.
2001 // If \p Arg is given use it with new ]p Mask instead of allocating new.
2002 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
2003                                          ArgDescriptor Arg = ArgDescriptor()) {
2004   if (Arg.isSet())
2005     return ArgDescriptor::createArg(Arg, Mask);
2006 
2007   ArrayRef<MCPhysReg> ArgVGPRs
2008     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
2009   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
2010   if (RegIdx == ArgVGPRs.size()) {
2011     // Spill to stack required.
2012     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
2013 
2014     return ArgDescriptor::createStack(Offset, Mask);
2015   }
2016 
2017   unsigned Reg = ArgVGPRs[RegIdx];
2018   Reg = CCInfo.AllocateReg(Reg);
2019   assert(Reg != AMDGPU::NoRegister);
2020 
2021   MachineFunction &MF = CCInfo.getMachineFunction();
2022   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
2023   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
2024   return ArgDescriptor::createRegister(Reg, Mask);
2025 }
2026 
2027 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
2028                                              const TargetRegisterClass *RC,
2029                                              unsigned NumArgRegs) {
2030   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
2031   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
2032   if (RegIdx == ArgSGPRs.size())
2033     report_fatal_error("ran out of SGPRs for arguments");
2034 
2035   unsigned Reg = ArgSGPRs[RegIdx];
2036   Reg = CCInfo.AllocateReg(Reg);
2037   assert(Reg != AMDGPU::NoRegister);
2038 
2039   MachineFunction &MF = CCInfo.getMachineFunction();
2040   MF.addLiveIn(Reg, RC);
2041   return ArgDescriptor::createRegister(Reg);
2042 }
2043 
2044 // If this has a fixed position, we still should allocate the register in the
2045 // CCInfo state. Technically we could get away with this for values passed
2046 // outside of the normal argument range.
2047 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
2048                                        const TargetRegisterClass *RC,
2049                                        MCRegister Reg) {
2050   Reg = CCInfo.AllocateReg(Reg);
2051   assert(Reg != AMDGPU::NoRegister);
2052   MachineFunction &MF = CCInfo.getMachineFunction();
2053   MF.addLiveIn(Reg, RC);
2054 }
2055 
2056 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
2057   if (Arg) {
2058     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
2059                                Arg.getRegister());
2060   } else
2061     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
2062 }
2063 
2064 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
2065   if (Arg) {
2066     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
2067                                Arg.getRegister());
2068   } else
2069     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
2070 }
2071 
2072 /// Allocate implicit function VGPR arguments at the end of allocated user
2073 /// arguments.
2074 void SITargetLowering::allocateSpecialInputVGPRs(
2075   CCState &CCInfo, MachineFunction &MF,
2076   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2077   const unsigned Mask = 0x3ff;
2078   ArgDescriptor Arg;
2079 
2080   if (Info.hasWorkItemIDX()) {
2081     Arg = allocateVGPR32Input(CCInfo, Mask);
2082     Info.setWorkItemIDX(Arg);
2083   }
2084 
2085   if (Info.hasWorkItemIDY()) {
2086     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
2087     Info.setWorkItemIDY(Arg);
2088   }
2089 
2090   if (Info.hasWorkItemIDZ())
2091     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2092 }
2093 
2094 /// Allocate implicit function VGPR arguments in fixed registers.
2095 void SITargetLowering::allocateSpecialInputVGPRsFixed(
2096   CCState &CCInfo, MachineFunction &MF,
2097   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2098   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2099   if (!Reg)
2100     report_fatal_error("failed to allocated VGPR for implicit arguments");
2101 
2102   const unsigned Mask = 0x3ff;
2103   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2104   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2105   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2106 }
2107 
2108 void SITargetLowering::allocateSpecialInputSGPRs(
2109   CCState &CCInfo,
2110   MachineFunction &MF,
2111   const SIRegisterInfo &TRI,
2112   SIMachineFunctionInfo &Info) const {
2113   auto &ArgInfo = Info.getArgInfo();
2114 
2115   // TODO: Unify handling with private memory pointers.
2116   if (Info.hasDispatchPtr())
2117     allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2118 
2119   if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5)
2120     allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2121 
2122   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2123   // constant offset from the kernarg segment.
2124   if (Info.hasImplicitArgPtr())
2125     allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2126 
2127   if (Info.hasDispatchID())
2128     allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2129 
2130   // flat_scratch_init is not applicable for non-kernel functions.
2131 
2132   if (Info.hasWorkGroupIDX())
2133     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2134 
2135   if (Info.hasWorkGroupIDY())
2136     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2137 
2138   if (Info.hasWorkGroupIDZ())
2139     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2140 }
2141 
2142 // Allocate special inputs passed in user SGPRs.
2143 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2144                                             MachineFunction &MF,
2145                                             const SIRegisterInfo &TRI,
2146                                             SIMachineFunctionInfo &Info) const {
2147   if (Info.hasImplicitBufferPtr()) {
2148     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2149     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2150     CCInfo.AllocateReg(ImplicitBufferPtrReg);
2151   }
2152 
2153   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2154   if (Info.hasPrivateSegmentBuffer()) {
2155     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2156     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2157     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2158   }
2159 
2160   if (Info.hasDispatchPtr()) {
2161     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2162     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2163     CCInfo.AllocateReg(DispatchPtrReg);
2164   }
2165 
2166   if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) {
2167     Register QueuePtrReg = Info.addQueuePtr(TRI);
2168     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2169     CCInfo.AllocateReg(QueuePtrReg);
2170   }
2171 
2172   if (Info.hasKernargSegmentPtr()) {
2173     MachineRegisterInfo &MRI = MF.getRegInfo();
2174     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2175     CCInfo.AllocateReg(InputPtrReg);
2176 
2177     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2178     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2179   }
2180 
2181   if (Info.hasDispatchID()) {
2182     Register DispatchIDReg = Info.addDispatchID(TRI);
2183     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2184     CCInfo.AllocateReg(DispatchIDReg);
2185   }
2186 
2187   if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2188     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2189     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2190     CCInfo.AllocateReg(FlatScratchInitReg);
2191   }
2192 
2193   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2194   // these from the dispatch pointer.
2195 }
2196 
2197 // Allocate special input registers that are initialized per-wave.
2198 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2199                                            MachineFunction &MF,
2200                                            SIMachineFunctionInfo &Info,
2201                                            CallingConv::ID CallConv,
2202                                            bool IsShader) const {
2203   if (Info.hasWorkGroupIDX()) {
2204     Register Reg = Info.addWorkGroupIDX();
2205     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2206     CCInfo.AllocateReg(Reg);
2207   }
2208 
2209   if (Info.hasWorkGroupIDY()) {
2210     Register Reg = Info.addWorkGroupIDY();
2211     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2212     CCInfo.AllocateReg(Reg);
2213   }
2214 
2215   if (Info.hasWorkGroupIDZ()) {
2216     Register Reg = Info.addWorkGroupIDZ();
2217     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2218     CCInfo.AllocateReg(Reg);
2219   }
2220 
2221   if (Info.hasWorkGroupInfo()) {
2222     Register Reg = Info.addWorkGroupInfo();
2223     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2224     CCInfo.AllocateReg(Reg);
2225   }
2226 
2227   if (Info.hasPrivateSegmentWaveByteOffset()) {
2228     // Scratch wave offset passed in system SGPR.
2229     unsigned PrivateSegmentWaveByteOffsetReg;
2230 
2231     if (IsShader) {
2232       PrivateSegmentWaveByteOffsetReg =
2233         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2234 
2235       // This is true if the scratch wave byte offset doesn't have a fixed
2236       // location.
2237       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2238         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2239         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2240       }
2241     } else
2242       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2243 
2244     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2245     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2246   }
2247 }
2248 
2249 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2250                                      MachineFunction &MF,
2251                                      const SIRegisterInfo &TRI,
2252                                      SIMachineFunctionInfo &Info) {
2253   // Now that we've figured out where the scratch register inputs are, see if
2254   // should reserve the arguments and use them directly.
2255   MachineFrameInfo &MFI = MF.getFrameInfo();
2256   bool HasStackObjects = MFI.hasStackObjects();
2257   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2258 
2259   // Record that we know we have non-spill stack objects so we don't need to
2260   // check all stack objects later.
2261   if (HasStackObjects)
2262     Info.setHasNonSpillStackObjects(true);
2263 
2264   // Everything live out of a block is spilled with fast regalloc, so it's
2265   // almost certain that spilling will be required.
2266   if (TM.getOptLevel() == CodeGenOpt::None)
2267     HasStackObjects = true;
2268 
2269   // For now assume stack access is needed in any callee functions, so we need
2270   // the scratch registers to pass in.
2271   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2272 
2273   if (!ST.enableFlatScratch()) {
2274     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2275       // If we have stack objects, we unquestionably need the private buffer
2276       // resource. For the Code Object V2 ABI, this will be the first 4 user
2277       // SGPR inputs. We can reserve those and use them directly.
2278 
2279       Register PrivateSegmentBufferReg =
2280           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2281       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2282     } else {
2283       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2284       // We tentatively reserve the last registers (skipping the last registers
2285       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2286       // we'll replace these with the ones immediately after those which were
2287       // really allocated. In the prologue copies will be inserted from the
2288       // argument to these reserved registers.
2289 
2290       // Without HSA, relocations are used for the scratch pointer and the
2291       // buffer resource setup is always inserted in the prologue. Scratch wave
2292       // offset is still in an input SGPR.
2293       Info.setScratchRSrcReg(ReservedBufferReg);
2294     }
2295   }
2296 
2297   MachineRegisterInfo &MRI = MF.getRegInfo();
2298 
2299   // For entry functions we have to set up the stack pointer if we use it,
2300   // whereas non-entry functions get this "for free". This means there is no
2301   // intrinsic advantage to using S32 over S34 in cases where we do not have
2302   // calls but do need a frame pointer (i.e. if we are requested to have one
2303   // because frame pointer elimination is disabled). To keep things simple we
2304   // only ever use S32 as the call ABI stack pointer, and so using it does not
2305   // imply we need a separate frame pointer.
2306   //
2307   // Try to use s32 as the SP, but move it if it would interfere with input
2308   // arguments. This won't work with calls though.
2309   //
2310   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2311   // registers.
2312   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2313     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2314   } else {
2315     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2316 
2317     if (MFI.hasCalls())
2318       report_fatal_error("call in graphics shader with too many input SGPRs");
2319 
2320     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2321       if (!MRI.isLiveIn(Reg)) {
2322         Info.setStackPtrOffsetReg(Reg);
2323         break;
2324       }
2325     }
2326 
2327     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2328       report_fatal_error("failed to find register for SP");
2329   }
2330 
2331   // hasFP should be accurate for entry functions even before the frame is
2332   // finalized, because it does not rely on the known stack size, only
2333   // properties like whether variable sized objects are present.
2334   if (ST.getFrameLowering()->hasFP(MF)) {
2335     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2336   }
2337 }
2338 
2339 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2340   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2341   return !Info->isEntryFunction();
2342 }
2343 
2344 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2345 
2346 }
2347 
2348 void SITargetLowering::insertCopiesSplitCSR(
2349   MachineBasicBlock *Entry,
2350   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2351   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2352 
2353   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2354   if (!IStart)
2355     return;
2356 
2357   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2358   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2359   MachineBasicBlock::iterator MBBI = Entry->begin();
2360   for (const MCPhysReg *I = IStart; *I; ++I) {
2361     const TargetRegisterClass *RC = nullptr;
2362     if (AMDGPU::SReg_64RegClass.contains(*I))
2363       RC = &AMDGPU::SGPR_64RegClass;
2364     else if (AMDGPU::SReg_32RegClass.contains(*I))
2365       RC = &AMDGPU::SGPR_32RegClass;
2366     else
2367       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2368 
2369     Register NewVR = MRI->createVirtualRegister(RC);
2370     // Create copy from CSR to a virtual register.
2371     Entry->addLiveIn(*I);
2372     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2373       .addReg(*I);
2374 
2375     // Insert the copy-back instructions right before the terminator.
2376     for (auto *Exit : Exits)
2377       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2378               TII->get(TargetOpcode::COPY), *I)
2379         .addReg(NewVR);
2380   }
2381 }
2382 
2383 SDValue SITargetLowering::LowerFormalArguments(
2384     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2385     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2386     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2387   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2388 
2389   MachineFunction &MF = DAG.getMachineFunction();
2390   const Function &Fn = MF.getFunction();
2391   FunctionType *FType = MF.getFunction().getFunctionType();
2392   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2393 
2394   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2395     DiagnosticInfoUnsupported NoGraphicsHSA(
2396         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2397     DAG.getContext()->diagnose(NoGraphicsHSA);
2398     return DAG.getEntryNode();
2399   }
2400 
2401   Info->allocateModuleLDSGlobal(Fn.getParent());
2402 
2403   SmallVector<ISD::InputArg, 16> Splits;
2404   SmallVector<CCValAssign, 16> ArgLocs;
2405   BitVector Skipped(Ins.size());
2406   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2407                  *DAG.getContext());
2408 
2409   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2410   bool IsKernel = AMDGPU::isKernel(CallConv);
2411   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2412 
2413   if (IsGraphics) {
2414     assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2415            (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2416            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2417            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2418            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2419            !Info->hasWorkItemIDZ());
2420   }
2421 
2422   if (CallConv == CallingConv::AMDGPU_PS) {
2423     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2424 
2425     // At least one interpolation mode must be enabled or else the GPU will
2426     // hang.
2427     //
2428     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2429     // set PSInputAddr, the user wants to enable some bits after the compilation
2430     // based on run-time states. Since we can't know what the final PSInputEna
2431     // will look like, so we shouldn't do anything here and the user should take
2432     // responsibility for the correct programming.
2433     //
2434     // Otherwise, the following restrictions apply:
2435     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2436     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2437     //   enabled too.
2438     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2439         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2440       CCInfo.AllocateReg(AMDGPU::VGPR0);
2441       CCInfo.AllocateReg(AMDGPU::VGPR1);
2442       Info->markPSInputAllocated(0);
2443       Info->markPSInputEnabled(0);
2444     }
2445     if (Subtarget->isAmdPalOS()) {
2446       // For isAmdPalOS, the user does not enable some bits after compilation
2447       // based on run-time states; the register values being generated here are
2448       // the final ones set in hardware. Therefore we need to apply the
2449       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2450       // a bit is set in PSInputAddr but not PSInputEnable is where the
2451       // frontend set up an input arg for a particular interpolation mode, but
2452       // nothing uses that input arg. Really we should have an earlier pass
2453       // that removes such an arg.)
2454       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2455       if ((PsInputBits & 0x7F) == 0 ||
2456           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2457         Info->markPSInputEnabled(
2458             countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2459     }
2460   } else if (IsKernel) {
2461     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2462   } else {
2463     Splits.append(Ins.begin(), Ins.end());
2464   }
2465 
2466   if (IsEntryFunc) {
2467     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2468     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2469   } else if (!IsGraphics) {
2470     // For the fixed ABI, pass workitem IDs in the last argument register.
2471     allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2472   }
2473 
2474   if (IsKernel) {
2475     analyzeFormalArgumentsCompute(CCInfo, Ins);
2476   } else {
2477     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2478     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2479   }
2480 
2481   SmallVector<SDValue, 16> Chains;
2482 
2483   // FIXME: This is the minimum kernel argument alignment. We should improve
2484   // this to the maximum alignment of the arguments.
2485   //
2486   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2487   // kern arg offset.
2488   const Align KernelArgBaseAlign = Align(16);
2489 
2490   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2491     const ISD::InputArg &Arg = Ins[i];
2492     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2493       InVals.push_back(DAG.getUNDEF(Arg.VT));
2494       continue;
2495     }
2496 
2497     CCValAssign &VA = ArgLocs[ArgIdx++];
2498     MVT VT = VA.getLocVT();
2499 
2500     if (IsEntryFunc && VA.isMemLoc()) {
2501       VT = Ins[i].VT;
2502       EVT MemVT = VA.getLocVT();
2503 
2504       const uint64_t Offset = VA.getLocMemOffset();
2505       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2506 
2507       if (Arg.Flags.isByRef()) {
2508         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2509 
2510         const GCNTargetMachine &TM =
2511             static_cast<const GCNTargetMachine &>(getTargetMachine());
2512         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2513                                     Arg.Flags.getPointerAddrSpace())) {
2514           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2515                                      Arg.Flags.getPointerAddrSpace());
2516         }
2517 
2518         InVals.push_back(Ptr);
2519         continue;
2520       }
2521 
2522       SDValue Arg = lowerKernargMemParameter(
2523         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2524       Chains.push_back(Arg.getValue(1));
2525 
2526       auto *ParamTy =
2527         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2528       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2529           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2530                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2531         // On SI local pointers are just offsets into LDS, so they are always
2532         // less than 16-bits.  On CI and newer they could potentially be
2533         // real pointers, so we can't guarantee their size.
2534         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2535                           DAG.getValueType(MVT::i16));
2536       }
2537 
2538       InVals.push_back(Arg);
2539       continue;
2540     } else if (!IsEntryFunc && VA.isMemLoc()) {
2541       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2542       InVals.push_back(Val);
2543       if (!Arg.Flags.isByVal())
2544         Chains.push_back(Val.getValue(1));
2545       continue;
2546     }
2547 
2548     assert(VA.isRegLoc() && "Parameter must be in a register!");
2549 
2550     Register Reg = VA.getLocReg();
2551     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2552     EVT ValVT = VA.getValVT();
2553 
2554     Reg = MF.addLiveIn(Reg, RC);
2555     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2556 
2557     if (Arg.Flags.isSRet()) {
2558       // The return object should be reasonably addressable.
2559 
2560       // FIXME: This helps when the return is a real sret. If it is a
2561       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2562       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2563       unsigned NumBits
2564         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2565       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2566         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2567     }
2568 
2569     // If this is an 8 or 16-bit value, it is really passed promoted
2570     // to 32 bits. Insert an assert[sz]ext to capture this, then
2571     // truncate to the right size.
2572     switch (VA.getLocInfo()) {
2573     case CCValAssign::Full:
2574       break;
2575     case CCValAssign::BCvt:
2576       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2577       break;
2578     case CCValAssign::SExt:
2579       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2580                         DAG.getValueType(ValVT));
2581       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2582       break;
2583     case CCValAssign::ZExt:
2584       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2585                         DAG.getValueType(ValVT));
2586       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2587       break;
2588     case CCValAssign::AExt:
2589       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2590       break;
2591     default:
2592       llvm_unreachable("Unknown loc info!");
2593     }
2594 
2595     InVals.push_back(Val);
2596   }
2597 
2598   // Start adding system SGPRs.
2599   if (IsEntryFunc) {
2600     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2601   } else {
2602     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2603     if (!IsGraphics)
2604       allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2605   }
2606 
2607   auto &ArgUsageInfo =
2608     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2609   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2610 
2611   unsigned StackArgSize = CCInfo.getNextStackOffset();
2612   Info->setBytesInStackArgArea(StackArgSize);
2613 
2614   return Chains.empty() ? Chain :
2615     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2616 }
2617 
2618 // TODO: If return values can't fit in registers, we should return as many as
2619 // possible in registers before passing on stack.
2620 bool SITargetLowering::CanLowerReturn(
2621   CallingConv::ID CallConv,
2622   MachineFunction &MF, bool IsVarArg,
2623   const SmallVectorImpl<ISD::OutputArg> &Outs,
2624   LLVMContext &Context) const {
2625   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2626   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2627   // for shaders. Vector types should be explicitly handled by CC.
2628   if (AMDGPU::isEntryFunctionCC(CallConv))
2629     return true;
2630 
2631   SmallVector<CCValAssign, 16> RVLocs;
2632   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2633   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2634 }
2635 
2636 SDValue
2637 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2638                               bool isVarArg,
2639                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2640                               const SmallVectorImpl<SDValue> &OutVals,
2641                               const SDLoc &DL, SelectionDAG &DAG) const {
2642   MachineFunction &MF = DAG.getMachineFunction();
2643   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2644 
2645   if (AMDGPU::isKernel(CallConv)) {
2646     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2647                                              OutVals, DL, DAG);
2648   }
2649 
2650   bool IsShader = AMDGPU::isShader(CallConv);
2651 
2652   Info->setIfReturnsVoid(Outs.empty());
2653   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2654 
2655   // CCValAssign - represent the assignment of the return value to a location.
2656   SmallVector<CCValAssign, 48> RVLocs;
2657   SmallVector<ISD::OutputArg, 48> Splits;
2658 
2659   // CCState - Info about the registers and stack slots.
2660   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2661                  *DAG.getContext());
2662 
2663   // Analyze outgoing return values.
2664   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2665 
2666   SDValue Flag;
2667   SmallVector<SDValue, 48> RetOps;
2668   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2669 
2670   // Copy the result values into the output registers.
2671   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2672        ++I, ++RealRVLocIdx) {
2673     CCValAssign &VA = RVLocs[I];
2674     assert(VA.isRegLoc() && "Can only return in registers!");
2675     // TODO: Partially return in registers if return values don't fit.
2676     SDValue Arg = OutVals[RealRVLocIdx];
2677 
2678     // Copied from other backends.
2679     switch (VA.getLocInfo()) {
2680     case CCValAssign::Full:
2681       break;
2682     case CCValAssign::BCvt:
2683       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2684       break;
2685     case CCValAssign::SExt:
2686       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2687       break;
2688     case CCValAssign::ZExt:
2689       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2690       break;
2691     case CCValAssign::AExt:
2692       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2693       break;
2694     default:
2695       llvm_unreachable("Unknown loc info!");
2696     }
2697 
2698     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2699     Flag = Chain.getValue(1);
2700     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2701   }
2702 
2703   // FIXME: Does sret work properly?
2704   if (!Info->isEntryFunction()) {
2705     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2706     const MCPhysReg *I =
2707       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2708     if (I) {
2709       for (; *I; ++I) {
2710         if (AMDGPU::SReg_64RegClass.contains(*I))
2711           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2712         else if (AMDGPU::SReg_32RegClass.contains(*I))
2713           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2714         else
2715           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2716       }
2717     }
2718   }
2719 
2720   // Update chain and glue.
2721   RetOps[0] = Chain;
2722   if (Flag.getNode())
2723     RetOps.push_back(Flag);
2724 
2725   unsigned Opc = AMDGPUISD::ENDPGM;
2726   if (!IsWaveEnd)
2727     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2728   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2729 }
2730 
2731 SDValue SITargetLowering::LowerCallResult(
2732     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2733     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2734     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2735     SDValue ThisVal) const {
2736   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2737 
2738   // Assign locations to each value returned by this call.
2739   SmallVector<CCValAssign, 16> RVLocs;
2740   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2741                  *DAG.getContext());
2742   CCInfo.AnalyzeCallResult(Ins, RetCC);
2743 
2744   // Copy all of the result registers out of their specified physreg.
2745   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2746     CCValAssign VA = RVLocs[i];
2747     SDValue Val;
2748 
2749     if (VA.isRegLoc()) {
2750       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2751       Chain = Val.getValue(1);
2752       InFlag = Val.getValue(2);
2753     } else if (VA.isMemLoc()) {
2754       report_fatal_error("TODO: return values in memory");
2755     } else
2756       llvm_unreachable("unknown argument location type");
2757 
2758     switch (VA.getLocInfo()) {
2759     case CCValAssign::Full:
2760       break;
2761     case CCValAssign::BCvt:
2762       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2763       break;
2764     case CCValAssign::ZExt:
2765       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2766                         DAG.getValueType(VA.getValVT()));
2767       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2768       break;
2769     case CCValAssign::SExt:
2770       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2771                         DAG.getValueType(VA.getValVT()));
2772       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2773       break;
2774     case CCValAssign::AExt:
2775       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2776       break;
2777     default:
2778       llvm_unreachable("Unknown loc info!");
2779     }
2780 
2781     InVals.push_back(Val);
2782   }
2783 
2784   return Chain;
2785 }
2786 
2787 // Add code to pass special inputs required depending on used features separate
2788 // from the explicit user arguments present in the IR.
2789 void SITargetLowering::passSpecialInputs(
2790     CallLoweringInfo &CLI,
2791     CCState &CCInfo,
2792     const SIMachineFunctionInfo &Info,
2793     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2794     SmallVectorImpl<SDValue> &MemOpChains,
2795     SDValue Chain) const {
2796   // If we don't have a call site, this was a call inserted by
2797   // legalization. These can never use special inputs.
2798   if (!CLI.CB)
2799     return;
2800 
2801   SelectionDAG &DAG = CLI.DAG;
2802   const SDLoc &DL = CLI.DL;
2803   const Function &F = DAG.getMachineFunction().getFunction();
2804 
2805   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2806   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2807 
2808   const AMDGPUFunctionArgInfo *CalleeArgInfo
2809     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2810   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2811     auto &ArgUsageInfo =
2812       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2813     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2814   }
2815 
2816   // TODO: Unify with private memory register handling. This is complicated by
2817   // the fact that at least in kernels, the input argument is not necessarily
2818   // in the same location as the input.
2819   static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
2820                              StringLiteral> ImplicitAttrs[] = {
2821     {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"},
2822     {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" },
2823     {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"},
2824     {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"},
2825     {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"},
2826     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"},
2827     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}
2828   };
2829 
2830   for (auto Attr : ImplicitAttrs) {
2831     const ArgDescriptor *OutgoingArg;
2832     const TargetRegisterClass *ArgRC;
2833     LLT ArgTy;
2834 
2835     AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first;
2836 
2837     // If the callee does not use the attribute value, skip copying the value.
2838     if (CLI.CB->hasFnAttr(Attr.second))
2839       continue;
2840 
2841     std::tie(OutgoingArg, ArgRC, ArgTy) =
2842         CalleeArgInfo->getPreloadedValue(InputID);
2843     if (!OutgoingArg)
2844       continue;
2845 
2846     const ArgDescriptor *IncomingArg;
2847     const TargetRegisterClass *IncomingArgRC;
2848     LLT Ty;
2849     std::tie(IncomingArg, IncomingArgRC, Ty) =
2850         CallerArgInfo.getPreloadedValue(InputID);
2851     assert(IncomingArgRC == ArgRC);
2852 
2853     // All special arguments are ints for now.
2854     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2855     SDValue InputReg;
2856 
2857     if (IncomingArg) {
2858       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2859     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
2860       // The implicit arg ptr is special because it doesn't have a corresponding
2861       // input for kernels, and is computed from the kernarg segment pointer.
2862       InputReg = getImplicitArgPtr(DAG, DL);
2863     } else {
2864       // We may have proven the input wasn't needed, although the ABI is
2865       // requiring it. We just need to allocate the register appropriately.
2866       InputReg = DAG.getUNDEF(ArgVT);
2867     }
2868 
2869     if (OutgoingArg->isRegister()) {
2870       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2871       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2872         report_fatal_error("failed to allocate implicit input argument");
2873     } else {
2874       unsigned SpecialArgOffset =
2875           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2876       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2877                                               SpecialArgOffset);
2878       MemOpChains.push_back(ArgStore);
2879     }
2880   }
2881 
2882   // Pack workitem IDs into a single register or pass it as is if already
2883   // packed.
2884   const ArgDescriptor *OutgoingArg;
2885   const TargetRegisterClass *ArgRC;
2886   LLT Ty;
2887 
2888   std::tie(OutgoingArg, ArgRC, Ty) =
2889       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2890   if (!OutgoingArg)
2891     std::tie(OutgoingArg, ArgRC, Ty) =
2892         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2893   if (!OutgoingArg)
2894     std::tie(OutgoingArg, ArgRC, Ty) =
2895         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2896   if (!OutgoingArg)
2897     return;
2898 
2899   const ArgDescriptor *IncomingArgX = std::get<0>(
2900       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2901   const ArgDescriptor *IncomingArgY = std::get<0>(
2902       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2903   const ArgDescriptor *IncomingArgZ = std::get<0>(
2904       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2905 
2906   SDValue InputReg;
2907   SDLoc SL;
2908 
2909   const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
2910   const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
2911   const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
2912 
2913   // If incoming ids are not packed we need to pack them.
2914   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
2915       NeedWorkItemIDX) {
2916     if (Subtarget->getMaxWorkitemID(F, 0) != 0) {
2917       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2918     } else {
2919       InputReg = DAG.getConstant(0, DL, MVT::i32);
2920     }
2921   }
2922 
2923   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
2924       NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) {
2925     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2926     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2927                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2928     InputReg = InputReg.getNode() ?
2929                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2930   }
2931 
2932   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
2933       NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) {
2934     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2935     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2936                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2937     InputReg = InputReg.getNode() ?
2938                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2939   }
2940 
2941   if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
2942     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
2943       // We're in a situation where the outgoing function requires the workitem
2944       // ID, but the calling function does not have it (e.g a graphics function
2945       // calling a C calling convention function). This is illegal, but we need
2946       // to produce something.
2947       InputReg = DAG.getUNDEF(MVT::i32);
2948     } else {
2949       // Workitem ids are already packed, any of present incoming arguments
2950       // will carry all required fields.
2951       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2952         IncomingArgX ? *IncomingArgX :
2953         IncomingArgY ? *IncomingArgY :
2954         *IncomingArgZ, ~0u);
2955       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2956     }
2957   }
2958 
2959   if (OutgoingArg->isRegister()) {
2960     if (InputReg)
2961       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2962 
2963     CCInfo.AllocateReg(OutgoingArg->getRegister());
2964   } else {
2965     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2966     if (InputReg) {
2967       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2968                                               SpecialArgOffset);
2969       MemOpChains.push_back(ArgStore);
2970     }
2971   }
2972 }
2973 
2974 static bool canGuaranteeTCO(CallingConv::ID CC) {
2975   return CC == CallingConv::Fast;
2976 }
2977 
2978 /// Return true if we might ever do TCO for calls with this calling convention.
2979 static bool mayTailCallThisCC(CallingConv::ID CC) {
2980   switch (CC) {
2981   case CallingConv::C:
2982   case CallingConv::AMDGPU_Gfx:
2983     return true;
2984   default:
2985     return canGuaranteeTCO(CC);
2986   }
2987 }
2988 
2989 bool SITargetLowering::isEligibleForTailCallOptimization(
2990     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2991     const SmallVectorImpl<ISD::OutputArg> &Outs,
2992     const SmallVectorImpl<SDValue> &OutVals,
2993     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2994   if (!mayTailCallThisCC(CalleeCC))
2995     return false;
2996 
2997   // For a divergent call target, we need to do a waterfall loop over the
2998   // possible callees which precludes us from using a simple jump.
2999   if (Callee->isDivergent())
3000     return false;
3001 
3002   MachineFunction &MF = DAG.getMachineFunction();
3003   const Function &CallerF = MF.getFunction();
3004   CallingConv::ID CallerCC = CallerF.getCallingConv();
3005   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3006   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3007 
3008   // Kernels aren't callable, and don't have a live in return address so it
3009   // doesn't make sense to do a tail call with entry functions.
3010   if (!CallerPreserved)
3011     return false;
3012 
3013   bool CCMatch = CallerCC == CalleeCC;
3014 
3015   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
3016     if (canGuaranteeTCO(CalleeCC) && CCMatch)
3017       return true;
3018     return false;
3019   }
3020 
3021   // TODO: Can we handle var args?
3022   if (IsVarArg)
3023     return false;
3024 
3025   for (const Argument &Arg : CallerF.args()) {
3026     if (Arg.hasByValAttr())
3027       return false;
3028   }
3029 
3030   LLVMContext &Ctx = *DAG.getContext();
3031 
3032   // Check that the call results are passed in the same way.
3033   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
3034                                   CCAssignFnForCall(CalleeCC, IsVarArg),
3035                                   CCAssignFnForCall(CallerCC, IsVarArg)))
3036     return false;
3037 
3038   // The callee has to preserve all registers the caller needs to preserve.
3039   if (!CCMatch) {
3040     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3041     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3042       return false;
3043   }
3044 
3045   // Nothing more to check if the callee is taking no arguments.
3046   if (Outs.empty())
3047     return true;
3048 
3049   SmallVector<CCValAssign, 16> ArgLocs;
3050   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
3051 
3052   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
3053 
3054   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
3055   // If the stack arguments for this call do not fit into our own save area then
3056   // the call cannot be made tail.
3057   // TODO: Is this really necessary?
3058   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3059     return false;
3060 
3061   const MachineRegisterInfo &MRI = MF.getRegInfo();
3062   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
3063 }
3064 
3065 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3066   if (!CI->isTailCall())
3067     return false;
3068 
3069   const Function *ParentFn = CI->getParent()->getParent();
3070   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
3071     return false;
3072   return true;
3073 }
3074 
3075 // The wave scratch offset register is used as the global base pointer.
3076 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
3077                                     SmallVectorImpl<SDValue> &InVals) const {
3078   SelectionDAG &DAG = CLI.DAG;
3079   const SDLoc &DL = CLI.DL;
3080   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3081   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3082   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3083   SDValue Chain = CLI.Chain;
3084   SDValue Callee = CLI.Callee;
3085   bool &IsTailCall = CLI.IsTailCall;
3086   CallingConv::ID CallConv = CLI.CallConv;
3087   bool IsVarArg = CLI.IsVarArg;
3088   bool IsSibCall = false;
3089   bool IsThisReturn = false;
3090   MachineFunction &MF = DAG.getMachineFunction();
3091 
3092   if (Callee.isUndef() || isNullConstant(Callee)) {
3093     if (!CLI.IsTailCall) {
3094       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
3095         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
3096     }
3097 
3098     return Chain;
3099   }
3100 
3101   if (IsVarArg) {
3102     return lowerUnhandledCall(CLI, InVals,
3103                               "unsupported call to variadic function ");
3104   }
3105 
3106   if (!CLI.CB)
3107     report_fatal_error("unsupported libcall legalization");
3108 
3109   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3110     return lowerUnhandledCall(CLI, InVals,
3111                               "unsupported required tail call to function ");
3112   }
3113 
3114   if (AMDGPU::isShader(CallConv)) {
3115     // Note the issue is with the CC of the called function, not of the call
3116     // itself.
3117     return lowerUnhandledCall(CLI, InVals,
3118                               "unsupported call to a shader function ");
3119   }
3120 
3121   if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
3122       CallConv != CallingConv::AMDGPU_Gfx) {
3123     // Only allow calls with specific calling conventions.
3124     return lowerUnhandledCall(CLI, InVals,
3125                               "unsupported calling convention for call from "
3126                               "graphics shader of function ");
3127   }
3128 
3129   if (IsTailCall) {
3130     IsTailCall = isEligibleForTailCallOptimization(
3131       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3132     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
3133       report_fatal_error("failed to perform tail call elimination on a call "
3134                          "site marked musttail");
3135     }
3136 
3137     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3138 
3139     // A sibling call is one where we're under the usual C ABI and not planning
3140     // to change that but can still do a tail call:
3141     if (!TailCallOpt && IsTailCall)
3142       IsSibCall = true;
3143 
3144     if (IsTailCall)
3145       ++NumTailCalls;
3146   }
3147 
3148   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3149   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3150   SmallVector<SDValue, 8> MemOpChains;
3151 
3152   // Analyze operands of the call, assigning locations to each operand.
3153   SmallVector<CCValAssign, 16> ArgLocs;
3154   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3155   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3156 
3157   if (CallConv != CallingConv::AMDGPU_Gfx) {
3158     // With a fixed ABI, allocate fixed registers before user arguments.
3159     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3160   }
3161 
3162   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3163 
3164   // Get a count of how many bytes are to be pushed on the stack.
3165   unsigned NumBytes = CCInfo.getNextStackOffset();
3166 
3167   if (IsSibCall) {
3168     // Since we're not changing the ABI to make this a tail call, the memory
3169     // operands are already available in the caller's incoming argument space.
3170     NumBytes = 0;
3171   }
3172 
3173   // FPDiff is the byte offset of the call's argument area from the callee's.
3174   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3175   // by this amount for a tail call. In a sibling call it must be 0 because the
3176   // caller will deallocate the entire stack and the callee still expects its
3177   // arguments to begin at SP+0. Completely unused for non-tail calls.
3178   int32_t FPDiff = 0;
3179   MachineFrameInfo &MFI = MF.getFrameInfo();
3180 
3181   // Adjust the stack pointer for the new arguments...
3182   // These operations are automatically eliminated by the prolog/epilog pass
3183   if (!IsSibCall) {
3184     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3185 
3186     if (!Subtarget->enableFlatScratch()) {
3187       SmallVector<SDValue, 4> CopyFromChains;
3188 
3189       // In the HSA case, this should be an identity copy.
3190       SDValue ScratchRSrcReg
3191         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3192       RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3193       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3194       Chain = DAG.getTokenFactor(DL, CopyFromChains);
3195     }
3196   }
3197 
3198   MVT PtrVT = MVT::i32;
3199 
3200   // Walk the register/memloc assignments, inserting copies/loads.
3201   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3202     CCValAssign &VA = ArgLocs[i];
3203     SDValue Arg = OutVals[i];
3204 
3205     // Promote the value if needed.
3206     switch (VA.getLocInfo()) {
3207     case CCValAssign::Full:
3208       break;
3209     case CCValAssign::BCvt:
3210       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3211       break;
3212     case CCValAssign::ZExt:
3213       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3214       break;
3215     case CCValAssign::SExt:
3216       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3217       break;
3218     case CCValAssign::AExt:
3219       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3220       break;
3221     case CCValAssign::FPExt:
3222       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3223       break;
3224     default:
3225       llvm_unreachable("Unknown loc info!");
3226     }
3227 
3228     if (VA.isRegLoc()) {
3229       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3230     } else {
3231       assert(VA.isMemLoc());
3232 
3233       SDValue DstAddr;
3234       MachinePointerInfo DstInfo;
3235 
3236       unsigned LocMemOffset = VA.getLocMemOffset();
3237       int32_t Offset = LocMemOffset;
3238 
3239       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3240       MaybeAlign Alignment;
3241 
3242       if (IsTailCall) {
3243         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3244         unsigned OpSize = Flags.isByVal() ?
3245           Flags.getByValSize() : VA.getValVT().getStoreSize();
3246 
3247         // FIXME: We can have better than the minimum byval required alignment.
3248         Alignment =
3249             Flags.isByVal()
3250                 ? Flags.getNonZeroByValAlign()
3251                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3252 
3253         Offset = Offset + FPDiff;
3254         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3255 
3256         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3257         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3258 
3259         // Make sure any stack arguments overlapping with where we're storing
3260         // are loaded before this eventual operation. Otherwise they'll be
3261         // clobbered.
3262 
3263         // FIXME: Why is this really necessary? This seems to just result in a
3264         // lot of code to copy the stack and write them back to the same
3265         // locations, which are supposed to be immutable?
3266         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3267       } else {
3268         // Stores to the argument stack area are relative to the stack pointer.
3269         SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3270                                         MVT::i32);
3271         DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3272         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3273         Alignment =
3274             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3275       }
3276 
3277       if (Outs[i].Flags.isByVal()) {
3278         SDValue SizeNode =
3279             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3280         SDValue Cpy =
3281             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3282                           Outs[i].Flags.getNonZeroByValAlign(),
3283                           /*isVol = */ false, /*AlwaysInline = */ true,
3284                           /*isTailCall = */ false, DstInfo,
3285                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3286 
3287         MemOpChains.push_back(Cpy);
3288       } else {
3289         SDValue Store =
3290             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3291         MemOpChains.push_back(Store);
3292       }
3293     }
3294   }
3295 
3296   if (!MemOpChains.empty())
3297     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3298 
3299   // Build a sequence of copy-to-reg nodes chained together with token chain
3300   // and flag operands which copy the outgoing args into the appropriate regs.
3301   SDValue InFlag;
3302   for (auto &RegToPass : RegsToPass) {
3303     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3304                              RegToPass.second, InFlag);
3305     InFlag = Chain.getValue(1);
3306   }
3307 
3308 
3309   // We don't usually want to end the call-sequence here because we would tidy
3310   // the frame up *after* the call, however in the ABI-changing tail-call case
3311   // we've carefully laid out the parameters so that when sp is reset they'll be
3312   // in the correct location.
3313   if (IsTailCall && !IsSibCall) {
3314     Chain = DAG.getCALLSEQ_END(Chain,
3315                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3316                                DAG.getTargetConstant(0, DL, MVT::i32),
3317                                InFlag, DL);
3318     InFlag = Chain.getValue(1);
3319   }
3320 
3321   std::vector<SDValue> Ops;
3322   Ops.push_back(Chain);
3323   Ops.push_back(Callee);
3324   // Add a redundant copy of the callee global which will not be legalized, as
3325   // we need direct access to the callee later.
3326   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3327     const GlobalValue *GV = GSD->getGlobal();
3328     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3329   } else {
3330     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3331   }
3332 
3333   if (IsTailCall) {
3334     // Each tail call may have to adjust the stack by a different amount, so
3335     // this information must travel along with the operation for eventual
3336     // consumption by emitEpilogue.
3337     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3338   }
3339 
3340   // Add argument registers to the end of the list so that they are known live
3341   // into the call.
3342   for (auto &RegToPass : RegsToPass) {
3343     Ops.push_back(DAG.getRegister(RegToPass.first,
3344                                   RegToPass.second.getValueType()));
3345   }
3346 
3347   // Add a register mask operand representing the call-preserved registers.
3348 
3349   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3350   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3351   assert(Mask && "Missing call preserved mask for calling convention");
3352   Ops.push_back(DAG.getRegisterMask(Mask));
3353 
3354   if (InFlag.getNode())
3355     Ops.push_back(InFlag);
3356 
3357   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3358 
3359   // If we're doing a tall call, use a TC_RETURN here rather than an
3360   // actual call instruction.
3361   if (IsTailCall) {
3362     MFI.setHasTailCall();
3363     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3364   }
3365 
3366   // Returns a chain and a flag for retval copy to use.
3367   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3368   Chain = Call.getValue(0);
3369   InFlag = Call.getValue(1);
3370 
3371   uint64_t CalleePopBytes = NumBytes;
3372   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3373                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3374                              InFlag, DL);
3375   if (!Ins.empty())
3376     InFlag = Chain.getValue(1);
3377 
3378   // Handle result values, copying them out of physregs into vregs that we
3379   // return.
3380   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3381                          InVals, IsThisReturn,
3382                          IsThisReturn ? OutVals[0] : SDValue());
3383 }
3384 
3385 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3386 // except for applying the wave size scale to the increment amount.
3387 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3388     SDValue Op, SelectionDAG &DAG) const {
3389   const MachineFunction &MF = DAG.getMachineFunction();
3390   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3391 
3392   SDLoc dl(Op);
3393   EVT VT = Op.getValueType();
3394   SDValue Tmp1 = Op;
3395   SDValue Tmp2 = Op.getValue(1);
3396   SDValue Tmp3 = Op.getOperand(2);
3397   SDValue Chain = Tmp1.getOperand(0);
3398 
3399   Register SPReg = Info->getStackPtrOffsetReg();
3400 
3401   // Chain the dynamic stack allocation so that it doesn't modify the stack
3402   // pointer when other instructions are using the stack.
3403   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3404 
3405   SDValue Size  = Tmp2.getOperand(1);
3406   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3407   Chain = SP.getValue(1);
3408   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3409   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3410   const TargetFrameLowering *TFL = ST.getFrameLowering();
3411   unsigned Opc =
3412     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3413     ISD::ADD : ISD::SUB;
3414 
3415   SDValue ScaledSize = DAG.getNode(
3416       ISD::SHL, dl, VT, Size,
3417       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3418 
3419   Align StackAlign = TFL->getStackAlign();
3420   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3421   if (Alignment && *Alignment > StackAlign) {
3422     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3423                        DAG.getConstant(-(uint64_t)Alignment->value()
3424                                            << ST.getWavefrontSizeLog2(),
3425                                        dl, VT));
3426   }
3427 
3428   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3429   Tmp2 = DAG.getCALLSEQ_END(
3430       Chain, DAG.getIntPtrConstant(0, dl, true),
3431       DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3432 
3433   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3434 }
3435 
3436 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3437                                                   SelectionDAG &DAG) const {
3438   // We only handle constant sizes here to allow non-entry block, static sized
3439   // allocas. A truly dynamic value is more difficult to support because we
3440   // don't know if the size value is uniform or not. If the size isn't uniform,
3441   // we would need to do a wave reduction to get the maximum size to know how
3442   // much to increment the uniform stack pointer.
3443   SDValue Size = Op.getOperand(1);
3444   if (isa<ConstantSDNode>(Size))
3445       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3446 
3447   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3448 }
3449 
3450 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3451                                              const MachineFunction &MF) const {
3452   Register Reg = StringSwitch<Register>(RegName)
3453     .Case("m0", AMDGPU::M0)
3454     .Case("exec", AMDGPU::EXEC)
3455     .Case("exec_lo", AMDGPU::EXEC_LO)
3456     .Case("exec_hi", AMDGPU::EXEC_HI)
3457     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3458     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3459     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3460     .Default(Register());
3461 
3462   if (Reg == AMDGPU::NoRegister) {
3463     report_fatal_error(Twine("invalid register name \""
3464                              + StringRef(RegName)  + "\"."));
3465 
3466   }
3467 
3468   if (!Subtarget->hasFlatScrRegister() &&
3469        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3470     report_fatal_error(Twine("invalid register \""
3471                              + StringRef(RegName)  + "\" for subtarget."));
3472   }
3473 
3474   switch (Reg) {
3475   case AMDGPU::M0:
3476   case AMDGPU::EXEC_LO:
3477   case AMDGPU::EXEC_HI:
3478   case AMDGPU::FLAT_SCR_LO:
3479   case AMDGPU::FLAT_SCR_HI:
3480     if (VT.getSizeInBits() == 32)
3481       return Reg;
3482     break;
3483   case AMDGPU::EXEC:
3484   case AMDGPU::FLAT_SCR:
3485     if (VT.getSizeInBits() == 64)
3486       return Reg;
3487     break;
3488   default:
3489     llvm_unreachable("missing register type checking");
3490   }
3491 
3492   report_fatal_error(Twine("invalid type for register \""
3493                            + StringRef(RegName) + "\"."));
3494 }
3495 
3496 // If kill is not the last instruction, split the block so kill is always a
3497 // proper terminator.
3498 MachineBasicBlock *
3499 SITargetLowering::splitKillBlock(MachineInstr &MI,
3500                                  MachineBasicBlock *BB) const {
3501   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3502   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3503   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3504   return SplitBB;
3505 }
3506 
3507 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3508 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3509 // be the first instruction in the remainder block.
3510 //
3511 /// \returns { LoopBody, Remainder }
3512 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3513 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3514   MachineFunction *MF = MBB.getParent();
3515   MachineBasicBlock::iterator I(&MI);
3516 
3517   // To insert the loop we need to split the block. Move everything after this
3518   // point to a new block, and insert a new empty block between the two.
3519   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3520   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3521   MachineFunction::iterator MBBI(MBB);
3522   ++MBBI;
3523 
3524   MF->insert(MBBI, LoopBB);
3525   MF->insert(MBBI, RemainderBB);
3526 
3527   LoopBB->addSuccessor(LoopBB);
3528   LoopBB->addSuccessor(RemainderBB);
3529 
3530   // Move the rest of the block into a new block.
3531   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3532 
3533   if (InstInLoop) {
3534     auto Next = std::next(I);
3535 
3536     // Move instruction to loop body.
3537     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3538 
3539     // Move the rest of the block.
3540     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3541   } else {
3542     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3543   }
3544 
3545   MBB.addSuccessor(LoopBB);
3546 
3547   return std::make_pair(LoopBB, RemainderBB);
3548 }
3549 
3550 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3551 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3552   MachineBasicBlock *MBB = MI.getParent();
3553   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3554   auto I = MI.getIterator();
3555   auto E = std::next(I);
3556 
3557   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3558     .addImm(0);
3559 
3560   MIBundleBuilder Bundler(*MBB, I, E);
3561   finalizeBundle(*MBB, Bundler.begin());
3562 }
3563 
3564 MachineBasicBlock *
3565 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3566                                          MachineBasicBlock *BB) const {
3567   const DebugLoc &DL = MI.getDebugLoc();
3568 
3569   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3570 
3571   MachineBasicBlock *LoopBB;
3572   MachineBasicBlock *RemainderBB;
3573   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3574 
3575   // Apparently kill flags are only valid if the def is in the same block?
3576   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3577     Src->setIsKill(false);
3578 
3579   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3580 
3581   MachineBasicBlock::iterator I = LoopBB->end();
3582 
3583   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3584     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3585 
3586   // Clear TRAP_STS.MEM_VIOL
3587   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3588     .addImm(0)
3589     .addImm(EncodedReg);
3590 
3591   bundleInstWithWaitcnt(MI);
3592 
3593   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3594 
3595   // Load and check TRAP_STS.MEM_VIOL
3596   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3597     .addImm(EncodedReg);
3598 
3599   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3600   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3601     .addReg(Reg, RegState::Kill)
3602     .addImm(0);
3603   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3604     .addMBB(LoopBB);
3605 
3606   return RemainderBB;
3607 }
3608 
3609 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3610 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3611 // will only do one iteration. In the worst case, this will loop 64 times.
3612 //
3613 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3614 static MachineBasicBlock::iterator
3615 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3616                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3617                        const DebugLoc &DL, const MachineOperand &Idx,
3618                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3619                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3620                        Register &SGPRIdxReg) {
3621 
3622   MachineFunction *MF = OrigBB.getParent();
3623   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3624   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3625   MachineBasicBlock::iterator I = LoopBB.begin();
3626 
3627   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3628   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3629   Register NewExec = MRI.createVirtualRegister(BoolRC);
3630   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3631   Register CondReg = MRI.createVirtualRegister(BoolRC);
3632 
3633   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3634     .addReg(InitReg)
3635     .addMBB(&OrigBB)
3636     .addReg(ResultReg)
3637     .addMBB(&LoopBB);
3638 
3639   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3640     .addReg(InitSaveExecReg)
3641     .addMBB(&OrigBB)
3642     .addReg(NewExec)
3643     .addMBB(&LoopBB);
3644 
3645   // Read the next variant <- also loop target.
3646   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3647       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3648 
3649   // Compare the just read M0 value to all possible Idx values.
3650   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3651       .addReg(CurrentIdxReg)
3652       .addReg(Idx.getReg(), 0, Idx.getSubReg());
3653 
3654   // Update EXEC, save the original EXEC value to VCC.
3655   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3656                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3657           NewExec)
3658     .addReg(CondReg, RegState::Kill);
3659 
3660   MRI.setSimpleHint(NewExec, CondReg);
3661 
3662   if (UseGPRIdxMode) {
3663     if (Offset == 0) {
3664       SGPRIdxReg = CurrentIdxReg;
3665     } else {
3666       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3667       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3668           .addReg(CurrentIdxReg, RegState::Kill)
3669           .addImm(Offset);
3670     }
3671   } else {
3672     // Move index from VCC into M0
3673     if (Offset == 0) {
3674       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3675         .addReg(CurrentIdxReg, RegState::Kill);
3676     } else {
3677       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3678         .addReg(CurrentIdxReg, RegState::Kill)
3679         .addImm(Offset);
3680     }
3681   }
3682 
3683   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3684   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3685   MachineInstr *InsertPt =
3686     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3687                                                   : AMDGPU::S_XOR_B64_term), Exec)
3688       .addReg(Exec)
3689       .addReg(NewExec);
3690 
3691   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3692   // s_cbranch_scc0?
3693 
3694   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3695   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3696     .addMBB(&LoopBB);
3697 
3698   return InsertPt->getIterator();
3699 }
3700 
3701 // This has slightly sub-optimal regalloc when the source vector is killed by
3702 // the read. The register allocator does not understand that the kill is
3703 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3704 // subregister from it, using 1 more VGPR than necessary. This was saved when
3705 // this was expanded after register allocation.
3706 static MachineBasicBlock::iterator
3707 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3708                unsigned InitResultReg, unsigned PhiReg, int Offset,
3709                bool UseGPRIdxMode, Register &SGPRIdxReg) {
3710   MachineFunction *MF = MBB.getParent();
3711   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3712   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3713   MachineRegisterInfo &MRI = MF->getRegInfo();
3714   const DebugLoc &DL = MI.getDebugLoc();
3715   MachineBasicBlock::iterator I(&MI);
3716 
3717   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3718   Register DstReg = MI.getOperand(0).getReg();
3719   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3720   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3721   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3722   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3723 
3724   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3725 
3726   // Save the EXEC mask
3727   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3728     .addReg(Exec);
3729 
3730   MachineBasicBlock *LoopBB;
3731   MachineBasicBlock *RemainderBB;
3732   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3733 
3734   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3735 
3736   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3737                                       InitResultReg, DstReg, PhiReg, TmpExec,
3738                                       Offset, UseGPRIdxMode, SGPRIdxReg);
3739 
3740   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3741   MachineFunction::iterator MBBI(LoopBB);
3742   ++MBBI;
3743   MF->insert(MBBI, LandingPad);
3744   LoopBB->removeSuccessor(RemainderBB);
3745   LandingPad->addSuccessor(RemainderBB);
3746   LoopBB->addSuccessor(LandingPad);
3747   MachineBasicBlock::iterator First = LandingPad->begin();
3748   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3749     .addReg(SaveExec);
3750 
3751   return InsPt;
3752 }
3753 
3754 // Returns subreg index, offset
3755 static std::pair<unsigned, int>
3756 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3757                             const TargetRegisterClass *SuperRC,
3758                             unsigned VecReg,
3759                             int Offset) {
3760   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3761 
3762   // Skip out of bounds offsets, or else we would end up using an undefined
3763   // register.
3764   if (Offset >= NumElts || Offset < 0)
3765     return std::make_pair(AMDGPU::sub0, Offset);
3766 
3767   return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3768 }
3769 
3770 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3771                                  MachineRegisterInfo &MRI, MachineInstr &MI,
3772                                  int Offset) {
3773   MachineBasicBlock *MBB = MI.getParent();
3774   const DebugLoc &DL = MI.getDebugLoc();
3775   MachineBasicBlock::iterator I(&MI);
3776 
3777   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3778 
3779   assert(Idx->getReg() != AMDGPU::NoRegister);
3780 
3781   if (Offset == 0) {
3782     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3783   } else {
3784     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3785         .add(*Idx)
3786         .addImm(Offset);
3787   }
3788 }
3789 
3790 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3791                                    MachineRegisterInfo &MRI, MachineInstr &MI,
3792                                    int Offset) {
3793   MachineBasicBlock *MBB = MI.getParent();
3794   const DebugLoc &DL = MI.getDebugLoc();
3795   MachineBasicBlock::iterator I(&MI);
3796 
3797   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3798 
3799   if (Offset == 0)
3800     return Idx->getReg();
3801 
3802   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3803   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3804       .add(*Idx)
3805       .addImm(Offset);
3806   return Tmp;
3807 }
3808 
3809 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3810                                           MachineBasicBlock &MBB,
3811                                           const GCNSubtarget &ST) {
3812   const SIInstrInfo *TII = ST.getInstrInfo();
3813   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3814   MachineFunction *MF = MBB.getParent();
3815   MachineRegisterInfo &MRI = MF->getRegInfo();
3816 
3817   Register Dst = MI.getOperand(0).getReg();
3818   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3819   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3820   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3821 
3822   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3823   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3824 
3825   unsigned SubReg;
3826   std::tie(SubReg, Offset)
3827     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3828 
3829   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3830 
3831   // Check for a SGPR index.
3832   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3833     MachineBasicBlock::iterator I(&MI);
3834     const DebugLoc &DL = MI.getDebugLoc();
3835 
3836     if (UseGPRIdxMode) {
3837       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3838       // to avoid interfering with other uses, so probably requires a new
3839       // optimization pass.
3840       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3841 
3842       const MCInstrDesc &GPRIDXDesc =
3843           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3844       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3845           .addReg(SrcReg)
3846           .addReg(Idx)
3847           .addImm(SubReg);
3848     } else {
3849       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3850 
3851       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3852         .addReg(SrcReg, 0, SubReg)
3853         .addReg(SrcReg, RegState::Implicit);
3854     }
3855 
3856     MI.eraseFromParent();
3857 
3858     return &MBB;
3859   }
3860 
3861   // Control flow needs to be inserted if indexing with a VGPR.
3862   const DebugLoc &DL = MI.getDebugLoc();
3863   MachineBasicBlock::iterator I(&MI);
3864 
3865   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3866   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3867 
3868   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3869 
3870   Register SGPRIdxReg;
3871   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3872                               UseGPRIdxMode, SGPRIdxReg);
3873 
3874   MachineBasicBlock *LoopBB = InsPt->getParent();
3875 
3876   if (UseGPRIdxMode) {
3877     const MCInstrDesc &GPRIDXDesc =
3878         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3879 
3880     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3881         .addReg(SrcReg)
3882         .addReg(SGPRIdxReg)
3883         .addImm(SubReg);
3884   } else {
3885     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3886       .addReg(SrcReg, 0, SubReg)
3887       .addReg(SrcReg, RegState::Implicit);
3888   }
3889 
3890   MI.eraseFromParent();
3891 
3892   return LoopBB;
3893 }
3894 
3895 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3896                                           MachineBasicBlock &MBB,
3897                                           const GCNSubtarget &ST) {
3898   const SIInstrInfo *TII = ST.getInstrInfo();
3899   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3900   MachineFunction *MF = MBB.getParent();
3901   MachineRegisterInfo &MRI = MF->getRegInfo();
3902 
3903   Register Dst = MI.getOperand(0).getReg();
3904   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3905   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3906   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3907   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3908   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3909   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3910 
3911   // This can be an immediate, but will be folded later.
3912   assert(Val->getReg());
3913 
3914   unsigned SubReg;
3915   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3916                                                          SrcVec->getReg(),
3917                                                          Offset);
3918   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3919 
3920   if (Idx->getReg() == AMDGPU::NoRegister) {
3921     MachineBasicBlock::iterator I(&MI);
3922     const DebugLoc &DL = MI.getDebugLoc();
3923 
3924     assert(Offset == 0);
3925 
3926     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3927         .add(*SrcVec)
3928         .add(*Val)
3929         .addImm(SubReg);
3930 
3931     MI.eraseFromParent();
3932     return &MBB;
3933   }
3934 
3935   // Check for a SGPR index.
3936   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3937     MachineBasicBlock::iterator I(&MI);
3938     const DebugLoc &DL = MI.getDebugLoc();
3939 
3940     if (UseGPRIdxMode) {
3941       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3942 
3943       const MCInstrDesc &GPRIDXDesc =
3944           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3945       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3946           .addReg(SrcVec->getReg())
3947           .add(*Val)
3948           .addReg(Idx)
3949           .addImm(SubReg);
3950     } else {
3951       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3952 
3953       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3954           TRI.getRegSizeInBits(*VecRC), 32, false);
3955       BuildMI(MBB, I, DL, MovRelDesc, Dst)
3956           .addReg(SrcVec->getReg())
3957           .add(*Val)
3958           .addImm(SubReg);
3959     }
3960     MI.eraseFromParent();
3961     return &MBB;
3962   }
3963 
3964   // Control flow needs to be inserted if indexing with a VGPR.
3965   if (Val->isReg())
3966     MRI.clearKillFlags(Val->getReg());
3967 
3968   const DebugLoc &DL = MI.getDebugLoc();
3969 
3970   Register PhiReg = MRI.createVirtualRegister(VecRC);
3971 
3972   Register SGPRIdxReg;
3973   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3974                               UseGPRIdxMode, SGPRIdxReg);
3975   MachineBasicBlock *LoopBB = InsPt->getParent();
3976 
3977   if (UseGPRIdxMode) {
3978     const MCInstrDesc &GPRIDXDesc =
3979         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3980 
3981     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3982         .addReg(PhiReg)
3983         .add(*Val)
3984         .addReg(SGPRIdxReg)
3985         .addImm(AMDGPU::sub0);
3986   } else {
3987     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3988         TRI.getRegSizeInBits(*VecRC), 32, false);
3989     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3990         .addReg(PhiReg)
3991         .add(*Val)
3992         .addImm(AMDGPU::sub0);
3993   }
3994 
3995   MI.eraseFromParent();
3996   return LoopBB;
3997 }
3998 
3999 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
4000   MachineInstr &MI, MachineBasicBlock *BB) const {
4001 
4002   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4003   MachineFunction *MF = BB->getParent();
4004   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
4005 
4006   switch (MI.getOpcode()) {
4007   case AMDGPU::S_UADDO_PSEUDO:
4008   case AMDGPU::S_USUBO_PSEUDO: {
4009     const DebugLoc &DL = MI.getDebugLoc();
4010     MachineOperand &Dest0 = MI.getOperand(0);
4011     MachineOperand &Dest1 = MI.getOperand(1);
4012     MachineOperand &Src0 = MI.getOperand(2);
4013     MachineOperand &Src1 = MI.getOperand(3);
4014 
4015     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
4016                        ? AMDGPU::S_ADD_I32
4017                        : AMDGPU::S_SUB_I32;
4018     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
4019 
4020     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
4021         .addImm(1)
4022         .addImm(0);
4023 
4024     MI.eraseFromParent();
4025     return BB;
4026   }
4027   case AMDGPU::S_ADD_U64_PSEUDO:
4028   case AMDGPU::S_SUB_U64_PSEUDO: {
4029     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4030     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4031     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4032     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
4033     const DebugLoc &DL = MI.getDebugLoc();
4034 
4035     MachineOperand &Dest = MI.getOperand(0);
4036     MachineOperand &Src0 = MI.getOperand(1);
4037     MachineOperand &Src1 = MI.getOperand(2);
4038 
4039     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4040     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4041 
4042     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
4043         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4044     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
4045         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4046 
4047     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
4048         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4049     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
4050         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4051 
4052     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
4053 
4054     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
4055     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
4056     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
4057     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
4058     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4059         .addReg(DestSub0)
4060         .addImm(AMDGPU::sub0)
4061         .addReg(DestSub1)
4062         .addImm(AMDGPU::sub1);
4063     MI.eraseFromParent();
4064     return BB;
4065   }
4066   case AMDGPU::V_ADD_U64_PSEUDO:
4067   case AMDGPU::V_SUB_U64_PSEUDO: {
4068     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4069     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4070     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4071     const DebugLoc &DL = MI.getDebugLoc();
4072 
4073     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
4074 
4075     MachineOperand &Dest = MI.getOperand(0);
4076     MachineOperand &Src0 = MI.getOperand(1);
4077     MachineOperand &Src1 = MI.getOperand(2);
4078 
4079     if (IsAdd && ST.hasLshlAddB64()) {
4080       auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64),
4081                          Dest.getReg())
4082                      .add(Src0)
4083                      .addImm(0)
4084                      .add(Src1);
4085       TII->legalizeOperands(*Add);
4086       MI.eraseFromParent();
4087       return BB;
4088     }
4089 
4090     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4091 
4092     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4093     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4094 
4095     Register CarryReg = MRI.createVirtualRegister(CarryRC);
4096     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4097 
4098     const TargetRegisterClass *Src0RC = Src0.isReg()
4099                                             ? MRI.getRegClass(Src0.getReg())
4100                                             : &AMDGPU::VReg_64RegClass;
4101     const TargetRegisterClass *Src1RC = Src1.isReg()
4102                                             ? MRI.getRegClass(Src1.getReg())
4103                                             : &AMDGPU::VReg_64RegClass;
4104 
4105     const TargetRegisterClass *Src0SubRC =
4106         TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
4107     const TargetRegisterClass *Src1SubRC =
4108         TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
4109 
4110     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4111         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4112     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4113         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4114 
4115     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4116         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4117     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4118         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4119 
4120     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4121     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4122                                .addReg(CarryReg, RegState::Define)
4123                                .add(SrcReg0Sub0)
4124                                .add(SrcReg1Sub0)
4125                                .addImm(0); // clamp bit
4126 
4127     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4128     MachineInstr *HiHalf =
4129         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4130             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4131             .add(SrcReg0Sub1)
4132             .add(SrcReg1Sub1)
4133             .addReg(CarryReg, RegState::Kill)
4134             .addImm(0); // clamp bit
4135 
4136     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4137         .addReg(DestSub0)
4138         .addImm(AMDGPU::sub0)
4139         .addReg(DestSub1)
4140         .addImm(AMDGPU::sub1);
4141     TII->legalizeOperands(*LoHalf);
4142     TII->legalizeOperands(*HiHalf);
4143     MI.eraseFromParent();
4144     return BB;
4145   }
4146   case AMDGPU::S_ADD_CO_PSEUDO:
4147   case AMDGPU::S_SUB_CO_PSEUDO: {
4148     // This pseudo has a chance to be selected
4149     // only from uniform add/subcarry node. All the VGPR operands
4150     // therefore assumed to be splat vectors.
4151     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4152     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4153     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4154     MachineBasicBlock::iterator MII = MI;
4155     const DebugLoc &DL = MI.getDebugLoc();
4156     MachineOperand &Dest = MI.getOperand(0);
4157     MachineOperand &CarryDest = MI.getOperand(1);
4158     MachineOperand &Src0 = MI.getOperand(2);
4159     MachineOperand &Src1 = MI.getOperand(3);
4160     MachineOperand &Src2 = MI.getOperand(4);
4161     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4162                        ? AMDGPU::S_ADDC_U32
4163                        : AMDGPU::S_SUBB_U32;
4164     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4165       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4166       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4167           .addReg(Src0.getReg());
4168       Src0.setReg(RegOp0);
4169     }
4170     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4171       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4172       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4173           .addReg(Src1.getReg());
4174       Src1.setReg(RegOp1);
4175     }
4176     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4177     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4178       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4179           .addReg(Src2.getReg());
4180       Src2.setReg(RegOp2);
4181     }
4182 
4183     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4184     unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
4185     assert(WaveSize == 64 || WaveSize == 32);
4186 
4187     if (WaveSize == 64) {
4188       if (ST.hasScalarCompareEq64()) {
4189         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4190             .addReg(Src2.getReg())
4191             .addImm(0);
4192       } else {
4193         const TargetRegisterClass *SubRC =
4194             TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4195         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4196             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4197         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4198             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4199         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4200 
4201         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4202             .add(Src2Sub0)
4203             .add(Src2Sub1);
4204 
4205         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4206             .addReg(Src2_32, RegState::Kill)
4207             .addImm(0);
4208       }
4209     } else {
4210       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4211           .addReg(Src2.getReg())
4212           .addImm(0);
4213     }
4214 
4215     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4216 
4217     unsigned SelOpc =
4218         (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
4219 
4220     BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
4221         .addImm(-1)
4222         .addImm(0);
4223 
4224     MI.eraseFromParent();
4225     return BB;
4226   }
4227   case AMDGPU::SI_INIT_M0: {
4228     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4229             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4230         .add(MI.getOperand(0));
4231     MI.eraseFromParent();
4232     return BB;
4233   }
4234   case AMDGPU::GET_GROUPSTATICSIZE: {
4235     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4236            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4237     DebugLoc DL = MI.getDebugLoc();
4238     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4239         .add(MI.getOperand(0))
4240         .addImm(MFI->getLDSSize());
4241     MI.eraseFromParent();
4242     return BB;
4243   }
4244   case AMDGPU::SI_INDIRECT_SRC_V1:
4245   case AMDGPU::SI_INDIRECT_SRC_V2:
4246   case AMDGPU::SI_INDIRECT_SRC_V4:
4247   case AMDGPU::SI_INDIRECT_SRC_V8:
4248   case AMDGPU::SI_INDIRECT_SRC_V16:
4249   case AMDGPU::SI_INDIRECT_SRC_V32:
4250     return emitIndirectSrc(MI, *BB, *getSubtarget());
4251   case AMDGPU::SI_INDIRECT_DST_V1:
4252   case AMDGPU::SI_INDIRECT_DST_V2:
4253   case AMDGPU::SI_INDIRECT_DST_V4:
4254   case AMDGPU::SI_INDIRECT_DST_V8:
4255   case AMDGPU::SI_INDIRECT_DST_V16:
4256   case AMDGPU::SI_INDIRECT_DST_V32:
4257     return emitIndirectDst(MI, *BB, *getSubtarget());
4258   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4259   case AMDGPU::SI_KILL_I1_PSEUDO:
4260     return splitKillBlock(MI, BB);
4261   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4262     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4263     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4264     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4265 
4266     Register Dst = MI.getOperand(0).getReg();
4267     Register Src0 = MI.getOperand(1).getReg();
4268     Register Src1 = MI.getOperand(2).getReg();
4269     const DebugLoc &DL = MI.getDebugLoc();
4270     Register SrcCond = MI.getOperand(3).getReg();
4271 
4272     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4273     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4274     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4275     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4276 
4277     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4278       .addReg(SrcCond);
4279     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4280       .addImm(0)
4281       .addReg(Src0, 0, AMDGPU::sub0)
4282       .addImm(0)
4283       .addReg(Src1, 0, AMDGPU::sub0)
4284       .addReg(SrcCondCopy);
4285     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4286       .addImm(0)
4287       .addReg(Src0, 0, AMDGPU::sub1)
4288       .addImm(0)
4289       .addReg(Src1, 0, AMDGPU::sub1)
4290       .addReg(SrcCondCopy);
4291 
4292     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4293       .addReg(DstLo)
4294       .addImm(AMDGPU::sub0)
4295       .addReg(DstHi)
4296       .addImm(AMDGPU::sub1);
4297     MI.eraseFromParent();
4298     return BB;
4299   }
4300   case AMDGPU::SI_BR_UNDEF: {
4301     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4302     const DebugLoc &DL = MI.getDebugLoc();
4303     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4304                            .add(MI.getOperand(0));
4305     Br->getOperand(1).setIsUndef(true); // read undef SCC
4306     MI.eraseFromParent();
4307     return BB;
4308   }
4309   case AMDGPU::ADJCALLSTACKUP:
4310   case AMDGPU::ADJCALLSTACKDOWN: {
4311     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4312     MachineInstrBuilder MIB(*MF, &MI);
4313     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4314        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4315     return BB;
4316   }
4317   case AMDGPU::SI_CALL_ISEL: {
4318     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4319     const DebugLoc &DL = MI.getDebugLoc();
4320 
4321     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4322 
4323     MachineInstrBuilder MIB;
4324     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4325 
4326     for (const MachineOperand &MO : MI.operands())
4327       MIB.add(MO);
4328 
4329     MIB.cloneMemRefs(MI);
4330     MI.eraseFromParent();
4331     return BB;
4332   }
4333   case AMDGPU::V_ADD_CO_U32_e32:
4334   case AMDGPU::V_SUB_CO_U32_e32:
4335   case AMDGPU::V_SUBREV_CO_U32_e32: {
4336     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4337     const DebugLoc &DL = MI.getDebugLoc();
4338     unsigned Opc = MI.getOpcode();
4339 
4340     bool NeedClampOperand = false;
4341     if (TII->pseudoToMCOpcode(Opc) == -1) {
4342       Opc = AMDGPU::getVOPe64(Opc);
4343       NeedClampOperand = true;
4344     }
4345 
4346     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4347     if (TII->isVOP3(*I)) {
4348       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4349       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4350       I.addReg(TRI->getVCC(), RegState::Define);
4351     }
4352     I.add(MI.getOperand(1))
4353      .add(MI.getOperand(2));
4354     if (NeedClampOperand)
4355       I.addImm(0); // clamp bit for e64 encoding
4356 
4357     TII->legalizeOperands(*I);
4358 
4359     MI.eraseFromParent();
4360     return BB;
4361   }
4362   case AMDGPU::V_ADDC_U32_e32:
4363   case AMDGPU::V_SUBB_U32_e32:
4364   case AMDGPU::V_SUBBREV_U32_e32:
4365     // These instructions have an implicit use of vcc which counts towards the
4366     // constant bus limit.
4367     TII->legalizeOperands(MI);
4368     return BB;
4369   case AMDGPU::DS_GWS_INIT:
4370   case AMDGPU::DS_GWS_SEMA_BR:
4371   case AMDGPU::DS_GWS_BARRIER:
4372     if (Subtarget->needsAlignedVGPRs()) {
4373       // Add implicit aligned super-reg to force alignment on the data operand.
4374       const DebugLoc &DL = MI.getDebugLoc();
4375       MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4376       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
4377       MachineOperand *Op = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
4378       Register DataReg = Op->getReg();
4379       bool IsAGPR = TRI->isAGPR(MRI, DataReg);
4380       Register Undef = MRI.createVirtualRegister(
4381           IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass);
4382       BuildMI(*BB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), Undef);
4383       Register NewVR =
4384           MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass
4385                                            : &AMDGPU::VReg_64_Align2RegClass);
4386       BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), NewVR)
4387           .addReg(DataReg, 0, Op->getSubReg())
4388           .addImm(AMDGPU::sub0)
4389           .addReg(Undef)
4390           .addImm(AMDGPU::sub1);
4391       Op->setReg(NewVR);
4392       Op->setSubReg(AMDGPU::sub0);
4393       MI.addOperand(MachineOperand::CreateReg(NewVR, false, true));
4394     }
4395     LLVM_FALLTHROUGH;
4396   case AMDGPU::DS_GWS_SEMA_V:
4397   case AMDGPU::DS_GWS_SEMA_P:
4398   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4399     // A s_waitcnt 0 is required to be the instruction immediately following.
4400     if (getSubtarget()->hasGWSAutoReplay()) {
4401       bundleInstWithWaitcnt(MI);
4402       return BB;
4403     }
4404 
4405     return emitGWSMemViolTestLoop(MI, BB);
4406   case AMDGPU::S_SETREG_B32: {
4407     // Try to optimize cases that only set the denormal mode or rounding mode.
4408     //
4409     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4410     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4411     // instead.
4412     //
4413     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4414     // allow you to have a no side effect instruction in the output of a
4415     // sideeffecting pattern.
4416     unsigned ID, Offset, Width;
4417     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4418     if (ID != AMDGPU::Hwreg::ID_MODE)
4419       return BB;
4420 
4421     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4422     const unsigned SetMask = WidthMask << Offset;
4423 
4424     if (getSubtarget()->hasDenormModeInst()) {
4425       unsigned SetDenormOp = 0;
4426       unsigned SetRoundOp = 0;
4427 
4428       // The dedicated instructions can only set the whole denorm or round mode
4429       // at once, not a subset of bits in either.
4430       if (SetMask ==
4431           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4432         // If this fully sets both the round and denorm mode, emit the two
4433         // dedicated instructions for these.
4434         SetRoundOp = AMDGPU::S_ROUND_MODE;
4435         SetDenormOp = AMDGPU::S_DENORM_MODE;
4436       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4437         SetRoundOp = AMDGPU::S_ROUND_MODE;
4438       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4439         SetDenormOp = AMDGPU::S_DENORM_MODE;
4440       }
4441 
4442       if (SetRoundOp || SetDenormOp) {
4443         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4444         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4445         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4446           unsigned ImmVal = Def->getOperand(1).getImm();
4447           if (SetRoundOp) {
4448             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4449                 .addImm(ImmVal & 0xf);
4450 
4451             // If we also have the denorm mode, get just the denorm mode bits.
4452             ImmVal >>= 4;
4453           }
4454 
4455           if (SetDenormOp) {
4456             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4457                 .addImm(ImmVal & 0xf);
4458           }
4459 
4460           MI.eraseFromParent();
4461           return BB;
4462         }
4463       }
4464     }
4465 
4466     // If only FP bits are touched, used the no side effects pseudo.
4467     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4468                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4469       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4470 
4471     return BB;
4472   }
4473   default:
4474     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4475   }
4476 }
4477 
4478 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4479   return isTypeLegal(VT.getScalarType());
4480 }
4481 
4482 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4483   // This currently forces unfolding various combinations of fsub into fma with
4484   // free fneg'd operands. As long as we have fast FMA (controlled by
4485   // isFMAFasterThanFMulAndFAdd), we should perform these.
4486 
4487   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4488   // most of these combines appear to be cycle neutral but save on instruction
4489   // count / code size.
4490   return true;
4491 }
4492 
4493 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; }
4494 
4495 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4496                                          EVT VT) const {
4497   if (!VT.isVector()) {
4498     return MVT::i1;
4499   }
4500   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4501 }
4502 
4503 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4504   // TODO: Should i16 be used always if legal? For now it would force VALU
4505   // shifts.
4506   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4507 }
4508 
4509 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4510   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4511              ? Ty.changeElementSize(16)
4512              : Ty.changeElementSize(32);
4513 }
4514 
4515 // Answering this is somewhat tricky and depends on the specific device which
4516 // have different rates for fma or all f64 operations.
4517 //
4518 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4519 // regardless of which device (although the number of cycles differs between
4520 // devices), so it is always profitable for f64.
4521 //
4522 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4523 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4524 // which we can always do even without fused FP ops since it returns the same
4525 // result as the separate operations and since it is always full
4526 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4527 // however does not support denormals, so we do report fma as faster if we have
4528 // a fast fma device and require denormals.
4529 //
4530 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4531                                                   EVT VT) const {
4532   VT = VT.getScalarType();
4533 
4534   switch (VT.getSimpleVT().SimpleTy) {
4535   case MVT::f32: {
4536     // If mad is not available this depends only on if f32 fma is full rate.
4537     if (!Subtarget->hasMadMacF32Insts())
4538       return Subtarget->hasFastFMAF32();
4539 
4540     // Otherwise f32 mad is always full rate and returns the same result as
4541     // the separate operations so should be preferred over fma.
4542     // However does not support denormals.
4543     if (hasFP32Denormals(MF))
4544       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4545 
4546     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4547     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4548   }
4549   case MVT::f64:
4550     return true;
4551   case MVT::f16:
4552     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4553   default:
4554     break;
4555   }
4556 
4557   return false;
4558 }
4559 
4560 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4561                                                   LLT Ty) const {
4562   switch (Ty.getScalarSizeInBits()) {
4563   case 16:
4564     return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
4565   case 32:
4566     return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
4567   case 64:
4568     return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
4569   default:
4570     break;
4571   }
4572 
4573   return false;
4574 }
4575 
4576 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const {
4577   if (!Ty.isScalar())
4578     return false;
4579 
4580   if (Ty.getScalarSizeInBits() == 16)
4581     return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF());
4582   if (Ty.getScalarSizeInBits() == 32)
4583     return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF());
4584 
4585   return false;
4586 }
4587 
4588 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4589                                    const SDNode *N) const {
4590   // TODO: Check future ftz flag
4591   // v_mad_f32/v_mac_f32 do not support denormals.
4592   EVT VT = N->getValueType(0);
4593   if (VT == MVT::f32)
4594     return Subtarget->hasMadMacF32Insts() &&
4595            !hasFP32Denormals(DAG.getMachineFunction());
4596   if (VT == MVT::f16) {
4597     return Subtarget->hasMadF16() &&
4598            !hasFP64FP16Denormals(DAG.getMachineFunction());
4599   }
4600 
4601   return false;
4602 }
4603 
4604 //===----------------------------------------------------------------------===//
4605 // Custom DAG Lowering Operations
4606 //===----------------------------------------------------------------------===//
4607 
4608 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4609 // wider vector type is legal.
4610 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4611                                              SelectionDAG &DAG) const {
4612   unsigned Opc = Op.getOpcode();
4613   EVT VT = Op.getValueType();
4614   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4615 
4616   SDValue Lo, Hi;
4617   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4618 
4619   SDLoc SL(Op);
4620   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4621                              Op->getFlags());
4622   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4623                              Op->getFlags());
4624 
4625   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4626 }
4627 
4628 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4629 // wider vector type is legal.
4630 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4631                                               SelectionDAG &DAG) const {
4632   unsigned Opc = Op.getOpcode();
4633   EVT VT = Op.getValueType();
4634   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4635          VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8f32 ||
4636          VT == MVT::v16f32 || VT == MVT::v32f32);
4637 
4638   SDValue Lo0, Hi0;
4639   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4640   SDValue Lo1, Hi1;
4641   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4642 
4643   SDLoc SL(Op);
4644 
4645   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4646                              Op->getFlags());
4647   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4648                              Op->getFlags());
4649 
4650   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4651 }
4652 
4653 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4654                                               SelectionDAG &DAG) const {
4655   unsigned Opc = Op.getOpcode();
4656   EVT VT = Op.getValueType();
4657   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
4658          VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v8f32 ||
4659          VT == MVT::v16f32 || VT == MVT::v32f32);
4660 
4661   SDValue Lo0, Hi0;
4662   SDValue Op0 = Op.getOperand(0);
4663   std::tie(Lo0, Hi0) = Op0.getValueType().isVector()
4664                          ? DAG.SplitVectorOperand(Op.getNode(), 0)
4665                          : std::make_pair(Op0, Op0);
4666   SDValue Lo1, Hi1;
4667   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4668   SDValue Lo2, Hi2;
4669   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4670 
4671   SDLoc SL(Op);
4672   auto ResVT = DAG.GetSplitDestVTs(VT);
4673 
4674   SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2,
4675                              Op->getFlags());
4676   SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2,
4677                              Op->getFlags());
4678 
4679   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4680 }
4681 
4682 
4683 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4684   switch (Op.getOpcode()) {
4685   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4686   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4687   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4688   case ISD::LOAD: {
4689     SDValue Result = LowerLOAD(Op, DAG);
4690     assert((!Result.getNode() ||
4691             Result.getNode()->getNumValues() == 2) &&
4692            "Load should return a value and a chain");
4693     return Result;
4694   }
4695 
4696   case ISD::FSIN:
4697   case ISD::FCOS:
4698     return LowerTrig(Op, DAG);
4699   case ISD::SELECT: return LowerSELECT(Op, DAG);
4700   case ISD::FDIV: return LowerFDIV(Op, DAG);
4701   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4702   case ISD::STORE: return LowerSTORE(Op, DAG);
4703   case ISD::GlobalAddress: {
4704     MachineFunction &MF = DAG.getMachineFunction();
4705     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4706     return LowerGlobalAddress(MFI, Op, DAG);
4707   }
4708   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4709   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4710   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4711   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4712   case ISD::INSERT_SUBVECTOR:
4713     return lowerINSERT_SUBVECTOR(Op, DAG);
4714   case ISD::INSERT_VECTOR_ELT:
4715     return lowerINSERT_VECTOR_ELT(Op, DAG);
4716   case ISD::EXTRACT_VECTOR_ELT:
4717     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4718   case ISD::VECTOR_SHUFFLE:
4719     return lowerVECTOR_SHUFFLE(Op, DAG);
4720   case ISD::BUILD_VECTOR:
4721     return lowerBUILD_VECTOR(Op, DAG);
4722   case ISD::FP_ROUND:
4723     return lowerFP_ROUND(Op, DAG);
4724   case ISD::FPTRUNC_ROUND: {
4725     unsigned Opc;
4726     SDLoc DL(Op);
4727 
4728     if (Op.getOperand(0)->getValueType(0) != MVT::f32)
4729       return SDValue();
4730 
4731     // Get the rounding mode from the last operand
4732     int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4733     if (RoundMode == (int)RoundingMode::TowardPositive)
4734       Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD;
4735     else if (RoundMode == (int)RoundingMode::TowardNegative)
4736       Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD;
4737     else
4738       return SDValue();
4739 
4740     return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0));
4741   }
4742   case ISD::TRAP:
4743     return lowerTRAP(Op, DAG);
4744   case ISD::DEBUGTRAP:
4745     return lowerDEBUGTRAP(Op, DAG);
4746   case ISD::FABS:
4747   case ISD::FNEG:
4748   case ISD::FCANONICALIZE:
4749   case ISD::BSWAP:
4750     return splitUnaryVectorOp(Op, DAG);
4751   case ISD::FMINNUM:
4752   case ISD::FMAXNUM:
4753     return lowerFMINNUM_FMAXNUM(Op, DAG);
4754   case ISD::FMA:
4755     return splitTernaryVectorOp(Op, DAG);
4756   case ISD::FP_TO_SINT:
4757   case ISD::FP_TO_UINT:
4758     return LowerFP_TO_INT(Op, DAG);
4759   case ISD::SHL:
4760   case ISD::SRA:
4761   case ISD::SRL:
4762   case ISD::ADD:
4763   case ISD::SUB:
4764   case ISD::MUL:
4765   case ISD::SMIN:
4766   case ISD::SMAX:
4767   case ISD::UMIN:
4768   case ISD::UMAX:
4769   case ISD::FADD:
4770   case ISD::FMUL:
4771   case ISD::FMINNUM_IEEE:
4772   case ISD::FMAXNUM_IEEE:
4773   case ISD::UADDSAT:
4774   case ISD::USUBSAT:
4775   case ISD::SADDSAT:
4776   case ISD::SSUBSAT:
4777     return splitBinaryVectorOp(Op, DAG);
4778   case ISD::SMULO:
4779   case ISD::UMULO:
4780     return lowerXMULO(Op, DAG);
4781   case ISD::SMUL_LOHI:
4782   case ISD::UMUL_LOHI:
4783     return lowerXMUL_LOHI(Op, DAG);
4784   case ISD::DYNAMIC_STACKALLOC:
4785     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4786   }
4787   return SDValue();
4788 }
4789 
4790 // Used for D16: Casts the result of an instruction into the right vector,
4791 // packs values if loads return unpacked values.
4792 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4793                                        const SDLoc &DL,
4794                                        SelectionDAG &DAG, bool Unpacked) {
4795   if (!LoadVT.isVector())
4796     return Result;
4797 
4798   // Cast back to the original packed type or to a larger type that is a
4799   // multiple of 32 bit for D16. Widening the return type is a required for
4800   // legalization.
4801   EVT FittingLoadVT = LoadVT;
4802   if ((LoadVT.getVectorNumElements() % 2) == 1) {
4803     FittingLoadVT =
4804         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4805                          LoadVT.getVectorNumElements() + 1);
4806   }
4807 
4808   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4809     // Truncate to v2i16/v4i16.
4810     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4811 
4812     // Workaround legalizer not scalarizing truncate after vector op
4813     // legalization but not creating intermediate vector trunc.
4814     SmallVector<SDValue, 4> Elts;
4815     DAG.ExtractVectorElements(Result, Elts);
4816     for (SDValue &Elt : Elts)
4817       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4818 
4819     // Pad illegal v1i16/v3fi6 to v4i16
4820     if ((LoadVT.getVectorNumElements() % 2) == 1)
4821       Elts.push_back(DAG.getUNDEF(MVT::i16));
4822 
4823     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4824 
4825     // Bitcast to original type (v2f16/v4f16).
4826     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4827   }
4828 
4829   // Cast back to the original packed type.
4830   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4831 }
4832 
4833 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4834                                               MemSDNode *M,
4835                                               SelectionDAG &DAG,
4836                                               ArrayRef<SDValue> Ops,
4837                                               bool IsIntrinsic) const {
4838   SDLoc DL(M);
4839 
4840   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4841   EVT LoadVT = M->getValueType(0);
4842 
4843   EVT EquivLoadVT = LoadVT;
4844   if (LoadVT.isVector()) {
4845     if (Unpacked) {
4846       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4847                                      LoadVT.getVectorNumElements());
4848     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4849       // Widen v3f16 to legal type
4850       EquivLoadVT =
4851           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4852                            LoadVT.getVectorNumElements() + 1);
4853     }
4854   }
4855 
4856   // Change from v4f16/v2f16 to EquivLoadVT.
4857   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4858 
4859   SDValue Load
4860     = DAG.getMemIntrinsicNode(
4861       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4862       VTList, Ops, M->getMemoryVT(),
4863       M->getMemOperand());
4864 
4865   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4866 
4867   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4868 }
4869 
4870 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4871                                              SelectionDAG &DAG,
4872                                              ArrayRef<SDValue> Ops) const {
4873   SDLoc DL(M);
4874   EVT LoadVT = M->getValueType(0);
4875   EVT EltType = LoadVT.getScalarType();
4876   EVT IntVT = LoadVT.changeTypeToInteger();
4877 
4878   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4879 
4880   unsigned Opc =
4881       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4882 
4883   if (IsD16) {
4884     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4885   }
4886 
4887   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4888   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4889     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4890 
4891   if (isTypeLegal(LoadVT)) {
4892     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4893                                M->getMemOperand(), DAG);
4894   }
4895 
4896   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4897   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4898   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4899                                         M->getMemOperand(), DAG);
4900   return DAG.getMergeValues(
4901       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4902       DL);
4903 }
4904 
4905 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4906                                   SDNode *N, SelectionDAG &DAG) {
4907   EVT VT = N->getValueType(0);
4908   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4909   unsigned CondCode = CD->getZExtValue();
4910   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4911     return DAG.getUNDEF(VT);
4912 
4913   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4914 
4915   SDValue LHS = N->getOperand(1);
4916   SDValue RHS = N->getOperand(2);
4917 
4918   SDLoc DL(N);
4919 
4920   EVT CmpVT = LHS.getValueType();
4921   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4922     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4923       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4924     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4925     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4926   }
4927 
4928   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4929 
4930   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4931   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4932 
4933   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4934                               DAG.getCondCode(CCOpcode));
4935   if (VT.bitsEq(CCVT))
4936     return SetCC;
4937   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4938 }
4939 
4940 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4941                                   SDNode *N, SelectionDAG &DAG) {
4942   EVT VT = N->getValueType(0);
4943   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4944 
4945   unsigned CondCode = CD->getZExtValue();
4946   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4947     return DAG.getUNDEF(VT);
4948 
4949   SDValue Src0 = N->getOperand(1);
4950   SDValue Src1 = N->getOperand(2);
4951   EVT CmpVT = Src0.getValueType();
4952   SDLoc SL(N);
4953 
4954   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4955     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4956     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4957   }
4958 
4959   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4960   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4961   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4962   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4963   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4964                               Src1, DAG.getCondCode(CCOpcode));
4965   if (VT.bitsEq(CCVT))
4966     return SetCC;
4967   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4968 }
4969 
4970 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4971                                     SelectionDAG &DAG) {
4972   EVT VT = N->getValueType(0);
4973   SDValue Src = N->getOperand(1);
4974   SDLoc SL(N);
4975 
4976   if (Src.getOpcode() == ISD::SETCC) {
4977     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4978     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4979                        Src.getOperand(1), Src.getOperand(2));
4980   }
4981   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4982     // (ballot 0) -> 0
4983     if (Arg->isZero())
4984       return DAG.getConstant(0, SL, VT);
4985 
4986     // (ballot 1) -> EXEC/EXEC_LO
4987     if (Arg->isOne()) {
4988       Register Exec;
4989       if (VT.getScalarSizeInBits() == 32)
4990         Exec = AMDGPU::EXEC_LO;
4991       else if (VT.getScalarSizeInBits() == 64)
4992         Exec = AMDGPU::EXEC;
4993       else
4994         return SDValue();
4995 
4996       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4997     }
4998   }
4999 
5000   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
5001   // ISD::SETNE)
5002   return DAG.getNode(
5003       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
5004       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
5005 }
5006 
5007 void SITargetLowering::ReplaceNodeResults(SDNode *N,
5008                                           SmallVectorImpl<SDValue> &Results,
5009                                           SelectionDAG &DAG) const {
5010   switch (N->getOpcode()) {
5011   case ISD::INSERT_VECTOR_ELT: {
5012     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
5013       Results.push_back(Res);
5014     return;
5015   }
5016   case ISD::EXTRACT_VECTOR_ELT: {
5017     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
5018       Results.push_back(Res);
5019     return;
5020   }
5021   case ISD::INTRINSIC_WO_CHAIN: {
5022     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5023     switch (IID) {
5024     case Intrinsic::amdgcn_cvt_pkrtz: {
5025       SDValue Src0 = N->getOperand(1);
5026       SDValue Src1 = N->getOperand(2);
5027       SDLoc SL(N);
5028       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
5029                                 Src0, Src1);
5030       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
5031       return;
5032     }
5033     case Intrinsic::amdgcn_cvt_pknorm_i16:
5034     case Intrinsic::amdgcn_cvt_pknorm_u16:
5035     case Intrinsic::amdgcn_cvt_pk_i16:
5036     case Intrinsic::amdgcn_cvt_pk_u16: {
5037       SDValue Src0 = N->getOperand(1);
5038       SDValue Src1 = N->getOperand(2);
5039       SDLoc SL(N);
5040       unsigned Opcode;
5041 
5042       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
5043         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
5044       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
5045         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
5046       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
5047         Opcode = AMDGPUISD::CVT_PK_I16_I32;
5048       else
5049         Opcode = AMDGPUISD::CVT_PK_U16_U32;
5050 
5051       EVT VT = N->getValueType(0);
5052       if (isTypeLegal(VT))
5053         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
5054       else {
5055         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
5056         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
5057       }
5058       return;
5059     }
5060     }
5061     break;
5062   }
5063   case ISD::INTRINSIC_W_CHAIN: {
5064     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
5065       if (Res.getOpcode() == ISD::MERGE_VALUES) {
5066         // FIXME: Hacky
5067         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
5068           Results.push_back(Res.getOperand(I));
5069         }
5070       } else {
5071         Results.push_back(Res);
5072         Results.push_back(Res.getValue(1));
5073       }
5074       return;
5075     }
5076 
5077     break;
5078   }
5079   case ISD::SELECT: {
5080     SDLoc SL(N);
5081     EVT VT = N->getValueType(0);
5082     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
5083     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
5084     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
5085 
5086     EVT SelectVT = NewVT;
5087     if (NewVT.bitsLT(MVT::i32)) {
5088       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
5089       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
5090       SelectVT = MVT::i32;
5091     }
5092 
5093     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
5094                                     N->getOperand(0), LHS, RHS);
5095 
5096     if (NewVT != SelectVT)
5097       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
5098     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
5099     return;
5100   }
5101   case ISD::FNEG: {
5102     if (N->getValueType(0) != MVT::v2f16)
5103       break;
5104 
5105     SDLoc SL(N);
5106     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5107 
5108     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
5109                              BC,
5110                              DAG.getConstant(0x80008000, SL, MVT::i32));
5111     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5112     return;
5113   }
5114   case ISD::FABS: {
5115     if (N->getValueType(0) != MVT::v2f16)
5116       break;
5117 
5118     SDLoc SL(N);
5119     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5120 
5121     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
5122                              BC,
5123                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
5124     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5125     return;
5126   }
5127   default:
5128     break;
5129   }
5130 }
5131 
5132 /// Helper function for LowerBRCOND
5133 static SDNode *findUser(SDValue Value, unsigned Opcode) {
5134 
5135   SDNode *Parent = Value.getNode();
5136   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
5137        I != E; ++I) {
5138 
5139     if (I.getUse().get() != Value)
5140       continue;
5141 
5142     if (I->getOpcode() == Opcode)
5143       return *I;
5144   }
5145   return nullptr;
5146 }
5147 
5148 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
5149   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
5150     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
5151     case Intrinsic::amdgcn_if:
5152       return AMDGPUISD::IF;
5153     case Intrinsic::amdgcn_else:
5154       return AMDGPUISD::ELSE;
5155     case Intrinsic::amdgcn_loop:
5156       return AMDGPUISD::LOOP;
5157     case Intrinsic::amdgcn_end_cf:
5158       llvm_unreachable("should not occur");
5159     default:
5160       return 0;
5161     }
5162   }
5163 
5164   // break, if_break, else_break are all only used as inputs to loop, not
5165   // directly as branch conditions.
5166   return 0;
5167 }
5168 
5169 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
5170   const Triple &TT = getTargetMachine().getTargetTriple();
5171   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5172           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5173          AMDGPU::shouldEmitConstantsToTextSection(TT);
5174 }
5175 
5176 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
5177   // FIXME: Either avoid relying on address space here or change the default
5178   // address space for functions to avoid the explicit check.
5179   return (GV->getValueType()->isFunctionTy() ||
5180           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
5181          !shouldEmitFixup(GV) &&
5182          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5183 }
5184 
5185 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5186   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5187 }
5188 
5189 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5190   if (!GV->hasExternalLinkage())
5191     return true;
5192 
5193   const auto OS = getTargetMachine().getTargetTriple().getOS();
5194   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5195 }
5196 
5197 /// This transforms the control flow intrinsics to get the branch destination as
5198 /// last parameter, also switches branch target with BR if the need arise
5199 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5200                                       SelectionDAG &DAG) const {
5201   SDLoc DL(BRCOND);
5202 
5203   SDNode *Intr = BRCOND.getOperand(1).getNode();
5204   SDValue Target = BRCOND.getOperand(2);
5205   SDNode *BR = nullptr;
5206   SDNode *SetCC = nullptr;
5207 
5208   if (Intr->getOpcode() == ISD::SETCC) {
5209     // As long as we negate the condition everything is fine
5210     SetCC = Intr;
5211     Intr = SetCC->getOperand(0).getNode();
5212 
5213   } else {
5214     // Get the target from BR if we don't negate the condition
5215     BR = findUser(BRCOND, ISD::BR);
5216     assert(BR && "brcond missing unconditional branch user");
5217     Target = BR->getOperand(1);
5218   }
5219 
5220   unsigned CFNode = isCFIntrinsic(Intr);
5221   if (CFNode == 0) {
5222     // This is a uniform branch so we don't need to legalize.
5223     return BRCOND;
5224   }
5225 
5226   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5227                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5228 
5229   assert(!SetCC ||
5230         (SetCC->getConstantOperandVal(1) == 1 &&
5231          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5232                                                              ISD::SETNE));
5233 
5234   // operands of the new intrinsic call
5235   SmallVector<SDValue, 4> Ops;
5236   if (HaveChain)
5237     Ops.push_back(BRCOND.getOperand(0));
5238 
5239   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
5240   Ops.push_back(Target);
5241 
5242   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5243 
5244   // build the new intrinsic call
5245   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5246 
5247   if (!HaveChain) {
5248     SDValue Ops[] =  {
5249       SDValue(Result, 0),
5250       BRCOND.getOperand(0)
5251     };
5252 
5253     Result = DAG.getMergeValues(Ops, DL).getNode();
5254   }
5255 
5256   if (BR) {
5257     // Give the branch instruction our target
5258     SDValue Ops[] = {
5259       BR->getOperand(0),
5260       BRCOND.getOperand(2)
5261     };
5262     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5263     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5264   }
5265 
5266   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5267 
5268   // Copy the intrinsic results to registers
5269   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5270     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5271     if (!CopyToReg)
5272       continue;
5273 
5274     Chain = DAG.getCopyToReg(
5275       Chain, DL,
5276       CopyToReg->getOperand(1),
5277       SDValue(Result, i - 1),
5278       SDValue());
5279 
5280     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5281   }
5282 
5283   // Remove the old intrinsic from the chain
5284   DAG.ReplaceAllUsesOfValueWith(
5285     SDValue(Intr, Intr->getNumValues() - 1),
5286     Intr->getOperand(0));
5287 
5288   return Chain;
5289 }
5290 
5291 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5292                                           SelectionDAG &DAG) const {
5293   MVT VT = Op.getSimpleValueType();
5294   SDLoc DL(Op);
5295   // Checking the depth
5296   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5297     return DAG.getConstant(0, DL, VT);
5298 
5299   MachineFunction &MF = DAG.getMachineFunction();
5300   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5301   // Check for kernel and shader functions
5302   if (Info->isEntryFunction())
5303     return DAG.getConstant(0, DL, VT);
5304 
5305   MachineFrameInfo &MFI = MF.getFrameInfo();
5306   // There is a call to @llvm.returnaddress in this function
5307   MFI.setReturnAddressIsTaken(true);
5308 
5309   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5310   // Get the return address reg and mark it as an implicit live-in
5311   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5312 
5313   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5314 }
5315 
5316 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5317                                             SDValue Op,
5318                                             const SDLoc &DL,
5319                                             EVT VT) const {
5320   return Op.getValueType().bitsLE(VT) ?
5321       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5322     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5323                 DAG.getTargetConstant(0, DL, MVT::i32));
5324 }
5325 
5326 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5327   assert(Op.getValueType() == MVT::f16 &&
5328          "Do not know how to custom lower FP_ROUND for non-f16 type");
5329 
5330   SDValue Src = Op.getOperand(0);
5331   EVT SrcVT = Src.getValueType();
5332   if (SrcVT != MVT::f64)
5333     return Op;
5334 
5335   SDLoc DL(Op);
5336 
5337   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5338   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5339   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5340 }
5341 
5342 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5343                                                SelectionDAG &DAG) const {
5344   EVT VT = Op.getValueType();
5345   const MachineFunction &MF = DAG.getMachineFunction();
5346   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5347   bool IsIEEEMode = Info->getMode().IEEE;
5348 
5349   // FIXME: Assert during selection that this is only selected for
5350   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5351   // mode functions, but this happens to be OK since it's only done in cases
5352   // where there is known no sNaN.
5353   if (IsIEEEMode)
5354     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5355 
5356   if (VT == MVT::v4f16 || VT == MVT::v8f16)
5357     return splitBinaryVectorOp(Op, DAG);
5358   return Op;
5359 }
5360 
5361 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5362   EVT VT = Op.getValueType();
5363   SDLoc SL(Op);
5364   SDValue LHS = Op.getOperand(0);
5365   SDValue RHS = Op.getOperand(1);
5366   bool isSigned = Op.getOpcode() == ISD::SMULO;
5367 
5368   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5369     const APInt &C = RHSC->getAPIntValue();
5370     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5371     if (C.isPowerOf2()) {
5372       // smulo(x, signed_min) is same as umulo(x, signed_min).
5373       bool UseArithShift = isSigned && !C.isMinSignedValue();
5374       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5375       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5376       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5377           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5378                       SL, VT, Result, ShiftAmt),
5379           LHS, ISD::SETNE);
5380       return DAG.getMergeValues({ Result, Overflow }, SL);
5381     }
5382   }
5383 
5384   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5385   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5386                             SL, VT, LHS, RHS);
5387 
5388   SDValue Sign = isSigned
5389     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5390                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5391     : DAG.getConstant(0, SL, VT);
5392   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5393 
5394   return DAG.getMergeValues({ Result, Overflow }, SL);
5395 }
5396 
5397 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
5398   if (Op->isDivergent()) {
5399     // Select to V_MAD_[IU]64_[IU]32.
5400     return Op;
5401   }
5402   if (Subtarget->hasSMulHi()) {
5403     // Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
5404     return SDValue();
5405   }
5406   // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
5407   // calculate the high part, so we might as well do the whole thing with
5408   // V_MAD_[IU]64_[IU]32.
5409   return Op;
5410 }
5411 
5412 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5413   if (!Subtarget->isTrapHandlerEnabled() ||
5414       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5415     return lowerTrapEndpgm(Op, DAG);
5416 
5417   if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) {
5418     switch (*HsaAbiVer) {
5419     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
5420     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
5421       return lowerTrapHsaQueuePtr(Op, DAG);
5422     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
5423     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
5424       return Subtarget->supportsGetDoorbellID() ?
5425           lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG);
5426     }
5427   }
5428 
5429   llvm_unreachable("Unknown trap handler");
5430 }
5431 
5432 SDValue SITargetLowering::lowerTrapEndpgm(
5433     SDValue Op, SelectionDAG &DAG) const {
5434   SDLoc SL(Op);
5435   SDValue Chain = Op.getOperand(0);
5436   return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5437 }
5438 
5439 SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5440     SDValue Op, SelectionDAG &DAG) const {
5441   SDLoc SL(Op);
5442   SDValue Chain = Op.getOperand(0);
5443 
5444   MachineFunction &MF = DAG.getMachineFunction();
5445   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5446   Register UserSGPR = Info->getQueuePtrUserSGPR();
5447 
5448   SDValue QueuePtr;
5449   if (UserSGPR == AMDGPU::NoRegister) {
5450     // We probably are in a function incorrectly marked with
5451     // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the trap,
5452     // so just use a null pointer.
5453     QueuePtr = DAG.getConstant(0, SL, MVT::i64);
5454   } else {
5455     QueuePtr = CreateLiveInRegister(
5456       DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5457   }
5458 
5459   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5460   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5461                                    QueuePtr, SDValue());
5462 
5463   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5464   SDValue Ops[] = {
5465     ToReg,
5466     DAG.getTargetConstant(TrapID, SL, MVT::i16),
5467     SGPR01,
5468     ToReg.getValue(1)
5469   };
5470   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5471 }
5472 
5473 SDValue SITargetLowering::lowerTrapHsa(
5474     SDValue Op, SelectionDAG &DAG) const {
5475   SDLoc SL(Op);
5476   SDValue Chain = Op.getOperand(0);
5477 
5478   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5479   SDValue Ops[] = {
5480     Chain,
5481     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5482   };
5483   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5484 }
5485 
5486 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5487   SDLoc SL(Op);
5488   SDValue Chain = Op.getOperand(0);
5489   MachineFunction &MF = DAG.getMachineFunction();
5490 
5491   if (!Subtarget->isTrapHandlerEnabled() ||
5492       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5493     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5494                                      "debugtrap handler not supported",
5495                                      Op.getDebugLoc(),
5496                                      DS_Warning);
5497     LLVMContext &Ctx = MF.getFunction().getContext();
5498     Ctx.diagnose(NoTrap);
5499     return Chain;
5500   }
5501 
5502   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5503   SDValue Ops[] = {
5504     Chain,
5505     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5506   };
5507   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5508 }
5509 
5510 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5511                                              SelectionDAG &DAG) const {
5512   // FIXME: Use inline constants (src_{shared, private}_base) instead.
5513   if (Subtarget->hasApertureRegs()) {
5514     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5515         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5516         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5517     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5518         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5519         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5520     unsigned Encoding =
5521         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5522         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5523         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5524 
5525     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5526     SDValue ApertureReg = SDValue(
5527         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5528     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5529     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5530   }
5531 
5532   MachineFunction &MF = DAG.getMachineFunction();
5533   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5534   Register UserSGPR = Info->getQueuePtrUserSGPR();
5535   if (UserSGPR == AMDGPU::NoRegister) {
5536     // We probably are in a function incorrectly marked with
5537     // amdgpu-no-queue-ptr. This is undefined.
5538     return DAG.getUNDEF(MVT::i32);
5539   }
5540 
5541   SDValue QueuePtr = CreateLiveInRegister(
5542     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5543 
5544   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5545   // private_segment_aperture_base_hi.
5546   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5547 
5548   SDValue Ptr =
5549       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5550 
5551   // TODO: Use custom target PseudoSourceValue.
5552   // TODO: We should use the value from the IR intrinsic call, but it might not
5553   // be available and how do we get it?
5554   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5555   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5556                      commonAlignment(Align(64), StructOffset),
5557                      MachineMemOperand::MODereferenceable |
5558                          MachineMemOperand::MOInvariant);
5559 }
5560 
5561 /// Return true if the value is a known valid address, such that a null check is
5562 /// not necessary.
5563 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG,
5564                            const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
5565   if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) ||
5566       isa<BasicBlockSDNode>(Val))
5567     return true;
5568 
5569   if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
5570     return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
5571 
5572   // TODO: Search through arithmetic, handle arguments and loads
5573   // marked nonnull.
5574   return false;
5575 }
5576 
5577 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5578                                              SelectionDAG &DAG) const {
5579   SDLoc SL(Op);
5580   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5581 
5582   SDValue Src = ASC->getOperand(0);
5583   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5584   unsigned SrcAS = ASC->getSrcAddressSpace();
5585 
5586   const AMDGPUTargetMachine &TM =
5587     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5588 
5589   // flat -> local/private
5590   if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
5591     unsigned DestAS = ASC->getDestAddressSpace();
5592 
5593     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5594         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5595       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5596 
5597       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5598         return Ptr;
5599 
5600       unsigned NullVal = TM.getNullPointerValue(DestAS);
5601       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5602       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5603 
5604       return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr,
5605                          SegmentNullPtr);
5606     }
5607   }
5608 
5609   // local/private -> flat
5610   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5611     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5612         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5613 
5614       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5615       SDValue CvtPtr =
5616           DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5617       CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
5618 
5619       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5620         return CvtPtr;
5621 
5622       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5623       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5624 
5625       SDValue NonNull
5626         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5627 
5628       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr,
5629                          FlatNullPtr);
5630     }
5631   }
5632 
5633   if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5634       Op.getValueType() == MVT::i64) {
5635     const SIMachineFunctionInfo *Info =
5636         DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
5637     SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32);
5638     SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi);
5639     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
5640   }
5641 
5642   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5643       Src.getValueType() == MVT::i64)
5644     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5645 
5646   // global <-> flat are no-ops and never emitted.
5647 
5648   const MachineFunction &MF = DAG.getMachineFunction();
5649   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5650     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5651   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5652 
5653   return DAG.getUNDEF(ASC->getValueType(0));
5654 }
5655 
5656 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5657 // the small vector and inserting them into the big vector. That is better than
5658 // the default expansion of doing it via a stack slot. Even though the use of
5659 // the stack slot would be optimized away afterwards, the stack slot itself
5660 // remains.
5661 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5662                                                 SelectionDAG &DAG) const {
5663   SDValue Vec = Op.getOperand(0);
5664   SDValue Ins = Op.getOperand(1);
5665   SDValue Idx = Op.getOperand(2);
5666   EVT VecVT = Vec.getValueType();
5667   EVT InsVT = Ins.getValueType();
5668   EVT EltVT = VecVT.getVectorElementType();
5669   unsigned InsNumElts = InsVT.getVectorNumElements();
5670   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5671   SDLoc SL(Op);
5672 
5673   for (unsigned I = 0; I != InsNumElts; ++I) {
5674     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5675                               DAG.getConstant(I, SL, MVT::i32));
5676     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5677                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5678   }
5679   return Vec;
5680 }
5681 
5682 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5683                                                  SelectionDAG &DAG) const {
5684   SDValue Vec = Op.getOperand(0);
5685   SDValue InsVal = Op.getOperand(1);
5686   SDValue Idx = Op.getOperand(2);
5687   EVT VecVT = Vec.getValueType();
5688   EVT EltVT = VecVT.getVectorElementType();
5689   unsigned VecSize = VecVT.getSizeInBits();
5690   unsigned EltSize = EltVT.getSizeInBits();
5691 
5692 
5693   assert(VecSize <= 64);
5694 
5695   unsigned NumElts = VecVT.getVectorNumElements();
5696   SDLoc SL(Op);
5697   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5698 
5699   if (NumElts == 4 && EltSize == 16 && KIdx) {
5700     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5701 
5702     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5703                                  DAG.getConstant(0, SL, MVT::i32));
5704     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5705                                  DAG.getConstant(1, SL, MVT::i32));
5706 
5707     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5708     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5709 
5710     unsigned Idx = KIdx->getZExtValue();
5711     bool InsertLo = Idx < 2;
5712     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5713       InsertLo ? LoVec : HiVec,
5714       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5715       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5716 
5717     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5718 
5719     SDValue Concat = InsertLo ?
5720       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5721       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5722 
5723     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5724   }
5725 
5726   if (isa<ConstantSDNode>(Idx))
5727     return SDValue();
5728 
5729   MVT IntVT = MVT::getIntegerVT(VecSize);
5730 
5731   // Avoid stack access for dynamic indexing.
5732   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5733 
5734   // Create a congruent vector with the target value in each element so that
5735   // the required element can be masked and ORed into the target vector.
5736   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5737                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5738 
5739   assert(isPowerOf2_32(EltSize));
5740   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5741 
5742   // Convert vector index to bit-index.
5743   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5744 
5745   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5746   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5747                             DAG.getConstant(0xffff, SL, IntVT),
5748                             ScaledIdx);
5749 
5750   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5751   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5752                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5753 
5754   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5755   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5756 }
5757 
5758 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5759                                                   SelectionDAG &DAG) const {
5760   SDLoc SL(Op);
5761 
5762   EVT ResultVT = Op.getValueType();
5763   SDValue Vec = Op.getOperand(0);
5764   SDValue Idx = Op.getOperand(1);
5765   EVT VecVT = Vec.getValueType();
5766   unsigned VecSize = VecVT.getSizeInBits();
5767   EVT EltVT = VecVT.getVectorElementType();
5768 
5769   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5770 
5771   // Make sure we do any optimizations that will make it easier to fold
5772   // source modifiers before obscuring it with bit operations.
5773 
5774   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5775   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5776     return Combined;
5777 
5778   if (VecSize == 128) {
5779     SDValue Lo, Hi;
5780     EVT LoVT, HiVT;
5781     SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec);
5782     std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5783     Lo =
5784         DAG.getBitcast(LoVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64,
5785                                          V2, DAG.getConstant(0, SL, MVT::i32)));
5786     Hi =
5787         DAG.getBitcast(HiVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64,
5788                                          V2, DAG.getConstant(1, SL, MVT::i32)));
5789     EVT IdxVT = Idx.getValueType();
5790     unsigned NElem = VecVT.getVectorNumElements();
5791     assert(isPowerOf2_32(NElem));
5792     SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT);
5793     SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask);
5794     SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT);
5795     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx);
5796   }
5797 
5798   assert(VecSize <= 64);
5799 
5800   unsigned EltSize = EltVT.getSizeInBits();
5801   assert(isPowerOf2_32(EltSize));
5802 
5803   MVT IntVT = MVT::getIntegerVT(VecSize);
5804   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5805 
5806   // Convert vector index to bit-index (* EltSize)
5807   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5808 
5809   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5810   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5811 
5812   if (ResultVT == MVT::f16) {
5813     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5814     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5815   }
5816 
5817   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5818 }
5819 
5820 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5821   assert(Elt % 2 == 0);
5822   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5823 }
5824 
5825 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5826                                               SelectionDAG &DAG) const {
5827   SDLoc SL(Op);
5828   EVT ResultVT = Op.getValueType();
5829   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5830 
5831   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5832   EVT EltVT = PackVT.getVectorElementType();
5833   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5834 
5835   // vector_shuffle <0,1,6,7> lhs, rhs
5836   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5837   //
5838   // vector_shuffle <6,7,2,3> lhs, rhs
5839   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5840   //
5841   // vector_shuffle <6,7,0,1> lhs, rhs
5842   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5843 
5844   // Avoid scalarizing when both halves are reading from consecutive elements.
5845   SmallVector<SDValue, 4> Pieces;
5846   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5847     if (elementPairIsContiguous(SVN->getMask(), I)) {
5848       const int Idx = SVN->getMaskElt(I);
5849       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5850       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5851       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5852                                     PackVT, SVN->getOperand(VecIdx),
5853                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5854       Pieces.push_back(SubVec);
5855     } else {
5856       const int Idx0 = SVN->getMaskElt(I);
5857       const int Idx1 = SVN->getMaskElt(I + 1);
5858       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5859       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5860       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5861       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5862 
5863       SDValue Vec0 = SVN->getOperand(VecIdx0);
5864       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5865                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5866 
5867       SDValue Vec1 = SVN->getOperand(VecIdx1);
5868       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5869                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5870       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5871     }
5872   }
5873 
5874   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5875 }
5876 
5877 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5878                                             SelectionDAG &DAG) const {
5879   SDLoc SL(Op);
5880   EVT VT = Op.getValueType();
5881 
5882   if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5883       VT == MVT::v8i16 || VT == MVT::v8f16) {
5884     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
5885                                   VT.getVectorNumElements() / 2);
5886     MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits());
5887 
5888     // Turn into pair of packed build_vectors.
5889     // TODO: Special case for constants that can be materialized with s_mov_b64.
5890     SmallVector<SDValue, 4> LoOps, HiOps;
5891     for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) {
5892       LoOps.push_back(Op.getOperand(I));
5893       HiOps.push_back(Op.getOperand(I + E));
5894     }
5895     SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps);
5896     SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps);
5897 
5898     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo);
5899     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi);
5900 
5901     SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL,
5902                                        { CastLo, CastHi });
5903     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5904   }
5905 
5906   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5907   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5908 
5909   SDValue Lo = Op.getOperand(0);
5910   SDValue Hi = Op.getOperand(1);
5911 
5912   // Avoid adding defined bits with the zero_extend.
5913   if (Hi.isUndef()) {
5914     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5915     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5916     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5917   }
5918 
5919   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5920   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5921 
5922   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5923                               DAG.getConstant(16, SL, MVT::i32));
5924   if (Lo.isUndef())
5925     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5926 
5927   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5928   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5929 
5930   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5931   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5932 }
5933 
5934 bool
5935 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5936   // We can fold offsets for anything that doesn't require a GOT relocation.
5937   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5938           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5939           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5940          !shouldEmitGOTReloc(GA->getGlobal());
5941 }
5942 
5943 static SDValue
5944 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5945                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
5946                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5947   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5948   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5949   // lowered to the following code sequence:
5950   //
5951   // For constant address space:
5952   //   s_getpc_b64 s[0:1]
5953   //   s_add_u32 s0, s0, $symbol
5954   //   s_addc_u32 s1, s1, 0
5955   //
5956   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5957   //   a fixup or relocation is emitted to replace $symbol with a literal
5958   //   constant, which is a pc-relative offset from the encoding of the $symbol
5959   //   operand to the global variable.
5960   //
5961   // For global address space:
5962   //   s_getpc_b64 s[0:1]
5963   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5964   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5965   //
5966   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5967   //   fixups or relocations are emitted to replace $symbol@*@lo and
5968   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5969   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5970   //   operand to the global variable.
5971   //
5972   // What we want here is an offset from the value returned by s_getpc
5973   // (which is the address of the s_add_u32 instruction) to the global
5974   // variable, but since the encoding of $symbol starts 4 bytes after the start
5975   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5976   // small. This requires us to add 4 to the global variable offset in order to
5977   // compute the correct address. Similarly for the s_addc_u32 instruction, the
5978   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5979   // instruction.
5980   SDValue PtrLo =
5981       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5982   SDValue PtrHi;
5983   if (GAFlags == SIInstrInfo::MO_NONE) {
5984     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5985   } else {
5986     PtrHi =
5987         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5988   }
5989   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5990 }
5991 
5992 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5993                                              SDValue Op,
5994                                              SelectionDAG &DAG) const {
5995   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5996   SDLoc DL(GSD);
5997   EVT PtrVT = Op.getValueType();
5998 
5999   const GlobalValue *GV = GSD->getGlobal();
6000   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
6001        shouldUseLDSConstAddress(GV)) ||
6002       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
6003       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
6004     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
6005         GV->hasExternalLinkage()) {
6006       Type *Ty = GV->getValueType();
6007       // HIP uses an unsized array `extern __shared__ T s[]` or similar
6008       // zero-sized type in other languages to declare the dynamic shared
6009       // memory which size is not known at the compile time. They will be
6010       // allocated by the runtime and placed directly after the static
6011       // allocated ones. They all share the same offset.
6012       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
6013         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
6014         // Adjust alignment for that dynamic shared memory array.
6015         MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
6016         return SDValue(
6017             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
6018       }
6019     }
6020     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
6021   }
6022 
6023   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
6024     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
6025                                             SIInstrInfo::MO_ABS32_LO);
6026     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
6027   }
6028 
6029   if (shouldEmitFixup(GV))
6030     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
6031   else if (shouldEmitPCReloc(GV))
6032     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
6033                                    SIInstrInfo::MO_REL32);
6034 
6035   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
6036                                             SIInstrInfo::MO_GOTPCREL32);
6037 
6038   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
6039   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
6040   const DataLayout &DataLayout = DAG.getDataLayout();
6041   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
6042   MachinePointerInfo PtrInfo
6043     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
6044 
6045   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
6046                      MachineMemOperand::MODereferenceable |
6047                          MachineMemOperand::MOInvariant);
6048 }
6049 
6050 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
6051                                    const SDLoc &DL, SDValue V) const {
6052   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
6053   // the destination register.
6054   //
6055   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
6056   // so we will end up with redundant moves to m0.
6057   //
6058   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
6059 
6060   // A Null SDValue creates a glue result.
6061   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
6062                                   V, Chain);
6063   return SDValue(M0, 0);
6064 }
6065 
6066 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
6067                                                  SDValue Op,
6068                                                  MVT VT,
6069                                                  unsigned Offset) const {
6070   SDLoc SL(Op);
6071   SDValue Param = lowerKernargMemParameter(
6072       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
6073   // The local size values will have the hi 16-bits as zero.
6074   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
6075                      DAG.getValueType(VT));
6076 }
6077 
6078 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6079                                         EVT VT) {
6080   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6081                                       "non-hsa intrinsic with hsa target",
6082                                       DL.getDebugLoc());
6083   DAG.getContext()->diagnose(BadIntrin);
6084   return DAG.getUNDEF(VT);
6085 }
6086 
6087 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6088                                          EVT VT) {
6089   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6090                                       "intrinsic not supported on subtarget",
6091                                       DL.getDebugLoc());
6092   DAG.getContext()->diagnose(BadIntrin);
6093   return DAG.getUNDEF(VT);
6094 }
6095 
6096 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
6097                                     ArrayRef<SDValue> Elts) {
6098   assert(!Elts.empty());
6099   MVT Type;
6100   unsigned NumElts = Elts.size();
6101 
6102   if (NumElts <= 8) {
6103     Type = MVT::getVectorVT(MVT::f32, NumElts);
6104   } else {
6105     assert(Elts.size() <= 16);
6106     Type = MVT::v16f32;
6107     NumElts = 16;
6108   }
6109 
6110   SmallVector<SDValue, 16> VecElts(NumElts);
6111   for (unsigned i = 0; i < Elts.size(); ++i) {
6112     SDValue Elt = Elts[i];
6113     if (Elt.getValueType() != MVT::f32)
6114       Elt = DAG.getBitcast(MVT::f32, Elt);
6115     VecElts[i] = Elt;
6116   }
6117   for (unsigned i = Elts.size(); i < NumElts; ++i)
6118     VecElts[i] = DAG.getUNDEF(MVT::f32);
6119 
6120   if (NumElts == 1)
6121     return VecElts[0];
6122   return DAG.getBuildVector(Type, DL, VecElts);
6123 }
6124 
6125 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
6126                               SDValue Src, int ExtraElts) {
6127   EVT SrcVT = Src.getValueType();
6128 
6129   SmallVector<SDValue, 8> Elts;
6130 
6131   if (SrcVT.isVector())
6132     DAG.ExtractVectorElements(Src, Elts);
6133   else
6134     Elts.push_back(Src);
6135 
6136   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
6137   while (ExtraElts--)
6138     Elts.push_back(Undef);
6139 
6140   return DAG.getBuildVector(CastVT, DL, Elts);
6141 }
6142 
6143 // Re-construct the required return value for a image load intrinsic.
6144 // This is more complicated due to the optional use TexFailCtrl which means the required
6145 // return type is an aggregate
6146 static SDValue constructRetValue(SelectionDAG &DAG,
6147                                  MachineSDNode *Result,
6148                                  ArrayRef<EVT> ResultTypes,
6149                                  bool IsTexFail, bool Unpacked, bool IsD16,
6150                                  int DMaskPop, int NumVDataDwords,
6151                                  const SDLoc &DL) {
6152   // Determine the required return type. This is the same regardless of IsTexFail flag
6153   EVT ReqRetVT = ResultTypes[0];
6154   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
6155   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6156     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
6157 
6158   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6159     DMaskPop : (DMaskPop + 1) / 2;
6160 
6161   MVT DataDwordVT = NumDataDwords == 1 ?
6162     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
6163 
6164   MVT MaskPopVT = MaskPopDwords == 1 ?
6165     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
6166 
6167   SDValue Data(Result, 0);
6168   SDValue TexFail;
6169 
6170   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
6171     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
6172     if (MaskPopVT.isVector()) {
6173       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
6174                          SDValue(Result, 0), ZeroIdx);
6175     } else {
6176       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
6177                          SDValue(Result, 0), ZeroIdx);
6178     }
6179   }
6180 
6181   if (DataDwordVT.isVector())
6182     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
6183                           NumDataDwords - MaskPopDwords);
6184 
6185   if (IsD16)
6186     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
6187 
6188   EVT LegalReqRetVT = ReqRetVT;
6189   if (!ReqRetVT.isVector()) {
6190     if (!Data.getValueType().isInteger())
6191       Data = DAG.getNode(ISD::BITCAST, DL,
6192                          Data.getValueType().changeTypeToInteger(), Data);
6193     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
6194   } else {
6195     // We need to widen the return vector to a legal type
6196     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
6197         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
6198       LegalReqRetVT =
6199           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
6200                            ReqRetVT.getVectorNumElements() + 1);
6201     }
6202   }
6203   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
6204 
6205   if (IsTexFail) {
6206     TexFail =
6207         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
6208                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
6209 
6210     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
6211   }
6212 
6213   if (Result->getNumValues() == 1)
6214     return Data;
6215 
6216   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
6217 }
6218 
6219 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
6220                          SDValue *LWE, bool &IsTexFail) {
6221   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
6222 
6223   uint64_t Value = TexFailCtrlConst->getZExtValue();
6224   if (Value) {
6225     IsTexFail = true;
6226   }
6227 
6228   SDLoc DL(TexFailCtrlConst);
6229   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
6230   Value &= ~(uint64_t)0x1;
6231   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
6232   Value &= ~(uint64_t)0x2;
6233 
6234   return Value == 0;
6235 }
6236 
6237 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
6238                                       MVT PackVectorVT,
6239                                       SmallVectorImpl<SDValue> &PackedAddrs,
6240                                       unsigned DimIdx, unsigned EndIdx,
6241                                       unsigned NumGradients) {
6242   SDLoc DL(Op);
6243   for (unsigned I = DimIdx; I < EndIdx; I++) {
6244     SDValue Addr = Op.getOperand(I);
6245 
6246     // Gradients are packed with undef for each coordinate.
6247     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
6248     // 1D: undef,dx/dh; undef,dx/dv
6249     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
6250     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
6251     if (((I + 1) >= EndIdx) ||
6252         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
6253                                          I == DimIdx + NumGradients - 1))) {
6254       if (Addr.getValueType() != MVT::i16)
6255         Addr = DAG.getBitcast(MVT::i16, Addr);
6256       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
6257     } else {
6258       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
6259       I++;
6260     }
6261     Addr = DAG.getBitcast(MVT::f32, Addr);
6262     PackedAddrs.push_back(Addr);
6263   }
6264 }
6265 
6266 SDValue SITargetLowering::lowerImage(SDValue Op,
6267                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
6268                                      SelectionDAG &DAG, bool WithChain) const {
6269   SDLoc DL(Op);
6270   MachineFunction &MF = DAG.getMachineFunction();
6271   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
6272   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
6273       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
6274   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
6275   unsigned IntrOpcode = Intr->BaseOpcode;
6276   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6277 
6278   SmallVector<EVT, 3> ResultTypes(Op->values());
6279   SmallVector<EVT, 3> OrigResultTypes(Op->values());
6280   bool IsD16 = false;
6281   bool IsG16 = false;
6282   bool IsA16 = false;
6283   SDValue VData;
6284   int NumVDataDwords;
6285   bool AdjustRetType = false;
6286 
6287   // Offset of intrinsic arguments
6288   const unsigned ArgOffset = WithChain ? 2 : 1;
6289 
6290   unsigned DMask;
6291   unsigned DMaskLanes = 0;
6292 
6293   if (BaseOpcode->Atomic) {
6294     VData = Op.getOperand(2);
6295 
6296     bool Is64Bit = VData.getValueType() == MVT::i64;
6297     if (BaseOpcode->AtomicX2) {
6298       SDValue VData2 = Op.getOperand(3);
6299       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6300                                  {VData, VData2});
6301       if (Is64Bit)
6302         VData = DAG.getBitcast(MVT::v4i32, VData);
6303 
6304       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6305       DMask = Is64Bit ? 0xf : 0x3;
6306       NumVDataDwords = Is64Bit ? 4 : 2;
6307     } else {
6308       DMask = Is64Bit ? 0x3 : 0x1;
6309       NumVDataDwords = Is64Bit ? 2 : 1;
6310     }
6311   } else {
6312     auto *DMaskConst =
6313         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6314     DMask = DMaskConst->getZExtValue();
6315     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6316 
6317     if (BaseOpcode->Store) {
6318       VData = Op.getOperand(2);
6319 
6320       MVT StoreVT = VData.getSimpleValueType();
6321       if (StoreVT.getScalarType() == MVT::f16) {
6322         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6323           return Op; // D16 is unsupported for this instruction
6324 
6325         IsD16 = true;
6326         VData = handleD16VData(VData, DAG, true);
6327       }
6328 
6329       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6330     } else {
6331       // Work out the num dwords based on the dmask popcount and underlying type
6332       // and whether packing is supported.
6333       MVT LoadVT = ResultTypes[0].getSimpleVT();
6334       if (LoadVT.getScalarType() == MVT::f16) {
6335         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6336           return Op; // D16 is unsupported for this instruction
6337 
6338         IsD16 = true;
6339       }
6340 
6341       // Confirm that the return type is large enough for the dmask specified
6342       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6343           (!LoadVT.isVector() && DMaskLanes > 1))
6344           return Op;
6345 
6346       // The sq block of gfx8 and gfx9 do not estimate register use correctly
6347       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6348       // instructions.
6349       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6350           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6351         NumVDataDwords = (DMaskLanes + 1) / 2;
6352       else
6353         NumVDataDwords = DMaskLanes;
6354 
6355       AdjustRetType = true;
6356     }
6357   }
6358 
6359   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6360   SmallVector<SDValue, 4> VAddrs;
6361 
6362   // Check for 16 bit addresses or derivatives and pack if true.
6363   MVT VAddrVT =
6364       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6365   MVT VAddrScalarVT = VAddrVT.getScalarType();
6366   MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6367   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6368 
6369   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6370   VAddrScalarVT = VAddrVT.getScalarType();
6371   MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6372   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6373 
6374   // Push back extra arguments.
6375   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) {
6376     if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) {
6377       assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
6378       // Special handling of bias when A16 is on. Bias is of type half but
6379       // occupies full 32-bit.
6380       SDValue Bias = DAG.getBuildVector(
6381           MVT::v2f16, DL,
6382           {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)});
6383       VAddrs.push_back(Bias);
6384     } else {
6385       assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
6386              "Bias needs to be converted to 16 bit in A16 mode");
6387       VAddrs.push_back(Op.getOperand(ArgOffset + I));
6388     }
6389   }
6390 
6391   if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6392     // 16 bit gradients are supported, but are tied to the A16 control
6393     // so both gradients and addresses must be 16 bit
6394     LLVM_DEBUG(
6395         dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6396                   "require 16 bit args for both gradients and addresses");
6397     return Op;
6398   }
6399 
6400   if (IsA16) {
6401     if (!ST->hasA16()) {
6402       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6403                            "support 16 bit addresses\n");
6404       return Op;
6405     }
6406   }
6407 
6408   // We've dealt with incorrect input so we know that if IsA16, IsG16
6409   // are set then we have to compress/pack operands (either address,
6410   // gradient or both)
6411   // In the case where a16 and gradients are tied (no G16 support) then we
6412   // have already verified that both IsA16 and IsG16 are true
6413   if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6414     // Activate g16
6415     const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6416         AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6417     IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6418   }
6419 
6420   // Add gradients (packed or unpacked)
6421   if (IsG16) {
6422     // Pack the gradients
6423     // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6424     packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6425                               ArgOffset + Intr->GradientStart,
6426                               ArgOffset + Intr->CoordStart, Intr->NumGradients);
6427   } else {
6428     for (unsigned I = ArgOffset + Intr->GradientStart;
6429          I < ArgOffset + Intr->CoordStart; I++)
6430       VAddrs.push_back(Op.getOperand(I));
6431   }
6432 
6433   // Add addresses (packed or unpacked)
6434   if (IsA16) {
6435     packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6436                               ArgOffset + Intr->CoordStart, VAddrEnd,
6437                               0 /* No gradients */);
6438   } else {
6439     // Add uncompressed address
6440     for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6441       VAddrs.push_back(Op.getOperand(I));
6442   }
6443 
6444   // If the register allocator cannot place the address registers contiguously
6445   // without introducing moves, then using the non-sequential address encoding
6446   // is always preferable, since it saves VALU instructions and is usually a
6447   // wash in terms of code size or even better.
6448   //
6449   // However, we currently have no way of hinting to the register allocator that
6450   // MIMG addresses should be placed contiguously when it is possible to do so,
6451   // so force non-NSA for the common 2-address case as a heuristic.
6452   //
6453   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6454   // allocation when possible.
6455   bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) &&
6456                 VAddrs.size() >= 3 &&
6457                 VAddrs.size() <= (unsigned)ST->getNSAMaxSize();
6458   SDValue VAddr;
6459   if (!UseNSA)
6460     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6461 
6462   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6463   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6464   SDValue Unorm;
6465   if (!BaseOpcode->Sampler) {
6466     Unorm = True;
6467   } else {
6468     auto UnormConst =
6469         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6470 
6471     Unorm = UnormConst->getZExtValue() ? True : False;
6472   }
6473 
6474   SDValue TFE;
6475   SDValue LWE;
6476   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6477   bool IsTexFail = false;
6478   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6479     return Op;
6480 
6481   if (IsTexFail) {
6482     if (!DMaskLanes) {
6483       // Expecting to get an error flag since TFC is on - and dmask is 0
6484       // Force dmask to be at least 1 otherwise the instruction will fail
6485       DMask = 0x1;
6486       DMaskLanes = 1;
6487       NumVDataDwords = 1;
6488     }
6489     NumVDataDwords += 1;
6490     AdjustRetType = true;
6491   }
6492 
6493   // Has something earlier tagged that the return type needs adjusting
6494   // This happens if the instruction is a load or has set TexFailCtrl flags
6495   if (AdjustRetType) {
6496     // NumVDataDwords reflects the true number of dwords required in the return type
6497     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6498       // This is a no-op load. This can be eliminated
6499       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6500       if (isa<MemSDNode>(Op))
6501         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6502       return Undef;
6503     }
6504 
6505     EVT NewVT = NumVDataDwords > 1 ?
6506                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6507                 : MVT::i32;
6508 
6509     ResultTypes[0] = NewVT;
6510     if (ResultTypes.size() == 3) {
6511       // Original result was aggregate type used for TexFailCtrl results
6512       // The actual instruction returns as a vector type which has now been
6513       // created. Remove the aggregate result.
6514       ResultTypes.erase(&ResultTypes[1]);
6515     }
6516   }
6517 
6518   unsigned CPol = cast<ConstantSDNode>(
6519       Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6520   if (BaseOpcode->Atomic)
6521     CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6522   if (CPol & ~AMDGPU::CPol::ALL)
6523     return Op;
6524 
6525   SmallVector<SDValue, 26> Ops;
6526   if (BaseOpcode->Store || BaseOpcode->Atomic)
6527     Ops.push_back(VData); // vdata
6528   if (UseNSA)
6529     append_range(Ops, VAddrs);
6530   else
6531     Ops.push_back(VAddr);
6532   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6533   if (BaseOpcode->Sampler)
6534     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6535   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6536   if (IsGFX10Plus)
6537     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6538   Ops.push_back(Unorm);
6539   Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6540   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6541                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6542   if (IsGFX10Plus)
6543     Ops.push_back(IsA16 ? True : False);
6544   if (!Subtarget->hasGFX90AInsts()) {
6545     Ops.push_back(TFE); //tfe
6546   } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6547     report_fatal_error("TFE is not supported on this GPU");
6548   }
6549   Ops.push_back(LWE); // lwe
6550   if (!IsGFX10Plus)
6551     Ops.push_back(DimInfo->DA ? True : False);
6552   if (BaseOpcode->HasD16)
6553     Ops.push_back(IsD16 ? True : False);
6554   if (isa<MemSDNode>(Op))
6555     Ops.push_back(Op.getOperand(0)); // chain
6556 
6557   int NumVAddrDwords =
6558       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6559   int Opcode = -1;
6560 
6561   if (IsGFX10Plus) {
6562     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6563                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6564                                           : AMDGPU::MIMGEncGfx10Default,
6565                                    NumVDataDwords, NumVAddrDwords);
6566   } else {
6567     if (Subtarget->hasGFX90AInsts()) {
6568       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
6569                                      NumVDataDwords, NumVAddrDwords);
6570       if (Opcode == -1)
6571         report_fatal_error(
6572             "requested image instruction is not supported on this GPU");
6573     }
6574     if (Opcode == -1 &&
6575         Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6576       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6577                                      NumVDataDwords, NumVAddrDwords);
6578     if (Opcode == -1)
6579       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6580                                      NumVDataDwords, NumVAddrDwords);
6581   }
6582   assert(Opcode != -1);
6583 
6584   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6585   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6586     MachineMemOperand *MemRef = MemOp->getMemOperand();
6587     DAG.setNodeMemRefs(NewNode, {MemRef});
6588   }
6589 
6590   if (BaseOpcode->AtomicX2) {
6591     SmallVector<SDValue, 1> Elt;
6592     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6593     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6594   }
6595   if (BaseOpcode->Store)
6596     return SDValue(NewNode, 0);
6597   return constructRetValue(DAG, NewNode,
6598                            OrigResultTypes, IsTexFail,
6599                            Subtarget->hasUnpackedD16VMem(), IsD16,
6600                            DMaskLanes, NumVDataDwords, DL);
6601 }
6602 
6603 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6604                                        SDValue Offset, SDValue CachePolicy,
6605                                        SelectionDAG &DAG) const {
6606   MachineFunction &MF = DAG.getMachineFunction();
6607 
6608   const DataLayout &DataLayout = DAG.getDataLayout();
6609   Align Alignment =
6610       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6611 
6612   MachineMemOperand *MMO = MF.getMachineMemOperand(
6613       MachinePointerInfo(),
6614       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6615           MachineMemOperand::MOInvariant,
6616       VT.getStoreSize(), Alignment);
6617 
6618   if (!Offset->isDivergent()) {
6619     SDValue Ops[] = {
6620         Rsrc,
6621         Offset, // Offset
6622         CachePolicy
6623     };
6624 
6625     // Widen vec3 load to vec4.
6626     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6627       EVT WidenedVT =
6628           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6629       auto WidenedOp = DAG.getMemIntrinsicNode(
6630           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6631           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6632       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6633                                    DAG.getVectorIdxConstant(0, DL));
6634       return Subvector;
6635     }
6636 
6637     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6638                                    DAG.getVTList(VT), Ops, VT, MMO);
6639   }
6640 
6641   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6642   // assume that the buffer is unswizzled.
6643   SmallVector<SDValue, 4> Loads;
6644   unsigned NumLoads = 1;
6645   MVT LoadVT = VT.getSimpleVT();
6646   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6647   assert((LoadVT.getScalarType() == MVT::i32 ||
6648           LoadVT.getScalarType() == MVT::f32));
6649 
6650   if (NumElts == 8 || NumElts == 16) {
6651     NumLoads = NumElts / 4;
6652     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6653   }
6654 
6655   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6656   SDValue Ops[] = {
6657       DAG.getEntryNode(),                               // Chain
6658       Rsrc,                                             // rsrc
6659       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6660       {},                                               // voffset
6661       {},                                               // soffset
6662       {},                                               // offset
6663       CachePolicy,                                      // cachepolicy
6664       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6665   };
6666 
6667   // Use the alignment to ensure that the required offsets will fit into the
6668   // immediate offsets.
6669   setBufferOffsets(Offset, DAG, &Ops[3],
6670                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6671 
6672   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6673   for (unsigned i = 0; i < NumLoads; ++i) {
6674     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6675     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6676                                         LoadVT, MMO, DAG));
6677   }
6678 
6679   if (NumElts == 8 || NumElts == 16)
6680     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6681 
6682   return Loads[0];
6683 }
6684 
6685 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6686                                                   SelectionDAG &DAG) const {
6687   MachineFunction &MF = DAG.getMachineFunction();
6688   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6689 
6690   EVT VT = Op.getValueType();
6691   SDLoc DL(Op);
6692   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6693 
6694   // TODO: Should this propagate fast-math-flags?
6695 
6696   switch (IntrinsicID) {
6697   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6698     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6699       return emitNonHSAIntrinsicError(DAG, DL, VT);
6700     return getPreloadedValue(DAG, *MFI, VT,
6701                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6702   }
6703   case Intrinsic::amdgcn_dispatch_ptr:
6704   case Intrinsic::amdgcn_queue_ptr: {
6705     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6706       DiagnosticInfoUnsupported BadIntrin(
6707           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6708           DL.getDebugLoc());
6709       DAG.getContext()->diagnose(BadIntrin);
6710       return DAG.getUNDEF(VT);
6711     }
6712 
6713     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6714       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6715     return getPreloadedValue(DAG, *MFI, VT, RegID);
6716   }
6717   case Intrinsic::amdgcn_implicitarg_ptr: {
6718     if (MFI->isEntryFunction())
6719       return getImplicitArgPtr(DAG, DL);
6720     return getPreloadedValue(DAG, *MFI, VT,
6721                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6722   }
6723   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6724     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6725       // This only makes sense to call in a kernel, so just lower to null.
6726       return DAG.getConstant(0, DL, VT);
6727     }
6728 
6729     return getPreloadedValue(DAG, *MFI, VT,
6730                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6731   }
6732   case Intrinsic::amdgcn_dispatch_id: {
6733     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6734   }
6735   case Intrinsic::amdgcn_rcp:
6736     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6737   case Intrinsic::amdgcn_rsq:
6738     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6739   case Intrinsic::amdgcn_rsq_legacy:
6740     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6741       return emitRemovedIntrinsicError(DAG, DL, VT);
6742     return SDValue();
6743   case Intrinsic::amdgcn_rcp_legacy:
6744     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6745       return emitRemovedIntrinsicError(DAG, DL, VT);
6746     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6747   case Intrinsic::amdgcn_rsq_clamp: {
6748     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6749       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6750 
6751     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6752     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6753     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6754 
6755     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6756     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6757                               DAG.getConstantFP(Max, DL, VT));
6758     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6759                        DAG.getConstantFP(Min, DL, VT));
6760   }
6761   case Intrinsic::r600_read_ngroups_x:
6762     if (Subtarget->isAmdHsaOS())
6763       return emitNonHSAIntrinsicError(DAG, DL, VT);
6764 
6765     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6766                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6767                                     false);
6768   case Intrinsic::r600_read_ngroups_y:
6769     if (Subtarget->isAmdHsaOS())
6770       return emitNonHSAIntrinsicError(DAG, DL, VT);
6771 
6772     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6773                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6774                                     false);
6775   case Intrinsic::r600_read_ngroups_z:
6776     if (Subtarget->isAmdHsaOS())
6777       return emitNonHSAIntrinsicError(DAG, DL, VT);
6778 
6779     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6780                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6781                                     false);
6782   case Intrinsic::r600_read_global_size_x:
6783     if (Subtarget->isAmdHsaOS())
6784       return emitNonHSAIntrinsicError(DAG, DL, VT);
6785 
6786     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6787                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6788                                     Align(4), false);
6789   case Intrinsic::r600_read_global_size_y:
6790     if (Subtarget->isAmdHsaOS())
6791       return emitNonHSAIntrinsicError(DAG, DL, VT);
6792 
6793     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6794                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6795                                     Align(4), false);
6796   case Intrinsic::r600_read_global_size_z:
6797     if (Subtarget->isAmdHsaOS())
6798       return emitNonHSAIntrinsicError(DAG, DL, VT);
6799 
6800     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6801                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6802                                     Align(4), false);
6803   case Intrinsic::r600_read_local_size_x:
6804     if (Subtarget->isAmdHsaOS())
6805       return emitNonHSAIntrinsicError(DAG, DL, VT);
6806 
6807     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6808                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6809   case Intrinsic::r600_read_local_size_y:
6810     if (Subtarget->isAmdHsaOS())
6811       return emitNonHSAIntrinsicError(DAG, DL, VT);
6812 
6813     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6814                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6815   case Intrinsic::r600_read_local_size_z:
6816     if (Subtarget->isAmdHsaOS())
6817       return emitNonHSAIntrinsicError(DAG, DL, VT);
6818 
6819     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6820                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6821   case Intrinsic::amdgcn_workgroup_id_x:
6822     return getPreloadedValue(DAG, *MFI, VT,
6823                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6824   case Intrinsic::amdgcn_workgroup_id_y:
6825     return getPreloadedValue(DAG, *MFI, VT,
6826                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6827   case Intrinsic::amdgcn_workgroup_id_z:
6828     return getPreloadedValue(DAG, *MFI, VT,
6829                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6830   case Intrinsic::amdgcn_workitem_id_x:
6831     if (Subtarget->getMaxWorkitemID(MF.getFunction(), 0) == 0)
6832       return DAG.getConstant(0, DL, MVT::i32);
6833 
6834     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6835                           SDLoc(DAG.getEntryNode()),
6836                           MFI->getArgInfo().WorkItemIDX);
6837   case Intrinsic::amdgcn_workitem_id_y:
6838     if (Subtarget->getMaxWorkitemID(MF.getFunction(), 1) == 0)
6839       return DAG.getConstant(0, DL, MVT::i32);
6840 
6841     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6842                           SDLoc(DAG.getEntryNode()),
6843                           MFI->getArgInfo().WorkItemIDY);
6844   case Intrinsic::amdgcn_workitem_id_z:
6845     if (Subtarget->getMaxWorkitemID(MF.getFunction(), 2) == 0)
6846       return DAG.getConstant(0, DL, MVT::i32);
6847 
6848     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6849                           SDLoc(DAG.getEntryNode()),
6850                           MFI->getArgInfo().WorkItemIDZ);
6851   case Intrinsic::amdgcn_wavefrontsize:
6852     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6853                            SDLoc(Op), MVT::i32);
6854   case Intrinsic::amdgcn_s_buffer_load: {
6855     unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6856     if (CPol & ~AMDGPU::CPol::ALL)
6857       return Op;
6858     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6859                         DAG);
6860   }
6861   case Intrinsic::amdgcn_fdiv_fast:
6862     return lowerFDIV_FAST(Op, DAG);
6863   case Intrinsic::amdgcn_sin:
6864     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6865 
6866   case Intrinsic::amdgcn_cos:
6867     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6868 
6869   case Intrinsic::amdgcn_mul_u24:
6870     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6871   case Intrinsic::amdgcn_mul_i24:
6872     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6873 
6874   case Intrinsic::amdgcn_log_clamp: {
6875     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6876       return SDValue();
6877 
6878     return emitRemovedIntrinsicError(DAG, DL, VT);
6879   }
6880   case Intrinsic::amdgcn_ldexp:
6881     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6882                        Op.getOperand(1), Op.getOperand(2));
6883 
6884   case Intrinsic::amdgcn_fract:
6885     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6886 
6887   case Intrinsic::amdgcn_class:
6888     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6889                        Op.getOperand(1), Op.getOperand(2));
6890   case Intrinsic::amdgcn_div_fmas:
6891     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6892                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6893                        Op.getOperand(4));
6894 
6895   case Intrinsic::amdgcn_div_fixup:
6896     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6897                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6898 
6899   case Intrinsic::amdgcn_div_scale: {
6900     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6901 
6902     // Translate to the operands expected by the machine instruction. The
6903     // first parameter must be the same as the first instruction.
6904     SDValue Numerator = Op.getOperand(1);
6905     SDValue Denominator = Op.getOperand(2);
6906 
6907     // Note this order is opposite of the machine instruction's operations,
6908     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6909     // intrinsic has the numerator as the first operand to match a normal
6910     // division operation.
6911 
6912     SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
6913 
6914     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6915                        Denominator, Numerator);
6916   }
6917   case Intrinsic::amdgcn_icmp: {
6918     // There is a Pat that handles this variant, so return it as-is.
6919     if (Op.getOperand(1).getValueType() == MVT::i1 &&
6920         Op.getConstantOperandVal(2) == 0 &&
6921         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6922       return Op;
6923     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6924   }
6925   case Intrinsic::amdgcn_fcmp: {
6926     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6927   }
6928   case Intrinsic::amdgcn_ballot:
6929     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6930   case Intrinsic::amdgcn_fmed3:
6931     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6932                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6933   case Intrinsic::amdgcn_fdot2:
6934     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6935                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6936                        Op.getOperand(4));
6937   case Intrinsic::amdgcn_fmul_legacy:
6938     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6939                        Op.getOperand(1), Op.getOperand(2));
6940   case Intrinsic::amdgcn_sffbh:
6941     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6942   case Intrinsic::amdgcn_sbfe:
6943     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6944                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6945   case Intrinsic::amdgcn_ubfe:
6946     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6947                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6948   case Intrinsic::amdgcn_cvt_pkrtz:
6949   case Intrinsic::amdgcn_cvt_pknorm_i16:
6950   case Intrinsic::amdgcn_cvt_pknorm_u16:
6951   case Intrinsic::amdgcn_cvt_pk_i16:
6952   case Intrinsic::amdgcn_cvt_pk_u16: {
6953     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6954     EVT VT = Op.getValueType();
6955     unsigned Opcode;
6956 
6957     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6958       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6959     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6960       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6961     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6962       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6963     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6964       Opcode = AMDGPUISD::CVT_PK_I16_I32;
6965     else
6966       Opcode = AMDGPUISD::CVT_PK_U16_U32;
6967 
6968     if (isTypeLegal(VT))
6969       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6970 
6971     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6972                                Op.getOperand(1), Op.getOperand(2));
6973     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6974   }
6975   case Intrinsic::amdgcn_fmad_ftz:
6976     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6977                        Op.getOperand(2), Op.getOperand(3));
6978 
6979   case Intrinsic::amdgcn_if_break:
6980     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6981                                       Op->getOperand(1), Op->getOperand(2)), 0);
6982 
6983   case Intrinsic::amdgcn_groupstaticsize: {
6984     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6985     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6986       return Op;
6987 
6988     const Module *M = MF.getFunction().getParent();
6989     const GlobalValue *GV =
6990         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6991     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6992                                             SIInstrInfo::MO_ABS32_LO);
6993     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6994   }
6995   case Intrinsic::amdgcn_is_shared:
6996   case Intrinsic::amdgcn_is_private: {
6997     SDLoc SL(Op);
6998     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6999       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
7000     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
7001     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
7002                                  Op.getOperand(1));
7003 
7004     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
7005                                 DAG.getConstant(1, SL, MVT::i32));
7006     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
7007   }
7008   case Intrinsic::amdgcn_perm:
7009     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
7010                        Op.getOperand(2), Op.getOperand(3));
7011   case Intrinsic::amdgcn_reloc_constant: {
7012     Module *M = const_cast<Module *>(MF.getFunction().getParent());
7013     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
7014     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
7015     auto RelocSymbol = cast<GlobalVariable>(
7016         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
7017     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
7018                                             SIInstrInfo::MO_ABS32_LO);
7019     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
7020   }
7021   default:
7022     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7023             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7024       return lowerImage(Op, ImageDimIntr, DAG, false);
7025 
7026     return Op;
7027   }
7028 }
7029 
7030 /// Update \p MMO based on the offset inputs to an intrinsic.
7031 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset,
7032                             SDValue SOffset, SDValue Offset,
7033                             SDValue VIndex = SDValue()) {
7034   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
7035       !isa<ConstantSDNode>(Offset)) {
7036     // The combined offset is not known to be constant, so we cannot represent
7037     // it in the MMO. Give up.
7038     MMO->setValue((Value *)nullptr);
7039     return;
7040   }
7041 
7042   if (VIndex && (!isa<ConstantSDNode>(VIndex) ||
7043                  !cast<ConstantSDNode>(VIndex)->isZero())) {
7044     // The strided index component of the address is not known to be zero, so we
7045     // cannot represent it in the MMO. Give up.
7046     MMO->setValue((Value *)nullptr);
7047     return;
7048   }
7049 
7050   MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() +
7051                  cast<ConstantSDNode>(SOffset)->getSExtValue() +
7052                  cast<ConstantSDNode>(Offset)->getSExtValue());
7053 }
7054 
7055 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
7056                                                      SelectionDAG &DAG,
7057                                                      unsigned NewOpcode) const {
7058   SDLoc DL(Op);
7059 
7060   SDValue VData = Op.getOperand(2);
7061   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7062   SDValue Ops[] = {
7063     Op.getOperand(0), // Chain
7064     VData,            // vdata
7065     Op.getOperand(3), // rsrc
7066     DAG.getConstant(0, DL, MVT::i32), // vindex
7067     Offsets.first,    // voffset
7068     Op.getOperand(5), // soffset
7069     Offsets.second,   // offset
7070     Op.getOperand(6), // cachepolicy
7071     DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7072   };
7073 
7074   auto *M = cast<MemSDNode>(Op);
7075   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
7076 
7077   EVT MemVT = VData.getValueType();
7078   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7079                                  M->getMemOperand());
7080 }
7081 
7082 // Return a value to use for the idxen operand by examining the vindex operand.
7083 static unsigned getIdxEn(SDValue VIndex) {
7084   if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex))
7085     // No need to set idxen if vindex is known to be zero.
7086     return VIndexC->getZExtValue() != 0;
7087   return 1;
7088 }
7089 
7090 SDValue
7091 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
7092                                                 unsigned NewOpcode) const {
7093   SDLoc DL(Op);
7094 
7095   SDValue VData = Op.getOperand(2);
7096   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7097   SDValue Ops[] = {
7098     Op.getOperand(0), // Chain
7099     VData,            // vdata
7100     Op.getOperand(3), // rsrc
7101     Op.getOperand(4), // vindex
7102     Offsets.first,    // voffset
7103     Op.getOperand(6), // soffset
7104     Offsets.second,   // offset
7105     Op.getOperand(7), // cachepolicy
7106     DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7107   };
7108 
7109   auto *M = cast<MemSDNode>(Op);
7110   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7111 
7112   EVT MemVT = VData.getValueType();
7113   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7114                                  M->getMemOperand());
7115 }
7116 
7117 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
7118                                                  SelectionDAG &DAG) const {
7119   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7120   SDLoc DL(Op);
7121 
7122   switch (IntrID) {
7123   case Intrinsic::amdgcn_ds_ordered_add:
7124   case Intrinsic::amdgcn_ds_ordered_swap: {
7125     MemSDNode *M = cast<MemSDNode>(Op);
7126     SDValue Chain = M->getOperand(0);
7127     SDValue M0 = M->getOperand(2);
7128     SDValue Value = M->getOperand(3);
7129     unsigned IndexOperand = M->getConstantOperandVal(7);
7130     unsigned WaveRelease = M->getConstantOperandVal(8);
7131     unsigned WaveDone = M->getConstantOperandVal(9);
7132 
7133     unsigned OrderedCountIndex = IndexOperand & 0x3f;
7134     IndexOperand &= ~0x3f;
7135     unsigned CountDw = 0;
7136 
7137     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
7138       CountDw = (IndexOperand >> 24) & 0xf;
7139       IndexOperand &= ~(0xf << 24);
7140 
7141       if (CountDw < 1 || CountDw > 4) {
7142         report_fatal_error(
7143             "ds_ordered_count: dword count must be between 1 and 4");
7144       }
7145     }
7146 
7147     if (IndexOperand)
7148       report_fatal_error("ds_ordered_count: bad index operand");
7149 
7150     if (WaveDone && !WaveRelease)
7151       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
7152 
7153     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
7154     unsigned ShaderType =
7155         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
7156     unsigned Offset0 = OrderedCountIndex << 2;
7157     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
7158                        (Instruction << 4);
7159 
7160     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
7161       Offset1 |= (CountDw - 1) << 6;
7162 
7163     unsigned Offset = Offset0 | (Offset1 << 8);
7164 
7165     SDValue Ops[] = {
7166       Chain,
7167       Value,
7168       DAG.getTargetConstant(Offset, DL, MVT::i16),
7169       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
7170     };
7171     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
7172                                    M->getVTList(), Ops, M->getMemoryVT(),
7173                                    M->getMemOperand());
7174   }
7175   case Intrinsic::amdgcn_ds_fadd: {
7176     MemSDNode *M = cast<MemSDNode>(Op);
7177     unsigned Opc;
7178     switch (IntrID) {
7179     case Intrinsic::amdgcn_ds_fadd:
7180       Opc = ISD::ATOMIC_LOAD_FADD;
7181       break;
7182     }
7183 
7184     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
7185                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
7186                          M->getMemOperand());
7187   }
7188   case Intrinsic::amdgcn_atomic_inc:
7189   case Intrinsic::amdgcn_atomic_dec:
7190   case Intrinsic::amdgcn_ds_fmin:
7191   case Intrinsic::amdgcn_ds_fmax: {
7192     MemSDNode *M = cast<MemSDNode>(Op);
7193     unsigned Opc;
7194     switch (IntrID) {
7195     case Intrinsic::amdgcn_atomic_inc:
7196       Opc = AMDGPUISD::ATOMIC_INC;
7197       break;
7198     case Intrinsic::amdgcn_atomic_dec:
7199       Opc = AMDGPUISD::ATOMIC_DEC;
7200       break;
7201     case Intrinsic::amdgcn_ds_fmin:
7202       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
7203       break;
7204     case Intrinsic::amdgcn_ds_fmax:
7205       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
7206       break;
7207     default:
7208       llvm_unreachable("Unknown intrinsic!");
7209     }
7210     SDValue Ops[] = {
7211       M->getOperand(0), // Chain
7212       M->getOperand(2), // Ptr
7213       M->getOperand(3)  // Value
7214     };
7215 
7216     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
7217                                    M->getMemoryVT(), M->getMemOperand());
7218   }
7219   case Intrinsic::amdgcn_buffer_load:
7220   case Intrinsic::amdgcn_buffer_load_format: {
7221     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7222     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7223     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7224     SDValue Ops[] = {
7225       Op.getOperand(0), // Chain
7226       Op.getOperand(2), // rsrc
7227       Op.getOperand(3), // vindex
7228       SDValue(),        // voffset -- will be set by setBufferOffsets
7229       SDValue(),        // soffset -- will be set by setBufferOffsets
7230       SDValue(),        // offset -- will be set by setBufferOffsets
7231       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7232       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7233     };
7234     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
7235 
7236     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
7237         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
7238 
7239     EVT VT = Op.getValueType();
7240     EVT IntVT = VT.changeTypeToInteger();
7241     auto *M = cast<MemSDNode>(Op);
7242     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7243     EVT LoadVT = Op.getValueType();
7244 
7245     if (LoadVT.getScalarType() == MVT::f16)
7246       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
7247                                  M, DAG, Ops);
7248 
7249     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
7250     if (LoadVT.getScalarType() == MVT::i8 ||
7251         LoadVT.getScalarType() == MVT::i16)
7252       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
7253 
7254     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
7255                                M->getMemOperand(), DAG);
7256   }
7257   case Intrinsic::amdgcn_raw_buffer_load:
7258   case Intrinsic::amdgcn_raw_buffer_load_format: {
7259     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
7260 
7261     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7262     SDValue Ops[] = {
7263       Op.getOperand(0), // Chain
7264       Op.getOperand(2), // rsrc
7265       DAG.getConstant(0, DL, MVT::i32), // vindex
7266       Offsets.first,    // voffset
7267       Op.getOperand(4), // soffset
7268       Offsets.second,   // offset
7269       Op.getOperand(5), // cachepolicy, swizzled buffer
7270       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7271     };
7272 
7273     auto *M = cast<MemSDNode>(Op);
7274     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]);
7275     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
7276   }
7277   case Intrinsic::amdgcn_struct_buffer_load:
7278   case Intrinsic::amdgcn_struct_buffer_load_format: {
7279     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7280 
7281     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7282     SDValue Ops[] = {
7283       Op.getOperand(0), // Chain
7284       Op.getOperand(2), // rsrc
7285       Op.getOperand(3), // vindex
7286       Offsets.first,    // voffset
7287       Op.getOperand(5), // soffset
7288       Offsets.second,   // offset
7289       Op.getOperand(6), // cachepolicy, swizzled buffer
7290       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7291     };
7292 
7293     auto *M = cast<MemSDNode>(Op);
7294     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7295     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7296   }
7297   case Intrinsic::amdgcn_tbuffer_load: {
7298     MemSDNode *M = cast<MemSDNode>(Op);
7299     EVT LoadVT = Op.getValueType();
7300 
7301     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7302     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7303     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7304     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7305     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7306     SDValue Ops[] = {
7307       Op.getOperand(0),  // Chain
7308       Op.getOperand(2),  // rsrc
7309       Op.getOperand(3),  // vindex
7310       Op.getOperand(4),  // voffset
7311       Op.getOperand(5),  // soffset
7312       Op.getOperand(6),  // offset
7313       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7314       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7315       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7316     };
7317 
7318     if (LoadVT.getScalarType() == MVT::f16)
7319       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7320                                  M, DAG, Ops);
7321     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7322                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7323                                DAG);
7324   }
7325   case Intrinsic::amdgcn_raw_tbuffer_load: {
7326     MemSDNode *M = cast<MemSDNode>(Op);
7327     EVT LoadVT = Op.getValueType();
7328     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7329 
7330     SDValue Ops[] = {
7331       Op.getOperand(0),  // Chain
7332       Op.getOperand(2),  // rsrc
7333       DAG.getConstant(0, DL, MVT::i32), // vindex
7334       Offsets.first,     // voffset
7335       Op.getOperand(4),  // soffset
7336       Offsets.second,    // offset
7337       Op.getOperand(5),  // format
7338       Op.getOperand(6),  // cachepolicy, swizzled buffer
7339       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7340     };
7341 
7342     if (LoadVT.getScalarType() == MVT::f16)
7343       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7344                                  M, DAG, Ops);
7345     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7346                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7347                                DAG);
7348   }
7349   case Intrinsic::amdgcn_struct_tbuffer_load: {
7350     MemSDNode *M = cast<MemSDNode>(Op);
7351     EVT LoadVT = Op.getValueType();
7352     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7353 
7354     SDValue Ops[] = {
7355       Op.getOperand(0),  // Chain
7356       Op.getOperand(2),  // rsrc
7357       Op.getOperand(3),  // vindex
7358       Offsets.first,     // voffset
7359       Op.getOperand(5),  // soffset
7360       Offsets.second,    // offset
7361       Op.getOperand(6),  // format
7362       Op.getOperand(7),  // cachepolicy, swizzled buffer
7363       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7364     };
7365 
7366     if (LoadVT.getScalarType() == MVT::f16)
7367       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7368                                  M, DAG, Ops);
7369     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7370                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7371                                DAG);
7372   }
7373   case Intrinsic::amdgcn_buffer_atomic_swap:
7374   case Intrinsic::amdgcn_buffer_atomic_add:
7375   case Intrinsic::amdgcn_buffer_atomic_sub:
7376   case Intrinsic::amdgcn_buffer_atomic_csub:
7377   case Intrinsic::amdgcn_buffer_atomic_smin:
7378   case Intrinsic::amdgcn_buffer_atomic_umin:
7379   case Intrinsic::amdgcn_buffer_atomic_smax:
7380   case Intrinsic::amdgcn_buffer_atomic_umax:
7381   case Intrinsic::amdgcn_buffer_atomic_and:
7382   case Intrinsic::amdgcn_buffer_atomic_or:
7383   case Intrinsic::amdgcn_buffer_atomic_xor:
7384   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7385     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7386     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7387     SDValue Ops[] = {
7388       Op.getOperand(0), // Chain
7389       Op.getOperand(2), // vdata
7390       Op.getOperand(3), // rsrc
7391       Op.getOperand(4), // vindex
7392       SDValue(),        // voffset -- will be set by setBufferOffsets
7393       SDValue(),        // soffset -- will be set by setBufferOffsets
7394       SDValue(),        // offset -- will be set by setBufferOffsets
7395       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7396       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7397     };
7398     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7399 
7400     EVT VT = Op.getValueType();
7401 
7402     auto *M = cast<MemSDNode>(Op);
7403     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7404     unsigned Opcode = 0;
7405 
7406     switch (IntrID) {
7407     case Intrinsic::amdgcn_buffer_atomic_swap:
7408       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7409       break;
7410     case Intrinsic::amdgcn_buffer_atomic_add:
7411       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7412       break;
7413     case Intrinsic::amdgcn_buffer_atomic_sub:
7414       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7415       break;
7416     case Intrinsic::amdgcn_buffer_atomic_csub:
7417       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7418       break;
7419     case Intrinsic::amdgcn_buffer_atomic_smin:
7420       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7421       break;
7422     case Intrinsic::amdgcn_buffer_atomic_umin:
7423       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7424       break;
7425     case Intrinsic::amdgcn_buffer_atomic_smax:
7426       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7427       break;
7428     case Intrinsic::amdgcn_buffer_atomic_umax:
7429       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7430       break;
7431     case Intrinsic::amdgcn_buffer_atomic_and:
7432       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7433       break;
7434     case Intrinsic::amdgcn_buffer_atomic_or:
7435       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7436       break;
7437     case Intrinsic::amdgcn_buffer_atomic_xor:
7438       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7439       break;
7440     case Intrinsic::amdgcn_buffer_atomic_fadd:
7441       if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7442         DiagnosticInfoUnsupported
7443           NoFpRet(DAG.getMachineFunction().getFunction(),
7444                   "return versions of fp atomics not supported",
7445                   DL.getDebugLoc(), DS_Error);
7446         DAG.getContext()->diagnose(NoFpRet);
7447         return SDValue();
7448       }
7449       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7450       break;
7451     default:
7452       llvm_unreachable("unhandled atomic opcode");
7453     }
7454 
7455     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7456                                    M->getMemOperand());
7457   }
7458   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7459     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7460   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7461     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7462   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7463     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7464   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7465     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7466   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7467     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7468   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7469     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7470   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7471     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7472   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7473     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7474   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7475     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7476   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7477     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7478   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7479     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7480   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7481     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7482   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7483     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7484   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7485     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7486   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7487     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7488   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7489     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7490   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7491     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7492   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7493     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7494   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7495     return lowerStructBufferAtomicIntrin(Op, DAG,
7496                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7497   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7498     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7499   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7500     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7501   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7502     return lowerStructBufferAtomicIntrin(Op, DAG,
7503                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7504   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7505     return lowerStructBufferAtomicIntrin(Op, DAG,
7506                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7507   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7508     return lowerStructBufferAtomicIntrin(Op, DAG,
7509                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7510   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7511     return lowerStructBufferAtomicIntrin(Op, DAG,
7512                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7513   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7514     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7515   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7516     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7517   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7518     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7519   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7520     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7521   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7522     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7523 
7524   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7525     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7526     unsigned IdxEn = getIdxEn(Op.getOperand(5));
7527     SDValue Ops[] = {
7528       Op.getOperand(0), // Chain
7529       Op.getOperand(2), // src
7530       Op.getOperand(3), // cmp
7531       Op.getOperand(4), // rsrc
7532       Op.getOperand(5), // vindex
7533       SDValue(),        // voffset -- will be set by setBufferOffsets
7534       SDValue(),        // soffset -- will be set by setBufferOffsets
7535       SDValue(),        // offset -- will be set by setBufferOffsets
7536       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7537       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7538     };
7539     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7540 
7541     EVT VT = Op.getValueType();
7542     auto *M = cast<MemSDNode>(Op);
7543     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7544 
7545     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7546                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7547   }
7548   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7549     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7550     SDValue Ops[] = {
7551       Op.getOperand(0), // Chain
7552       Op.getOperand(2), // src
7553       Op.getOperand(3), // cmp
7554       Op.getOperand(4), // rsrc
7555       DAG.getConstant(0, DL, MVT::i32), // vindex
7556       Offsets.first,    // voffset
7557       Op.getOperand(6), // soffset
7558       Offsets.second,   // offset
7559       Op.getOperand(7), // cachepolicy
7560       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7561     };
7562     EVT VT = Op.getValueType();
7563     auto *M = cast<MemSDNode>(Op);
7564     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]);
7565 
7566     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7567                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7568   }
7569   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7570     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7571     SDValue Ops[] = {
7572       Op.getOperand(0), // Chain
7573       Op.getOperand(2), // src
7574       Op.getOperand(3), // cmp
7575       Op.getOperand(4), // rsrc
7576       Op.getOperand(5), // vindex
7577       Offsets.first,    // voffset
7578       Op.getOperand(7), // soffset
7579       Offsets.second,   // offset
7580       Op.getOperand(8), // cachepolicy
7581       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7582     };
7583     EVT VT = Op.getValueType();
7584     auto *M = cast<MemSDNode>(Op);
7585     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7586 
7587     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7588                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7589   }
7590   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7591     MemSDNode *M = cast<MemSDNode>(Op);
7592     SDValue NodePtr = M->getOperand(2);
7593     SDValue RayExtent = M->getOperand(3);
7594     SDValue RayOrigin = M->getOperand(4);
7595     SDValue RayDir = M->getOperand(5);
7596     SDValue RayInvDir = M->getOperand(6);
7597     SDValue TDescr = M->getOperand(7);
7598 
7599     assert(NodePtr.getValueType() == MVT::i32 ||
7600            NodePtr.getValueType() == MVT::i64);
7601     assert(RayDir.getValueType() == MVT::v3f16 ||
7602            RayDir.getValueType() == MVT::v3f32);
7603 
7604     if (!Subtarget->hasGFX10_AEncoding()) {
7605       emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
7606       return SDValue();
7607     }
7608 
7609     const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7610     const bool Is64 = NodePtr.getValueType() == MVT::i64;
7611     const unsigned NumVDataDwords = 4;
7612     const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7613     const bool UseNSA = Subtarget->hasNSAEncoding() &&
7614                         NumVAddrDwords <= Subtarget->getNSAMaxSize();
7615     const unsigned BaseOpcodes[2][2] = {
7616         {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7617         {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7618          AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7619     int Opcode;
7620     if (UseNSA) {
7621       Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7622                                      AMDGPU::MIMGEncGfx10NSA, NumVDataDwords,
7623                                      NumVAddrDwords);
7624     } else {
7625       Opcode = AMDGPU::getMIMGOpcode(
7626           BaseOpcodes[Is64][IsA16], AMDGPU::MIMGEncGfx10Default, NumVDataDwords,
7627           PowerOf2Ceil(NumVAddrDwords));
7628     }
7629     assert(Opcode != -1);
7630 
7631     SmallVector<SDValue, 16> Ops;
7632 
7633     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7634       SmallVector<SDValue, 3> Lanes;
7635       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7636       if (Lanes[0].getValueSizeInBits() == 32) {
7637         for (unsigned I = 0; I < 3; ++I)
7638           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7639       } else {
7640         if (IsAligned) {
7641           Ops.push_back(
7642             DAG.getBitcast(MVT::i32,
7643                            DAG.getBuildVector(MVT::v2f16, DL,
7644                                               { Lanes[0], Lanes[1] })));
7645           Ops.push_back(Lanes[2]);
7646         } else {
7647           SDValue Elt0 = Ops.pop_back_val();
7648           Ops.push_back(
7649             DAG.getBitcast(MVT::i32,
7650                            DAG.getBuildVector(MVT::v2f16, DL,
7651                                               { Elt0, Lanes[0] })));
7652           Ops.push_back(
7653             DAG.getBitcast(MVT::i32,
7654                            DAG.getBuildVector(MVT::v2f16, DL,
7655                                               { Lanes[1], Lanes[2] })));
7656         }
7657       }
7658     };
7659 
7660     if (Is64)
7661       DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7662     else
7663       Ops.push_back(NodePtr);
7664 
7665     Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7666     packLanes(RayOrigin, true);
7667     packLanes(RayDir, true);
7668     packLanes(RayInvDir, false);
7669 
7670     if (!UseNSA) {
7671       // Build a single vector containing all the operands so far prepared.
7672       if (NumVAddrDwords > 8) {
7673         SDValue Undef = DAG.getUNDEF(MVT::i32);
7674         Ops.append(16 - Ops.size(), Undef);
7675       }
7676       assert(Ops.size() == 8 || Ops.size() == 16);
7677       SDValue MergedOps = DAG.getBuildVector(
7678           Ops.size() == 16 ? MVT::v16i32 : MVT::v8i32, DL, Ops);
7679       Ops.clear();
7680       Ops.push_back(MergedOps);
7681     }
7682 
7683     Ops.push_back(TDescr);
7684     if (IsA16)
7685       Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7686     Ops.push_back(M->getChain());
7687 
7688     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7689     MachineMemOperand *MemRef = M->getMemOperand();
7690     DAG.setNodeMemRefs(NewNode, {MemRef});
7691     return SDValue(NewNode, 0);
7692   }
7693   case Intrinsic::amdgcn_global_atomic_fadd:
7694     if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7695       DiagnosticInfoUnsupported
7696         NoFpRet(DAG.getMachineFunction().getFunction(),
7697                 "return versions of fp atomics not supported",
7698                 DL.getDebugLoc(), DS_Error);
7699       DAG.getContext()->diagnose(NoFpRet);
7700       return SDValue();
7701     }
7702     LLVM_FALLTHROUGH;
7703   case Intrinsic::amdgcn_global_atomic_fmin:
7704   case Intrinsic::amdgcn_global_atomic_fmax:
7705   case Intrinsic::amdgcn_flat_atomic_fadd:
7706   case Intrinsic::amdgcn_flat_atomic_fmin:
7707   case Intrinsic::amdgcn_flat_atomic_fmax: {
7708     MemSDNode *M = cast<MemSDNode>(Op);
7709     SDValue Ops[] = {
7710       M->getOperand(0), // Chain
7711       M->getOperand(2), // Ptr
7712       M->getOperand(3)  // Value
7713     };
7714     unsigned Opcode = 0;
7715     switch (IntrID) {
7716     case Intrinsic::amdgcn_global_atomic_fadd:
7717     case Intrinsic::amdgcn_flat_atomic_fadd: {
7718       EVT VT = Op.getOperand(3).getValueType();
7719       return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7720                            DAG.getVTList(VT, MVT::Other), Ops,
7721                            M->getMemOperand());
7722     }
7723     case Intrinsic::amdgcn_global_atomic_fmin:
7724     case Intrinsic::amdgcn_flat_atomic_fmin: {
7725       Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
7726       break;
7727     }
7728     case Intrinsic::amdgcn_global_atomic_fmax:
7729     case Intrinsic::amdgcn_flat_atomic_fmax: {
7730       Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
7731       break;
7732     }
7733     default:
7734       llvm_unreachable("unhandled atomic opcode");
7735     }
7736     return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
7737                                    M->getVTList(), Ops, M->getMemoryVT(),
7738                                    M->getMemOperand());
7739   }
7740   default:
7741 
7742     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7743             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7744       return lowerImage(Op, ImageDimIntr, DAG, true);
7745 
7746     return SDValue();
7747   }
7748 }
7749 
7750 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7751 // dwordx4 if on SI.
7752 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7753                                               SDVTList VTList,
7754                                               ArrayRef<SDValue> Ops, EVT MemVT,
7755                                               MachineMemOperand *MMO,
7756                                               SelectionDAG &DAG) const {
7757   EVT VT = VTList.VTs[0];
7758   EVT WidenedVT = VT;
7759   EVT WidenedMemVT = MemVT;
7760   if (!Subtarget->hasDwordx3LoadStores() &&
7761       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7762     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7763                                  WidenedVT.getVectorElementType(), 4);
7764     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7765                                     WidenedMemVT.getVectorElementType(), 4);
7766     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7767   }
7768 
7769   assert(VTList.NumVTs == 2);
7770   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7771 
7772   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7773                                        WidenedMemVT, MMO);
7774   if (WidenedVT != VT) {
7775     auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7776                                DAG.getVectorIdxConstant(0, DL));
7777     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7778   }
7779   return NewOp;
7780 }
7781 
7782 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7783                                          bool ImageStore) const {
7784   EVT StoreVT = VData.getValueType();
7785 
7786   // No change for f16 and legal vector D16 types.
7787   if (!StoreVT.isVector())
7788     return VData;
7789 
7790   SDLoc DL(VData);
7791   unsigned NumElements = StoreVT.getVectorNumElements();
7792 
7793   if (Subtarget->hasUnpackedD16VMem()) {
7794     // We need to unpack the packed data to store.
7795     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7796     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7797 
7798     EVT EquivStoreVT =
7799         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7800     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7801     return DAG.UnrollVectorOp(ZExt.getNode());
7802   }
7803 
7804   // The sq block of gfx8.1 does not estimate register use correctly for d16
7805   // image store instructions. The data operand is computed as if it were not a
7806   // d16 image instruction.
7807   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7808     // Bitcast to i16
7809     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7810     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7811 
7812     // Decompose into scalars
7813     SmallVector<SDValue, 4> Elts;
7814     DAG.ExtractVectorElements(IntVData, Elts);
7815 
7816     // Group pairs of i16 into v2i16 and bitcast to i32
7817     SmallVector<SDValue, 4> PackedElts;
7818     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7819       SDValue Pair =
7820           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7821       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7822       PackedElts.push_back(IntPair);
7823     }
7824     if ((NumElements % 2) == 1) {
7825       // Handle v3i16
7826       unsigned I = Elts.size() / 2;
7827       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7828                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7829       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7830       PackedElts.push_back(IntPair);
7831     }
7832 
7833     // Pad using UNDEF
7834     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7835 
7836     // Build final vector
7837     EVT VecVT =
7838         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7839     return DAG.getBuildVector(VecVT, DL, PackedElts);
7840   }
7841 
7842   if (NumElements == 3) {
7843     EVT IntStoreVT =
7844         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7845     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7846 
7847     EVT WidenedStoreVT = EVT::getVectorVT(
7848         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7849     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7850                                          WidenedStoreVT.getStoreSizeInBits());
7851     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7852     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7853   }
7854 
7855   assert(isTypeLegal(StoreVT));
7856   return VData;
7857 }
7858 
7859 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7860                                               SelectionDAG &DAG) const {
7861   SDLoc DL(Op);
7862   SDValue Chain = Op.getOperand(0);
7863   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7864   MachineFunction &MF = DAG.getMachineFunction();
7865 
7866   switch (IntrinsicID) {
7867   case Intrinsic::amdgcn_exp_compr: {
7868     SDValue Src0 = Op.getOperand(4);
7869     SDValue Src1 = Op.getOperand(5);
7870     // Hack around illegal type on SI by directly selecting it.
7871     if (isTypeLegal(Src0.getValueType()))
7872       return SDValue();
7873 
7874     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7875     SDValue Undef = DAG.getUNDEF(MVT::f32);
7876     const SDValue Ops[] = {
7877       Op.getOperand(2), // tgt
7878       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7879       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7880       Undef, // src2
7881       Undef, // src3
7882       Op.getOperand(7), // vm
7883       DAG.getTargetConstant(1, DL, MVT::i1), // compr
7884       Op.getOperand(3), // en
7885       Op.getOperand(0) // Chain
7886     };
7887 
7888     unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7889     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7890   }
7891   case Intrinsic::amdgcn_s_barrier: {
7892     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7893       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7894       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7895       if (WGSize <= ST.getWavefrontSize())
7896         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7897                                           Op.getOperand(0)), 0);
7898     }
7899     return SDValue();
7900   };
7901   case Intrinsic::amdgcn_tbuffer_store: {
7902     SDValue VData = Op.getOperand(2);
7903     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7904     if (IsD16)
7905       VData = handleD16VData(VData, DAG);
7906     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7907     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7908     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7909     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7910     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7911     SDValue Ops[] = {
7912       Chain,
7913       VData,             // vdata
7914       Op.getOperand(3),  // rsrc
7915       Op.getOperand(4),  // vindex
7916       Op.getOperand(5),  // voffset
7917       Op.getOperand(6),  // soffset
7918       Op.getOperand(7),  // offset
7919       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7920       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7921       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7922     };
7923     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7924                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7925     MemSDNode *M = cast<MemSDNode>(Op);
7926     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7927                                    M->getMemoryVT(), M->getMemOperand());
7928   }
7929 
7930   case Intrinsic::amdgcn_struct_tbuffer_store: {
7931     SDValue VData = Op.getOperand(2);
7932     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7933     if (IsD16)
7934       VData = handleD16VData(VData, DAG);
7935     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7936     SDValue Ops[] = {
7937       Chain,
7938       VData,             // vdata
7939       Op.getOperand(3),  // rsrc
7940       Op.getOperand(4),  // vindex
7941       Offsets.first,     // voffset
7942       Op.getOperand(6),  // soffset
7943       Offsets.second,    // offset
7944       Op.getOperand(7),  // format
7945       Op.getOperand(8),  // cachepolicy, swizzled buffer
7946       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7947     };
7948     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7949                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7950     MemSDNode *M = cast<MemSDNode>(Op);
7951     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7952                                    M->getMemoryVT(), M->getMemOperand());
7953   }
7954 
7955   case Intrinsic::amdgcn_raw_tbuffer_store: {
7956     SDValue VData = Op.getOperand(2);
7957     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7958     if (IsD16)
7959       VData = handleD16VData(VData, DAG);
7960     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7961     SDValue Ops[] = {
7962       Chain,
7963       VData,             // vdata
7964       Op.getOperand(3),  // rsrc
7965       DAG.getConstant(0, DL, MVT::i32), // vindex
7966       Offsets.first,     // voffset
7967       Op.getOperand(5),  // soffset
7968       Offsets.second,    // offset
7969       Op.getOperand(6),  // format
7970       Op.getOperand(7),  // cachepolicy, swizzled buffer
7971       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7972     };
7973     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7974                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7975     MemSDNode *M = cast<MemSDNode>(Op);
7976     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7977                                    M->getMemoryVT(), M->getMemOperand());
7978   }
7979 
7980   case Intrinsic::amdgcn_buffer_store:
7981   case Intrinsic::amdgcn_buffer_store_format: {
7982     SDValue VData = Op.getOperand(2);
7983     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7984     if (IsD16)
7985       VData = handleD16VData(VData, DAG);
7986     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7987     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7988     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7989     SDValue Ops[] = {
7990       Chain,
7991       VData,
7992       Op.getOperand(3), // rsrc
7993       Op.getOperand(4), // vindex
7994       SDValue(), // voffset -- will be set by setBufferOffsets
7995       SDValue(), // soffset -- will be set by setBufferOffsets
7996       SDValue(), // offset -- will be set by setBufferOffsets
7997       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7998       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7999     };
8000     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
8001 
8002     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
8003                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8004     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8005     MemSDNode *M = cast<MemSDNode>(Op);
8006     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8007 
8008     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8009     EVT VDataType = VData.getValueType().getScalarType();
8010     if (VDataType == MVT::i8 || VDataType == MVT::i16)
8011       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8012 
8013     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8014                                    M->getMemoryVT(), M->getMemOperand());
8015   }
8016 
8017   case Intrinsic::amdgcn_raw_buffer_store:
8018   case Intrinsic::amdgcn_raw_buffer_store_format: {
8019     const bool IsFormat =
8020         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
8021 
8022     SDValue VData = Op.getOperand(2);
8023     EVT VDataVT = VData.getValueType();
8024     EVT EltType = VDataVT.getScalarType();
8025     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8026     if (IsD16) {
8027       VData = handleD16VData(VData, DAG);
8028       VDataVT = VData.getValueType();
8029     }
8030 
8031     if (!isTypeLegal(VDataVT)) {
8032       VData =
8033           DAG.getNode(ISD::BITCAST, DL,
8034                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8035     }
8036 
8037     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8038     SDValue Ops[] = {
8039       Chain,
8040       VData,
8041       Op.getOperand(3), // rsrc
8042       DAG.getConstant(0, DL, MVT::i32), // vindex
8043       Offsets.first,    // voffset
8044       Op.getOperand(5), // soffset
8045       Offsets.second,   // offset
8046       Op.getOperand(6), // cachepolicy, swizzled buffer
8047       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8048     };
8049     unsigned Opc =
8050         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
8051     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8052     MemSDNode *M = cast<MemSDNode>(Op);
8053     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
8054 
8055     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8056     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8057       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
8058 
8059     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8060                                    M->getMemoryVT(), M->getMemOperand());
8061   }
8062 
8063   case Intrinsic::amdgcn_struct_buffer_store:
8064   case Intrinsic::amdgcn_struct_buffer_store_format: {
8065     const bool IsFormat =
8066         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
8067 
8068     SDValue VData = Op.getOperand(2);
8069     EVT VDataVT = VData.getValueType();
8070     EVT EltType = VDataVT.getScalarType();
8071     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8072 
8073     if (IsD16) {
8074       VData = handleD16VData(VData, DAG);
8075       VDataVT = VData.getValueType();
8076     }
8077 
8078     if (!isTypeLegal(VDataVT)) {
8079       VData =
8080           DAG.getNode(ISD::BITCAST, DL,
8081                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8082     }
8083 
8084     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8085     SDValue Ops[] = {
8086       Chain,
8087       VData,
8088       Op.getOperand(3), // rsrc
8089       Op.getOperand(4), // vindex
8090       Offsets.first,    // voffset
8091       Op.getOperand(6), // soffset
8092       Offsets.second,   // offset
8093       Op.getOperand(7), // cachepolicy, swizzled buffer
8094       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8095     };
8096     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
8097                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8098     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8099     MemSDNode *M = cast<MemSDNode>(Op);
8100     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8101 
8102     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8103     EVT VDataType = VData.getValueType().getScalarType();
8104     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8105       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8106 
8107     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8108                                    M->getMemoryVT(), M->getMemOperand());
8109   }
8110   case Intrinsic::amdgcn_end_cf:
8111     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
8112                                       Op->getOperand(2), Chain), 0);
8113 
8114   default: {
8115     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
8116             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
8117       return lowerImage(Op, ImageDimIntr, DAG, true);
8118 
8119     return Op;
8120   }
8121   }
8122 }
8123 
8124 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
8125 // offset (the offset that is included in bounds checking and swizzling, to be
8126 // split between the instruction's voffset and immoffset fields) and soffset
8127 // (the offset that is excluded from bounds checking and swizzling, to go in
8128 // the instruction's soffset field).  This function takes the first kind of
8129 // offset and figures out how to split it between voffset and immoffset.
8130 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
8131     SDValue Offset, SelectionDAG &DAG) const {
8132   SDLoc DL(Offset);
8133   const unsigned MaxImm = 4095;
8134   SDValue N0 = Offset;
8135   ConstantSDNode *C1 = nullptr;
8136 
8137   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
8138     N0 = SDValue();
8139   else if (DAG.isBaseWithConstantOffset(N0)) {
8140     C1 = cast<ConstantSDNode>(N0.getOperand(1));
8141     N0 = N0.getOperand(0);
8142   }
8143 
8144   if (C1) {
8145     unsigned ImmOffset = C1->getZExtValue();
8146     // If the immediate value is too big for the immoffset field, put the value
8147     // and -4096 into the immoffset field so that the value that is copied/added
8148     // for the voffset field is a multiple of 4096, and it stands more chance
8149     // of being CSEd with the copy/add for another similar load/store.
8150     // However, do not do that rounding down to a multiple of 4096 if that is a
8151     // negative number, as it appears to be illegal to have a negative offset
8152     // in the vgpr, even if adding the immediate offset makes it positive.
8153     unsigned Overflow = ImmOffset & ~MaxImm;
8154     ImmOffset -= Overflow;
8155     if ((int32_t)Overflow < 0) {
8156       Overflow += ImmOffset;
8157       ImmOffset = 0;
8158     }
8159     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
8160     if (Overflow) {
8161       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
8162       if (!N0)
8163         N0 = OverflowVal;
8164       else {
8165         SDValue Ops[] = { N0, OverflowVal };
8166         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
8167       }
8168     }
8169   }
8170   if (!N0)
8171     N0 = DAG.getConstant(0, DL, MVT::i32);
8172   if (!C1)
8173     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
8174   return {N0, SDValue(C1, 0)};
8175 }
8176 
8177 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
8178 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
8179 // pointed to by Offsets.
8180 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
8181                                         SelectionDAG &DAG, SDValue *Offsets,
8182                                         Align Alignment) const {
8183   SDLoc DL(CombinedOffset);
8184   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
8185     uint32_t Imm = C->getZExtValue();
8186     uint32_t SOffset, ImmOffset;
8187     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
8188                                  Alignment)) {
8189       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
8190       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8191       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8192       return;
8193     }
8194   }
8195   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
8196     SDValue N0 = CombinedOffset.getOperand(0);
8197     SDValue N1 = CombinedOffset.getOperand(1);
8198     uint32_t SOffset, ImmOffset;
8199     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
8200     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
8201                                                 Subtarget, Alignment)) {
8202       Offsets[0] = N0;
8203       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8204       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8205       return;
8206     }
8207   }
8208   Offsets[0] = CombinedOffset;
8209   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
8210   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
8211 }
8212 
8213 // Handle 8 bit and 16 bit buffer loads
8214 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
8215                                                      EVT LoadVT, SDLoc DL,
8216                                                      ArrayRef<SDValue> Ops,
8217                                                      MemSDNode *M) const {
8218   EVT IntVT = LoadVT.changeTypeToInteger();
8219   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
8220          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
8221 
8222   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
8223   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
8224                                                Ops, IntVT,
8225                                                M->getMemOperand());
8226   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
8227   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
8228 
8229   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
8230 }
8231 
8232 // Handle 8 bit and 16 bit buffer stores
8233 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
8234                                                       EVT VDataType, SDLoc DL,
8235                                                       SDValue Ops[],
8236                                                       MemSDNode *M) const {
8237   if (VDataType == MVT::f16)
8238     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
8239 
8240   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
8241   Ops[1] = BufferStoreExt;
8242   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
8243                                  AMDGPUISD::BUFFER_STORE_SHORT;
8244   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
8245   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
8246                                      M->getMemOperand());
8247 }
8248 
8249 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
8250                                  ISD::LoadExtType ExtType, SDValue Op,
8251                                  const SDLoc &SL, EVT VT) {
8252   if (VT.bitsLT(Op.getValueType()))
8253     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
8254 
8255   switch (ExtType) {
8256   case ISD::SEXTLOAD:
8257     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
8258   case ISD::ZEXTLOAD:
8259     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
8260   case ISD::EXTLOAD:
8261     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
8262   case ISD::NON_EXTLOAD:
8263     return Op;
8264   }
8265 
8266   llvm_unreachable("invalid ext type");
8267 }
8268 
8269 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
8270   SelectionDAG &DAG = DCI.DAG;
8271   if (Ld->getAlignment() < 4 || Ld->isDivergent())
8272     return SDValue();
8273 
8274   // FIXME: Constant loads should all be marked invariant.
8275   unsigned AS = Ld->getAddressSpace();
8276   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
8277       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8278       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
8279     return SDValue();
8280 
8281   // Don't do this early, since it may interfere with adjacent load merging for
8282   // illegal types. We can avoid losing alignment information for exotic types
8283   // pre-legalize.
8284   EVT MemVT = Ld->getMemoryVT();
8285   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
8286       MemVT.getSizeInBits() >= 32)
8287     return SDValue();
8288 
8289   SDLoc SL(Ld);
8290 
8291   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
8292          "unexpected vector extload");
8293 
8294   // TODO: Drop only high part of range.
8295   SDValue Ptr = Ld->getBasePtr();
8296   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
8297                                 MVT::i32, SL, Ld->getChain(), Ptr,
8298                                 Ld->getOffset(),
8299                                 Ld->getPointerInfo(), MVT::i32,
8300                                 Ld->getAlignment(),
8301                                 Ld->getMemOperand()->getFlags(),
8302                                 Ld->getAAInfo(),
8303                                 nullptr); // Drop ranges
8304 
8305   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
8306   if (MemVT.isFloatingPoint()) {
8307     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
8308            "unexpected fp extload");
8309     TruncVT = MemVT.changeTypeToInteger();
8310   }
8311 
8312   SDValue Cvt = NewLoad;
8313   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
8314     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
8315                       DAG.getValueType(TruncVT));
8316   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
8317              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
8318     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
8319   } else {
8320     assert(Ld->getExtensionType() == ISD::EXTLOAD);
8321   }
8322 
8323   EVT VT = Ld->getValueType(0);
8324   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8325 
8326   DCI.AddToWorklist(Cvt.getNode());
8327 
8328   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8329   // the appropriate extension from the 32-bit load.
8330   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8331   DCI.AddToWorklist(Cvt.getNode());
8332 
8333   // Handle conversion back to floating point if necessary.
8334   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8335 
8336   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8337 }
8338 
8339 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8340   SDLoc DL(Op);
8341   LoadSDNode *Load = cast<LoadSDNode>(Op);
8342   ISD::LoadExtType ExtType = Load->getExtensionType();
8343   EVT MemVT = Load->getMemoryVT();
8344 
8345   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8346     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8347       return SDValue();
8348 
8349     // FIXME: Copied from PPC
8350     // First, load into 32 bits, then truncate to 1 bit.
8351 
8352     SDValue Chain = Load->getChain();
8353     SDValue BasePtr = Load->getBasePtr();
8354     MachineMemOperand *MMO = Load->getMemOperand();
8355 
8356     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8357 
8358     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8359                                    BasePtr, RealMemVT, MMO);
8360 
8361     if (!MemVT.isVector()) {
8362       SDValue Ops[] = {
8363         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8364         NewLD.getValue(1)
8365       };
8366 
8367       return DAG.getMergeValues(Ops, DL);
8368     }
8369 
8370     SmallVector<SDValue, 3> Elts;
8371     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8372       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8373                                 DAG.getConstant(I, DL, MVT::i32));
8374 
8375       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8376     }
8377 
8378     SDValue Ops[] = {
8379       DAG.getBuildVector(MemVT, DL, Elts),
8380       NewLD.getValue(1)
8381     };
8382 
8383     return DAG.getMergeValues(Ops, DL);
8384   }
8385 
8386   if (!MemVT.isVector())
8387     return SDValue();
8388 
8389   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8390          "Custom lowering for non-i32 vectors hasn't been implemented.");
8391 
8392   unsigned Alignment = Load->getAlignment();
8393   unsigned AS = Load->getAddressSpace();
8394   if (Subtarget->hasLDSMisalignedBug() &&
8395       AS == AMDGPUAS::FLAT_ADDRESS &&
8396       Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8397     return SplitVectorLoad(Op, DAG);
8398   }
8399 
8400   MachineFunction &MF = DAG.getMachineFunction();
8401   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8402   // If there is a possibility that flat instruction access scratch memory
8403   // then we need to use the same legalization rules we use for private.
8404   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8405       !Subtarget->hasMultiDwordFlatScratchAddressing())
8406     AS = MFI->hasFlatScratchInit() ?
8407          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8408 
8409   unsigned NumElements = MemVT.getVectorNumElements();
8410 
8411   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8412       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8413     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
8414       if (MemVT.isPow2VectorType())
8415         return SDValue();
8416       return WidenOrSplitVectorLoad(Op, DAG);
8417     }
8418     // Non-uniform loads will be selected to MUBUF instructions, so they
8419     // have the same legalization requirements as global and private
8420     // loads.
8421     //
8422   }
8423 
8424   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8425       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8426       AS == AMDGPUAS::GLOBAL_ADDRESS) {
8427     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8428         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8429         Alignment >= 4 && NumElements < 32) {
8430       if (MemVT.isPow2VectorType())
8431         return SDValue();
8432       return WidenOrSplitVectorLoad(Op, DAG);
8433     }
8434     // Non-uniform loads will be selected to MUBUF instructions, so they
8435     // have the same legalization requirements as global and private
8436     // loads.
8437     //
8438   }
8439   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8440       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8441       AS == AMDGPUAS::GLOBAL_ADDRESS ||
8442       AS == AMDGPUAS::FLAT_ADDRESS) {
8443     if (NumElements > 4)
8444       return SplitVectorLoad(Op, DAG);
8445     // v3 loads not supported on SI.
8446     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8447       return WidenOrSplitVectorLoad(Op, DAG);
8448 
8449     // v3 and v4 loads are supported for private and global memory.
8450     return SDValue();
8451   }
8452   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8453     // Depending on the setting of the private_element_size field in the
8454     // resource descriptor, we can only make private accesses up to a certain
8455     // size.
8456     switch (Subtarget->getMaxPrivateElementSize()) {
8457     case 4: {
8458       SDValue Ops[2];
8459       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8460       return DAG.getMergeValues(Ops, DL);
8461     }
8462     case 8:
8463       if (NumElements > 2)
8464         return SplitVectorLoad(Op, DAG);
8465       return SDValue();
8466     case 16:
8467       // Same as global/flat
8468       if (NumElements > 4)
8469         return SplitVectorLoad(Op, DAG);
8470       // v3 loads not supported on SI.
8471       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8472         return WidenOrSplitVectorLoad(Op, DAG);
8473 
8474       return SDValue();
8475     default:
8476       llvm_unreachable("unsupported private_element_size");
8477     }
8478   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8479     // Use ds_read_b128 or ds_read_b96 when possible.
8480     if (Subtarget->hasDS96AndDS128() &&
8481         ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8482          MemVT.getStoreSize() == 12) &&
8483         allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8484                                            Load->getAlign()))
8485       return SDValue();
8486 
8487     if (NumElements > 2)
8488       return SplitVectorLoad(Op, DAG);
8489 
8490     // SI has a hardware bug in the LDS / GDS bounds checking: if the base
8491     // address is negative, then the instruction is incorrectly treated as
8492     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8493     // loads here to avoid emitting ds_read2_b32. We may re-combine the
8494     // load later in the SILoadStoreOptimizer.
8495     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8496         NumElements == 2 && MemVT.getStoreSize() == 8 &&
8497         Load->getAlignment() < 8) {
8498       return SplitVectorLoad(Op, DAG);
8499     }
8500   }
8501 
8502   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8503                                       MemVT, *Load->getMemOperand())) {
8504     SDValue Ops[2];
8505     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8506     return DAG.getMergeValues(Ops, DL);
8507   }
8508 
8509   return SDValue();
8510 }
8511 
8512 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8513   EVT VT = Op.getValueType();
8514   if (VT.getSizeInBits() == 128)
8515     return splitTernaryVectorOp(Op, DAG);
8516 
8517   assert(VT.getSizeInBits() == 64);
8518 
8519   SDLoc DL(Op);
8520   SDValue Cond = Op.getOperand(0);
8521 
8522   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8523   SDValue One = DAG.getConstant(1, DL, MVT::i32);
8524 
8525   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8526   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8527 
8528   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8529   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8530 
8531   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8532 
8533   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8534   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8535 
8536   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8537 
8538   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8539   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8540 }
8541 
8542 // Catch division cases where we can use shortcuts with rcp and rsq
8543 // instructions.
8544 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8545                                               SelectionDAG &DAG) const {
8546   SDLoc SL(Op);
8547   SDValue LHS = Op.getOperand(0);
8548   SDValue RHS = Op.getOperand(1);
8549   EVT VT = Op.getValueType();
8550   const SDNodeFlags Flags = Op->getFlags();
8551 
8552   bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8553 
8554   // Without !fpmath accuracy information, we can't do more because we don't
8555   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8556   if (!AllowInaccurateRcp)
8557     return SDValue();
8558 
8559   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8560     if (CLHS->isExactlyValue(1.0)) {
8561       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8562       // the CI documentation has a worst case error of 1 ulp.
8563       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8564       // use it as long as we aren't trying to use denormals.
8565       //
8566       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8567 
8568       // 1.0 / sqrt(x) -> rsq(x)
8569 
8570       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8571       // error seems really high at 2^29 ULP.
8572       if (RHS.getOpcode() == ISD::FSQRT)
8573         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8574 
8575       // 1.0 / x -> rcp(x)
8576       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8577     }
8578 
8579     // Same as for 1.0, but expand the sign out of the constant.
8580     if (CLHS->isExactlyValue(-1.0)) {
8581       // -1.0 / x -> rcp (fneg x)
8582       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8583       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8584     }
8585   }
8586 
8587   // Turn into multiply by the reciprocal.
8588   // x / y -> x * (1.0 / y)
8589   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8590   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8591 }
8592 
8593 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8594                                                 SelectionDAG &DAG) const {
8595   SDLoc SL(Op);
8596   SDValue X = Op.getOperand(0);
8597   SDValue Y = Op.getOperand(1);
8598   EVT VT = Op.getValueType();
8599   const SDNodeFlags Flags = Op->getFlags();
8600 
8601   bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8602                             DAG.getTarget().Options.UnsafeFPMath;
8603   if (!AllowInaccurateDiv)
8604     return SDValue();
8605 
8606   SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8607   SDValue One = DAG.getConstantFP(1.0, SL, VT);
8608 
8609   SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8610   SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8611 
8612   R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8613   SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8614   R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8615   SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8616   SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8617   return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8618 }
8619 
8620 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8621                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8622                           SDNodeFlags Flags) {
8623   if (GlueChain->getNumValues() <= 1) {
8624     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8625   }
8626 
8627   assert(GlueChain->getNumValues() == 3);
8628 
8629   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8630   switch (Opcode) {
8631   default: llvm_unreachable("no chain equivalent for opcode");
8632   case ISD::FMUL:
8633     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8634     break;
8635   }
8636 
8637   return DAG.getNode(Opcode, SL, VTList,
8638                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8639                      Flags);
8640 }
8641 
8642 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8643                            EVT VT, SDValue A, SDValue B, SDValue C,
8644                            SDValue GlueChain, SDNodeFlags Flags) {
8645   if (GlueChain->getNumValues() <= 1) {
8646     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8647   }
8648 
8649   assert(GlueChain->getNumValues() == 3);
8650 
8651   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8652   switch (Opcode) {
8653   default: llvm_unreachable("no chain equivalent for opcode");
8654   case ISD::FMA:
8655     Opcode = AMDGPUISD::FMA_W_CHAIN;
8656     break;
8657   }
8658 
8659   return DAG.getNode(Opcode, SL, VTList,
8660                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8661                      Flags);
8662 }
8663 
8664 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8665   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8666     return FastLowered;
8667 
8668   SDLoc SL(Op);
8669   SDValue Src0 = Op.getOperand(0);
8670   SDValue Src1 = Op.getOperand(1);
8671 
8672   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8673   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8674 
8675   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8676   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8677 
8678   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8679   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8680 
8681   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8682 }
8683 
8684 // Faster 2.5 ULP division that does not support denormals.
8685 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8686   SDLoc SL(Op);
8687   SDValue LHS = Op.getOperand(1);
8688   SDValue RHS = Op.getOperand(2);
8689 
8690   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8691 
8692   const APFloat K0Val(BitsToFloat(0x6f800000));
8693   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8694 
8695   const APFloat K1Val(BitsToFloat(0x2f800000));
8696   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8697 
8698   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8699 
8700   EVT SetCCVT =
8701     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8702 
8703   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8704 
8705   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8706 
8707   // TODO: Should this propagate fast-math-flags?
8708   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8709 
8710   // rcp does not support denormals.
8711   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8712 
8713   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8714 
8715   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8716 }
8717 
8718 // Returns immediate value for setting the F32 denorm mode when using the
8719 // S_DENORM_MODE instruction.
8720 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8721                                     const SDLoc &SL, const GCNSubtarget *ST) {
8722   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8723   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8724                                 ? FP_DENORM_FLUSH_NONE
8725                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8726 
8727   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8728   return DAG.getTargetConstant(Mode, SL, MVT::i32);
8729 }
8730 
8731 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8732   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8733     return FastLowered;
8734 
8735   // The selection matcher assumes anything with a chain selecting to a
8736   // mayRaiseFPException machine instruction. Since we're introducing a chain
8737   // here, we need to explicitly report nofpexcept for the regular fdiv
8738   // lowering.
8739   SDNodeFlags Flags = Op->getFlags();
8740   Flags.setNoFPExcept(true);
8741 
8742   SDLoc SL(Op);
8743   SDValue LHS = Op.getOperand(0);
8744   SDValue RHS = Op.getOperand(1);
8745 
8746   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8747 
8748   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8749 
8750   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8751                                           {RHS, RHS, LHS}, Flags);
8752   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8753                                         {LHS, RHS, LHS}, Flags);
8754 
8755   // Denominator is scaled to not be denormal, so using rcp is ok.
8756   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8757                                   DenominatorScaled, Flags);
8758   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8759                                      DenominatorScaled, Flags);
8760 
8761   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8762                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8763                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8764   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8765 
8766   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8767 
8768   if (!HasFP32Denormals) {
8769     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8770     // lowering. The chain dependence is insufficient, and we need glue. We do
8771     // not need the glue variants in a strictfp function.
8772 
8773     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8774 
8775     SDNode *EnableDenorm;
8776     if (Subtarget->hasDenormModeInst()) {
8777       const SDValue EnableDenormValue =
8778           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8779 
8780       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8781                                  DAG.getEntryNode(), EnableDenormValue).getNode();
8782     } else {
8783       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
8784                                                         SL, MVT::i32);
8785       EnableDenorm =
8786           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8787                              {EnableDenormValue, BitField, DAG.getEntryNode()});
8788     }
8789 
8790     SDValue Ops[3] = {
8791       NegDivScale0,
8792       SDValue(EnableDenorm, 0),
8793       SDValue(EnableDenorm, 1)
8794     };
8795 
8796     NegDivScale0 = DAG.getMergeValues(Ops, SL);
8797   }
8798 
8799   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8800                              ApproxRcp, One, NegDivScale0, Flags);
8801 
8802   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8803                              ApproxRcp, Fma0, Flags);
8804 
8805   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8806                            Fma1, Fma1, Flags);
8807 
8808   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8809                              NumeratorScaled, Mul, Flags);
8810 
8811   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8812                              Fma2, Fma1, Mul, Fma2, Flags);
8813 
8814   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8815                              NumeratorScaled, Fma3, Flags);
8816 
8817   if (!HasFP32Denormals) {
8818     SDNode *DisableDenorm;
8819     if (Subtarget->hasDenormModeInst()) {
8820       const SDValue DisableDenormValue =
8821           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
8822 
8823       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8824                                   Fma4.getValue(1), DisableDenormValue,
8825                                   Fma4.getValue(2)).getNode();
8826     } else {
8827       const SDValue DisableDenormValue =
8828           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
8829 
8830       DisableDenorm = DAG.getMachineNode(
8831           AMDGPU::S_SETREG_B32, SL, MVT::Other,
8832           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8833     }
8834 
8835     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8836                                       SDValue(DisableDenorm, 0), DAG.getRoot());
8837     DAG.setRoot(OutputChain);
8838   }
8839 
8840   SDValue Scale = NumeratorScaled.getValue(1);
8841   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8842                              {Fma4, Fma1, Fma3, Scale}, Flags);
8843 
8844   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8845 }
8846 
8847 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8848   if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
8849     return FastLowered;
8850 
8851   SDLoc SL(Op);
8852   SDValue X = Op.getOperand(0);
8853   SDValue Y = Op.getOperand(1);
8854 
8855   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8856 
8857   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8858 
8859   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8860 
8861   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8862 
8863   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8864 
8865   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8866 
8867   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8868 
8869   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8870 
8871   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8872 
8873   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8874   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8875 
8876   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8877                              NegDivScale0, Mul, DivScale1);
8878 
8879   SDValue Scale;
8880 
8881   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8882     // Workaround a hardware bug on SI where the condition output from div_scale
8883     // is not usable.
8884 
8885     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8886 
8887     // Figure out if the scale to use for div_fmas.
8888     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8889     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8890     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8891     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8892 
8893     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8894     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8895 
8896     SDValue Scale0Hi
8897       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8898     SDValue Scale1Hi
8899       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8900 
8901     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8902     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8903     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8904   } else {
8905     Scale = DivScale1.getValue(1);
8906   }
8907 
8908   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8909                              Fma4, Fma3, Mul, Scale);
8910 
8911   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8912 }
8913 
8914 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8915   EVT VT = Op.getValueType();
8916 
8917   if (VT == MVT::f32)
8918     return LowerFDIV32(Op, DAG);
8919 
8920   if (VT == MVT::f64)
8921     return LowerFDIV64(Op, DAG);
8922 
8923   if (VT == MVT::f16)
8924     return LowerFDIV16(Op, DAG);
8925 
8926   llvm_unreachable("Unexpected type for fdiv");
8927 }
8928 
8929 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8930   SDLoc DL(Op);
8931   StoreSDNode *Store = cast<StoreSDNode>(Op);
8932   EVT VT = Store->getMemoryVT();
8933 
8934   if (VT == MVT::i1) {
8935     return DAG.getTruncStore(Store->getChain(), DL,
8936        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8937        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8938   }
8939 
8940   assert(VT.isVector() &&
8941          Store->getValue().getValueType().getScalarType() == MVT::i32);
8942 
8943   unsigned AS = Store->getAddressSpace();
8944   if (Subtarget->hasLDSMisalignedBug() &&
8945       AS == AMDGPUAS::FLAT_ADDRESS &&
8946       Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8947     return SplitVectorStore(Op, DAG);
8948   }
8949 
8950   MachineFunction &MF = DAG.getMachineFunction();
8951   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8952   // If there is a possibility that flat instruction access scratch memory
8953   // then we need to use the same legalization rules we use for private.
8954   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8955       !Subtarget->hasMultiDwordFlatScratchAddressing())
8956     AS = MFI->hasFlatScratchInit() ?
8957          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8958 
8959   unsigned NumElements = VT.getVectorNumElements();
8960   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8961       AS == AMDGPUAS::FLAT_ADDRESS) {
8962     if (NumElements > 4)
8963       return SplitVectorStore(Op, DAG);
8964     // v3 stores not supported on SI.
8965     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8966       return SplitVectorStore(Op, DAG);
8967 
8968     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8969                                         VT, *Store->getMemOperand()))
8970       return expandUnalignedStore(Store, DAG);
8971 
8972     return SDValue();
8973   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8974     switch (Subtarget->getMaxPrivateElementSize()) {
8975     case 4:
8976       return scalarizeVectorStore(Store, DAG);
8977     case 8:
8978       if (NumElements > 2)
8979         return SplitVectorStore(Op, DAG);
8980       return SDValue();
8981     case 16:
8982       if (NumElements > 4 ||
8983           (NumElements == 3 && !Subtarget->enableFlatScratch()))
8984         return SplitVectorStore(Op, DAG);
8985       return SDValue();
8986     default:
8987       llvm_unreachable("unsupported private_element_size");
8988     }
8989   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8990     // Use ds_write_b128 or ds_write_b96 when possible.
8991     if (Subtarget->hasDS96AndDS128() &&
8992         ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
8993          (VT.getStoreSize() == 12)) &&
8994         allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
8995                                            Store->getAlign()))
8996       return SDValue();
8997 
8998     if (NumElements > 2)
8999       return SplitVectorStore(Op, DAG);
9000 
9001     // SI has a hardware bug in the LDS / GDS bounds checking: if the base
9002     // address is negative, then the instruction is incorrectly treated as
9003     // out-of-bounds even if base + offsets is in bounds. Split vectorized
9004     // stores here to avoid emitting ds_write2_b32. We may re-combine the
9005     // store later in the SILoadStoreOptimizer.
9006     if (!Subtarget->hasUsableDSOffset() &&
9007         NumElements == 2 && VT.getStoreSize() == 8 &&
9008         Store->getAlignment() < 8) {
9009       return SplitVectorStore(Op, DAG);
9010     }
9011 
9012     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
9013                                         VT, *Store->getMemOperand())) {
9014       if (VT.isVector())
9015         return SplitVectorStore(Op, DAG);
9016       return expandUnalignedStore(Store, DAG);
9017     }
9018 
9019     return SDValue();
9020   } else {
9021     llvm_unreachable("unhandled address space");
9022   }
9023 }
9024 
9025 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
9026   SDLoc DL(Op);
9027   EVT VT = Op.getValueType();
9028   SDValue Arg = Op.getOperand(0);
9029   SDValue TrigVal;
9030 
9031   // Propagate fast-math flags so that the multiply we introduce can be folded
9032   // if Arg is already the result of a multiply by constant.
9033   auto Flags = Op->getFlags();
9034 
9035   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
9036 
9037   if (Subtarget->hasTrigReducedRange()) {
9038     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9039     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
9040   } else {
9041     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9042   }
9043 
9044   switch (Op.getOpcode()) {
9045   case ISD::FCOS:
9046     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
9047   case ISD::FSIN:
9048     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
9049   default:
9050     llvm_unreachable("Wrong trig opcode");
9051   }
9052 }
9053 
9054 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9055   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
9056   assert(AtomicNode->isCompareAndSwap());
9057   unsigned AS = AtomicNode->getAddressSpace();
9058 
9059   // No custom lowering required for local address space
9060   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
9061     return Op;
9062 
9063   // Non-local address space requires custom lowering for atomic compare
9064   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
9065   SDLoc DL(Op);
9066   SDValue ChainIn = Op.getOperand(0);
9067   SDValue Addr = Op.getOperand(1);
9068   SDValue Old = Op.getOperand(2);
9069   SDValue New = Op.getOperand(3);
9070   EVT VT = Op.getValueType();
9071   MVT SimpleVT = VT.getSimpleVT();
9072   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
9073 
9074   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
9075   SDValue Ops[] = { ChainIn, Addr, NewOld };
9076 
9077   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
9078                                  Ops, VT, AtomicNode->getMemOperand());
9079 }
9080 
9081 //===----------------------------------------------------------------------===//
9082 // Custom DAG optimizations
9083 //===----------------------------------------------------------------------===//
9084 
9085 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
9086                                                      DAGCombinerInfo &DCI) const {
9087   EVT VT = N->getValueType(0);
9088   EVT ScalarVT = VT.getScalarType();
9089   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
9090     return SDValue();
9091 
9092   SelectionDAG &DAG = DCI.DAG;
9093   SDLoc DL(N);
9094 
9095   SDValue Src = N->getOperand(0);
9096   EVT SrcVT = Src.getValueType();
9097 
9098   // TODO: We could try to match extracting the higher bytes, which would be
9099   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
9100   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
9101   // about in practice.
9102   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
9103     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
9104       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
9105       DCI.AddToWorklist(Cvt.getNode());
9106 
9107       // For the f16 case, fold to a cast to f32 and then cast back to f16.
9108       if (ScalarVT != MVT::f32) {
9109         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
9110                           DAG.getTargetConstant(0, DL, MVT::i32));
9111       }
9112       return Cvt;
9113     }
9114   }
9115 
9116   return SDValue();
9117 }
9118 
9119 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
9120 
9121 // This is a variant of
9122 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
9123 //
9124 // The normal DAG combiner will do this, but only if the add has one use since
9125 // that would increase the number of instructions.
9126 //
9127 // This prevents us from seeing a constant offset that can be folded into a
9128 // memory instruction's addressing mode. If we know the resulting add offset of
9129 // a pointer can be folded into an addressing offset, we can replace the pointer
9130 // operand with the add of new constant offset. This eliminates one of the uses,
9131 // and may allow the remaining use to also be simplified.
9132 //
9133 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
9134                                                unsigned AddrSpace,
9135                                                EVT MemVT,
9136                                                DAGCombinerInfo &DCI) const {
9137   SDValue N0 = N->getOperand(0);
9138   SDValue N1 = N->getOperand(1);
9139 
9140   // We only do this to handle cases where it's profitable when there are
9141   // multiple uses of the add, so defer to the standard combine.
9142   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
9143       N0->hasOneUse())
9144     return SDValue();
9145 
9146   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
9147   if (!CN1)
9148     return SDValue();
9149 
9150   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9151   if (!CAdd)
9152     return SDValue();
9153 
9154   // If the resulting offset is too large, we can't fold it into the addressing
9155   // mode offset.
9156   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
9157   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
9158 
9159   AddrMode AM;
9160   AM.HasBaseReg = true;
9161   AM.BaseOffs = Offset.getSExtValue();
9162   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
9163     return SDValue();
9164 
9165   SelectionDAG &DAG = DCI.DAG;
9166   SDLoc SL(N);
9167   EVT VT = N->getValueType(0);
9168 
9169   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
9170   SDValue COffset = DAG.getConstant(Offset, SL, VT);
9171 
9172   SDNodeFlags Flags;
9173   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
9174                           (N0.getOpcode() == ISD::OR ||
9175                            N0->getFlags().hasNoUnsignedWrap()));
9176 
9177   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
9178 }
9179 
9180 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
9181 /// by the chain and intrinsic ID. Theoretically we would also need to check the
9182 /// specific intrinsic, but they all place the pointer operand first.
9183 static unsigned getBasePtrIndex(const MemSDNode *N) {
9184   switch (N->getOpcode()) {
9185   case ISD::STORE:
9186   case ISD::INTRINSIC_W_CHAIN:
9187   case ISD::INTRINSIC_VOID:
9188     return 2;
9189   default:
9190     return 1;
9191   }
9192 }
9193 
9194 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
9195                                                   DAGCombinerInfo &DCI) const {
9196   SelectionDAG &DAG = DCI.DAG;
9197   SDLoc SL(N);
9198 
9199   unsigned PtrIdx = getBasePtrIndex(N);
9200   SDValue Ptr = N->getOperand(PtrIdx);
9201 
9202   // TODO: We could also do this for multiplies.
9203   if (Ptr.getOpcode() == ISD::SHL) {
9204     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
9205                                           N->getMemoryVT(), DCI);
9206     if (NewPtr) {
9207       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
9208 
9209       NewOps[PtrIdx] = NewPtr;
9210       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
9211     }
9212   }
9213 
9214   return SDValue();
9215 }
9216 
9217 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
9218   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
9219          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
9220          (Opc == ISD::XOR && Val == 0);
9221 }
9222 
9223 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
9224 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
9225 // integer combine opportunities since most 64-bit operations are decomposed
9226 // this way.  TODO: We won't want this for SALU especially if it is an inline
9227 // immediate.
9228 SDValue SITargetLowering::splitBinaryBitConstantOp(
9229   DAGCombinerInfo &DCI,
9230   const SDLoc &SL,
9231   unsigned Opc, SDValue LHS,
9232   const ConstantSDNode *CRHS) const {
9233   uint64_t Val = CRHS->getZExtValue();
9234   uint32_t ValLo = Lo_32(Val);
9235   uint32_t ValHi = Hi_32(Val);
9236   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9237 
9238     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
9239          bitOpWithConstantIsReducible(Opc, ValHi)) ||
9240         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
9241     // If we need to materialize a 64-bit immediate, it will be split up later
9242     // anyway. Avoid creating the harder to understand 64-bit immediate
9243     // materialization.
9244     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
9245   }
9246 
9247   return SDValue();
9248 }
9249 
9250 // Returns true if argument is a boolean value which is not serialized into
9251 // memory or argument and does not require v_cndmask_b32 to be deserialized.
9252 static bool isBoolSGPR(SDValue V) {
9253   if (V.getValueType() != MVT::i1)
9254     return false;
9255   switch (V.getOpcode()) {
9256   default:
9257     break;
9258   case ISD::SETCC:
9259   case AMDGPUISD::FP_CLASS:
9260     return true;
9261   case ISD::AND:
9262   case ISD::OR:
9263   case ISD::XOR:
9264     return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
9265   }
9266   return false;
9267 }
9268 
9269 // If a constant has all zeroes or all ones within each byte return it.
9270 // Otherwise return 0.
9271 static uint32_t getConstantPermuteMask(uint32_t C) {
9272   // 0xff for any zero byte in the mask
9273   uint32_t ZeroByteMask = 0;
9274   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
9275   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
9276   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
9277   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
9278   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
9279   if ((NonZeroByteMask & C) != NonZeroByteMask)
9280     return 0; // Partial bytes selected.
9281   return C;
9282 }
9283 
9284 // Check if a node selects whole bytes from its operand 0 starting at a byte
9285 // boundary while masking the rest. Returns select mask as in the v_perm_b32
9286 // or -1 if not succeeded.
9287 // Note byte select encoding:
9288 // value 0-3 selects corresponding source byte;
9289 // value 0xc selects zero;
9290 // value 0xff selects 0xff.
9291 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
9292   assert(V.getValueSizeInBits() == 32);
9293 
9294   if (V.getNumOperands() != 2)
9295     return ~0;
9296 
9297   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
9298   if (!N1)
9299     return ~0;
9300 
9301   uint32_t C = N1->getZExtValue();
9302 
9303   switch (V.getOpcode()) {
9304   default:
9305     break;
9306   case ISD::AND:
9307     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9308       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
9309     }
9310     break;
9311 
9312   case ISD::OR:
9313     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9314       return (0x03020100 & ~ConstMask) | ConstMask;
9315     }
9316     break;
9317 
9318   case ISD::SHL:
9319     if (C % 8)
9320       return ~0;
9321 
9322     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
9323 
9324   case ISD::SRL:
9325     if (C % 8)
9326       return ~0;
9327 
9328     return uint32_t(0x0c0c0c0c03020100ull >> C);
9329   }
9330 
9331   return ~0;
9332 }
9333 
9334 SDValue SITargetLowering::performAndCombine(SDNode *N,
9335                                             DAGCombinerInfo &DCI) const {
9336   if (DCI.isBeforeLegalize())
9337     return SDValue();
9338 
9339   SelectionDAG &DAG = DCI.DAG;
9340   EVT VT = N->getValueType(0);
9341   SDValue LHS = N->getOperand(0);
9342   SDValue RHS = N->getOperand(1);
9343 
9344 
9345   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9346   if (VT == MVT::i64 && CRHS) {
9347     if (SDValue Split
9348         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
9349       return Split;
9350   }
9351 
9352   if (CRHS && VT == MVT::i32) {
9353     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
9354     // nb = number of trailing zeroes in mask
9355     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
9356     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
9357     uint64_t Mask = CRHS->getZExtValue();
9358     unsigned Bits = countPopulation(Mask);
9359     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9360         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9361       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9362         unsigned Shift = CShift->getZExtValue();
9363         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9364         unsigned Offset = NB + Shift;
9365         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9366           SDLoc SL(N);
9367           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9368                                     LHS->getOperand(0),
9369                                     DAG.getConstant(Offset, SL, MVT::i32),
9370                                     DAG.getConstant(Bits, SL, MVT::i32));
9371           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9372           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9373                                     DAG.getValueType(NarrowVT));
9374           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9375                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9376           return Shl;
9377         }
9378       }
9379     }
9380 
9381     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9382     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9383         isa<ConstantSDNode>(LHS.getOperand(2))) {
9384       uint32_t Sel = getConstantPermuteMask(Mask);
9385       if (!Sel)
9386         return SDValue();
9387 
9388       // Select 0xc for all zero bytes
9389       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9390       SDLoc DL(N);
9391       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9392                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9393     }
9394   }
9395 
9396   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9397   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9398   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9399     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9400     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9401 
9402     SDValue X = LHS.getOperand(0);
9403     SDValue Y = RHS.getOperand(0);
9404     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9405       return SDValue();
9406 
9407     if (LCC == ISD::SETO) {
9408       if (X != LHS.getOperand(1))
9409         return SDValue();
9410 
9411       if (RCC == ISD::SETUNE) {
9412         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9413         if (!C1 || !C1->isInfinity() || C1->isNegative())
9414           return SDValue();
9415 
9416         const uint32_t Mask = SIInstrFlags::N_NORMAL |
9417                               SIInstrFlags::N_SUBNORMAL |
9418                               SIInstrFlags::N_ZERO |
9419                               SIInstrFlags::P_ZERO |
9420                               SIInstrFlags::P_SUBNORMAL |
9421                               SIInstrFlags::P_NORMAL;
9422 
9423         static_assert(((~(SIInstrFlags::S_NAN |
9424                           SIInstrFlags::Q_NAN |
9425                           SIInstrFlags::N_INFINITY |
9426                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9427                       "mask not equal");
9428 
9429         SDLoc DL(N);
9430         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9431                            X, DAG.getConstant(Mask, DL, MVT::i32));
9432       }
9433     }
9434   }
9435 
9436   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9437     std::swap(LHS, RHS);
9438 
9439   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9440       RHS.hasOneUse()) {
9441     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9442     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9443     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9444     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9445     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9446         (RHS.getOperand(0) == LHS.getOperand(0) &&
9447          LHS.getOperand(0) == LHS.getOperand(1))) {
9448       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9449       unsigned NewMask = LCC == ISD::SETO ?
9450         Mask->getZExtValue() & ~OrdMask :
9451         Mask->getZExtValue() & OrdMask;
9452 
9453       SDLoc DL(N);
9454       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9455                          DAG.getConstant(NewMask, DL, MVT::i32));
9456     }
9457   }
9458 
9459   if (VT == MVT::i32 &&
9460       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9461     // and x, (sext cc from i1) => select cc, x, 0
9462     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9463       std::swap(LHS, RHS);
9464     if (isBoolSGPR(RHS.getOperand(0)))
9465       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9466                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9467   }
9468 
9469   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9470   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9471   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9472       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9473     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9474     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9475     if (LHSMask != ~0u && RHSMask != ~0u) {
9476       // Canonicalize the expression in an attempt to have fewer unique masks
9477       // and therefore fewer registers used to hold the masks.
9478       if (LHSMask > RHSMask) {
9479         std::swap(LHSMask, RHSMask);
9480         std::swap(LHS, RHS);
9481       }
9482 
9483       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9484       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9485       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9486       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9487 
9488       // Check of we need to combine values from two sources within a byte.
9489       if (!(LHSUsedLanes & RHSUsedLanes) &&
9490           // If we select high and lower word keep it for SDWA.
9491           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9492           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9493         // Each byte in each mask is either selector mask 0-3, or has higher
9494         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9495         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9496         // mask which is not 0xff wins. By anding both masks we have a correct
9497         // result except that 0x0c shall be corrected to give 0x0c only.
9498         uint32_t Mask = LHSMask & RHSMask;
9499         for (unsigned I = 0; I < 32; I += 8) {
9500           uint32_t ByteSel = 0xff << I;
9501           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9502             Mask &= (0x0c << I) & 0xffffffff;
9503         }
9504 
9505         // Add 4 to each active LHS lane. It will not affect any existing 0xff
9506         // or 0x0c.
9507         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9508         SDLoc DL(N);
9509 
9510         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9511                            LHS.getOperand(0), RHS.getOperand(0),
9512                            DAG.getConstant(Sel, DL, MVT::i32));
9513       }
9514     }
9515   }
9516 
9517   return SDValue();
9518 }
9519 
9520 SDValue SITargetLowering::performOrCombine(SDNode *N,
9521                                            DAGCombinerInfo &DCI) const {
9522   SelectionDAG &DAG = DCI.DAG;
9523   SDValue LHS = N->getOperand(0);
9524   SDValue RHS = N->getOperand(1);
9525 
9526   EVT VT = N->getValueType(0);
9527   if (VT == MVT::i1) {
9528     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9529     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9530         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9531       SDValue Src = LHS.getOperand(0);
9532       if (Src != RHS.getOperand(0))
9533         return SDValue();
9534 
9535       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9536       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9537       if (!CLHS || !CRHS)
9538         return SDValue();
9539 
9540       // Only 10 bits are used.
9541       static const uint32_t MaxMask = 0x3ff;
9542 
9543       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9544       SDLoc DL(N);
9545       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9546                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
9547     }
9548 
9549     return SDValue();
9550   }
9551 
9552   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9553   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9554       LHS.getOpcode() == AMDGPUISD::PERM &&
9555       isa<ConstantSDNode>(LHS.getOperand(2))) {
9556     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9557     if (!Sel)
9558       return SDValue();
9559 
9560     Sel |= LHS.getConstantOperandVal(2);
9561     SDLoc DL(N);
9562     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9563                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9564   }
9565 
9566   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9567   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9568   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9569       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9570     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9571     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9572     if (LHSMask != ~0u && RHSMask != ~0u) {
9573       // Canonicalize the expression in an attempt to have fewer unique masks
9574       // and therefore fewer registers used to hold the masks.
9575       if (LHSMask > RHSMask) {
9576         std::swap(LHSMask, RHSMask);
9577         std::swap(LHS, RHS);
9578       }
9579 
9580       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9581       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9582       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9583       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9584 
9585       // Check of we need to combine values from two sources within a byte.
9586       if (!(LHSUsedLanes & RHSUsedLanes) &&
9587           // If we select high and lower word keep it for SDWA.
9588           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9589           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9590         // Kill zero bytes selected by other mask. Zero value is 0xc.
9591         LHSMask &= ~RHSUsedLanes;
9592         RHSMask &= ~LHSUsedLanes;
9593         // Add 4 to each active LHS lane
9594         LHSMask |= LHSUsedLanes & 0x04040404;
9595         // Combine masks
9596         uint32_t Sel = LHSMask | RHSMask;
9597         SDLoc DL(N);
9598 
9599         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9600                            LHS.getOperand(0), RHS.getOperand(0),
9601                            DAG.getConstant(Sel, DL, MVT::i32));
9602       }
9603     }
9604   }
9605 
9606   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9607     return SDValue();
9608 
9609   // TODO: This could be a generic combine with a predicate for extracting the
9610   // high half of an integer being free.
9611 
9612   // (or i64:x, (zero_extend i32:y)) ->
9613   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9614   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9615       RHS.getOpcode() != ISD::ZERO_EXTEND)
9616     std::swap(LHS, RHS);
9617 
9618   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9619     SDValue ExtSrc = RHS.getOperand(0);
9620     EVT SrcVT = ExtSrc.getValueType();
9621     if (SrcVT == MVT::i32) {
9622       SDLoc SL(N);
9623       SDValue LowLHS, HiBits;
9624       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9625       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9626 
9627       DCI.AddToWorklist(LowOr.getNode());
9628       DCI.AddToWorklist(HiBits.getNode());
9629 
9630       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9631                                 LowOr, HiBits);
9632       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9633     }
9634   }
9635 
9636   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9637   if (CRHS) {
9638     if (SDValue Split
9639           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
9640                                      N->getOperand(0), CRHS))
9641       return Split;
9642   }
9643 
9644   return SDValue();
9645 }
9646 
9647 SDValue SITargetLowering::performXorCombine(SDNode *N,
9648                                             DAGCombinerInfo &DCI) const {
9649   if (SDValue RV = reassociateScalarOps(N, DCI.DAG))
9650     return RV;
9651 
9652   EVT VT = N->getValueType(0);
9653   if (VT != MVT::i64)
9654     return SDValue();
9655 
9656   SDValue LHS = N->getOperand(0);
9657   SDValue RHS = N->getOperand(1);
9658 
9659   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9660   if (CRHS) {
9661     if (SDValue Split
9662           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9663       return Split;
9664   }
9665 
9666   return SDValue();
9667 }
9668 
9669 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9670                                                    DAGCombinerInfo &DCI) const {
9671   if (!Subtarget->has16BitInsts() ||
9672       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9673     return SDValue();
9674 
9675   EVT VT = N->getValueType(0);
9676   if (VT != MVT::i32)
9677     return SDValue();
9678 
9679   SDValue Src = N->getOperand(0);
9680   if (Src.getValueType() != MVT::i16)
9681     return SDValue();
9682 
9683   return SDValue();
9684 }
9685 
9686 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9687                                                         DAGCombinerInfo &DCI)
9688                                                         const {
9689   SDValue Src = N->getOperand(0);
9690   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9691 
9692   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9693       VTSign->getVT() == MVT::i8) ||
9694       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9695       VTSign->getVT() == MVT::i16)) &&
9696       Src.hasOneUse()) {
9697     auto *M = cast<MemSDNode>(Src);
9698     SDValue Ops[] = {
9699       Src.getOperand(0), // Chain
9700       Src.getOperand(1), // rsrc
9701       Src.getOperand(2), // vindex
9702       Src.getOperand(3), // voffset
9703       Src.getOperand(4), // soffset
9704       Src.getOperand(5), // offset
9705       Src.getOperand(6),
9706       Src.getOperand(7)
9707     };
9708     // replace with BUFFER_LOAD_BYTE/SHORT
9709     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9710                                          Src.getOperand(0).getValueType());
9711     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9712                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9713     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9714                                                           ResList,
9715                                                           Ops, M->getMemoryVT(),
9716                                                           M->getMemOperand());
9717     return DCI.DAG.getMergeValues({BufferLoadSignExt,
9718                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
9719   }
9720   return SDValue();
9721 }
9722 
9723 SDValue SITargetLowering::performClassCombine(SDNode *N,
9724                                               DAGCombinerInfo &DCI) const {
9725   SelectionDAG &DAG = DCI.DAG;
9726   SDValue Mask = N->getOperand(1);
9727 
9728   // fp_class x, 0 -> false
9729   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9730     if (CMask->isZero())
9731       return DAG.getConstant(0, SDLoc(N), MVT::i1);
9732   }
9733 
9734   if (N->getOperand(0).isUndef())
9735     return DAG.getUNDEF(MVT::i1);
9736 
9737   return SDValue();
9738 }
9739 
9740 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9741                                             DAGCombinerInfo &DCI) const {
9742   EVT VT = N->getValueType(0);
9743   SDValue N0 = N->getOperand(0);
9744 
9745   if (N0.isUndef())
9746     return N0;
9747 
9748   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9749                          N0.getOpcode() == ISD::SINT_TO_FP)) {
9750     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9751                            N->getFlags());
9752   }
9753 
9754   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9755     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9756                            N0.getOperand(0), N->getFlags());
9757   }
9758 
9759   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9760 }
9761 
9762 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9763                                        unsigned MaxDepth) const {
9764   unsigned Opcode = Op.getOpcode();
9765   if (Opcode == ISD::FCANONICALIZE)
9766     return true;
9767 
9768   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9769     auto F = CFP->getValueAPF();
9770     if (F.isNaN() && F.isSignaling())
9771       return false;
9772     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9773   }
9774 
9775   // If source is a result of another standard FP operation it is already in
9776   // canonical form.
9777   if (MaxDepth == 0)
9778     return false;
9779 
9780   switch (Opcode) {
9781   // These will flush denorms if required.
9782   case ISD::FADD:
9783   case ISD::FSUB:
9784   case ISD::FMUL:
9785   case ISD::FCEIL:
9786   case ISD::FFLOOR:
9787   case ISD::FMA:
9788   case ISD::FMAD:
9789   case ISD::FSQRT:
9790   case ISD::FDIV:
9791   case ISD::FREM:
9792   case ISD::FP_ROUND:
9793   case ISD::FP_EXTEND:
9794   case AMDGPUISD::FMUL_LEGACY:
9795   case AMDGPUISD::FMAD_FTZ:
9796   case AMDGPUISD::RCP:
9797   case AMDGPUISD::RSQ:
9798   case AMDGPUISD::RSQ_CLAMP:
9799   case AMDGPUISD::RCP_LEGACY:
9800   case AMDGPUISD::RCP_IFLAG:
9801   case AMDGPUISD::DIV_SCALE:
9802   case AMDGPUISD::DIV_FMAS:
9803   case AMDGPUISD::DIV_FIXUP:
9804   case AMDGPUISD::FRACT:
9805   case AMDGPUISD::LDEXP:
9806   case AMDGPUISD::CVT_PKRTZ_F16_F32:
9807   case AMDGPUISD::CVT_F32_UBYTE0:
9808   case AMDGPUISD::CVT_F32_UBYTE1:
9809   case AMDGPUISD::CVT_F32_UBYTE2:
9810   case AMDGPUISD::CVT_F32_UBYTE3:
9811     return true;
9812 
9813   // It can/will be lowered or combined as a bit operation.
9814   // Need to check their input recursively to handle.
9815   case ISD::FNEG:
9816   case ISD::FABS:
9817   case ISD::FCOPYSIGN:
9818     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9819 
9820   case ISD::FSIN:
9821   case ISD::FCOS:
9822   case ISD::FSINCOS:
9823     return Op.getValueType().getScalarType() != MVT::f16;
9824 
9825   case ISD::FMINNUM:
9826   case ISD::FMAXNUM:
9827   case ISD::FMINNUM_IEEE:
9828   case ISD::FMAXNUM_IEEE:
9829   case AMDGPUISD::CLAMP:
9830   case AMDGPUISD::FMED3:
9831   case AMDGPUISD::FMAX3:
9832   case AMDGPUISD::FMIN3: {
9833     // FIXME: Shouldn't treat the generic operations different based these.
9834     // However, we aren't really required to flush the result from
9835     // minnum/maxnum..
9836 
9837     // snans will be quieted, so we only need to worry about denormals.
9838     if (Subtarget->supportsMinMaxDenormModes() ||
9839         denormalsEnabledForType(DAG, Op.getValueType()))
9840       return true;
9841 
9842     // Flushing may be required.
9843     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9844     // targets need to check their input recursively.
9845 
9846     // FIXME: Does this apply with clamp? It's implemented with max.
9847     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9848       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9849         return false;
9850     }
9851 
9852     return true;
9853   }
9854   case ISD::SELECT: {
9855     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9856            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9857   }
9858   case ISD::BUILD_VECTOR: {
9859     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9860       SDValue SrcOp = Op.getOperand(i);
9861       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9862         return false;
9863     }
9864 
9865     return true;
9866   }
9867   case ISD::EXTRACT_VECTOR_ELT:
9868   case ISD::EXTRACT_SUBVECTOR: {
9869     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9870   }
9871   case ISD::INSERT_VECTOR_ELT: {
9872     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9873            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9874   }
9875   case ISD::UNDEF:
9876     // Could be anything.
9877     return false;
9878 
9879   case ISD::BITCAST:
9880     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9881   case ISD::TRUNCATE: {
9882     // Hack round the mess we make when legalizing extract_vector_elt
9883     if (Op.getValueType() == MVT::i16) {
9884       SDValue TruncSrc = Op.getOperand(0);
9885       if (TruncSrc.getValueType() == MVT::i32 &&
9886           TruncSrc.getOpcode() == ISD::BITCAST &&
9887           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9888         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9889       }
9890     }
9891     return false;
9892   }
9893   case ISD::INTRINSIC_WO_CHAIN: {
9894     unsigned IntrinsicID
9895       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9896     // TODO: Handle more intrinsics
9897     switch (IntrinsicID) {
9898     case Intrinsic::amdgcn_cvt_pkrtz:
9899     case Intrinsic::amdgcn_cubeid:
9900     case Intrinsic::amdgcn_frexp_mant:
9901     case Intrinsic::amdgcn_fdot2:
9902     case Intrinsic::amdgcn_rcp:
9903     case Intrinsic::amdgcn_rsq:
9904     case Intrinsic::amdgcn_rsq_clamp:
9905     case Intrinsic::amdgcn_rcp_legacy:
9906     case Intrinsic::amdgcn_rsq_legacy:
9907     case Intrinsic::amdgcn_trig_preop:
9908       return true;
9909     default:
9910       break;
9911     }
9912 
9913     LLVM_FALLTHROUGH;
9914   }
9915   default:
9916     return denormalsEnabledForType(DAG, Op.getValueType()) &&
9917            DAG.isKnownNeverSNaN(Op);
9918   }
9919 
9920   llvm_unreachable("invalid operation");
9921 }
9922 
9923 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
9924                                        unsigned MaxDepth) const {
9925   MachineRegisterInfo &MRI = MF.getRegInfo();
9926   MachineInstr *MI = MRI.getVRegDef(Reg);
9927   unsigned Opcode = MI->getOpcode();
9928 
9929   if (Opcode == AMDGPU::G_FCANONICALIZE)
9930     return true;
9931 
9932   Optional<FPValueAndVReg> FCR;
9933   // Constant splat (can be padded with undef) or scalar constant.
9934   if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) {
9935     if (FCR->Value.isSignaling())
9936       return false;
9937     return !FCR->Value.isDenormal() ||
9938            denormalsEnabledForType(MRI.getType(FCR->VReg), MF);
9939   }
9940 
9941   if (MaxDepth == 0)
9942     return false;
9943 
9944   switch (Opcode) {
9945   case AMDGPU::G_FMINNUM_IEEE:
9946   case AMDGPU::G_FMAXNUM_IEEE: {
9947     if (Subtarget->supportsMinMaxDenormModes() ||
9948         denormalsEnabledForType(MRI.getType(Reg), MF))
9949       return true;
9950     for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
9951       if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
9952         return false;
9953     return true;
9954   }
9955   default:
9956     return denormalsEnabledForType(MRI.getType(Reg), MF) &&
9957            isKnownNeverSNaN(Reg, MRI);
9958   }
9959 
9960   llvm_unreachable("invalid operation");
9961 }
9962 
9963 // Constant fold canonicalize.
9964 SDValue SITargetLowering::getCanonicalConstantFP(
9965   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9966   // Flush denormals to 0 if not enabled.
9967   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9968     return DAG.getConstantFP(0.0, SL, VT);
9969 
9970   if (C.isNaN()) {
9971     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9972     if (C.isSignaling()) {
9973       // Quiet a signaling NaN.
9974       // FIXME: Is this supposed to preserve payload bits?
9975       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9976     }
9977 
9978     // Make sure it is the canonical NaN bitpattern.
9979     //
9980     // TODO: Can we use -1 as the canonical NaN value since it's an inline
9981     // immediate?
9982     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9983       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9984   }
9985 
9986   // Already canonical.
9987   return DAG.getConstantFP(C, SL, VT);
9988 }
9989 
9990 static bool vectorEltWillFoldAway(SDValue Op) {
9991   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9992 }
9993 
9994 SDValue SITargetLowering::performFCanonicalizeCombine(
9995   SDNode *N,
9996   DAGCombinerInfo &DCI) const {
9997   SelectionDAG &DAG = DCI.DAG;
9998   SDValue N0 = N->getOperand(0);
9999   EVT VT = N->getValueType(0);
10000 
10001   // fcanonicalize undef -> qnan
10002   if (N0.isUndef()) {
10003     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
10004     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
10005   }
10006 
10007   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
10008     EVT VT = N->getValueType(0);
10009     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
10010   }
10011 
10012   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
10013   //                                                   (fcanonicalize k)
10014   //
10015   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
10016 
10017   // TODO: This could be better with wider vectors that will be split to v2f16,
10018   // and to consider uses since there aren't that many packed operations.
10019   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
10020       isTypeLegal(MVT::v2f16)) {
10021     SDLoc SL(N);
10022     SDValue NewElts[2];
10023     SDValue Lo = N0.getOperand(0);
10024     SDValue Hi = N0.getOperand(1);
10025     EVT EltVT = Lo.getValueType();
10026 
10027     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
10028       for (unsigned I = 0; I != 2; ++I) {
10029         SDValue Op = N0.getOperand(I);
10030         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
10031           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
10032                                               CFP->getValueAPF());
10033         } else if (Op.isUndef()) {
10034           // Handled below based on what the other operand is.
10035           NewElts[I] = Op;
10036         } else {
10037           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
10038         }
10039       }
10040 
10041       // If one half is undef, and one is constant, prefer a splat vector rather
10042       // than the normal qNaN. If it's a register, prefer 0.0 since that's
10043       // cheaper to use and may be free with a packed operation.
10044       if (NewElts[0].isUndef()) {
10045         if (isa<ConstantFPSDNode>(NewElts[1]))
10046           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
10047             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
10048       }
10049 
10050       if (NewElts[1].isUndef()) {
10051         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
10052           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
10053       }
10054 
10055       return DAG.getBuildVector(VT, SL, NewElts);
10056     }
10057   }
10058 
10059   unsigned SrcOpc = N0.getOpcode();
10060 
10061   // If it's free to do so, push canonicalizes further up the source, which may
10062   // find a canonical source.
10063   //
10064   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
10065   // sNaNs.
10066   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
10067     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
10068     if (CRHS && N0.hasOneUse()) {
10069       SDLoc SL(N);
10070       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
10071                                    N0.getOperand(0));
10072       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
10073       DCI.AddToWorklist(Canon0.getNode());
10074 
10075       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
10076     }
10077   }
10078 
10079   return isCanonicalized(DAG, N0) ? N0 : SDValue();
10080 }
10081 
10082 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
10083   switch (Opc) {
10084   case ISD::FMAXNUM:
10085   case ISD::FMAXNUM_IEEE:
10086     return AMDGPUISD::FMAX3;
10087   case ISD::SMAX:
10088     return AMDGPUISD::SMAX3;
10089   case ISD::UMAX:
10090     return AMDGPUISD::UMAX3;
10091   case ISD::FMINNUM:
10092   case ISD::FMINNUM_IEEE:
10093     return AMDGPUISD::FMIN3;
10094   case ISD::SMIN:
10095     return AMDGPUISD::SMIN3;
10096   case ISD::UMIN:
10097     return AMDGPUISD::UMIN3;
10098   default:
10099     llvm_unreachable("Not a min/max opcode");
10100   }
10101 }
10102 
10103 SDValue SITargetLowering::performIntMed3ImmCombine(
10104   SelectionDAG &DAG, const SDLoc &SL,
10105   SDValue Op0, SDValue Op1, bool Signed) const {
10106   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
10107   if (!K1)
10108     return SDValue();
10109 
10110   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
10111   if (!K0)
10112     return SDValue();
10113 
10114   if (Signed) {
10115     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
10116       return SDValue();
10117   } else {
10118     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
10119       return SDValue();
10120   }
10121 
10122   EVT VT = K0->getValueType(0);
10123   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
10124   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
10125     return DAG.getNode(Med3Opc, SL, VT,
10126                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
10127   }
10128 
10129   // If there isn't a 16-bit med3 operation, convert to 32-bit.
10130   if (VT == MVT::i16) {
10131     MVT NVT = MVT::i32;
10132     unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10133 
10134     SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
10135     SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
10136     SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
10137 
10138     SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
10139     return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
10140   }
10141 
10142   return SDValue();
10143 }
10144 
10145 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
10146   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
10147     return C;
10148 
10149   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
10150     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
10151       return C;
10152   }
10153 
10154   return nullptr;
10155 }
10156 
10157 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
10158                                                   const SDLoc &SL,
10159                                                   SDValue Op0,
10160                                                   SDValue Op1) const {
10161   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
10162   if (!K1)
10163     return SDValue();
10164 
10165   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
10166   if (!K0)
10167     return SDValue();
10168 
10169   // Ordered >= (although NaN inputs should have folded away by now).
10170   if (K0->getValueAPF() > K1->getValueAPF())
10171     return SDValue();
10172 
10173   const MachineFunction &MF = DAG.getMachineFunction();
10174   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10175 
10176   // TODO: Check IEEE bit enabled?
10177   EVT VT = Op0.getValueType();
10178   if (Info->getMode().DX10Clamp) {
10179     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
10180     // hardware fmed3 behavior converting to a min.
10181     // FIXME: Should this be allowing -0.0?
10182     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
10183       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
10184   }
10185 
10186   // med3 for f16 is only available on gfx9+, and not available for v2f16.
10187   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
10188     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
10189     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
10190     // then give the other result, which is different from med3 with a NaN
10191     // input.
10192     SDValue Var = Op0.getOperand(0);
10193     if (!DAG.isKnownNeverSNaN(Var))
10194       return SDValue();
10195 
10196     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10197 
10198     if ((!K0->hasOneUse() ||
10199          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
10200         (!K1->hasOneUse() ||
10201          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
10202       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
10203                          Var, SDValue(K0, 0), SDValue(K1, 0));
10204     }
10205   }
10206 
10207   return SDValue();
10208 }
10209 
10210 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
10211                                                DAGCombinerInfo &DCI) const {
10212   SelectionDAG &DAG = DCI.DAG;
10213 
10214   EVT VT = N->getValueType(0);
10215   unsigned Opc = N->getOpcode();
10216   SDValue Op0 = N->getOperand(0);
10217   SDValue Op1 = N->getOperand(1);
10218 
10219   // Only do this if the inner op has one use since this will just increases
10220   // register pressure for no benefit.
10221 
10222   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
10223       !VT.isVector() &&
10224       (VT == MVT::i32 || VT == MVT::f32 ||
10225        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
10226     // max(max(a, b), c) -> max3(a, b, c)
10227     // min(min(a, b), c) -> min3(a, b, c)
10228     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
10229       SDLoc DL(N);
10230       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10231                          DL,
10232                          N->getValueType(0),
10233                          Op0.getOperand(0),
10234                          Op0.getOperand(1),
10235                          Op1);
10236     }
10237 
10238     // Try commuted.
10239     // max(a, max(b, c)) -> max3(a, b, c)
10240     // min(a, min(b, c)) -> min3(a, b, c)
10241     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
10242       SDLoc DL(N);
10243       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10244                          DL,
10245                          N->getValueType(0),
10246                          Op0,
10247                          Op1.getOperand(0),
10248                          Op1.getOperand(1));
10249     }
10250   }
10251 
10252   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
10253   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
10254     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
10255       return Med3;
10256   }
10257 
10258   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
10259     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
10260       return Med3;
10261   }
10262 
10263   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
10264   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
10265        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
10266        (Opc == AMDGPUISD::FMIN_LEGACY &&
10267         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
10268       (VT == MVT::f32 || VT == MVT::f64 ||
10269        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
10270        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
10271       Op0.hasOneUse()) {
10272     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
10273       return Res;
10274   }
10275 
10276   return SDValue();
10277 }
10278 
10279 static bool isClampZeroToOne(SDValue A, SDValue B) {
10280   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
10281     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
10282       // FIXME: Should this be allowing -0.0?
10283       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
10284              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
10285     }
10286   }
10287 
10288   return false;
10289 }
10290 
10291 // FIXME: Should only worry about snans for version with chain.
10292 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
10293                                               DAGCombinerInfo &DCI) const {
10294   EVT VT = N->getValueType(0);
10295   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
10296   // NaNs. With a NaN input, the order of the operands may change the result.
10297 
10298   SelectionDAG &DAG = DCI.DAG;
10299   SDLoc SL(N);
10300 
10301   SDValue Src0 = N->getOperand(0);
10302   SDValue Src1 = N->getOperand(1);
10303   SDValue Src2 = N->getOperand(2);
10304 
10305   if (isClampZeroToOne(Src0, Src1)) {
10306     // const_a, const_b, x -> clamp is safe in all cases including signaling
10307     // nans.
10308     // FIXME: Should this be allowing -0.0?
10309     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
10310   }
10311 
10312   const MachineFunction &MF = DAG.getMachineFunction();
10313   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10314 
10315   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
10316   // handling no dx10-clamp?
10317   if (Info->getMode().DX10Clamp) {
10318     // If NaNs is clamped to 0, we are free to reorder the inputs.
10319 
10320     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10321       std::swap(Src0, Src1);
10322 
10323     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
10324       std::swap(Src1, Src2);
10325 
10326     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10327       std::swap(Src0, Src1);
10328 
10329     if (isClampZeroToOne(Src1, Src2))
10330       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
10331   }
10332 
10333   return SDValue();
10334 }
10335 
10336 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
10337                                                  DAGCombinerInfo &DCI) const {
10338   SDValue Src0 = N->getOperand(0);
10339   SDValue Src1 = N->getOperand(1);
10340   if (Src0.isUndef() && Src1.isUndef())
10341     return DCI.DAG.getUNDEF(N->getValueType(0));
10342   return SDValue();
10343 }
10344 
10345 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10346 // expanded into a set of cmp/select instructions.
10347 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10348                                                 unsigned NumElem,
10349                                                 bool IsDivergentIdx) {
10350   if (UseDivergentRegisterIndexing)
10351     return false;
10352 
10353   unsigned VecSize = EltSize * NumElem;
10354 
10355   // Sub-dword vectors of size 2 dword or less have better implementation.
10356   if (VecSize <= 64 && EltSize < 32)
10357     return false;
10358 
10359   // Always expand the rest of sub-dword instructions, otherwise it will be
10360   // lowered via memory.
10361   if (EltSize < 32)
10362     return true;
10363 
10364   // Always do this if var-idx is divergent, otherwise it will become a loop.
10365   if (IsDivergentIdx)
10366     return true;
10367 
10368   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10369   unsigned NumInsts = NumElem /* Number of compares */ +
10370                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10371   return NumInsts <= 16;
10372 }
10373 
10374 static bool shouldExpandVectorDynExt(SDNode *N) {
10375   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10376   if (isa<ConstantSDNode>(Idx))
10377     return false;
10378 
10379   SDValue Vec = N->getOperand(0);
10380   EVT VecVT = Vec.getValueType();
10381   EVT EltVT = VecVT.getVectorElementType();
10382   unsigned EltSize = EltVT.getSizeInBits();
10383   unsigned NumElem = VecVT.getVectorNumElements();
10384 
10385   return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
10386                                                     Idx->isDivergent());
10387 }
10388 
10389 SDValue SITargetLowering::performExtractVectorEltCombine(
10390   SDNode *N, DAGCombinerInfo &DCI) const {
10391   SDValue Vec = N->getOperand(0);
10392   SelectionDAG &DAG = DCI.DAG;
10393 
10394   EVT VecVT = Vec.getValueType();
10395   EVT EltVT = VecVT.getVectorElementType();
10396 
10397   if ((Vec.getOpcode() == ISD::FNEG ||
10398        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10399     SDLoc SL(N);
10400     EVT EltVT = N->getValueType(0);
10401     SDValue Idx = N->getOperand(1);
10402     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10403                               Vec.getOperand(0), Idx);
10404     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10405   }
10406 
10407   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10408   //    =>
10409   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10410   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10411   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10412   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10413     SDLoc SL(N);
10414     EVT EltVT = N->getValueType(0);
10415     SDValue Idx = N->getOperand(1);
10416     unsigned Opc = Vec.getOpcode();
10417 
10418     switch(Opc) {
10419     default:
10420       break;
10421       // TODO: Support other binary operations.
10422     case ISD::FADD:
10423     case ISD::FSUB:
10424     case ISD::FMUL:
10425     case ISD::ADD:
10426     case ISD::UMIN:
10427     case ISD::UMAX:
10428     case ISD::SMIN:
10429     case ISD::SMAX:
10430     case ISD::FMAXNUM:
10431     case ISD::FMINNUM:
10432     case ISD::FMAXNUM_IEEE:
10433     case ISD::FMINNUM_IEEE: {
10434       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10435                                  Vec.getOperand(0), Idx);
10436       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10437                                  Vec.getOperand(1), Idx);
10438 
10439       DCI.AddToWorklist(Elt0.getNode());
10440       DCI.AddToWorklist(Elt1.getNode());
10441       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10442     }
10443     }
10444   }
10445 
10446   unsigned VecSize = VecVT.getSizeInBits();
10447   unsigned EltSize = EltVT.getSizeInBits();
10448 
10449   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10450   if (::shouldExpandVectorDynExt(N)) {
10451     SDLoc SL(N);
10452     SDValue Idx = N->getOperand(1);
10453     SDValue V;
10454     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10455       SDValue IC = DAG.getVectorIdxConstant(I, SL);
10456       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10457       if (I == 0)
10458         V = Elt;
10459       else
10460         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10461     }
10462     return V;
10463   }
10464 
10465   if (!DCI.isBeforeLegalize())
10466     return SDValue();
10467 
10468   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10469   // elements. This exposes more load reduction opportunities by replacing
10470   // multiple small extract_vector_elements with a single 32-bit extract.
10471   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10472   if (isa<MemSDNode>(Vec) &&
10473       EltSize <= 16 &&
10474       EltVT.isByteSized() &&
10475       VecSize > 32 &&
10476       VecSize % 32 == 0 &&
10477       Idx) {
10478     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10479 
10480     unsigned BitIndex = Idx->getZExtValue() * EltSize;
10481     unsigned EltIdx = BitIndex / 32;
10482     unsigned LeftoverBitIdx = BitIndex % 32;
10483     SDLoc SL(N);
10484 
10485     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10486     DCI.AddToWorklist(Cast.getNode());
10487 
10488     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10489                               DAG.getConstant(EltIdx, SL, MVT::i32));
10490     DCI.AddToWorklist(Elt.getNode());
10491     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10492                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10493     DCI.AddToWorklist(Srl.getNode());
10494 
10495     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10496     DCI.AddToWorklist(Trunc.getNode());
10497     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10498   }
10499 
10500   return SDValue();
10501 }
10502 
10503 SDValue
10504 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10505                                                 DAGCombinerInfo &DCI) const {
10506   SDValue Vec = N->getOperand(0);
10507   SDValue Idx = N->getOperand(2);
10508   EVT VecVT = Vec.getValueType();
10509   EVT EltVT = VecVT.getVectorElementType();
10510 
10511   // INSERT_VECTOR_ELT (<n x e>, var-idx)
10512   // => BUILD_VECTOR n x select (e, const-idx)
10513   if (!::shouldExpandVectorDynExt(N))
10514     return SDValue();
10515 
10516   SelectionDAG &DAG = DCI.DAG;
10517   SDLoc SL(N);
10518   SDValue Ins = N->getOperand(1);
10519   EVT IdxVT = Idx.getValueType();
10520 
10521   SmallVector<SDValue, 16> Ops;
10522   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10523     SDValue IC = DAG.getConstant(I, SL, IdxVT);
10524     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10525     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10526     Ops.push_back(V);
10527   }
10528 
10529   return DAG.getBuildVector(VecVT, SL, Ops);
10530 }
10531 
10532 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10533                                           const SDNode *N0,
10534                                           const SDNode *N1) const {
10535   EVT VT = N0->getValueType(0);
10536 
10537   // Only do this if we are not trying to support denormals. v_mad_f32 does not
10538   // support denormals ever.
10539   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10540        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10541         getSubtarget()->hasMadF16())) &&
10542        isOperationLegal(ISD::FMAD, VT))
10543     return ISD::FMAD;
10544 
10545   const TargetOptions &Options = DAG.getTarget().Options;
10546   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10547        (N0->getFlags().hasAllowContract() &&
10548         N1->getFlags().hasAllowContract())) &&
10549       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10550     return ISD::FMA;
10551   }
10552 
10553   return 0;
10554 }
10555 
10556 // For a reassociatable opcode perform:
10557 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10558 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10559                                                SelectionDAG &DAG) const {
10560   EVT VT = N->getValueType(0);
10561   if (VT != MVT::i32 && VT != MVT::i64)
10562     return SDValue();
10563 
10564   if (DAG.isBaseWithConstantOffset(SDValue(N, 0)))
10565     return SDValue();
10566 
10567   unsigned Opc = N->getOpcode();
10568   SDValue Op0 = N->getOperand(0);
10569   SDValue Op1 = N->getOperand(1);
10570 
10571   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10572     return SDValue();
10573 
10574   if (Op0->isDivergent())
10575     std::swap(Op0, Op1);
10576 
10577   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10578     return SDValue();
10579 
10580   SDValue Op2 = Op1.getOperand(1);
10581   Op1 = Op1.getOperand(0);
10582   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10583     return SDValue();
10584 
10585   if (Op1->isDivergent())
10586     std::swap(Op1, Op2);
10587 
10588   SDLoc SL(N);
10589   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10590   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10591 }
10592 
10593 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10594                            EVT VT,
10595                            SDValue N0, SDValue N1, SDValue N2,
10596                            bool Signed) {
10597   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10598   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10599   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10600   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10601 }
10602 
10603 SDValue SITargetLowering::performAddCombine(SDNode *N,
10604                                             DAGCombinerInfo &DCI) const {
10605   SelectionDAG &DAG = DCI.DAG;
10606   EVT VT = N->getValueType(0);
10607   SDLoc SL(N);
10608   SDValue LHS = N->getOperand(0);
10609   SDValue RHS = N->getOperand(1);
10610 
10611   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10612       && Subtarget->hasMad64_32() &&
10613       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10614       VT.getScalarSizeInBits() <= 64) {
10615     if (LHS.getOpcode() != ISD::MUL)
10616       std::swap(LHS, RHS);
10617 
10618     SDValue MulLHS = LHS.getOperand(0);
10619     SDValue MulRHS = LHS.getOperand(1);
10620     SDValue AddRHS = RHS;
10621 
10622     // TODO: Maybe restrict if SGPR inputs.
10623     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10624         numBitsUnsigned(MulRHS, DAG) <= 32) {
10625       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10626       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10627       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10628       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10629     }
10630 
10631     if (numBitsSigned(MulLHS, DAG) <= 32 && numBitsSigned(MulRHS, DAG) <= 32) {
10632       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10633       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10634       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10635       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10636     }
10637 
10638     return SDValue();
10639   }
10640 
10641   if (SDValue V = reassociateScalarOps(N, DAG)) {
10642     return V;
10643   }
10644 
10645   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10646     return SDValue();
10647 
10648   // add x, zext (setcc) => addcarry x, 0, setcc
10649   // add x, sext (setcc) => subcarry x, 0, setcc
10650   unsigned Opc = LHS.getOpcode();
10651   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10652       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10653     std::swap(RHS, LHS);
10654 
10655   Opc = RHS.getOpcode();
10656   switch (Opc) {
10657   default: break;
10658   case ISD::ZERO_EXTEND:
10659   case ISD::SIGN_EXTEND:
10660   case ISD::ANY_EXTEND: {
10661     auto Cond = RHS.getOperand(0);
10662     // If this won't be a real VOPC output, we would still need to insert an
10663     // extra instruction anyway.
10664     if (!isBoolSGPR(Cond))
10665       break;
10666     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10667     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10668     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10669     return DAG.getNode(Opc, SL, VTList, Args);
10670   }
10671   case ISD::ADDCARRY: {
10672     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10673     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10674     if (!C || C->getZExtValue() != 0) break;
10675     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10676     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10677   }
10678   }
10679   return SDValue();
10680 }
10681 
10682 SDValue SITargetLowering::performSubCombine(SDNode *N,
10683                                             DAGCombinerInfo &DCI) const {
10684   SelectionDAG &DAG = DCI.DAG;
10685   EVT VT = N->getValueType(0);
10686 
10687   if (VT != MVT::i32)
10688     return SDValue();
10689 
10690   SDLoc SL(N);
10691   SDValue LHS = N->getOperand(0);
10692   SDValue RHS = N->getOperand(1);
10693 
10694   // sub x, zext (setcc) => subcarry x, 0, setcc
10695   // sub x, sext (setcc) => addcarry x, 0, setcc
10696   unsigned Opc = RHS.getOpcode();
10697   switch (Opc) {
10698   default: break;
10699   case ISD::ZERO_EXTEND:
10700   case ISD::SIGN_EXTEND:
10701   case ISD::ANY_EXTEND: {
10702     auto Cond = RHS.getOperand(0);
10703     // If this won't be a real VOPC output, we would still need to insert an
10704     // extra instruction anyway.
10705     if (!isBoolSGPR(Cond))
10706       break;
10707     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10708     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10709     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10710     return DAG.getNode(Opc, SL, VTList, Args);
10711   }
10712   }
10713 
10714   if (LHS.getOpcode() == ISD::SUBCARRY) {
10715     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10716     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10717     if (!C || !C->isZero())
10718       return SDValue();
10719     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10720     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10721   }
10722   return SDValue();
10723 }
10724 
10725 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10726   DAGCombinerInfo &DCI) const {
10727 
10728   if (N->getValueType(0) != MVT::i32)
10729     return SDValue();
10730 
10731   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10732   if (!C || C->getZExtValue() != 0)
10733     return SDValue();
10734 
10735   SelectionDAG &DAG = DCI.DAG;
10736   SDValue LHS = N->getOperand(0);
10737 
10738   // addcarry (add x, y), 0, cc => addcarry x, y, cc
10739   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10740   unsigned LHSOpc = LHS.getOpcode();
10741   unsigned Opc = N->getOpcode();
10742   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10743       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10744     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10745     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10746   }
10747   return SDValue();
10748 }
10749 
10750 SDValue SITargetLowering::performFAddCombine(SDNode *N,
10751                                              DAGCombinerInfo &DCI) const {
10752   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10753     return SDValue();
10754 
10755   SelectionDAG &DAG = DCI.DAG;
10756   EVT VT = N->getValueType(0);
10757 
10758   SDLoc SL(N);
10759   SDValue LHS = N->getOperand(0);
10760   SDValue RHS = N->getOperand(1);
10761 
10762   // These should really be instruction patterns, but writing patterns with
10763   // source modifiers is a pain.
10764 
10765   // fadd (fadd (a, a), b) -> mad 2.0, a, b
10766   if (LHS.getOpcode() == ISD::FADD) {
10767     SDValue A = LHS.getOperand(0);
10768     if (A == LHS.getOperand(1)) {
10769       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10770       if (FusedOp != 0) {
10771         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10772         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10773       }
10774     }
10775   }
10776 
10777   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10778   if (RHS.getOpcode() == ISD::FADD) {
10779     SDValue A = RHS.getOperand(0);
10780     if (A == RHS.getOperand(1)) {
10781       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10782       if (FusedOp != 0) {
10783         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10784         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10785       }
10786     }
10787   }
10788 
10789   return SDValue();
10790 }
10791 
10792 SDValue SITargetLowering::performFSubCombine(SDNode *N,
10793                                              DAGCombinerInfo &DCI) const {
10794   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10795     return SDValue();
10796 
10797   SelectionDAG &DAG = DCI.DAG;
10798   SDLoc SL(N);
10799   EVT VT = N->getValueType(0);
10800   assert(!VT.isVector());
10801 
10802   // Try to get the fneg to fold into the source modifier. This undoes generic
10803   // DAG combines and folds them into the mad.
10804   //
10805   // Only do this if we are not trying to support denormals. v_mad_f32 does
10806   // not support denormals ever.
10807   SDValue LHS = N->getOperand(0);
10808   SDValue RHS = N->getOperand(1);
10809   if (LHS.getOpcode() == ISD::FADD) {
10810     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10811     SDValue A = LHS.getOperand(0);
10812     if (A == LHS.getOperand(1)) {
10813       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10814       if (FusedOp != 0){
10815         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10816         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10817 
10818         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10819       }
10820     }
10821   }
10822 
10823   if (RHS.getOpcode() == ISD::FADD) {
10824     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10825 
10826     SDValue A = RHS.getOperand(0);
10827     if (A == RHS.getOperand(1)) {
10828       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10829       if (FusedOp != 0){
10830         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10831         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10832       }
10833     }
10834   }
10835 
10836   return SDValue();
10837 }
10838 
10839 SDValue SITargetLowering::performFMACombine(SDNode *N,
10840                                             DAGCombinerInfo &DCI) const {
10841   SelectionDAG &DAG = DCI.DAG;
10842   EVT VT = N->getValueType(0);
10843   SDLoc SL(N);
10844 
10845   if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
10846     return SDValue();
10847 
10848   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10849   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10850   SDValue Op1 = N->getOperand(0);
10851   SDValue Op2 = N->getOperand(1);
10852   SDValue FMA = N->getOperand(2);
10853 
10854   if (FMA.getOpcode() != ISD::FMA ||
10855       Op1.getOpcode() != ISD::FP_EXTEND ||
10856       Op2.getOpcode() != ISD::FP_EXTEND)
10857     return SDValue();
10858 
10859   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10860   // regardless of the denorm mode setting. Therefore,
10861   // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2.
10862   const TargetOptions &Options = DAG.getTarget().Options;
10863   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10864       (N->getFlags().hasAllowContract() &&
10865        FMA->getFlags().hasAllowContract())) {
10866     Op1 = Op1.getOperand(0);
10867     Op2 = Op2.getOperand(0);
10868     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10869         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10870       return SDValue();
10871 
10872     SDValue Vec1 = Op1.getOperand(0);
10873     SDValue Idx1 = Op1.getOperand(1);
10874     SDValue Vec2 = Op2.getOperand(0);
10875 
10876     SDValue FMAOp1 = FMA.getOperand(0);
10877     SDValue FMAOp2 = FMA.getOperand(1);
10878     SDValue FMAAcc = FMA.getOperand(2);
10879 
10880     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10881         FMAOp2.getOpcode() != ISD::FP_EXTEND)
10882       return SDValue();
10883 
10884     FMAOp1 = FMAOp1.getOperand(0);
10885     FMAOp2 = FMAOp2.getOperand(0);
10886     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10887         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10888       return SDValue();
10889 
10890     SDValue Vec3 = FMAOp1.getOperand(0);
10891     SDValue Vec4 = FMAOp2.getOperand(0);
10892     SDValue Idx2 = FMAOp1.getOperand(1);
10893 
10894     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10895         // Idx1 and Idx2 cannot be the same.
10896         Idx1 == Idx2)
10897       return SDValue();
10898 
10899     if (Vec1 == Vec2 || Vec3 == Vec4)
10900       return SDValue();
10901 
10902     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10903       return SDValue();
10904 
10905     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10906         (Vec1 == Vec4 && Vec2 == Vec3)) {
10907       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10908                          DAG.getTargetConstant(0, SL, MVT::i1));
10909     }
10910   }
10911   return SDValue();
10912 }
10913 
10914 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10915                                               DAGCombinerInfo &DCI) const {
10916   SelectionDAG &DAG = DCI.DAG;
10917   SDLoc SL(N);
10918 
10919   SDValue LHS = N->getOperand(0);
10920   SDValue RHS = N->getOperand(1);
10921   EVT VT = LHS.getValueType();
10922   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10923 
10924   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10925   if (!CRHS) {
10926     CRHS = dyn_cast<ConstantSDNode>(LHS);
10927     if (CRHS) {
10928       std::swap(LHS, RHS);
10929       CC = getSetCCSwappedOperands(CC);
10930     }
10931   }
10932 
10933   if (CRHS) {
10934     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10935         isBoolSGPR(LHS.getOperand(0))) {
10936       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10937       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10938       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
10939       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
10940       if ((CRHS->isAllOnes() &&
10941            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10942           (CRHS->isZero() &&
10943            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10944         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10945                            DAG.getConstant(-1, SL, MVT::i1));
10946       if ((CRHS->isAllOnes() &&
10947            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10948           (CRHS->isZero() &&
10949            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10950         return LHS.getOperand(0);
10951     }
10952 
10953     const APInt &CRHSVal = CRHS->getAPIntValue();
10954     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10955         LHS.getOpcode() == ISD::SELECT &&
10956         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10957         isa<ConstantSDNode>(LHS.getOperand(2)) &&
10958         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10959         isBoolSGPR(LHS.getOperand(0))) {
10960       // Given CT != FT:
10961       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10962       // setcc (select cc, CT, CF), CF, ne => cc
10963       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10964       // setcc (select cc, CT, CF), CT, eq => cc
10965       const APInt &CT = LHS.getConstantOperandAPInt(1);
10966       const APInt &CF = LHS.getConstantOperandAPInt(2);
10967 
10968       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10969           (CT == CRHSVal && CC == ISD::SETNE))
10970         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10971                            DAG.getConstant(-1, SL, MVT::i1));
10972       if ((CF == CRHSVal && CC == ISD::SETNE) ||
10973           (CT == CRHSVal && CC == ISD::SETEQ))
10974         return LHS.getOperand(0);
10975     }
10976   }
10977 
10978   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10979                                            VT != MVT::f16))
10980     return SDValue();
10981 
10982   // Match isinf/isfinite pattern
10983   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10984   // (fcmp one (fabs x), inf) -> (fp_class x,
10985   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10986   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10987     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10988     if (!CRHS)
10989       return SDValue();
10990 
10991     const APFloat &APF = CRHS->getValueAPF();
10992     if (APF.isInfinity() && !APF.isNegative()) {
10993       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10994                                  SIInstrFlags::N_INFINITY;
10995       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10996                                     SIInstrFlags::P_ZERO |
10997                                     SIInstrFlags::N_NORMAL |
10998                                     SIInstrFlags::P_NORMAL |
10999                                     SIInstrFlags::N_SUBNORMAL |
11000                                     SIInstrFlags::P_SUBNORMAL;
11001       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
11002       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
11003                          DAG.getConstant(Mask, SL, MVT::i32));
11004     }
11005   }
11006 
11007   return SDValue();
11008 }
11009 
11010 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
11011                                                      DAGCombinerInfo &DCI) const {
11012   SelectionDAG &DAG = DCI.DAG;
11013   SDLoc SL(N);
11014   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
11015 
11016   SDValue Src = N->getOperand(0);
11017   SDValue Shift = N->getOperand(0);
11018 
11019   // TODO: Extend type shouldn't matter (assuming legal types).
11020   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
11021     Shift = Shift.getOperand(0);
11022 
11023   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
11024     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
11025     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
11026     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
11027     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
11028     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
11029     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
11030       SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0),
11031                                  SDLoc(Shift.getOperand(0)), MVT::i32);
11032 
11033       unsigned ShiftOffset = 8 * Offset;
11034       if (Shift.getOpcode() == ISD::SHL)
11035         ShiftOffset -= C->getZExtValue();
11036       else
11037         ShiftOffset += C->getZExtValue();
11038 
11039       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
11040         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
11041                            MVT::f32, Shifted);
11042       }
11043     }
11044   }
11045 
11046   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11047   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
11048   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
11049     // We simplified Src. If this node is not dead, visit it again so it is
11050     // folded properly.
11051     if (N->getOpcode() != ISD::DELETED_NODE)
11052       DCI.AddToWorklist(N);
11053     return SDValue(N, 0);
11054   }
11055 
11056   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
11057   if (SDValue DemandedSrc =
11058           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
11059     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
11060 
11061   return SDValue();
11062 }
11063 
11064 SDValue SITargetLowering::performClampCombine(SDNode *N,
11065                                               DAGCombinerInfo &DCI) const {
11066   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
11067   if (!CSrc)
11068     return SDValue();
11069 
11070   const MachineFunction &MF = DCI.DAG.getMachineFunction();
11071   const APFloat &F = CSrc->getValueAPF();
11072   APFloat Zero = APFloat::getZero(F.getSemantics());
11073   if (F < Zero ||
11074       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
11075     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
11076   }
11077 
11078   APFloat One(F.getSemantics(), "1.0");
11079   if (F > One)
11080     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
11081 
11082   return SDValue(CSrc, 0);
11083 }
11084 
11085 
11086 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
11087                                             DAGCombinerInfo &DCI) const {
11088   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
11089     return SDValue();
11090   switch (N->getOpcode()) {
11091   case ISD::ADD:
11092     return performAddCombine(N, DCI);
11093   case ISD::SUB:
11094     return performSubCombine(N, DCI);
11095   case ISD::ADDCARRY:
11096   case ISD::SUBCARRY:
11097     return performAddCarrySubCarryCombine(N, DCI);
11098   case ISD::FADD:
11099     return performFAddCombine(N, DCI);
11100   case ISD::FSUB:
11101     return performFSubCombine(N, DCI);
11102   case ISD::SETCC:
11103     return performSetCCCombine(N, DCI);
11104   case ISD::FMAXNUM:
11105   case ISD::FMINNUM:
11106   case ISD::FMAXNUM_IEEE:
11107   case ISD::FMINNUM_IEEE:
11108   case ISD::SMAX:
11109   case ISD::SMIN:
11110   case ISD::UMAX:
11111   case ISD::UMIN:
11112   case AMDGPUISD::FMIN_LEGACY:
11113   case AMDGPUISD::FMAX_LEGACY:
11114     return performMinMaxCombine(N, DCI);
11115   case ISD::FMA:
11116     return performFMACombine(N, DCI);
11117   case ISD::AND:
11118     return performAndCombine(N, DCI);
11119   case ISD::OR:
11120     return performOrCombine(N, DCI);
11121   case ISD::XOR:
11122     return performXorCombine(N, DCI);
11123   case ISD::ZERO_EXTEND:
11124     return performZeroExtendCombine(N, DCI);
11125   case ISD::SIGN_EXTEND_INREG:
11126     return performSignExtendInRegCombine(N , DCI);
11127   case AMDGPUISD::FP_CLASS:
11128     return performClassCombine(N, DCI);
11129   case ISD::FCANONICALIZE:
11130     return performFCanonicalizeCombine(N, DCI);
11131   case AMDGPUISD::RCP:
11132     return performRcpCombine(N, DCI);
11133   case AMDGPUISD::FRACT:
11134   case AMDGPUISD::RSQ:
11135   case AMDGPUISD::RCP_LEGACY:
11136   case AMDGPUISD::RCP_IFLAG:
11137   case AMDGPUISD::RSQ_CLAMP:
11138   case AMDGPUISD::LDEXP: {
11139     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
11140     SDValue Src = N->getOperand(0);
11141     if (Src.isUndef())
11142       return Src;
11143     break;
11144   }
11145   case ISD::SINT_TO_FP:
11146   case ISD::UINT_TO_FP:
11147     return performUCharToFloatCombine(N, DCI);
11148   case AMDGPUISD::CVT_F32_UBYTE0:
11149   case AMDGPUISD::CVT_F32_UBYTE1:
11150   case AMDGPUISD::CVT_F32_UBYTE2:
11151   case AMDGPUISD::CVT_F32_UBYTE3:
11152     return performCvtF32UByteNCombine(N, DCI);
11153   case AMDGPUISD::FMED3:
11154     return performFMed3Combine(N, DCI);
11155   case AMDGPUISD::CVT_PKRTZ_F16_F32:
11156     return performCvtPkRTZCombine(N, DCI);
11157   case AMDGPUISD::CLAMP:
11158     return performClampCombine(N, DCI);
11159   case ISD::SCALAR_TO_VECTOR: {
11160     SelectionDAG &DAG = DCI.DAG;
11161     EVT VT = N->getValueType(0);
11162 
11163     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
11164     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
11165       SDLoc SL(N);
11166       SDValue Src = N->getOperand(0);
11167       EVT EltVT = Src.getValueType();
11168       if (EltVT == MVT::f16)
11169         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
11170 
11171       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
11172       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
11173     }
11174 
11175     break;
11176   }
11177   case ISD::EXTRACT_VECTOR_ELT:
11178     return performExtractVectorEltCombine(N, DCI);
11179   case ISD::INSERT_VECTOR_ELT:
11180     return performInsertVectorEltCombine(N, DCI);
11181   case ISD::LOAD: {
11182     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
11183       return Widended;
11184     LLVM_FALLTHROUGH;
11185   }
11186   default: {
11187     if (!DCI.isBeforeLegalize()) {
11188       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
11189         return performMemSDNodeCombine(MemNode, DCI);
11190     }
11191 
11192     break;
11193   }
11194   }
11195 
11196   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
11197 }
11198 
11199 /// Helper function for adjustWritemask
11200 static unsigned SubIdx2Lane(unsigned Idx) {
11201   switch (Idx) {
11202   default: return ~0u;
11203   case AMDGPU::sub0: return 0;
11204   case AMDGPU::sub1: return 1;
11205   case AMDGPU::sub2: return 2;
11206   case AMDGPU::sub3: return 3;
11207   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
11208   }
11209 }
11210 
11211 /// Adjust the writemask of MIMG instructions
11212 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
11213                                           SelectionDAG &DAG) const {
11214   unsigned Opcode = Node->getMachineOpcode();
11215 
11216   // Subtract 1 because the vdata output is not a MachineSDNode operand.
11217   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
11218   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
11219     return Node; // not implemented for D16
11220 
11221   SDNode *Users[5] = { nullptr };
11222   unsigned Lane = 0;
11223   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
11224   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
11225   unsigned NewDmask = 0;
11226   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
11227   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
11228   bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
11229                   Node->getConstantOperandVal(LWEIdx))
11230                      ? true
11231                      : false;
11232   unsigned TFCLane = 0;
11233   bool HasChain = Node->getNumValues() > 1;
11234 
11235   if (OldDmask == 0) {
11236     // These are folded out, but on the chance it happens don't assert.
11237     return Node;
11238   }
11239 
11240   unsigned OldBitsSet = countPopulation(OldDmask);
11241   // Work out which is the TFE/LWE lane if that is enabled.
11242   if (UsesTFC) {
11243     TFCLane = OldBitsSet;
11244   }
11245 
11246   // Try to figure out the used register components
11247   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
11248        I != E; ++I) {
11249 
11250     // Don't look at users of the chain.
11251     if (I.getUse().getResNo() != 0)
11252       continue;
11253 
11254     // Abort if we can't understand the usage
11255     if (!I->isMachineOpcode() ||
11256         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
11257       return Node;
11258 
11259     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
11260     // Note that subregs are packed, i.e. Lane==0 is the first bit set
11261     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
11262     // set, etc.
11263     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
11264     if (Lane == ~0u)
11265       return Node;
11266 
11267     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
11268     if (UsesTFC && Lane == TFCLane) {
11269       Users[Lane] = *I;
11270     } else {
11271       // Set which texture component corresponds to the lane.
11272       unsigned Comp;
11273       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
11274         Comp = countTrailingZeros(Dmask);
11275         Dmask &= ~(1 << Comp);
11276       }
11277 
11278       // Abort if we have more than one user per component.
11279       if (Users[Lane])
11280         return Node;
11281 
11282       Users[Lane] = *I;
11283       NewDmask |= 1 << Comp;
11284     }
11285   }
11286 
11287   // Don't allow 0 dmask, as hardware assumes one channel enabled.
11288   bool NoChannels = !NewDmask;
11289   if (NoChannels) {
11290     if (!UsesTFC) {
11291       // No uses of the result and not using TFC. Then do nothing.
11292       return Node;
11293     }
11294     // If the original dmask has one channel - then nothing to do
11295     if (OldBitsSet == 1)
11296       return Node;
11297     // Use an arbitrary dmask - required for the instruction to work
11298     NewDmask = 1;
11299   }
11300   // Abort if there's no change
11301   if (NewDmask == OldDmask)
11302     return Node;
11303 
11304   unsigned BitsSet = countPopulation(NewDmask);
11305 
11306   // Check for TFE or LWE - increase the number of channels by one to account
11307   // for the extra return value
11308   // This will need adjustment for D16 if this is also included in
11309   // adjustWriteMask (this function) but at present D16 are excluded.
11310   unsigned NewChannels = BitsSet + UsesTFC;
11311 
11312   int NewOpcode =
11313       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
11314   assert(NewOpcode != -1 &&
11315          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
11316          "failed to find equivalent MIMG op");
11317 
11318   // Adjust the writemask in the node
11319   SmallVector<SDValue, 12> Ops;
11320   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
11321   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
11322   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
11323 
11324   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
11325 
11326   MVT ResultVT = NewChannels == 1 ?
11327     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
11328                            NewChannels == 5 ? 8 : NewChannels);
11329   SDVTList NewVTList = HasChain ?
11330     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
11331 
11332 
11333   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
11334                                               NewVTList, Ops);
11335 
11336   if (HasChain) {
11337     // Update chain.
11338     DAG.setNodeMemRefs(NewNode, Node->memoperands());
11339     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11340   }
11341 
11342   if (NewChannels == 1) {
11343     assert(Node->hasNUsesOfValue(1, 0));
11344     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11345                                       SDLoc(Node), Users[Lane]->getValueType(0),
11346                                       SDValue(NewNode, 0));
11347     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11348     return nullptr;
11349   }
11350 
11351   // Update the users of the node with the new indices
11352   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11353     SDNode *User = Users[i];
11354     if (!User) {
11355       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11356       // Users[0] is still nullptr because channel 0 doesn't really have a use.
11357       if (i || !NoChannels)
11358         continue;
11359     } else {
11360       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11361       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11362     }
11363 
11364     switch (Idx) {
11365     default: break;
11366     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11367     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11368     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11369     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11370     }
11371   }
11372 
11373   DAG.RemoveDeadNode(Node);
11374   return nullptr;
11375 }
11376 
11377 static bool isFrameIndexOp(SDValue Op) {
11378   if (Op.getOpcode() == ISD::AssertZext)
11379     Op = Op.getOperand(0);
11380 
11381   return isa<FrameIndexSDNode>(Op);
11382 }
11383 
11384 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11385 /// with frame index operands.
11386 /// LLVM assumes that inputs are to these instructions are registers.
11387 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11388                                                         SelectionDAG &DAG) const {
11389   if (Node->getOpcode() == ISD::CopyToReg) {
11390     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11391     SDValue SrcVal = Node->getOperand(2);
11392 
11393     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11394     // to try understanding copies to physical registers.
11395     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11396       SDLoc SL(Node);
11397       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11398       SDValue VReg = DAG.getRegister(
11399         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11400 
11401       SDNode *Glued = Node->getGluedNode();
11402       SDValue ToVReg
11403         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11404                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11405       SDValue ToResultReg
11406         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11407                            VReg, ToVReg.getValue(1));
11408       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11409       DAG.RemoveDeadNode(Node);
11410       return ToResultReg.getNode();
11411     }
11412   }
11413 
11414   SmallVector<SDValue, 8> Ops;
11415   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11416     if (!isFrameIndexOp(Node->getOperand(i))) {
11417       Ops.push_back(Node->getOperand(i));
11418       continue;
11419     }
11420 
11421     SDLoc DL(Node);
11422     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11423                                      Node->getOperand(i).getValueType(),
11424                                      Node->getOperand(i)), 0));
11425   }
11426 
11427   return DAG.UpdateNodeOperands(Node, Ops);
11428 }
11429 
11430 /// Fold the instructions after selecting them.
11431 /// Returns null if users were already updated.
11432 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11433                                           SelectionDAG &DAG) const {
11434   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11435   unsigned Opcode = Node->getMachineOpcode();
11436 
11437   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11438       !TII->isGather4(Opcode) &&
11439       AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11440     return adjustWritemask(Node, DAG);
11441   }
11442 
11443   if (Opcode == AMDGPU::INSERT_SUBREG ||
11444       Opcode == AMDGPU::REG_SEQUENCE) {
11445     legalizeTargetIndependentNode(Node, DAG);
11446     return Node;
11447   }
11448 
11449   switch (Opcode) {
11450   case AMDGPU::V_DIV_SCALE_F32_e64:
11451   case AMDGPU::V_DIV_SCALE_F64_e64: {
11452     // Satisfy the operand register constraint when one of the inputs is
11453     // undefined. Ordinarily each undef value will have its own implicit_def of
11454     // a vreg, so force these to use a single register.
11455     SDValue Src0 = Node->getOperand(1);
11456     SDValue Src1 = Node->getOperand(3);
11457     SDValue Src2 = Node->getOperand(5);
11458 
11459     if ((Src0.isMachineOpcode() &&
11460          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11461         (Src0 == Src1 || Src0 == Src2))
11462       break;
11463 
11464     MVT VT = Src0.getValueType().getSimpleVT();
11465     const TargetRegisterClass *RC =
11466         getRegClassFor(VT, Src0.getNode()->isDivergent());
11467 
11468     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11469     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11470 
11471     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11472                                       UndefReg, Src0, SDValue());
11473 
11474     // src0 must be the same register as src1 or src2, even if the value is
11475     // undefined, so make sure we don't violate this constraint.
11476     if (Src0.isMachineOpcode() &&
11477         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11478       if (Src1.isMachineOpcode() &&
11479           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11480         Src0 = Src1;
11481       else if (Src2.isMachineOpcode() &&
11482                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11483         Src0 = Src2;
11484       else {
11485         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11486         Src0 = UndefReg;
11487         Src1 = UndefReg;
11488       }
11489     } else
11490       break;
11491 
11492     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11493     Ops[1] = Src0;
11494     Ops[3] = Src1;
11495     Ops[5] = Src2;
11496     Ops.push_back(ImpDef.getValue(1));
11497     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11498   }
11499   default:
11500     break;
11501   }
11502 
11503   return Node;
11504 }
11505 
11506 // Any MIMG instructions that use tfe or lwe require an initialization of the
11507 // result register that will be written in the case of a memory access failure.
11508 // The required code is also added to tie this init code to the result of the
11509 // img instruction.
11510 void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
11511   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11512   const SIRegisterInfo &TRI = TII->getRegisterInfo();
11513   MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
11514   MachineBasicBlock &MBB = *MI.getParent();
11515 
11516   MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
11517   MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
11518   MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
11519 
11520   if (!TFE && !LWE) // intersect_ray
11521     return;
11522 
11523   unsigned TFEVal = TFE ? TFE->getImm() : 0;
11524   unsigned LWEVal = LWE->getImm();
11525   unsigned D16Val = D16 ? D16->getImm() : 0;
11526 
11527   if (!TFEVal && !LWEVal)
11528     return;
11529 
11530   // At least one of TFE or LWE are non-zero
11531   // We have to insert a suitable initialization of the result value and
11532   // tie this to the dest of the image instruction.
11533 
11534   const DebugLoc &DL = MI.getDebugLoc();
11535 
11536   int DstIdx =
11537       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
11538 
11539   // Calculate which dword we have to initialize to 0.
11540   MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
11541 
11542   // check that dmask operand is found.
11543   assert(MO_Dmask && "Expected dmask operand in instruction");
11544 
11545   unsigned dmask = MO_Dmask->getImm();
11546   // Determine the number of active lanes taking into account the
11547   // Gather4 special case
11548   unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask);
11549 
11550   bool Packed = !Subtarget->hasUnpackedD16VMem();
11551 
11552   unsigned InitIdx =
11553       D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
11554 
11555   // Abandon attempt if the dst size isn't large enough
11556   // - this is in fact an error but this is picked up elsewhere and
11557   // reported correctly.
11558   uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
11559   if (DstSize < InitIdx)
11560     return;
11561 
11562   // Create a register for the initialization value.
11563   Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11564   unsigned NewDst = 0; // Final initialized value will be in here
11565 
11566   // If PRTStrictNull feature is enabled (the default) then initialize
11567   // all the result registers to 0, otherwise just the error indication
11568   // register (VGPRn+1)
11569   unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
11570   unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
11571 
11572   BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
11573   for (; SizeLeft; SizeLeft--, CurrIdx++) {
11574     NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11575     // Initialize dword
11576     Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
11577     BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
11578       .addImm(0);
11579     // Insert into the super-reg
11580     BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
11581       .addReg(PrevDst)
11582       .addReg(SubReg)
11583       .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
11584 
11585     PrevDst = NewDst;
11586   }
11587 
11588   // Add as an implicit operand
11589   MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
11590 
11591   // Tie the just added implicit operand to the dst
11592   MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
11593 }
11594 
11595 /// Assign the register class depending on the number of
11596 /// bits set in the writemask
11597 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11598                                                      SDNode *Node) const {
11599   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11600 
11601   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11602 
11603   if (TII->isVOP3(MI.getOpcode())) {
11604     // Make sure constant bus requirements are respected.
11605     TII->legalizeOperandsVOP3(MRI, MI);
11606 
11607     // Prefer VGPRs over AGPRs in mAI instructions where possible.
11608     // This saves a chain-copy of registers and better balance register
11609     // use between vgpr and agpr as agpr tuples tend to be big.
11610     if (MI.getDesc().OpInfo) {
11611       unsigned Opc = MI.getOpcode();
11612       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11613       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11614                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11615         if (I == -1)
11616           break;
11617         MachineOperand &Op = MI.getOperand(I);
11618         if (!Op.isReg() || !Op.getReg().isVirtual())
11619           continue;
11620         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11621         if (!TRI->hasAGPRs(RC))
11622           continue;
11623         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11624         if (!Src || !Src->isCopy() ||
11625             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11626           continue;
11627         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11628         // All uses of agpr64 and agpr32 can also accept vgpr except for
11629         // v_accvgpr_read, but we do not produce agpr reads during selection,
11630         // so no use checks are needed.
11631         MRI.setRegClass(Op.getReg(), NewRC);
11632       }
11633     }
11634 
11635     return;
11636   }
11637 
11638   // Replace unused atomics with the no return version.
11639   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11640   if (NoRetAtomicOp != -1) {
11641     if (!Node->hasAnyUseOfValue(0)) {
11642       int CPolIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
11643                                                AMDGPU::OpName::cpol);
11644       if (CPolIdx != -1) {
11645         MachineOperand &CPol = MI.getOperand(CPolIdx);
11646         CPol.setImm(CPol.getImm() & ~AMDGPU::CPol::GLC);
11647       }
11648       MI.removeOperand(0);
11649       MI.setDesc(TII->get(NoRetAtomicOp));
11650       return;
11651     }
11652 
11653     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11654     // instruction, because the return type of these instructions is a vec2 of
11655     // the memory type, so it can be tied to the input operand.
11656     // This means these instructions always have a use, so we need to add a
11657     // special case to check if the atomic has only one extract_subreg use,
11658     // which itself has no uses.
11659     if ((Node->hasNUsesOfValue(1, 0) &&
11660          Node->use_begin()->isMachineOpcode() &&
11661          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11662          !Node->use_begin()->hasAnyUseOfValue(0))) {
11663       Register Def = MI.getOperand(0).getReg();
11664 
11665       // Change this into a noret atomic.
11666       MI.setDesc(TII->get(NoRetAtomicOp));
11667       MI.removeOperand(0);
11668 
11669       // If we only remove the def operand from the atomic instruction, the
11670       // extract_subreg will be left with a use of a vreg without a def.
11671       // So we need to insert an implicit_def to avoid machine verifier
11672       // errors.
11673       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11674               TII->get(AMDGPU::IMPLICIT_DEF), Def);
11675     }
11676     return;
11677   }
11678 
11679   if (TII->isMIMG(MI) && !MI.mayStore())
11680     AddIMGInit(MI);
11681 }
11682 
11683 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11684                               uint64_t Val) {
11685   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11686   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11687 }
11688 
11689 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11690                                                 const SDLoc &DL,
11691                                                 SDValue Ptr) const {
11692   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11693 
11694   // Build the half of the subregister with the constants before building the
11695   // full 128-bit register. If we are building multiple resource descriptors,
11696   // this will allow CSEing of the 2-component register.
11697   const SDValue Ops0[] = {
11698     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11699     buildSMovImm32(DAG, DL, 0),
11700     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11701     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11702     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11703   };
11704 
11705   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11706                                                 MVT::v2i32, Ops0), 0);
11707 
11708   // Combine the constants and the pointer.
11709   const SDValue Ops1[] = {
11710     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11711     Ptr,
11712     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11713     SubRegHi,
11714     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11715   };
11716 
11717   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11718 }
11719 
11720 /// Return a resource descriptor with the 'Add TID' bit enabled
11721 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11722 ///        of the resource descriptor) to create an offset, which is added to
11723 ///        the resource pointer.
11724 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11725                                            SDValue Ptr, uint32_t RsrcDword1,
11726                                            uint64_t RsrcDword2And3) const {
11727   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11728   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11729   if (RsrcDword1) {
11730     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11731                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11732                     0);
11733   }
11734 
11735   SDValue DataLo = buildSMovImm32(DAG, DL,
11736                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
11737   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11738 
11739   const SDValue Ops[] = {
11740     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11741     PtrLo,
11742     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11743     PtrHi,
11744     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11745     DataLo,
11746     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11747     DataHi,
11748     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11749   };
11750 
11751   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11752 }
11753 
11754 //===----------------------------------------------------------------------===//
11755 //                         SI Inline Assembly Support
11756 //===----------------------------------------------------------------------===//
11757 
11758 std::pair<unsigned, const TargetRegisterClass *>
11759 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
11760                                                StringRef Constraint,
11761                                                MVT VT) const {
11762   const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
11763 
11764   const TargetRegisterClass *RC = nullptr;
11765   if (Constraint.size() == 1) {
11766     const unsigned BitWidth = VT.getSizeInBits();
11767     switch (Constraint[0]) {
11768     default:
11769       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11770     case 's':
11771     case 'r':
11772       switch (BitWidth) {
11773       case 16:
11774         RC = &AMDGPU::SReg_32RegClass;
11775         break;
11776       case 64:
11777         RC = &AMDGPU::SGPR_64RegClass;
11778         break;
11779       default:
11780         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11781         if (!RC)
11782           return std::make_pair(0U, nullptr);
11783         break;
11784       }
11785       break;
11786     case 'v':
11787       switch (BitWidth) {
11788       case 16:
11789         RC = &AMDGPU::VGPR_32RegClass;
11790         break;
11791       default:
11792         RC = TRI->getVGPRClassForBitWidth(BitWidth);
11793         if (!RC)
11794           return std::make_pair(0U, nullptr);
11795         break;
11796       }
11797       break;
11798     case 'a':
11799       if (!Subtarget->hasMAIInsts())
11800         break;
11801       switch (BitWidth) {
11802       case 16:
11803         RC = &AMDGPU::AGPR_32RegClass;
11804         break;
11805       default:
11806         RC = TRI->getAGPRClassForBitWidth(BitWidth);
11807         if (!RC)
11808           return std::make_pair(0U, nullptr);
11809         break;
11810       }
11811       break;
11812     }
11813     // We actually support i128, i16 and f16 as inline parameters
11814     // even if they are not reported as legal
11815     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11816                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11817       return std::make_pair(0U, RC);
11818   }
11819 
11820   if (Constraint.startswith("{") && Constraint.endswith("}")) {
11821     StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
11822     if (RegName.consume_front("v")) {
11823       RC = &AMDGPU::VGPR_32RegClass;
11824     } else if (RegName.consume_front("s")) {
11825       RC = &AMDGPU::SGPR_32RegClass;
11826     } else if (RegName.consume_front("a")) {
11827       RC = &AMDGPU::AGPR_32RegClass;
11828     }
11829 
11830     if (RC) {
11831       uint32_t Idx;
11832       if (RegName.consume_front("[")) {
11833         uint32_t End;
11834         bool Failed = RegName.consumeInteger(10, Idx);
11835         Failed |= !RegName.consume_front(":");
11836         Failed |= RegName.consumeInteger(10, End);
11837         Failed |= !RegName.consume_back("]");
11838         if (!Failed) {
11839           uint32_t Width = (End - Idx + 1) * 32;
11840           MCRegister Reg = RC->getRegister(Idx);
11841           if (SIRegisterInfo::isVGPRClass(RC))
11842             RC = TRI->getVGPRClassForBitWidth(Width);
11843           else if (SIRegisterInfo::isSGPRClass(RC))
11844             RC = TRI->getSGPRClassForBitWidth(Width);
11845           else if (SIRegisterInfo::isAGPRClass(RC))
11846             RC = TRI->getAGPRClassForBitWidth(Width);
11847           if (RC) {
11848             Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
11849             return std::make_pair(Reg, RC);
11850           }
11851         }
11852       } else {
11853         bool Failed = RegName.getAsInteger(10, Idx);
11854         if (!Failed && Idx < RC->getNumRegs())
11855           return std::make_pair(RC->getRegister(Idx), RC);
11856       }
11857     }
11858   }
11859 
11860   auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11861   if (Ret.first)
11862     Ret.second = TRI->getPhysRegClass(Ret.first);
11863 
11864   return Ret;
11865 }
11866 
11867 static bool isImmConstraint(StringRef Constraint) {
11868   if (Constraint.size() == 1) {
11869     switch (Constraint[0]) {
11870     default: break;
11871     case 'I':
11872     case 'J':
11873     case 'A':
11874     case 'B':
11875     case 'C':
11876       return true;
11877     }
11878   } else if (Constraint == "DA" ||
11879              Constraint == "DB") {
11880     return true;
11881   }
11882   return false;
11883 }
11884 
11885 SITargetLowering::ConstraintType
11886 SITargetLowering::getConstraintType(StringRef Constraint) const {
11887   if (Constraint.size() == 1) {
11888     switch (Constraint[0]) {
11889     default: break;
11890     case 's':
11891     case 'v':
11892     case 'a':
11893       return C_RegisterClass;
11894     }
11895   }
11896   if (isImmConstraint(Constraint)) {
11897     return C_Other;
11898   }
11899   return TargetLowering::getConstraintType(Constraint);
11900 }
11901 
11902 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11903   if (!AMDGPU::isInlinableIntLiteral(Val)) {
11904     Val = Val & maskTrailingOnes<uint64_t>(Size);
11905   }
11906   return Val;
11907 }
11908 
11909 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11910                                                     std::string &Constraint,
11911                                                     std::vector<SDValue> &Ops,
11912                                                     SelectionDAG &DAG) const {
11913   if (isImmConstraint(Constraint)) {
11914     uint64_t Val;
11915     if (getAsmOperandConstVal(Op, Val) &&
11916         checkAsmConstraintVal(Op, Constraint, Val)) {
11917       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11918       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11919     }
11920   } else {
11921     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11922   }
11923 }
11924 
11925 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11926   unsigned Size = Op.getScalarValueSizeInBits();
11927   if (Size > 64)
11928     return false;
11929 
11930   if (Size == 16 && !Subtarget->has16BitInsts())
11931     return false;
11932 
11933   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11934     Val = C->getSExtValue();
11935     return true;
11936   }
11937   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11938     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11939     return true;
11940   }
11941   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11942     if (Size != 16 || Op.getNumOperands() != 2)
11943       return false;
11944     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11945       return false;
11946     if (ConstantSDNode *C = V->getConstantSplatNode()) {
11947       Val = C->getSExtValue();
11948       return true;
11949     }
11950     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11951       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11952       return true;
11953     }
11954   }
11955 
11956   return false;
11957 }
11958 
11959 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11960                                              const std::string &Constraint,
11961                                              uint64_t Val) const {
11962   if (Constraint.size() == 1) {
11963     switch (Constraint[0]) {
11964     case 'I':
11965       return AMDGPU::isInlinableIntLiteral(Val);
11966     case 'J':
11967       return isInt<16>(Val);
11968     case 'A':
11969       return checkAsmConstraintValA(Op, Val);
11970     case 'B':
11971       return isInt<32>(Val);
11972     case 'C':
11973       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11974              AMDGPU::isInlinableIntLiteral(Val);
11975     default:
11976       break;
11977     }
11978   } else if (Constraint.size() == 2) {
11979     if (Constraint == "DA") {
11980       int64_t HiBits = static_cast<int32_t>(Val >> 32);
11981       int64_t LoBits = static_cast<int32_t>(Val);
11982       return checkAsmConstraintValA(Op, HiBits, 32) &&
11983              checkAsmConstraintValA(Op, LoBits, 32);
11984     }
11985     if (Constraint == "DB") {
11986       return true;
11987     }
11988   }
11989   llvm_unreachable("Invalid asm constraint");
11990 }
11991 
11992 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11993                                               uint64_t Val,
11994                                               unsigned MaxSize) const {
11995   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11996   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11997   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11998       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11999       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
12000     return true;
12001   }
12002   return false;
12003 }
12004 
12005 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
12006   switch (UnalignedClassID) {
12007   case AMDGPU::VReg_64RegClassID:
12008     return AMDGPU::VReg_64_Align2RegClassID;
12009   case AMDGPU::VReg_96RegClassID:
12010     return AMDGPU::VReg_96_Align2RegClassID;
12011   case AMDGPU::VReg_128RegClassID:
12012     return AMDGPU::VReg_128_Align2RegClassID;
12013   case AMDGPU::VReg_160RegClassID:
12014     return AMDGPU::VReg_160_Align2RegClassID;
12015   case AMDGPU::VReg_192RegClassID:
12016     return AMDGPU::VReg_192_Align2RegClassID;
12017   case AMDGPU::VReg_224RegClassID:
12018     return AMDGPU::VReg_224_Align2RegClassID;
12019   case AMDGPU::VReg_256RegClassID:
12020     return AMDGPU::VReg_256_Align2RegClassID;
12021   case AMDGPU::VReg_512RegClassID:
12022     return AMDGPU::VReg_512_Align2RegClassID;
12023   case AMDGPU::VReg_1024RegClassID:
12024     return AMDGPU::VReg_1024_Align2RegClassID;
12025   case AMDGPU::AReg_64RegClassID:
12026     return AMDGPU::AReg_64_Align2RegClassID;
12027   case AMDGPU::AReg_96RegClassID:
12028     return AMDGPU::AReg_96_Align2RegClassID;
12029   case AMDGPU::AReg_128RegClassID:
12030     return AMDGPU::AReg_128_Align2RegClassID;
12031   case AMDGPU::AReg_160RegClassID:
12032     return AMDGPU::AReg_160_Align2RegClassID;
12033   case AMDGPU::AReg_192RegClassID:
12034     return AMDGPU::AReg_192_Align2RegClassID;
12035   case AMDGPU::AReg_256RegClassID:
12036     return AMDGPU::AReg_256_Align2RegClassID;
12037   case AMDGPU::AReg_512RegClassID:
12038     return AMDGPU::AReg_512_Align2RegClassID;
12039   case AMDGPU::AReg_1024RegClassID:
12040     return AMDGPU::AReg_1024_Align2RegClassID;
12041   default:
12042     return -1;
12043   }
12044 }
12045 
12046 // Figure out which registers should be reserved for stack access. Only after
12047 // the function is legalized do we know all of the non-spill stack objects or if
12048 // calls are present.
12049 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
12050   MachineRegisterInfo &MRI = MF.getRegInfo();
12051   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12052   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
12053   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12054   const SIInstrInfo *TII = ST.getInstrInfo();
12055 
12056   if (Info->isEntryFunction()) {
12057     // Callable functions have fixed registers used for stack access.
12058     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
12059   }
12060 
12061   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
12062                              Info->getStackPtrOffsetReg()));
12063   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
12064     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
12065 
12066   // We need to worry about replacing the default register with itself in case
12067   // of MIR testcases missing the MFI.
12068   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
12069     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
12070 
12071   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
12072     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
12073 
12074   Info->limitOccupancy(MF);
12075 
12076   if (ST.isWave32() && !MF.empty()) {
12077     for (auto &MBB : MF) {
12078       for (auto &MI : MBB) {
12079         TII->fixImplicitOperands(MI);
12080       }
12081     }
12082   }
12083 
12084   // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
12085   // classes if required. Ideally the register class constraints would differ
12086   // per-subtarget, but there's no easy way to achieve that right now. This is
12087   // not a problem for VGPRs because the correctly aligned VGPR class is implied
12088   // from using them as the register class for legal types.
12089   if (ST.needsAlignedVGPRs()) {
12090     for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
12091       const Register Reg = Register::index2VirtReg(I);
12092       const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
12093       if (!RC)
12094         continue;
12095       int NewClassID = getAlignedAGPRClassID(RC->getID());
12096       if (NewClassID != -1)
12097         MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
12098     }
12099   }
12100 
12101   TargetLoweringBase::finalizeLowering(MF);
12102 }
12103 
12104 void SITargetLowering::computeKnownBitsForFrameIndex(
12105   const int FI, KnownBits &Known, const MachineFunction &MF) const {
12106   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
12107 
12108   // Set the high bits to zero based on the maximum allowed scratch size per
12109   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
12110   // calculation won't overflow, so assume the sign bit is never set.
12111   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
12112 }
12113 
12114 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
12115                                    KnownBits &Known, unsigned Dim) {
12116   unsigned MaxValue =
12117       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
12118   Known.Zero.setHighBits(countLeadingZeros(MaxValue));
12119 }
12120 
12121 void SITargetLowering::computeKnownBitsForTargetInstr(
12122     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
12123     const MachineRegisterInfo &MRI, unsigned Depth) const {
12124   const MachineInstr *MI = MRI.getVRegDef(R);
12125   switch (MI->getOpcode()) {
12126   case AMDGPU::G_INTRINSIC: {
12127     switch (MI->getIntrinsicID()) {
12128     case Intrinsic::amdgcn_workitem_id_x:
12129       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
12130       break;
12131     case Intrinsic::amdgcn_workitem_id_y:
12132       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
12133       break;
12134     case Intrinsic::amdgcn_workitem_id_z:
12135       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
12136       break;
12137     case Intrinsic::amdgcn_mbcnt_lo:
12138     case Intrinsic::amdgcn_mbcnt_hi: {
12139       // These return at most the wavefront size - 1.
12140       unsigned Size = MRI.getType(R).getSizeInBits();
12141       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
12142       break;
12143     }
12144     case Intrinsic::amdgcn_groupstaticsize: {
12145       // We can report everything over the maximum size as 0. We can't report
12146       // based on the actual size because we don't know if it's accurate or not
12147       // at any given point.
12148       Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
12149       break;
12150     }
12151     }
12152     break;
12153   }
12154   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
12155     Known.Zero.setHighBits(24);
12156     break;
12157   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
12158     Known.Zero.setHighBits(16);
12159     break;
12160   }
12161 }
12162 
12163 Align SITargetLowering::computeKnownAlignForTargetInstr(
12164   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
12165   unsigned Depth) const {
12166   const MachineInstr *MI = MRI.getVRegDef(R);
12167   switch (MI->getOpcode()) {
12168   case AMDGPU::G_INTRINSIC:
12169   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
12170     // FIXME: Can this move to generic code? What about the case where the call
12171     // site specifies a lower alignment?
12172     Intrinsic::ID IID = MI->getIntrinsicID();
12173     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
12174     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
12175     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
12176       return *RetAlign;
12177     return Align(1);
12178   }
12179   default:
12180     return Align(1);
12181   }
12182 }
12183 
12184 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
12185   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
12186   const Align CacheLineAlign = Align(64);
12187 
12188   // Pre-GFX10 target did not benefit from loop alignment
12189   if (!ML || DisableLoopAlignment ||
12190       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
12191       getSubtarget()->hasInstFwdPrefetchBug())
12192     return PrefAlign;
12193 
12194   // On GFX10 I$ is 4 x 64 bytes cache lines.
12195   // By default prefetcher keeps one cache line behind and reads two ahead.
12196   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
12197   // behind and one ahead.
12198   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
12199   // If loop fits 64 bytes it always spans no more than two cache lines and
12200   // does not need an alignment.
12201   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
12202   // Else if loop is less or equal 192 bytes we need two lines behind.
12203 
12204   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12205   const MachineBasicBlock *Header = ML->getHeader();
12206   if (Header->getAlignment() != PrefAlign)
12207     return Header->getAlignment(); // Already processed.
12208 
12209   unsigned LoopSize = 0;
12210   for (const MachineBasicBlock *MBB : ML->blocks()) {
12211     // If inner loop block is aligned assume in average half of the alignment
12212     // size to be added as nops.
12213     if (MBB != Header)
12214       LoopSize += MBB->getAlignment().value() / 2;
12215 
12216     for (const MachineInstr &MI : *MBB) {
12217       LoopSize += TII->getInstSizeInBytes(MI);
12218       if (LoopSize > 192)
12219         return PrefAlign;
12220     }
12221   }
12222 
12223   if (LoopSize <= 64)
12224     return PrefAlign;
12225 
12226   if (LoopSize <= 128)
12227     return CacheLineAlign;
12228 
12229   // If any of parent loops is surrounded by prefetch instructions do not
12230   // insert new for inner loop, which would reset parent's settings.
12231   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
12232     if (MachineBasicBlock *Exit = P->getExitBlock()) {
12233       auto I = Exit->getFirstNonDebugInstr();
12234       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
12235         return CacheLineAlign;
12236     }
12237   }
12238 
12239   MachineBasicBlock *Pre = ML->getLoopPreheader();
12240   MachineBasicBlock *Exit = ML->getExitBlock();
12241 
12242   if (Pre && Exit) {
12243     BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
12244             TII->get(AMDGPU::S_INST_PREFETCH))
12245       .addImm(1); // prefetch 2 lines behind PC
12246 
12247     BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
12248             TII->get(AMDGPU::S_INST_PREFETCH))
12249       .addImm(2); // prefetch 1 line behind PC
12250   }
12251 
12252   return CacheLineAlign;
12253 }
12254 
12255 LLVM_ATTRIBUTE_UNUSED
12256 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
12257   assert(N->getOpcode() == ISD::CopyFromReg);
12258   do {
12259     // Follow the chain until we find an INLINEASM node.
12260     N = N->getOperand(0).getNode();
12261     if (N->getOpcode() == ISD::INLINEASM ||
12262         N->getOpcode() == ISD::INLINEASM_BR)
12263       return true;
12264   } while (N->getOpcode() == ISD::CopyFromReg);
12265   return false;
12266 }
12267 
12268 bool SITargetLowering::isSDNodeSourceOfDivergence(
12269     const SDNode *N, FunctionLoweringInfo *FLI,
12270     LegacyDivergenceAnalysis *KDA) const {
12271   switch (N->getOpcode()) {
12272   case ISD::CopyFromReg: {
12273     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
12274     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
12275     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12276     Register Reg = R->getReg();
12277 
12278     // FIXME: Why does this need to consider isLiveIn?
12279     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
12280       return !TRI->isSGPRReg(MRI, Reg);
12281 
12282     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
12283       return KDA->isDivergent(V);
12284 
12285     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
12286     return !TRI->isSGPRReg(MRI, Reg);
12287   }
12288   case ISD::LOAD: {
12289     const LoadSDNode *L = cast<LoadSDNode>(N);
12290     unsigned AS = L->getAddressSpace();
12291     // A flat load may access private memory.
12292     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
12293   }
12294   case ISD::CALLSEQ_END:
12295     return true;
12296   case ISD::INTRINSIC_WO_CHAIN:
12297     return AMDGPU::isIntrinsicSourceOfDivergence(
12298         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
12299   case ISD::INTRINSIC_W_CHAIN:
12300     return AMDGPU::isIntrinsicSourceOfDivergence(
12301         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
12302   case AMDGPUISD::ATOMIC_CMP_SWAP:
12303   case AMDGPUISD::ATOMIC_INC:
12304   case AMDGPUISD::ATOMIC_DEC:
12305   case AMDGPUISD::ATOMIC_LOAD_FMIN:
12306   case AMDGPUISD::ATOMIC_LOAD_FMAX:
12307   case AMDGPUISD::BUFFER_ATOMIC_SWAP:
12308   case AMDGPUISD::BUFFER_ATOMIC_ADD:
12309   case AMDGPUISD::BUFFER_ATOMIC_SUB:
12310   case AMDGPUISD::BUFFER_ATOMIC_SMIN:
12311   case AMDGPUISD::BUFFER_ATOMIC_UMIN:
12312   case AMDGPUISD::BUFFER_ATOMIC_SMAX:
12313   case AMDGPUISD::BUFFER_ATOMIC_UMAX:
12314   case AMDGPUISD::BUFFER_ATOMIC_AND:
12315   case AMDGPUISD::BUFFER_ATOMIC_OR:
12316   case AMDGPUISD::BUFFER_ATOMIC_XOR:
12317   case AMDGPUISD::BUFFER_ATOMIC_INC:
12318   case AMDGPUISD::BUFFER_ATOMIC_DEC:
12319   case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
12320   case AMDGPUISD::BUFFER_ATOMIC_CSUB:
12321   case AMDGPUISD::BUFFER_ATOMIC_FADD:
12322   case AMDGPUISD::BUFFER_ATOMIC_FMIN:
12323   case AMDGPUISD::BUFFER_ATOMIC_FMAX:
12324     // Target-specific read-modify-write atomics are sources of divergence.
12325     return true;
12326   default:
12327     if (auto *A = dyn_cast<AtomicSDNode>(N)) {
12328       // Generic read-modify-write atomics are sources of divergence.
12329       return A->readMem() && A->writeMem();
12330     }
12331     return false;
12332   }
12333 }
12334 
12335 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
12336                                                EVT VT) const {
12337   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
12338   case MVT::f32:
12339     return hasFP32Denormals(DAG.getMachineFunction());
12340   case MVT::f64:
12341   case MVT::f16:
12342     return hasFP64FP16Denormals(DAG.getMachineFunction());
12343   default:
12344     return false;
12345   }
12346 }
12347 
12348 bool SITargetLowering::denormalsEnabledForType(LLT Ty,
12349                                                MachineFunction &MF) const {
12350   switch (Ty.getScalarSizeInBits()) {
12351   case 32:
12352     return hasFP32Denormals(MF);
12353   case 64:
12354   case 16:
12355     return hasFP64FP16Denormals(MF);
12356   default:
12357     return false;
12358   }
12359 }
12360 
12361 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
12362                                                     const SelectionDAG &DAG,
12363                                                     bool SNaN,
12364                                                     unsigned Depth) const {
12365   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
12366     const MachineFunction &MF = DAG.getMachineFunction();
12367     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12368 
12369     if (Info->getMode().DX10Clamp)
12370       return true; // Clamped to 0.
12371     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
12372   }
12373 
12374   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
12375                                                             SNaN, Depth);
12376 }
12377 
12378 // Global FP atomic instructions have a hardcoded FP mode and do not support
12379 // FP32 denormals, and only support v2f16 denormals.
12380 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
12381   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
12382   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
12383   if (&Flt == &APFloat::IEEEsingle())
12384     return DenormMode == DenormalMode::getPreserveSign();
12385   return DenormMode == DenormalMode::getIEEE();
12386 }
12387 
12388 TargetLowering::AtomicExpansionKind
12389 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
12390 
12391   auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) {
12392     OptimizationRemarkEmitter ORE(RMW->getFunction());
12393     LLVMContext &Ctx = RMW->getFunction()->getContext();
12394     SmallVector<StringRef> SSNs;
12395     Ctx.getSyncScopeNames(SSNs);
12396     auto MemScope = SSNs[RMW->getSyncScopeID()].empty()
12397                         ? "system"
12398                         : SSNs[RMW->getSyncScopeID()];
12399     ORE.emit([&]() {
12400       return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
12401              << "Hardware instruction generated for atomic "
12402              << RMW->getOperationName(RMW->getOperation())
12403              << " operation at memory scope " << MemScope
12404              << " due to an unsafe request.";
12405     });
12406     return Kind;
12407   };
12408 
12409   switch (RMW->getOperation()) {
12410   case AtomicRMWInst::FAdd: {
12411     Type *Ty = RMW->getType();
12412 
12413     // We don't have a way to support 16-bit atomics now, so just leave them
12414     // as-is.
12415     if (Ty->isHalfTy())
12416       return AtomicExpansionKind::None;
12417 
12418     if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
12419       return AtomicExpansionKind::CmpXChg;
12420 
12421     unsigned AS = RMW->getPointerAddressSpace();
12422 
12423     if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) &&
12424          Subtarget->hasAtomicFaddInsts()) {
12425       if (Subtarget->hasGFX940Insts())
12426         return AtomicExpansionKind::None;
12427 
12428       // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
12429       // floating point atomic instructions. May generate more efficient code,
12430       // but may not respect rounding and denormal modes, and may give incorrect
12431       // results for certain memory destinations.
12432       if (RMW->getFunction()
12433               ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12434               .getValueAsString() != "true")
12435         return AtomicExpansionKind::CmpXChg;
12436 
12437       if (Subtarget->hasGFX90AInsts()) {
12438         if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS)
12439           return AtomicExpansionKind::CmpXChg;
12440 
12441         auto SSID = RMW->getSyncScopeID();
12442         if (SSID == SyncScope::System ||
12443             SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"))
12444           return AtomicExpansionKind::CmpXChg;
12445 
12446         return ReportUnsafeHWInst(AtomicExpansionKind::None);
12447       }
12448 
12449       if (AS == AMDGPUAS::FLAT_ADDRESS)
12450         return AtomicExpansionKind::CmpXChg;
12451 
12452       return RMW->use_empty() ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12453                               : AtomicExpansionKind::CmpXChg;
12454     }
12455 
12456     // DS FP atomics do respect the denormal mode, but the rounding mode is
12457     // fixed to round-to-nearest-even.
12458     // The only exception is DS_ADD_F64 which never flushes regardless of mode.
12459     if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) {
12460       if (!Ty->isDoubleTy())
12461         return AtomicExpansionKind::None;
12462 
12463       if (fpModeMatchesGlobalFPAtomicMode(RMW))
12464         return AtomicExpansionKind::None;
12465 
12466       return RMW->getFunction()
12467                          ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12468                          .getValueAsString() == "true"
12469                  ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12470                  : AtomicExpansionKind::CmpXChg;
12471     }
12472 
12473     return AtomicExpansionKind::CmpXChg;
12474   }
12475   default:
12476     break;
12477   }
12478 
12479   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
12480 }
12481 
12482 const TargetRegisterClass *
12483 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
12484   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
12485   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12486   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
12487     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
12488                                                : &AMDGPU::SReg_32RegClass;
12489   if (!TRI->isSGPRClass(RC) && !isDivergent)
12490     return TRI->getEquivalentSGPRClass(RC);
12491   else if (TRI->isSGPRClass(RC) && isDivergent)
12492     return TRI->getEquivalentVGPRClass(RC);
12493 
12494   return RC;
12495 }
12496 
12497 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
12498 // uniform values (as produced by the mask results of control flow intrinsics)
12499 // used outside of divergent blocks. The phi users need to also be treated as
12500 // always uniform.
12501 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
12502                       unsigned WaveSize) {
12503   // FIXME: We assume we never cast the mask results of a control flow
12504   // intrinsic.
12505   // Early exit if the type won't be consistent as a compile time hack.
12506   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
12507   if (!IT || IT->getBitWidth() != WaveSize)
12508     return false;
12509 
12510   if (!isa<Instruction>(V))
12511     return false;
12512   if (!Visited.insert(V).second)
12513     return false;
12514   bool Result = false;
12515   for (auto U : V->users()) {
12516     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
12517       if (V == U->getOperand(1)) {
12518         switch (Intrinsic->getIntrinsicID()) {
12519         default:
12520           Result = false;
12521           break;
12522         case Intrinsic::amdgcn_if_break:
12523         case Intrinsic::amdgcn_if:
12524         case Intrinsic::amdgcn_else:
12525           Result = true;
12526           break;
12527         }
12528       }
12529       if (V == U->getOperand(0)) {
12530         switch (Intrinsic->getIntrinsicID()) {
12531         default:
12532           Result = false;
12533           break;
12534         case Intrinsic::amdgcn_end_cf:
12535         case Intrinsic::amdgcn_loop:
12536           Result = true;
12537           break;
12538         }
12539       }
12540     } else {
12541       Result = hasCFUser(U, Visited, WaveSize);
12542     }
12543     if (Result)
12544       break;
12545   }
12546   return Result;
12547 }
12548 
12549 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
12550                                                const Value *V) const {
12551   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
12552     if (CI->isInlineAsm()) {
12553       // FIXME: This cannot give a correct answer. This should only trigger in
12554       // the case where inline asm returns mixed SGPR and VGPR results, used
12555       // outside the defining block. We don't have a specific result to
12556       // consider, so this assumes if any value is SGPR, the overall register
12557       // also needs to be SGPR.
12558       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
12559       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
12560           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
12561       for (auto &TC : TargetConstraints) {
12562         if (TC.Type == InlineAsm::isOutput) {
12563           ComputeConstraintToUse(TC, SDValue());
12564           const TargetRegisterClass *RC = getRegForInlineAsmConstraint(
12565               SIRI, TC.ConstraintCode, TC.ConstraintVT).second;
12566           if (RC && SIRI->isSGPRClass(RC))
12567             return true;
12568         }
12569       }
12570     }
12571   }
12572   SmallPtrSet<const Value *, 16> Visited;
12573   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
12574 }
12575 
12576 std::pair<InstructionCost, MVT>
12577 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
12578                                           Type *Ty) const {
12579   std::pair<InstructionCost, MVT> Cost =
12580       TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
12581   auto Size = DL.getTypeSizeInBits(Ty);
12582   // Maximum load or store can handle 8 dwords for scalar and 4 for
12583   // vector ALU. Let's assume anything above 8 dwords is expensive
12584   // even if legal.
12585   if (Size <= 256)
12586     return Cost;
12587 
12588   Cost.first += (Size + 255) / 256;
12589   return Cost;
12590 }
12591 
12592 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const {
12593   SDNode::use_iterator I = N->use_begin(), E = N->use_end();
12594   for (; I != E; ++I) {
12595     if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) {
12596       if (getBasePtrIndex(M) == I.getOperandNo())
12597         return true;
12598     }
12599   }
12600   return false;
12601 }
12602 
12603 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0,
12604                                            SDValue N1) const {
12605   if (!N0.hasOneUse())
12606     return false;
12607   // Take care of the opportunity to keep N0 uniform
12608   if (N0->isDivergent() || !N1->isDivergent())
12609     return true;
12610   // Check if we have a good chance to form the memory access pattern with the
12611   // base and offset
12612   return (DAG.isBaseWithConstantOffset(N0) &&
12613           hasMemSDNodeUser(*N0->use_begin()));
12614 }
12615 
12616 MachineMemOperand::Flags
12617 SITargetLowering::getTargetMMOFlags(const Instruction &I) const {
12618   // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load.
12619   if (I.getMetadata("amdgpu.noclobber"))
12620     return MONoClobber;
12621   return MachineMemOperand::MONone;
12622 }
12623