1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #if defined(_MSC_VER) || defined(__MINGW32__)
15 // Provide M_PI.
16 #define _USE_MATH_DEFINES
17 #endif
18 
19 #include "SIISelLowering.h"
20 #include "AMDGPU.h"
21 #include "AMDGPUSubtarget.h"
22 #include "AMDGPUTargetMachine.h"
23 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
24 #include "SIDefines.h"
25 #include "SIInstrInfo.h"
26 #include "SIMachineFunctionInfo.h"
27 #include "SIRegisterInfo.h"
28 #include "Utils/AMDGPUBaseInfo.h"
29 #include "llvm/ADT/APFloat.h"
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/BitVector.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/CallingConvLower.h"
41 #include "llvm/CodeGen/DAGCombine.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/TargetCallingConv.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugLoc.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/DiagnosticInfo.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/GlobalValue.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instruction.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/IntrinsicInst.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CodeGen.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/KnownBits.h"
76 #include "llvm/Support/MachineValueType.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Target/TargetOptions.h"
79 #include <cassert>
80 #include <cmath>
81 #include <cstdint>
82 #include <iterator>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "si-lower"
90 
91 STATISTIC(NumTailCalls, "Number of tail calls");
92 
93 static cl::opt<bool> EnableVGPRIndexMode(
94   "amdgpu-vgpr-index-mode",
95   cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
96   cl::init(false));
97 
98 static cl::opt<bool> DisableLoopAlignment(
99   "amdgpu-disable-loop-alignment",
100   cl::desc("Do not align and prefetch loops"),
101   cl::init(false));
102 
103 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
104   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
105   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
106     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
107       return AMDGPU::SGPR0 + Reg;
108     }
109   }
110   llvm_unreachable("Cannot allocate sgpr");
111 }
112 
113 SITargetLowering::SITargetLowering(const TargetMachine &TM,
114                                    const GCNSubtarget &STI)
115     : AMDGPUTargetLowering(TM, STI),
116       Subtarget(&STI) {
117   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
118   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
119 
120   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
121   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
122 
123   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
124   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
125   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
126 
127   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
128   addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
129 
130   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
131   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
132 
133   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
134   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
135 
136   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
137   addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
138 
139   addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
140   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
141 
142   addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
143   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
144 
145   if (Subtarget->has16BitInsts()) {
146     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
147     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
148 
149     // Unless there are also VOP3P operations, not operations are really legal.
150     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
151     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
152     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
153     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
154   }
155 
156   if (Subtarget->hasMAIInsts()) {
157     addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
158     addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
159   }
160 
161   computeRegisterProperties(Subtarget->getRegisterInfo());
162 
163   // We need to custom lower vector stores from local memory
164   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
165   setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
166   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
167   setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
168   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
169   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
170   setOperationAction(ISD::LOAD, MVT::i1, Custom);
171   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
172 
173   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
174   setOperationAction(ISD::STORE, MVT::v3i32, Custom);
175   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
176   setOperationAction(ISD::STORE, MVT::v5i32, Custom);
177   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
178   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
179   setOperationAction(ISD::STORE, MVT::i1, Custom);
180   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
181 
182   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
183   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
184   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
185   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
186   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
187   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
188   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
189   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
190   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
191   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
192   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
193 
194   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
195   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
196 
197   setOperationAction(ISD::SELECT, MVT::i1, Promote);
198   setOperationAction(ISD::SELECT, MVT::i64, Custom);
199   setOperationAction(ISD::SELECT, MVT::f64, Promote);
200   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
201 
202   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
203   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
204   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
205   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
206   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
207 
208   setOperationAction(ISD::SETCC, MVT::i1, Promote);
209   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
210   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
211   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
212 
213   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
214   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
215 
216   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
217   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
218   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
219   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
220   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
221   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
222   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
223   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
224 
225   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
226   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
227   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
228   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
229   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
230   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
231 
232   setOperationAction(ISD::UADDO, MVT::i32, Legal);
233   setOperationAction(ISD::USUBO, MVT::i32, Legal);
234 
235   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
236   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
237 
238   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
239   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
240   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
241 
242 #if 0
243   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
244   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
245 #endif
246 
247   // We only support LOAD/STORE and vector manipulation ops for vectors
248   // with > 4 elements.
249   for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
250                   MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
251                   MVT::v32i32, MVT::v32f32 }) {
252     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
253       switch (Op) {
254       case ISD::LOAD:
255       case ISD::STORE:
256       case ISD::BUILD_VECTOR:
257       case ISD::BITCAST:
258       case ISD::EXTRACT_VECTOR_ELT:
259       case ISD::INSERT_VECTOR_ELT:
260       case ISD::INSERT_SUBVECTOR:
261       case ISD::EXTRACT_SUBVECTOR:
262       case ISD::SCALAR_TO_VECTOR:
263         break;
264       case ISD::CONCAT_VECTORS:
265         setOperationAction(Op, VT, Custom);
266         break;
267       default:
268         setOperationAction(Op, VT, Expand);
269         break;
270       }
271     }
272   }
273 
274   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
275 
276   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
277   // is expanded to avoid having two separate loops in case the index is a VGPR.
278 
279   // Most operations are naturally 32-bit vector operations. We only support
280   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
281   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
282     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
283     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
284 
285     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
286     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
287 
288     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
289     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
290 
291     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
292     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
293   }
294 
295   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
296   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
297   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
298   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
299 
300   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
301   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
302 
303   // Avoid stack access for these.
304   // TODO: Generalize to more vector types.
305   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
306   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
307   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
308   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
309 
310   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
311   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
312   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
313   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
314   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
315 
316   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
317   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
318   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
319 
320   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
321   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
322   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
323   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
324 
325   // Deal with vec3 vector operations when widened to vec4.
326   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
327   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
328   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
329   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
330 
331   // Deal with vec5 vector operations when widened to vec8.
332   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
333   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
334   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
335   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
336 
337   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
338   // and output demarshalling
339   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
340   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
341 
342   // We can't return success/failure, only the old value,
343   // let LLVM add the comparison
344   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
345   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
346 
347   if (Subtarget->hasFlatAddressSpace()) {
348     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
349     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
350   }
351 
352   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
353   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
354 
355   // On SI this is s_memtime and s_memrealtime on VI.
356   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
357   setOperationAction(ISD::TRAP, MVT::Other, Custom);
358   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
359 
360   if (Subtarget->has16BitInsts()) {
361     setOperationAction(ISD::FLOG, MVT::f16, Custom);
362     setOperationAction(ISD::FEXP, MVT::f16, Custom);
363     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
364   }
365 
366   // v_mad_f32 does not support denormals according to some sources.
367   if (!Subtarget->hasFP32Denormals())
368     setOperationAction(ISD::FMAD, MVT::f32, Legal);
369 
370   if (!Subtarget->hasBFI()) {
371     // fcopysign can be done in a single instruction with BFI.
372     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
373     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
374   }
375 
376   if (!Subtarget->hasBCNT(32))
377     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
378 
379   if (!Subtarget->hasBCNT(64))
380     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
381 
382   if (Subtarget->hasFFBH())
383     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
384 
385   if (Subtarget->hasFFBL())
386     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
387 
388   // We only really have 32-bit BFE instructions (and 16-bit on VI).
389   //
390   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
391   // effort to match them now. We want this to be false for i64 cases when the
392   // extraction isn't restricted to the upper or lower half. Ideally we would
393   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
394   // span the midpoint are probably relatively rare, so don't worry about them
395   // for now.
396   if (Subtarget->hasBFE())
397     setHasExtractBitsInsn(true);
398 
399   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
400   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
401   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
402   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
403 
404 
405   // These are really only legal for ieee_mode functions. We should be avoiding
406   // them for functions that don't have ieee_mode enabled, so just say they are
407   // legal.
408   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
409   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
410   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
411   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
412 
413 
414   if (Subtarget->haveRoundOpsF64()) {
415     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
416     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
417     setOperationAction(ISD::FRINT, MVT::f64, Legal);
418   } else {
419     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
420     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
421     setOperationAction(ISD::FRINT, MVT::f64, Custom);
422     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
423   }
424 
425   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
426 
427   setOperationAction(ISD::FSIN, MVT::f32, Custom);
428   setOperationAction(ISD::FCOS, MVT::f32, Custom);
429   setOperationAction(ISD::FDIV, MVT::f32, Custom);
430   setOperationAction(ISD::FDIV, MVT::f64, Custom);
431 
432   if (Subtarget->has16BitInsts()) {
433     setOperationAction(ISD::Constant, MVT::i16, Legal);
434 
435     setOperationAction(ISD::SMIN, MVT::i16, Legal);
436     setOperationAction(ISD::SMAX, MVT::i16, Legal);
437 
438     setOperationAction(ISD::UMIN, MVT::i16, Legal);
439     setOperationAction(ISD::UMAX, MVT::i16, Legal);
440 
441     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
442     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
443 
444     setOperationAction(ISD::ROTR, MVT::i16, Promote);
445     setOperationAction(ISD::ROTL, MVT::i16, Promote);
446 
447     setOperationAction(ISD::SDIV, MVT::i16, Promote);
448     setOperationAction(ISD::UDIV, MVT::i16, Promote);
449     setOperationAction(ISD::SREM, MVT::i16, Promote);
450     setOperationAction(ISD::UREM, MVT::i16, Promote);
451 
452     setOperationAction(ISD::BSWAP, MVT::i16, Promote);
453     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
454 
455     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
456     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
457     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
458     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
459     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
460 
461     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
462 
463     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
464 
465     setOperationAction(ISD::LOAD, MVT::i16, Custom);
466 
467     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
468 
469     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
470     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
471     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
472     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
473 
474     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
475     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
476     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
477     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
478 
479     // F16 - Constant Actions.
480     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
481 
482     // F16 - Load/Store Actions.
483     setOperationAction(ISD::LOAD, MVT::f16, Promote);
484     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
485     setOperationAction(ISD::STORE, MVT::f16, Promote);
486     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
487 
488     // F16 - VOP1 Actions.
489     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
490     setOperationAction(ISD::FCOS, MVT::f16, Promote);
491     setOperationAction(ISD::FSIN, MVT::f16, Promote);
492     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
493     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
494     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
495     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
496     setOperationAction(ISD::FROUND, MVT::f16, Custom);
497 
498     // F16 - VOP2 Actions.
499     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
500     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
501 
502     setOperationAction(ISD::FDIV, MVT::f16, Custom);
503 
504     // F16 - VOP3 Actions.
505     setOperationAction(ISD::FMA, MVT::f16, Legal);
506     if (!Subtarget->hasFP16Denormals() && STI.hasMadF16())
507       setOperationAction(ISD::FMAD, MVT::f16, Legal);
508 
509     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
510       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
511         switch (Op) {
512         case ISD::LOAD:
513         case ISD::STORE:
514         case ISD::BUILD_VECTOR:
515         case ISD::BITCAST:
516         case ISD::EXTRACT_VECTOR_ELT:
517         case ISD::INSERT_VECTOR_ELT:
518         case ISD::INSERT_SUBVECTOR:
519         case ISD::EXTRACT_SUBVECTOR:
520         case ISD::SCALAR_TO_VECTOR:
521           break;
522         case ISD::CONCAT_VECTORS:
523           setOperationAction(Op, VT, Custom);
524           break;
525         default:
526           setOperationAction(Op, VT, Expand);
527           break;
528         }
529       }
530     }
531 
532     // XXX - Do these do anything? Vector constants turn into build_vector.
533     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
534     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
535 
536     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
537     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
538 
539     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
540     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
541     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
542     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
543 
544     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
545     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
546     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
547     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
548 
549     setOperationAction(ISD::AND, MVT::v2i16, Promote);
550     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
551     setOperationAction(ISD::OR, MVT::v2i16, Promote);
552     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
553     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
554     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
555 
556     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
557     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
558     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
559     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
560 
561     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
562     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
563     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
564     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
565 
566     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
567     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
568     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
569     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
570 
571     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
572     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
573     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
574 
575     if (!Subtarget->hasVOP3PInsts()) {
576       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
577       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
578     }
579 
580     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
581     // This isn't really legal, but this avoids the legalizer unrolling it (and
582     // allows matching fneg (fabs x) patterns)
583     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
584 
585     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
586     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
587     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
588     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
589 
590     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
591     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
592 
593     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
594     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
595   }
596 
597   if (Subtarget->hasVOP3PInsts()) {
598     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
599     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
600     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
601     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
602     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
603     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
604     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
605     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
606     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
607     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
608 
609     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
610     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
611     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
612 
613     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
614     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
615 
616     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
617 
618     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
619     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
620 
621     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
622     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
623 
624     setOperationAction(ISD::SHL, MVT::v4i16, Custom);
625     setOperationAction(ISD::SRA, MVT::v4i16, Custom);
626     setOperationAction(ISD::SRL, MVT::v4i16, Custom);
627     setOperationAction(ISD::ADD, MVT::v4i16, Custom);
628     setOperationAction(ISD::SUB, MVT::v4i16, Custom);
629     setOperationAction(ISD::MUL, MVT::v4i16, Custom);
630 
631     setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
632     setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
633     setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
634     setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
635 
636     setOperationAction(ISD::FADD, MVT::v4f16, Custom);
637     setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
638     setOperationAction(ISD::FMA, MVT::v4f16, Custom);
639 
640     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
641     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
642 
643     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
644     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
645     setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
646 
647     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
648     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
649     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
650   }
651 
652   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
653   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
654 
655   if (Subtarget->has16BitInsts()) {
656     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
657     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
658     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
659     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
660   } else {
661     // Legalization hack.
662     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
663     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
664 
665     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
666     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
667   }
668 
669   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
670     setOperationAction(ISD::SELECT, VT, Custom);
671   }
672 
673   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
674   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
675   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
676   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
677   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
678   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
679   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
680 
681   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
682   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
683   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
684   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
685   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
686   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
687   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
688   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
689   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
690 
691   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
692   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
693   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
694   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
695   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
696   setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
697   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
698   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
699 
700   setTargetDAGCombine(ISD::ADD);
701   setTargetDAGCombine(ISD::ADDCARRY);
702   setTargetDAGCombine(ISD::SUB);
703   setTargetDAGCombine(ISD::SUBCARRY);
704   setTargetDAGCombine(ISD::FADD);
705   setTargetDAGCombine(ISD::FSUB);
706   setTargetDAGCombine(ISD::FMINNUM);
707   setTargetDAGCombine(ISD::FMAXNUM);
708   setTargetDAGCombine(ISD::FMINNUM_IEEE);
709   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
710   setTargetDAGCombine(ISD::FMA);
711   setTargetDAGCombine(ISD::SMIN);
712   setTargetDAGCombine(ISD::SMAX);
713   setTargetDAGCombine(ISD::UMIN);
714   setTargetDAGCombine(ISD::UMAX);
715   setTargetDAGCombine(ISD::SETCC);
716   setTargetDAGCombine(ISD::AND);
717   setTargetDAGCombine(ISD::OR);
718   setTargetDAGCombine(ISD::XOR);
719   setTargetDAGCombine(ISD::SINT_TO_FP);
720   setTargetDAGCombine(ISD::UINT_TO_FP);
721   setTargetDAGCombine(ISD::FCANONICALIZE);
722   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
723   setTargetDAGCombine(ISD::ZERO_EXTEND);
724   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
725   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
726   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
727 
728   // All memory operations. Some folding on the pointer operand is done to help
729   // matching the constant offsets in the addressing modes.
730   setTargetDAGCombine(ISD::LOAD);
731   setTargetDAGCombine(ISD::STORE);
732   setTargetDAGCombine(ISD::ATOMIC_LOAD);
733   setTargetDAGCombine(ISD::ATOMIC_STORE);
734   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
735   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
736   setTargetDAGCombine(ISD::ATOMIC_SWAP);
737   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
738   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
739   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
740   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
741   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
742   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
743   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
744   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
745   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
746   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
747   setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
748 
749   setSchedulingPreference(Sched::RegPressure);
750 }
751 
752 const GCNSubtarget *SITargetLowering::getSubtarget() const {
753   return Subtarget;
754 }
755 
756 //===----------------------------------------------------------------------===//
757 // TargetLowering queries
758 //===----------------------------------------------------------------------===//
759 
760 // v_mad_mix* support a conversion from f16 to f32.
761 //
762 // There is only one special case when denormals are enabled we don't currently,
763 // where this is OK to use.
764 bool SITargetLowering::isFPExtFoldable(unsigned Opcode,
765                                            EVT DestVT, EVT SrcVT) const {
766   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
767           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
768          DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
769          SrcVT.getScalarType() == MVT::f16;
770 }
771 
772 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
773   // SI has some legal vector types, but no legal vector operations. Say no
774   // shuffles are legal in order to prefer scalarizing some vector operations.
775   return false;
776 }
777 
778 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
779                                                     CallingConv::ID CC,
780                                                     EVT VT) const {
781   if (CC == CallingConv::AMDGPU_KERNEL)
782     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
783 
784   if (VT.isVector()) {
785     EVT ScalarVT = VT.getScalarType();
786     unsigned Size = ScalarVT.getSizeInBits();
787     if (Size == 32)
788       return ScalarVT.getSimpleVT();
789 
790     if (Size > 32)
791       return MVT::i32;
792 
793     if (Size == 16 && Subtarget->has16BitInsts())
794       return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
795   } else if (VT.getSizeInBits() > 32)
796     return MVT::i32;
797 
798   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
799 }
800 
801 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
802                                                          CallingConv::ID CC,
803                                                          EVT VT) const {
804   if (CC == CallingConv::AMDGPU_KERNEL)
805     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
806 
807   if (VT.isVector()) {
808     unsigned NumElts = VT.getVectorNumElements();
809     EVT ScalarVT = VT.getScalarType();
810     unsigned Size = ScalarVT.getSizeInBits();
811 
812     if (Size == 32)
813       return NumElts;
814 
815     if (Size > 32)
816       return NumElts * ((Size + 31) / 32);
817 
818     if (Size == 16 && Subtarget->has16BitInsts())
819       return (NumElts + 1) / 2;
820   } else if (VT.getSizeInBits() > 32)
821     return (VT.getSizeInBits() + 31) / 32;
822 
823   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
824 }
825 
826 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
827   LLVMContext &Context, CallingConv::ID CC,
828   EVT VT, EVT &IntermediateVT,
829   unsigned &NumIntermediates, MVT &RegisterVT) const {
830   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
831     unsigned NumElts = VT.getVectorNumElements();
832     EVT ScalarVT = VT.getScalarType();
833     unsigned Size = ScalarVT.getSizeInBits();
834     if (Size == 32) {
835       RegisterVT = ScalarVT.getSimpleVT();
836       IntermediateVT = RegisterVT;
837       NumIntermediates = NumElts;
838       return NumIntermediates;
839     }
840 
841     if (Size > 32) {
842       RegisterVT = MVT::i32;
843       IntermediateVT = RegisterVT;
844       NumIntermediates = NumElts * ((Size + 31) / 32);
845       return NumIntermediates;
846     }
847 
848     // FIXME: We should fix the ABI to be the same on targets without 16-bit
849     // support, but unless we can properly handle 3-vectors, it will be still be
850     // inconsistent.
851     if (Size == 16 && Subtarget->has16BitInsts()) {
852       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
853       IntermediateVT = RegisterVT;
854       NumIntermediates = (NumElts + 1) / 2;
855       return NumIntermediates;
856     }
857   }
858 
859   return TargetLowering::getVectorTypeBreakdownForCallingConv(
860     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
861 }
862 
863 static MVT memVTFromAggregate(Type *Ty) {
864   // Only limited forms of aggregate type currently expected.
865   assert(Ty->isStructTy() && "Expected struct type");
866 
867 
868   Type *ElementType = nullptr;
869   unsigned NumElts;
870   if (Ty->getContainedType(0)->isVectorTy()) {
871     VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0));
872     ElementType = VecComponent->getElementType();
873     NumElts = VecComponent->getNumElements();
874   } else {
875     ElementType = Ty->getContainedType(0);
876     NumElts = 1;
877   }
878 
879   assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type");
880 
881   // Calculate the size of the memVT type from the aggregate
882   unsigned Pow2Elts = 0;
883   unsigned ElementSize;
884   switch (ElementType->getTypeID()) {
885     default:
886       llvm_unreachable("Unknown type!");
887     case Type::IntegerTyID:
888       ElementSize = cast<IntegerType>(ElementType)->getBitWidth();
889       break;
890     case Type::HalfTyID:
891       ElementSize = 16;
892       break;
893     case Type::FloatTyID:
894       ElementSize = 32;
895       break;
896   }
897   unsigned AdditionalElts = ElementSize == 16 ? 2 : 1;
898   Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts);
899 
900   return MVT::getVectorVT(MVT::getVT(ElementType, false),
901                           Pow2Elts);
902 }
903 
904 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
905                                           const CallInst &CI,
906                                           MachineFunction &MF,
907                                           unsigned IntrID) const {
908   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
909           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
910     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
911                                                   (Intrinsic::ID)IntrID);
912     if (Attr.hasFnAttribute(Attribute::ReadNone))
913       return false;
914 
915     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
916 
917     if (RsrcIntr->IsImage) {
918       Info.ptrVal = MFI->getImagePSV(
919         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
920         CI.getArgOperand(RsrcIntr->RsrcArg));
921       Info.align.reset();
922     } else {
923       Info.ptrVal = MFI->getBufferPSV(
924         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
925         CI.getArgOperand(RsrcIntr->RsrcArg));
926     }
927 
928     Info.flags = MachineMemOperand::MODereferenceable;
929     if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
930       Info.opc = ISD::INTRINSIC_W_CHAIN;
931       Info.memVT = MVT::getVT(CI.getType(), true);
932       if (Info.memVT == MVT::Other) {
933         // Some intrinsics return an aggregate type - special case to work out
934         // the correct memVT
935         Info.memVT = memVTFromAggregate(CI.getType());
936       }
937       Info.flags |= MachineMemOperand::MOLoad;
938     } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
939       Info.opc = ISD::INTRINSIC_VOID;
940       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
941       Info.flags |= MachineMemOperand::MOStore;
942     } else {
943       // Atomic
944       Info.opc = ISD::INTRINSIC_W_CHAIN;
945       Info.memVT = MVT::getVT(CI.getType());
946       Info.flags = MachineMemOperand::MOLoad |
947                    MachineMemOperand::MOStore |
948                    MachineMemOperand::MODereferenceable;
949 
950       // XXX - Should this be volatile without known ordering?
951       Info.flags |= MachineMemOperand::MOVolatile;
952     }
953     return true;
954   }
955 
956   switch (IntrID) {
957   case Intrinsic::amdgcn_atomic_inc:
958   case Intrinsic::amdgcn_atomic_dec:
959   case Intrinsic::amdgcn_ds_ordered_add:
960   case Intrinsic::amdgcn_ds_ordered_swap:
961   case Intrinsic::amdgcn_ds_fadd:
962   case Intrinsic::amdgcn_ds_fmin:
963   case Intrinsic::amdgcn_ds_fmax: {
964     Info.opc = ISD::INTRINSIC_W_CHAIN;
965     Info.memVT = MVT::getVT(CI.getType());
966     Info.ptrVal = CI.getOperand(0);
967     Info.align.reset();
968     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
969 
970     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
971     if (!Vol->isZero())
972       Info.flags |= MachineMemOperand::MOVolatile;
973 
974     return true;
975   }
976   case Intrinsic::amdgcn_buffer_atomic_fadd: {
977     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
978 
979     Info.opc = ISD::INTRINSIC_VOID;
980     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
981     Info.ptrVal = MFI->getBufferPSV(
982       *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
983       CI.getArgOperand(1));
984     Info.align.reset();
985     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
986 
987     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
988     if (!Vol || !Vol->isZero())
989       Info.flags |= MachineMemOperand::MOVolatile;
990 
991     return true;
992   }
993   case Intrinsic::amdgcn_global_atomic_fadd: {
994     Info.opc = ISD::INTRINSIC_VOID;
995     Info.memVT = MVT::getVT(CI.getOperand(0)->getType()
996                             ->getPointerElementType());
997     Info.ptrVal = CI.getOperand(0);
998     Info.align.reset();
999     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1000 
1001     return true;
1002   }
1003   case Intrinsic::amdgcn_ds_append:
1004   case Intrinsic::amdgcn_ds_consume: {
1005     Info.opc = ISD::INTRINSIC_W_CHAIN;
1006     Info.memVT = MVT::getVT(CI.getType());
1007     Info.ptrVal = CI.getOperand(0);
1008     Info.align.reset();
1009     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1010 
1011     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1012     if (!Vol->isZero())
1013       Info.flags |= MachineMemOperand::MOVolatile;
1014 
1015     return true;
1016   }
1017   case Intrinsic::amdgcn_ds_gws_init:
1018   case Intrinsic::amdgcn_ds_gws_barrier:
1019   case Intrinsic::amdgcn_ds_gws_sema_v:
1020   case Intrinsic::amdgcn_ds_gws_sema_br:
1021   case Intrinsic::amdgcn_ds_gws_sema_p:
1022   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1023     Info.opc = ISD::INTRINSIC_VOID;
1024 
1025     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1026     Info.ptrVal =
1027         MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1028 
1029     // This is an abstract access, but we need to specify a type and size.
1030     Info.memVT = MVT::i32;
1031     Info.size = 4;
1032     Info.align = Align(4);
1033 
1034     Info.flags = MachineMemOperand::MOStore;
1035     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1036       Info.flags = MachineMemOperand::MOLoad;
1037     return true;
1038   }
1039   default:
1040     return false;
1041   }
1042 }
1043 
1044 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1045                                             SmallVectorImpl<Value*> &Ops,
1046                                             Type *&AccessTy) const {
1047   switch (II->getIntrinsicID()) {
1048   case Intrinsic::amdgcn_atomic_inc:
1049   case Intrinsic::amdgcn_atomic_dec:
1050   case Intrinsic::amdgcn_ds_ordered_add:
1051   case Intrinsic::amdgcn_ds_ordered_swap:
1052   case Intrinsic::amdgcn_ds_fadd:
1053   case Intrinsic::amdgcn_ds_fmin:
1054   case Intrinsic::amdgcn_ds_fmax: {
1055     Value *Ptr = II->getArgOperand(0);
1056     AccessTy = II->getType();
1057     Ops.push_back(Ptr);
1058     return true;
1059   }
1060   default:
1061     return false;
1062   }
1063 }
1064 
1065 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1066   if (!Subtarget->hasFlatInstOffsets()) {
1067     // Flat instructions do not have offsets, and only have the register
1068     // address.
1069     return AM.BaseOffs == 0 && AM.Scale == 0;
1070   }
1071 
1072   // GFX9 added a 13-bit signed offset. When using regular flat instructions,
1073   // the sign bit is ignored and is treated as a 12-bit unsigned offset.
1074 
1075   // GFX10 shrinked signed offset to 12 bits. When using regular flat
1076   // instructions, the sign bit is also ignored and is treated as 11-bit
1077   // unsigned offset.
1078 
1079   if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
1080     return isUInt<11>(AM.BaseOffs) && AM.Scale == 0;
1081 
1082   // Just r + i
1083   return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
1084 }
1085 
1086 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1087   if (Subtarget->hasFlatGlobalInsts())
1088     return isInt<13>(AM.BaseOffs) && AM.Scale == 0;
1089 
1090   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1091       // Assume the we will use FLAT for all global memory accesses
1092       // on VI.
1093       // FIXME: This assumption is currently wrong.  On VI we still use
1094       // MUBUF instructions for the r + i addressing mode.  As currently
1095       // implemented, the MUBUF instructions only work on buffer < 4GB.
1096       // It may be possible to support > 4GB buffers with MUBUF instructions,
1097       // by setting the stride value in the resource descriptor which would
1098       // increase the size limit to (stride * 4GB).  However, this is risky,
1099       // because it has never been validated.
1100     return isLegalFlatAddressingMode(AM);
1101   }
1102 
1103   return isLegalMUBUFAddressingMode(AM);
1104 }
1105 
1106 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1107   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1108   // additionally can do r + r + i with addr64. 32-bit has more addressing
1109   // mode options. Depending on the resource constant, it can also do
1110   // (i64 r0) + (i32 r1) * (i14 i).
1111   //
1112   // Private arrays end up using a scratch buffer most of the time, so also
1113   // assume those use MUBUF instructions. Scratch loads / stores are currently
1114   // implemented as mubuf instructions with offen bit set, so slightly
1115   // different than the normal addr64.
1116   if (!isUInt<12>(AM.BaseOffs))
1117     return false;
1118 
1119   // FIXME: Since we can split immediate into soffset and immediate offset,
1120   // would it make sense to allow any immediate?
1121 
1122   switch (AM.Scale) {
1123   case 0: // r + i or just i, depending on HasBaseReg.
1124     return true;
1125   case 1:
1126     return true; // We have r + r or r + i.
1127   case 2:
1128     if (AM.HasBaseReg) {
1129       // Reject 2 * r + r.
1130       return false;
1131     }
1132 
1133     // Allow 2 * r as r + r
1134     // Or  2 * r + i is allowed as r + r + i.
1135     return true;
1136   default: // Don't allow n * r
1137     return false;
1138   }
1139 }
1140 
1141 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1142                                              const AddrMode &AM, Type *Ty,
1143                                              unsigned AS, Instruction *I) const {
1144   // No global is ever allowed as a base.
1145   if (AM.BaseGV)
1146     return false;
1147 
1148   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1149     return isLegalGlobalAddressingMode(AM);
1150 
1151   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1152       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1153       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1154     // If the offset isn't a multiple of 4, it probably isn't going to be
1155     // correctly aligned.
1156     // FIXME: Can we get the real alignment here?
1157     if (AM.BaseOffs % 4 != 0)
1158       return isLegalMUBUFAddressingMode(AM);
1159 
1160     // There are no SMRD extloads, so if we have to do a small type access we
1161     // will use a MUBUF load.
1162     // FIXME?: We also need to do this if unaligned, but we don't know the
1163     // alignment here.
1164     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1165       return isLegalGlobalAddressingMode(AM);
1166 
1167     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1168       // SMRD instructions have an 8-bit, dword offset on SI.
1169       if (!isUInt<8>(AM.BaseOffs / 4))
1170         return false;
1171     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1172       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1173       // in 8-bits, it can use a smaller encoding.
1174       if (!isUInt<32>(AM.BaseOffs / 4))
1175         return false;
1176     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1177       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1178       if (!isUInt<20>(AM.BaseOffs))
1179         return false;
1180     } else
1181       llvm_unreachable("unhandled generation");
1182 
1183     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1184       return true;
1185 
1186     if (AM.Scale == 1 && AM.HasBaseReg)
1187       return true;
1188 
1189     return false;
1190 
1191   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1192     return isLegalMUBUFAddressingMode(AM);
1193   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1194              AS == AMDGPUAS::REGION_ADDRESS) {
1195     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1196     // field.
1197     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1198     // an 8-bit dword offset but we don't know the alignment here.
1199     if (!isUInt<16>(AM.BaseOffs))
1200       return false;
1201 
1202     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1203       return true;
1204 
1205     if (AM.Scale == 1 && AM.HasBaseReg)
1206       return true;
1207 
1208     return false;
1209   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1210              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1211     // For an unknown address space, this usually means that this is for some
1212     // reason being used for pure arithmetic, and not based on some addressing
1213     // computation. We don't have instructions that compute pointers with any
1214     // addressing modes, so treat them as having no offset like flat
1215     // instructions.
1216     return isLegalFlatAddressingMode(AM);
1217   } else {
1218     llvm_unreachable("unhandled address space");
1219   }
1220 }
1221 
1222 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1223                                         const SelectionDAG &DAG) const {
1224   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1225     return (MemVT.getSizeInBits() <= 4 * 32);
1226   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1227     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1228     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1229   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1230     return (MemVT.getSizeInBits() <= 2 * 32);
1231   }
1232   return true;
1233 }
1234 
1235 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1236     unsigned Size, unsigned AddrSpace, unsigned Align,
1237     MachineMemOperand::Flags Flags, bool *IsFast) const {
1238   if (IsFast)
1239     *IsFast = false;
1240 
1241   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1242       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1243     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1244     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1245     // with adjacent offsets.
1246     bool AlignedBy4 = (Align % 4 == 0);
1247     if (IsFast)
1248       *IsFast = AlignedBy4;
1249 
1250     return AlignedBy4;
1251   }
1252 
1253   // FIXME: We have to be conservative here and assume that flat operations
1254   // will access scratch.  If we had access to the IR function, then we
1255   // could determine if any private memory was used in the function.
1256   if (!Subtarget->hasUnalignedScratchAccess() &&
1257       (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
1258        AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
1259     bool AlignedBy4 = Align >= 4;
1260     if (IsFast)
1261       *IsFast = AlignedBy4;
1262 
1263     return AlignedBy4;
1264   }
1265 
1266   if (Subtarget->hasUnalignedBufferAccess()) {
1267     // If we have an uniform constant load, it still requires using a slow
1268     // buffer instruction if unaligned.
1269     if (IsFast) {
1270       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1271                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1272         (Align % 4 == 0) : true;
1273     }
1274 
1275     return true;
1276   }
1277 
1278   // Smaller than dword value must be aligned.
1279   if (Size < 32)
1280     return false;
1281 
1282   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1283   // byte-address are ignored, thus forcing Dword alignment.
1284   // This applies to private, global, and constant memory.
1285   if (IsFast)
1286     *IsFast = true;
1287 
1288   return Size >= 32 && Align >= 4;
1289 }
1290 
1291 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1292     EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1293     bool *IsFast) const {
1294   if (IsFast)
1295     *IsFast = false;
1296 
1297   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1298   // which isn't a simple VT.
1299   // Until MVT is extended to handle this, simply check for the size and
1300   // rely on the condition below: allow accesses if the size is a multiple of 4.
1301   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1302                            VT.getStoreSize() > 16)) {
1303     return false;
1304   }
1305 
1306   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1307                                             Align, Flags, IsFast);
1308 }
1309 
1310 EVT SITargetLowering::getOptimalMemOpType(
1311     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
1312     bool ZeroMemset, bool MemcpyStrSrc,
1313     const AttributeList &FuncAttributes) const {
1314   // FIXME: Should account for address space here.
1315 
1316   // The default fallback uses the private pointer size as a guess for a type to
1317   // use. Make sure we switch these to 64-bit accesses.
1318 
1319   if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
1320     return MVT::v4i32;
1321 
1322   if (Size >= 8 && DstAlign >= 4)
1323     return MVT::v2i32;
1324 
1325   // Use the default.
1326   return MVT::Other;
1327 }
1328 
1329 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1330                                            unsigned DestAS) const {
1331   return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
1332 }
1333 
1334 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1335   const MemSDNode *MemNode = cast<MemSDNode>(N);
1336   const Value *Ptr = MemNode->getMemOperand()->getValue();
1337   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1338   return I && I->getMetadata("amdgpu.noclobber");
1339 }
1340 
1341 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1342                                            unsigned DestAS) const {
1343   // Flat -> private/local is a simple truncate.
1344   // Flat -> global is no-op
1345   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1346     return true;
1347 
1348   return isNoopAddrSpaceCast(SrcAS, DestAS);
1349 }
1350 
1351 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1352   const MemSDNode *MemNode = cast<MemSDNode>(N);
1353 
1354   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1355 }
1356 
1357 TargetLoweringBase::LegalizeTypeAction
1358 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1359   int NumElts = VT.getVectorNumElements();
1360   if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16))
1361     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1362   return TargetLoweringBase::getPreferredVectorAction(VT);
1363 }
1364 
1365 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1366                                                          Type *Ty) const {
1367   // FIXME: Could be smarter if called for vector constants.
1368   return true;
1369 }
1370 
1371 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1372   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1373     switch (Op) {
1374     case ISD::LOAD:
1375     case ISD::STORE:
1376 
1377     // These operations are done with 32-bit instructions anyway.
1378     case ISD::AND:
1379     case ISD::OR:
1380     case ISD::XOR:
1381     case ISD::SELECT:
1382       // TODO: Extensions?
1383       return true;
1384     default:
1385       return false;
1386     }
1387   }
1388 
1389   // SimplifySetCC uses this function to determine whether or not it should
1390   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1391   if (VT == MVT::i1 && Op == ISD::SETCC)
1392     return false;
1393 
1394   return TargetLowering::isTypeDesirableForOp(Op, VT);
1395 }
1396 
1397 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1398                                                    const SDLoc &SL,
1399                                                    SDValue Chain,
1400                                                    uint64_t Offset) const {
1401   const DataLayout &DL = DAG.getDataLayout();
1402   MachineFunction &MF = DAG.getMachineFunction();
1403   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1404 
1405   const ArgDescriptor *InputPtrReg;
1406   const TargetRegisterClass *RC;
1407 
1408   std::tie(InputPtrReg, RC)
1409     = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1410 
1411   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1412   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1413   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1414     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1415 
1416   return DAG.getObjectPtrOffset(SL, BasePtr, Offset);
1417 }
1418 
1419 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1420                                             const SDLoc &SL) const {
1421   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1422                                                FIRST_IMPLICIT);
1423   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1424 }
1425 
1426 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1427                                          const SDLoc &SL, SDValue Val,
1428                                          bool Signed,
1429                                          const ISD::InputArg *Arg) const {
1430   // First, if it is a widened vector, narrow it.
1431   if (VT.isVector() &&
1432       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1433     EVT NarrowedVT =
1434         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1435                          VT.getVectorNumElements());
1436     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1437                       DAG.getConstant(0, SL, MVT::i32));
1438   }
1439 
1440   // Then convert the vector elements or scalar value.
1441   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1442       VT.bitsLT(MemVT)) {
1443     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1444     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1445   }
1446 
1447   if (MemVT.isFloatingPoint())
1448     Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
1449   else if (Signed)
1450     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1451   else
1452     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1453 
1454   return Val;
1455 }
1456 
1457 SDValue SITargetLowering::lowerKernargMemParameter(
1458   SelectionDAG &DAG, EVT VT, EVT MemVT,
1459   const SDLoc &SL, SDValue Chain,
1460   uint64_t Offset, unsigned Align, bool Signed,
1461   const ISD::InputArg *Arg) const {
1462   Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
1463   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
1464   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
1465 
1466   // Try to avoid using an extload by loading earlier than the argument address,
1467   // and extracting the relevant bits. The load should hopefully be merged with
1468   // the previous argument.
1469   if (MemVT.getStoreSize() < 4 && Align < 4) {
1470     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1471     int64_t AlignDownOffset = alignDown(Offset, 4);
1472     int64_t OffsetDiff = Offset - AlignDownOffset;
1473 
1474     EVT IntVT = MemVT.changeTypeToInteger();
1475 
1476     // TODO: If we passed in the base kernel offset we could have a better
1477     // alignment than 4, but we don't really need it.
1478     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1479     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4,
1480                                MachineMemOperand::MODereferenceable |
1481                                MachineMemOperand::MOInvariant);
1482 
1483     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1484     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1485 
1486     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1487     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1488     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1489 
1490 
1491     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1492   }
1493 
1494   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1495   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
1496                              MachineMemOperand::MODereferenceable |
1497                              MachineMemOperand::MOInvariant);
1498 
1499   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1500   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1501 }
1502 
1503 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1504                                               const SDLoc &SL, SDValue Chain,
1505                                               const ISD::InputArg &Arg) const {
1506   MachineFunction &MF = DAG.getMachineFunction();
1507   MachineFrameInfo &MFI = MF.getFrameInfo();
1508 
1509   if (Arg.Flags.isByVal()) {
1510     unsigned Size = Arg.Flags.getByValSize();
1511     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1512     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1513   }
1514 
1515   unsigned ArgOffset = VA.getLocMemOffset();
1516   unsigned ArgSize = VA.getValVT().getStoreSize();
1517 
1518   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1519 
1520   // Create load nodes to retrieve arguments from the stack.
1521   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1522   SDValue ArgValue;
1523 
1524   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1525   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1526   MVT MemVT = VA.getValVT();
1527 
1528   switch (VA.getLocInfo()) {
1529   default:
1530     break;
1531   case CCValAssign::BCvt:
1532     MemVT = VA.getLocVT();
1533     break;
1534   case CCValAssign::SExt:
1535     ExtType = ISD::SEXTLOAD;
1536     break;
1537   case CCValAssign::ZExt:
1538     ExtType = ISD::ZEXTLOAD;
1539     break;
1540   case CCValAssign::AExt:
1541     ExtType = ISD::EXTLOAD;
1542     break;
1543   }
1544 
1545   ArgValue = DAG.getExtLoad(
1546     ExtType, SL, VA.getLocVT(), Chain, FIN,
1547     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1548     MemVT);
1549   return ArgValue;
1550 }
1551 
1552 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1553   const SIMachineFunctionInfo &MFI,
1554   EVT VT,
1555   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1556   const ArgDescriptor *Reg;
1557   const TargetRegisterClass *RC;
1558 
1559   std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
1560   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1561 }
1562 
1563 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1564                                    CallingConv::ID CallConv,
1565                                    ArrayRef<ISD::InputArg> Ins,
1566                                    BitVector &Skipped,
1567                                    FunctionType *FType,
1568                                    SIMachineFunctionInfo *Info) {
1569   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1570     const ISD::InputArg *Arg = &Ins[I];
1571 
1572     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1573            "vector type argument should have been split");
1574 
1575     // First check if it's a PS input addr.
1576     if (CallConv == CallingConv::AMDGPU_PS &&
1577         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1578       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1579 
1580       // Inconveniently only the first part of the split is marked as isSplit,
1581       // so skip to the end. We only want to increment PSInputNum once for the
1582       // entire split argument.
1583       if (Arg->Flags.isSplit()) {
1584         while (!Arg->Flags.isSplitEnd()) {
1585           assert((!Arg->VT.isVector() ||
1586                   Arg->VT.getScalarSizeInBits() == 16) &&
1587                  "unexpected vector split in ps argument type");
1588           if (!SkipArg)
1589             Splits.push_back(*Arg);
1590           Arg = &Ins[++I];
1591         }
1592       }
1593 
1594       if (SkipArg) {
1595         // We can safely skip PS inputs.
1596         Skipped.set(Arg->getOrigArgIndex());
1597         ++PSInputNum;
1598         continue;
1599       }
1600 
1601       Info->markPSInputAllocated(PSInputNum);
1602       if (Arg->Used)
1603         Info->markPSInputEnabled(PSInputNum);
1604 
1605       ++PSInputNum;
1606     }
1607 
1608     Splits.push_back(*Arg);
1609   }
1610 }
1611 
1612 // Allocate special inputs passed in VGPRs.
1613 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1614                                                       MachineFunction &MF,
1615                                                       const SIRegisterInfo &TRI,
1616                                                       SIMachineFunctionInfo &Info) const {
1617   const LLT S32 = LLT::scalar(32);
1618   MachineRegisterInfo &MRI = MF.getRegInfo();
1619 
1620   if (Info.hasWorkItemIDX()) {
1621     Register Reg = AMDGPU::VGPR0;
1622     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1623 
1624     CCInfo.AllocateReg(Reg);
1625     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1626   }
1627 
1628   if (Info.hasWorkItemIDY()) {
1629     Register Reg = AMDGPU::VGPR1;
1630     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1631 
1632     CCInfo.AllocateReg(Reg);
1633     Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1634   }
1635 
1636   if (Info.hasWorkItemIDZ()) {
1637     Register Reg = AMDGPU::VGPR2;
1638     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1639 
1640     CCInfo.AllocateReg(Reg);
1641     Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1642   }
1643 }
1644 
1645 // Try to allocate a VGPR at the end of the argument list, or if no argument
1646 // VGPRs are left allocating a stack slot.
1647 // If \p Mask is is given it indicates bitfield position in the register.
1648 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1649 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1650                                          ArgDescriptor Arg = ArgDescriptor()) {
1651   if (Arg.isSet())
1652     return ArgDescriptor::createArg(Arg, Mask);
1653 
1654   ArrayRef<MCPhysReg> ArgVGPRs
1655     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1656   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1657   if (RegIdx == ArgVGPRs.size()) {
1658     // Spill to stack required.
1659     int64_t Offset = CCInfo.AllocateStack(4, 4);
1660 
1661     return ArgDescriptor::createStack(Offset, Mask);
1662   }
1663 
1664   unsigned Reg = ArgVGPRs[RegIdx];
1665   Reg = CCInfo.AllocateReg(Reg);
1666   assert(Reg != AMDGPU::NoRegister);
1667 
1668   MachineFunction &MF = CCInfo.getMachineFunction();
1669   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1670   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1671   return ArgDescriptor::createRegister(Reg, Mask);
1672 }
1673 
1674 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1675                                              const TargetRegisterClass *RC,
1676                                              unsigned NumArgRegs) {
1677   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1678   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1679   if (RegIdx == ArgSGPRs.size())
1680     report_fatal_error("ran out of SGPRs for arguments");
1681 
1682   unsigned Reg = ArgSGPRs[RegIdx];
1683   Reg = CCInfo.AllocateReg(Reg);
1684   assert(Reg != AMDGPU::NoRegister);
1685 
1686   MachineFunction &MF = CCInfo.getMachineFunction();
1687   MF.addLiveIn(Reg, RC);
1688   return ArgDescriptor::createRegister(Reg);
1689 }
1690 
1691 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1692   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1693 }
1694 
1695 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1696   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1697 }
1698 
1699 void SITargetLowering::allocateSpecialInputVGPRs(CCState &CCInfo,
1700                                                  MachineFunction &MF,
1701                                                  const SIRegisterInfo &TRI,
1702                                                  SIMachineFunctionInfo &Info) const {
1703   const unsigned Mask = 0x3ff;
1704   ArgDescriptor Arg;
1705 
1706   if (Info.hasWorkItemIDX()) {
1707     Arg = allocateVGPR32Input(CCInfo, Mask);
1708     Info.setWorkItemIDX(Arg);
1709   }
1710 
1711   if (Info.hasWorkItemIDY()) {
1712     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1713     Info.setWorkItemIDY(Arg);
1714   }
1715 
1716   if (Info.hasWorkItemIDZ())
1717     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1718 }
1719 
1720 void SITargetLowering::allocateSpecialInputSGPRs(
1721   CCState &CCInfo,
1722   MachineFunction &MF,
1723   const SIRegisterInfo &TRI,
1724   SIMachineFunctionInfo &Info) const {
1725   auto &ArgInfo = Info.getArgInfo();
1726 
1727   // TODO: Unify handling with private memory pointers.
1728 
1729   if (Info.hasDispatchPtr())
1730     ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1731 
1732   if (Info.hasQueuePtr())
1733     ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1734 
1735   if (Info.hasKernargSegmentPtr())
1736     ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
1737 
1738   if (Info.hasDispatchID())
1739     ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1740 
1741   // flat_scratch_init is not applicable for non-kernel functions.
1742 
1743   if (Info.hasWorkGroupIDX())
1744     ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1745 
1746   if (Info.hasWorkGroupIDY())
1747     ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1748 
1749   if (Info.hasWorkGroupIDZ())
1750     ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1751 
1752   if (Info.hasImplicitArgPtr())
1753     ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1754 }
1755 
1756 // Allocate special inputs passed in user SGPRs.
1757 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
1758                                             MachineFunction &MF,
1759                                             const SIRegisterInfo &TRI,
1760                                             SIMachineFunctionInfo &Info) const {
1761   if (Info.hasImplicitBufferPtr()) {
1762     unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1763     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1764     CCInfo.AllocateReg(ImplicitBufferPtrReg);
1765   }
1766 
1767   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1768   if (Info.hasPrivateSegmentBuffer()) {
1769     unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1770     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1771     CCInfo.AllocateReg(PrivateSegmentBufferReg);
1772   }
1773 
1774   if (Info.hasDispatchPtr()) {
1775     unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
1776     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1777     CCInfo.AllocateReg(DispatchPtrReg);
1778   }
1779 
1780   if (Info.hasQueuePtr()) {
1781     unsigned QueuePtrReg = Info.addQueuePtr(TRI);
1782     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1783     CCInfo.AllocateReg(QueuePtrReg);
1784   }
1785 
1786   if (Info.hasKernargSegmentPtr()) {
1787     MachineRegisterInfo &MRI = MF.getRegInfo();
1788     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
1789     CCInfo.AllocateReg(InputPtrReg);
1790 
1791     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1792     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1793   }
1794 
1795   if (Info.hasDispatchID()) {
1796     unsigned DispatchIDReg = Info.addDispatchID(TRI);
1797     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1798     CCInfo.AllocateReg(DispatchIDReg);
1799   }
1800 
1801   if (Info.hasFlatScratchInit()) {
1802     unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1803     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1804     CCInfo.AllocateReg(FlatScratchInitReg);
1805   }
1806 
1807   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1808   // these from the dispatch pointer.
1809 }
1810 
1811 // Allocate special input registers that are initialized per-wave.
1812 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
1813                                            MachineFunction &MF,
1814                                            SIMachineFunctionInfo &Info,
1815                                            CallingConv::ID CallConv,
1816                                            bool IsShader) const {
1817   if (Info.hasWorkGroupIDX()) {
1818     unsigned Reg = Info.addWorkGroupIDX();
1819     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1820     CCInfo.AllocateReg(Reg);
1821   }
1822 
1823   if (Info.hasWorkGroupIDY()) {
1824     unsigned Reg = Info.addWorkGroupIDY();
1825     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1826     CCInfo.AllocateReg(Reg);
1827   }
1828 
1829   if (Info.hasWorkGroupIDZ()) {
1830     unsigned Reg = Info.addWorkGroupIDZ();
1831     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1832     CCInfo.AllocateReg(Reg);
1833   }
1834 
1835   if (Info.hasWorkGroupInfo()) {
1836     unsigned Reg = Info.addWorkGroupInfo();
1837     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1838     CCInfo.AllocateReg(Reg);
1839   }
1840 
1841   if (Info.hasPrivateSegmentWaveByteOffset()) {
1842     // Scratch wave offset passed in system SGPR.
1843     unsigned PrivateSegmentWaveByteOffsetReg;
1844 
1845     if (IsShader) {
1846       PrivateSegmentWaveByteOffsetReg =
1847         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
1848 
1849       // This is true if the scratch wave byte offset doesn't have a fixed
1850       // location.
1851       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
1852         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1853         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1854       }
1855     } else
1856       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
1857 
1858     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1859     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1860   }
1861 }
1862 
1863 static void reservePrivateMemoryRegs(const TargetMachine &TM,
1864                                      MachineFunction &MF,
1865                                      const SIRegisterInfo &TRI,
1866                                      SIMachineFunctionInfo &Info) {
1867   // Now that we've figured out where the scratch register inputs are, see if
1868   // should reserve the arguments and use them directly.
1869   MachineFrameInfo &MFI = MF.getFrameInfo();
1870   bool HasStackObjects = MFI.hasStackObjects();
1871   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1872 
1873   // Record that we know we have non-spill stack objects so we don't need to
1874   // check all stack objects later.
1875   if (HasStackObjects)
1876     Info.setHasNonSpillStackObjects(true);
1877 
1878   // Everything live out of a block is spilled with fast regalloc, so it's
1879   // almost certain that spilling will be required.
1880   if (TM.getOptLevel() == CodeGenOpt::None)
1881     HasStackObjects = true;
1882 
1883   // For now assume stack access is needed in any callee functions, so we need
1884   // the scratch registers to pass in.
1885   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
1886 
1887   if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
1888     // If we have stack objects, we unquestionably need the private buffer
1889     // resource. For the Code Object V2 ABI, this will be the first 4 user
1890     // SGPR inputs. We can reserve those and use them directly.
1891 
1892     Register PrivateSegmentBufferReg =
1893         Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
1894     Info.setScratchRSrcReg(PrivateSegmentBufferReg);
1895   } else {
1896     unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
1897     // We tentatively reserve the last registers (skipping the last registers
1898     // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
1899     // we'll replace these with the ones immediately after those which were
1900     // really allocated. In the prologue copies will be inserted from the
1901     // argument to these reserved registers.
1902 
1903     // Without HSA, relocations are used for the scratch pointer and the
1904     // buffer resource setup is always inserted in the prologue. Scratch wave
1905     // offset is still in an input SGPR.
1906     Info.setScratchRSrcReg(ReservedBufferReg);
1907   }
1908 
1909   // hasFP should be accurate for kernels even before the frame is finalized.
1910   if (ST.getFrameLowering()->hasFP(MF)) {
1911     MachineRegisterInfo &MRI = MF.getRegInfo();
1912 
1913     // Try to use s32 as the SP, but move it if it would interfere with input
1914     // arguments. This won't work with calls though.
1915     //
1916     // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
1917     // registers.
1918     if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
1919       Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
1920     } else {
1921       assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
1922 
1923       if (MFI.hasCalls())
1924         report_fatal_error("call in graphics shader with too many input SGPRs");
1925 
1926       for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
1927         if (!MRI.isLiveIn(Reg)) {
1928           Info.setStackPtrOffsetReg(Reg);
1929           break;
1930         }
1931       }
1932 
1933       if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
1934         report_fatal_error("failed to find register for SP");
1935     }
1936 
1937     if (MFI.hasCalls()) {
1938       Info.setScratchWaveOffsetReg(AMDGPU::SGPR33);
1939       Info.setFrameOffsetReg(AMDGPU::SGPR33);
1940     } else {
1941       unsigned ReservedOffsetReg =
1942         TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1943       Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1944       Info.setFrameOffsetReg(ReservedOffsetReg);
1945     }
1946   } else if (RequiresStackAccess) {
1947     assert(!MFI.hasCalls());
1948     // We know there are accesses and they will be done relative to SP, so just
1949     // pin it to the input.
1950     //
1951     // FIXME: Should not do this if inline asm is reading/writing these
1952     // registers.
1953     Register PreloadedSP = Info.getPreloadedReg(
1954         AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1955 
1956     Info.setStackPtrOffsetReg(PreloadedSP);
1957     Info.setScratchWaveOffsetReg(PreloadedSP);
1958     Info.setFrameOffsetReg(PreloadedSP);
1959   } else {
1960     assert(!MFI.hasCalls());
1961 
1962     // There may not be stack access at all. There may still be spills, or
1963     // access of a constant pointer (in which cases an extra copy will be
1964     // emitted in the prolog).
1965     unsigned ReservedOffsetReg
1966       = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1967     Info.setStackPtrOffsetReg(ReservedOffsetReg);
1968     Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1969     Info.setFrameOffsetReg(ReservedOffsetReg);
1970   }
1971 }
1972 
1973 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
1974   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
1975   return !Info->isEntryFunction();
1976 }
1977 
1978 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
1979 
1980 }
1981 
1982 void SITargetLowering::insertCopiesSplitCSR(
1983   MachineBasicBlock *Entry,
1984   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
1985   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1986 
1987   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
1988   if (!IStart)
1989     return;
1990 
1991   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1992   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
1993   MachineBasicBlock::iterator MBBI = Entry->begin();
1994   for (const MCPhysReg *I = IStart; *I; ++I) {
1995     const TargetRegisterClass *RC = nullptr;
1996     if (AMDGPU::SReg_64RegClass.contains(*I))
1997       RC = &AMDGPU::SGPR_64RegClass;
1998     else if (AMDGPU::SReg_32RegClass.contains(*I))
1999       RC = &AMDGPU::SGPR_32RegClass;
2000     else
2001       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2002 
2003     Register NewVR = MRI->createVirtualRegister(RC);
2004     // Create copy from CSR to a virtual register.
2005     Entry->addLiveIn(*I);
2006     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2007       .addReg(*I);
2008 
2009     // Insert the copy-back instructions right before the terminator.
2010     for (auto *Exit : Exits)
2011       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2012               TII->get(TargetOpcode::COPY), *I)
2013         .addReg(NewVR);
2014   }
2015 }
2016 
2017 SDValue SITargetLowering::LowerFormalArguments(
2018     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2019     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2020     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2021   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2022 
2023   MachineFunction &MF = DAG.getMachineFunction();
2024   const Function &Fn = MF.getFunction();
2025   FunctionType *FType = MF.getFunction().getFunctionType();
2026   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2027 
2028   if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
2029     DiagnosticInfoUnsupported NoGraphicsHSA(
2030         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2031     DAG.getContext()->diagnose(NoGraphicsHSA);
2032     return DAG.getEntryNode();
2033   }
2034 
2035   SmallVector<ISD::InputArg, 16> Splits;
2036   SmallVector<CCValAssign, 16> ArgLocs;
2037   BitVector Skipped(Ins.size());
2038   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2039                  *DAG.getContext());
2040 
2041   bool IsShader = AMDGPU::isShader(CallConv);
2042   bool IsKernel = AMDGPU::isKernel(CallConv);
2043   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2044 
2045   if (IsShader) {
2046     processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2047 
2048     // At least one interpolation mode must be enabled or else the GPU will
2049     // hang.
2050     //
2051     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2052     // set PSInputAddr, the user wants to enable some bits after the compilation
2053     // based on run-time states. Since we can't know what the final PSInputEna
2054     // will look like, so we shouldn't do anything here and the user should take
2055     // responsibility for the correct programming.
2056     //
2057     // Otherwise, the following restrictions apply:
2058     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2059     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2060     //   enabled too.
2061     if (CallConv == CallingConv::AMDGPU_PS) {
2062       if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2063            ((Info->getPSInputAddr() & 0xF) == 0 &&
2064             Info->isPSInputAllocated(11))) {
2065         CCInfo.AllocateReg(AMDGPU::VGPR0);
2066         CCInfo.AllocateReg(AMDGPU::VGPR1);
2067         Info->markPSInputAllocated(0);
2068         Info->markPSInputEnabled(0);
2069       }
2070       if (Subtarget->isAmdPalOS()) {
2071         // For isAmdPalOS, the user does not enable some bits after compilation
2072         // based on run-time states; the register values being generated here are
2073         // the final ones set in hardware. Therefore we need to apply the
2074         // workaround to PSInputAddr and PSInputEnable together.  (The case where
2075         // a bit is set in PSInputAddr but not PSInputEnable is where the
2076         // frontend set up an input arg for a particular interpolation mode, but
2077         // nothing uses that input arg. Really we should have an earlier pass
2078         // that removes such an arg.)
2079         unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2080         if ((PsInputBits & 0x7F) == 0 ||
2081             ((PsInputBits & 0xF) == 0 &&
2082              (PsInputBits >> 11 & 1)))
2083           Info->markPSInputEnabled(
2084               countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2085       }
2086     }
2087 
2088     assert(!Info->hasDispatchPtr() &&
2089            !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
2090            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2091            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2092            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2093            !Info->hasWorkItemIDZ());
2094   } else if (IsKernel) {
2095     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2096   } else {
2097     Splits.append(Ins.begin(), Ins.end());
2098   }
2099 
2100   if (IsEntryFunc) {
2101     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2102     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2103   }
2104 
2105   if (IsKernel) {
2106     analyzeFormalArgumentsCompute(CCInfo, Ins);
2107   } else {
2108     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2109     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2110   }
2111 
2112   SmallVector<SDValue, 16> Chains;
2113 
2114   // FIXME: This is the minimum kernel argument alignment. We should improve
2115   // this to the maximum alignment of the arguments.
2116   //
2117   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2118   // kern arg offset.
2119   const unsigned KernelArgBaseAlign = 16;
2120 
2121    for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2122     const ISD::InputArg &Arg = Ins[i];
2123     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2124       InVals.push_back(DAG.getUNDEF(Arg.VT));
2125       continue;
2126     }
2127 
2128     CCValAssign &VA = ArgLocs[ArgIdx++];
2129     MVT VT = VA.getLocVT();
2130 
2131     if (IsEntryFunc && VA.isMemLoc()) {
2132       VT = Ins[i].VT;
2133       EVT MemVT = VA.getLocVT();
2134 
2135       const uint64_t Offset = VA.getLocMemOffset();
2136       unsigned Align = MinAlign(KernelArgBaseAlign, Offset);
2137 
2138       SDValue Arg = lowerKernargMemParameter(
2139         DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]);
2140       Chains.push_back(Arg.getValue(1));
2141 
2142       auto *ParamTy =
2143         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2144       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2145           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2146                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2147         // On SI local pointers are just offsets into LDS, so they are always
2148         // less than 16-bits.  On CI and newer they could potentially be
2149         // real pointers, so we can't guarantee their size.
2150         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2151                           DAG.getValueType(MVT::i16));
2152       }
2153 
2154       InVals.push_back(Arg);
2155       continue;
2156     } else if (!IsEntryFunc && VA.isMemLoc()) {
2157       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2158       InVals.push_back(Val);
2159       if (!Arg.Flags.isByVal())
2160         Chains.push_back(Val.getValue(1));
2161       continue;
2162     }
2163 
2164     assert(VA.isRegLoc() && "Parameter must be in a register!");
2165 
2166     Register Reg = VA.getLocReg();
2167     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2168     EVT ValVT = VA.getValVT();
2169 
2170     Reg = MF.addLiveIn(Reg, RC);
2171     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2172 
2173     if (Arg.Flags.isSRet()) {
2174       // The return object should be reasonably addressable.
2175 
2176       // FIXME: This helps when the return is a real sret. If it is a
2177       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2178       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2179       unsigned NumBits
2180         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2181       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2182         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2183     }
2184 
2185     // If this is an 8 or 16-bit value, it is really passed promoted
2186     // to 32 bits. Insert an assert[sz]ext to capture this, then
2187     // truncate to the right size.
2188     switch (VA.getLocInfo()) {
2189     case CCValAssign::Full:
2190       break;
2191     case CCValAssign::BCvt:
2192       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2193       break;
2194     case CCValAssign::SExt:
2195       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2196                         DAG.getValueType(ValVT));
2197       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2198       break;
2199     case CCValAssign::ZExt:
2200       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2201                         DAG.getValueType(ValVT));
2202       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2203       break;
2204     case CCValAssign::AExt:
2205       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2206       break;
2207     default:
2208       llvm_unreachable("Unknown loc info!");
2209     }
2210 
2211     InVals.push_back(Val);
2212   }
2213 
2214   if (!IsEntryFunc) {
2215     // Special inputs come after user arguments.
2216     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2217   }
2218 
2219   // Start adding system SGPRs.
2220   if (IsEntryFunc) {
2221     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
2222   } else {
2223     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2224     CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
2225     CCInfo.AllocateReg(Info->getFrameOffsetReg());
2226     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2227   }
2228 
2229   auto &ArgUsageInfo =
2230     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2231   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2232 
2233   unsigned StackArgSize = CCInfo.getNextStackOffset();
2234   Info->setBytesInStackArgArea(StackArgSize);
2235 
2236   return Chains.empty() ? Chain :
2237     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2238 }
2239 
2240 // TODO: If return values can't fit in registers, we should return as many as
2241 // possible in registers before passing on stack.
2242 bool SITargetLowering::CanLowerReturn(
2243   CallingConv::ID CallConv,
2244   MachineFunction &MF, bool IsVarArg,
2245   const SmallVectorImpl<ISD::OutputArg> &Outs,
2246   LLVMContext &Context) const {
2247   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2248   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2249   // for shaders. Vector types should be explicitly handled by CC.
2250   if (AMDGPU::isEntryFunctionCC(CallConv))
2251     return true;
2252 
2253   SmallVector<CCValAssign, 16> RVLocs;
2254   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2255   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2256 }
2257 
2258 SDValue
2259 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2260                               bool isVarArg,
2261                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2262                               const SmallVectorImpl<SDValue> &OutVals,
2263                               const SDLoc &DL, SelectionDAG &DAG) const {
2264   MachineFunction &MF = DAG.getMachineFunction();
2265   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2266 
2267   if (AMDGPU::isKernel(CallConv)) {
2268     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2269                                              OutVals, DL, DAG);
2270   }
2271 
2272   bool IsShader = AMDGPU::isShader(CallConv);
2273 
2274   Info->setIfReturnsVoid(Outs.empty());
2275   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2276 
2277   // CCValAssign - represent the assignment of the return value to a location.
2278   SmallVector<CCValAssign, 48> RVLocs;
2279   SmallVector<ISD::OutputArg, 48> Splits;
2280 
2281   // CCState - Info about the registers and stack slots.
2282   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2283                  *DAG.getContext());
2284 
2285   // Analyze outgoing return values.
2286   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2287 
2288   SDValue Flag;
2289   SmallVector<SDValue, 48> RetOps;
2290   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2291 
2292   // Add return address for callable functions.
2293   if (!Info->isEntryFunction()) {
2294     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2295     SDValue ReturnAddrReg = CreateLiveInRegister(
2296       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2297 
2298     SDValue ReturnAddrVirtualReg = DAG.getRegister(
2299         MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2300         MVT::i64);
2301     Chain =
2302         DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2303     Flag = Chain.getValue(1);
2304     RetOps.push_back(ReturnAddrVirtualReg);
2305   }
2306 
2307   // Copy the result values into the output registers.
2308   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2309        ++I, ++RealRVLocIdx) {
2310     CCValAssign &VA = RVLocs[I];
2311     assert(VA.isRegLoc() && "Can only return in registers!");
2312     // TODO: Partially return in registers if return values don't fit.
2313     SDValue Arg = OutVals[RealRVLocIdx];
2314 
2315     // Copied from other backends.
2316     switch (VA.getLocInfo()) {
2317     case CCValAssign::Full:
2318       break;
2319     case CCValAssign::BCvt:
2320       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2321       break;
2322     case CCValAssign::SExt:
2323       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2324       break;
2325     case CCValAssign::ZExt:
2326       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2327       break;
2328     case CCValAssign::AExt:
2329       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2330       break;
2331     default:
2332       llvm_unreachable("Unknown loc info!");
2333     }
2334 
2335     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2336     Flag = Chain.getValue(1);
2337     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2338   }
2339 
2340   // FIXME: Does sret work properly?
2341   if (!Info->isEntryFunction()) {
2342     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2343     const MCPhysReg *I =
2344       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2345     if (I) {
2346       for (; *I; ++I) {
2347         if (AMDGPU::SReg_64RegClass.contains(*I))
2348           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2349         else if (AMDGPU::SReg_32RegClass.contains(*I))
2350           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2351         else
2352           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2353       }
2354     }
2355   }
2356 
2357   // Update chain and glue.
2358   RetOps[0] = Chain;
2359   if (Flag.getNode())
2360     RetOps.push_back(Flag);
2361 
2362   unsigned Opc = AMDGPUISD::ENDPGM;
2363   if (!IsWaveEnd)
2364     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2365   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2366 }
2367 
2368 SDValue SITargetLowering::LowerCallResult(
2369     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2370     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2371     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2372     SDValue ThisVal) const {
2373   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2374 
2375   // Assign locations to each value returned by this call.
2376   SmallVector<CCValAssign, 16> RVLocs;
2377   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2378                  *DAG.getContext());
2379   CCInfo.AnalyzeCallResult(Ins, RetCC);
2380 
2381   // Copy all of the result registers out of their specified physreg.
2382   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2383     CCValAssign VA = RVLocs[i];
2384     SDValue Val;
2385 
2386     if (VA.isRegLoc()) {
2387       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2388       Chain = Val.getValue(1);
2389       InFlag = Val.getValue(2);
2390     } else if (VA.isMemLoc()) {
2391       report_fatal_error("TODO: return values in memory");
2392     } else
2393       llvm_unreachable("unknown argument location type");
2394 
2395     switch (VA.getLocInfo()) {
2396     case CCValAssign::Full:
2397       break;
2398     case CCValAssign::BCvt:
2399       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2400       break;
2401     case CCValAssign::ZExt:
2402       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2403                         DAG.getValueType(VA.getValVT()));
2404       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2405       break;
2406     case CCValAssign::SExt:
2407       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2408                         DAG.getValueType(VA.getValVT()));
2409       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2410       break;
2411     case CCValAssign::AExt:
2412       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2413       break;
2414     default:
2415       llvm_unreachable("Unknown loc info!");
2416     }
2417 
2418     InVals.push_back(Val);
2419   }
2420 
2421   return Chain;
2422 }
2423 
2424 // Add code to pass special inputs required depending on used features separate
2425 // from the explicit user arguments present in the IR.
2426 void SITargetLowering::passSpecialInputs(
2427     CallLoweringInfo &CLI,
2428     CCState &CCInfo,
2429     const SIMachineFunctionInfo &Info,
2430     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2431     SmallVectorImpl<SDValue> &MemOpChains,
2432     SDValue Chain) const {
2433   // If we don't have a call site, this was a call inserted by
2434   // legalization. These can never use special inputs.
2435   if (!CLI.CS)
2436     return;
2437 
2438   const Function *CalleeFunc = CLI.CS.getCalledFunction();
2439   assert(CalleeFunc);
2440 
2441   SelectionDAG &DAG = CLI.DAG;
2442   const SDLoc &DL = CLI.DL;
2443 
2444   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2445 
2446   auto &ArgUsageInfo =
2447     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2448   const AMDGPUFunctionArgInfo &CalleeArgInfo
2449     = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2450 
2451   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2452 
2453   // TODO: Unify with private memory register handling. This is complicated by
2454   // the fact that at least in kernels, the input argument is not necessarily
2455   // in the same location as the input.
2456   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2457     AMDGPUFunctionArgInfo::DISPATCH_PTR,
2458     AMDGPUFunctionArgInfo::QUEUE_PTR,
2459     AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
2460     AMDGPUFunctionArgInfo::DISPATCH_ID,
2461     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2462     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2463     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
2464     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
2465   };
2466 
2467   for (auto InputID : InputRegs) {
2468     const ArgDescriptor *OutgoingArg;
2469     const TargetRegisterClass *ArgRC;
2470 
2471     std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
2472     if (!OutgoingArg)
2473       continue;
2474 
2475     const ArgDescriptor *IncomingArg;
2476     const TargetRegisterClass *IncomingArgRC;
2477     std::tie(IncomingArg, IncomingArgRC)
2478       = CallerArgInfo.getPreloadedValue(InputID);
2479     assert(IncomingArgRC == ArgRC);
2480 
2481     // All special arguments are ints for now.
2482     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2483     SDValue InputReg;
2484 
2485     if (IncomingArg) {
2486       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2487     } else {
2488       // The implicit arg ptr is special because it doesn't have a corresponding
2489       // input for kernels, and is computed from the kernarg segment pointer.
2490       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2491       InputReg = getImplicitArgPtr(DAG, DL);
2492     }
2493 
2494     if (OutgoingArg->isRegister()) {
2495       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2496     } else {
2497       unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4);
2498       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2499                                               SpecialArgOffset);
2500       MemOpChains.push_back(ArgStore);
2501     }
2502   }
2503 
2504   // Pack workitem IDs into a single register or pass it as is if already
2505   // packed.
2506   const ArgDescriptor *OutgoingArg;
2507   const TargetRegisterClass *ArgRC;
2508 
2509   std::tie(OutgoingArg, ArgRC) =
2510     CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2511   if (!OutgoingArg)
2512     std::tie(OutgoingArg, ArgRC) =
2513       CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2514   if (!OutgoingArg)
2515     std::tie(OutgoingArg, ArgRC) =
2516       CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2517   if (!OutgoingArg)
2518     return;
2519 
2520   const ArgDescriptor *IncomingArgX
2521     = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first;
2522   const ArgDescriptor *IncomingArgY
2523     = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first;
2524   const ArgDescriptor *IncomingArgZ
2525     = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first;
2526 
2527   SDValue InputReg;
2528   SDLoc SL;
2529 
2530   // If incoming ids are not packed we need to pack them.
2531   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo.WorkItemIDX)
2532     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2533 
2534   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo.WorkItemIDY) {
2535     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2536     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2537                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2538     InputReg = InputReg.getNode() ?
2539                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2540   }
2541 
2542   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo.WorkItemIDZ) {
2543     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2544     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2545                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2546     InputReg = InputReg.getNode() ?
2547                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2548   }
2549 
2550   if (!InputReg.getNode()) {
2551     // Workitem ids are already packed, any of present incoming arguments
2552     // will carry all required fields.
2553     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2554       IncomingArgX ? *IncomingArgX :
2555       IncomingArgY ? *IncomingArgY :
2556                      *IncomingArgZ, ~0u);
2557     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2558   }
2559 
2560   if (OutgoingArg->isRegister()) {
2561     RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2562   } else {
2563     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4);
2564     SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2565                                             SpecialArgOffset);
2566     MemOpChains.push_back(ArgStore);
2567   }
2568 }
2569 
2570 static bool canGuaranteeTCO(CallingConv::ID CC) {
2571   return CC == CallingConv::Fast;
2572 }
2573 
2574 /// Return true if we might ever do TCO for calls with this calling convention.
2575 static bool mayTailCallThisCC(CallingConv::ID CC) {
2576   switch (CC) {
2577   case CallingConv::C:
2578     return true;
2579   default:
2580     return canGuaranteeTCO(CC);
2581   }
2582 }
2583 
2584 bool SITargetLowering::isEligibleForTailCallOptimization(
2585     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2586     const SmallVectorImpl<ISD::OutputArg> &Outs,
2587     const SmallVectorImpl<SDValue> &OutVals,
2588     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2589   if (!mayTailCallThisCC(CalleeCC))
2590     return false;
2591 
2592   MachineFunction &MF = DAG.getMachineFunction();
2593   const Function &CallerF = MF.getFunction();
2594   CallingConv::ID CallerCC = CallerF.getCallingConv();
2595   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2596   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2597 
2598   // Kernels aren't callable, and don't have a live in return address so it
2599   // doesn't make sense to do a tail call with entry functions.
2600   if (!CallerPreserved)
2601     return false;
2602 
2603   bool CCMatch = CallerCC == CalleeCC;
2604 
2605   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2606     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2607       return true;
2608     return false;
2609   }
2610 
2611   // TODO: Can we handle var args?
2612   if (IsVarArg)
2613     return false;
2614 
2615   for (const Argument &Arg : CallerF.args()) {
2616     if (Arg.hasByValAttr())
2617       return false;
2618   }
2619 
2620   LLVMContext &Ctx = *DAG.getContext();
2621 
2622   // Check that the call results are passed in the same way.
2623   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2624                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2625                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2626     return false;
2627 
2628   // The callee has to preserve all registers the caller needs to preserve.
2629   if (!CCMatch) {
2630     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2631     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2632       return false;
2633   }
2634 
2635   // Nothing more to check if the callee is taking no arguments.
2636   if (Outs.empty())
2637     return true;
2638 
2639   SmallVector<CCValAssign, 16> ArgLocs;
2640   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2641 
2642   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2643 
2644   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2645   // If the stack arguments for this call do not fit into our own save area then
2646   // the call cannot be made tail.
2647   // TODO: Is this really necessary?
2648   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2649     return false;
2650 
2651   const MachineRegisterInfo &MRI = MF.getRegInfo();
2652   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2653 }
2654 
2655 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2656   if (!CI->isTailCall())
2657     return false;
2658 
2659   const Function *ParentFn = CI->getParent()->getParent();
2660   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2661     return false;
2662 
2663   auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
2664   return (Attr.getValueAsString() != "true");
2665 }
2666 
2667 // The wave scratch offset register is used as the global base pointer.
2668 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2669                                     SmallVectorImpl<SDValue> &InVals) const {
2670   SelectionDAG &DAG = CLI.DAG;
2671   const SDLoc &DL = CLI.DL;
2672   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2673   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2674   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2675   SDValue Chain = CLI.Chain;
2676   SDValue Callee = CLI.Callee;
2677   bool &IsTailCall = CLI.IsTailCall;
2678   CallingConv::ID CallConv = CLI.CallConv;
2679   bool IsVarArg = CLI.IsVarArg;
2680   bool IsSibCall = false;
2681   bool IsThisReturn = false;
2682   MachineFunction &MF = DAG.getMachineFunction();
2683 
2684   if (Callee.isUndef() || isNullConstant(Callee)) {
2685     if (!CLI.IsTailCall) {
2686       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2687         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2688     }
2689 
2690     return Chain;
2691   }
2692 
2693   if (IsVarArg) {
2694     return lowerUnhandledCall(CLI, InVals,
2695                               "unsupported call to variadic function ");
2696   }
2697 
2698   if (!CLI.CS.getInstruction())
2699     report_fatal_error("unsupported libcall legalization");
2700 
2701   if (!CLI.CS.getCalledFunction()) {
2702     return lowerUnhandledCall(CLI, InVals,
2703                               "unsupported indirect call to function ");
2704   }
2705 
2706   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2707     return lowerUnhandledCall(CLI, InVals,
2708                               "unsupported required tail call to function ");
2709   }
2710 
2711   if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
2712     // Note the issue is with the CC of the calling function, not of the call
2713     // itself.
2714     return lowerUnhandledCall(CLI, InVals,
2715                           "unsupported call from graphics shader of function ");
2716   }
2717 
2718   if (IsTailCall) {
2719     IsTailCall = isEligibleForTailCallOptimization(
2720       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2721     if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
2722       report_fatal_error("failed to perform tail call elimination on a call "
2723                          "site marked musttail");
2724     }
2725 
2726     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2727 
2728     // A sibling call is one where we're under the usual C ABI and not planning
2729     // to change that but can still do a tail call:
2730     if (!TailCallOpt && IsTailCall)
2731       IsSibCall = true;
2732 
2733     if (IsTailCall)
2734       ++NumTailCalls;
2735   }
2736 
2737   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2738 
2739   // Analyze operands of the call, assigning locations to each operand.
2740   SmallVector<CCValAssign, 16> ArgLocs;
2741   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2742   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2743 
2744   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2745 
2746   // Get a count of how many bytes are to be pushed on the stack.
2747   unsigned NumBytes = CCInfo.getNextStackOffset();
2748 
2749   if (IsSibCall) {
2750     // Since we're not changing the ABI to make this a tail call, the memory
2751     // operands are already available in the caller's incoming argument space.
2752     NumBytes = 0;
2753   }
2754 
2755   // FPDiff is the byte offset of the call's argument area from the callee's.
2756   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2757   // by this amount for a tail call. In a sibling call it must be 0 because the
2758   // caller will deallocate the entire stack and the callee still expects its
2759   // arguments to begin at SP+0. Completely unused for non-tail calls.
2760   int32_t FPDiff = 0;
2761   MachineFrameInfo &MFI = MF.getFrameInfo();
2762   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2763 
2764   // Adjust the stack pointer for the new arguments...
2765   // These operations are automatically eliminated by the prolog/epilog pass
2766   if (!IsSibCall) {
2767     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2768 
2769     SmallVector<SDValue, 4> CopyFromChains;
2770 
2771     // In the HSA case, this should be an identity copy.
2772     SDValue ScratchRSrcReg
2773       = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2774     RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2775     CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
2776     Chain = DAG.getTokenFactor(DL, CopyFromChains);
2777   }
2778 
2779   SmallVector<SDValue, 8> MemOpChains;
2780   MVT PtrVT = MVT::i32;
2781 
2782   // Walk the register/memloc assignments, inserting copies/loads.
2783   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2784        ++i, ++realArgIdx) {
2785     CCValAssign &VA = ArgLocs[i];
2786     SDValue Arg = OutVals[realArgIdx];
2787 
2788     // Promote the value if needed.
2789     switch (VA.getLocInfo()) {
2790     case CCValAssign::Full:
2791       break;
2792     case CCValAssign::BCvt:
2793       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2794       break;
2795     case CCValAssign::ZExt:
2796       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2797       break;
2798     case CCValAssign::SExt:
2799       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2800       break;
2801     case CCValAssign::AExt:
2802       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2803       break;
2804     case CCValAssign::FPExt:
2805       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2806       break;
2807     default:
2808       llvm_unreachable("Unknown loc info!");
2809     }
2810 
2811     if (VA.isRegLoc()) {
2812       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2813     } else {
2814       assert(VA.isMemLoc());
2815 
2816       SDValue DstAddr;
2817       MachinePointerInfo DstInfo;
2818 
2819       unsigned LocMemOffset = VA.getLocMemOffset();
2820       int32_t Offset = LocMemOffset;
2821 
2822       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
2823       MaybeAlign Alignment;
2824 
2825       if (IsTailCall) {
2826         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2827         unsigned OpSize = Flags.isByVal() ?
2828           Flags.getByValSize() : VA.getValVT().getStoreSize();
2829 
2830         // FIXME: We can have better than the minimum byval required alignment.
2831         Alignment =
2832             Flags.isByVal()
2833                 ? MaybeAlign(Flags.getByValAlign())
2834                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
2835 
2836         Offset = Offset + FPDiff;
2837         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
2838 
2839         DstAddr = DAG.getFrameIndex(FI, PtrVT);
2840         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
2841 
2842         // Make sure any stack arguments overlapping with where we're storing
2843         // are loaded before this eventual operation. Otherwise they'll be
2844         // clobbered.
2845 
2846         // FIXME: Why is this really necessary? This seems to just result in a
2847         // lot of code to copy the stack and write them back to the same
2848         // locations, which are supposed to be immutable?
2849         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
2850       } else {
2851         DstAddr = PtrOff;
2852         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
2853         Alignment =
2854             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
2855       }
2856 
2857       if (Outs[i].Flags.isByVal()) {
2858         SDValue SizeNode =
2859             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
2860         SDValue Cpy = DAG.getMemcpy(
2861             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2862             /*isVol = */ false, /*AlwaysInline = */ true,
2863             /*isTailCall = */ false, DstInfo,
2864             MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
2865                 *DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS))));
2866 
2867         MemOpChains.push_back(Cpy);
2868       } else {
2869         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo,
2870                                      Alignment ? Alignment->value() : 0);
2871         MemOpChains.push_back(Store);
2872       }
2873     }
2874   }
2875 
2876   // Copy special input registers after user input arguments.
2877   passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2878 
2879   if (!MemOpChains.empty())
2880     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2881 
2882   // Build a sequence of copy-to-reg nodes chained together with token chain
2883   // and flag operands which copy the outgoing args into the appropriate regs.
2884   SDValue InFlag;
2885   for (auto &RegToPass : RegsToPass) {
2886     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
2887                              RegToPass.second, InFlag);
2888     InFlag = Chain.getValue(1);
2889   }
2890 
2891 
2892   SDValue PhysReturnAddrReg;
2893   if (IsTailCall) {
2894     // Since the return is being combined with the call, we need to pass on the
2895     // return address.
2896 
2897     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2898     SDValue ReturnAddrReg = CreateLiveInRegister(
2899       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2900 
2901     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2902                                         MVT::i64);
2903     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
2904     InFlag = Chain.getValue(1);
2905   }
2906 
2907   // We don't usually want to end the call-sequence here because we would tidy
2908   // the frame up *after* the call, however in the ABI-changing tail-call case
2909   // we've carefully laid out the parameters so that when sp is reset they'll be
2910   // in the correct location.
2911   if (IsTailCall && !IsSibCall) {
2912     Chain = DAG.getCALLSEQ_END(Chain,
2913                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
2914                                DAG.getTargetConstant(0, DL, MVT::i32),
2915                                InFlag, DL);
2916     InFlag = Chain.getValue(1);
2917   }
2918 
2919   std::vector<SDValue> Ops;
2920   Ops.push_back(Chain);
2921   Ops.push_back(Callee);
2922   // Add a redundant copy of the callee global which will not be legalized, as
2923   // we need direct access to the callee later.
2924   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee);
2925   const GlobalValue *GV = GSD->getGlobal();
2926   Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
2927 
2928   if (IsTailCall) {
2929     // Each tail call may have to adjust the stack by a different amount, so
2930     // this information must travel along with the operation for eventual
2931     // consumption by emitEpilogue.
2932     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
2933 
2934     Ops.push_back(PhysReturnAddrReg);
2935   }
2936 
2937   // Add argument registers to the end of the list so that they are known live
2938   // into the call.
2939   for (auto &RegToPass : RegsToPass) {
2940     Ops.push_back(DAG.getRegister(RegToPass.first,
2941                                   RegToPass.second.getValueType()));
2942   }
2943 
2944   // Add a register mask operand representing the call-preserved registers.
2945 
2946   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
2947   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2948   assert(Mask && "Missing call preserved mask for calling convention");
2949   Ops.push_back(DAG.getRegisterMask(Mask));
2950 
2951   if (InFlag.getNode())
2952     Ops.push_back(InFlag);
2953 
2954   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2955 
2956   // If we're doing a tall call, use a TC_RETURN here rather than an
2957   // actual call instruction.
2958   if (IsTailCall) {
2959     MFI.setHasTailCall();
2960     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
2961   }
2962 
2963   // Returns a chain and a flag for retval copy to use.
2964   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
2965   Chain = Call.getValue(0);
2966   InFlag = Call.getValue(1);
2967 
2968   uint64_t CalleePopBytes = NumBytes;
2969   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
2970                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
2971                              InFlag, DL);
2972   if (!Ins.empty())
2973     InFlag = Chain.getValue(1);
2974 
2975   // Handle result values, copying them out of physregs into vregs that we
2976   // return.
2977   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2978                          InVals, IsThisReturn,
2979                          IsThisReturn ? OutVals[0] : SDValue());
2980 }
2981 
2982 Register SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
2983                                              const MachineFunction &MF) const {
2984   Register Reg = StringSwitch<Register>(RegName)
2985     .Case("m0", AMDGPU::M0)
2986     .Case("exec", AMDGPU::EXEC)
2987     .Case("exec_lo", AMDGPU::EXEC_LO)
2988     .Case("exec_hi", AMDGPU::EXEC_HI)
2989     .Case("flat_scratch", AMDGPU::FLAT_SCR)
2990     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
2991     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
2992     .Default(Register());
2993 
2994   if (Reg == AMDGPU::NoRegister) {
2995     report_fatal_error(Twine("invalid register name \""
2996                              + StringRef(RegName)  + "\"."));
2997 
2998   }
2999 
3000   if (!Subtarget->hasFlatScrRegister() &&
3001        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3002     report_fatal_error(Twine("invalid register \""
3003                              + StringRef(RegName)  + "\" for subtarget."));
3004   }
3005 
3006   switch (Reg) {
3007   case AMDGPU::M0:
3008   case AMDGPU::EXEC_LO:
3009   case AMDGPU::EXEC_HI:
3010   case AMDGPU::FLAT_SCR_LO:
3011   case AMDGPU::FLAT_SCR_HI:
3012     if (VT.getSizeInBits() == 32)
3013       return Reg;
3014     break;
3015   case AMDGPU::EXEC:
3016   case AMDGPU::FLAT_SCR:
3017     if (VT.getSizeInBits() == 64)
3018       return Reg;
3019     break;
3020   default:
3021     llvm_unreachable("missing register type checking");
3022   }
3023 
3024   report_fatal_error(Twine("invalid type for register \""
3025                            + StringRef(RegName) + "\"."));
3026 }
3027 
3028 // If kill is not the last instruction, split the block so kill is always a
3029 // proper terminator.
3030 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
3031                                                     MachineBasicBlock *BB) const {
3032   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3033 
3034   MachineBasicBlock::iterator SplitPoint(&MI);
3035   ++SplitPoint;
3036 
3037   if (SplitPoint == BB->end()) {
3038     // Don't bother with a new block.
3039     MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3040     return BB;
3041   }
3042 
3043   MachineFunction *MF = BB->getParent();
3044   MachineBasicBlock *SplitBB
3045     = MF->CreateMachineBasicBlock(BB->getBasicBlock());
3046 
3047   MF->insert(++MachineFunction::iterator(BB), SplitBB);
3048   SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
3049 
3050   SplitBB->transferSuccessorsAndUpdatePHIs(BB);
3051   BB->addSuccessor(SplitBB);
3052 
3053   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3054   return SplitBB;
3055 }
3056 
3057 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3058 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3059 // be the first instruction in the remainder block.
3060 //
3061 /// \returns { LoopBody, Remainder }
3062 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3063 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3064   MachineFunction *MF = MBB.getParent();
3065   MachineBasicBlock::iterator I(&MI);
3066 
3067   // To insert the loop we need to split the block. Move everything after this
3068   // point to a new block, and insert a new empty block between the two.
3069   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3070   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3071   MachineFunction::iterator MBBI(MBB);
3072   ++MBBI;
3073 
3074   MF->insert(MBBI, LoopBB);
3075   MF->insert(MBBI, RemainderBB);
3076 
3077   LoopBB->addSuccessor(LoopBB);
3078   LoopBB->addSuccessor(RemainderBB);
3079 
3080   // Move the rest of the block into a new block.
3081   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3082 
3083   if (InstInLoop) {
3084     auto Next = std::next(I);
3085 
3086     // Move instruction to loop body.
3087     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3088 
3089     // Move the rest of the block.
3090     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3091   } else {
3092     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3093   }
3094 
3095   MBB.addSuccessor(LoopBB);
3096 
3097   return std::make_pair(LoopBB, RemainderBB);
3098 }
3099 
3100 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3101 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3102   MachineBasicBlock *MBB = MI.getParent();
3103   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3104   auto I = MI.getIterator();
3105   auto E = std::next(I);
3106 
3107   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3108     .addImm(0);
3109 
3110   MIBundleBuilder Bundler(*MBB, I, E);
3111   finalizeBundle(*MBB, Bundler.begin());
3112 }
3113 
3114 MachineBasicBlock *
3115 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3116                                          MachineBasicBlock *BB) const {
3117   const DebugLoc &DL = MI.getDebugLoc();
3118 
3119   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3120 
3121   MachineBasicBlock *LoopBB;
3122   MachineBasicBlock *RemainderBB;
3123   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3124 
3125   // Apparently kill flags are only valid if the def is in the same block?
3126   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3127     Src->setIsKill(false);
3128 
3129   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3130 
3131   MachineBasicBlock::iterator I = LoopBB->end();
3132 
3133   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3134     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3135 
3136   // Clear TRAP_STS.MEM_VIOL
3137   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3138     .addImm(0)
3139     .addImm(EncodedReg);
3140 
3141   bundleInstWithWaitcnt(MI);
3142 
3143   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3144 
3145   // Load and check TRAP_STS.MEM_VIOL
3146   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3147     .addImm(EncodedReg);
3148 
3149   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3150   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3151     .addReg(Reg, RegState::Kill)
3152     .addImm(0);
3153   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3154     .addMBB(LoopBB);
3155 
3156   return RemainderBB;
3157 }
3158 
3159 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3160 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3161 // will only do one iteration. In the worst case, this will loop 64 times.
3162 //
3163 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3164 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
3165   const SIInstrInfo *TII,
3166   MachineRegisterInfo &MRI,
3167   MachineBasicBlock &OrigBB,
3168   MachineBasicBlock &LoopBB,
3169   const DebugLoc &DL,
3170   const MachineOperand &IdxReg,
3171   unsigned InitReg,
3172   unsigned ResultReg,
3173   unsigned PhiReg,
3174   unsigned InitSaveExecReg,
3175   int Offset,
3176   bool UseGPRIdxMode,
3177   bool IsIndirectSrc) {
3178   MachineFunction *MF = OrigBB.getParent();
3179   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3180   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3181   MachineBasicBlock::iterator I = LoopBB.begin();
3182 
3183   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3184   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3185   Register NewExec = MRI.createVirtualRegister(BoolRC);
3186   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3187   Register CondReg = MRI.createVirtualRegister(BoolRC);
3188 
3189   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3190     .addReg(InitReg)
3191     .addMBB(&OrigBB)
3192     .addReg(ResultReg)
3193     .addMBB(&LoopBB);
3194 
3195   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3196     .addReg(InitSaveExecReg)
3197     .addMBB(&OrigBB)
3198     .addReg(NewExec)
3199     .addMBB(&LoopBB);
3200 
3201   // Read the next variant <- also loop target.
3202   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3203     .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
3204 
3205   // Compare the just read M0 value to all possible Idx values.
3206   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3207     .addReg(CurrentIdxReg)
3208     .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
3209 
3210   // Update EXEC, save the original EXEC value to VCC.
3211   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3212                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3213           NewExec)
3214     .addReg(CondReg, RegState::Kill);
3215 
3216   MRI.setSimpleHint(NewExec, CondReg);
3217 
3218   if (UseGPRIdxMode) {
3219     unsigned IdxReg;
3220     if (Offset == 0) {
3221       IdxReg = CurrentIdxReg;
3222     } else {
3223       IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3224       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
3225         .addReg(CurrentIdxReg, RegState::Kill)
3226         .addImm(Offset);
3227     }
3228     unsigned IdxMode = IsIndirectSrc ?
3229       AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3230     MachineInstr *SetOn =
3231       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3232       .addReg(IdxReg, RegState::Kill)
3233       .addImm(IdxMode);
3234     SetOn->getOperand(3).setIsUndef();
3235   } else {
3236     // Move index from VCC into M0
3237     if (Offset == 0) {
3238       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3239         .addReg(CurrentIdxReg, RegState::Kill);
3240     } else {
3241       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3242         .addReg(CurrentIdxReg, RegState::Kill)
3243         .addImm(Offset);
3244     }
3245   }
3246 
3247   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3248   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3249   MachineInstr *InsertPt =
3250     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3251                                                   : AMDGPU::S_XOR_B64_term), Exec)
3252       .addReg(Exec)
3253       .addReg(NewExec);
3254 
3255   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3256   // s_cbranch_scc0?
3257 
3258   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3259   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3260     .addMBB(&LoopBB);
3261 
3262   return InsertPt->getIterator();
3263 }
3264 
3265 // This has slightly sub-optimal regalloc when the source vector is killed by
3266 // the read. The register allocator does not understand that the kill is
3267 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3268 // subregister from it, using 1 more VGPR than necessary. This was saved when
3269 // this was expanded after register allocation.
3270 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
3271                                                   MachineBasicBlock &MBB,
3272                                                   MachineInstr &MI,
3273                                                   unsigned InitResultReg,
3274                                                   unsigned PhiReg,
3275                                                   int Offset,
3276                                                   bool UseGPRIdxMode,
3277                                                   bool IsIndirectSrc) {
3278   MachineFunction *MF = MBB.getParent();
3279   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3280   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3281   MachineRegisterInfo &MRI = MF->getRegInfo();
3282   const DebugLoc &DL = MI.getDebugLoc();
3283   MachineBasicBlock::iterator I(&MI);
3284 
3285   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3286   Register DstReg = MI.getOperand(0).getReg();
3287   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3288   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3289   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3290   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3291 
3292   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3293 
3294   // Save the EXEC mask
3295   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3296     .addReg(Exec);
3297 
3298   MachineBasicBlock *LoopBB;
3299   MachineBasicBlock *RemainderBB;
3300   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3301 
3302   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3303 
3304   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3305                                       InitResultReg, DstReg, PhiReg, TmpExec,
3306                                       Offset, UseGPRIdxMode, IsIndirectSrc);
3307 
3308   MachineBasicBlock::iterator First = RemainderBB->begin();
3309   BuildMI(*RemainderBB, First, DL, TII->get(MovExecOpc), Exec)
3310     .addReg(SaveExec);
3311 
3312   return InsPt;
3313 }
3314 
3315 // Returns subreg index, offset
3316 static std::pair<unsigned, int>
3317 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3318                             const TargetRegisterClass *SuperRC,
3319                             unsigned VecReg,
3320                             int Offset) {
3321   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3322 
3323   // Skip out of bounds offsets, or else we would end up using an undefined
3324   // register.
3325   if (Offset >= NumElts || Offset < 0)
3326     return std::make_pair(AMDGPU::sub0, Offset);
3327 
3328   return std::make_pair(AMDGPU::sub0 + Offset, 0);
3329 }
3330 
3331 // Return true if the index is an SGPR and was set.
3332 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3333                                  MachineRegisterInfo &MRI,
3334                                  MachineInstr &MI,
3335                                  int Offset,
3336                                  bool UseGPRIdxMode,
3337                                  bool IsIndirectSrc) {
3338   MachineBasicBlock *MBB = MI.getParent();
3339   const DebugLoc &DL = MI.getDebugLoc();
3340   MachineBasicBlock::iterator I(&MI);
3341 
3342   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3343   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3344 
3345   assert(Idx->getReg() != AMDGPU::NoRegister);
3346 
3347   if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
3348     return false;
3349 
3350   if (UseGPRIdxMode) {
3351     unsigned IdxMode = IsIndirectSrc ?
3352       AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3353     if (Offset == 0) {
3354       MachineInstr *SetOn =
3355           BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3356               .add(*Idx)
3357               .addImm(IdxMode);
3358 
3359       SetOn->getOperand(3).setIsUndef();
3360     } else {
3361       Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3362       BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3363           .add(*Idx)
3364           .addImm(Offset);
3365       MachineInstr *SetOn =
3366         BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3367         .addReg(Tmp, RegState::Kill)
3368         .addImm(IdxMode);
3369 
3370       SetOn->getOperand(3).setIsUndef();
3371     }
3372 
3373     return true;
3374   }
3375 
3376   if (Offset == 0) {
3377     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3378       .add(*Idx);
3379   } else {
3380     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3381       .add(*Idx)
3382       .addImm(Offset);
3383   }
3384 
3385   return true;
3386 }
3387 
3388 // Control flow needs to be inserted if indexing with a VGPR.
3389 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3390                                           MachineBasicBlock &MBB,
3391                                           const GCNSubtarget &ST) {
3392   const SIInstrInfo *TII = ST.getInstrInfo();
3393   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3394   MachineFunction *MF = MBB.getParent();
3395   MachineRegisterInfo &MRI = MF->getRegInfo();
3396 
3397   Register Dst = MI.getOperand(0).getReg();
3398   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3399   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3400 
3401   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3402 
3403   unsigned SubReg;
3404   std::tie(SubReg, Offset)
3405     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3406 
3407   bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
3408 
3409   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
3410     MachineBasicBlock::iterator I(&MI);
3411     const DebugLoc &DL = MI.getDebugLoc();
3412 
3413     if (UseGPRIdxMode) {
3414       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3415       // to avoid interfering with other uses, so probably requires a new
3416       // optimization pass.
3417       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3418         .addReg(SrcReg, RegState::Undef, SubReg)
3419         .addReg(SrcReg, RegState::Implicit)
3420         .addReg(AMDGPU::M0, RegState::Implicit);
3421       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3422     } else {
3423       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3424         .addReg(SrcReg, RegState::Undef, SubReg)
3425         .addReg(SrcReg, RegState::Implicit);
3426     }
3427 
3428     MI.eraseFromParent();
3429 
3430     return &MBB;
3431   }
3432 
3433   const DebugLoc &DL = MI.getDebugLoc();
3434   MachineBasicBlock::iterator I(&MI);
3435 
3436   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3437   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3438 
3439   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3440 
3441   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
3442                               Offset, UseGPRIdxMode, true);
3443   MachineBasicBlock *LoopBB = InsPt->getParent();
3444 
3445   if (UseGPRIdxMode) {
3446     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3447       .addReg(SrcReg, RegState::Undef, SubReg)
3448       .addReg(SrcReg, RegState::Implicit)
3449       .addReg(AMDGPU::M0, RegState::Implicit);
3450     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3451   } else {
3452     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3453       .addReg(SrcReg, RegState::Undef, SubReg)
3454       .addReg(SrcReg, RegState::Implicit);
3455   }
3456 
3457   MI.eraseFromParent();
3458 
3459   return LoopBB;
3460 }
3461 
3462 static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
3463                                  const TargetRegisterClass *VecRC) {
3464   switch (TRI.getRegSizeInBits(*VecRC)) {
3465   case 32: // 4 bytes
3466     return AMDGPU::V_MOVRELD_B32_V1;
3467   case 64: // 8 bytes
3468     return AMDGPU::V_MOVRELD_B32_V2;
3469   case 128: // 16 bytes
3470     return AMDGPU::V_MOVRELD_B32_V4;
3471   case 256: // 32 bytes
3472     return AMDGPU::V_MOVRELD_B32_V8;
3473   case 512: // 64 bytes
3474     return AMDGPU::V_MOVRELD_B32_V16;
3475   default:
3476     llvm_unreachable("unsupported size for MOVRELD pseudos");
3477   }
3478 }
3479 
3480 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3481                                           MachineBasicBlock &MBB,
3482                                           const GCNSubtarget &ST) {
3483   const SIInstrInfo *TII = ST.getInstrInfo();
3484   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3485   MachineFunction *MF = MBB.getParent();
3486   MachineRegisterInfo &MRI = MF->getRegInfo();
3487 
3488   Register Dst = MI.getOperand(0).getReg();
3489   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3490   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3491   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3492   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3493   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3494 
3495   // This can be an immediate, but will be folded later.
3496   assert(Val->getReg());
3497 
3498   unsigned SubReg;
3499   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3500                                                          SrcVec->getReg(),
3501                                                          Offset);
3502   bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
3503 
3504   if (Idx->getReg() == AMDGPU::NoRegister) {
3505     MachineBasicBlock::iterator I(&MI);
3506     const DebugLoc &DL = MI.getDebugLoc();
3507 
3508     assert(Offset == 0);
3509 
3510     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3511         .add(*SrcVec)
3512         .add(*Val)
3513         .addImm(SubReg);
3514 
3515     MI.eraseFromParent();
3516     return &MBB;
3517   }
3518 
3519   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
3520     MachineBasicBlock::iterator I(&MI);
3521     const DebugLoc &DL = MI.getDebugLoc();
3522 
3523     if (UseGPRIdxMode) {
3524       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3525           .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
3526           .add(*Val)
3527           .addReg(Dst, RegState::ImplicitDefine)
3528           .addReg(SrcVec->getReg(), RegState::Implicit)
3529           .addReg(AMDGPU::M0, RegState::Implicit);
3530 
3531       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3532     } else {
3533       const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3534 
3535       BuildMI(MBB, I, DL, MovRelDesc)
3536           .addReg(Dst, RegState::Define)
3537           .addReg(SrcVec->getReg())
3538           .add(*Val)
3539           .addImm(SubReg - AMDGPU::sub0);
3540     }
3541 
3542     MI.eraseFromParent();
3543     return &MBB;
3544   }
3545 
3546   if (Val->isReg())
3547     MRI.clearKillFlags(Val->getReg());
3548 
3549   const DebugLoc &DL = MI.getDebugLoc();
3550 
3551   Register PhiReg = MRI.createVirtualRegister(VecRC);
3552 
3553   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
3554                               Offset, UseGPRIdxMode, false);
3555   MachineBasicBlock *LoopBB = InsPt->getParent();
3556 
3557   if (UseGPRIdxMode) {
3558     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3559         .addReg(PhiReg, RegState::Undef, SubReg) // vdst
3560         .add(*Val)                               // src0
3561         .addReg(Dst, RegState::ImplicitDefine)
3562         .addReg(PhiReg, RegState::Implicit)
3563         .addReg(AMDGPU::M0, RegState::Implicit);
3564     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3565   } else {
3566     const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3567 
3568     BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
3569         .addReg(Dst, RegState::Define)
3570         .addReg(PhiReg)
3571         .add(*Val)
3572         .addImm(SubReg - AMDGPU::sub0);
3573   }
3574 
3575   MI.eraseFromParent();
3576 
3577   return LoopBB;
3578 }
3579 
3580 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3581   MachineInstr &MI, MachineBasicBlock *BB) const {
3582 
3583   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3584   MachineFunction *MF = BB->getParent();
3585   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3586 
3587   if (TII->isMIMG(MI)) {
3588     if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
3589       report_fatal_error("missing mem operand from MIMG instruction");
3590     }
3591     // Add a memoperand for mimg instructions so that they aren't assumed to
3592     // be ordered memory instuctions.
3593 
3594     return BB;
3595   }
3596 
3597   switch (MI.getOpcode()) {
3598   case AMDGPU::S_ADD_U64_PSEUDO:
3599   case AMDGPU::S_SUB_U64_PSEUDO: {
3600     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3601     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3602     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3603     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3604     const DebugLoc &DL = MI.getDebugLoc();
3605 
3606     MachineOperand &Dest = MI.getOperand(0);
3607     MachineOperand &Src0 = MI.getOperand(1);
3608     MachineOperand &Src1 = MI.getOperand(2);
3609 
3610     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3611     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3612 
3613     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3614      Src0, BoolRC, AMDGPU::sub0,
3615      &AMDGPU::SReg_32RegClass);
3616     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3617       Src0, BoolRC, AMDGPU::sub1,
3618       &AMDGPU::SReg_32RegClass);
3619 
3620     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3621       Src1, BoolRC, AMDGPU::sub0,
3622       &AMDGPU::SReg_32RegClass);
3623     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3624       Src1, BoolRC, AMDGPU::sub1,
3625       &AMDGPU::SReg_32RegClass);
3626 
3627     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3628 
3629     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3630     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3631     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3632       .add(Src0Sub0)
3633       .add(Src1Sub0);
3634     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3635       .add(Src0Sub1)
3636       .add(Src1Sub1);
3637     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3638       .addReg(DestSub0)
3639       .addImm(AMDGPU::sub0)
3640       .addReg(DestSub1)
3641       .addImm(AMDGPU::sub1);
3642     MI.eraseFromParent();
3643     return BB;
3644   }
3645   case AMDGPU::SI_INIT_M0: {
3646     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
3647             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3648         .add(MI.getOperand(0));
3649     MI.eraseFromParent();
3650     return BB;
3651   }
3652   case AMDGPU::SI_INIT_EXEC:
3653     // This should be before all vector instructions.
3654     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
3655             AMDGPU::EXEC)
3656         .addImm(MI.getOperand(0).getImm());
3657     MI.eraseFromParent();
3658     return BB;
3659 
3660   case AMDGPU::SI_INIT_EXEC_LO:
3661     // This should be before all vector instructions.
3662     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
3663             AMDGPU::EXEC_LO)
3664         .addImm(MI.getOperand(0).getImm());
3665     MI.eraseFromParent();
3666     return BB;
3667 
3668   case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
3669     // Extract the thread count from an SGPR input and set EXEC accordingly.
3670     // Since BFM can't shift by 64, handle that case with CMP + CMOV.
3671     //
3672     // S_BFE_U32 count, input, {shift, 7}
3673     // S_BFM_B64 exec, count, 0
3674     // S_CMP_EQ_U32 count, 64
3675     // S_CMOV_B64 exec, -1
3676     MachineInstr *FirstMI = &*BB->begin();
3677     MachineRegisterInfo &MRI = MF->getRegInfo();
3678     Register InputReg = MI.getOperand(0).getReg();
3679     Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3680     bool Found = false;
3681 
3682     // Move the COPY of the input reg to the beginning, so that we can use it.
3683     for (auto I = BB->begin(); I != &MI; I++) {
3684       if (I->getOpcode() != TargetOpcode::COPY ||
3685           I->getOperand(0).getReg() != InputReg)
3686         continue;
3687 
3688       if (I == FirstMI) {
3689         FirstMI = &*++BB->begin();
3690       } else {
3691         I->removeFromParent();
3692         BB->insert(FirstMI, &*I);
3693       }
3694       Found = true;
3695       break;
3696     }
3697     assert(Found);
3698     (void)Found;
3699 
3700     // This should be before all vector instructions.
3701     unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
3702     bool isWave32 = getSubtarget()->isWave32();
3703     unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3704     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
3705         .addReg(InputReg)
3706         .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
3707     BuildMI(*BB, FirstMI, DebugLoc(),
3708             TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
3709             Exec)
3710         .addReg(CountReg)
3711         .addImm(0);
3712     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
3713         .addReg(CountReg, RegState::Kill)
3714         .addImm(getSubtarget()->getWavefrontSize());
3715     BuildMI(*BB, FirstMI, DebugLoc(),
3716             TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
3717             Exec)
3718         .addImm(-1);
3719     MI.eraseFromParent();
3720     return BB;
3721   }
3722 
3723   case AMDGPU::GET_GROUPSTATICSIZE: {
3724     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
3725            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
3726     DebugLoc DL = MI.getDebugLoc();
3727     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
3728         .add(MI.getOperand(0))
3729         .addImm(MFI->getLDSSize());
3730     MI.eraseFromParent();
3731     return BB;
3732   }
3733   case AMDGPU::SI_INDIRECT_SRC_V1:
3734   case AMDGPU::SI_INDIRECT_SRC_V2:
3735   case AMDGPU::SI_INDIRECT_SRC_V4:
3736   case AMDGPU::SI_INDIRECT_SRC_V8:
3737   case AMDGPU::SI_INDIRECT_SRC_V16:
3738     return emitIndirectSrc(MI, *BB, *getSubtarget());
3739   case AMDGPU::SI_INDIRECT_DST_V1:
3740   case AMDGPU::SI_INDIRECT_DST_V2:
3741   case AMDGPU::SI_INDIRECT_DST_V4:
3742   case AMDGPU::SI_INDIRECT_DST_V8:
3743   case AMDGPU::SI_INDIRECT_DST_V16:
3744     return emitIndirectDst(MI, *BB, *getSubtarget());
3745   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
3746   case AMDGPU::SI_KILL_I1_PSEUDO:
3747     return splitKillBlock(MI, BB);
3748   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
3749     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3750     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3751     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3752 
3753     Register Dst = MI.getOperand(0).getReg();
3754     Register Src0 = MI.getOperand(1).getReg();
3755     Register Src1 = MI.getOperand(2).getReg();
3756     const DebugLoc &DL = MI.getDebugLoc();
3757     Register SrcCond = MI.getOperand(3).getReg();
3758 
3759     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3760     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3761     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3762     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
3763 
3764     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
3765       .addReg(SrcCond);
3766     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
3767       .addImm(0)
3768       .addReg(Src0, 0, AMDGPU::sub0)
3769       .addImm(0)
3770       .addReg(Src1, 0, AMDGPU::sub0)
3771       .addReg(SrcCondCopy);
3772     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
3773       .addImm(0)
3774       .addReg(Src0, 0, AMDGPU::sub1)
3775       .addImm(0)
3776       .addReg(Src1, 0, AMDGPU::sub1)
3777       .addReg(SrcCondCopy);
3778 
3779     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
3780       .addReg(DstLo)
3781       .addImm(AMDGPU::sub0)
3782       .addReg(DstHi)
3783       .addImm(AMDGPU::sub1);
3784     MI.eraseFromParent();
3785     return BB;
3786   }
3787   case AMDGPU::SI_BR_UNDEF: {
3788     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3789     const DebugLoc &DL = MI.getDebugLoc();
3790     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3791                            .add(MI.getOperand(0));
3792     Br->getOperand(1).setIsUndef(true); // read undef SCC
3793     MI.eraseFromParent();
3794     return BB;
3795   }
3796   case AMDGPU::ADJCALLSTACKUP:
3797   case AMDGPU::ADJCALLSTACKDOWN: {
3798     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
3799     MachineInstrBuilder MIB(*MF, &MI);
3800 
3801     // Add an implicit use of the frame offset reg to prevent the restore copy
3802     // inserted after the call from being reorderd after stack operations in the
3803     // the caller's frame.
3804     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
3805         .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
3806         .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
3807     return BB;
3808   }
3809   case AMDGPU::SI_CALL_ISEL: {
3810     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3811     const DebugLoc &DL = MI.getDebugLoc();
3812 
3813     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
3814 
3815     MachineInstrBuilder MIB;
3816     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
3817 
3818     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
3819       MIB.add(MI.getOperand(I));
3820 
3821     MIB.cloneMemRefs(MI);
3822     MI.eraseFromParent();
3823     return BB;
3824   }
3825   case AMDGPU::V_ADD_I32_e32:
3826   case AMDGPU::V_SUB_I32_e32:
3827   case AMDGPU::V_SUBREV_I32_e32: {
3828     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
3829     const DebugLoc &DL = MI.getDebugLoc();
3830     unsigned Opc = MI.getOpcode();
3831 
3832     bool NeedClampOperand = false;
3833     if (TII->pseudoToMCOpcode(Opc) == -1) {
3834       Opc = AMDGPU::getVOPe64(Opc);
3835       NeedClampOperand = true;
3836     }
3837 
3838     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
3839     if (TII->isVOP3(*I)) {
3840       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3841       const SIRegisterInfo *TRI = ST.getRegisterInfo();
3842       I.addReg(TRI->getVCC(), RegState::Define);
3843     }
3844     I.add(MI.getOperand(1))
3845      .add(MI.getOperand(2));
3846     if (NeedClampOperand)
3847       I.addImm(0); // clamp bit for e64 encoding
3848 
3849     TII->legalizeOperands(*I);
3850 
3851     MI.eraseFromParent();
3852     return BB;
3853   }
3854   case AMDGPU::DS_GWS_INIT:
3855   case AMDGPU::DS_GWS_SEMA_V:
3856   case AMDGPU::DS_GWS_SEMA_BR:
3857   case AMDGPU::DS_GWS_SEMA_P:
3858   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
3859   case AMDGPU::DS_GWS_BARRIER:
3860     // A s_waitcnt 0 is required to be the instruction immediately following.
3861     if (getSubtarget()->hasGWSAutoReplay()) {
3862       bundleInstWithWaitcnt(MI);
3863       return BB;
3864     }
3865 
3866     return emitGWSMemViolTestLoop(MI, BB);
3867   default:
3868     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
3869   }
3870 }
3871 
3872 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
3873   return isTypeLegal(VT.getScalarType());
3874 }
3875 
3876 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
3877   // This currently forces unfolding various combinations of fsub into fma with
3878   // free fneg'd operands. As long as we have fast FMA (controlled by
3879   // isFMAFasterThanFMulAndFAdd), we should perform these.
3880 
3881   // When fma is quarter rate, for f64 where add / sub are at best half rate,
3882   // most of these combines appear to be cycle neutral but save on instruction
3883   // count / code size.
3884   return true;
3885 }
3886 
3887 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
3888                                          EVT VT) const {
3889   if (!VT.isVector()) {
3890     return MVT::i1;
3891   }
3892   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
3893 }
3894 
3895 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
3896   // TODO: Should i16 be used always if legal? For now it would force VALU
3897   // shifts.
3898   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
3899 }
3900 
3901 // Answering this is somewhat tricky and depends on the specific device which
3902 // have different rates for fma or all f64 operations.
3903 //
3904 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
3905 // regardless of which device (although the number of cycles differs between
3906 // devices), so it is always profitable for f64.
3907 //
3908 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
3909 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
3910 // which we can always do even without fused FP ops since it returns the same
3911 // result as the separate operations and since it is always full
3912 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
3913 // however does not support denormals, so we do report fma as faster if we have
3914 // a fast fma device and require denormals.
3915 //
3916 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3917   VT = VT.getScalarType();
3918 
3919   switch (VT.getSimpleVT().SimpleTy) {
3920   case MVT::f32: {
3921     // This is as fast on some subtargets. However, we always have full rate f32
3922     // mad available which returns the same result as the separate operations
3923     // which we should prefer over fma. We can't use this if we want to support
3924     // denormals, so only report this in these cases.
3925     if (Subtarget->hasFP32Denormals())
3926       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
3927 
3928     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
3929     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
3930   }
3931   case MVT::f64:
3932     return true;
3933   case MVT::f16:
3934     return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
3935   default:
3936     break;
3937   }
3938 
3939   return false;
3940 }
3941 
3942 //===----------------------------------------------------------------------===//
3943 // Custom DAG Lowering Operations
3944 //===----------------------------------------------------------------------===//
3945 
3946 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3947 // wider vector type is legal.
3948 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
3949                                              SelectionDAG &DAG) const {
3950   unsigned Opc = Op.getOpcode();
3951   EVT VT = Op.getValueType();
3952   assert(VT == MVT::v4f16);
3953 
3954   SDValue Lo, Hi;
3955   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3956 
3957   SDLoc SL(Op);
3958   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
3959                              Op->getFlags());
3960   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
3961                              Op->getFlags());
3962 
3963   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3964 }
3965 
3966 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3967 // wider vector type is legal.
3968 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
3969                                               SelectionDAG &DAG) const {
3970   unsigned Opc = Op.getOpcode();
3971   EVT VT = Op.getValueType();
3972   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
3973 
3974   SDValue Lo0, Hi0;
3975   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
3976   SDValue Lo1, Hi1;
3977   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
3978 
3979   SDLoc SL(Op);
3980 
3981   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
3982                              Op->getFlags());
3983   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
3984                              Op->getFlags());
3985 
3986   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3987 }
3988 
3989 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
3990                                               SelectionDAG &DAG) const {
3991   unsigned Opc = Op.getOpcode();
3992   EVT VT = Op.getValueType();
3993   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
3994 
3995   SDValue Lo0, Hi0;
3996   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
3997   SDValue Lo1, Hi1;
3998   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
3999   SDValue Lo2, Hi2;
4000   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4001 
4002   SDLoc SL(Op);
4003 
4004   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4005                              Op->getFlags());
4006   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4007                              Op->getFlags());
4008 
4009   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4010 }
4011 
4012 
4013 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4014   switch (Op.getOpcode()) {
4015   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4016   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4017   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4018   case ISD::LOAD: {
4019     SDValue Result = LowerLOAD(Op, DAG);
4020     assert((!Result.getNode() ||
4021             Result.getNode()->getNumValues() == 2) &&
4022            "Load should return a value and a chain");
4023     return Result;
4024   }
4025 
4026   case ISD::FSIN:
4027   case ISD::FCOS:
4028     return LowerTrig(Op, DAG);
4029   case ISD::SELECT: return LowerSELECT(Op, DAG);
4030   case ISD::FDIV: return LowerFDIV(Op, DAG);
4031   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4032   case ISD::STORE: return LowerSTORE(Op, DAG);
4033   case ISD::GlobalAddress: {
4034     MachineFunction &MF = DAG.getMachineFunction();
4035     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4036     return LowerGlobalAddress(MFI, Op, DAG);
4037   }
4038   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4039   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4040   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4041   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4042   case ISD::INSERT_SUBVECTOR:
4043     return lowerINSERT_SUBVECTOR(Op, DAG);
4044   case ISD::INSERT_VECTOR_ELT:
4045     return lowerINSERT_VECTOR_ELT(Op, DAG);
4046   case ISD::EXTRACT_VECTOR_ELT:
4047     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4048   case ISD::VECTOR_SHUFFLE:
4049     return lowerVECTOR_SHUFFLE(Op, DAG);
4050   case ISD::BUILD_VECTOR:
4051     return lowerBUILD_VECTOR(Op, DAG);
4052   case ISD::FP_ROUND:
4053     return lowerFP_ROUND(Op, DAG);
4054   case ISD::TRAP:
4055     return lowerTRAP(Op, DAG);
4056   case ISD::DEBUGTRAP:
4057     return lowerDEBUGTRAP(Op, DAG);
4058   case ISD::FABS:
4059   case ISD::FNEG:
4060   case ISD::FCANONICALIZE:
4061     return splitUnaryVectorOp(Op, DAG);
4062   case ISD::FMINNUM:
4063   case ISD::FMAXNUM:
4064     return lowerFMINNUM_FMAXNUM(Op, DAG);
4065   case ISD::FMA:
4066     return splitTernaryVectorOp(Op, DAG);
4067   case ISD::SHL:
4068   case ISD::SRA:
4069   case ISD::SRL:
4070   case ISD::ADD:
4071   case ISD::SUB:
4072   case ISD::MUL:
4073   case ISD::SMIN:
4074   case ISD::SMAX:
4075   case ISD::UMIN:
4076   case ISD::UMAX:
4077   case ISD::FADD:
4078   case ISD::FMUL:
4079   case ISD::FMINNUM_IEEE:
4080   case ISD::FMAXNUM_IEEE:
4081     return splitBinaryVectorOp(Op, DAG);
4082   }
4083   return SDValue();
4084 }
4085 
4086 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4087                                        const SDLoc &DL,
4088                                        SelectionDAG &DAG, bool Unpacked) {
4089   if (!LoadVT.isVector())
4090     return Result;
4091 
4092   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4093     // Truncate to v2i16/v4i16.
4094     EVT IntLoadVT = LoadVT.changeTypeToInteger();
4095 
4096     // Workaround legalizer not scalarizing truncate after vector op
4097     // legalization byt not creating intermediate vector trunc.
4098     SmallVector<SDValue, 4> Elts;
4099     DAG.ExtractVectorElements(Result, Elts);
4100     for (SDValue &Elt : Elts)
4101       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4102 
4103     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4104 
4105     // Bitcast to original type (v2f16/v4f16).
4106     return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4107   }
4108 
4109   // Cast back to the original packed type.
4110   return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4111 }
4112 
4113 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4114                                               MemSDNode *M,
4115                                               SelectionDAG &DAG,
4116                                               ArrayRef<SDValue> Ops,
4117                                               bool IsIntrinsic) const {
4118   SDLoc DL(M);
4119 
4120   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4121   EVT LoadVT = M->getValueType(0);
4122 
4123   EVT EquivLoadVT = LoadVT;
4124   if (Unpacked && LoadVT.isVector()) {
4125     EquivLoadVT = LoadVT.isVector() ?
4126       EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4127                        LoadVT.getVectorNumElements()) : LoadVT;
4128   }
4129 
4130   // Change from v4f16/v2f16 to EquivLoadVT.
4131   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4132 
4133   SDValue Load
4134     = DAG.getMemIntrinsicNode(
4135       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4136       VTList, Ops, M->getMemoryVT(),
4137       M->getMemOperand());
4138   if (!Unpacked) // Just adjusted the opcode.
4139     return Load;
4140 
4141   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4142 
4143   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4144 }
4145 
4146 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4147                                              SelectionDAG &DAG,
4148                                              ArrayRef<SDValue> Ops) const {
4149   SDLoc DL(M);
4150   EVT LoadVT = M->getValueType(0);
4151   EVT EltType = LoadVT.getScalarType();
4152   EVT IntVT = LoadVT.changeTypeToInteger();
4153 
4154   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4155 
4156   unsigned Opc =
4157       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4158 
4159   if (IsD16) {
4160     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4161   }
4162 
4163   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4164   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4165     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4166 
4167   if (isTypeLegal(LoadVT)) {
4168     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4169                                M->getMemOperand(), DAG);
4170   }
4171 
4172   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4173   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4174   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4175                                         M->getMemOperand(), DAG);
4176   return DAG.getMergeValues(
4177       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4178       DL);
4179 }
4180 
4181 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4182                                   SDNode *N, SelectionDAG &DAG) {
4183   EVT VT = N->getValueType(0);
4184   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4185   int CondCode = CD->getSExtValue();
4186   if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
4187       CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
4188     return DAG.getUNDEF(VT);
4189 
4190   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4191 
4192   SDValue LHS = N->getOperand(1);
4193   SDValue RHS = N->getOperand(2);
4194 
4195   SDLoc DL(N);
4196 
4197   EVT CmpVT = LHS.getValueType();
4198   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4199     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4200       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4201     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4202     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4203   }
4204 
4205   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4206 
4207   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4208   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4209 
4210   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4211                               DAG.getCondCode(CCOpcode));
4212   if (VT.bitsEq(CCVT))
4213     return SetCC;
4214   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4215 }
4216 
4217 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4218                                   SDNode *N, SelectionDAG &DAG) {
4219   EVT VT = N->getValueType(0);
4220   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4221 
4222   int CondCode = CD->getSExtValue();
4223   if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
4224       CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) {
4225     return DAG.getUNDEF(VT);
4226   }
4227 
4228   SDValue Src0 = N->getOperand(1);
4229   SDValue Src1 = N->getOperand(2);
4230   EVT CmpVT = Src0.getValueType();
4231   SDLoc SL(N);
4232 
4233   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4234     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4235     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4236   }
4237 
4238   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4239   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4240   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4241   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4242   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4243                               Src1, DAG.getCondCode(CCOpcode));
4244   if (VT.bitsEq(CCVT))
4245     return SetCC;
4246   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4247 }
4248 
4249 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4250                                           SmallVectorImpl<SDValue> &Results,
4251                                           SelectionDAG &DAG) const {
4252   switch (N->getOpcode()) {
4253   case ISD::INSERT_VECTOR_ELT: {
4254     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4255       Results.push_back(Res);
4256     return;
4257   }
4258   case ISD::EXTRACT_VECTOR_ELT: {
4259     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4260       Results.push_back(Res);
4261     return;
4262   }
4263   case ISD::INTRINSIC_WO_CHAIN: {
4264     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4265     switch (IID) {
4266     case Intrinsic::amdgcn_cvt_pkrtz: {
4267       SDValue Src0 = N->getOperand(1);
4268       SDValue Src1 = N->getOperand(2);
4269       SDLoc SL(N);
4270       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4271                                 Src0, Src1);
4272       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4273       return;
4274     }
4275     case Intrinsic::amdgcn_cvt_pknorm_i16:
4276     case Intrinsic::amdgcn_cvt_pknorm_u16:
4277     case Intrinsic::amdgcn_cvt_pk_i16:
4278     case Intrinsic::amdgcn_cvt_pk_u16: {
4279       SDValue Src0 = N->getOperand(1);
4280       SDValue Src1 = N->getOperand(2);
4281       SDLoc SL(N);
4282       unsigned Opcode;
4283 
4284       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4285         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4286       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4287         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4288       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4289         Opcode = AMDGPUISD::CVT_PK_I16_I32;
4290       else
4291         Opcode = AMDGPUISD::CVT_PK_U16_U32;
4292 
4293       EVT VT = N->getValueType(0);
4294       if (isTypeLegal(VT))
4295         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4296       else {
4297         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4298         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4299       }
4300       return;
4301     }
4302     }
4303     break;
4304   }
4305   case ISD::INTRINSIC_W_CHAIN: {
4306     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4307       if (Res.getOpcode() == ISD::MERGE_VALUES) {
4308         // FIXME: Hacky
4309         Results.push_back(Res.getOperand(0));
4310         Results.push_back(Res.getOperand(1));
4311       } else {
4312         Results.push_back(Res);
4313         Results.push_back(Res.getValue(1));
4314       }
4315       return;
4316     }
4317 
4318     break;
4319   }
4320   case ISD::SELECT: {
4321     SDLoc SL(N);
4322     EVT VT = N->getValueType(0);
4323     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4324     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4325     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4326 
4327     EVT SelectVT = NewVT;
4328     if (NewVT.bitsLT(MVT::i32)) {
4329       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4330       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4331       SelectVT = MVT::i32;
4332     }
4333 
4334     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4335                                     N->getOperand(0), LHS, RHS);
4336 
4337     if (NewVT != SelectVT)
4338       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4339     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4340     return;
4341   }
4342   case ISD::FNEG: {
4343     if (N->getValueType(0) != MVT::v2f16)
4344       break;
4345 
4346     SDLoc SL(N);
4347     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4348 
4349     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4350                              BC,
4351                              DAG.getConstant(0x80008000, SL, MVT::i32));
4352     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4353     return;
4354   }
4355   case ISD::FABS: {
4356     if (N->getValueType(0) != MVT::v2f16)
4357       break;
4358 
4359     SDLoc SL(N);
4360     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4361 
4362     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4363                              BC,
4364                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4365     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4366     return;
4367   }
4368   default:
4369     break;
4370   }
4371 }
4372 
4373 /// Helper function for LowerBRCOND
4374 static SDNode *findUser(SDValue Value, unsigned Opcode) {
4375 
4376   SDNode *Parent = Value.getNode();
4377   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4378        I != E; ++I) {
4379 
4380     if (I.getUse().get() != Value)
4381       continue;
4382 
4383     if (I->getOpcode() == Opcode)
4384       return *I;
4385   }
4386   return nullptr;
4387 }
4388 
4389 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4390   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4391     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4392     case Intrinsic::amdgcn_if:
4393       return AMDGPUISD::IF;
4394     case Intrinsic::amdgcn_else:
4395       return AMDGPUISD::ELSE;
4396     case Intrinsic::amdgcn_loop:
4397       return AMDGPUISD::LOOP;
4398     case Intrinsic::amdgcn_end_cf:
4399       llvm_unreachable("should not occur");
4400     default:
4401       return 0;
4402     }
4403   }
4404 
4405   // break, if_break, else_break are all only used as inputs to loop, not
4406   // directly as branch conditions.
4407   return 0;
4408 }
4409 
4410 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4411   const Triple &TT = getTargetMachine().getTargetTriple();
4412   return (GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4413           GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4414          AMDGPU::shouldEmitConstantsToTextSection(TT);
4415 }
4416 
4417 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4418   // FIXME: Either avoid relying on address space here or change the default
4419   // address space for functions to avoid the explicit check.
4420   return (GV->getValueType()->isFunctionTy() ||
4421           GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
4422           GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4423           GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4424          !shouldEmitFixup(GV) &&
4425          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
4426 }
4427 
4428 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
4429   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
4430 }
4431 
4432 /// This transforms the control flow intrinsics to get the branch destination as
4433 /// last parameter, also switches branch target with BR if the need arise
4434 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
4435                                       SelectionDAG &DAG) const {
4436   SDLoc DL(BRCOND);
4437 
4438   SDNode *Intr = BRCOND.getOperand(1).getNode();
4439   SDValue Target = BRCOND.getOperand(2);
4440   SDNode *BR = nullptr;
4441   SDNode *SetCC = nullptr;
4442 
4443   if (Intr->getOpcode() == ISD::SETCC) {
4444     // As long as we negate the condition everything is fine
4445     SetCC = Intr;
4446     Intr = SetCC->getOperand(0).getNode();
4447 
4448   } else {
4449     // Get the target from BR if we don't negate the condition
4450     BR = findUser(BRCOND, ISD::BR);
4451     Target = BR->getOperand(1);
4452   }
4453 
4454   // FIXME: This changes the types of the intrinsics instead of introducing new
4455   // nodes with the correct types.
4456   // e.g. llvm.amdgcn.loop
4457 
4458   // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
4459   // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
4460 
4461   unsigned CFNode = isCFIntrinsic(Intr);
4462   if (CFNode == 0) {
4463     // This is a uniform branch so we don't need to legalize.
4464     return BRCOND;
4465   }
4466 
4467   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
4468                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
4469 
4470   assert(!SetCC ||
4471         (SetCC->getConstantOperandVal(1) == 1 &&
4472          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
4473                                                              ISD::SETNE));
4474 
4475   // operands of the new intrinsic call
4476   SmallVector<SDValue, 4> Ops;
4477   if (HaveChain)
4478     Ops.push_back(BRCOND.getOperand(0));
4479 
4480   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
4481   Ops.push_back(Target);
4482 
4483   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
4484 
4485   // build the new intrinsic call
4486   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
4487 
4488   if (!HaveChain) {
4489     SDValue Ops[] =  {
4490       SDValue(Result, 0),
4491       BRCOND.getOperand(0)
4492     };
4493 
4494     Result = DAG.getMergeValues(Ops, DL).getNode();
4495   }
4496 
4497   if (BR) {
4498     // Give the branch instruction our target
4499     SDValue Ops[] = {
4500       BR->getOperand(0),
4501       BRCOND.getOperand(2)
4502     };
4503     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
4504     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
4505     BR = NewBR.getNode();
4506   }
4507 
4508   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
4509 
4510   // Copy the intrinsic results to registers
4511   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
4512     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
4513     if (!CopyToReg)
4514       continue;
4515 
4516     Chain = DAG.getCopyToReg(
4517       Chain, DL,
4518       CopyToReg->getOperand(1),
4519       SDValue(Result, i - 1),
4520       SDValue());
4521 
4522     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
4523   }
4524 
4525   // Remove the old intrinsic from the chain
4526   DAG.ReplaceAllUsesOfValueWith(
4527     SDValue(Intr, Intr->getNumValues() - 1),
4528     Intr->getOperand(0));
4529 
4530   return Chain;
4531 }
4532 
4533 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
4534                                           SelectionDAG &DAG) const {
4535   MVT VT = Op.getSimpleValueType();
4536   SDLoc DL(Op);
4537   // Checking the depth
4538   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
4539     return DAG.getConstant(0, DL, VT);
4540 
4541   MachineFunction &MF = DAG.getMachineFunction();
4542   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4543   // Check for kernel and shader functions
4544   if (Info->isEntryFunction())
4545     return DAG.getConstant(0, DL, VT);
4546 
4547   MachineFrameInfo &MFI = MF.getFrameInfo();
4548   // There is a call to @llvm.returnaddress in this function
4549   MFI.setReturnAddressIsTaken(true);
4550 
4551   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
4552   // Get the return address reg and mark it as an implicit live-in
4553   unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
4554 
4555   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4556 }
4557 
4558 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
4559                                             SDValue Op,
4560                                             const SDLoc &DL,
4561                                             EVT VT) const {
4562   return Op.getValueType().bitsLE(VT) ?
4563       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
4564       DAG.getNode(ISD::FTRUNC, DL, VT, Op);
4565 }
4566 
4567 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
4568   assert(Op.getValueType() == MVT::f16 &&
4569          "Do not know how to custom lower FP_ROUND for non-f16 type");
4570 
4571   SDValue Src = Op.getOperand(0);
4572   EVT SrcVT = Src.getValueType();
4573   if (SrcVT != MVT::f64)
4574     return Op;
4575 
4576   SDLoc DL(Op);
4577 
4578   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
4579   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
4580   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
4581 }
4582 
4583 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
4584                                                SelectionDAG &DAG) const {
4585   EVT VT = Op.getValueType();
4586   const MachineFunction &MF = DAG.getMachineFunction();
4587   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4588   bool IsIEEEMode = Info->getMode().IEEE;
4589 
4590   // FIXME: Assert during eslection that this is only selected for
4591   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
4592   // mode functions, but this happens to be OK since it's only done in cases
4593   // where there is known no sNaN.
4594   if (IsIEEEMode)
4595     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
4596 
4597   if (VT == MVT::v4f16)
4598     return splitBinaryVectorOp(Op, DAG);
4599   return Op;
4600 }
4601 
4602 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
4603   SDLoc SL(Op);
4604   SDValue Chain = Op.getOperand(0);
4605 
4606   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4607       !Subtarget->isTrapHandlerEnabled())
4608     return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
4609 
4610   MachineFunction &MF = DAG.getMachineFunction();
4611   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4612   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4613   assert(UserSGPR != AMDGPU::NoRegister);
4614   SDValue QueuePtr = CreateLiveInRegister(
4615     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4616   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
4617   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
4618                                    QueuePtr, SDValue());
4619   SDValue Ops[] = {
4620     ToReg,
4621     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
4622     SGPR01,
4623     ToReg.getValue(1)
4624   };
4625   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4626 }
4627 
4628 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
4629   SDLoc SL(Op);
4630   SDValue Chain = Op.getOperand(0);
4631   MachineFunction &MF = DAG.getMachineFunction();
4632 
4633   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4634       !Subtarget->isTrapHandlerEnabled()) {
4635     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
4636                                      "debugtrap handler not supported",
4637                                      Op.getDebugLoc(),
4638                                      DS_Warning);
4639     LLVMContext &Ctx = MF.getFunction().getContext();
4640     Ctx.diagnose(NoTrap);
4641     return Chain;
4642   }
4643 
4644   SDValue Ops[] = {
4645     Chain,
4646     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
4647   };
4648   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4649 }
4650 
4651 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
4652                                              SelectionDAG &DAG) const {
4653   // FIXME: Use inline constants (src_{shared, private}_base) instead.
4654   if (Subtarget->hasApertureRegs()) {
4655     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
4656         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
4657         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
4658     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
4659         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
4660         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
4661     unsigned Encoding =
4662         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
4663         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
4664         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
4665 
4666     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
4667     SDValue ApertureReg = SDValue(
4668         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
4669     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
4670     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
4671   }
4672 
4673   MachineFunction &MF = DAG.getMachineFunction();
4674   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4675   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4676   assert(UserSGPR != AMDGPU::NoRegister);
4677 
4678   SDValue QueuePtr = CreateLiveInRegister(
4679     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4680 
4681   // Offset into amd_queue_t for group_segment_aperture_base_hi /
4682   // private_segment_aperture_base_hi.
4683   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
4684 
4685   SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
4686 
4687   // TODO: Use custom target PseudoSourceValue.
4688   // TODO: We should use the value from the IR intrinsic call, but it might not
4689   // be available and how do we get it?
4690   Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
4691                                               AMDGPUAS::CONSTANT_ADDRESS));
4692 
4693   MachinePointerInfo PtrInfo(V, StructOffset);
4694   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
4695                      MinAlign(64, StructOffset),
4696                      MachineMemOperand::MODereferenceable |
4697                          MachineMemOperand::MOInvariant);
4698 }
4699 
4700 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
4701                                              SelectionDAG &DAG) const {
4702   SDLoc SL(Op);
4703   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
4704 
4705   SDValue Src = ASC->getOperand(0);
4706   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
4707 
4708   const AMDGPUTargetMachine &TM =
4709     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
4710 
4711   // flat -> local/private
4712   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4713     unsigned DestAS = ASC->getDestAddressSpace();
4714 
4715     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
4716         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
4717       unsigned NullVal = TM.getNullPointerValue(DestAS);
4718       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4719       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
4720       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
4721 
4722       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
4723                          NonNull, Ptr, SegmentNullPtr);
4724     }
4725   }
4726 
4727   // local/private -> flat
4728   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4729     unsigned SrcAS = ASC->getSrcAddressSpace();
4730 
4731     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
4732         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
4733       unsigned NullVal = TM.getNullPointerValue(SrcAS);
4734       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4735 
4736       SDValue NonNull
4737         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
4738 
4739       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
4740       SDValue CvtPtr
4741         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
4742 
4743       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
4744                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
4745                          FlatNullPtr);
4746     }
4747   }
4748 
4749   // global <-> flat are no-ops and never emitted.
4750 
4751   const MachineFunction &MF = DAG.getMachineFunction();
4752   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
4753     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
4754   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
4755 
4756   return DAG.getUNDEF(ASC->getValueType(0));
4757 }
4758 
4759 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
4760 // the small vector and inserting them into the big vector. That is better than
4761 // the default expansion of doing it via a stack slot. Even though the use of
4762 // the stack slot would be optimized away afterwards, the stack slot itself
4763 // remains.
4764 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4765                                                 SelectionDAG &DAG) const {
4766   SDValue Vec = Op.getOperand(0);
4767   SDValue Ins = Op.getOperand(1);
4768   SDValue Idx = Op.getOperand(2);
4769   EVT VecVT = Vec.getValueType();
4770   EVT InsVT = Ins.getValueType();
4771   EVT EltVT = VecVT.getVectorElementType();
4772   unsigned InsNumElts = InsVT.getVectorNumElements();
4773   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
4774   SDLoc SL(Op);
4775 
4776   for (unsigned I = 0; I != InsNumElts; ++I) {
4777     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
4778                               DAG.getConstant(I, SL, MVT::i32));
4779     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
4780                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
4781   }
4782   return Vec;
4783 }
4784 
4785 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4786                                                  SelectionDAG &DAG) const {
4787   SDValue Vec = Op.getOperand(0);
4788   SDValue InsVal = Op.getOperand(1);
4789   SDValue Idx = Op.getOperand(2);
4790   EVT VecVT = Vec.getValueType();
4791   EVT EltVT = VecVT.getVectorElementType();
4792   unsigned VecSize = VecVT.getSizeInBits();
4793   unsigned EltSize = EltVT.getSizeInBits();
4794 
4795 
4796   assert(VecSize <= 64);
4797 
4798   unsigned NumElts = VecVT.getVectorNumElements();
4799   SDLoc SL(Op);
4800   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
4801 
4802   if (NumElts == 4 && EltSize == 16 && KIdx) {
4803     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
4804 
4805     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4806                                  DAG.getConstant(0, SL, MVT::i32));
4807     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4808                                  DAG.getConstant(1, SL, MVT::i32));
4809 
4810     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
4811     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
4812 
4813     unsigned Idx = KIdx->getZExtValue();
4814     bool InsertLo = Idx < 2;
4815     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
4816       InsertLo ? LoVec : HiVec,
4817       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
4818       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
4819 
4820     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
4821 
4822     SDValue Concat = InsertLo ?
4823       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
4824       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
4825 
4826     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
4827   }
4828 
4829   if (isa<ConstantSDNode>(Idx))
4830     return SDValue();
4831 
4832   MVT IntVT = MVT::getIntegerVT(VecSize);
4833 
4834   // Avoid stack access for dynamic indexing.
4835   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
4836 
4837   // Create a congruent vector with the target value in each element so that
4838   // the required element can be masked and ORed into the target vector.
4839   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
4840                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
4841 
4842   assert(isPowerOf2_32(EltSize));
4843   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4844 
4845   // Convert vector index to bit-index.
4846   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4847 
4848   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4849   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
4850                             DAG.getConstant(0xffff, SL, IntVT),
4851                             ScaledIdx);
4852 
4853   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
4854   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
4855                             DAG.getNOT(SL, BFM, IntVT), BCVec);
4856 
4857   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
4858   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
4859 }
4860 
4861 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4862                                                   SelectionDAG &DAG) const {
4863   SDLoc SL(Op);
4864 
4865   EVT ResultVT = Op.getValueType();
4866   SDValue Vec = Op.getOperand(0);
4867   SDValue Idx = Op.getOperand(1);
4868   EVT VecVT = Vec.getValueType();
4869   unsigned VecSize = VecVT.getSizeInBits();
4870   EVT EltVT = VecVT.getVectorElementType();
4871   assert(VecSize <= 64);
4872 
4873   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
4874 
4875   // Make sure we do any optimizations that will make it easier to fold
4876   // source modifiers before obscuring it with bit operations.
4877 
4878   // XXX - Why doesn't this get called when vector_shuffle is expanded?
4879   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
4880     return Combined;
4881 
4882   unsigned EltSize = EltVT.getSizeInBits();
4883   assert(isPowerOf2_32(EltSize));
4884 
4885   MVT IntVT = MVT::getIntegerVT(VecSize);
4886   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4887 
4888   // Convert vector index to bit-index (* EltSize)
4889   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4890 
4891   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4892   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
4893 
4894   if (ResultVT == MVT::f16) {
4895     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
4896     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4897   }
4898 
4899   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
4900 }
4901 
4902 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
4903   assert(Elt % 2 == 0);
4904   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
4905 }
4906 
4907 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4908                                               SelectionDAG &DAG) const {
4909   SDLoc SL(Op);
4910   EVT ResultVT = Op.getValueType();
4911   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
4912 
4913   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
4914   EVT EltVT = PackVT.getVectorElementType();
4915   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
4916 
4917   // vector_shuffle <0,1,6,7> lhs, rhs
4918   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
4919   //
4920   // vector_shuffle <6,7,2,3> lhs, rhs
4921   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
4922   //
4923   // vector_shuffle <6,7,0,1> lhs, rhs
4924   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
4925 
4926   // Avoid scalarizing when both halves are reading from consecutive elements.
4927   SmallVector<SDValue, 4> Pieces;
4928   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
4929     if (elementPairIsContiguous(SVN->getMask(), I)) {
4930       const int Idx = SVN->getMaskElt(I);
4931       int VecIdx = Idx < SrcNumElts ? 0 : 1;
4932       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
4933       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
4934                                     PackVT, SVN->getOperand(VecIdx),
4935                                     DAG.getConstant(EltIdx, SL, MVT::i32));
4936       Pieces.push_back(SubVec);
4937     } else {
4938       const int Idx0 = SVN->getMaskElt(I);
4939       const int Idx1 = SVN->getMaskElt(I + 1);
4940       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
4941       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
4942       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
4943       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
4944 
4945       SDValue Vec0 = SVN->getOperand(VecIdx0);
4946       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4947                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
4948 
4949       SDValue Vec1 = SVN->getOperand(VecIdx1);
4950       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4951                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
4952       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
4953     }
4954   }
4955 
4956   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
4957 }
4958 
4959 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
4960                                             SelectionDAG &DAG) const {
4961   SDLoc SL(Op);
4962   EVT VT = Op.getValueType();
4963 
4964   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4965     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
4966 
4967     // Turn into pair of packed build_vectors.
4968     // TODO: Special case for constants that can be materialized with s_mov_b64.
4969     SDValue Lo = DAG.getBuildVector(HalfVT, SL,
4970                                     { Op.getOperand(0), Op.getOperand(1) });
4971     SDValue Hi = DAG.getBuildVector(HalfVT, SL,
4972                                     { Op.getOperand(2), Op.getOperand(3) });
4973 
4974     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
4975     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
4976 
4977     SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
4978     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
4979   }
4980 
4981   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
4982   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
4983 
4984   SDValue Lo = Op.getOperand(0);
4985   SDValue Hi = Op.getOperand(1);
4986 
4987   // Avoid adding defined bits with the zero_extend.
4988   if (Hi.isUndef()) {
4989     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
4990     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
4991     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
4992   }
4993 
4994   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
4995   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
4996 
4997   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
4998                               DAG.getConstant(16, SL, MVT::i32));
4999   if (Lo.isUndef())
5000     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5001 
5002   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5003   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5004 
5005   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5006   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5007 }
5008 
5009 bool
5010 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5011   // We can fold offsets for anything that doesn't require a GOT relocation.
5012   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5013           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5014           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5015          !shouldEmitGOTReloc(GA->getGlobal());
5016 }
5017 
5018 static SDValue
5019 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5020                         const SDLoc &DL, unsigned Offset, EVT PtrVT,
5021                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5022   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5023   // lowered to the following code sequence:
5024   //
5025   // For constant address space:
5026   //   s_getpc_b64 s[0:1]
5027   //   s_add_u32 s0, s0, $symbol
5028   //   s_addc_u32 s1, s1, 0
5029   //
5030   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5031   //   a fixup or relocation is emitted to replace $symbol with a literal
5032   //   constant, which is a pc-relative offset from the encoding of the $symbol
5033   //   operand to the global variable.
5034   //
5035   // For global address space:
5036   //   s_getpc_b64 s[0:1]
5037   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5038   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5039   //
5040   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5041   //   fixups or relocations are emitted to replace $symbol@*@lo and
5042   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5043   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5044   //   operand to the global variable.
5045   //
5046   // What we want here is an offset from the value returned by s_getpc
5047   // (which is the address of the s_add_u32 instruction) to the global
5048   // variable, but since the encoding of $symbol starts 4 bytes after the start
5049   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5050   // small. This requires us to add 4 to the global variable offset in order to
5051   // compute the correct address.
5052   SDValue PtrLo =
5053       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5054   SDValue PtrHi;
5055   if (GAFlags == SIInstrInfo::MO_NONE) {
5056     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5057   } else {
5058     PtrHi =
5059         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1);
5060   }
5061   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5062 }
5063 
5064 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5065                                              SDValue Op,
5066                                              SelectionDAG &DAG) const {
5067   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5068   const GlobalValue *GV = GSD->getGlobal();
5069   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5070        (!GV->hasExternalLinkage() ||
5071         getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
5072         getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)) ||
5073       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5074       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS)
5075     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5076 
5077   SDLoc DL(GSD);
5078   EVT PtrVT = Op.getValueType();
5079 
5080   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5081     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5082                                             SIInstrInfo::MO_ABS32_LO);
5083     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5084   }
5085 
5086   if (shouldEmitFixup(GV))
5087     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5088   else if (shouldEmitPCReloc(GV))
5089     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5090                                    SIInstrInfo::MO_REL32);
5091 
5092   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5093                                             SIInstrInfo::MO_GOTPCREL32);
5094 
5095   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5096   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5097   const DataLayout &DataLayout = DAG.getDataLayout();
5098   unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
5099   MachinePointerInfo PtrInfo
5100     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5101 
5102   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
5103                      MachineMemOperand::MODereferenceable |
5104                          MachineMemOperand::MOInvariant);
5105 }
5106 
5107 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5108                                    const SDLoc &DL, SDValue V) const {
5109   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5110   // the destination register.
5111   //
5112   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5113   // so we will end up with redundant moves to m0.
5114   //
5115   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5116 
5117   // A Null SDValue creates a glue result.
5118   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5119                                   V, Chain);
5120   return SDValue(M0, 0);
5121 }
5122 
5123 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5124                                                  SDValue Op,
5125                                                  MVT VT,
5126                                                  unsigned Offset) const {
5127   SDLoc SL(Op);
5128   SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
5129                                            DAG.getEntryNode(), Offset, 4, false);
5130   // The local size values will have the hi 16-bits as zero.
5131   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5132                      DAG.getValueType(VT));
5133 }
5134 
5135 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5136                                         EVT VT) {
5137   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5138                                       "non-hsa intrinsic with hsa target",
5139                                       DL.getDebugLoc());
5140   DAG.getContext()->diagnose(BadIntrin);
5141   return DAG.getUNDEF(VT);
5142 }
5143 
5144 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5145                                          EVT VT) {
5146   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5147                                       "intrinsic not supported on subtarget",
5148                                       DL.getDebugLoc());
5149   DAG.getContext()->diagnose(BadIntrin);
5150   return DAG.getUNDEF(VT);
5151 }
5152 
5153 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5154                                     ArrayRef<SDValue> Elts) {
5155   assert(!Elts.empty());
5156   MVT Type;
5157   unsigned NumElts;
5158 
5159   if (Elts.size() == 1) {
5160     Type = MVT::f32;
5161     NumElts = 1;
5162   } else if (Elts.size() == 2) {
5163     Type = MVT::v2f32;
5164     NumElts = 2;
5165   } else if (Elts.size() <= 4) {
5166     Type = MVT::v4f32;
5167     NumElts = 4;
5168   } else if (Elts.size() <= 8) {
5169     Type = MVT::v8f32;
5170     NumElts = 8;
5171   } else {
5172     assert(Elts.size() <= 16);
5173     Type = MVT::v16f32;
5174     NumElts = 16;
5175   }
5176 
5177   SmallVector<SDValue, 16> VecElts(NumElts);
5178   for (unsigned i = 0; i < Elts.size(); ++i) {
5179     SDValue Elt = Elts[i];
5180     if (Elt.getValueType() != MVT::f32)
5181       Elt = DAG.getBitcast(MVT::f32, Elt);
5182     VecElts[i] = Elt;
5183   }
5184   for (unsigned i = Elts.size(); i < NumElts; ++i)
5185     VecElts[i] = DAG.getUNDEF(MVT::f32);
5186 
5187   if (NumElts == 1)
5188     return VecElts[0];
5189   return DAG.getBuildVector(Type, DL, VecElts);
5190 }
5191 
5192 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5193                              SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5194   auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5195 
5196   uint64_t Value = CachePolicyConst->getZExtValue();
5197   SDLoc DL(CachePolicy);
5198   if (GLC) {
5199     *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5200     Value &= ~(uint64_t)0x1;
5201   }
5202   if (SLC) {
5203     *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5204     Value &= ~(uint64_t)0x2;
5205   }
5206   if (DLC) {
5207     *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5208     Value &= ~(uint64_t)0x4;
5209   }
5210 
5211   return Value == 0;
5212 }
5213 
5214 // Re-construct the required return value for a image load intrinsic.
5215 // This is more complicated due to the optional use TexFailCtrl which means the required
5216 // return type is an aggregate
5217 static SDValue constructRetValue(SelectionDAG &DAG,
5218                                  MachineSDNode *Result,
5219                                  ArrayRef<EVT> ResultTypes,
5220                                  bool IsTexFail, bool Unpacked, bool IsD16,
5221                                  int DMaskPop, int NumVDataDwords,
5222                                  const SDLoc &DL, LLVMContext &Context) {
5223   // Determine the required return type. This is the same regardless of IsTexFail flag
5224   EVT ReqRetVT = ResultTypes[0];
5225   EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT;
5226   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5227   EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT;
5228   EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts)
5229                                            : AdjEltVT
5230                        : ReqRetVT;
5231 
5232   // Extract data part of the result
5233   // Bitcast the result to the same type as the required return type
5234   int NumElts;
5235   if (IsD16 && !Unpacked)
5236     NumElts = NumVDataDwords << 1;
5237   else
5238     NumElts = NumVDataDwords;
5239 
5240   EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts)
5241                            : AdjEltVT;
5242 
5243   // Special case for v6f16. Rather than add support for this, use v3i32 to
5244   // extract the data elements
5245   bool V6F16Special = false;
5246   if (NumElts == 6) {
5247     CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2);
5248     DMaskPop >>= 1;
5249     ReqRetNumElts >>= 1;
5250     V6F16Special = true;
5251     AdjVT = MVT::v2i32;
5252   }
5253 
5254   SDValue N = SDValue(Result, 0);
5255   SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N);
5256 
5257   // Iterate over the result
5258   SmallVector<SDValue, 4> BVElts;
5259 
5260   if (CastVT.isVector()) {
5261     DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop);
5262   } else {
5263     BVElts.push_back(CastRes);
5264   }
5265   int ExtraElts = ReqRetNumElts - DMaskPop;
5266   while(ExtraElts--)
5267     BVElts.push_back(DAG.getUNDEF(AdjEltVT));
5268 
5269   SDValue PreTFCRes;
5270   if (ReqRetNumElts > 1) {
5271     SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts);
5272     if (IsD16 && Unpacked)
5273       PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked);
5274     else
5275       PreTFCRes = NewVec;
5276   } else {
5277     PreTFCRes = BVElts[0];
5278   }
5279 
5280   if (V6F16Special)
5281     PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes);
5282 
5283   if (!IsTexFail) {
5284     if (Result->getNumValues() > 1)
5285       return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL);
5286     else
5287       return PreTFCRes;
5288   }
5289 
5290   // Extract the TexFail result and insert into aggregate return
5291   SmallVector<SDValue, 1> TFCElt;
5292   DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1);
5293   SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]);
5294   return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL);
5295 }
5296 
5297 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5298                          SDValue *LWE, bool &IsTexFail) {
5299   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5300 
5301   uint64_t Value = TexFailCtrlConst->getZExtValue();
5302   if (Value) {
5303     IsTexFail = true;
5304   }
5305 
5306   SDLoc DL(TexFailCtrlConst);
5307   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5308   Value &= ~(uint64_t)0x1;
5309   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5310   Value &= ~(uint64_t)0x2;
5311 
5312   return Value == 0;
5313 }
5314 
5315 SDValue SITargetLowering::lowerImage(SDValue Op,
5316                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
5317                                      SelectionDAG &DAG) const {
5318   SDLoc DL(Op);
5319   MachineFunction &MF = DAG.getMachineFunction();
5320   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5321   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5322       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5323   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5324   const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5325       AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5326   const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
5327       AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
5328   unsigned IntrOpcode = Intr->BaseOpcode;
5329   bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5330 
5331   SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
5332   SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
5333   bool IsD16 = false;
5334   bool IsA16 = false;
5335   SDValue VData;
5336   int NumVDataDwords;
5337   bool AdjustRetType = false;
5338 
5339   unsigned AddrIdx; // Index of first address argument
5340   unsigned DMask;
5341   unsigned DMaskLanes = 0;
5342 
5343   if (BaseOpcode->Atomic) {
5344     VData = Op.getOperand(2);
5345 
5346     bool Is64Bit = VData.getValueType() == MVT::i64;
5347     if (BaseOpcode->AtomicX2) {
5348       SDValue VData2 = Op.getOperand(3);
5349       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
5350                                  {VData, VData2});
5351       if (Is64Bit)
5352         VData = DAG.getBitcast(MVT::v4i32, VData);
5353 
5354       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
5355       DMask = Is64Bit ? 0xf : 0x3;
5356       NumVDataDwords = Is64Bit ? 4 : 2;
5357       AddrIdx = 4;
5358     } else {
5359       DMask = Is64Bit ? 0x3 : 0x1;
5360       NumVDataDwords = Is64Bit ? 2 : 1;
5361       AddrIdx = 3;
5362     }
5363   } else {
5364     unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1;
5365     auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx));
5366     DMask = DMaskConst->getZExtValue();
5367     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
5368 
5369     if (BaseOpcode->Store) {
5370       VData = Op.getOperand(2);
5371 
5372       MVT StoreVT = VData.getSimpleValueType();
5373       if (StoreVT.getScalarType() == MVT::f16) {
5374         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5375           return Op; // D16 is unsupported for this instruction
5376 
5377         IsD16 = true;
5378         VData = handleD16VData(VData, DAG);
5379       }
5380 
5381       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
5382     } else {
5383       // Work out the num dwords based on the dmask popcount and underlying type
5384       // and whether packing is supported.
5385       MVT LoadVT = ResultTypes[0].getSimpleVT();
5386       if (LoadVT.getScalarType() == MVT::f16) {
5387         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5388           return Op; // D16 is unsupported for this instruction
5389 
5390         IsD16 = true;
5391       }
5392 
5393       // Confirm that the return type is large enough for the dmask specified
5394       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
5395           (!LoadVT.isVector() && DMaskLanes > 1))
5396           return Op;
5397 
5398       if (IsD16 && !Subtarget->hasUnpackedD16VMem())
5399         NumVDataDwords = (DMaskLanes + 1) / 2;
5400       else
5401         NumVDataDwords = DMaskLanes;
5402 
5403       AdjustRetType = true;
5404     }
5405 
5406     AddrIdx = DMaskIdx + 1;
5407   }
5408 
5409   unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0;
5410   unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0;
5411   unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0;
5412   unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients +
5413                        NumCoords + NumLCM;
5414   unsigned NumMIVAddrs = NumVAddrs;
5415 
5416   SmallVector<SDValue, 4> VAddrs;
5417 
5418   // Optimize _L to _LZ when _L is zero
5419   if (LZMappingInfo) {
5420     if (auto ConstantLod =
5421          dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5422       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
5423         IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
5424         NumMIVAddrs--;               // remove 'lod'
5425       }
5426     }
5427   }
5428 
5429   // Optimize _mip away, when 'lod' is zero
5430   if (MIPMappingInfo) {
5431     if (auto ConstantLod =
5432          dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5433       if (ConstantLod->isNullValue()) {
5434         IntrOpcode = MIPMappingInfo->NONMIP;  // set new opcode to variant without _mip
5435         NumMIVAddrs--;               // remove 'lod'
5436       }
5437     }
5438   }
5439 
5440   // Check for 16 bit addresses and pack if true.
5441   unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs;
5442   MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType();
5443   const MVT VAddrScalarVT = VAddrVT.getScalarType();
5444   if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) &&
5445       ST->hasFeature(AMDGPU::FeatureR128A16)) {
5446     IsA16 = true;
5447     const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
5448     for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) {
5449       SDValue AddrLo, AddrHi;
5450       // Push back extra arguments.
5451       if (i < DimIdx) {
5452         AddrLo = Op.getOperand(i);
5453       } else {
5454         AddrLo = Op.getOperand(i);
5455         // Dz/dh, dz/dv and the last odd coord are packed with undef. Also,
5456         // in 1D, derivatives dx/dh and dx/dv are packed with undef.
5457         if (((i + 1) >= (AddrIdx + NumMIVAddrs)) ||
5458             ((NumGradients / 2) % 2 == 1 &&
5459             (i == DimIdx + (NumGradients / 2) - 1 ||
5460              i == DimIdx + NumGradients - 1))) {
5461           AddrHi = DAG.getUNDEF(MVT::f16);
5462         } else {
5463           AddrHi = Op.getOperand(i + 1);
5464           i++;
5465         }
5466         AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT,
5467                              {AddrLo, AddrHi});
5468         AddrLo = DAG.getBitcast(MVT::i32, AddrLo);
5469       }
5470       VAddrs.push_back(AddrLo);
5471     }
5472   } else {
5473     for (unsigned i = 0; i < NumMIVAddrs; ++i)
5474       VAddrs.push_back(Op.getOperand(AddrIdx + i));
5475   }
5476 
5477   // If the register allocator cannot place the address registers contiguously
5478   // without introducing moves, then using the non-sequential address encoding
5479   // is always preferable, since it saves VALU instructions and is usually a
5480   // wash in terms of code size or even better.
5481   //
5482   // However, we currently have no way of hinting to the register allocator that
5483   // MIMG addresses should be placed contiguously when it is possible to do so,
5484   // so force non-NSA for the common 2-address case as a heuristic.
5485   //
5486   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
5487   // allocation when possible.
5488   bool UseNSA =
5489       ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
5490   SDValue VAddr;
5491   if (!UseNSA)
5492     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
5493 
5494   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
5495   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
5496   unsigned CtrlIdx; // Index of texfailctrl argument
5497   SDValue Unorm;
5498   if (!BaseOpcode->Sampler) {
5499     Unorm = True;
5500     CtrlIdx = AddrIdx + NumVAddrs + 1;
5501   } else {
5502     auto UnormConst =
5503         cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2));
5504 
5505     Unorm = UnormConst->getZExtValue() ? True : False;
5506     CtrlIdx = AddrIdx + NumVAddrs + 3;
5507   }
5508 
5509   SDValue TFE;
5510   SDValue LWE;
5511   SDValue TexFail = Op.getOperand(CtrlIdx);
5512   bool IsTexFail = false;
5513   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
5514     return Op;
5515 
5516   if (IsTexFail) {
5517     if (!DMaskLanes) {
5518       // Expecting to get an error flag since TFC is on - and dmask is 0
5519       // Force dmask to be at least 1 otherwise the instruction will fail
5520       DMask = 0x1;
5521       DMaskLanes = 1;
5522       NumVDataDwords = 1;
5523     }
5524     NumVDataDwords += 1;
5525     AdjustRetType = true;
5526   }
5527 
5528   // Has something earlier tagged that the return type needs adjusting
5529   // This happens if the instruction is a load or has set TexFailCtrl flags
5530   if (AdjustRetType) {
5531     // NumVDataDwords reflects the true number of dwords required in the return type
5532     if (DMaskLanes == 0 && !BaseOpcode->Store) {
5533       // This is a no-op load. This can be eliminated
5534       SDValue Undef = DAG.getUNDEF(Op.getValueType());
5535       if (isa<MemSDNode>(Op))
5536         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
5537       return Undef;
5538     }
5539 
5540     EVT NewVT = NumVDataDwords > 1 ?
5541                   EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords)
5542                 : MVT::f32;
5543 
5544     ResultTypes[0] = NewVT;
5545     if (ResultTypes.size() == 3) {
5546       // Original result was aggregate type used for TexFailCtrl results
5547       // The actual instruction returns as a vector type which has now been
5548       // created. Remove the aggregate result.
5549       ResultTypes.erase(&ResultTypes[1]);
5550     }
5551   }
5552 
5553   SDValue GLC;
5554   SDValue SLC;
5555   SDValue DLC;
5556   if (BaseOpcode->Atomic) {
5557     GLC = True; // TODO no-return optimization
5558     if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC,
5559                           IsGFX10 ? &DLC : nullptr))
5560       return Op;
5561   } else {
5562     if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC,
5563                           IsGFX10 ? &DLC : nullptr))
5564       return Op;
5565   }
5566 
5567   SmallVector<SDValue, 26> Ops;
5568   if (BaseOpcode->Store || BaseOpcode->Atomic)
5569     Ops.push_back(VData); // vdata
5570   if (UseNSA) {
5571     for (const SDValue &Addr : VAddrs)
5572       Ops.push_back(Addr);
5573   } else {
5574     Ops.push_back(VAddr);
5575   }
5576   Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc
5577   if (BaseOpcode->Sampler)
5578     Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler
5579   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
5580   if (IsGFX10)
5581     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
5582   Ops.push_back(Unorm);
5583   if (IsGFX10)
5584     Ops.push_back(DLC);
5585   Ops.push_back(GLC);
5586   Ops.push_back(SLC);
5587   Ops.push_back(IsA16 &&  // a16 or r128
5588                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
5589   Ops.push_back(TFE); // tfe
5590   Ops.push_back(LWE); // lwe
5591   if (!IsGFX10)
5592     Ops.push_back(DimInfo->DA ? True : False);
5593   if (BaseOpcode->HasD16)
5594     Ops.push_back(IsD16 ? True : False);
5595   if (isa<MemSDNode>(Op))
5596     Ops.push_back(Op.getOperand(0)); // chain
5597 
5598   int NumVAddrDwords =
5599       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
5600   int Opcode = -1;
5601 
5602   if (IsGFX10) {
5603     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
5604                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
5605                                           : AMDGPU::MIMGEncGfx10Default,
5606                                    NumVDataDwords, NumVAddrDwords);
5607   } else {
5608     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5609       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
5610                                      NumVDataDwords, NumVAddrDwords);
5611     if (Opcode == -1)
5612       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
5613                                      NumVDataDwords, NumVAddrDwords);
5614   }
5615   assert(Opcode != -1);
5616 
5617   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
5618   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
5619     MachineMemOperand *MemRef = MemOp->getMemOperand();
5620     DAG.setNodeMemRefs(NewNode, {MemRef});
5621   }
5622 
5623   if (BaseOpcode->AtomicX2) {
5624     SmallVector<SDValue, 1> Elt;
5625     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
5626     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
5627   } else if (!BaseOpcode->Store) {
5628     return constructRetValue(DAG, NewNode,
5629                              OrigResultTypes, IsTexFail,
5630                              Subtarget->hasUnpackedD16VMem(), IsD16,
5631                              DMaskLanes, NumVDataDwords, DL,
5632                              *DAG.getContext());
5633   }
5634 
5635   return SDValue(NewNode, 0);
5636 }
5637 
5638 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
5639                                        SDValue Offset, SDValue GLC, SDValue DLC,
5640                                        SelectionDAG &DAG) const {
5641   MachineFunction &MF = DAG.getMachineFunction();
5642   MachineMemOperand *MMO = MF.getMachineMemOperand(
5643       MachinePointerInfo(),
5644       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
5645           MachineMemOperand::MOInvariant,
5646       VT.getStoreSize(), VT.getStoreSize());
5647 
5648   if (!Offset->isDivergent()) {
5649     SDValue Ops[] = {
5650         Rsrc,
5651         Offset, // Offset
5652         GLC,
5653         DLC,
5654     };
5655     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
5656                                    DAG.getVTList(VT), Ops, VT, MMO);
5657   }
5658 
5659   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
5660   // assume that the buffer is unswizzled.
5661   SmallVector<SDValue, 4> Loads;
5662   unsigned NumLoads = 1;
5663   MVT LoadVT = VT.getSimpleVT();
5664   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
5665   assert((LoadVT.getScalarType() == MVT::i32 ||
5666           LoadVT.getScalarType() == MVT::f32) &&
5667          isPowerOf2_32(NumElts));
5668 
5669   if (NumElts == 8 || NumElts == 16) {
5670     NumLoads = NumElts == 16 ? 4 : 2;
5671     LoadVT = MVT::v4i32;
5672   }
5673 
5674   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
5675   unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue();
5676   SDValue Ops[] = {
5677       DAG.getEntryNode(),                               // Chain
5678       Rsrc,                                             // rsrc
5679       DAG.getConstant(0, DL, MVT::i32),                 // vindex
5680       {},                                               // voffset
5681       {},                                               // soffset
5682       {},                                               // offset
5683       DAG.getTargetConstant(CachePolicy, DL, MVT::i32), // cachepolicy
5684       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
5685   };
5686 
5687   // Use the alignment to ensure that the required offsets will fit into the
5688   // immediate offsets.
5689   setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4);
5690 
5691   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
5692   for (unsigned i = 0; i < NumLoads; ++i) {
5693     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
5694     Loads.push_back(DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList,
5695                                             Ops, LoadVT, MMO));
5696   }
5697 
5698   if (VT == MVT::v8i32 || VT == MVT::v16i32)
5699     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
5700 
5701   return Loads[0];
5702 }
5703 
5704 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5705                                                   SelectionDAG &DAG) const {
5706   MachineFunction &MF = DAG.getMachineFunction();
5707   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
5708 
5709   EVT VT = Op.getValueType();
5710   SDLoc DL(Op);
5711   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5712 
5713   // TODO: Should this propagate fast-math-flags?
5714 
5715   switch (IntrinsicID) {
5716   case Intrinsic::amdgcn_implicit_buffer_ptr: {
5717     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
5718       return emitNonHSAIntrinsicError(DAG, DL, VT);
5719     return getPreloadedValue(DAG, *MFI, VT,
5720                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
5721   }
5722   case Intrinsic::amdgcn_dispatch_ptr:
5723   case Intrinsic::amdgcn_queue_ptr: {
5724     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
5725       DiagnosticInfoUnsupported BadIntrin(
5726           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
5727           DL.getDebugLoc());
5728       DAG.getContext()->diagnose(BadIntrin);
5729       return DAG.getUNDEF(VT);
5730     }
5731 
5732     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
5733       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
5734     return getPreloadedValue(DAG, *MFI, VT, RegID);
5735   }
5736   case Intrinsic::amdgcn_implicitarg_ptr: {
5737     if (MFI->isEntryFunction())
5738       return getImplicitArgPtr(DAG, DL);
5739     return getPreloadedValue(DAG, *MFI, VT,
5740                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
5741   }
5742   case Intrinsic::amdgcn_kernarg_segment_ptr: {
5743     return getPreloadedValue(DAG, *MFI, VT,
5744                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
5745   }
5746   case Intrinsic::amdgcn_dispatch_id: {
5747     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
5748   }
5749   case Intrinsic::amdgcn_rcp:
5750     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
5751   case Intrinsic::amdgcn_rsq:
5752     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5753   case Intrinsic::amdgcn_rsq_legacy:
5754     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5755       return emitRemovedIntrinsicError(DAG, DL, VT);
5756 
5757     return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
5758   case Intrinsic::amdgcn_rcp_legacy:
5759     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5760       return emitRemovedIntrinsicError(DAG, DL, VT);
5761     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
5762   case Intrinsic::amdgcn_rsq_clamp: {
5763     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5764       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
5765 
5766     Type *Type = VT.getTypeForEVT(*DAG.getContext());
5767     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
5768     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
5769 
5770     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5771     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
5772                               DAG.getConstantFP(Max, DL, VT));
5773     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
5774                        DAG.getConstantFP(Min, DL, VT));
5775   }
5776   case Intrinsic::r600_read_ngroups_x:
5777     if (Subtarget->isAmdHsaOS())
5778       return emitNonHSAIntrinsicError(DAG, DL, VT);
5779 
5780     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5781                                     SI::KernelInputOffsets::NGROUPS_X, 4, false);
5782   case Intrinsic::r600_read_ngroups_y:
5783     if (Subtarget->isAmdHsaOS())
5784       return emitNonHSAIntrinsicError(DAG, DL, VT);
5785 
5786     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5787                                     SI::KernelInputOffsets::NGROUPS_Y, 4, false);
5788   case Intrinsic::r600_read_ngroups_z:
5789     if (Subtarget->isAmdHsaOS())
5790       return emitNonHSAIntrinsicError(DAG, DL, VT);
5791 
5792     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5793                                     SI::KernelInputOffsets::NGROUPS_Z, 4, false);
5794   case Intrinsic::r600_read_global_size_x:
5795     if (Subtarget->isAmdHsaOS())
5796       return emitNonHSAIntrinsicError(DAG, DL, VT);
5797 
5798     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5799                                     SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false);
5800   case Intrinsic::r600_read_global_size_y:
5801     if (Subtarget->isAmdHsaOS())
5802       return emitNonHSAIntrinsicError(DAG, DL, VT);
5803 
5804     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5805                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false);
5806   case Intrinsic::r600_read_global_size_z:
5807     if (Subtarget->isAmdHsaOS())
5808       return emitNonHSAIntrinsicError(DAG, DL, VT);
5809 
5810     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5811                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false);
5812   case Intrinsic::r600_read_local_size_x:
5813     if (Subtarget->isAmdHsaOS())
5814       return emitNonHSAIntrinsicError(DAG, DL, VT);
5815 
5816     return lowerImplicitZextParam(DAG, Op, MVT::i16,
5817                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
5818   case Intrinsic::r600_read_local_size_y:
5819     if (Subtarget->isAmdHsaOS())
5820       return emitNonHSAIntrinsicError(DAG, DL, VT);
5821 
5822     return lowerImplicitZextParam(DAG, Op, MVT::i16,
5823                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
5824   case Intrinsic::r600_read_local_size_z:
5825     if (Subtarget->isAmdHsaOS())
5826       return emitNonHSAIntrinsicError(DAG, DL, VT);
5827 
5828     return lowerImplicitZextParam(DAG, Op, MVT::i16,
5829                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
5830   case Intrinsic::amdgcn_workgroup_id_x:
5831   case Intrinsic::r600_read_tgid_x:
5832     return getPreloadedValue(DAG, *MFI, VT,
5833                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
5834   case Intrinsic::amdgcn_workgroup_id_y:
5835   case Intrinsic::r600_read_tgid_y:
5836     return getPreloadedValue(DAG, *MFI, VT,
5837                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
5838   case Intrinsic::amdgcn_workgroup_id_z:
5839   case Intrinsic::r600_read_tgid_z:
5840     return getPreloadedValue(DAG, *MFI, VT,
5841                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
5842   case Intrinsic::amdgcn_workitem_id_x:
5843   case Intrinsic::r600_read_tidig_x:
5844     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5845                           SDLoc(DAG.getEntryNode()),
5846                           MFI->getArgInfo().WorkItemIDX);
5847   case Intrinsic::amdgcn_workitem_id_y:
5848   case Intrinsic::r600_read_tidig_y:
5849     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5850                           SDLoc(DAG.getEntryNode()),
5851                           MFI->getArgInfo().WorkItemIDY);
5852   case Intrinsic::amdgcn_workitem_id_z:
5853   case Intrinsic::r600_read_tidig_z:
5854     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5855                           SDLoc(DAG.getEntryNode()),
5856                           MFI->getArgInfo().WorkItemIDZ);
5857   case Intrinsic::amdgcn_wavefrontsize:
5858     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
5859                            SDLoc(Op), MVT::i32);
5860   case Intrinsic::amdgcn_s_buffer_load: {
5861     bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5862     SDValue GLC;
5863     SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
5864     if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
5865                           IsGFX10 ? &DLC : nullptr))
5866       return Op;
5867     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), GLC, DLC,
5868                         DAG);
5869   }
5870   case Intrinsic::amdgcn_fdiv_fast:
5871     return lowerFDIV_FAST(Op, DAG);
5872   case Intrinsic::amdgcn_interp_p1_f16: {
5873     SDValue ToM0 = DAG.getCopyToReg(DAG.getEntryNode(), DL, AMDGPU::M0,
5874                                     Op.getOperand(5), SDValue());
5875     if (getSubtarget()->getLDSBankCount() == 16) {
5876       // 16 bank LDS
5877 
5878       // FIXME: This implicitly will insert a second CopyToReg to M0.
5879       SDValue S = DAG.getNode(
5880         ISD::INTRINSIC_WO_CHAIN, DL, MVT::f32,
5881         DAG.getTargetConstant(Intrinsic::amdgcn_interp_mov, DL, MVT::i32),
5882         DAG.getConstant(2, DL, MVT::i32), // P0
5883         Op.getOperand(2),  // Attrchan
5884         Op.getOperand(3),  // Attr
5885         Op.getOperand(5)); // m0
5886 
5887       SDValue Ops[] = {
5888         Op.getOperand(1), // Src0
5889         Op.getOperand(2), // Attrchan
5890         Op.getOperand(3), // Attr
5891         DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5892         S, // Src2 - holds two f16 values selected by high
5893         DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
5894         Op.getOperand(4), // high
5895         DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5896         DAG.getTargetConstant(0, DL, MVT::i32) // $omod
5897       };
5898       return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops);
5899     } else {
5900       // 32 bank LDS
5901       SDValue Ops[] = {
5902         Op.getOperand(1), // Src0
5903         Op.getOperand(2), // Attrchan
5904         Op.getOperand(3), // Attr
5905         DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5906         Op.getOperand(4), // high
5907         DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5908         DAG.getTargetConstant(0, DL, MVT::i32), // $omod
5909         ToM0.getValue(1)
5910       };
5911       return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops);
5912     }
5913   }
5914   case Intrinsic::amdgcn_interp_p2_f16: {
5915     SDValue ToM0 = DAG.getCopyToReg(DAG.getEntryNode(), DL, AMDGPU::M0,
5916                                     Op.getOperand(6), SDValue());
5917     SDValue Ops[] = {
5918       Op.getOperand(2), // Src0
5919       Op.getOperand(3), // Attrchan
5920       Op.getOperand(4), // Attr
5921       DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5922       Op.getOperand(1), // Src2
5923       DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
5924       Op.getOperand(5), // high
5925       DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5926       ToM0.getValue(1)
5927     };
5928     return DAG.getNode(AMDGPUISD::INTERP_P2_F16, DL, MVT::f16, Ops);
5929   }
5930   case Intrinsic::amdgcn_sin:
5931     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
5932 
5933   case Intrinsic::amdgcn_cos:
5934     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
5935 
5936   case Intrinsic::amdgcn_mul_u24:
5937     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
5938   case Intrinsic::amdgcn_mul_i24:
5939     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
5940 
5941   case Intrinsic::amdgcn_log_clamp: {
5942     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5943       return SDValue();
5944 
5945     DiagnosticInfoUnsupported BadIntrin(
5946       MF.getFunction(), "intrinsic not supported on subtarget",
5947       DL.getDebugLoc());
5948       DAG.getContext()->diagnose(BadIntrin);
5949       return DAG.getUNDEF(VT);
5950   }
5951   case Intrinsic::amdgcn_ldexp:
5952     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
5953                        Op.getOperand(1), Op.getOperand(2));
5954 
5955   case Intrinsic::amdgcn_fract:
5956     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
5957 
5958   case Intrinsic::amdgcn_class:
5959     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
5960                        Op.getOperand(1), Op.getOperand(2));
5961   case Intrinsic::amdgcn_div_fmas:
5962     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
5963                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
5964                        Op.getOperand(4));
5965 
5966   case Intrinsic::amdgcn_div_fixup:
5967     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
5968                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5969 
5970   case Intrinsic::amdgcn_trig_preop:
5971     return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
5972                        Op.getOperand(1), Op.getOperand(2));
5973   case Intrinsic::amdgcn_div_scale: {
5974     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
5975 
5976     // Translate to the operands expected by the machine instruction. The
5977     // first parameter must be the same as the first instruction.
5978     SDValue Numerator = Op.getOperand(1);
5979     SDValue Denominator = Op.getOperand(2);
5980 
5981     // Note this order is opposite of the machine instruction's operations,
5982     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
5983     // intrinsic has the numerator as the first operand to match a normal
5984     // division operation.
5985 
5986     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
5987 
5988     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
5989                        Denominator, Numerator);
5990   }
5991   case Intrinsic::amdgcn_icmp: {
5992     // There is a Pat that handles this variant, so return it as-is.
5993     if (Op.getOperand(1).getValueType() == MVT::i1 &&
5994         Op.getConstantOperandVal(2) == 0 &&
5995         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
5996       return Op;
5997     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
5998   }
5999   case Intrinsic::amdgcn_fcmp: {
6000     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6001   }
6002   case Intrinsic::amdgcn_fmed3:
6003     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6004                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6005   case Intrinsic::amdgcn_fdot2:
6006     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6007                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6008                        Op.getOperand(4));
6009   case Intrinsic::amdgcn_fmul_legacy:
6010     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6011                        Op.getOperand(1), Op.getOperand(2));
6012   case Intrinsic::amdgcn_sffbh:
6013     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6014   case Intrinsic::amdgcn_sbfe:
6015     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6016                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6017   case Intrinsic::amdgcn_ubfe:
6018     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6019                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6020   case Intrinsic::amdgcn_cvt_pkrtz:
6021   case Intrinsic::amdgcn_cvt_pknorm_i16:
6022   case Intrinsic::amdgcn_cvt_pknorm_u16:
6023   case Intrinsic::amdgcn_cvt_pk_i16:
6024   case Intrinsic::amdgcn_cvt_pk_u16: {
6025     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6026     EVT VT = Op.getValueType();
6027     unsigned Opcode;
6028 
6029     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6030       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6031     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6032       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6033     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6034       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6035     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6036       Opcode = AMDGPUISD::CVT_PK_I16_I32;
6037     else
6038       Opcode = AMDGPUISD::CVT_PK_U16_U32;
6039 
6040     if (isTypeLegal(VT))
6041       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6042 
6043     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6044                                Op.getOperand(1), Op.getOperand(2));
6045     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6046   }
6047   case Intrinsic::amdgcn_fmad_ftz:
6048     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6049                        Op.getOperand(2), Op.getOperand(3));
6050 
6051   case Intrinsic::amdgcn_if_break:
6052     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6053                                       Op->getOperand(1), Op->getOperand(2)), 0);
6054 
6055   case Intrinsic::amdgcn_groupstaticsize: {
6056     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6057     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6058       return Op;
6059 
6060     const Module *M = MF.getFunction().getParent();
6061     const GlobalValue *GV =
6062         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6063     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6064                                             SIInstrInfo::MO_ABS32_LO);
6065     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6066   }
6067   case Intrinsic::amdgcn_is_shared:
6068   case Intrinsic::amdgcn_is_private: {
6069     SDLoc SL(Op);
6070     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6071       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6072     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6073     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6074                                  Op.getOperand(1));
6075 
6076     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6077                                 DAG.getConstant(1, SL, MVT::i32));
6078     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6079   }
6080   default:
6081     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6082             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6083       return lowerImage(Op, ImageDimIntr, DAG);
6084 
6085     return Op;
6086   }
6087 }
6088 
6089 // This function computes an appropriate offset to pass to
6090 // MachineMemOperand::setOffset() based on the offset inputs to
6091 // an intrinsic.  If any of the offsets are non-contstant or
6092 // if VIndex is non-zero then this function returns 0.  Otherwise,
6093 // it returns the sum of VOffset, SOffset, and Offset.
6094 static unsigned getBufferOffsetForMMO(SDValue VOffset,
6095                                       SDValue SOffset,
6096                                       SDValue Offset,
6097                                       SDValue VIndex = SDValue()) {
6098 
6099   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6100       !isa<ConstantSDNode>(Offset))
6101     return 0;
6102 
6103   if (VIndex) {
6104     if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue())
6105       return 0;
6106   }
6107 
6108   return cast<ConstantSDNode>(VOffset)->getSExtValue() +
6109          cast<ConstantSDNode>(SOffset)->getSExtValue() +
6110          cast<ConstantSDNode>(Offset)->getSExtValue();
6111 }
6112 
6113 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6114                                                  SelectionDAG &DAG) const {
6115   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6116   SDLoc DL(Op);
6117 
6118   switch (IntrID) {
6119   case Intrinsic::amdgcn_ds_ordered_add:
6120   case Intrinsic::amdgcn_ds_ordered_swap: {
6121     MemSDNode *M = cast<MemSDNode>(Op);
6122     SDValue Chain = M->getOperand(0);
6123     SDValue M0 = M->getOperand(2);
6124     SDValue Value = M->getOperand(3);
6125     unsigned IndexOperand = M->getConstantOperandVal(7);
6126     unsigned WaveRelease = M->getConstantOperandVal(8);
6127     unsigned WaveDone = M->getConstantOperandVal(9);
6128     unsigned ShaderType;
6129     unsigned Instruction;
6130 
6131     unsigned OrderedCountIndex = IndexOperand & 0x3f;
6132     IndexOperand &= ~0x3f;
6133     unsigned CountDw = 0;
6134 
6135     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6136       CountDw = (IndexOperand >> 24) & 0xf;
6137       IndexOperand &= ~(0xf << 24);
6138 
6139       if (CountDw < 1 || CountDw > 4) {
6140         report_fatal_error(
6141             "ds_ordered_count: dword count must be between 1 and 4");
6142       }
6143     }
6144 
6145     if (IndexOperand)
6146       report_fatal_error("ds_ordered_count: bad index operand");
6147 
6148     switch (IntrID) {
6149     case Intrinsic::amdgcn_ds_ordered_add:
6150       Instruction = 0;
6151       break;
6152     case Intrinsic::amdgcn_ds_ordered_swap:
6153       Instruction = 1;
6154       break;
6155     }
6156 
6157     if (WaveDone && !WaveRelease)
6158       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6159 
6160     switch (DAG.getMachineFunction().getFunction().getCallingConv()) {
6161     case CallingConv::AMDGPU_CS:
6162     case CallingConv::AMDGPU_KERNEL:
6163       ShaderType = 0;
6164       break;
6165     case CallingConv::AMDGPU_PS:
6166       ShaderType = 1;
6167       break;
6168     case CallingConv::AMDGPU_VS:
6169       ShaderType = 2;
6170       break;
6171     case CallingConv::AMDGPU_GS:
6172       ShaderType = 3;
6173       break;
6174     default:
6175       report_fatal_error("ds_ordered_count unsupported for this calling conv");
6176     }
6177 
6178     unsigned Offset0 = OrderedCountIndex << 2;
6179     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6180                        (Instruction << 4);
6181 
6182     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6183       Offset1 |= (CountDw - 1) << 6;
6184 
6185     unsigned Offset = Offset0 | (Offset1 << 8);
6186 
6187     SDValue Ops[] = {
6188       Chain,
6189       Value,
6190       DAG.getTargetConstant(Offset, DL, MVT::i16),
6191       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6192     };
6193     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6194                                    M->getVTList(), Ops, M->getMemoryVT(),
6195                                    M->getMemOperand());
6196   }
6197   case Intrinsic::amdgcn_ds_fadd: {
6198     MemSDNode *M = cast<MemSDNode>(Op);
6199     unsigned Opc;
6200     switch (IntrID) {
6201     case Intrinsic::amdgcn_ds_fadd:
6202       Opc = ISD::ATOMIC_LOAD_FADD;
6203       break;
6204     }
6205 
6206     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6207                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
6208                          M->getMemOperand());
6209   }
6210   case Intrinsic::amdgcn_atomic_inc:
6211   case Intrinsic::amdgcn_atomic_dec:
6212   case Intrinsic::amdgcn_ds_fmin:
6213   case Intrinsic::amdgcn_ds_fmax: {
6214     MemSDNode *M = cast<MemSDNode>(Op);
6215     unsigned Opc;
6216     switch (IntrID) {
6217     case Intrinsic::amdgcn_atomic_inc:
6218       Opc = AMDGPUISD::ATOMIC_INC;
6219       break;
6220     case Intrinsic::amdgcn_atomic_dec:
6221       Opc = AMDGPUISD::ATOMIC_DEC;
6222       break;
6223     case Intrinsic::amdgcn_ds_fmin:
6224       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6225       break;
6226     case Intrinsic::amdgcn_ds_fmax:
6227       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6228       break;
6229     default:
6230       llvm_unreachable("Unknown intrinsic!");
6231     }
6232     SDValue Ops[] = {
6233       M->getOperand(0), // Chain
6234       M->getOperand(2), // Ptr
6235       M->getOperand(3)  // Value
6236     };
6237 
6238     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6239                                    M->getMemoryVT(), M->getMemOperand());
6240   }
6241   case Intrinsic::amdgcn_buffer_load:
6242   case Intrinsic::amdgcn_buffer_load_format: {
6243     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6244     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6245     unsigned IdxEn = 1;
6246     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6247       IdxEn = Idx->getZExtValue() != 0;
6248     SDValue Ops[] = {
6249       Op.getOperand(0), // Chain
6250       Op.getOperand(2), // rsrc
6251       Op.getOperand(3), // vindex
6252       SDValue(),        // voffset -- will be set by setBufferOffsets
6253       SDValue(),        // soffset -- will be set by setBufferOffsets
6254       SDValue(),        // offset -- will be set by setBufferOffsets
6255       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6256       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6257     };
6258 
6259     unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6260     // We don't know the offset if vindex is non-zero, so clear it.
6261     if (IdxEn)
6262       Offset = 0;
6263 
6264     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6265         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6266 
6267     EVT VT = Op.getValueType();
6268     EVT IntVT = VT.changeTypeToInteger();
6269     auto *M = cast<MemSDNode>(Op);
6270     M->getMemOperand()->setOffset(Offset);
6271     EVT LoadVT = Op.getValueType();
6272 
6273     if (LoadVT.getScalarType() == MVT::f16)
6274       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6275                                  M, DAG, Ops);
6276 
6277     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6278     if (LoadVT.getScalarType() == MVT::i8 ||
6279         LoadVT.getScalarType() == MVT::i16)
6280       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6281 
6282     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6283                                M->getMemOperand(), DAG);
6284   }
6285   case Intrinsic::amdgcn_raw_buffer_load:
6286   case Intrinsic::amdgcn_raw_buffer_load_format: {
6287     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
6288 
6289     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6290     SDValue Ops[] = {
6291       Op.getOperand(0), // Chain
6292       Op.getOperand(2), // rsrc
6293       DAG.getConstant(0, DL, MVT::i32), // vindex
6294       Offsets.first,    // voffset
6295       Op.getOperand(4), // soffset
6296       Offsets.second,   // offset
6297       Op.getOperand(5), // cachepolicy, swizzled buffer
6298       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6299     };
6300 
6301     auto *M = cast<MemSDNode>(Op);
6302     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5]));
6303     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
6304   }
6305   case Intrinsic::amdgcn_struct_buffer_load:
6306   case Intrinsic::amdgcn_struct_buffer_load_format: {
6307     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
6308 
6309     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6310     SDValue Ops[] = {
6311       Op.getOperand(0), // Chain
6312       Op.getOperand(2), // rsrc
6313       Op.getOperand(3), // vindex
6314       Offsets.first,    // voffset
6315       Op.getOperand(5), // soffset
6316       Offsets.second,   // offset
6317       Op.getOperand(6), // cachepolicy, swizzled buffer
6318       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6319     };
6320 
6321     auto *M = cast<MemSDNode>(Op);
6322     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5],
6323                                                         Ops[2]));
6324     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
6325   }
6326   case Intrinsic::amdgcn_tbuffer_load: {
6327     MemSDNode *M = cast<MemSDNode>(Op);
6328     EVT LoadVT = Op.getValueType();
6329 
6330     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6331     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6332     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6333     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6334     unsigned IdxEn = 1;
6335     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6336       IdxEn = Idx->getZExtValue() != 0;
6337     SDValue Ops[] = {
6338       Op.getOperand(0),  // Chain
6339       Op.getOperand(2),  // rsrc
6340       Op.getOperand(3),  // vindex
6341       Op.getOperand(4),  // voffset
6342       Op.getOperand(5),  // soffset
6343       Op.getOperand(6),  // offset
6344       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6345       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6346       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
6347     };
6348 
6349     if (LoadVT.getScalarType() == MVT::f16)
6350       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6351                                  M, DAG, Ops);
6352     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6353                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6354                                DAG);
6355   }
6356   case Intrinsic::amdgcn_raw_tbuffer_load: {
6357     MemSDNode *M = cast<MemSDNode>(Op);
6358     EVT LoadVT = Op.getValueType();
6359     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6360 
6361     SDValue Ops[] = {
6362       Op.getOperand(0),  // Chain
6363       Op.getOperand(2),  // rsrc
6364       DAG.getConstant(0, DL, MVT::i32), // vindex
6365       Offsets.first,     // voffset
6366       Op.getOperand(4),  // soffset
6367       Offsets.second,    // offset
6368       Op.getOperand(5),  // format
6369       Op.getOperand(6),  // cachepolicy, swizzled buffer
6370       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6371     };
6372 
6373     if (LoadVT.getScalarType() == MVT::f16)
6374       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6375                                  M, DAG, Ops);
6376     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6377                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6378                                DAG);
6379   }
6380   case Intrinsic::amdgcn_struct_tbuffer_load: {
6381     MemSDNode *M = cast<MemSDNode>(Op);
6382     EVT LoadVT = Op.getValueType();
6383     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6384 
6385     SDValue Ops[] = {
6386       Op.getOperand(0),  // Chain
6387       Op.getOperand(2),  // rsrc
6388       Op.getOperand(3),  // vindex
6389       Offsets.first,     // voffset
6390       Op.getOperand(5),  // soffset
6391       Offsets.second,    // offset
6392       Op.getOperand(6),  // format
6393       Op.getOperand(7),  // cachepolicy, swizzled buffer
6394       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6395     };
6396 
6397     if (LoadVT.getScalarType() == MVT::f16)
6398       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6399                                  M, DAG, Ops);
6400     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6401                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6402                                DAG);
6403   }
6404   case Intrinsic::amdgcn_buffer_atomic_swap:
6405   case Intrinsic::amdgcn_buffer_atomic_add:
6406   case Intrinsic::amdgcn_buffer_atomic_sub:
6407   case Intrinsic::amdgcn_buffer_atomic_smin:
6408   case Intrinsic::amdgcn_buffer_atomic_umin:
6409   case Intrinsic::amdgcn_buffer_atomic_smax:
6410   case Intrinsic::amdgcn_buffer_atomic_umax:
6411   case Intrinsic::amdgcn_buffer_atomic_and:
6412   case Intrinsic::amdgcn_buffer_atomic_or:
6413   case Intrinsic::amdgcn_buffer_atomic_xor: {
6414     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6415     unsigned IdxEn = 1;
6416     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6417       IdxEn = Idx->getZExtValue() != 0;
6418     SDValue Ops[] = {
6419       Op.getOperand(0), // Chain
6420       Op.getOperand(2), // vdata
6421       Op.getOperand(3), // rsrc
6422       Op.getOperand(4), // vindex
6423       SDValue(),        // voffset -- will be set by setBufferOffsets
6424       SDValue(),        // soffset -- will be set by setBufferOffsets
6425       SDValue(),        // offset -- will be set by setBufferOffsets
6426       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6427       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6428     };
6429     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6430     // We don't know the offset if vindex is non-zero, so clear it.
6431     if (IdxEn)
6432       Offset = 0;
6433     EVT VT = Op.getValueType();
6434 
6435     auto *M = cast<MemSDNode>(Op);
6436     M->getMemOperand()->setOffset(Offset);
6437     unsigned Opcode = 0;
6438 
6439     switch (IntrID) {
6440     case Intrinsic::amdgcn_buffer_atomic_swap:
6441       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6442       break;
6443     case Intrinsic::amdgcn_buffer_atomic_add:
6444       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6445       break;
6446     case Intrinsic::amdgcn_buffer_atomic_sub:
6447       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6448       break;
6449     case Intrinsic::amdgcn_buffer_atomic_smin:
6450       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6451       break;
6452     case Intrinsic::amdgcn_buffer_atomic_umin:
6453       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6454       break;
6455     case Intrinsic::amdgcn_buffer_atomic_smax:
6456       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6457       break;
6458     case Intrinsic::amdgcn_buffer_atomic_umax:
6459       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6460       break;
6461     case Intrinsic::amdgcn_buffer_atomic_and:
6462       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6463       break;
6464     case Intrinsic::amdgcn_buffer_atomic_or:
6465       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6466       break;
6467     case Intrinsic::amdgcn_buffer_atomic_xor:
6468       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6469       break;
6470     default:
6471       llvm_unreachable("unhandled atomic opcode");
6472     }
6473 
6474     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6475                                    M->getMemOperand());
6476   }
6477   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6478   case Intrinsic::amdgcn_raw_buffer_atomic_add:
6479   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6480   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6481   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6482   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6483   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6484   case Intrinsic::amdgcn_raw_buffer_atomic_and:
6485   case Intrinsic::amdgcn_raw_buffer_atomic_or:
6486   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6487   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6488   case Intrinsic::amdgcn_raw_buffer_atomic_dec: {
6489     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6490     SDValue Ops[] = {
6491       Op.getOperand(0), // Chain
6492       Op.getOperand(2), // vdata
6493       Op.getOperand(3), // rsrc
6494       DAG.getConstant(0, DL, MVT::i32), // vindex
6495       Offsets.first,    // voffset
6496       Op.getOperand(5), // soffset
6497       Offsets.second,   // offset
6498       Op.getOperand(6), // cachepolicy
6499       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6500     };
6501     EVT VT = Op.getValueType();
6502 
6503     auto *M = cast<MemSDNode>(Op);
6504     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6505     unsigned Opcode = 0;
6506 
6507     switch (IntrID) {
6508     case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6509       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6510       break;
6511     case Intrinsic::amdgcn_raw_buffer_atomic_add:
6512       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6513       break;
6514     case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6515       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6516       break;
6517     case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6518       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6519       break;
6520     case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6521       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6522       break;
6523     case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6524       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6525       break;
6526     case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6527       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6528       break;
6529     case Intrinsic::amdgcn_raw_buffer_atomic_and:
6530       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6531       break;
6532     case Intrinsic::amdgcn_raw_buffer_atomic_or:
6533       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6534       break;
6535     case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6536       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6537       break;
6538     case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6539       Opcode = AMDGPUISD::BUFFER_ATOMIC_INC;
6540       break;
6541     case Intrinsic::amdgcn_raw_buffer_atomic_dec:
6542       Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC;
6543       break;
6544     default:
6545       llvm_unreachable("unhandled atomic opcode");
6546     }
6547 
6548     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6549                                    M->getMemOperand());
6550   }
6551   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6552   case Intrinsic::amdgcn_struct_buffer_atomic_add:
6553   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6554   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6555   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6556   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6557   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6558   case Intrinsic::amdgcn_struct_buffer_atomic_and:
6559   case Intrinsic::amdgcn_struct_buffer_atomic_or:
6560   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6561   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6562   case Intrinsic::amdgcn_struct_buffer_atomic_dec: {
6563     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6564     SDValue Ops[] = {
6565       Op.getOperand(0), // Chain
6566       Op.getOperand(2), // vdata
6567       Op.getOperand(3), // rsrc
6568       Op.getOperand(4), // vindex
6569       Offsets.first,    // voffset
6570       Op.getOperand(6), // soffset
6571       Offsets.second,   // offset
6572       Op.getOperand(7), // cachepolicy
6573       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6574     };
6575     EVT VT = Op.getValueType();
6576 
6577     auto *M = cast<MemSDNode>(Op);
6578     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
6579                                                         Ops[3]));
6580     unsigned Opcode = 0;
6581 
6582     switch (IntrID) {
6583     case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6584       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6585       break;
6586     case Intrinsic::amdgcn_struct_buffer_atomic_add:
6587       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6588       break;
6589     case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6590       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6591       break;
6592     case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6593       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6594       break;
6595     case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6596       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6597       break;
6598     case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6599       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6600       break;
6601     case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6602       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6603       break;
6604     case Intrinsic::amdgcn_struct_buffer_atomic_and:
6605       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6606       break;
6607     case Intrinsic::amdgcn_struct_buffer_atomic_or:
6608       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6609       break;
6610     case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6611       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6612       break;
6613     case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6614       Opcode = AMDGPUISD::BUFFER_ATOMIC_INC;
6615       break;
6616     case Intrinsic::amdgcn_struct_buffer_atomic_dec:
6617       Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC;
6618       break;
6619     default:
6620       llvm_unreachable("unhandled atomic opcode");
6621     }
6622 
6623     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6624                                    M->getMemOperand());
6625   }
6626   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
6627     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6628     unsigned IdxEn = 1;
6629     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
6630       IdxEn = Idx->getZExtValue() != 0;
6631     SDValue Ops[] = {
6632       Op.getOperand(0), // Chain
6633       Op.getOperand(2), // src
6634       Op.getOperand(3), // cmp
6635       Op.getOperand(4), // rsrc
6636       Op.getOperand(5), // vindex
6637       SDValue(),        // voffset -- will be set by setBufferOffsets
6638       SDValue(),        // soffset -- will be set by setBufferOffsets
6639       SDValue(),        // offset -- will be set by setBufferOffsets
6640       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6641       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6642     };
6643     unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
6644     // We don't know the offset if vindex is non-zero, so clear it.
6645     if (IdxEn)
6646       Offset = 0;
6647     EVT VT = Op.getValueType();
6648     auto *M = cast<MemSDNode>(Op);
6649     M->getMemOperand()->setOffset(Offset);
6650 
6651     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6652                                    Op->getVTList(), Ops, VT, M->getMemOperand());
6653   }
6654   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
6655     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6656     SDValue Ops[] = {
6657       Op.getOperand(0), // Chain
6658       Op.getOperand(2), // src
6659       Op.getOperand(3), // cmp
6660       Op.getOperand(4), // rsrc
6661       DAG.getConstant(0, DL, MVT::i32), // vindex
6662       Offsets.first,    // voffset
6663       Op.getOperand(6), // soffset
6664       Offsets.second,   // offset
6665       Op.getOperand(7), // cachepolicy
6666       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6667     };
6668     EVT VT = Op.getValueType();
6669     auto *M = cast<MemSDNode>(Op);
6670     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7]));
6671 
6672     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6673                                    Op->getVTList(), Ops, VT, M->getMemOperand());
6674   }
6675   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
6676     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
6677     SDValue Ops[] = {
6678       Op.getOperand(0), // Chain
6679       Op.getOperand(2), // src
6680       Op.getOperand(3), // cmp
6681       Op.getOperand(4), // rsrc
6682       Op.getOperand(5), // vindex
6683       Offsets.first,    // voffset
6684       Op.getOperand(7), // soffset
6685       Offsets.second,   // offset
6686       Op.getOperand(8), // cachepolicy
6687       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6688     };
6689     EVT VT = Op.getValueType();
6690     auto *M = cast<MemSDNode>(Op);
6691     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7],
6692                                                         Ops[4]));
6693 
6694     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6695                                    Op->getVTList(), Ops, VT, M->getMemOperand());
6696   }
6697 
6698   default:
6699     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6700             AMDGPU::getImageDimIntrinsicInfo(IntrID))
6701       return lowerImage(Op, ImageDimIntr, DAG);
6702 
6703     return SDValue();
6704   }
6705 }
6706 
6707 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
6708 // dwordx4 if on SI.
6709 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
6710                                               SDVTList VTList,
6711                                               ArrayRef<SDValue> Ops, EVT MemVT,
6712                                               MachineMemOperand *MMO,
6713                                               SelectionDAG &DAG) const {
6714   EVT VT = VTList.VTs[0];
6715   EVT WidenedVT = VT;
6716   EVT WidenedMemVT = MemVT;
6717   if (!Subtarget->hasDwordx3LoadStores() &&
6718       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
6719     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
6720                                  WidenedVT.getVectorElementType(), 4);
6721     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
6722                                     WidenedMemVT.getVectorElementType(), 4);
6723     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
6724   }
6725 
6726   assert(VTList.NumVTs == 2);
6727   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
6728 
6729   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
6730                                        WidenedMemVT, MMO);
6731   if (WidenedVT != VT) {
6732     auto Extract = DAG.getNode(
6733         ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
6734         DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
6735     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
6736   }
6737   return NewOp;
6738 }
6739 
6740 SDValue SITargetLowering::handleD16VData(SDValue VData,
6741                                          SelectionDAG &DAG) const {
6742   EVT StoreVT = VData.getValueType();
6743 
6744   // No change for f16 and legal vector D16 types.
6745   if (!StoreVT.isVector())
6746     return VData;
6747 
6748   SDLoc DL(VData);
6749   assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
6750 
6751   if (Subtarget->hasUnpackedD16VMem()) {
6752     // We need to unpack the packed data to store.
6753     EVT IntStoreVT = StoreVT.changeTypeToInteger();
6754     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
6755 
6756     EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
6757                                         StoreVT.getVectorNumElements());
6758     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
6759     return DAG.UnrollVectorOp(ZExt.getNode());
6760   }
6761 
6762   assert(isTypeLegal(StoreVT));
6763   return VData;
6764 }
6765 
6766 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
6767                                               SelectionDAG &DAG) const {
6768   SDLoc DL(Op);
6769   SDValue Chain = Op.getOperand(0);
6770   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6771   MachineFunction &MF = DAG.getMachineFunction();
6772 
6773   switch (IntrinsicID) {
6774   case Intrinsic::amdgcn_exp: {
6775     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
6776     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
6777     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
6778     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
6779 
6780     const SDValue Ops[] = {
6781       Chain,
6782       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
6783       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
6784       Op.getOperand(4), // src0
6785       Op.getOperand(5), // src1
6786       Op.getOperand(6), // src2
6787       Op.getOperand(7), // src3
6788       DAG.getTargetConstant(0, DL, MVT::i1), // compr
6789       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
6790     };
6791 
6792     unsigned Opc = Done->isNullValue() ?
6793       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
6794     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
6795   }
6796   case Intrinsic::amdgcn_exp_compr: {
6797     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
6798     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
6799     SDValue Src0 = Op.getOperand(4);
6800     SDValue Src1 = Op.getOperand(5);
6801     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
6802     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
6803 
6804     SDValue Undef = DAG.getUNDEF(MVT::f32);
6805     const SDValue Ops[] = {
6806       Chain,
6807       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
6808       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
6809       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
6810       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
6811       Undef, // src2
6812       Undef, // src3
6813       DAG.getTargetConstant(1, DL, MVT::i1), // compr
6814       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
6815     };
6816 
6817     unsigned Opc = Done->isNullValue() ?
6818       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
6819     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
6820   }
6821   case Intrinsic::amdgcn_s_barrier: {
6822     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
6823       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
6824       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
6825       if (WGSize <= ST.getWavefrontSize())
6826         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
6827                                           Op.getOperand(0)), 0);
6828     }
6829     return SDValue();
6830   };
6831   case Intrinsic::amdgcn_tbuffer_store: {
6832     SDValue VData = Op.getOperand(2);
6833     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6834     if (IsD16)
6835       VData = handleD16VData(VData, DAG);
6836     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6837     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6838     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6839     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
6840     unsigned IdxEn = 1;
6841     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6842       IdxEn = Idx->getZExtValue() != 0;
6843     SDValue Ops[] = {
6844       Chain,
6845       VData,             // vdata
6846       Op.getOperand(3),  // rsrc
6847       Op.getOperand(4),  // vindex
6848       Op.getOperand(5),  // voffset
6849       Op.getOperand(6),  // soffset
6850       Op.getOperand(7),  // offset
6851       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6852       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6853       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen
6854     };
6855     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6856                            AMDGPUISD::TBUFFER_STORE_FORMAT;
6857     MemSDNode *M = cast<MemSDNode>(Op);
6858     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6859                                    M->getMemoryVT(), M->getMemOperand());
6860   }
6861 
6862   case Intrinsic::amdgcn_struct_tbuffer_store: {
6863     SDValue VData = Op.getOperand(2);
6864     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6865     if (IsD16)
6866       VData = handleD16VData(VData, DAG);
6867     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6868     SDValue Ops[] = {
6869       Chain,
6870       VData,             // vdata
6871       Op.getOperand(3),  // rsrc
6872       Op.getOperand(4),  // vindex
6873       Offsets.first,     // voffset
6874       Op.getOperand(6),  // soffset
6875       Offsets.second,    // offset
6876       Op.getOperand(7),  // format
6877       Op.getOperand(8),  // cachepolicy, swizzled buffer
6878       DAG.getTargetConstant(1, DL, MVT::i1), // idexen
6879     };
6880     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6881                            AMDGPUISD::TBUFFER_STORE_FORMAT;
6882     MemSDNode *M = cast<MemSDNode>(Op);
6883     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6884                                    M->getMemoryVT(), M->getMemOperand());
6885   }
6886 
6887   case Intrinsic::amdgcn_raw_tbuffer_store: {
6888     SDValue VData = Op.getOperand(2);
6889     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6890     if (IsD16)
6891       VData = handleD16VData(VData, DAG);
6892     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6893     SDValue Ops[] = {
6894       Chain,
6895       VData,             // vdata
6896       Op.getOperand(3),  // rsrc
6897       DAG.getConstant(0, DL, MVT::i32), // vindex
6898       Offsets.first,     // voffset
6899       Op.getOperand(5),  // soffset
6900       Offsets.second,    // offset
6901       Op.getOperand(6),  // format
6902       Op.getOperand(7),  // cachepolicy, swizzled buffer
6903       DAG.getTargetConstant(0, DL, MVT::i1), // idexen
6904     };
6905     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6906                            AMDGPUISD::TBUFFER_STORE_FORMAT;
6907     MemSDNode *M = cast<MemSDNode>(Op);
6908     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6909                                    M->getMemoryVT(), M->getMemOperand());
6910   }
6911 
6912   case Intrinsic::amdgcn_buffer_store:
6913   case Intrinsic::amdgcn_buffer_store_format: {
6914     SDValue VData = Op.getOperand(2);
6915     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6916     if (IsD16)
6917       VData = handleD16VData(VData, DAG);
6918     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6919     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6920     unsigned IdxEn = 1;
6921     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6922       IdxEn = Idx->getZExtValue() != 0;
6923     SDValue Ops[] = {
6924       Chain,
6925       VData,
6926       Op.getOperand(3), // rsrc
6927       Op.getOperand(4), // vindex
6928       SDValue(), // voffset -- will be set by setBufferOffsets
6929       SDValue(), // soffset -- will be set by setBufferOffsets
6930       SDValue(), // offset -- will be set by setBufferOffsets
6931       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6932       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6933     };
6934     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6935     // We don't know the offset if vindex is non-zero, so clear it.
6936     if (IdxEn)
6937       Offset = 0;
6938     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
6939                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
6940     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
6941     MemSDNode *M = cast<MemSDNode>(Op);
6942     M->getMemOperand()->setOffset(Offset);
6943 
6944     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
6945     EVT VDataType = VData.getValueType().getScalarType();
6946     if (VDataType == MVT::i8 || VDataType == MVT::i16)
6947       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
6948 
6949     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6950                                    M->getMemoryVT(), M->getMemOperand());
6951   }
6952 
6953   case Intrinsic::amdgcn_raw_buffer_store:
6954   case Intrinsic::amdgcn_raw_buffer_store_format: {
6955     const bool IsFormat =
6956         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
6957 
6958     SDValue VData = Op.getOperand(2);
6959     EVT VDataVT = VData.getValueType();
6960     EVT EltType = VDataVT.getScalarType();
6961     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
6962     if (IsD16)
6963       VData = handleD16VData(VData, DAG);
6964 
6965     if (!isTypeLegal(VDataVT)) {
6966       VData =
6967           DAG.getNode(ISD::BITCAST, DL,
6968                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
6969     }
6970 
6971     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6972     SDValue Ops[] = {
6973       Chain,
6974       VData,
6975       Op.getOperand(3), // rsrc
6976       DAG.getConstant(0, DL, MVT::i32), // vindex
6977       Offsets.first,    // voffset
6978       Op.getOperand(5), // soffset
6979       Offsets.second,   // offset
6980       Op.getOperand(6), // cachepolicy, swizzled buffer
6981       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6982     };
6983     unsigned Opc =
6984         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
6985     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
6986     MemSDNode *M = cast<MemSDNode>(Op);
6987     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6988 
6989     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
6990     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
6991       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
6992 
6993     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6994                                    M->getMemoryVT(), M->getMemOperand());
6995   }
6996 
6997   case Intrinsic::amdgcn_struct_buffer_store:
6998   case Intrinsic::amdgcn_struct_buffer_store_format: {
6999     const bool IsFormat =
7000         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7001 
7002     SDValue VData = Op.getOperand(2);
7003     EVT VDataVT = VData.getValueType();
7004     EVT EltType = VDataVT.getScalarType();
7005     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7006 
7007     if (IsD16)
7008       VData = handleD16VData(VData, DAG);
7009 
7010     if (!isTypeLegal(VDataVT)) {
7011       VData =
7012           DAG.getNode(ISD::BITCAST, DL,
7013                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7014     }
7015 
7016     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7017     SDValue Ops[] = {
7018       Chain,
7019       VData,
7020       Op.getOperand(3), // rsrc
7021       Op.getOperand(4), // vindex
7022       Offsets.first,    // voffset
7023       Op.getOperand(6), // soffset
7024       Offsets.second,   // offset
7025       Op.getOperand(7), // cachepolicy, swizzled buffer
7026       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7027     };
7028     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7029                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7030     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7031     MemSDNode *M = cast<MemSDNode>(Op);
7032     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
7033                                                         Ops[3]));
7034 
7035     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7036     EVT VDataType = VData.getValueType().getScalarType();
7037     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7038       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7039 
7040     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7041                                    M->getMemoryVT(), M->getMemOperand());
7042   }
7043 
7044   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7045     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7046     unsigned IdxEn = 1;
7047     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7048       IdxEn = Idx->getZExtValue() != 0;
7049     SDValue Ops[] = {
7050       Chain,
7051       Op.getOperand(2), // vdata
7052       Op.getOperand(3), // rsrc
7053       Op.getOperand(4), // vindex
7054       SDValue(),        // voffset -- will be set by setBufferOffsets
7055       SDValue(),        // soffset -- will be set by setBufferOffsets
7056       SDValue(),        // offset -- will be set by setBufferOffsets
7057       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7058       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7059     };
7060     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7061     // We don't know the offset if vindex is non-zero, so clear it.
7062     if (IdxEn)
7063       Offset = 0;
7064     EVT VT = Op.getOperand(2).getValueType();
7065 
7066     auto *M = cast<MemSDNode>(Op);
7067     M->getMemOperand()->setOffset(Offset);
7068     unsigned Opcode = VT.isVector() ? AMDGPUISD::BUFFER_ATOMIC_PK_FADD
7069                                     : AMDGPUISD::BUFFER_ATOMIC_FADD;
7070 
7071     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7072                                    M->getMemOperand());
7073   }
7074 
7075   case Intrinsic::amdgcn_global_atomic_fadd: {
7076     SDValue Ops[] = {
7077       Chain,
7078       Op.getOperand(2), // ptr
7079       Op.getOperand(3)  // vdata
7080     };
7081     EVT VT = Op.getOperand(3).getValueType();
7082 
7083     auto *M = cast<MemSDNode>(Op);
7084     unsigned Opcode = VT.isVector() ? AMDGPUISD::ATOMIC_PK_FADD
7085                                     : AMDGPUISD::ATOMIC_FADD;
7086 
7087     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7088                                    M->getMemOperand());
7089   }
7090 
7091   case Intrinsic::amdgcn_end_cf:
7092     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7093                                       Op->getOperand(2), Chain), 0);
7094 
7095   default: {
7096     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7097             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7098       return lowerImage(Op, ImageDimIntr, DAG);
7099 
7100     return Op;
7101   }
7102   }
7103 }
7104 
7105 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7106 // offset (the offset that is included in bounds checking and swizzling, to be
7107 // split between the instruction's voffset and immoffset fields) and soffset
7108 // (the offset that is excluded from bounds checking and swizzling, to go in
7109 // the instruction's soffset field).  This function takes the first kind of
7110 // offset and figures out how to split it between voffset and immoffset.
7111 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7112     SDValue Offset, SelectionDAG &DAG) const {
7113   SDLoc DL(Offset);
7114   const unsigned MaxImm = 4095;
7115   SDValue N0 = Offset;
7116   ConstantSDNode *C1 = nullptr;
7117 
7118   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7119     N0 = SDValue();
7120   else if (DAG.isBaseWithConstantOffset(N0)) {
7121     C1 = cast<ConstantSDNode>(N0.getOperand(1));
7122     N0 = N0.getOperand(0);
7123   }
7124 
7125   if (C1) {
7126     unsigned ImmOffset = C1->getZExtValue();
7127     // If the immediate value is too big for the immoffset field, put the value
7128     // and -4096 into the immoffset field so that the value that is copied/added
7129     // for the voffset field is a multiple of 4096, and it stands more chance
7130     // of being CSEd with the copy/add for another similar load/store.
7131     // However, do not do that rounding down to a multiple of 4096 if that is a
7132     // negative number, as it appears to be illegal to have a negative offset
7133     // in the vgpr, even if adding the immediate offset makes it positive.
7134     unsigned Overflow = ImmOffset & ~MaxImm;
7135     ImmOffset -= Overflow;
7136     if ((int32_t)Overflow < 0) {
7137       Overflow += ImmOffset;
7138       ImmOffset = 0;
7139     }
7140     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7141     if (Overflow) {
7142       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7143       if (!N0)
7144         N0 = OverflowVal;
7145       else {
7146         SDValue Ops[] = { N0, OverflowVal };
7147         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7148       }
7149     }
7150   }
7151   if (!N0)
7152     N0 = DAG.getConstant(0, DL, MVT::i32);
7153   if (!C1)
7154     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7155   return {N0, SDValue(C1, 0)};
7156 }
7157 
7158 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7159 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7160 // pointed to by Offsets.
7161 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7162                                         SelectionDAG &DAG, SDValue *Offsets,
7163                                         unsigned Align) const {
7164   SDLoc DL(CombinedOffset);
7165   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7166     uint32_t Imm = C->getZExtValue();
7167     uint32_t SOffset, ImmOffset;
7168     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) {
7169       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7170       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7171       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7172       return SOffset + ImmOffset;
7173     }
7174   }
7175   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7176     SDValue N0 = CombinedOffset.getOperand(0);
7177     SDValue N1 = CombinedOffset.getOperand(1);
7178     uint32_t SOffset, ImmOffset;
7179     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7180     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7181                                                 Subtarget, Align)) {
7182       Offsets[0] = N0;
7183       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7184       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7185       return 0;
7186     }
7187   }
7188   Offsets[0] = CombinedOffset;
7189   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7190   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7191   return 0;
7192 }
7193 
7194 // Handle 8 bit and 16 bit buffer loads
7195 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7196                                                      EVT LoadVT, SDLoc DL,
7197                                                      ArrayRef<SDValue> Ops,
7198                                                      MemSDNode *M) const {
7199   EVT IntVT = LoadVT.changeTypeToInteger();
7200   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7201          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7202 
7203   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7204   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7205                                                Ops, IntVT,
7206                                                M->getMemOperand());
7207   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7208   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7209 
7210   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7211 }
7212 
7213 // Handle 8 bit and 16 bit buffer stores
7214 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7215                                                       EVT VDataType, SDLoc DL,
7216                                                       SDValue Ops[],
7217                                                       MemSDNode *M) const {
7218   if (VDataType == MVT::f16)
7219     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7220 
7221   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7222   Ops[1] = BufferStoreExt;
7223   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7224                                  AMDGPUISD::BUFFER_STORE_SHORT;
7225   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7226   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7227                                      M->getMemOperand());
7228 }
7229 
7230 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7231                                  ISD::LoadExtType ExtType, SDValue Op,
7232                                  const SDLoc &SL, EVT VT) {
7233   if (VT.bitsLT(Op.getValueType()))
7234     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7235 
7236   switch (ExtType) {
7237   case ISD::SEXTLOAD:
7238     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7239   case ISD::ZEXTLOAD:
7240     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7241   case ISD::EXTLOAD:
7242     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7243   case ISD::NON_EXTLOAD:
7244     return Op;
7245   }
7246 
7247   llvm_unreachable("invalid ext type");
7248 }
7249 
7250 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7251   SelectionDAG &DAG = DCI.DAG;
7252   if (Ld->getAlignment() < 4 || Ld->isDivergent())
7253     return SDValue();
7254 
7255   // FIXME: Constant loads should all be marked invariant.
7256   unsigned AS = Ld->getAddressSpace();
7257   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7258       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7259       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7260     return SDValue();
7261 
7262   // Don't do this early, since it may interfere with adjacent load merging for
7263   // illegal types. We can avoid losing alignment information for exotic types
7264   // pre-legalize.
7265   EVT MemVT = Ld->getMemoryVT();
7266   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7267       MemVT.getSizeInBits() >= 32)
7268     return SDValue();
7269 
7270   SDLoc SL(Ld);
7271 
7272   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
7273          "unexpected vector extload");
7274 
7275   // TODO: Drop only high part of range.
7276   SDValue Ptr = Ld->getBasePtr();
7277   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7278                                 MVT::i32, SL, Ld->getChain(), Ptr,
7279                                 Ld->getOffset(),
7280                                 Ld->getPointerInfo(), MVT::i32,
7281                                 Ld->getAlignment(),
7282                                 Ld->getMemOperand()->getFlags(),
7283                                 Ld->getAAInfo(),
7284                                 nullptr); // Drop ranges
7285 
7286   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7287   if (MemVT.isFloatingPoint()) {
7288     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
7289            "unexpected fp extload");
7290     TruncVT = MemVT.changeTypeToInteger();
7291   }
7292 
7293   SDValue Cvt = NewLoad;
7294   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7295     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7296                       DAG.getValueType(TruncVT));
7297   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
7298              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
7299     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
7300   } else {
7301     assert(Ld->getExtensionType() == ISD::EXTLOAD);
7302   }
7303 
7304   EVT VT = Ld->getValueType(0);
7305   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7306 
7307   DCI.AddToWorklist(Cvt.getNode());
7308 
7309   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
7310   // the appropriate extension from the 32-bit load.
7311   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
7312   DCI.AddToWorklist(Cvt.getNode());
7313 
7314   // Handle conversion back to floating point if necessary.
7315   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
7316 
7317   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
7318 }
7319 
7320 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7321   SDLoc DL(Op);
7322   LoadSDNode *Load = cast<LoadSDNode>(Op);
7323   ISD::LoadExtType ExtType = Load->getExtensionType();
7324   EVT MemVT = Load->getMemoryVT();
7325 
7326   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
7327     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
7328       return SDValue();
7329 
7330     // FIXME: Copied from PPC
7331     // First, load into 32 bits, then truncate to 1 bit.
7332 
7333     SDValue Chain = Load->getChain();
7334     SDValue BasePtr = Load->getBasePtr();
7335     MachineMemOperand *MMO = Load->getMemOperand();
7336 
7337     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
7338 
7339     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
7340                                    BasePtr, RealMemVT, MMO);
7341 
7342     if (!MemVT.isVector()) {
7343       SDValue Ops[] = {
7344         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
7345         NewLD.getValue(1)
7346       };
7347 
7348       return DAG.getMergeValues(Ops, DL);
7349     }
7350 
7351     SmallVector<SDValue, 3> Elts;
7352     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
7353       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
7354                                 DAG.getConstant(I, DL, MVT::i32));
7355 
7356       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
7357     }
7358 
7359     SDValue Ops[] = {
7360       DAG.getBuildVector(MemVT, DL, Elts),
7361       NewLD.getValue(1)
7362     };
7363 
7364     return DAG.getMergeValues(Ops, DL);
7365   }
7366 
7367   if (!MemVT.isVector())
7368     return SDValue();
7369 
7370   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
7371          "Custom lowering for non-i32 vectors hasn't been implemented.");
7372 
7373   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
7374                                       MemVT, *Load->getMemOperand())) {
7375     SDValue Ops[2];
7376     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
7377     return DAG.getMergeValues(Ops, DL);
7378   }
7379 
7380   unsigned Alignment = Load->getAlignment();
7381   unsigned AS = Load->getAddressSpace();
7382   if (Subtarget->hasLDSMisalignedBug() &&
7383       AS == AMDGPUAS::FLAT_ADDRESS &&
7384       Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
7385     return SplitVectorLoad(Op, DAG);
7386   }
7387 
7388   MachineFunction &MF = DAG.getMachineFunction();
7389   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7390   // If there is a possibilty that flat instruction access scratch memory
7391   // then we need to use the same legalization rules we use for private.
7392   if (AS == AMDGPUAS::FLAT_ADDRESS)
7393     AS = MFI->hasFlatScratchInit() ?
7394          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7395 
7396   unsigned NumElements = MemVT.getVectorNumElements();
7397 
7398   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7399       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
7400     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
7401       if (MemVT.isPow2VectorType())
7402         return SDValue();
7403       if (NumElements == 3)
7404         return WidenVectorLoad(Op, DAG);
7405       return SplitVectorLoad(Op, DAG);
7406     }
7407     // Non-uniform loads will be selected to MUBUF instructions, so they
7408     // have the same legalization requirements as global and private
7409     // loads.
7410     //
7411   }
7412 
7413   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7414       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7415       AS == AMDGPUAS::GLOBAL_ADDRESS) {
7416     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
7417         !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
7418         Alignment >= 4 && NumElements < 32) {
7419       if (MemVT.isPow2VectorType())
7420         return SDValue();
7421       if (NumElements == 3)
7422         return WidenVectorLoad(Op, DAG);
7423       return SplitVectorLoad(Op, DAG);
7424     }
7425     // Non-uniform loads will be selected to MUBUF instructions, so they
7426     // have the same legalization requirements as global and private
7427     // loads.
7428     //
7429   }
7430   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7431       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7432       AS == AMDGPUAS::GLOBAL_ADDRESS ||
7433       AS == AMDGPUAS::FLAT_ADDRESS) {
7434     if (NumElements > 4)
7435       return SplitVectorLoad(Op, DAG);
7436     // v3 loads not supported on SI.
7437     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7438       return WidenVectorLoad(Op, DAG);
7439     // v3 and v4 loads are supported for private and global memory.
7440     return SDValue();
7441   }
7442   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7443     // Depending on the setting of the private_element_size field in the
7444     // resource descriptor, we can only make private accesses up to a certain
7445     // size.
7446     switch (Subtarget->getMaxPrivateElementSize()) {
7447     case 4:
7448       return scalarizeVectorLoad(Load, DAG);
7449     case 8:
7450       if (NumElements > 2)
7451         return SplitVectorLoad(Op, DAG);
7452       return SDValue();
7453     case 16:
7454       // Same as global/flat
7455       if (NumElements > 4)
7456         return SplitVectorLoad(Op, DAG);
7457       // v3 loads not supported on SI.
7458       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7459         return WidenVectorLoad(Op, DAG);
7460       return SDValue();
7461     default:
7462       llvm_unreachable("unsupported private_element_size");
7463     }
7464   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7465     // Use ds_read_b128 if possible.
7466     if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
7467         MemVT.getStoreSize() == 16)
7468       return SDValue();
7469 
7470     if (NumElements > 2)
7471       return SplitVectorLoad(Op, DAG);
7472 
7473     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7474     // address is negative, then the instruction is incorrectly treated as
7475     // out-of-bounds even if base + offsets is in bounds. Split vectorized
7476     // loads here to avoid emitting ds_read2_b32. We may re-combine the
7477     // load later in the SILoadStoreOptimizer.
7478     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
7479         NumElements == 2 && MemVT.getStoreSize() == 8 &&
7480         Load->getAlignment() < 8) {
7481       return SplitVectorLoad(Op, DAG);
7482     }
7483   }
7484   return SDValue();
7485 }
7486 
7487 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7488   EVT VT = Op.getValueType();
7489   assert(VT.getSizeInBits() == 64);
7490 
7491   SDLoc DL(Op);
7492   SDValue Cond = Op.getOperand(0);
7493 
7494   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
7495   SDValue One = DAG.getConstant(1, DL, MVT::i32);
7496 
7497   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
7498   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
7499 
7500   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
7501   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
7502 
7503   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
7504 
7505   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
7506   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
7507 
7508   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
7509 
7510   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
7511   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
7512 }
7513 
7514 // Catch division cases where we can use shortcuts with rcp and rsq
7515 // instructions.
7516 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
7517                                               SelectionDAG &DAG) const {
7518   SDLoc SL(Op);
7519   SDValue LHS = Op.getOperand(0);
7520   SDValue RHS = Op.getOperand(1);
7521   EVT VT = Op.getValueType();
7522   const SDNodeFlags Flags = Op->getFlags();
7523   bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal();
7524 
7525   if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
7526     return SDValue();
7527 
7528   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
7529     if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
7530       if (CLHS->isExactlyValue(1.0)) {
7531         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
7532         // the CI documentation has a worst case error of 1 ulp.
7533         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
7534         // use it as long as we aren't trying to use denormals.
7535         //
7536         // v_rcp_f16 and v_rsq_f16 DO support denormals.
7537 
7538         // 1.0 / sqrt(x) -> rsq(x)
7539 
7540         // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
7541         // error seems really high at 2^29 ULP.
7542         if (RHS.getOpcode() == ISD::FSQRT)
7543           return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
7544 
7545         // 1.0 / x -> rcp(x)
7546         return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
7547       }
7548 
7549       // Same as for 1.0, but expand the sign out of the constant.
7550       if (CLHS->isExactlyValue(-1.0)) {
7551         // -1.0 / x -> rcp (fneg x)
7552         SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
7553         return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
7554       }
7555     }
7556   }
7557 
7558   if (Unsafe) {
7559     // Turn into multiply by the reciprocal.
7560     // x / y -> x * (1.0 / y)
7561     SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
7562     return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
7563   }
7564 
7565   return SDValue();
7566 }
7567 
7568 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
7569                           EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
7570   if (GlueChain->getNumValues() <= 1) {
7571     return DAG.getNode(Opcode, SL, VT, A, B);
7572   }
7573 
7574   assert(GlueChain->getNumValues() == 3);
7575 
7576   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
7577   switch (Opcode) {
7578   default: llvm_unreachable("no chain equivalent for opcode");
7579   case ISD::FMUL:
7580     Opcode = AMDGPUISD::FMUL_W_CHAIN;
7581     break;
7582   }
7583 
7584   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
7585                      GlueChain.getValue(2));
7586 }
7587 
7588 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
7589                            EVT VT, SDValue A, SDValue B, SDValue C,
7590                            SDValue GlueChain) {
7591   if (GlueChain->getNumValues() <= 1) {
7592     return DAG.getNode(Opcode, SL, VT, A, B, C);
7593   }
7594 
7595   assert(GlueChain->getNumValues() == 3);
7596 
7597   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
7598   switch (Opcode) {
7599   default: llvm_unreachable("no chain equivalent for opcode");
7600   case ISD::FMA:
7601     Opcode = AMDGPUISD::FMA_W_CHAIN;
7602     break;
7603   }
7604 
7605   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
7606                      GlueChain.getValue(2));
7607 }
7608 
7609 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
7610   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
7611     return FastLowered;
7612 
7613   SDLoc SL(Op);
7614   SDValue Src0 = Op.getOperand(0);
7615   SDValue Src1 = Op.getOperand(1);
7616 
7617   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
7618   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
7619 
7620   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
7621   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
7622 
7623   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
7624   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
7625 
7626   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
7627 }
7628 
7629 // Faster 2.5 ULP division that does not support denormals.
7630 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
7631   SDLoc SL(Op);
7632   SDValue LHS = Op.getOperand(1);
7633   SDValue RHS = Op.getOperand(2);
7634 
7635   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
7636 
7637   const APFloat K0Val(BitsToFloat(0x6f800000));
7638   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
7639 
7640   const APFloat K1Val(BitsToFloat(0x2f800000));
7641   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
7642 
7643   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
7644 
7645   EVT SetCCVT =
7646     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
7647 
7648   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
7649 
7650   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
7651 
7652   // TODO: Should this propagate fast-math-flags?
7653   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
7654 
7655   // rcp does not support denormals.
7656   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
7657 
7658   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
7659 
7660   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
7661 }
7662 
7663 // Returns immediate value for setting the F32 denorm mode when using the
7664 // S_DENORM_MODE instruction.
7665 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
7666                                           const SDLoc &SL, const GCNSubtarget *ST) {
7667   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
7668   int DPDenormModeDefault = ST->hasFP64Denormals()
7669                                 ? FP_DENORM_FLUSH_NONE
7670                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
7671 
7672   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
7673   return DAG.getTargetConstant(Mode, SL, MVT::i32);
7674 }
7675 
7676 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
7677   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
7678     return FastLowered;
7679 
7680   SDLoc SL(Op);
7681   SDValue LHS = Op.getOperand(0);
7682   SDValue RHS = Op.getOperand(1);
7683 
7684   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
7685 
7686   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
7687 
7688   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
7689                                           RHS, RHS, LHS);
7690   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
7691                                         LHS, RHS, LHS);
7692 
7693   // Denominator is scaled to not be denormal, so using rcp is ok.
7694   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
7695                                   DenominatorScaled);
7696   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
7697                                      DenominatorScaled);
7698 
7699   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
7700                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
7701                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
7702   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
7703 
7704   if (!Subtarget->hasFP32Denormals()) {
7705     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
7706 
7707     SDValue EnableDenorm;
7708     if (Subtarget->hasDenormModeInst()) {
7709       const SDValue EnableDenormValue =
7710           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
7711 
7712       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
7713                                  DAG.getEntryNode(), EnableDenormValue);
7714     } else {
7715       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
7716                                                         SL, MVT::i32);
7717       EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
7718                                  DAG.getEntryNode(), EnableDenormValue,
7719                                  BitField);
7720     }
7721 
7722     SDValue Ops[3] = {
7723       NegDivScale0,
7724       EnableDenorm.getValue(0),
7725       EnableDenorm.getValue(1)
7726     };
7727 
7728     NegDivScale0 = DAG.getMergeValues(Ops, SL);
7729   }
7730 
7731   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
7732                              ApproxRcp, One, NegDivScale0);
7733 
7734   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
7735                              ApproxRcp, Fma0);
7736 
7737   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
7738                            Fma1, Fma1);
7739 
7740   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
7741                              NumeratorScaled, Mul);
7742 
7743   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
7744 
7745   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
7746                              NumeratorScaled, Fma3);
7747 
7748   if (!Subtarget->hasFP32Denormals()) {
7749 
7750     SDValue DisableDenorm;
7751     if (Subtarget->hasDenormModeInst()) {
7752       const SDValue DisableDenormValue =
7753           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
7754 
7755       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
7756                                   Fma4.getValue(1), DisableDenormValue,
7757                                   Fma4.getValue(2));
7758     } else {
7759       const SDValue DisableDenormValue =
7760           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
7761 
7762       DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
7763                                   Fma4.getValue(1), DisableDenormValue,
7764                                   BitField, Fma4.getValue(2));
7765     }
7766 
7767     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
7768                                       DisableDenorm, DAG.getRoot());
7769     DAG.setRoot(OutputChain);
7770   }
7771 
7772   SDValue Scale = NumeratorScaled.getValue(1);
7773   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
7774                              Fma4, Fma1, Fma3, Scale);
7775 
7776   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
7777 }
7778 
7779 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
7780   if (DAG.getTarget().Options.UnsafeFPMath)
7781     return lowerFastUnsafeFDIV(Op, DAG);
7782 
7783   SDLoc SL(Op);
7784   SDValue X = Op.getOperand(0);
7785   SDValue Y = Op.getOperand(1);
7786 
7787   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
7788 
7789   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
7790 
7791   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
7792 
7793   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
7794 
7795   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
7796 
7797   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
7798 
7799   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
7800 
7801   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
7802 
7803   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
7804 
7805   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
7806   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
7807 
7808   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
7809                              NegDivScale0, Mul, DivScale1);
7810 
7811   SDValue Scale;
7812 
7813   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
7814     // Workaround a hardware bug on SI where the condition output from div_scale
7815     // is not usable.
7816 
7817     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
7818 
7819     // Figure out if the scale to use for div_fmas.
7820     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
7821     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
7822     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
7823     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
7824 
7825     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
7826     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
7827 
7828     SDValue Scale0Hi
7829       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
7830     SDValue Scale1Hi
7831       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
7832 
7833     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
7834     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
7835     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
7836   } else {
7837     Scale = DivScale1.getValue(1);
7838   }
7839 
7840   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
7841                              Fma4, Fma3, Mul, Scale);
7842 
7843   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
7844 }
7845 
7846 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
7847   EVT VT = Op.getValueType();
7848 
7849   if (VT == MVT::f32)
7850     return LowerFDIV32(Op, DAG);
7851 
7852   if (VT == MVT::f64)
7853     return LowerFDIV64(Op, DAG);
7854 
7855   if (VT == MVT::f16)
7856     return LowerFDIV16(Op, DAG);
7857 
7858   llvm_unreachable("Unexpected type for fdiv");
7859 }
7860 
7861 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7862   SDLoc DL(Op);
7863   StoreSDNode *Store = cast<StoreSDNode>(Op);
7864   EVT VT = Store->getMemoryVT();
7865 
7866   if (VT == MVT::i1) {
7867     return DAG.getTruncStore(Store->getChain(), DL,
7868        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
7869        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
7870   }
7871 
7872   assert(VT.isVector() &&
7873          Store->getValue().getValueType().getScalarType() == MVT::i32);
7874 
7875   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
7876                                       VT, *Store->getMemOperand())) {
7877     return expandUnalignedStore(Store, DAG);
7878   }
7879 
7880   unsigned AS = Store->getAddressSpace();
7881   if (Subtarget->hasLDSMisalignedBug() &&
7882       AS == AMDGPUAS::FLAT_ADDRESS &&
7883       Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
7884     return SplitVectorStore(Op, DAG);
7885   }
7886 
7887   MachineFunction &MF = DAG.getMachineFunction();
7888   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7889   // If there is a possibilty that flat instruction access scratch memory
7890   // then we need to use the same legalization rules we use for private.
7891   if (AS == AMDGPUAS::FLAT_ADDRESS)
7892     AS = MFI->hasFlatScratchInit() ?
7893          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7894 
7895   unsigned NumElements = VT.getVectorNumElements();
7896   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
7897       AS == AMDGPUAS::FLAT_ADDRESS) {
7898     if (NumElements > 4)
7899       return SplitVectorStore(Op, DAG);
7900     // v3 stores not supported on SI.
7901     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7902       return SplitVectorStore(Op, DAG);
7903     return SDValue();
7904   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7905     switch (Subtarget->getMaxPrivateElementSize()) {
7906     case 4:
7907       return scalarizeVectorStore(Store, DAG);
7908     case 8:
7909       if (NumElements > 2)
7910         return SplitVectorStore(Op, DAG);
7911       return SDValue();
7912     case 16:
7913       if (NumElements > 4 || NumElements == 3)
7914         return SplitVectorStore(Op, DAG);
7915       return SDValue();
7916     default:
7917       llvm_unreachable("unsupported private_element_size");
7918     }
7919   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7920     // Use ds_write_b128 if possible.
7921     if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
7922         VT.getStoreSize() == 16 && NumElements != 3)
7923       return SDValue();
7924 
7925     if (NumElements > 2)
7926       return SplitVectorStore(Op, DAG);
7927 
7928     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7929     // address is negative, then the instruction is incorrectly treated as
7930     // out-of-bounds even if base + offsets is in bounds. Split vectorized
7931     // stores here to avoid emitting ds_write2_b32. We may re-combine the
7932     // store later in the SILoadStoreOptimizer.
7933     if (!Subtarget->hasUsableDSOffset() &&
7934         NumElements == 2 && VT.getStoreSize() == 8 &&
7935         Store->getAlignment() < 8) {
7936       return SplitVectorStore(Op, DAG);
7937     }
7938 
7939     return SDValue();
7940   } else {
7941     llvm_unreachable("unhandled address space");
7942   }
7943 }
7944 
7945 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
7946   SDLoc DL(Op);
7947   EVT VT = Op.getValueType();
7948   SDValue Arg = Op.getOperand(0);
7949   SDValue TrigVal;
7950 
7951   // TODO: Should this propagate fast-math-flags?
7952 
7953   SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT);
7954 
7955   if (Subtarget->hasTrigReducedRange()) {
7956     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
7957     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal);
7958   } else {
7959     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
7960   }
7961 
7962   switch (Op.getOpcode()) {
7963   case ISD::FCOS:
7964     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal);
7965   case ISD::FSIN:
7966     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal);
7967   default:
7968     llvm_unreachable("Wrong trig opcode");
7969   }
7970 }
7971 
7972 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7973   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
7974   assert(AtomicNode->isCompareAndSwap());
7975   unsigned AS = AtomicNode->getAddressSpace();
7976 
7977   // No custom lowering required for local address space
7978   if (!isFlatGlobalAddrSpace(AS))
7979     return Op;
7980 
7981   // Non-local address space requires custom lowering for atomic compare
7982   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
7983   SDLoc DL(Op);
7984   SDValue ChainIn = Op.getOperand(0);
7985   SDValue Addr = Op.getOperand(1);
7986   SDValue Old = Op.getOperand(2);
7987   SDValue New = Op.getOperand(3);
7988   EVT VT = Op.getValueType();
7989   MVT SimpleVT = VT.getSimpleVT();
7990   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
7991 
7992   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
7993   SDValue Ops[] = { ChainIn, Addr, NewOld };
7994 
7995   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
7996                                  Ops, VT, AtomicNode->getMemOperand());
7997 }
7998 
7999 //===----------------------------------------------------------------------===//
8000 // Custom DAG optimizations
8001 //===----------------------------------------------------------------------===//
8002 
8003 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8004                                                      DAGCombinerInfo &DCI) const {
8005   EVT VT = N->getValueType(0);
8006   EVT ScalarVT = VT.getScalarType();
8007   if (ScalarVT != MVT::f32)
8008     return SDValue();
8009 
8010   SelectionDAG &DAG = DCI.DAG;
8011   SDLoc DL(N);
8012 
8013   SDValue Src = N->getOperand(0);
8014   EVT SrcVT = Src.getValueType();
8015 
8016   // TODO: We could try to match extracting the higher bytes, which would be
8017   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8018   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8019   // about in practice.
8020   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8021     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8022       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
8023       DCI.AddToWorklist(Cvt.getNode());
8024       return Cvt;
8025     }
8026   }
8027 
8028   return SDValue();
8029 }
8030 
8031 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8032 
8033 // This is a variant of
8034 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8035 //
8036 // The normal DAG combiner will do this, but only if the add has one use since
8037 // that would increase the number of instructions.
8038 //
8039 // This prevents us from seeing a constant offset that can be folded into a
8040 // memory instruction's addressing mode. If we know the resulting add offset of
8041 // a pointer can be folded into an addressing offset, we can replace the pointer
8042 // operand with the add of new constant offset. This eliminates one of the uses,
8043 // and may allow the remaining use to also be simplified.
8044 //
8045 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8046                                                unsigned AddrSpace,
8047                                                EVT MemVT,
8048                                                DAGCombinerInfo &DCI) const {
8049   SDValue N0 = N->getOperand(0);
8050   SDValue N1 = N->getOperand(1);
8051 
8052   // We only do this to handle cases where it's profitable when there are
8053   // multiple uses of the add, so defer to the standard combine.
8054   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8055       N0->hasOneUse())
8056     return SDValue();
8057 
8058   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8059   if (!CN1)
8060     return SDValue();
8061 
8062   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8063   if (!CAdd)
8064     return SDValue();
8065 
8066   // If the resulting offset is too large, we can't fold it into the addressing
8067   // mode offset.
8068   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8069   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8070 
8071   AddrMode AM;
8072   AM.HasBaseReg = true;
8073   AM.BaseOffs = Offset.getSExtValue();
8074   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8075     return SDValue();
8076 
8077   SelectionDAG &DAG = DCI.DAG;
8078   SDLoc SL(N);
8079   EVT VT = N->getValueType(0);
8080 
8081   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8082   SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
8083 
8084   SDNodeFlags Flags;
8085   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8086                           (N0.getOpcode() == ISD::OR ||
8087                            N0->getFlags().hasNoUnsignedWrap()));
8088 
8089   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8090 }
8091 
8092 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8093                                                   DAGCombinerInfo &DCI) const {
8094   SDValue Ptr = N->getBasePtr();
8095   SelectionDAG &DAG = DCI.DAG;
8096   SDLoc SL(N);
8097 
8098   // TODO: We could also do this for multiplies.
8099   if (Ptr.getOpcode() == ISD::SHL) {
8100     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
8101                                           N->getMemoryVT(), DCI);
8102     if (NewPtr) {
8103       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8104 
8105       NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
8106       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8107     }
8108   }
8109 
8110   return SDValue();
8111 }
8112 
8113 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8114   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8115          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8116          (Opc == ISD::XOR && Val == 0);
8117 }
8118 
8119 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8120 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8121 // integer combine opportunities since most 64-bit operations are decomposed
8122 // this way.  TODO: We won't want this for SALU especially if it is an inline
8123 // immediate.
8124 SDValue SITargetLowering::splitBinaryBitConstantOp(
8125   DAGCombinerInfo &DCI,
8126   const SDLoc &SL,
8127   unsigned Opc, SDValue LHS,
8128   const ConstantSDNode *CRHS) const {
8129   uint64_t Val = CRHS->getZExtValue();
8130   uint32_t ValLo = Lo_32(Val);
8131   uint32_t ValHi = Hi_32(Val);
8132   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8133 
8134     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8135          bitOpWithConstantIsReducible(Opc, ValHi)) ||
8136         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8137     // If we need to materialize a 64-bit immediate, it will be split up later
8138     // anyway. Avoid creating the harder to understand 64-bit immediate
8139     // materialization.
8140     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8141   }
8142 
8143   return SDValue();
8144 }
8145 
8146 // Returns true if argument is a boolean value which is not serialized into
8147 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
8148 static bool isBoolSGPR(SDValue V) {
8149   if (V.getValueType() != MVT::i1)
8150     return false;
8151   switch (V.getOpcode()) {
8152   default: break;
8153   case ISD::SETCC:
8154   case ISD::AND:
8155   case ISD::OR:
8156   case ISD::XOR:
8157   case AMDGPUISD::FP_CLASS:
8158     return true;
8159   }
8160   return false;
8161 }
8162 
8163 // If a constant has all zeroes or all ones within each byte return it.
8164 // Otherwise return 0.
8165 static uint32_t getConstantPermuteMask(uint32_t C) {
8166   // 0xff for any zero byte in the mask
8167   uint32_t ZeroByteMask = 0;
8168   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8169   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8170   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8171   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
8172   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
8173   if ((NonZeroByteMask & C) != NonZeroByteMask)
8174     return 0; // Partial bytes selected.
8175   return C;
8176 }
8177 
8178 // Check if a node selects whole bytes from its operand 0 starting at a byte
8179 // boundary while masking the rest. Returns select mask as in the v_perm_b32
8180 // or -1 if not succeeded.
8181 // Note byte select encoding:
8182 // value 0-3 selects corresponding source byte;
8183 // value 0xc selects zero;
8184 // value 0xff selects 0xff.
8185 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
8186   assert(V.getValueSizeInBits() == 32);
8187 
8188   if (V.getNumOperands() != 2)
8189     return ~0;
8190 
8191   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
8192   if (!N1)
8193     return ~0;
8194 
8195   uint32_t C = N1->getZExtValue();
8196 
8197   switch (V.getOpcode()) {
8198   default:
8199     break;
8200   case ISD::AND:
8201     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8202       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
8203     }
8204     break;
8205 
8206   case ISD::OR:
8207     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8208       return (0x03020100 & ~ConstMask) | ConstMask;
8209     }
8210     break;
8211 
8212   case ISD::SHL:
8213     if (C % 8)
8214       return ~0;
8215 
8216     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
8217 
8218   case ISD::SRL:
8219     if (C % 8)
8220       return ~0;
8221 
8222     return uint32_t(0x0c0c0c0c03020100ull >> C);
8223   }
8224 
8225   return ~0;
8226 }
8227 
8228 SDValue SITargetLowering::performAndCombine(SDNode *N,
8229                                             DAGCombinerInfo &DCI) const {
8230   if (DCI.isBeforeLegalize())
8231     return SDValue();
8232 
8233   SelectionDAG &DAG = DCI.DAG;
8234   EVT VT = N->getValueType(0);
8235   SDValue LHS = N->getOperand(0);
8236   SDValue RHS = N->getOperand(1);
8237 
8238 
8239   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8240   if (VT == MVT::i64 && CRHS) {
8241     if (SDValue Split
8242         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
8243       return Split;
8244   }
8245 
8246   if (CRHS && VT == MVT::i32) {
8247     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
8248     // nb = number of trailing zeroes in mask
8249     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
8250     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
8251     uint64_t Mask = CRHS->getZExtValue();
8252     unsigned Bits = countPopulation(Mask);
8253     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
8254         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
8255       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
8256         unsigned Shift = CShift->getZExtValue();
8257         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
8258         unsigned Offset = NB + Shift;
8259         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
8260           SDLoc SL(N);
8261           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
8262                                     LHS->getOperand(0),
8263                                     DAG.getConstant(Offset, SL, MVT::i32),
8264                                     DAG.getConstant(Bits, SL, MVT::i32));
8265           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8266           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
8267                                     DAG.getValueType(NarrowVT));
8268           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
8269                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
8270           return Shl;
8271         }
8272       }
8273     }
8274 
8275     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8276     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
8277         isa<ConstantSDNode>(LHS.getOperand(2))) {
8278       uint32_t Sel = getConstantPermuteMask(Mask);
8279       if (!Sel)
8280         return SDValue();
8281 
8282       // Select 0xc for all zero bytes
8283       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
8284       SDLoc DL(N);
8285       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8286                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8287     }
8288   }
8289 
8290   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
8291   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
8292   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
8293     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8294     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
8295 
8296     SDValue X = LHS.getOperand(0);
8297     SDValue Y = RHS.getOperand(0);
8298     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
8299       return SDValue();
8300 
8301     if (LCC == ISD::SETO) {
8302       if (X != LHS.getOperand(1))
8303         return SDValue();
8304 
8305       if (RCC == ISD::SETUNE) {
8306         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
8307         if (!C1 || !C1->isInfinity() || C1->isNegative())
8308           return SDValue();
8309 
8310         const uint32_t Mask = SIInstrFlags::N_NORMAL |
8311                               SIInstrFlags::N_SUBNORMAL |
8312                               SIInstrFlags::N_ZERO |
8313                               SIInstrFlags::P_ZERO |
8314                               SIInstrFlags::P_SUBNORMAL |
8315                               SIInstrFlags::P_NORMAL;
8316 
8317         static_assert(((~(SIInstrFlags::S_NAN |
8318                           SIInstrFlags::Q_NAN |
8319                           SIInstrFlags::N_INFINITY |
8320                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
8321                       "mask not equal");
8322 
8323         SDLoc DL(N);
8324         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8325                            X, DAG.getConstant(Mask, DL, MVT::i32));
8326       }
8327     }
8328   }
8329 
8330   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
8331     std::swap(LHS, RHS);
8332 
8333   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8334       RHS.hasOneUse()) {
8335     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8336     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
8337     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
8338     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8339     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
8340         (RHS.getOperand(0) == LHS.getOperand(0) &&
8341          LHS.getOperand(0) == LHS.getOperand(1))) {
8342       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
8343       unsigned NewMask = LCC == ISD::SETO ?
8344         Mask->getZExtValue() & ~OrdMask :
8345         Mask->getZExtValue() & OrdMask;
8346 
8347       SDLoc DL(N);
8348       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
8349                          DAG.getConstant(NewMask, DL, MVT::i32));
8350     }
8351   }
8352 
8353   if (VT == MVT::i32 &&
8354       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
8355     // and x, (sext cc from i1) => select cc, x, 0
8356     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
8357       std::swap(LHS, RHS);
8358     if (isBoolSGPR(RHS.getOperand(0)))
8359       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
8360                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
8361   }
8362 
8363   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8364   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8365   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8366       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8367     uint32_t LHSMask = getPermuteMask(DAG, LHS);
8368     uint32_t RHSMask = getPermuteMask(DAG, RHS);
8369     if (LHSMask != ~0u && RHSMask != ~0u) {
8370       // Canonicalize the expression in an attempt to have fewer unique masks
8371       // and therefore fewer registers used to hold the masks.
8372       if (LHSMask > RHSMask) {
8373         std::swap(LHSMask, RHSMask);
8374         std::swap(LHS, RHS);
8375       }
8376 
8377       // Select 0xc for each lane used from source operand. Zero has 0xc mask
8378       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8379       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8380       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8381 
8382       // Check of we need to combine values from two sources within a byte.
8383       if (!(LHSUsedLanes & RHSUsedLanes) &&
8384           // If we select high and lower word keep it for SDWA.
8385           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8386           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8387         // Each byte in each mask is either selector mask 0-3, or has higher
8388         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
8389         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
8390         // mask which is not 0xff wins. By anding both masks we have a correct
8391         // result except that 0x0c shall be corrected to give 0x0c only.
8392         uint32_t Mask = LHSMask & RHSMask;
8393         for (unsigned I = 0; I < 32; I += 8) {
8394           uint32_t ByteSel = 0xff << I;
8395           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
8396             Mask &= (0x0c << I) & 0xffffffff;
8397         }
8398 
8399         // Add 4 to each active LHS lane. It will not affect any existing 0xff
8400         // or 0x0c.
8401         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
8402         SDLoc DL(N);
8403 
8404         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8405                            LHS.getOperand(0), RHS.getOperand(0),
8406                            DAG.getConstant(Sel, DL, MVT::i32));
8407       }
8408     }
8409   }
8410 
8411   return SDValue();
8412 }
8413 
8414 SDValue SITargetLowering::performOrCombine(SDNode *N,
8415                                            DAGCombinerInfo &DCI) const {
8416   SelectionDAG &DAG = DCI.DAG;
8417   SDValue LHS = N->getOperand(0);
8418   SDValue RHS = N->getOperand(1);
8419 
8420   EVT VT = N->getValueType(0);
8421   if (VT == MVT::i1) {
8422     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
8423     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8424         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
8425       SDValue Src = LHS.getOperand(0);
8426       if (Src != RHS.getOperand(0))
8427         return SDValue();
8428 
8429       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
8430       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8431       if (!CLHS || !CRHS)
8432         return SDValue();
8433 
8434       // Only 10 bits are used.
8435       static const uint32_t MaxMask = 0x3ff;
8436 
8437       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
8438       SDLoc DL(N);
8439       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8440                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
8441     }
8442 
8443     return SDValue();
8444   }
8445 
8446   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8447   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
8448       LHS.getOpcode() == AMDGPUISD::PERM &&
8449       isa<ConstantSDNode>(LHS.getOperand(2))) {
8450     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
8451     if (!Sel)
8452       return SDValue();
8453 
8454     Sel |= LHS.getConstantOperandVal(2);
8455     SDLoc DL(N);
8456     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8457                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8458   }
8459 
8460   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8461   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8462   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8463       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8464     uint32_t LHSMask = getPermuteMask(DAG, LHS);
8465     uint32_t RHSMask = getPermuteMask(DAG, RHS);
8466     if (LHSMask != ~0u && RHSMask != ~0u) {
8467       // Canonicalize the expression in an attempt to have fewer unique masks
8468       // and therefore fewer registers used to hold the masks.
8469       if (LHSMask > RHSMask) {
8470         std::swap(LHSMask, RHSMask);
8471         std::swap(LHS, RHS);
8472       }
8473 
8474       // Select 0xc for each lane used from source operand. Zero has 0xc mask
8475       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8476       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8477       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8478 
8479       // Check of we need to combine values from two sources within a byte.
8480       if (!(LHSUsedLanes & RHSUsedLanes) &&
8481           // If we select high and lower word keep it for SDWA.
8482           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8483           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8484         // Kill zero bytes selected by other mask. Zero value is 0xc.
8485         LHSMask &= ~RHSUsedLanes;
8486         RHSMask &= ~LHSUsedLanes;
8487         // Add 4 to each active LHS lane
8488         LHSMask |= LHSUsedLanes & 0x04040404;
8489         // Combine masks
8490         uint32_t Sel = LHSMask | RHSMask;
8491         SDLoc DL(N);
8492 
8493         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8494                            LHS.getOperand(0), RHS.getOperand(0),
8495                            DAG.getConstant(Sel, DL, MVT::i32));
8496       }
8497     }
8498   }
8499 
8500   if (VT != MVT::i64)
8501     return SDValue();
8502 
8503   // TODO: This could be a generic combine with a predicate for extracting the
8504   // high half of an integer being free.
8505 
8506   // (or i64:x, (zero_extend i32:y)) ->
8507   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
8508   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
8509       RHS.getOpcode() != ISD::ZERO_EXTEND)
8510     std::swap(LHS, RHS);
8511 
8512   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
8513     SDValue ExtSrc = RHS.getOperand(0);
8514     EVT SrcVT = ExtSrc.getValueType();
8515     if (SrcVT == MVT::i32) {
8516       SDLoc SL(N);
8517       SDValue LowLHS, HiBits;
8518       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
8519       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
8520 
8521       DCI.AddToWorklist(LowOr.getNode());
8522       DCI.AddToWorklist(HiBits.getNode());
8523 
8524       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
8525                                 LowOr, HiBits);
8526       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
8527     }
8528   }
8529 
8530   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
8531   if (CRHS) {
8532     if (SDValue Split
8533           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
8534       return Split;
8535   }
8536 
8537   return SDValue();
8538 }
8539 
8540 SDValue SITargetLowering::performXorCombine(SDNode *N,
8541                                             DAGCombinerInfo &DCI) const {
8542   EVT VT = N->getValueType(0);
8543   if (VT != MVT::i64)
8544     return SDValue();
8545 
8546   SDValue LHS = N->getOperand(0);
8547   SDValue RHS = N->getOperand(1);
8548 
8549   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8550   if (CRHS) {
8551     if (SDValue Split
8552           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
8553       return Split;
8554   }
8555 
8556   return SDValue();
8557 }
8558 
8559 // Instructions that will be lowered with a final instruction that zeros the
8560 // high result bits.
8561 // XXX - probably only need to list legal operations.
8562 static bool fp16SrcZerosHighBits(unsigned Opc) {
8563   switch (Opc) {
8564   case ISD::FADD:
8565   case ISD::FSUB:
8566   case ISD::FMUL:
8567   case ISD::FDIV:
8568   case ISD::FREM:
8569   case ISD::FMA:
8570   case ISD::FMAD:
8571   case ISD::FCANONICALIZE:
8572   case ISD::FP_ROUND:
8573   case ISD::UINT_TO_FP:
8574   case ISD::SINT_TO_FP:
8575   case ISD::FABS:
8576     // Fabs is lowered to a bit operation, but it's an and which will clear the
8577     // high bits anyway.
8578   case ISD::FSQRT:
8579   case ISD::FSIN:
8580   case ISD::FCOS:
8581   case ISD::FPOWI:
8582   case ISD::FPOW:
8583   case ISD::FLOG:
8584   case ISD::FLOG2:
8585   case ISD::FLOG10:
8586   case ISD::FEXP:
8587   case ISD::FEXP2:
8588   case ISD::FCEIL:
8589   case ISD::FTRUNC:
8590   case ISD::FRINT:
8591   case ISD::FNEARBYINT:
8592   case ISD::FROUND:
8593   case ISD::FFLOOR:
8594   case ISD::FMINNUM:
8595   case ISD::FMAXNUM:
8596   case AMDGPUISD::FRACT:
8597   case AMDGPUISD::CLAMP:
8598   case AMDGPUISD::COS_HW:
8599   case AMDGPUISD::SIN_HW:
8600   case AMDGPUISD::FMIN3:
8601   case AMDGPUISD::FMAX3:
8602   case AMDGPUISD::FMED3:
8603   case AMDGPUISD::FMAD_FTZ:
8604   case AMDGPUISD::RCP:
8605   case AMDGPUISD::RSQ:
8606   case AMDGPUISD::RCP_IFLAG:
8607   case AMDGPUISD::LDEXP:
8608     return true;
8609   default:
8610     // fcopysign, select and others may be lowered to 32-bit bit operations
8611     // which don't zero the high bits.
8612     return false;
8613   }
8614 }
8615 
8616 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
8617                                                    DAGCombinerInfo &DCI) const {
8618   if (!Subtarget->has16BitInsts() ||
8619       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
8620     return SDValue();
8621 
8622   EVT VT = N->getValueType(0);
8623   if (VT != MVT::i32)
8624     return SDValue();
8625 
8626   SDValue Src = N->getOperand(0);
8627   if (Src.getValueType() != MVT::i16)
8628     return SDValue();
8629 
8630   // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
8631   // FIXME: It is not universally true that the high bits are zeroed on gfx9.
8632   if (Src.getOpcode() == ISD::BITCAST) {
8633     SDValue BCSrc = Src.getOperand(0);
8634     if (BCSrc.getValueType() == MVT::f16 &&
8635         fp16SrcZerosHighBits(BCSrc.getOpcode()))
8636       return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
8637   }
8638 
8639   return SDValue();
8640 }
8641 
8642 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
8643                                                         DAGCombinerInfo &DCI)
8644                                                         const {
8645   SDValue Src = N->getOperand(0);
8646   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
8647 
8648   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
8649       VTSign->getVT() == MVT::i8) ||
8650       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
8651       VTSign->getVT() == MVT::i16)) &&
8652       Src.hasOneUse()) {
8653     auto *M = cast<MemSDNode>(Src);
8654     SDValue Ops[] = {
8655       Src.getOperand(0), // Chain
8656       Src.getOperand(1), // rsrc
8657       Src.getOperand(2), // vindex
8658       Src.getOperand(3), // voffset
8659       Src.getOperand(4), // soffset
8660       Src.getOperand(5), // offset
8661       Src.getOperand(6),
8662       Src.getOperand(7)
8663     };
8664     // replace with BUFFER_LOAD_BYTE/SHORT
8665     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
8666                                          Src.getOperand(0).getValueType());
8667     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
8668                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
8669     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
8670                                                           ResList,
8671                                                           Ops, M->getMemoryVT(),
8672                                                           M->getMemOperand());
8673     return DCI.DAG.getMergeValues({BufferLoadSignExt,
8674                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
8675   }
8676   return SDValue();
8677 }
8678 
8679 SDValue SITargetLowering::performClassCombine(SDNode *N,
8680                                               DAGCombinerInfo &DCI) const {
8681   SelectionDAG &DAG = DCI.DAG;
8682   SDValue Mask = N->getOperand(1);
8683 
8684   // fp_class x, 0 -> false
8685   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
8686     if (CMask->isNullValue())
8687       return DAG.getConstant(0, SDLoc(N), MVT::i1);
8688   }
8689 
8690   if (N->getOperand(0).isUndef())
8691     return DAG.getUNDEF(MVT::i1);
8692 
8693   return SDValue();
8694 }
8695 
8696 SDValue SITargetLowering::performRcpCombine(SDNode *N,
8697                                             DAGCombinerInfo &DCI) const {
8698   EVT VT = N->getValueType(0);
8699   SDValue N0 = N->getOperand(0);
8700 
8701   if (N0.isUndef())
8702     return N0;
8703 
8704   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
8705                          N0.getOpcode() == ISD::SINT_TO_FP)) {
8706     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
8707                            N->getFlags());
8708   }
8709 
8710   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
8711 }
8712 
8713 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
8714                                        unsigned MaxDepth) const {
8715   unsigned Opcode = Op.getOpcode();
8716   if (Opcode == ISD::FCANONICALIZE)
8717     return true;
8718 
8719   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
8720     auto F = CFP->getValueAPF();
8721     if (F.isNaN() && F.isSignaling())
8722       return false;
8723     return !F.isDenormal() || denormalsEnabledForType(Op.getValueType());
8724   }
8725 
8726   // If source is a result of another standard FP operation it is already in
8727   // canonical form.
8728   if (MaxDepth == 0)
8729     return false;
8730 
8731   switch (Opcode) {
8732   // These will flush denorms if required.
8733   case ISD::FADD:
8734   case ISD::FSUB:
8735   case ISD::FMUL:
8736   case ISD::FCEIL:
8737   case ISD::FFLOOR:
8738   case ISD::FMA:
8739   case ISD::FMAD:
8740   case ISD::FSQRT:
8741   case ISD::FDIV:
8742   case ISD::FREM:
8743   case ISD::FP_ROUND:
8744   case ISD::FP_EXTEND:
8745   case AMDGPUISD::FMUL_LEGACY:
8746   case AMDGPUISD::FMAD_FTZ:
8747   case AMDGPUISD::RCP:
8748   case AMDGPUISD::RSQ:
8749   case AMDGPUISD::RSQ_CLAMP:
8750   case AMDGPUISD::RCP_LEGACY:
8751   case AMDGPUISD::RSQ_LEGACY:
8752   case AMDGPUISD::RCP_IFLAG:
8753   case AMDGPUISD::TRIG_PREOP:
8754   case AMDGPUISD::DIV_SCALE:
8755   case AMDGPUISD::DIV_FMAS:
8756   case AMDGPUISD::DIV_FIXUP:
8757   case AMDGPUISD::FRACT:
8758   case AMDGPUISD::LDEXP:
8759   case AMDGPUISD::CVT_PKRTZ_F16_F32:
8760   case AMDGPUISD::CVT_F32_UBYTE0:
8761   case AMDGPUISD::CVT_F32_UBYTE1:
8762   case AMDGPUISD::CVT_F32_UBYTE2:
8763   case AMDGPUISD::CVT_F32_UBYTE3:
8764     return true;
8765 
8766   // It can/will be lowered or combined as a bit operation.
8767   // Need to check their input recursively to handle.
8768   case ISD::FNEG:
8769   case ISD::FABS:
8770   case ISD::FCOPYSIGN:
8771     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
8772 
8773   case ISD::FSIN:
8774   case ISD::FCOS:
8775   case ISD::FSINCOS:
8776     return Op.getValueType().getScalarType() != MVT::f16;
8777 
8778   case ISD::FMINNUM:
8779   case ISD::FMAXNUM:
8780   case ISD::FMINNUM_IEEE:
8781   case ISD::FMAXNUM_IEEE:
8782   case AMDGPUISD::CLAMP:
8783   case AMDGPUISD::FMED3:
8784   case AMDGPUISD::FMAX3:
8785   case AMDGPUISD::FMIN3: {
8786     // FIXME: Shouldn't treat the generic operations different based these.
8787     // However, we aren't really required to flush the result from
8788     // minnum/maxnum..
8789 
8790     // snans will be quieted, so we only need to worry about denormals.
8791     if (Subtarget->supportsMinMaxDenormModes() ||
8792         denormalsEnabledForType(Op.getValueType()))
8793       return true;
8794 
8795     // Flushing may be required.
8796     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
8797     // targets need to check their input recursively.
8798 
8799     // FIXME: Does this apply with clamp? It's implemented with max.
8800     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
8801       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
8802         return false;
8803     }
8804 
8805     return true;
8806   }
8807   case ISD::SELECT: {
8808     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
8809            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
8810   }
8811   case ISD::BUILD_VECTOR: {
8812     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
8813       SDValue SrcOp = Op.getOperand(i);
8814       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
8815         return false;
8816     }
8817 
8818     return true;
8819   }
8820   case ISD::EXTRACT_VECTOR_ELT:
8821   case ISD::EXTRACT_SUBVECTOR: {
8822     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
8823   }
8824   case ISD::INSERT_VECTOR_ELT: {
8825     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
8826            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
8827   }
8828   case ISD::UNDEF:
8829     // Could be anything.
8830     return false;
8831 
8832   case ISD::BITCAST: {
8833     // Hack round the mess we make when legalizing extract_vector_elt
8834     SDValue Src = Op.getOperand(0);
8835     if (Src.getValueType() == MVT::i16 &&
8836         Src.getOpcode() == ISD::TRUNCATE) {
8837       SDValue TruncSrc = Src.getOperand(0);
8838       if (TruncSrc.getValueType() == MVT::i32 &&
8839           TruncSrc.getOpcode() == ISD::BITCAST &&
8840           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
8841         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
8842       }
8843     }
8844 
8845     return false;
8846   }
8847   case ISD::INTRINSIC_WO_CHAIN: {
8848     unsigned IntrinsicID
8849       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8850     // TODO: Handle more intrinsics
8851     switch (IntrinsicID) {
8852     case Intrinsic::amdgcn_cvt_pkrtz:
8853     case Intrinsic::amdgcn_cubeid:
8854     case Intrinsic::amdgcn_frexp_mant:
8855     case Intrinsic::amdgcn_fdot2:
8856       return true;
8857     default:
8858       break;
8859     }
8860 
8861     LLVM_FALLTHROUGH;
8862   }
8863   default:
8864     return denormalsEnabledForType(Op.getValueType()) &&
8865            DAG.isKnownNeverSNaN(Op);
8866   }
8867 
8868   llvm_unreachable("invalid operation");
8869 }
8870 
8871 // Constant fold canonicalize.
8872 SDValue SITargetLowering::getCanonicalConstantFP(
8873   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
8874   // Flush denormals to 0 if not enabled.
8875   if (C.isDenormal() && !denormalsEnabledForType(VT))
8876     return DAG.getConstantFP(0.0, SL, VT);
8877 
8878   if (C.isNaN()) {
8879     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
8880     if (C.isSignaling()) {
8881       // Quiet a signaling NaN.
8882       // FIXME: Is this supposed to preserve payload bits?
8883       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
8884     }
8885 
8886     // Make sure it is the canonical NaN bitpattern.
8887     //
8888     // TODO: Can we use -1 as the canonical NaN value since it's an inline
8889     // immediate?
8890     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
8891       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
8892   }
8893 
8894   // Already canonical.
8895   return DAG.getConstantFP(C, SL, VT);
8896 }
8897 
8898 static bool vectorEltWillFoldAway(SDValue Op) {
8899   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
8900 }
8901 
8902 SDValue SITargetLowering::performFCanonicalizeCombine(
8903   SDNode *N,
8904   DAGCombinerInfo &DCI) const {
8905   SelectionDAG &DAG = DCI.DAG;
8906   SDValue N0 = N->getOperand(0);
8907   EVT VT = N->getValueType(0);
8908 
8909   // fcanonicalize undef -> qnan
8910   if (N0.isUndef()) {
8911     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
8912     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
8913   }
8914 
8915   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
8916     EVT VT = N->getValueType(0);
8917     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
8918   }
8919 
8920   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
8921   //                                                   (fcanonicalize k)
8922   //
8923   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
8924 
8925   // TODO: This could be better with wider vectors that will be split to v2f16,
8926   // and to consider uses since there aren't that many packed operations.
8927   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
8928       isTypeLegal(MVT::v2f16)) {
8929     SDLoc SL(N);
8930     SDValue NewElts[2];
8931     SDValue Lo = N0.getOperand(0);
8932     SDValue Hi = N0.getOperand(1);
8933     EVT EltVT = Lo.getValueType();
8934 
8935     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
8936       for (unsigned I = 0; I != 2; ++I) {
8937         SDValue Op = N0.getOperand(I);
8938         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
8939           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
8940                                               CFP->getValueAPF());
8941         } else if (Op.isUndef()) {
8942           // Handled below based on what the other operand is.
8943           NewElts[I] = Op;
8944         } else {
8945           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
8946         }
8947       }
8948 
8949       // If one half is undef, and one is constant, perfer a splat vector rather
8950       // than the normal qNaN. If it's a register, prefer 0.0 since that's
8951       // cheaper to use and may be free with a packed operation.
8952       if (NewElts[0].isUndef()) {
8953         if (isa<ConstantFPSDNode>(NewElts[1]))
8954           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
8955             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
8956       }
8957 
8958       if (NewElts[1].isUndef()) {
8959         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
8960           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
8961       }
8962 
8963       return DAG.getBuildVector(VT, SL, NewElts);
8964     }
8965   }
8966 
8967   unsigned SrcOpc = N0.getOpcode();
8968 
8969   // If it's free to do so, push canonicalizes further up the source, which may
8970   // find a canonical source.
8971   //
8972   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
8973   // sNaNs.
8974   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
8975     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
8976     if (CRHS && N0.hasOneUse()) {
8977       SDLoc SL(N);
8978       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
8979                                    N0.getOperand(0));
8980       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
8981       DCI.AddToWorklist(Canon0.getNode());
8982 
8983       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
8984     }
8985   }
8986 
8987   return isCanonicalized(DAG, N0) ? N0 : SDValue();
8988 }
8989 
8990 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
8991   switch (Opc) {
8992   case ISD::FMAXNUM:
8993   case ISD::FMAXNUM_IEEE:
8994     return AMDGPUISD::FMAX3;
8995   case ISD::SMAX:
8996     return AMDGPUISD::SMAX3;
8997   case ISD::UMAX:
8998     return AMDGPUISD::UMAX3;
8999   case ISD::FMINNUM:
9000   case ISD::FMINNUM_IEEE:
9001     return AMDGPUISD::FMIN3;
9002   case ISD::SMIN:
9003     return AMDGPUISD::SMIN3;
9004   case ISD::UMIN:
9005     return AMDGPUISD::UMIN3;
9006   default:
9007     llvm_unreachable("Not a min/max opcode");
9008   }
9009 }
9010 
9011 SDValue SITargetLowering::performIntMed3ImmCombine(
9012   SelectionDAG &DAG, const SDLoc &SL,
9013   SDValue Op0, SDValue Op1, bool Signed) const {
9014   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9015   if (!K1)
9016     return SDValue();
9017 
9018   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9019   if (!K0)
9020     return SDValue();
9021 
9022   if (Signed) {
9023     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9024       return SDValue();
9025   } else {
9026     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9027       return SDValue();
9028   }
9029 
9030   EVT VT = K0->getValueType(0);
9031   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9032   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9033     return DAG.getNode(Med3Opc, SL, VT,
9034                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9035   }
9036 
9037   // If there isn't a 16-bit med3 operation, convert to 32-bit.
9038   MVT NVT = MVT::i32;
9039   unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9040 
9041   SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9042   SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9043   SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9044 
9045   SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9046   return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9047 }
9048 
9049 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9050   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9051     return C;
9052 
9053   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9054     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9055       return C;
9056   }
9057 
9058   return nullptr;
9059 }
9060 
9061 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9062                                                   const SDLoc &SL,
9063                                                   SDValue Op0,
9064                                                   SDValue Op1) const {
9065   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9066   if (!K1)
9067     return SDValue();
9068 
9069   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9070   if (!K0)
9071     return SDValue();
9072 
9073   // Ordered >= (although NaN inputs should have folded away by now).
9074   APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
9075   if (Cmp == APFloat::cmpGreaterThan)
9076     return SDValue();
9077 
9078   const MachineFunction &MF = DAG.getMachineFunction();
9079   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9080 
9081   // TODO: Check IEEE bit enabled?
9082   EVT VT = Op0.getValueType();
9083   if (Info->getMode().DX10Clamp) {
9084     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9085     // hardware fmed3 behavior converting to a min.
9086     // FIXME: Should this be allowing -0.0?
9087     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9088       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9089   }
9090 
9091   // med3 for f16 is only available on gfx9+, and not available for v2f16.
9092   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9093     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9094     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9095     // then give the other result, which is different from med3 with a NaN
9096     // input.
9097     SDValue Var = Op0.getOperand(0);
9098     if (!DAG.isKnownNeverSNaN(Var))
9099       return SDValue();
9100 
9101     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9102 
9103     if ((!K0->hasOneUse() ||
9104          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9105         (!K1->hasOneUse() ||
9106          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9107       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9108                          Var, SDValue(K0, 0), SDValue(K1, 0));
9109     }
9110   }
9111 
9112   return SDValue();
9113 }
9114 
9115 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9116                                                DAGCombinerInfo &DCI) const {
9117   SelectionDAG &DAG = DCI.DAG;
9118 
9119   EVT VT = N->getValueType(0);
9120   unsigned Opc = N->getOpcode();
9121   SDValue Op0 = N->getOperand(0);
9122   SDValue Op1 = N->getOperand(1);
9123 
9124   // Only do this if the inner op has one use since this will just increases
9125   // register pressure for no benefit.
9126 
9127   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9128       !VT.isVector() &&
9129       (VT == MVT::i32 || VT == MVT::f32 ||
9130        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9131     // max(max(a, b), c) -> max3(a, b, c)
9132     // min(min(a, b), c) -> min3(a, b, c)
9133     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9134       SDLoc DL(N);
9135       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9136                          DL,
9137                          N->getValueType(0),
9138                          Op0.getOperand(0),
9139                          Op0.getOperand(1),
9140                          Op1);
9141     }
9142 
9143     // Try commuted.
9144     // max(a, max(b, c)) -> max3(a, b, c)
9145     // min(a, min(b, c)) -> min3(a, b, c)
9146     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9147       SDLoc DL(N);
9148       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9149                          DL,
9150                          N->getValueType(0),
9151                          Op0,
9152                          Op1.getOperand(0),
9153                          Op1.getOperand(1));
9154     }
9155   }
9156 
9157   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9158   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9159     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9160       return Med3;
9161   }
9162 
9163   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9164     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9165       return Med3;
9166   }
9167 
9168   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9169   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9170        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9171        (Opc == AMDGPUISD::FMIN_LEGACY &&
9172         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9173       (VT == MVT::f32 || VT == MVT::f64 ||
9174        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9175        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9176       Op0.hasOneUse()) {
9177     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9178       return Res;
9179   }
9180 
9181   return SDValue();
9182 }
9183 
9184 static bool isClampZeroToOne(SDValue A, SDValue B) {
9185   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9186     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9187       // FIXME: Should this be allowing -0.0?
9188       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
9189              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
9190     }
9191   }
9192 
9193   return false;
9194 }
9195 
9196 // FIXME: Should only worry about snans for version with chain.
9197 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
9198                                               DAGCombinerInfo &DCI) const {
9199   EVT VT = N->getValueType(0);
9200   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
9201   // NaNs. With a NaN input, the order of the operands may change the result.
9202 
9203   SelectionDAG &DAG = DCI.DAG;
9204   SDLoc SL(N);
9205 
9206   SDValue Src0 = N->getOperand(0);
9207   SDValue Src1 = N->getOperand(1);
9208   SDValue Src2 = N->getOperand(2);
9209 
9210   if (isClampZeroToOne(Src0, Src1)) {
9211     // const_a, const_b, x -> clamp is safe in all cases including signaling
9212     // nans.
9213     // FIXME: Should this be allowing -0.0?
9214     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
9215   }
9216 
9217   const MachineFunction &MF = DAG.getMachineFunction();
9218   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9219 
9220   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
9221   // handling no dx10-clamp?
9222   if (Info->getMode().DX10Clamp) {
9223     // If NaNs is clamped to 0, we are free to reorder the inputs.
9224 
9225     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9226       std::swap(Src0, Src1);
9227 
9228     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
9229       std::swap(Src1, Src2);
9230 
9231     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9232       std::swap(Src0, Src1);
9233 
9234     if (isClampZeroToOne(Src1, Src2))
9235       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
9236   }
9237 
9238   return SDValue();
9239 }
9240 
9241 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
9242                                                  DAGCombinerInfo &DCI) const {
9243   SDValue Src0 = N->getOperand(0);
9244   SDValue Src1 = N->getOperand(1);
9245   if (Src0.isUndef() && Src1.isUndef())
9246     return DCI.DAG.getUNDEF(N->getValueType(0));
9247   return SDValue();
9248 }
9249 
9250 SDValue SITargetLowering::performExtractVectorEltCombine(
9251   SDNode *N, DAGCombinerInfo &DCI) const {
9252   SDValue Vec = N->getOperand(0);
9253   SelectionDAG &DAG = DCI.DAG;
9254 
9255   EVT VecVT = Vec.getValueType();
9256   EVT EltVT = VecVT.getVectorElementType();
9257 
9258   if ((Vec.getOpcode() == ISD::FNEG ||
9259        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
9260     SDLoc SL(N);
9261     EVT EltVT = N->getValueType(0);
9262     SDValue Idx = N->getOperand(1);
9263     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9264                               Vec.getOperand(0), Idx);
9265     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
9266   }
9267 
9268   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
9269   //    =>
9270   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
9271   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
9272   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
9273   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
9274     SDLoc SL(N);
9275     EVT EltVT = N->getValueType(0);
9276     SDValue Idx = N->getOperand(1);
9277     unsigned Opc = Vec.getOpcode();
9278 
9279     switch(Opc) {
9280     default:
9281       break;
9282       // TODO: Support other binary operations.
9283     case ISD::FADD:
9284     case ISD::FSUB:
9285     case ISD::FMUL:
9286     case ISD::ADD:
9287     case ISD::UMIN:
9288     case ISD::UMAX:
9289     case ISD::SMIN:
9290     case ISD::SMAX:
9291     case ISD::FMAXNUM:
9292     case ISD::FMINNUM:
9293     case ISD::FMAXNUM_IEEE:
9294     case ISD::FMINNUM_IEEE: {
9295       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9296                                  Vec.getOperand(0), Idx);
9297       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9298                                  Vec.getOperand(1), Idx);
9299 
9300       DCI.AddToWorklist(Elt0.getNode());
9301       DCI.AddToWorklist(Elt1.getNode());
9302       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
9303     }
9304     }
9305   }
9306 
9307   unsigned VecSize = VecVT.getSizeInBits();
9308   unsigned EltSize = EltVT.getSizeInBits();
9309 
9310   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
9311   // This elminates non-constant index and subsequent movrel or scratch access.
9312   // Sub-dword vectors of size 2 dword or less have better implementation.
9313   // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
9314   // instructions.
9315   if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) &&
9316       !isa<ConstantSDNode>(N->getOperand(1))) {
9317     SDLoc SL(N);
9318     SDValue Idx = N->getOperand(1);
9319     EVT IdxVT = Idx.getValueType();
9320     SDValue V;
9321     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9322       SDValue IC = DAG.getConstant(I, SL, IdxVT);
9323       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9324       if (I == 0)
9325         V = Elt;
9326       else
9327         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
9328     }
9329     return V;
9330   }
9331 
9332   if (!DCI.isBeforeLegalize())
9333     return SDValue();
9334 
9335   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
9336   // elements. This exposes more load reduction opportunities by replacing
9337   // multiple small extract_vector_elements with a single 32-bit extract.
9338   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9339   if (isa<MemSDNode>(Vec) &&
9340       EltSize <= 16 &&
9341       EltVT.isByteSized() &&
9342       VecSize > 32 &&
9343       VecSize % 32 == 0 &&
9344       Idx) {
9345     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
9346 
9347     unsigned BitIndex = Idx->getZExtValue() * EltSize;
9348     unsigned EltIdx = BitIndex / 32;
9349     unsigned LeftoverBitIdx = BitIndex % 32;
9350     SDLoc SL(N);
9351 
9352     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
9353     DCI.AddToWorklist(Cast.getNode());
9354 
9355     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
9356                               DAG.getConstant(EltIdx, SL, MVT::i32));
9357     DCI.AddToWorklist(Elt.getNode());
9358     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
9359                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
9360     DCI.AddToWorklist(Srl.getNode());
9361 
9362     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
9363     DCI.AddToWorklist(Trunc.getNode());
9364     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
9365   }
9366 
9367   return SDValue();
9368 }
9369 
9370 SDValue
9371 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
9372                                                 DAGCombinerInfo &DCI) const {
9373   SDValue Vec = N->getOperand(0);
9374   SDValue Idx = N->getOperand(2);
9375   EVT VecVT = Vec.getValueType();
9376   EVT EltVT = VecVT.getVectorElementType();
9377   unsigned VecSize = VecVT.getSizeInBits();
9378   unsigned EltSize = EltVT.getSizeInBits();
9379 
9380   // INSERT_VECTOR_ELT (<n x e>, var-idx)
9381   // => BUILD_VECTOR n x select (e, const-idx)
9382   // This elminates non-constant index and subsequent movrel or scratch access.
9383   // Sub-dword vectors of size 2 dword or less have better implementation.
9384   // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
9385   // instructions.
9386   if (isa<ConstantSDNode>(Idx) ||
9387       VecSize > 256 || (VecSize <= 64 && EltSize < 32))
9388     return SDValue();
9389 
9390   SelectionDAG &DAG = DCI.DAG;
9391   SDLoc SL(N);
9392   SDValue Ins = N->getOperand(1);
9393   EVT IdxVT = Idx.getValueType();
9394 
9395   SmallVector<SDValue, 16> Ops;
9396   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9397     SDValue IC = DAG.getConstant(I, SL, IdxVT);
9398     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9399     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
9400     Ops.push_back(V);
9401   }
9402 
9403   return DAG.getBuildVector(VecVT, SL, Ops);
9404 }
9405 
9406 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
9407                                           const SDNode *N0,
9408                                           const SDNode *N1) const {
9409   EVT VT = N0->getValueType(0);
9410 
9411   // Only do this if we are not trying to support denormals. v_mad_f32 does not
9412   // support denormals ever.
9413   if (((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
9414        (VT == MVT::f16 && !Subtarget->hasFP16Denormals() &&
9415         getSubtarget()->hasMadF16())) &&
9416        isOperationLegal(ISD::FMAD, VT))
9417     return ISD::FMAD;
9418 
9419   const TargetOptions &Options = DAG.getTarget().Options;
9420   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9421        (N0->getFlags().hasAllowContract() &&
9422         N1->getFlags().hasAllowContract())) &&
9423       isFMAFasterThanFMulAndFAdd(VT)) {
9424     return ISD::FMA;
9425   }
9426 
9427   return 0;
9428 }
9429 
9430 // For a reassociatable opcode perform:
9431 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
9432 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
9433                                                SelectionDAG &DAG) const {
9434   EVT VT = N->getValueType(0);
9435   if (VT != MVT::i32 && VT != MVT::i64)
9436     return SDValue();
9437 
9438   unsigned Opc = N->getOpcode();
9439   SDValue Op0 = N->getOperand(0);
9440   SDValue Op1 = N->getOperand(1);
9441 
9442   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
9443     return SDValue();
9444 
9445   if (Op0->isDivergent())
9446     std::swap(Op0, Op1);
9447 
9448   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
9449     return SDValue();
9450 
9451   SDValue Op2 = Op1.getOperand(1);
9452   Op1 = Op1.getOperand(0);
9453   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
9454     return SDValue();
9455 
9456   if (Op1->isDivergent())
9457     std::swap(Op1, Op2);
9458 
9459   // If either operand is constant this will conflict with
9460   // DAGCombiner::ReassociateOps().
9461   if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
9462       DAG.isConstantIntBuildVectorOrConstantInt(Op1))
9463     return SDValue();
9464 
9465   SDLoc SL(N);
9466   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
9467   return DAG.getNode(Opc, SL, VT, Add1, Op2);
9468 }
9469 
9470 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
9471                            EVT VT,
9472                            SDValue N0, SDValue N1, SDValue N2,
9473                            bool Signed) {
9474   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
9475   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
9476   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
9477   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
9478 }
9479 
9480 SDValue SITargetLowering::performAddCombine(SDNode *N,
9481                                             DAGCombinerInfo &DCI) const {
9482   SelectionDAG &DAG = DCI.DAG;
9483   EVT VT = N->getValueType(0);
9484   SDLoc SL(N);
9485   SDValue LHS = N->getOperand(0);
9486   SDValue RHS = N->getOperand(1);
9487 
9488   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
9489       && Subtarget->hasMad64_32() &&
9490       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
9491       VT.getScalarSizeInBits() <= 64) {
9492     if (LHS.getOpcode() != ISD::MUL)
9493       std::swap(LHS, RHS);
9494 
9495     SDValue MulLHS = LHS.getOperand(0);
9496     SDValue MulRHS = LHS.getOperand(1);
9497     SDValue AddRHS = RHS;
9498 
9499     // TODO: Maybe restrict if SGPR inputs.
9500     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
9501         numBitsUnsigned(MulRHS, DAG) <= 32) {
9502       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
9503       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
9504       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
9505       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
9506     }
9507 
9508     if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
9509       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
9510       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
9511       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
9512       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
9513     }
9514 
9515     return SDValue();
9516   }
9517 
9518   if (SDValue V = reassociateScalarOps(N, DAG)) {
9519     return V;
9520   }
9521 
9522   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
9523     return SDValue();
9524 
9525   // add x, zext (setcc) => addcarry x, 0, setcc
9526   // add x, sext (setcc) => subcarry x, 0, setcc
9527   unsigned Opc = LHS.getOpcode();
9528   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
9529       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
9530     std::swap(RHS, LHS);
9531 
9532   Opc = RHS.getOpcode();
9533   switch (Opc) {
9534   default: break;
9535   case ISD::ZERO_EXTEND:
9536   case ISD::SIGN_EXTEND:
9537   case ISD::ANY_EXTEND: {
9538     auto Cond = RHS.getOperand(0);
9539     if (!isBoolSGPR(Cond))
9540       break;
9541     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
9542     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
9543     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
9544     return DAG.getNode(Opc, SL, VTList, Args);
9545   }
9546   case ISD::ADDCARRY: {
9547     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
9548     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9549     if (!C || C->getZExtValue() != 0) break;
9550     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
9551     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
9552   }
9553   }
9554   return SDValue();
9555 }
9556 
9557 SDValue SITargetLowering::performSubCombine(SDNode *N,
9558                                             DAGCombinerInfo &DCI) const {
9559   SelectionDAG &DAG = DCI.DAG;
9560   EVT VT = N->getValueType(0);
9561 
9562   if (VT != MVT::i32)
9563     return SDValue();
9564 
9565   SDLoc SL(N);
9566   SDValue LHS = N->getOperand(0);
9567   SDValue RHS = N->getOperand(1);
9568 
9569   if (LHS.getOpcode() == ISD::SUBCARRY) {
9570     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
9571     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9572     if (!C || !C->isNullValue())
9573       return SDValue();
9574     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
9575     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
9576   }
9577   return SDValue();
9578 }
9579 
9580 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
9581   DAGCombinerInfo &DCI) const {
9582 
9583   if (N->getValueType(0) != MVT::i32)
9584     return SDValue();
9585 
9586   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9587   if (!C || C->getZExtValue() != 0)
9588     return SDValue();
9589 
9590   SelectionDAG &DAG = DCI.DAG;
9591   SDValue LHS = N->getOperand(0);
9592 
9593   // addcarry (add x, y), 0, cc => addcarry x, y, cc
9594   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
9595   unsigned LHSOpc = LHS.getOpcode();
9596   unsigned Opc = N->getOpcode();
9597   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
9598       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
9599     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
9600     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
9601   }
9602   return SDValue();
9603 }
9604 
9605 SDValue SITargetLowering::performFAddCombine(SDNode *N,
9606                                              DAGCombinerInfo &DCI) const {
9607   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9608     return SDValue();
9609 
9610   SelectionDAG &DAG = DCI.DAG;
9611   EVT VT = N->getValueType(0);
9612 
9613   SDLoc SL(N);
9614   SDValue LHS = N->getOperand(0);
9615   SDValue RHS = N->getOperand(1);
9616 
9617   // These should really be instruction patterns, but writing patterns with
9618   // source modiifiers is a pain.
9619 
9620   // fadd (fadd (a, a), b) -> mad 2.0, a, b
9621   if (LHS.getOpcode() == ISD::FADD) {
9622     SDValue A = LHS.getOperand(0);
9623     if (A == LHS.getOperand(1)) {
9624       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
9625       if (FusedOp != 0) {
9626         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9627         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
9628       }
9629     }
9630   }
9631 
9632   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
9633   if (RHS.getOpcode() == ISD::FADD) {
9634     SDValue A = RHS.getOperand(0);
9635     if (A == RHS.getOperand(1)) {
9636       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
9637       if (FusedOp != 0) {
9638         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9639         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
9640       }
9641     }
9642   }
9643 
9644   return SDValue();
9645 }
9646 
9647 SDValue SITargetLowering::performFSubCombine(SDNode *N,
9648                                              DAGCombinerInfo &DCI) const {
9649   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9650     return SDValue();
9651 
9652   SelectionDAG &DAG = DCI.DAG;
9653   SDLoc SL(N);
9654   EVT VT = N->getValueType(0);
9655   assert(!VT.isVector());
9656 
9657   // Try to get the fneg to fold into the source modifier. This undoes generic
9658   // DAG combines and folds them into the mad.
9659   //
9660   // Only do this if we are not trying to support denormals. v_mad_f32 does
9661   // not support denormals ever.
9662   SDValue LHS = N->getOperand(0);
9663   SDValue RHS = N->getOperand(1);
9664   if (LHS.getOpcode() == ISD::FADD) {
9665     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
9666     SDValue A = LHS.getOperand(0);
9667     if (A == LHS.getOperand(1)) {
9668       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
9669       if (FusedOp != 0){
9670         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9671         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
9672 
9673         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
9674       }
9675     }
9676   }
9677 
9678   if (RHS.getOpcode() == ISD::FADD) {
9679     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
9680 
9681     SDValue A = RHS.getOperand(0);
9682     if (A == RHS.getOperand(1)) {
9683       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
9684       if (FusedOp != 0){
9685         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
9686         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
9687       }
9688     }
9689   }
9690 
9691   return SDValue();
9692 }
9693 
9694 SDValue SITargetLowering::performFMACombine(SDNode *N,
9695                                             DAGCombinerInfo &DCI) const {
9696   SelectionDAG &DAG = DCI.DAG;
9697   EVT VT = N->getValueType(0);
9698   SDLoc SL(N);
9699 
9700   if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
9701     return SDValue();
9702 
9703   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
9704   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
9705   SDValue Op1 = N->getOperand(0);
9706   SDValue Op2 = N->getOperand(1);
9707   SDValue FMA = N->getOperand(2);
9708 
9709   if (FMA.getOpcode() != ISD::FMA ||
9710       Op1.getOpcode() != ISD::FP_EXTEND ||
9711       Op2.getOpcode() != ISD::FP_EXTEND)
9712     return SDValue();
9713 
9714   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
9715   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
9716   // is sufficient to allow generaing fdot2.
9717   const TargetOptions &Options = DAG.getTarget().Options;
9718   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9719       (N->getFlags().hasAllowContract() &&
9720        FMA->getFlags().hasAllowContract())) {
9721     Op1 = Op1.getOperand(0);
9722     Op2 = Op2.getOperand(0);
9723     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9724         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9725       return SDValue();
9726 
9727     SDValue Vec1 = Op1.getOperand(0);
9728     SDValue Idx1 = Op1.getOperand(1);
9729     SDValue Vec2 = Op2.getOperand(0);
9730 
9731     SDValue FMAOp1 = FMA.getOperand(0);
9732     SDValue FMAOp2 = FMA.getOperand(1);
9733     SDValue FMAAcc = FMA.getOperand(2);
9734 
9735     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
9736         FMAOp2.getOpcode() != ISD::FP_EXTEND)
9737       return SDValue();
9738 
9739     FMAOp1 = FMAOp1.getOperand(0);
9740     FMAOp2 = FMAOp2.getOperand(0);
9741     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9742         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9743       return SDValue();
9744 
9745     SDValue Vec3 = FMAOp1.getOperand(0);
9746     SDValue Vec4 = FMAOp2.getOperand(0);
9747     SDValue Idx2 = FMAOp1.getOperand(1);
9748 
9749     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
9750         // Idx1 and Idx2 cannot be the same.
9751         Idx1 == Idx2)
9752       return SDValue();
9753 
9754     if (Vec1 == Vec2 || Vec3 == Vec4)
9755       return SDValue();
9756 
9757     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
9758       return SDValue();
9759 
9760     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
9761         (Vec1 == Vec4 && Vec2 == Vec3)) {
9762       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
9763                          DAG.getTargetConstant(0, SL, MVT::i1));
9764     }
9765   }
9766   return SDValue();
9767 }
9768 
9769 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
9770                                               DAGCombinerInfo &DCI) const {
9771   SelectionDAG &DAG = DCI.DAG;
9772   SDLoc SL(N);
9773 
9774   SDValue LHS = N->getOperand(0);
9775   SDValue RHS = N->getOperand(1);
9776   EVT VT = LHS.getValueType();
9777   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
9778 
9779   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
9780   if (!CRHS) {
9781     CRHS = dyn_cast<ConstantSDNode>(LHS);
9782     if (CRHS) {
9783       std::swap(LHS, RHS);
9784       CC = getSetCCSwappedOperands(CC);
9785     }
9786   }
9787 
9788   if (CRHS) {
9789     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
9790         isBoolSGPR(LHS.getOperand(0))) {
9791       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
9792       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
9793       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
9794       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
9795       if ((CRHS->isAllOnesValue() &&
9796            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
9797           (CRHS->isNullValue() &&
9798            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
9799         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
9800                            DAG.getConstant(-1, SL, MVT::i1));
9801       if ((CRHS->isAllOnesValue() &&
9802            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
9803           (CRHS->isNullValue() &&
9804            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
9805         return LHS.getOperand(0);
9806     }
9807 
9808     uint64_t CRHSVal = CRHS->getZExtValue();
9809     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
9810         LHS.getOpcode() == ISD::SELECT &&
9811         isa<ConstantSDNode>(LHS.getOperand(1)) &&
9812         isa<ConstantSDNode>(LHS.getOperand(2)) &&
9813         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
9814         isBoolSGPR(LHS.getOperand(0))) {
9815       // Given CT != FT:
9816       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
9817       // setcc (select cc, CT, CF), CF, ne => cc
9818       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
9819       // setcc (select cc, CT, CF), CT, eq => cc
9820       uint64_t CT = LHS.getConstantOperandVal(1);
9821       uint64_t CF = LHS.getConstantOperandVal(2);
9822 
9823       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
9824           (CT == CRHSVal && CC == ISD::SETNE))
9825         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
9826                            DAG.getConstant(-1, SL, MVT::i1));
9827       if ((CF == CRHSVal && CC == ISD::SETNE) ||
9828           (CT == CRHSVal && CC == ISD::SETEQ))
9829         return LHS.getOperand(0);
9830     }
9831   }
9832 
9833   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
9834                                            VT != MVT::f16))
9835     return SDValue();
9836 
9837   // Match isinf/isfinite pattern
9838   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
9839   // (fcmp one (fabs x), inf) -> (fp_class x,
9840   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
9841   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
9842     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
9843     if (!CRHS)
9844       return SDValue();
9845 
9846     const APFloat &APF = CRHS->getValueAPF();
9847     if (APF.isInfinity() && !APF.isNegative()) {
9848       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
9849                                  SIInstrFlags::N_INFINITY;
9850       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
9851                                     SIInstrFlags::P_ZERO |
9852                                     SIInstrFlags::N_NORMAL |
9853                                     SIInstrFlags::P_NORMAL |
9854                                     SIInstrFlags::N_SUBNORMAL |
9855                                     SIInstrFlags::P_SUBNORMAL;
9856       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
9857       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
9858                          DAG.getConstant(Mask, SL, MVT::i32));
9859     }
9860   }
9861 
9862   return SDValue();
9863 }
9864 
9865 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
9866                                                      DAGCombinerInfo &DCI) const {
9867   SelectionDAG &DAG = DCI.DAG;
9868   SDLoc SL(N);
9869   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
9870 
9871   SDValue Src = N->getOperand(0);
9872   SDValue Srl = N->getOperand(0);
9873   if (Srl.getOpcode() == ISD::ZERO_EXTEND)
9874     Srl = Srl.getOperand(0);
9875 
9876   // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
9877   if (Srl.getOpcode() == ISD::SRL) {
9878     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
9879     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
9880     // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
9881 
9882     if (const ConstantSDNode *C =
9883         dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
9884       Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
9885                                EVT(MVT::i32));
9886 
9887       unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
9888       if (SrcOffset < 32 && SrcOffset % 8 == 0) {
9889         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
9890                            MVT::f32, Srl);
9891       }
9892     }
9893   }
9894 
9895   APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
9896 
9897   KnownBits Known;
9898   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
9899                                         !DCI.isBeforeLegalizeOps());
9900   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9901   if (TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
9902     DCI.CommitTargetLoweringOpt(TLO);
9903   }
9904 
9905   return SDValue();
9906 }
9907 
9908 SDValue SITargetLowering::performClampCombine(SDNode *N,
9909                                               DAGCombinerInfo &DCI) const {
9910   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
9911   if (!CSrc)
9912     return SDValue();
9913 
9914   const MachineFunction &MF = DCI.DAG.getMachineFunction();
9915   const APFloat &F = CSrc->getValueAPF();
9916   APFloat Zero = APFloat::getZero(F.getSemantics());
9917   APFloat::cmpResult Cmp0 = F.compare(Zero);
9918   if (Cmp0 == APFloat::cmpLessThan ||
9919       (Cmp0 == APFloat::cmpUnordered &&
9920        MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
9921     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
9922   }
9923 
9924   APFloat One(F.getSemantics(), "1.0");
9925   APFloat::cmpResult Cmp1 = F.compare(One);
9926   if (Cmp1 == APFloat::cmpGreaterThan)
9927     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
9928 
9929   return SDValue(CSrc, 0);
9930 }
9931 
9932 
9933 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
9934                                             DAGCombinerInfo &DCI) const {
9935   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
9936     return SDValue();
9937   switch (N->getOpcode()) {
9938   default:
9939     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
9940   case ISD::ADD:
9941     return performAddCombine(N, DCI);
9942   case ISD::SUB:
9943     return performSubCombine(N, DCI);
9944   case ISD::ADDCARRY:
9945   case ISD::SUBCARRY:
9946     return performAddCarrySubCarryCombine(N, DCI);
9947   case ISD::FADD:
9948     return performFAddCombine(N, DCI);
9949   case ISD::FSUB:
9950     return performFSubCombine(N, DCI);
9951   case ISD::SETCC:
9952     return performSetCCCombine(N, DCI);
9953   case ISD::FMAXNUM:
9954   case ISD::FMINNUM:
9955   case ISD::FMAXNUM_IEEE:
9956   case ISD::FMINNUM_IEEE:
9957   case ISD::SMAX:
9958   case ISD::SMIN:
9959   case ISD::UMAX:
9960   case ISD::UMIN:
9961   case AMDGPUISD::FMIN_LEGACY:
9962   case AMDGPUISD::FMAX_LEGACY:
9963     return performMinMaxCombine(N, DCI);
9964   case ISD::FMA:
9965     return performFMACombine(N, DCI);
9966   case ISD::LOAD: {
9967     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
9968       return Widended;
9969     LLVM_FALLTHROUGH;
9970   }
9971   case ISD::STORE:
9972   case ISD::ATOMIC_LOAD:
9973   case ISD::ATOMIC_STORE:
9974   case ISD::ATOMIC_CMP_SWAP:
9975   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
9976   case ISD::ATOMIC_SWAP:
9977   case ISD::ATOMIC_LOAD_ADD:
9978   case ISD::ATOMIC_LOAD_SUB:
9979   case ISD::ATOMIC_LOAD_AND:
9980   case ISD::ATOMIC_LOAD_OR:
9981   case ISD::ATOMIC_LOAD_XOR:
9982   case ISD::ATOMIC_LOAD_NAND:
9983   case ISD::ATOMIC_LOAD_MIN:
9984   case ISD::ATOMIC_LOAD_MAX:
9985   case ISD::ATOMIC_LOAD_UMIN:
9986   case ISD::ATOMIC_LOAD_UMAX:
9987   case ISD::ATOMIC_LOAD_FADD:
9988   case AMDGPUISD::ATOMIC_INC:
9989   case AMDGPUISD::ATOMIC_DEC:
9990   case AMDGPUISD::ATOMIC_LOAD_FMIN:
9991   case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics.
9992     if (DCI.isBeforeLegalize())
9993       break;
9994     return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
9995   case ISD::AND:
9996     return performAndCombine(N, DCI);
9997   case ISD::OR:
9998     return performOrCombine(N, DCI);
9999   case ISD::XOR:
10000     return performXorCombine(N, DCI);
10001   case ISD::ZERO_EXTEND:
10002     return performZeroExtendCombine(N, DCI);
10003   case ISD::SIGN_EXTEND_INREG:
10004     return performSignExtendInRegCombine(N , DCI);
10005   case AMDGPUISD::FP_CLASS:
10006     return performClassCombine(N, DCI);
10007   case ISD::FCANONICALIZE:
10008     return performFCanonicalizeCombine(N, DCI);
10009   case AMDGPUISD::RCP:
10010     return performRcpCombine(N, DCI);
10011   case AMDGPUISD::FRACT:
10012   case AMDGPUISD::RSQ:
10013   case AMDGPUISD::RCP_LEGACY:
10014   case AMDGPUISD::RSQ_LEGACY:
10015   case AMDGPUISD::RCP_IFLAG:
10016   case AMDGPUISD::RSQ_CLAMP:
10017   case AMDGPUISD::LDEXP: {
10018     SDValue Src = N->getOperand(0);
10019     if (Src.isUndef())
10020       return Src;
10021     break;
10022   }
10023   case ISD::SINT_TO_FP:
10024   case ISD::UINT_TO_FP:
10025     return performUCharToFloatCombine(N, DCI);
10026   case AMDGPUISD::CVT_F32_UBYTE0:
10027   case AMDGPUISD::CVT_F32_UBYTE1:
10028   case AMDGPUISD::CVT_F32_UBYTE2:
10029   case AMDGPUISD::CVT_F32_UBYTE3:
10030     return performCvtF32UByteNCombine(N, DCI);
10031   case AMDGPUISD::FMED3:
10032     return performFMed3Combine(N, DCI);
10033   case AMDGPUISD::CVT_PKRTZ_F16_F32:
10034     return performCvtPkRTZCombine(N, DCI);
10035   case AMDGPUISD::CLAMP:
10036     return performClampCombine(N, DCI);
10037   case ISD::SCALAR_TO_VECTOR: {
10038     SelectionDAG &DAG = DCI.DAG;
10039     EVT VT = N->getValueType(0);
10040 
10041     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10042     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10043       SDLoc SL(N);
10044       SDValue Src = N->getOperand(0);
10045       EVT EltVT = Src.getValueType();
10046       if (EltVT == MVT::f16)
10047         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10048 
10049       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10050       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10051     }
10052 
10053     break;
10054   }
10055   case ISD::EXTRACT_VECTOR_ELT:
10056     return performExtractVectorEltCombine(N, DCI);
10057   case ISD::INSERT_VECTOR_ELT:
10058     return performInsertVectorEltCombine(N, DCI);
10059   }
10060   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10061 }
10062 
10063 /// Helper function for adjustWritemask
10064 static unsigned SubIdx2Lane(unsigned Idx) {
10065   switch (Idx) {
10066   default: return 0;
10067   case AMDGPU::sub0: return 0;
10068   case AMDGPU::sub1: return 1;
10069   case AMDGPU::sub2: return 2;
10070   case AMDGPU::sub3: return 3;
10071   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10072   }
10073 }
10074 
10075 /// Adjust the writemask of MIMG instructions
10076 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10077                                           SelectionDAG &DAG) const {
10078   unsigned Opcode = Node->getMachineOpcode();
10079 
10080   // Subtract 1 because the vdata output is not a MachineSDNode operand.
10081   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10082   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10083     return Node; // not implemented for D16
10084 
10085   SDNode *Users[5] = { nullptr };
10086   unsigned Lane = 0;
10087   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10088   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10089   unsigned NewDmask = 0;
10090   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10091   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10092   bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
10093                   Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
10094   unsigned TFCLane = 0;
10095   bool HasChain = Node->getNumValues() > 1;
10096 
10097   if (OldDmask == 0) {
10098     // These are folded out, but on the chance it happens don't assert.
10099     return Node;
10100   }
10101 
10102   unsigned OldBitsSet = countPopulation(OldDmask);
10103   // Work out which is the TFE/LWE lane if that is enabled.
10104   if (UsesTFC) {
10105     TFCLane = OldBitsSet;
10106   }
10107 
10108   // Try to figure out the used register components
10109   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
10110        I != E; ++I) {
10111 
10112     // Don't look at users of the chain.
10113     if (I.getUse().getResNo() != 0)
10114       continue;
10115 
10116     // Abort if we can't understand the usage
10117     if (!I->isMachineOpcode() ||
10118         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10119       return Node;
10120 
10121     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10122     // Note that subregs are packed, i.e. Lane==0 is the first bit set
10123     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10124     // set, etc.
10125     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10126 
10127     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10128     if (UsesTFC && Lane == TFCLane) {
10129       Users[Lane] = *I;
10130     } else {
10131       // Set which texture component corresponds to the lane.
10132       unsigned Comp;
10133       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10134         Comp = countTrailingZeros(Dmask);
10135         Dmask &= ~(1 << Comp);
10136       }
10137 
10138       // Abort if we have more than one user per component.
10139       if (Users[Lane])
10140         return Node;
10141 
10142       Users[Lane] = *I;
10143       NewDmask |= 1 << Comp;
10144     }
10145   }
10146 
10147   // Don't allow 0 dmask, as hardware assumes one channel enabled.
10148   bool NoChannels = !NewDmask;
10149   if (NoChannels) {
10150     if (!UsesTFC) {
10151       // No uses of the result and not using TFC. Then do nothing.
10152       return Node;
10153     }
10154     // If the original dmask has one channel - then nothing to do
10155     if (OldBitsSet == 1)
10156       return Node;
10157     // Use an arbitrary dmask - required for the instruction to work
10158     NewDmask = 1;
10159   }
10160   // Abort if there's no change
10161   if (NewDmask == OldDmask)
10162     return Node;
10163 
10164   unsigned BitsSet = countPopulation(NewDmask);
10165 
10166   // Check for TFE or LWE - increase the number of channels by one to account
10167   // for the extra return value
10168   // This will need adjustment for D16 if this is also included in
10169   // adjustWriteMask (this function) but at present D16 are excluded.
10170   unsigned NewChannels = BitsSet + UsesTFC;
10171 
10172   int NewOpcode =
10173       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
10174   assert(NewOpcode != -1 &&
10175          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
10176          "failed to find equivalent MIMG op");
10177 
10178   // Adjust the writemask in the node
10179   SmallVector<SDValue, 12> Ops;
10180   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
10181   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
10182   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
10183 
10184   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
10185 
10186   MVT ResultVT = NewChannels == 1 ?
10187     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
10188                            NewChannels == 5 ? 8 : NewChannels);
10189   SDVTList NewVTList = HasChain ?
10190     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
10191 
10192 
10193   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
10194                                               NewVTList, Ops);
10195 
10196   if (HasChain) {
10197     // Update chain.
10198     DAG.setNodeMemRefs(NewNode, Node->memoperands());
10199     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
10200   }
10201 
10202   if (NewChannels == 1) {
10203     assert(Node->hasNUsesOfValue(1, 0));
10204     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
10205                                       SDLoc(Node), Users[Lane]->getValueType(0),
10206                                       SDValue(NewNode, 0));
10207     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
10208     return nullptr;
10209   }
10210 
10211   // Update the users of the node with the new indices
10212   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
10213     SDNode *User = Users[i];
10214     if (!User) {
10215       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
10216       // Users[0] is still nullptr because channel 0 doesn't really have a use.
10217       if (i || !NoChannels)
10218         continue;
10219     } else {
10220       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
10221       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
10222     }
10223 
10224     switch (Idx) {
10225     default: break;
10226     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
10227     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
10228     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
10229     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
10230     }
10231   }
10232 
10233   DAG.RemoveDeadNode(Node);
10234   return nullptr;
10235 }
10236 
10237 static bool isFrameIndexOp(SDValue Op) {
10238   if (Op.getOpcode() == ISD::AssertZext)
10239     Op = Op.getOperand(0);
10240 
10241   return isa<FrameIndexSDNode>(Op);
10242 }
10243 
10244 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
10245 /// with frame index operands.
10246 /// LLVM assumes that inputs are to these instructions are registers.
10247 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
10248                                                         SelectionDAG &DAG) const {
10249   if (Node->getOpcode() == ISD::CopyToReg) {
10250     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
10251     SDValue SrcVal = Node->getOperand(2);
10252 
10253     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
10254     // to try understanding copies to physical registers.
10255     if (SrcVal.getValueType() == MVT::i1 &&
10256         Register::isPhysicalRegister(DestReg->getReg())) {
10257       SDLoc SL(Node);
10258       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10259       SDValue VReg = DAG.getRegister(
10260         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
10261 
10262       SDNode *Glued = Node->getGluedNode();
10263       SDValue ToVReg
10264         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
10265                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
10266       SDValue ToResultReg
10267         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
10268                            VReg, ToVReg.getValue(1));
10269       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
10270       DAG.RemoveDeadNode(Node);
10271       return ToResultReg.getNode();
10272     }
10273   }
10274 
10275   SmallVector<SDValue, 8> Ops;
10276   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
10277     if (!isFrameIndexOp(Node->getOperand(i))) {
10278       Ops.push_back(Node->getOperand(i));
10279       continue;
10280     }
10281 
10282     SDLoc DL(Node);
10283     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
10284                                      Node->getOperand(i).getValueType(),
10285                                      Node->getOperand(i)), 0));
10286   }
10287 
10288   return DAG.UpdateNodeOperands(Node, Ops);
10289 }
10290 
10291 /// Fold the instructions after selecting them.
10292 /// Returns null if users were already updated.
10293 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
10294                                           SelectionDAG &DAG) const {
10295   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10296   unsigned Opcode = Node->getMachineOpcode();
10297 
10298   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
10299       !TII->isGather4(Opcode)) {
10300     return adjustWritemask(Node, DAG);
10301   }
10302 
10303   if (Opcode == AMDGPU::INSERT_SUBREG ||
10304       Opcode == AMDGPU::REG_SEQUENCE) {
10305     legalizeTargetIndependentNode(Node, DAG);
10306     return Node;
10307   }
10308 
10309   switch (Opcode) {
10310   case AMDGPU::V_DIV_SCALE_F32:
10311   case AMDGPU::V_DIV_SCALE_F64: {
10312     // Satisfy the operand register constraint when one of the inputs is
10313     // undefined. Ordinarily each undef value will have its own implicit_def of
10314     // a vreg, so force these to use a single register.
10315     SDValue Src0 = Node->getOperand(0);
10316     SDValue Src1 = Node->getOperand(1);
10317     SDValue Src2 = Node->getOperand(2);
10318 
10319     if ((Src0.isMachineOpcode() &&
10320          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
10321         (Src0 == Src1 || Src0 == Src2))
10322       break;
10323 
10324     MVT VT = Src0.getValueType().getSimpleVT();
10325     const TargetRegisterClass *RC =
10326         getRegClassFor(VT, Src0.getNode()->isDivergent());
10327 
10328     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10329     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
10330 
10331     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
10332                                       UndefReg, Src0, SDValue());
10333 
10334     // src0 must be the same register as src1 or src2, even if the value is
10335     // undefined, so make sure we don't violate this constraint.
10336     if (Src0.isMachineOpcode() &&
10337         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
10338       if (Src1.isMachineOpcode() &&
10339           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10340         Src0 = Src1;
10341       else if (Src2.isMachineOpcode() &&
10342                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10343         Src0 = Src2;
10344       else {
10345         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
10346         Src0 = UndefReg;
10347         Src1 = UndefReg;
10348       }
10349     } else
10350       break;
10351 
10352     SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
10353     for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
10354       Ops.push_back(Node->getOperand(I));
10355 
10356     Ops.push_back(ImpDef.getValue(1));
10357     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10358   }
10359   case AMDGPU::V_PERMLANE16_B32:
10360   case AMDGPU::V_PERMLANEX16_B32: {
10361     ConstantSDNode *FI = cast<ConstantSDNode>(Node->getOperand(0));
10362     ConstantSDNode *BC = cast<ConstantSDNode>(Node->getOperand(2));
10363     if (!FI->getZExtValue() && !BC->getZExtValue())
10364       break;
10365     SDValue VDstIn = Node->getOperand(6);
10366     if (VDstIn.isMachineOpcode()
10367         && VDstIn.getMachineOpcode() == AMDGPU::IMPLICIT_DEF)
10368       break;
10369     MachineSDNode *ImpDef = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
10370                                                SDLoc(Node), MVT::i32);
10371     SmallVector<SDValue, 8> Ops = { SDValue(FI, 0), Node->getOperand(1),
10372                                     SDValue(BC, 0), Node->getOperand(3),
10373                                     Node->getOperand(4), Node->getOperand(5),
10374                                     SDValue(ImpDef, 0), Node->getOperand(7) };
10375     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10376   }
10377   default:
10378     break;
10379   }
10380 
10381   return Node;
10382 }
10383 
10384 /// Assign the register class depending on the number of
10385 /// bits set in the writemask
10386 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10387                                                      SDNode *Node) const {
10388   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10389 
10390   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
10391 
10392   if (TII->isVOP3(MI.getOpcode())) {
10393     // Make sure constant bus requirements are respected.
10394     TII->legalizeOperandsVOP3(MRI, MI);
10395 
10396     // Prefer VGPRs over AGPRs in mAI instructions where possible.
10397     // This saves a chain-copy of registers and better ballance register
10398     // use between vgpr and agpr as agpr tuples tend to be big.
10399     if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
10400       unsigned Opc = MI.getOpcode();
10401       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10402       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
10403                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
10404         if (I == -1)
10405           break;
10406         MachineOperand &Op = MI.getOperand(I);
10407         if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
10408              OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
10409             !Register::isVirtualRegister(Op.getReg()) ||
10410             !TRI->isAGPR(MRI, Op.getReg()))
10411           continue;
10412         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
10413         if (!Src || !Src->isCopy() ||
10414             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
10415           continue;
10416         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
10417         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
10418         // All uses of agpr64 and agpr32 can also accept vgpr except for
10419         // v_accvgpr_read, but we do not produce agpr reads during selection,
10420         // so no use checks are needed.
10421         MRI.setRegClass(Op.getReg(), NewRC);
10422       }
10423     }
10424 
10425     return;
10426   }
10427 
10428   // Replace unused atomics with the no return version.
10429   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
10430   if (NoRetAtomicOp != -1) {
10431     if (!Node->hasAnyUseOfValue(0)) {
10432       MI.setDesc(TII->get(NoRetAtomicOp));
10433       MI.RemoveOperand(0);
10434       return;
10435     }
10436 
10437     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
10438     // instruction, because the return type of these instructions is a vec2 of
10439     // the memory type, so it can be tied to the input operand.
10440     // This means these instructions always have a use, so we need to add a
10441     // special case to check if the atomic has only one extract_subreg use,
10442     // which itself has no uses.
10443     if ((Node->hasNUsesOfValue(1, 0) &&
10444          Node->use_begin()->isMachineOpcode() &&
10445          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
10446          !Node->use_begin()->hasAnyUseOfValue(0))) {
10447       Register Def = MI.getOperand(0).getReg();
10448 
10449       // Change this into a noret atomic.
10450       MI.setDesc(TII->get(NoRetAtomicOp));
10451       MI.RemoveOperand(0);
10452 
10453       // If we only remove the def operand from the atomic instruction, the
10454       // extract_subreg will be left with a use of a vreg without a def.
10455       // So we need to insert an implicit_def to avoid machine verifier
10456       // errors.
10457       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
10458               TII->get(AMDGPU::IMPLICIT_DEF), Def);
10459     }
10460     return;
10461   }
10462 }
10463 
10464 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
10465                               uint64_t Val) {
10466   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
10467   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
10468 }
10469 
10470 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
10471                                                 const SDLoc &DL,
10472                                                 SDValue Ptr) const {
10473   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10474 
10475   // Build the half of the subregister with the constants before building the
10476   // full 128-bit register. If we are building multiple resource descriptors,
10477   // this will allow CSEing of the 2-component register.
10478   const SDValue Ops0[] = {
10479     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
10480     buildSMovImm32(DAG, DL, 0),
10481     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
10482     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
10483     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
10484   };
10485 
10486   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
10487                                                 MVT::v2i32, Ops0), 0);
10488 
10489   // Combine the constants and the pointer.
10490   const SDValue Ops1[] = {
10491     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
10492     Ptr,
10493     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
10494     SubRegHi,
10495     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
10496   };
10497 
10498   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
10499 }
10500 
10501 /// Return a resource descriptor with the 'Add TID' bit enabled
10502 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
10503 ///        of the resource descriptor) to create an offset, which is added to
10504 ///        the resource pointer.
10505 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
10506                                            SDValue Ptr, uint32_t RsrcDword1,
10507                                            uint64_t RsrcDword2And3) const {
10508   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
10509   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
10510   if (RsrcDword1) {
10511     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
10512                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
10513                     0);
10514   }
10515 
10516   SDValue DataLo = buildSMovImm32(DAG, DL,
10517                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
10518   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
10519 
10520   const SDValue Ops[] = {
10521     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
10522     PtrLo,
10523     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
10524     PtrHi,
10525     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
10526     DataLo,
10527     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
10528     DataHi,
10529     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
10530   };
10531 
10532   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
10533 }
10534 
10535 //===----------------------------------------------------------------------===//
10536 //                         SI Inline Assembly Support
10537 //===----------------------------------------------------------------------===//
10538 
10539 std::pair<unsigned, const TargetRegisterClass *>
10540 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10541                                                StringRef Constraint,
10542                                                MVT VT) const {
10543   const TargetRegisterClass *RC = nullptr;
10544   if (Constraint.size() == 1) {
10545     switch (Constraint[0]) {
10546     default:
10547       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10548     case 's':
10549     case 'r':
10550       switch (VT.getSizeInBits()) {
10551       default:
10552         return std::make_pair(0U, nullptr);
10553       case 32:
10554       case 16:
10555         RC = &AMDGPU::SReg_32RegClass;
10556         break;
10557       case 64:
10558         RC = &AMDGPU::SGPR_64RegClass;
10559         break;
10560       case 96:
10561         RC = &AMDGPU::SReg_96RegClass;
10562         break;
10563       case 128:
10564         RC = &AMDGPU::SGPR_128RegClass;
10565         break;
10566       case 160:
10567         RC = &AMDGPU::SReg_160RegClass;
10568         break;
10569       case 256:
10570         RC = &AMDGPU::SReg_256RegClass;
10571         break;
10572       case 512:
10573         RC = &AMDGPU::SReg_512RegClass;
10574         break;
10575       }
10576       break;
10577     case 'v':
10578       switch (VT.getSizeInBits()) {
10579       default:
10580         return std::make_pair(0U, nullptr);
10581       case 32:
10582       case 16:
10583         RC = &AMDGPU::VGPR_32RegClass;
10584         break;
10585       case 64:
10586         RC = &AMDGPU::VReg_64RegClass;
10587         break;
10588       case 96:
10589         RC = &AMDGPU::VReg_96RegClass;
10590         break;
10591       case 128:
10592         RC = &AMDGPU::VReg_128RegClass;
10593         break;
10594       case 160:
10595         RC = &AMDGPU::VReg_160RegClass;
10596         break;
10597       case 256:
10598         RC = &AMDGPU::VReg_256RegClass;
10599         break;
10600       case 512:
10601         RC = &AMDGPU::VReg_512RegClass;
10602         break;
10603       }
10604       break;
10605     case 'a':
10606       if (!Subtarget->hasMAIInsts())
10607         break;
10608       switch (VT.getSizeInBits()) {
10609       default:
10610         return std::make_pair(0U, nullptr);
10611       case 32:
10612       case 16:
10613         RC = &AMDGPU::AGPR_32RegClass;
10614         break;
10615       case 64:
10616         RC = &AMDGPU::AReg_64RegClass;
10617         break;
10618       case 128:
10619         RC = &AMDGPU::AReg_128RegClass;
10620         break;
10621       case 512:
10622         RC = &AMDGPU::AReg_512RegClass;
10623         break;
10624       case 1024:
10625         RC = &AMDGPU::AReg_1024RegClass;
10626         // v32 types are not legal but we support them here.
10627         return std::make_pair(0U, RC);
10628       }
10629       break;
10630     }
10631     // We actually support i128, i16 and f16 as inline parameters
10632     // even if they are not reported as legal
10633     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
10634                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
10635       return std::make_pair(0U, RC);
10636   }
10637 
10638   if (Constraint.size() > 1) {
10639     if (Constraint[1] == 'v') {
10640       RC = &AMDGPU::VGPR_32RegClass;
10641     } else if (Constraint[1] == 's') {
10642       RC = &AMDGPU::SGPR_32RegClass;
10643     } else if (Constraint[1] == 'a') {
10644       RC = &AMDGPU::AGPR_32RegClass;
10645     }
10646 
10647     if (RC) {
10648       uint32_t Idx;
10649       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
10650       if (!Failed && Idx < RC->getNumRegs())
10651         return std::make_pair(RC->getRegister(Idx), RC);
10652     }
10653   }
10654   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10655 }
10656 
10657 SITargetLowering::ConstraintType
10658 SITargetLowering::getConstraintType(StringRef Constraint) const {
10659   if (Constraint.size() == 1) {
10660     switch (Constraint[0]) {
10661     default: break;
10662     case 's':
10663     case 'v':
10664     case 'a':
10665       return C_RegisterClass;
10666     }
10667   }
10668   return TargetLowering::getConstraintType(Constraint);
10669 }
10670 
10671 // Figure out which registers should be reserved for stack access. Only after
10672 // the function is legalized do we know all of the non-spill stack objects or if
10673 // calls are present.
10674 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
10675   MachineRegisterInfo &MRI = MF.getRegInfo();
10676   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10677   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
10678   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10679 
10680   if (Info->isEntryFunction()) {
10681     // Callable functions have fixed registers used for stack access.
10682     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
10683   }
10684 
10685   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
10686                              Info->getStackPtrOffsetReg()));
10687   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
10688     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
10689 
10690   // We need to worry about replacing the default register with itself in case
10691   // of MIR testcases missing the MFI.
10692   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
10693     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
10694 
10695   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
10696     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
10697 
10698   if (Info->getScratchWaveOffsetReg() != AMDGPU::SCRATCH_WAVE_OFFSET_REG) {
10699     MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
10700                        Info->getScratchWaveOffsetReg());
10701   }
10702 
10703   Info->limitOccupancy(MF);
10704 
10705   if (ST.isWave32() && !MF.empty()) {
10706     // Add VCC_HI def because many instructions marked as imp-use VCC where
10707     // we may only define VCC_LO. If nothing defines VCC_HI we may end up
10708     // having a use of undef.
10709 
10710     const SIInstrInfo *TII = ST.getInstrInfo();
10711     DebugLoc DL;
10712 
10713     MachineBasicBlock &MBB = MF.front();
10714     MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr();
10715     BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI);
10716 
10717     for (auto &MBB : MF) {
10718       for (auto &MI : MBB) {
10719         TII->fixImplicitOperands(MI);
10720       }
10721     }
10722   }
10723 
10724   TargetLoweringBase::finalizeLowering(MF);
10725 }
10726 
10727 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
10728                                                      KnownBits &Known,
10729                                                      const APInt &DemandedElts,
10730                                                      const SelectionDAG &DAG,
10731                                                      unsigned Depth) const {
10732   TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
10733                                                 DAG, Depth);
10734 
10735   // Set the high bits to zero based on the maximum allowed scratch size per
10736   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
10737   // calculation won't overflow, so assume the sign bit is never set.
10738   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
10739 }
10740 
10741 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
10742   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
10743   const Align CacheLineAlign = Align(64);
10744 
10745   // Pre-GFX10 target did not benefit from loop alignment
10746   if (!ML || DisableLoopAlignment ||
10747       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
10748       getSubtarget()->hasInstFwdPrefetchBug())
10749     return PrefAlign;
10750 
10751   // On GFX10 I$ is 4 x 64 bytes cache lines.
10752   // By default prefetcher keeps one cache line behind and reads two ahead.
10753   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
10754   // behind and one ahead.
10755   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
10756   // If loop fits 64 bytes it always spans no more than two cache lines and
10757   // does not need an alignment.
10758   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
10759   // Else if loop is less or equal 192 bytes we need two lines behind.
10760 
10761   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10762   const MachineBasicBlock *Header = ML->getHeader();
10763   if (Header->getAlignment() != PrefAlign)
10764     return Header->getAlignment(); // Already processed.
10765 
10766   unsigned LoopSize = 0;
10767   for (const MachineBasicBlock *MBB : ML->blocks()) {
10768     // If inner loop block is aligned assume in average half of the alignment
10769     // size to be added as nops.
10770     if (MBB != Header)
10771       LoopSize += MBB->getAlignment().value() / 2;
10772 
10773     for (const MachineInstr &MI : *MBB) {
10774       LoopSize += TII->getInstSizeInBytes(MI);
10775       if (LoopSize > 192)
10776         return PrefAlign;
10777     }
10778   }
10779 
10780   if (LoopSize <= 64)
10781     return PrefAlign;
10782 
10783   if (LoopSize <= 128)
10784     return CacheLineAlign;
10785 
10786   // If any of parent loops is surrounded by prefetch instructions do not
10787   // insert new for inner loop, which would reset parent's settings.
10788   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
10789     if (MachineBasicBlock *Exit = P->getExitBlock()) {
10790       auto I = Exit->getFirstNonDebugInstr();
10791       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
10792         return CacheLineAlign;
10793     }
10794   }
10795 
10796   MachineBasicBlock *Pre = ML->getLoopPreheader();
10797   MachineBasicBlock *Exit = ML->getExitBlock();
10798 
10799   if (Pre && Exit) {
10800     BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
10801             TII->get(AMDGPU::S_INST_PREFETCH))
10802       .addImm(1); // prefetch 2 lines behind PC
10803 
10804     BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
10805             TII->get(AMDGPU::S_INST_PREFETCH))
10806       .addImm(2); // prefetch 1 line behind PC
10807   }
10808 
10809   return CacheLineAlign;
10810 }
10811 
10812 LLVM_ATTRIBUTE_UNUSED
10813 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
10814   assert(N->getOpcode() == ISD::CopyFromReg);
10815   do {
10816     // Follow the chain until we find an INLINEASM node.
10817     N = N->getOperand(0).getNode();
10818     if (N->getOpcode() == ISD::INLINEASM ||
10819         N->getOpcode() == ISD::INLINEASM_BR)
10820       return true;
10821   } while (N->getOpcode() == ISD::CopyFromReg);
10822   return false;
10823 }
10824 
10825 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
10826   FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const
10827 {
10828   switch (N->getOpcode()) {
10829     case ISD::CopyFromReg:
10830     {
10831       const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
10832       const MachineFunction * MF = FLI->MF;
10833       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
10834       const MachineRegisterInfo &MRI = MF->getRegInfo();
10835       const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo();
10836       unsigned Reg = R->getReg();
10837       if (Register::isPhysicalRegister(Reg))
10838         return !TRI.isSGPRReg(MRI, Reg);
10839 
10840       if (MRI.isLiveIn(Reg)) {
10841         // workitem.id.x workitem.id.y workitem.id.z
10842         // Any VGPR formal argument is also considered divergent
10843         if (!TRI.isSGPRReg(MRI, Reg))
10844           return true;
10845         // Formal arguments of non-entry functions
10846         // are conservatively considered divergent
10847         else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv()))
10848           return true;
10849         return false;
10850       }
10851       const Value *V = FLI->getValueFromVirtualReg(Reg);
10852       if (V)
10853         return KDA->isDivergent(V);
10854       assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
10855       return !TRI.isSGPRReg(MRI, Reg);
10856     }
10857     break;
10858     case ISD::LOAD: {
10859       const LoadSDNode *L = cast<LoadSDNode>(N);
10860       unsigned AS = L->getAddressSpace();
10861       // A flat load may access private memory.
10862       return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
10863     } break;
10864     case ISD::CALLSEQ_END:
10865     return true;
10866     break;
10867     case ISD::INTRINSIC_WO_CHAIN:
10868     {
10869 
10870     }
10871       return AMDGPU::isIntrinsicSourceOfDivergence(
10872       cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
10873     case ISD::INTRINSIC_W_CHAIN:
10874       return AMDGPU::isIntrinsicSourceOfDivergence(
10875       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
10876   }
10877   return false;
10878 }
10879 
10880 bool SITargetLowering::denormalsEnabledForType(EVT VT) const {
10881   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
10882   case MVT::f32:
10883     return Subtarget->hasFP32Denormals();
10884   case MVT::f64:
10885     return Subtarget->hasFP64Denormals();
10886   case MVT::f16:
10887     return Subtarget->hasFP16Denormals();
10888   default:
10889     return false;
10890   }
10891 }
10892 
10893 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
10894                                                     const SelectionDAG &DAG,
10895                                                     bool SNaN,
10896                                                     unsigned Depth) const {
10897   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
10898     const MachineFunction &MF = DAG.getMachineFunction();
10899     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10900 
10901     if (Info->getMode().DX10Clamp)
10902       return true; // Clamped to 0.
10903     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
10904   }
10905 
10906   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
10907                                                             SNaN, Depth);
10908 }
10909 
10910 TargetLowering::AtomicExpansionKind
10911 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
10912   switch (RMW->getOperation()) {
10913   case AtomicRMWInst::FAdd: {
10914     Type *Ty = RMW->getType();
10915 
10916     // We don't have a way to support 16-bit atomics now, so just leave them
10917     // as-is.
10918     if (Ty->isHalfTy())
10919       return AtomicExpansionKind::None;
10920 
10921     if (!Ty->isFloatTy())
10922       return AtomicExpansionKind::CmpXChg;
10923 
10924     // TODO: Do have these for flat. Older targets also had them for buffers.
10925     unsigned AS = RMW->getPointerAddressSpace();
10926     return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
10927       AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
10928   }
10929   default:
10930     break;
10931   }
10932 
10933   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
10934 }
10935 
10936 const TargetRegisterClass *
10937 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
10938   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
10939   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10940   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
10941     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
10942                                                : &AMDGPU::SReg_32RegClass;
10943   if (!TRI->isSGPRClass(RC) && !isDivergent)
10944     return TRI->getEquivalentSGPRClass(RC);
10945   else if (TRI->isSGPRClass(RC) && isDivergent)
10946     return TRI->getEquivalentVGPRClass(RC);
10947 
10948   return RC;
10949 }
10950 
10951 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited) {
10952   if (!Visited.insert(V).second)
10953     return false;
10954   bool Result = false;
10955   for (auto U : V->users()) {
10956     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
10957       if (V == U->getOperand(1)) {
10958         switch (Intrinsic->getIntrinsicID()) {
10959         default:
10960           Result = false;
10961           break;
10962         case Intrinsic::amdgcn_if_break:
10963         case Intrinsic::amdgcn_if:
10964         case Intrinsic::amdgcn_else:
10965           Result = true;
10966           break;
10967         }
10968       }
10969       if (V == U->getOperand(0)) {
10970         switch (Intrinsic->getIntrinsicID()) {
10971         default:
10972           Result = false;
10973           break;
10974         case Intrinsic::amdgcn_end_cf:
10975         case Intrinsic::amdgcn_loop:
10976           Result = true;
10977           break;
10978         }
10979       }
10980     } else {
10981       Result = hasCFUser(U, Visited);
10982     }
10983     if (Result)
10984       break;
10985   }
10986   return Result;
10987 }
10988 
10989 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
10990                                                const Value *V) const {
10991   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
10992     switch (Intrinsic->getIntrinsicID()) {
10993     default:
10994       return false;
10995     case Intrinsic::amdgcn_if_break:
10996       return true;
10997     }
10998   }
10999   if (const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V)) {
11000     if (const IntrinsicInst *Intrinsic =
11001             dyn_cast<IntrinsicInst>(ExtValue->getOperand(0))) {
11002       switch (Intrinsic->getIntrinsicID()) {
11003       default:
11004         return false;
11005       case Intrinsic::amdgcn_if:
11006       case Intrinsic::amdgcn_else: {
11007         ArrayRef<unsigned> Indices = ExtValue->getIndices();
11008         if (Indices.size() == 1 && Indices[0] == 1) {
11009           return true;
11010         }
11011       }
11012       }
11013     }
11014   }
11015   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
11016     if (isa<InlineAsm>(CI->getCalledValue())) {
11017       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
11018       ImmutableCallSite CS(CI);
11019       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
11020           MF.getDataLayout(), Subtarget->getRegisterInfo(), CS);
11021       for (auto &TC : TargetConstraints) {
11022         if (TC.Type == InlineAsm::isOutput) {
11023           ComputeConstraintToUse(TC, SDValue());
11024           unsigned AssignedReg;
11025           const TargetRegisterClass *RC;
11026           std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
11027               SIRI, TC.ConstraintCode, TC.ConstraintVT);
11028           if (RC) {
11029             MachineRegisterInfo &MRI = MF.getRegInfo();
11030             if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
11031               return true;
11032             else if (SIRI->isSGPRClass(RC))
11033               return true;
11034           }
11035         }
11036       }
11037     }
11038   }
11039   SmallPtrSet<const Value *, 16> Visited;
11040   return hasCFUser(V, Visited);
11041 }
11042