1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for R600
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "R600ISelLowering.h"
15 #include "AMDGPUFrameLowering.h"
16 #include "AMDGPUSubtarget.h"
17 #include "R600Defines.h"
18 #include "R600FrameLowering.h"
19 #include "R600InstrInfo.h"
20 #include "R600MachineFunctionInfo.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/DAGCombine.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/IntrinsicsR600.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include "llvm/Support/MathExtras.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #include "R600GenCallingConv.inc"
55 
56 R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
57                                        const R600Subtarget &STI)
58     : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
59   addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
60   addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
61   addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
62   addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
63   addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
64   addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
65 
66   setBooleanContents(ZeroOrNegativeOneBooleanContent);
67   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
68 
69   computeRegisterProperties(Subtarget->getRegisterInfo());
70 
71   // Legalize loads and stores to the private address space.
72   setOperationAction(ISD::LOAD, MVT::i32, Custom);
73   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
74   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
75 
76   // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
77   // spaces, so it is custom lowered to handle those where it isn't.
78   for (MVT VT : MVT::integer_valuetypes()) {
79     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
80     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
81     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
82 
83     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
84     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
85     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
86 
87     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
88     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
89     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
90   }
91 
92   // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
93   setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
94   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
95   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
96 
97   setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
98   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
99   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
100 
101   setOperationAction(ISD::STORE, MVT::i8, Custom);
102   setOperationAction(ISD::STORE, MVT::i32, Custom);
103   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
104   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
105 
106   setTruncStoreAction(MVT::i32, MVT::i8, Custom);
107   setTruncStoreAction(MVT::i32, MVT::i16, Custom);
108   // We need to include these since trunc STORES to PRIVATE need
109   // special handling to accommodate RMW
110   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
111   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
112   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
113   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
114   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
115   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
116   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
117   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
118   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
119   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
120 
121   // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
122   setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
123   setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
124 
125   // Set condition code actions
126   setCondCodeAction(ISD::SETO,   MVT::f32, Expand);
127   setCondCodeAction(ISD::SETUO,  MVT::f32, Expand);
128   setCondCodeAction(ISD::SETLT,  MVT::f32, Expand);
129   setCondCodeAction(ISD::SETLE,  MVT::f32, Expand);
130   setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
131   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
132   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
133   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
134   setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
135   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
136   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
137   setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
138 
139   setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
140   setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
141   setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
142   setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
143 
144   setOperationAction(ISD::FCOS, MVT::f32, Custom);
145   setOperationAction(ISD::FSIN, MVT::f32, Custom);
146 
147   setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
148   setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
149 
150   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
151   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
152   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
153 
154   setOperationAction(ISD::FSUB, MVT::f32, Expand);
155 
156   setOperationAction(ISD::FCEIL, MVT::f64, Custom);
157   setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
158   setOperationAction(ISD::FRINT, MVT::f64, Custom);
159   setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
160 
161   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
162   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
163 
164   setOperationAction(ISD::SETCC, MVT::i32, Expand);
165   setOperationAction(ISD::SETCC, MVT::f32, Expand);
166   setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
167   setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
168   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
169   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
170 
171   setOperationAction(ISD::SELECT, MVT::i32, Expand);
172   setOperationAction(ISD::SELECT, MVT::f32, Expand);
173   setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
174   setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
175 
176   // ADD, SUB overflow.
177   // TODO: turn these into Legal?
178   if (Subtarget->hasCARRY())
179     setOperationAction(ISD::UADDO, MVT::i32, Custom);
180 
181   if (Subtarget->hasBORROW())
182     setOperationAction(ISD::USUBO, MVT::i32, Custom);
183 
184   // Expand sign extension of vectors
185   if (!Subtarget->hasBFE())
186     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
187 
188   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
189   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
190 
191   if (!Subtarget->hasBFE())
192     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
193   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
194   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
195 
196   if (!Subtarget->hasBFE())
197     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
198   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
199   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
200 
201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
202   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
203   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
204 
205   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
206 
207   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
208 
209   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
210   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
211   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
212   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
213 
214   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
215   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
216   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
217   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
218 
219   // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
220   //  to be Legal/Custom in order to avoid library calls.
221   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
222   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
223   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
224 
225   if (!Subtarget->hasFMA()) {
226     setOperationAction(ISD::FMA, MVT::f32, Expand);
227     setOperationAction(ISD::FMA, MVT::f64, Expand);
228   }
229 
230   // FIXME: May need no denormals check
231   setOperationAction(ISD::FMAD, MVT::f32, Legal);
232 
233   if (!Subtarget->hasBFI()) {
234     // fcopysign can be done in a single instruction with BFI.
235     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
236     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
237   }
238 
239   if (!Subtarget->hasBCNT(32))
240     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
241 
242   if (!Subtarget->hasBCNT(64))
243     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
244 
245   if (Subtarget->hasFFBH())
246     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
247 
248   if (Subtarget->hasFFBL())
249     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
250 
251   // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
252   // need it for R600.
253   if (Subtarget->hasBFE())
254     setHasExtractBitsInsn(true);
255 
256   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
257 
258   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
259   for (MVT VT : ScalarIntVTs) {
260     setOperationAction(ISD::ADDC, VT, Expand);
261     setOperationAction(ISD::SUBC, VT, Expand);
262     setOperationAction(ISD::ADDE, VT, Expand);
263     setOperationAction(ISD::SUBE, VT, Expand);
264   }
265 
266   // LLVM will expand these to atomic_cmp_swap(0)
267   // and atomic_swap, respectively.
268   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
269   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
270 
271   // We need to custom lower some of the intrinsics
272   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
273   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
274 
275   setSchedulingPreference(Sched::Source);
276 
277   setTargetDAGCombine(ISD::FP_ROUND);
278   setTargetDAGCombine(ISD::FP_TO_SINT);
279   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
280   setTargetDAGCombine(ISD::SELECT_CC);
281   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
282   setTargetDAGCombine(ISD::LOAD);
283 }
284 
285 static inline bool isEOP(MachineBasicBlock::iterator I) {
286   if (std::next(I) == I->getParent()->end())
287     return false;
288   return std::next(I)->getOpcode() == R600::RETURN;
289 }
290 
291 MachineBasicBlock *
292 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
293                                                 MachineBasicBlock *BB) const {
294   MachineFunction *MF = BB->getParent();
295   MachineRegisterInfo &MRI = MF->getRegInfo();
296   MachineBasicBlock::iterator I = MI;
297   const R600InstrInfo *TII = Subtarget->getInstrInfo();
298 
299   switch (MI.getOpcode()) {
300   default:
301     // Replace LDS_*_RET instruction that don't have any uses with the
302     // equivalent LDS_*_NORET instruction.
303     if (TII->isLDSRetInstr(MI.getOpcode())) {
304       int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
305       assert(DstIdx != -1);
306       MachineInstrBuilder NewMI;
307       // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
308       //        LDS_1A2D support and remove this special case.
309       if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
310           MI.getOpcode() == R600::LDS_CMPST_RET)
311         return BB;
312 
313       NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
314                       TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
315       for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
316         NewMI.add(MI.getOperand(i));
317       }
318     } else {
319       return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
320     }
321     break;
322 
323   case R600::FABS_R600: {
324     MachineInstr *NewMI = TII->buildDefaultInstruction(
325         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
326         MI.getOperand(1).getReg());
327     TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
328     break;
329   }
330 
331   case R600::FNEG_R600: {
332     MachineInstr *NewMI = TII->buildDefaultInstruction(
333         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
334         MI.getOperand(1).getReg());
335     TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
336     break;
337   }
338 
339   case R600::MASK_WRITE: {
340     Register maskedRegister = MI.getOperand(0).getReg();
341     assert(Register::isVirtualRegister(maskedRegister));
342     MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
343     TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
344     break;
345   }
346 
347   case R600::MOV_IMM_F32:
348     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
349                                                             .getFPImm()
350                                                             ->getValueAPF()
351                                                             .bitcastToAPInt()
352                                                             .getZExtValue());
353     break;
354 
355   case R600::MOV_IMM_I32:
356     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
357                      MI.getOperand(1).getImm());
358     break;
359 
360   case R600::MOV_IMM_GLOBAL_ADDR: {
361     //TODO: Perhaps combine this instruction with the next if possible
362     auto MIB = TII->buildDefaultInstruction(
363         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
364     int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
365     //TODO: Ugh this is rather ugly
366     MIB->getOperand(Idx) = MI.getOperand(1);
367     break;
368   }
369 
370   case R600::CONST_COPY: {
371     MachineInstr *NewMI = TII->buildDefaultInstruction(
372         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
373     TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
374                        MI.getOperand(1).getImm());
375     break;
376   }
377 
378   case R600::RAT_WRITE_CACHELESS_32_eg:
379   case R600::RAT_WRITE_CACHELESS_64_eg:
380   case R600::RAT_WRITE_CACHELESS_128_eg:
381     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
382         .add(MI.getOperand(0))
383         .add(MI.getOperand(1))
384         .addImm(isEOP(I)); // Set End of program bit
385     break;
386 
387   case R600::RAT_STORE_TYPED_eg:
388     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
389         .add(MI.getOperand(0))
390         .add(MI.getOperand(1))
391         .add(MI.getOperand(2))
392         .addImm(isEOP(I)); // Set End of program bit
393     break;
394 
395   case R600::BRANCH:
396     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
397         .add(MI.getOperand(0));
398     break;
399 
400   case R600::BRANCH_COND_f32: {
401     MachineInstr *NewMI =
402         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
403                 R600::PREDICATE_BIT)
404             .add(MI.getOperand(1))
405             .addImm(R600::PRED_SETNE)
406             .addImm(0); // Flags
407     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
408     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
409         .add(MI.getOperand(0))
410         .addReg(R600::PREDICATE_BIT, RegState::Kill);
411     break;
412   }
413 
414   case R600::BRANCH_COND_i32: {
415     MachineInstr *NewMI =
416         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
417                 R600::PREDICATE_BIT)
418             .add(MI.getOperand(1))
419             .addImm(R600::PRED_SETNE_INT)
420             .addImm(0); // Flags
421     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
422     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
423         .add(MI.getOperand(0))
424         .addReg(R600::PREDICATE_BIT, RegState::Kill);
425     break;
426   }
427 
428   case R600::EG_ExportSwz:
429   case R600::R600_ExportSwz: {
430     // Instruction is left unmodified if its not the last one of its type
431     bool isLastInstructionOfItsType = true;
432     unsigned InstExportType = MI.getOperand(1).getImm();
433     for (MachineBasicBlock::iterator NextExportInst = std::next(I),
434          EndBlock = BB->end(); NextExportInst != EndBlock;
435          NextExportInst = std::next(NextExportInst)) {
436       if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
437           NextExportInst->getOpcode() == R600::R600_ExportSwz) {
438         unsigned CurrentInstExportType = NextExportInst->getOperand(1)
439             .getImm();
440         if (CurrentInstExportType == InstExportType) {
441           isLastInstructionOfItsType = false;
442           break;
443         }
444       }
445     }
446     bool EOP = isEOP(I);
447     if (!EOP && !isLastInstructionOfItsType)
448       return BB;
449     unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
450     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
451         .add(MI.getOperand(0))
452         .add(MI.getOperand(1))
453         .add(MI.getOperand(2))
454         .add(MI.getOperand(3))
455         .add(MI.getOperand(4))
456         .add(MI.getOperand(5))
457         .add(MI.getOperand(6))
458         .addImm(CfInst)
459         .addImm(EOP);
460     break;
461   }
462   case R600::RETURN: {
463     return BB;
464   }
465   }
466 
467   MI.eraseFromParent();
468   return BB;
469 }
470 
471 //===----------------------------------------------------------------------===//
472 // Custom DAG Lowering Operations
473 //===----------------------------------------------------------------------===//
474 
475 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
476   MachineFunction &MF = DAG.getMachineFunction();
477   R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
478   switch (Op.getOpcode()) {
479   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
480   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
481   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
482   case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG);
483   case ISD::SRA_PARTS:
484   case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG);
485   case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
486   case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
487   case ISD::FCOS:
488   case ISD::FSIN: return LowerTrig(Op, DAG);
489   case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
490   case ISD::STORE: return LowerSTORE(Op, DAG);
491   case ISD::LOAD: {
492     SDValue Result = LowerLOAD(Op, DAG);
493     assert((!Result.getNode() ||
494             Result.getNode()->getNumValues() == 2) &&
495            "Load should return a value and a chain");
496     return Result;
497   }
498 
499   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
500   case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
501   case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
502   case ISD::INTRINSIC_VOID: {
503     SDValue Chain = Op.getOperand(0);
504     unsigned IntrinsicID =
505                          cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
506     switch (IntrinsicID) {
507     case Intrinsic::r600_store_swizzle: {
508       SDLoc DL(Op);
509       const SDValue Args[8] = {
510         Chain,
511         Op.getOperand(2), // Export Value
512         Op.getOperand(3), // ArrayBase
513         Op.getOperand(4), // Type
514         DAG.getConstant(0, DL, MVT::i32), // SWZ_X
515         DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
516         DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
517         DAG.getConstant(3, DL, MVT::i32) // SWZ_W
518       };
519       return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
520     }
521 
522     // default for switch(IntrinsicID)
523     default: break;
524     }
525     // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
526     break;
527   }
528   case ISD::INTRINSIC_WO_CHAIN: {
529     unsigned IntrinsicID =
530                          cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
531     EVT VT = Op.getValueType();
532     SDLoc DL(Op);
533     switch (IntrinsicID) {
534     case Intrinsic::r600_tex:
535     case Intrinsic::r600_texc: {
536       unsigned TextureOp;
537       switch (IntrinsicID) {
538       case Intrinsic::r600_tex:
539         TextureOp = 0;
540         break;
541       case Intrinsic::r600_texc:
542         TextureOp = 1;
543         break;
544       default:
545         llvm_unreachable("unhandled texture operation");
546       }
547 
548       SDValue TexArgs[19] = {
549         DAG.getConstant(TextureOp, DL, MVT::i32),
550         Op.getOperand(1),
551         DAG.getConstant(0, DL, MVT::i32),
552         DAG.getConstant(1, DL, MVT::i32),
553         DAG.getConstant(2, DL, MVT::i32),
554         DAG.getConstant(3, DL, MVT::i32),
555         Op.getOperand(2),
556         Op.getOperand(3),
557         Op.getOperand(4),
558         DAG.getConstant(0, DL, MVT::i32),
559         DAG.getConstant(1, DL, MVT::i32),
560         DAG.getConstant(2, DL, MVT::i32),
561         DAG.getConstant(3, DL, MVT::i32),
562         Op.getOperand(5),
563         Op.getOperand(6),
564         Op.getOperand(7),
565         Op.getOperand(8),
566         Op.getOperand(9),
567         Op.getOperand(10)
568       };
569       return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
570     }
571     case Intrinsic::r600_dot4: {
572       SDValue Args[8] = {
573       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
574           DAG.getConstant(0, DL, MVT::i32)),
575       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
576           DAG.getConstant(0, DL, MVT::i32)),
577       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
578           DAG.getConstant(1, DL, MVT::i32)),
579       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
580           DAG.getConstant(1, DL, MVT::i32)),
581       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
582           DAG.getConstant(2, DL, MVT::i32)),
583       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
584           DAG.getConstant(2, DL, MVT::i32)),
585       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
586           DAG.getConstant(3, DL, MVT::i32)),
587       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
588           DAG.getConstant(3, DL, MVT::i32))
589       };
590       return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
591     }
592 
593     case Intrinsic::r600_implicitarg_ptr: {
594       MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS);
595       uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
596       return DAG.getConstant(ByteOffset, DL, PtrVT);
597     }
598     case Intrinsic::r600_read_ngroups_x:
599       return LowerImplicitParameter(DAG, VT, DL, 0);
600     case Intrinsic::r600_read_ngroups_y:
601       return LowerImplicitParameter(DAG, VT, DL, 1);
602     case Intrinsic::r600_read_ngroups_z:
603       return LowerImplicitParameter(DAG, VT, DL, 2);
604     case Intrinsic::r600_read_global_size_x:
605       return LowerImplicitParameter(DAG, VT, DL, 3);
606     case Intrinsic::r600_read_global_size_y:
607       return LowerImplicitParameter(DAG, VT, DL, 4);
608     case Intrinsic::r600_read_global_size_z:
609       return LowerImplicitParameter(DAG, VT, DL, 5);
610     case Intrinsic::r600_read_local_size_x:
611       return LowerImplicitParameter(DAG, VT, DL, 6);
612     case Intrinsic::r600_read_local_size_y:
613       return LowerImplicitParameter(DAG, VT, DL, 7);
614     case Intrinsic::r600_read_local_size_z:
615       return LowerImplicitParameter(DAG, VT, DL, 8);
616 
617     case Intrinsic::r600_read_tgid_x:
618     case Intrinsic::amdgcn_workgroup_id_x:
619       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
620                                      R600::T1_X, VT);
621     case Intrinsic::r600_read_tgid_y:
622     case Intrinsic::amdgcn_workgroup_id_y:
623       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
624                                      R600::T1_Y, VT);
625     case Intrinsic::r600_read_tgid_z:
626     case Intrinsic::amdgcn_workgroup_id_z:
627       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
628                                      R600::T1_Z, VT);
629     case Intrinsic::r600_read_tidig_x:
630     case Intrinsic::amdgcn_workitem_id_x:
631       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
632                                      R600::T0_X, VT);
633     case Intrinsic::r600_read_tidig_y:
634     case Intrinsic::amdgcn_workitem_id_y:
635       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
636                                      R600::T0_Y, VT);
637     case Intrinsic::r600_read_tidig_z:
638     case Intrinsic::amdgcn_workitem_id_z:
639       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
640                                      R600::T0_Z, VT);
641 
642     case Intrinsic::r600_recipsqrt_ieee:
643       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
644 
645     case Intrinsic::r600_recipsqrt_clamped:
646       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
647     default:
648       return Op;
649     }
650 
651     // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
652     break;
653   }
654   } // end switch(Op.getOpcode())
655   return SDValue();
656 }
657 
658 void R600TargetLowering::ReplaceNodeResults(SDNode *N,
659                                             SmallVectorImpl<SDValue> &Results,
660                                             SelectionDAG &DAG) const {
661   switch (N->getOpcode()) {
662   default:
663     AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
664     return;
665   case ISD::FP_TO_UINT:
666     if (N->getValueType(0) == MVT::i1) {
667       Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
668       return;
669     }
670     // Since we don't care about out of bounds values we can use FP_TO_SINT for
671     // uints too. The DAGLegalizer code for uint considers some extra cases
672     // which are not necessary here.
673     LLVM_FALLTHROUGH;
674   case ISD::FP_TO_SINT: {
675     if (N->getValueType(0) == MVT::i1) {
676       Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
677       return;
678     }
679 
680     SDValue Result;
681     if (expandFP_TO_SINT(N, Result, DAG))
682       Results.push_back(Result);
683     return;
684   }
685   case ISD::SDIVREM: {
686     SDValue Op = SDValue(N, 1);
687     SDValue RES = LowerSDIVREM(Op, DAG);
688     Results.push_back(RES);
689     Results.push_back(RES.getValue(1));
690     break;
691   }
692   case ISD::UDIVREM: {
693     SDValue Op = SDValue(N, 0);
694     LowerUDIVREM64(Op, DAG, Results);
695     break;
696   }
697   }
698 }
699 
700 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
701                                                    SDValue Vector) const {
702   SDLoc DL(Vector);
703   EVT VecVT = Vector.getValueType();
704   EVT EltVT = VecVT.getVectorElementType();
705   SmallVector<SDValue, 8> Args;
706 
707   for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
708     Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
709                                DAG.getVectorIdxConstant(i, DL)));
710   }
711 
712   return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
713 }
714 
715 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
716                                                     SelectionDAG &DAG) const {
717   SDLoc DL(Op);
718   SDValue Vector = Op.getOperand(0);
719   SDValue Index = Op.getOperand(1);
720 
721   if (isa<ConstantSDNode>(Index) ||
722       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
723     return Op;
724 
725   Vector = vectorToVerticalVector(DAG, Vector);
726   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
727                      Vector, Index);
728 }
729 
730 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
731                                                    SelectionDAG &DAG) const {
732   SDLoc DL(Op);
733   SDValue Vector = Op.getOperand(0);
734   SDValue Value = Op.getOperand(1);
735   SDValue Index = Op.getOperand(2);
736 
737   if (isa<ConstantSDNode>(Index) ||
738       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
739     return Op;
740 
741   Vector = vectorToVerticalVector(DAG, Vector);
742   SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
743                                Vector, Value, Index);
744   return vectorToVerticalVector(DAG, Insert);
745 }
746 
747 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
748                                                SDValue Op,
749                                                SelectionDAG &DAG) const {
750   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
751   if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
752     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
753 
754   const DataLayout &DL = DAG.getDataLayout();
755   const GlobalValue *GV = GSD->getGlobal();
756   MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
757 
758   SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
759   return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
760 }
761 
762 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
763   // On hw >= R700, COS/SIN input must be between -1. and 1.
764   // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
765   EVT VT = Op.getValueType();
766   SDValue Arg = Op.getOperand(0);
767   SDLoc DL(Op);
768 
769   // TODO: Should this propagate fast-math-flags?
770   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
771       DAG.getNode(ISD::FADD, DL, VT,
772         DAG.getNode(ISD::FMUL, DL, VT, Arg,
773           DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
774         DAG.getConstantFP(0.5, DL, MVT::f32)));
775   unsigned TrigNode;
776   switch (Op.getOpcode()) {
777   case ISD::FCOS:
778     TrigNode = AMDGPUISD::COS_HW;
779     break;
780   case ISD::FSIN:
781     TrigNode = AMDGPUISD::SIN_HW;
782     break;
783   default:
784     llvm_unreachable("Wrong trig opcode");
785   }
786   SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
787       DAG.getNode(ISD::FADD, DL, VT, FractPart,
788         DAG.getConstantFP(-0.5, DL, MVT::f32)));
789   if (Gen >= AMDGPUSubtarget::R700)
790     return TrigVal;
791   // On R600 hw, COS/SIN input must be between -Pi and Pi.
792   return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
793       DAG.getConstantFP(numbers::pif, DL, MVT::f32));
794 }
795 
796 SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const {
797   SDLoc DL(Op);
798   EVT VT = Op.getValueType();
799 
800   SDValue Lo = Op.getOperand(0);
801   SDValue Hi = Op.getOperand(1);
802   SDValue Shift = Op.getOperand(2);
803   SDValue Zero = DAG.getConstant(0, DL, VT);
804   SDValue One  = DAG.getConstant(1, DL, VT);
805 
806   SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
807   SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
808   SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
809   SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
810 
811   // The dance around Width1 is necessary for 0 special case.
812   // Without it the CompShift might be 32, producing incorrect results in
813   // Overflow. So we do the shift in two steps, the alternative is to
814   // add a conditional to filter the special case.
815 
816   SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift);
817   Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One);
818 
819   SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift);
820   HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow);
821   SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift);
822 
823   SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift);
824   SDValue LoBig = Zero;
825 
826   Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
827   Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
828 
829   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
830 }
831 
832 SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const {
833   SDLoc DL(Op);
834   EVT VT = Op.getValueType();
835 
836   SDValue Lo = Op.getOperand(0);
837   SDValue Hi = Op.getOperand(1);
838   SDValue Shift = Op.getOperand(2);
839   SDValue Zero = DAG.getConstant(0, DL, VT);
840   SDValue One  = DAG.getConstant(1, DL, VT);
841 
842   const bool SRA = Op.getOpcode() == ISD::SRA_PARTS;
843 
844   SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
845   SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
846   SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
847   SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
848 
849   // The dance around Width1 is necessary for 0 special case.
850   // Without it the CompShift might be 32, producing incorrect results in
851   // Overflow. So we do the shift in two steps, the alternative is to
852   // add a conditional to filter the special case.
853 
854   SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift);
855   Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One);
856 
857   SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift);
858   SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift);
859   LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow);
860 
861   SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift);
862   SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero;
863 
864   Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
865   Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
866 
867   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
868 }
869 
870 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
871                                           unsigned mainop, unsigned ovf) const {
872   SDLoc DL(Op);
873   EVT VT = Op.getValueType();
874 
875   SDValue Lo = Op.getOperand(0);
876   SDValue Hi = Op.getOperand(1);
877 
878   SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
879   // Extend sign.
880   OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
881                     DAG.getValueType(MVT::i1));
882 
883   SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
884 
885   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
886 }
887 
888 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
889   SDLoc DL(Op);
890   return DAG.getNode(
891       ISD::SETCC,
892       DL,
893       MVT::i1,
894       Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
895       DAG.getCondCode(ISD::SETEQ));
896 }
897 
898 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
899   SDLoc DL(Op);
900   return DAG.getNode(
901       ISD::SETCC,
902       DL,
903       MVT::i1,
904       Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
905       DAG.getCondCode(ISD::SETEQ));
906 }
907 
908 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
909                                                    const SDLoc &DL,
910                                                    unsigned DwordOffset) const {
911   unsigned ByteOffset = DwordOffset * 4;
912   PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
913                                       AMDGPUAS::PARAM_I_ADDRESS);
914 
915   // We shouldn't be using an offset wider than 16-bits for implicit parameters.
916   assert(isInt<16>(ByteOffset));
917 
918   return DAG.getLoad(VT, DL, DAG.getEntryNode(),
919                      DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
920                      MachinePointerInfo(ConstantPointerNull::get(PtrType)));
921 }
922 
923 bool R600TargetLowering::isZero(SDValue Op) const {
924   if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
925     return Cst->isNullValue();
926   } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
927     return CstFP->isZero();
928   } else {
929     return false;
930   }
931 }
932 
933 bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
934   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
935     return CFP->isExactlyValue(1.0);
936   }
937   return isAllOnesConstant(Op);
938 }
939 
940 bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
941   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
942     return CFP->getValueAPF().isZero();
943   }
944   return isNullConstant(Op);
945 }
946 
947 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
948   SDLoc DL(Op);
949   EVT VT = Op.getValueType();
950 
951   SDValue LHS = Op.getOperand(0);
952   SDValue RHS = Op.getOperand(1);
953   SDValue True = Op.getOperand(2);
954   SDValue False = Op.getOperand(3);
955   SDValue CC = Op.getOperand(4);
956   SDValue Temp;
957 
958   if (VT == MVT::f32) {
959     DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
960     SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
961     if (MinMax)
962       return MinMax;
963   }
964 
965   // LHS and RHS are guaranteed to be the same value type
966   EVT CompareVT = LHS.getValueType();
967 
968   // Check if we can lower this to a native operation.
969 
970   // Try to lower to a SET* instruction:
971   //
972   // SET* can match the following patterns:
973   //
974   // select_cc f32, f32, -1,  0, cc_supported
975   // select_cc f32, f32, 1.0f, 0.0f, cc_supported
976   // select_cc i32, i32, -1,  0, cc_supported
977   //
978 
979   // Move hardware True/False values to the correct operand.
980   if (isHWTrueValue(False) && isHWFalseValue(True)) {
981     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
982     ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT);
983     if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
984       std::swap(False, True);
985       CC = DAG.getCondCode(InverseCC);
986     } else {
987       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
988       if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
989         std::swap(False, True);
990         std::swap(LHS, RHS);
991         CC = DAG.getCondCode(SwapInvCC);
992       }
993     }
994   }
995 
996   if (isHWTrueValue(True) && isHWFalseValue(False) &&
997       (CompareVT == VT || VT == MVT::i32)) {
998     // This can be matched by a SET* instruction.
999     return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
1000   }
1001 
1002   // Try to lower to a CND* instruction:
1003   //
1004   // CND* can match the following patterns:
1005   //
1006   // select_cc f32, 0.0, f32, f32, cc_supported
1007   // select_cc f32, 0.0, i32, i32, cc_supported
1008   // select_cc i32, 0,   f32, f32, cc_supported
1009   // select_cc i32, 0,   i32, i32, cc_supported
1010   //
1011 
1012   // Try to move the zero value to the RHS
1013   if (isZero(LHS)) {
1014     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1015     // Try swapping the operands
1016     ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
1017     if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1018       std::swap(LHS, RHS);
1019       CC = DAG.getCondCode(CCSwapped);
1020     } else {
1021       // Try inverting the conditon and then swapping the operands
1022       ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT);
1023       CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
1024       if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1025         std::swap(True, False);
1026         std::swap(LHS, RHS);
1027         CC = DAG.getCondCode(CCSwapped);
1028       }
1029     }
1030   }
1031   if (isZero(RHS)) {
1032     SDValue Cond = LHS;
1033     SDValue Zero = RHS;
1034     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1035     if (CompareVT != VT) {
1036       // Bitcast True / False to the correct types.  This will end up being
1037       // a nop, but it allows us to define only a single pattern in the
1038       // .TD files for each CND* instruction rather than having to have
1039       // one pattern for integer True/False and one for fp True/False
1040       True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
1041       False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
1042     }
1043 
1044     switch (CCOpcode) {
1045     case ISD::SETONE:
1046     case ISD::SETUNE:
1047     case ISD::SETNE:
1048       CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT);
1049       Temp = True;
1050       True = False;
1051       False = Temp;
1052       break;
1053     default:
1054       break;
1055     }
1056     SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
1057         Cond, Zero,
1058         True, False,
1059         DAG.getCondCode(CCOpcode));
1060     return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
1061   }
1062 
1063   // If we make it this for it means we have no native instructions to handle
1064   // this SELECT_CC, so we must lower it.
1065   SDValue HWTrue, HWFalse;
1066 
1067   if (CompareVT == MVT::f32) {
1068     HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
1069     HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
1070   } else if (CompareVT == MVT::i32) {
1071     HWTrue = DAG.getConstant(-1, DL, CompareVT);
1072     HWFalse = DAG.getConstant(0, DL, CompareVT);
1073   }
1074   else {
1075     llvm_unreachable("Unhandled value type in LowerSELECT_CC");
1076   }
1077 
1078   // Lower this unsupported SELECT_CC into a combination of two supported
1079   // SELECT_CC operations.
1080   SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
1081 
1082   return DAG.getNode(ISD::SELECT_CC, DL, VT,
1083       Cond, HWFalse,
1084       True, False,
1085       DAG.getCondCode(ISD::SETNE));
1086 }
1087 
1088 /// LLVM generates byte-addressed pointers.  For indirect addressing, we need to
1089 /// convert these pointers to a register index.  Each register holds
1090 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
1091 /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
1092 /// for indirect addressing.
1093 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
1094                                                unsigned StackWidth,
1095                                                SelectionDAG &DAG) const {
1096   unsigned SRLPad;
1097   switch(StackWidth) {
1098   case 1:
1099     SRLPad = 2;
1100     break;
1101   case 2:
1102     SRLPad = 3;
1103     break;
1104   case 4:
1105     SRLPad = 4;
1106     break;
1107   default: llvm_unreachable("Invalid stack width");
1108   }
1109 
1110   SDLoc DL(Ptr);
1111   return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
1112                      DAG.getConstant(SRLPad, DL, MVT::i32));
1113 }
1114 
1115 void R600TargetLowering::getStackAddress(unsigned StackWidth,
1116                                          unsigned ElemIdx,
1117                                          unsigned &Channel,
1118                                          unsigned &PtrIncr) const {
1119   switch (StackWidth) {
1120   default:
1121   case 1:
1122     Channel = 0;
1123     if (ElemIdx > 0) {
1124       PtrIncr = 1;
1125     } else {
1126       PtrIncr = 0;
1127     }
1128     break;
1129   case 2:
1130     Channel = ElemIdx % 2;
1131     if (ElemIdx == 2) {
1132       PtrIncr = 1;
1133     } else {
1134       PtrIncr = 0;
1135     }
1136     break;
1137   case 4:
1138     Channel = ElemIdx;
1139     PtrIncr = 0;
1140     break;
1141   }
1142 }
1143 
1144 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1145                                                    SelectionDAG &DAG) const {
1146   SDLoc DL(Store);
1147   //TODO: Who creates the i8 stores?
1148   assert(Store->isTruncatingStore()
1149          || Store->getValue().getValueType() == MVT::i8);
1150   assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);
1151 
1152   SDValue Mask;
1153   if (Store->getMemoryVT() == MVT::i8) {
1154     assert(Store->getAlignment() >= 1);
1155     Mask = DAG.getConstant(0xff, DL, MVT::i32);
1156   } else if (Store->getMemoryVT() == MVT::i16) {
1157     assert(Store->getAlignment() >= 2);
1158     Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1159   } else {
1160     llvm_unreachable("Unsupported private trunc store");
1161   }
1162 
1163   SDValue OldChain = Store->getChain();
1164   bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1165   // Skip dummy
1166   SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1167   SDValue BasePtr = Store->getBasePtr();
1168   SDValue Offset = Store->getOffset();
1169   EVT MemVT = Store->getMemoryVT();
1170 
1171   SDValue LoadPtr = BasePtr;
1172   if (!Offset.isUndef()) {
1173     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1174   }
1175 
1176   // Get dword location
1177   // TODO: this should be eliminated by the future SHR ptr, 2
1178   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1179                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1180 
1181   // Load dword
1182   // TODO: can we be smarter about machine pointer info?
1183   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1184   SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1185 
1186   Chain = Dst.getValue(1);
1187 
1188   // Get offset in dword
1189   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1190                                 DAG.getConstant(0x3, DL, MVT::i32));
1191 
1192   // Convert byte offset to bit shift
1193   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1194                                  DAG.getConstant(3, DL, MVT::i32));
1195 
1196   // TODO: Contrary to the name of the functiom,
1197   // it also handles sub i32 non-truncating stores (like i1)
1198   SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1199                                   Store->getValue());
1200 
1201   // Mask the value to the right type
1202   SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1203 
1204   // Shift the value in place
1205   SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1206                                      MaskedValue, ShiftAmt);
1207 
1208   // Shift the mask in place
1209   SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1210 
1211   // Invert the mask. NOTE: if we had native ROL instructions we could
1212   // use inverted mask
1213   DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1214 
1215   // Cleanup the target bits
1216   Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1217 
1218   // Add the new bits
1219   SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1220 
1221   // Store dword
1222   // TODO: Can we be smarter about MachinePointerInfo?
1223   SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1224 
1225   // If we are part of expanded vector, make our neighbors depend on this store
1226   if (VectorTrunc) {
1227     // Make all other vector elements depend on this store
1228     Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1229     DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1230   }
1231   return NewStore;
1232 }
1233 
1234 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1235   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1236   unsigned AS = StoreNode->getAddressSpace();
1237 
1238   SDValue Chain = StoreNode->getChain();
1239   SDValue Ptr = StoreNode->getBasePtr();
1240   SDValue Value = StoreNode->getValue();
1241 
1242   EVT VT = Value.getValueType();
1243   EVT MemVT = StoreNode->getMemoryVT();
1244   EVT PtrVT = Ptr.getValueType();
1245 
1246   SDLoc DL(Op);
1247 
1248   const bool TruncatingStore = StoreNode->isTruncatingStore();
1249 
1250   // Neither LOCAL nor PRIVATE can do vectors at the moment
1251   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS ||
1252        TruncatingStore) &&
1253       VT.isVector()) {
1254     if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
1255       // Add an extra level of chain to isolate this vector
1256       SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1257       // TODO: can the chain be replaced without creating a new store?
1258       SDValue NewStore = DAG.getTruncStore(
1259           NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
1260           MemVT, StoreNode->getAlignment(),
1261           StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
1262       StoreNode = cast<StoreSDNode>(NewStore);
1263     }
1264 
1265     return scalarizeVectorStore(StoreNode, DAG);
1266   }
1267 
1268   unsigned Align = StoreNode->getAlignment();
1269   if (Align < MemVT.getStoreSize() &&
1270       !allowsMisalignedMemoryAccesses(
1271           MemVT, AS, Align, StoreNode->getMemOperand()->getFlags(), nullptr)) {
1272     return expandUnalignedStore(StoreNode, DAG);
1273   }
1274 
1275   SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1276                                   DAG.getConstant(2, DL, PtrVT));
1277 
1278   if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
1279     // It is beneficial to create MSKOR here instead of combiner to avoid
1280     // artificial dependencies introduced by RMW
1281     if (TruncatingStore) {
1282       assert(VT.bitsLE(MVT::i32));
1283       SDValue MaskConstant;
1284       if (MemVT == MVT::i8) {
1285         MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1286       } else {
1287         assert(MemVT == MVT::i16);
1288         assert(StoreNode->getAlignment() >= 2);
1289         MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1290       }
1291 
1292       SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1293                                       DAG.getConstant(0x00000003, DL, PtrVT));
1294       SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1295                                      DAG.getConstant(3, DL, VT));
1296 
1297       // Put the mask in correct place
1298       SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1299 
1300       // Put the value bits in correct place
1301       SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1302       SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1303 
1304       // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1305       // vector instead.
1306       SDValue Src[4] = {
1307         ShiftedValue,
1308         DAG.getConstant(0, DL, MVT::i32),
1309         DAG.getConstant(0, DL, MVT::i32),
1310         Mask
1311       };
1312       SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1313       SDValue Args[3] = { Chain, Input, DWordAddr };
1314       return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1315                                      Op->getVTList(), Args, MemVT,
1316                                      StoreNode->getMemOperand());
1317     } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1318       // Convert pointer from byte address to dword address.
1319       Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1320 
1321       if (StoreNode->isIndexed()) {
1322         llvm_unreachable("Indexed stores not supported yet");
1323       } else {
1324         Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1325       }
1326       return Chain;
1327     }
1328   }
1329 
1330   // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1331   if (AS != AMDGPUAS::PRIVATE_ADDRESS)
1332     return SDValue();
1333 
1334   if (MemVT.bitsLT(MVT::i32))
1335     return lowerPrivateTruncStore(StoreNode, DAG);
1336 
1337   // Standard i32+ store, tag it with DWORDADDR to note that the address
1338   // has been shifted
1339   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1340     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1341     return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1342   }
1343 
1344   // Tagged i32+ stores will be matched by patterns
1345   return SDValue();
1346 }
1347 
1348 // return (512 + (kc_bank << 12)
1349 static int
1350 ConstantAddressBlock(unsigned AddressSpace) {
1351   switch (AddressSpace) {
1352   case AMDGPUAS::CONSTANT_BUFFER_0:
1353     return 512;
1354   case AMDGPUAS::CONSTANT_BUFFER_1:
1355     return 512 + 4096;
1356   case AMDGPUAS::CONSTANT_BUFFER_2:
1357     return 512 + 4096 * 2;
1358   case AMDGPUAS::CONSTANT_BUFFER_3:
1359     return 512 + 4096 * 3;
1360   case AMDGPUAS::CONSTANT_BUFFER_4:
1361     return 512 + 4096 * 4;
1362   case AMDGPUAS::CONSTANT_BUFFER_5:
1363     return 512 + 4096 * 5;
1364   case AMDGPUAS::CONSTANT_BUFFER_6:
1365     return 512 + 4096 * 6;
1366   case AMDGPUAS::CONSTANT_BUFFER_7:
1367     return 512 + 4096 * 7;
1368   case AMDGPUAS::CONSTANT_BUFFER_8:
1369     return 512 + 4096 * 8;
1370   case AMDGPUAS::CONSTANT_BUFFER_9:
1371     return 512 + 4096 * 9;
1372   case AMDGPUAS::CONSTANT_BUFFER_10:
1373     return 512 + 4096 * 10;
1374   case AMDGPUAS::CONSTANT_BUFFER_11:
1375     return 512 + 4096 * 11;
1376   case AMDGPUAS::CONSTANT_BUFFER_12:
1377     return 512 + 4096 * 12;
1378   case AMDGPUAS::CONSTANT_BUFFER_13:
1379     return 512 + 4096 * 13;
1380   case AMDGPUAS::CONSTANT_BUFFER_14:
1381     return 512 + 4096 * 14;
1382   case AMDGPUAS::CONSTANT_BUFFER_15:
1383     return 512 + 4096 * 15;
1384   default:
1385     return -1;
1386   }
1387 }
1388 
1389 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1390                                                 SelectionDAG &DAG) const {
1391   SDLoc DL(Op);
1392   LoadSDNode *Load = cast<LoadSDNode>(Op);
1393   ISD::LoadExtType ExtType = Load->getExtensionType();
1394   EVT MemVT = Load->getMemoryVT();
1395   assert(Load->getAlignment() >= MemVT.getStoreSize());
1396 
1397   SDValue BasePtr = Load->getBasePtr();
1398   SDValue Chain = Load->getChain();
1399   SDValue Offset = Load->getOffset();
1400 
1401   SDValue LoadPtr = BasePtr;
1402   if (!Offset.isUndef()) {
1403     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1404   }
1405 
1406   // Get dword location
1407   // NOTE: this should be eliminated by the future SHR ptr, 2
1408   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1409                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1410 
1411   // Load dword
1412   // TODO: can we be smarter about machine pointer info?
1413   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1414   SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1415 
1416   // Get offset within the register.
1417   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1418                                 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1419 
1420   // Bit offset of target byte (byteIdx * 8).
1421   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1422                                  DAG.getConstant(3, DL, MVT::i32));
1423 
1424   // Shift to the right.
1425   SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1426 
1427   // Eliminate the upper bits by setting them to ...
1428   EVT MemEltVT = MemVT.getScalarType();
1429 
1430   if (ExtType == ISD::SEXTLOAD) { // ... ones.
1431     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1432     Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1433   } else { // ... or zeros.
1434     Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1435   }
1436 
1437   SDValue Ops[] = {
1438     Ret,
1439     Read.getValue(1) // This should be our output chain
1440   };
1441 
1442   return DAG.getMergeValues(Ops, DL);
1443 }
1444 
1445 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1446   LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1447   unsigned AS = LoadNode->getAddressSpace();
1448   EVT MemVT = LoadNode->getMemoryVT();
1449   ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1450 
1451   if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
1452       ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1453     return lowerPrivateExtLoad(Op, DAG);
1454   }
1455 
1456   SDLoc DL(Op);
1457   EVT VT = Op.getValueType();
1458   SDValue Chain = LoadNode->getChain();
1459   SDValue Ptr = LoadNode->getBasePtr();
1460 
1461   if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1462       LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1463       VT.isVector()) {
1464     SDValue Ops[2];
1465     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG);
1466     return DAG.getMergeValues(Ops, DL);
1467   }
1468 
1469   // This is still used for explicit load from addrspace(8)
1470   int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1471   if (ConstantBlock > -1 &&
1472       ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1473        (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1474     SDValue Result;
1475     if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1476         isa<ConstantSDNode>(Ptr)) {
1477       return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1478     } else {
1479       //TODO: Does this even work?
1480       // non-constant ptr can't be folded, keeps it as a v4f32 load
1481       Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1482           DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1483                       DAG.getConstant(4, DL, MVT::i32)),
1484                       DAG.getConstant(LoadNode->getAddressSpace() -
1485                                       AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32)
1486           );
1487     }
1488 
1489     if (!VT.isVector()) {
1490       Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1491                            DAG.getConstant(0, DL, MVT::i32));
1492     }
1493 
1494     SDValue MergedValues[2] = {
1495       Result,
1496       Chain
1497     };
1498     return DAG.getMergeValues(MergedValues, DL);
1499   }
1500 
1501   // For most operations returning SDValue() will result in the node being
1502   // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1503   // need to manually expand loads that may be legal in some address spaces and
1504   // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1505   // compute shaders, since the data is sign extended when it is uploaded to the
1506   // buffer. However SEXT loads from other address spaces are not supported, so
1507   // we need to expand them here.
1508   if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1509     assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1510     SDValue NewLoad = DAG.getExtLoad(
1511         ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1512         LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
1513     SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1514                               DAG.getValueType(MemVT));
1515 
1516     SDValue MergedValues[2] = { Res, Chain };
1517     return DAG.getMergeValues(MergedValues, DL);
1518   }
1519 
1520   if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
1521     return SDValue();
1522   }
1523 
1524   // DWORDADDR ISD marks already shifted address
1525   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1526     assert(VT == MVT::i32);
1527     Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1528     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1529     return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1530   }
1531   return SDValue();
1532 }
1533 
1534 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1535   SDValue Chain = Op.getOperand(0);
1536   SDValue Cond  = Op.getOperand(1);
1537   SDValue Jump  = Op.getOperand(2);
1538 
1539   return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1540                      Chain, Jump, Cond);
1541 }
1542 
1543 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1544                                             SelectionDAG &DAG) const {
1545   MachineFunction &MF = DAG.getMachineFunction();
1546   const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1547 
1548   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1549 
1550   unsigned FrameIndex = FIN->getIndex();
1551   Register IgnoredFrameReg;
1552   unsigned Offset =
1553     TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1554   return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
1555                          Op.getValueType());
1556 }
1557 
1558 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1559                                                   bool IsVarArg) const {
1560   switch (CC) {
1561   case CallingConv::AMDGPU_KERNEL:
1562   case CallingConv::SPIR_KERNEL:
1563   case CallingConv::C:
1564   case CallingConv::Fast:
1565   case CallingConv::Cold:
1566     llvm_unreachable("kernels should not be handled here");
1567   case CallingConv::AMDGPU_VS:
1568   case CallingConv::AMDGPU_GS:
1569   case CallingConv::AMDGPU_PS:
1570   case CallingConv::AMDGPU_CS:
1571   case CallingConv::AMDGPU_HS:
1572   case CallingConv::AMDGPU_ES:
1573   case CallingConv::AMDGPU_LS:
1574     return CC_R600;
1575   default:
1576     report_fatal_error("Unsupported calling convention.");
1577   }
1578 }
1579 
1580 /// XXX Only kernel functions are supported, so we can assume for now that
1581 /// every function is a kernel function, but in the future we should use
1582 /// separate calling conventions for kernel and non-kernel functions.
1583 SDValue R600TargetLowering::LowerFormalArguments(
1584     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1585     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1586     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1587   SmallVector<CCValAssign, 16> ArgLocs;
1588   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1589                  *DAG.getContext());
1590   MachineFunction &MF = DAG.getMachineFunction();
1591   SmallVector<ISD::InputArg, 8> LocalIns;
1592 
1593   if (AMDGPU::isShader(CallConv)) {
1594     CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1595   } else {
1596     analyzeFormalArgumentsCompute(CCInfo, Ins);
1597   }
1598 
1599   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1600     CCValAssign &VA = ArgLocs[i];
1601     const ISD::InputArg &In = Ins[i];
1602     EVT VT = In.VT;
1603     EVT MemVT = VA.getLocVT();
1604     if (!VT.isVector() && MemVT.isVector()) {
1605       // Get load source type if scalarized.
1606       MemVT = MemVT.getVectorElementType();
1607     }
1608 
1609     if (AMDGPU::isShader(CallConv)) {
1610       unsigned Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1611       SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1612       InVals.push_back(Register);
1613       continue;
1614     }
1615 
1616     // i64 isn't a legal type, so the register type used ends up as i32, which
1617     // isn't expected here. It attempts to create this sextload, but it ends up
1618     // being invalid. Somehow this seems to work with i64 arguments, but breaks
1619     // for <1 x i64>.
1620 
1621     // The first 36 bytes of the input buffer contains information about
1622     // thread group and global sizes.
1623     ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1624     if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1625       // FIXME: This should really check the extload type, but the handling of
1626       // extload vector parameters seems to be broken.
1627 
1628       // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1629       Ext = ISD::SEXTLOAD;
1630     }
1631 
1632     // Compute the offset from the value.
1633     // XXX - I think PartOffset should give you this, but it seems to give the
1634     // size of the register which isn't useful.
1635 
1636     unsigned PartOffset = VA.getLocMemOffset();
1637     unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset);
1638 
1639     MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS);
1640     SDValue Arg = DAG.getLoad(
1641         ISD::UNINDEXED, Ext, VT, DL, Chain,
1642         DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1643         PtrInfo,
1644         MemVT, Alignment, MachineMemOperand::MONonTemporal |
1645                                         MachineMemOperand::MODereferenceable |
1646                                         MachineMemOperand::MOInvariant);
1647 
1648     InVals.push_back(Arg);
1649   }
1650   return Chain;
1651 }
1652 
1653 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1654                                            EVT VT) const {
1655    if (!VT.isVector())
1656      return MVT::i32;
1657    return VT.changeVectorElementTypeToInteger();
1658 }
1659 
1660 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1661                                           const SelectionDAG &DAG) const {
1662   // Local and Private addresses do not handle vectors. Limit to i32
1663   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) {
1664     return (MemVT.getSizeInBits() <= 32);
1665   }
1666   return true;
1667 }
1668 
1669 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1670     EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1671     bool *IsFast) const {
1672   if (IsFast)
1673     *IsFast = false;
1674 
1675   if (!VT.isSimple() || VT == MVT::Other)
1676     return false;
1677 
1678   if (VT.bitsLT(MVT::i32))
1679     return false;
1680 
1681   // TODO: This is a rough estimate.
1682   if (IsFast)
1683     *IsFast = true;
1684 
1685   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
1686 }
1687 
1688 static SDValue CompactSwizzlableVector(
1689   SelectionDAG &DAG, SDValue VectorEntry,
1690   DenseMap<unsigned, unsigned> &RemapSwizzle) {
1691   assert(RemapSwizzle.empty());
1692 
1693   SDLoc DL(VectorEntry);
1694   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1695 
1696   SDValue NewBldVec[4];
1697   for (unsigned i = 0; i < 4; i++)
1698     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1699                                DAG.getIntPtrConstant(i, DL));
1700 
1701   for (unsigned i = 0; i < 4; i++) {
1702     if (NewBldVec[i].isUndef())
1703       // We mask write here to teach later passes that the ith element of this
1704       // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1705       // break false dependencies and additionnaly make assembly easier to read.
1706       RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1707     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1708       if (C->isZero()) {
1709         RemapSwizzle[i] = 4; // SEL_0
1710         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1711       } else if (C->isExactlyValue(1.0)) {
1712         RemapSwizzle[i] = 5; // SEL_1
1713         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1714       }
1715     }
1716 
1717     if (NewBldVec[i].isUndef())
1718       continue;
1719 
1720     for (unsigned j = 0; j < i; j++) {
1721       if (NewBldVec[i] == NewBldVec[j]) {
1722         NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1723         RemapSwizzle[i] = j;
1724         break;
1725       }
1726     }
1727   }
1728 
1729   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1730                             NewBldVec);
1731 }
1732 
1733 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1734                                 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1735   assert(RemapSwizzle.empty());
1736 
1737   SDLoc DL(VectorEntry);
1738   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1739 
1740   SDValue NewBldVec[4];
1741   bool isUnmovable[4] = {false, false, false, false};
1742   for (unsigned i = 0; i < 4; i++)
1743     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1744                                DAG.getIntPtrConstant(i, DL));
1745 
1746   for (unsigned i = 0; i < 4; i++) {
1747     RemapSwizzle[i] = i;
1748     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1749       unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1750           ->getZExtValue();
1751       if (i == Idx)
1752         isUnmovable[Idx] = true;
1753     }
1754   }
1755 
1756   for (unsigned i = 0; i < 4; i++) {
1757     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1758       unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1759           ->getZExtValue();
1760       if (isUnmovable[Idx])
1761         continue;
1762       // Swap i and Idx
1763       std::swap(NewBldVec[Idx], NewBldVec[i]);
1764       std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1765       break;
1766     }
1767   }
1768 
1769   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1770                             NewBldVec);
1771 }
1772 
1773 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
1774                                             SelectionDAG &DAG,
1775                                             const SDLoc &DL) const {
1776   // Old -> New swizzle values
1777   DenseMap<unsigned, unsigned> SwizzleRemap;
1778 
1779   BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1780   for (unsigned i = 0; i < 4; i++) {
1781     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1782     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1783       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1784   }
1785 
1786   SwizzleRemap.clear();
1787   BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1788   for (unsigned i = 0; i < 4; i++) {
1789     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1790     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1791       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1792   }
1793 
1794   return BuildVector;
1795 }
1796 
1797 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1798                                             SelectionDAG &DAG) const {
1799   SDLoc DL(LoadNode);
1800   EVT VT = LoadNode->getValueType(0);
1801   SDValue Chain = LoadNode->getChain();
1802   SDValue Ptr = LoadNode->getBasePtr();
1803   assert (isa<ConstantSDNode>(Ptr));
1804 
1805   //TODO: Support smaller loads
1806   if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1807     return SDValue();
1808 
1809   if (LoadNode->getAlignment() < 4)
1810     return SDValue();
1811 
1812   int ConstantBlock = ConstantAddressBlock(Block);
1813 
1814   SDValue Slots[4];
1815   for (unsigned i = 0; i < 4; i++) {
1816     // We want Const position encoded with the following formula :
1817     // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1818     // const_index is Ptr computed by llvm using an alignment of 16.
1819     // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1820     // then div by 4 at the ISel step
1821     SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1822         DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1823     Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1824   }
1825   EVT NewVT = MVT::v4i32;
1826   unsigned NumElements = 4;
1827   if (VT.isVector()) {
1828     NewVT = VT;
1829     NumElements = VT.getVectorNumElements();
1830   }
1831   SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
1832   if (!VT.isVector()) {
1833     Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1834                          DAG.getConstant(0, DL, MVT::i32));
1835   }
1836   SDValue MergedValues[2] = {
1837     Result,
1838     Chain
1839   };
1840   return DAG.getMergeValues(MergedValues, DL);
1841 }
1842 
1843 //===----------------------------------------------------------------------===//
1844 // Custom DAG Optimizations
1845 //===----------------------------------------------------------------------===//
1846 
1847 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1848                                               DAGCombinerInfo &DCI) const {
1849   SelectionDAG &DAG = DCI.DAG;
1850   SDLoc DL(N);
1851 
1852   switch (N->getOpcode()) {
1853   // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1854   case ISD::FP_ROUND: {
1855       SDValue Arg = N->getOperand(0);
1856       if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1857         return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1858                            Arg.getOperand(0));
1859       }
1860       break;
1861     }
1862 
1863   // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1864   // (i32 select_cc f32, f32, -1, 0 cc)
1865   //
1866   // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1867   // this to one of the SET*_DX10 instructions.
1868   case ISD::FP_TO_SINT: {
1869     SDValue FNeg = N->getOperand(0);
1870     if (FNeg.getOpcode() != ISD::FNEG) {
1871       return SDValue();
1872     }
1873     SDValue SelectCC = FNeg.getOperand(0);
1874     if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1875         SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1876         SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1877         !isHWTrueValue(SelectCC.getOperand(2)) ||
1878         !isHWFalseValue(SelectCC.getOperand(3))) {
1879       return SDValue();
1880     }
1881 
1882     return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1883                            SelectCC.getOperand(0), // LHS
1884                            SelectCC.getOperand(1), // RHS
1885                            DAG.getConstant(-1, DL, MVT::i32), // True
1886                            DAG.getConstant(0, DL, MVT::i32),  // False
1887                            SelectCC.getOperand(4)); // CC
1888   }
1889 
1890   // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1891   // => build_vector elt0, ... , NewEltIdx, ... , eltN
1892   case ISD::INSERT_VECTOR_ELT: {
1893     SDValue InVec = N->getOperand(0);
1894     SDValue InVal = N->getOperand(1);
1895     SDValue EltNo = N->getOperand(2);
1896 
1897     // If the inserted element is an UNDEF, just use the input vector.
1898     if (InVal.isUndef())
1899       return InVec;
1900 
1901     EVT VT = InVec.getValueType();
1902 
1903     // If we can't generate a legal BUILD_VECTOR, exit
1904     if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1905       return SDValue();
1906 
1907     // Check that we know which element is being inserted
1908     if (!isa<ConstantSDNode>(EltNo))
1909       return SDValue();
1910     unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
1911 
1912     // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1913     // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
1914     // vector elements.
1915     SmallVector<SDValue, 8> Ops;
1916     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1917       Ops.append(InVec.getNode()->op_begin(),
1918                  InVec.getNode()->op_end());
1919     } else if (InVec.isUndef()) {
1920       unsigned NElts = VT.getVectorNumElements();
1921       Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1922     } else {
1923       return SDValue();
1924     }
1925 
1926     // Insert the element
1927     if (Elt < Ops.size()) {
1928       // All the operands of BUILD_VECTOR must have the same type;
1929       // we enforce that here.
1930       EVT OpVT = Ops[0].getValueType();
1931       if (InVal.getValueType() != OpVT)
1932         InVal = OpVT.bitsGT(InVal.getValueType()) ?
1933           DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1934           DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1935       Ops[Elt] = InVal;
1936     }
1937 
1938     // Return the new vector
1939     return DAG.getBuildVector(VT, DL, Ops);
1940   }
1941 
1942   // Extract_vec (Build_vector) generated by custom lowering
1943   // also needs to be customly combined
1944   case ISD::EXTRACT_VECTOR_ELT: {
1945     SDValue Arg = N->getOperand(0);
1946     if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1947       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1948         unsigned Element = Const->getZExtValue();
1949         return Arg->getOperand(Element);
1950       }
1951     }
1952     if (Arg.getOpcode() == ISD::BITCAST &&
1953         Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1954         (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1955          Arg.getValueType().getVectorNumElements())) {
1956       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1957         unsigned Element = Const->getZExtValue();
1958         return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1959                            Arg->getOperand(0).getOperand(Element));
1960       }
1961     }
1962     break;
1963   }
1964 
1965   case ISD::SELECT_CC: {
1966     // Try common optimizations
1967     if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1968       return Ret;
1969 
1970     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1971     //      selectcc x, y, a, b, inv(cc)
1972     //
1973     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1974     //      selectcc x, y, a, b, cc
1975     SDValue LHS = N->getOperand(0);
1976     if (LHS.getOpcode() != ISD::SELECT_CC) {
1977       return SDValue();
1978     }
1979 
1980     SDValue RHS = N->getOperand(1);
1981     SDValue True = N->getOperand(2);
1982     SDValue False = N->getOperand(3);
1983     ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1984 
1985     if (LHS.getOperand(2).getNode() != True.getNode() ||
1986         LHS.getOperand(3).getNode() != False.getNode() ||
1987         RHS.getNode() != False.getNode()) {
1988       return SDValue();
1989     }
1990 
1991     switch (NCC) {
1992     default: return SDValue();
1993     case ISD::SETNE: return LHS;
1994     case ISD::SETEQ: {
1995       ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
1996       LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType());
1997       if (DCI.isBeforeLegalizeOps() ||
1998           isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
1999         return DAG.getSelectCC(DL,
2000                                LHS.getOperand(0),
2001                                LHS.getOperand(1),
2002                                LHS.getOperand(2),
2003                                LHS.getOperand(3),
2004                                LHSCC);
2005       break;
2006     }
2007     }
2008     return SDValue();
2009   }
2010 
2011   case AMDGPUISD::R600_EXPORT: {
2012     SDValue Arg = N->getOperand(1);
2013     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2014       break;
2015 
2016     SDValue NewArgs[8] = {
2017       N->getOperand(0), // Chain
2018       SDValue(),
2019       N->getOperand(2), // ArrayBase
2020       N->getOperand(3), // Type
2021       N->getOperand(4), // SWZ_X
2022       N->getOperand(5), // SWZ_Y
2023       N->getOperand(6), // SWZ_Z
2024       N->getOperand(7) // SWZ_W
2025     };
2026     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
2027     return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
2028   }
2029   case AMDGPUISD::TEXTURE_FETCH: {
2030     SDValue Arg = N->getOperand(1);
2031     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2032       break;
2033 
2034     SDValue NewArgs[19] = {
2035       N->getOperand(0),
2036       N->getOperand(1),
2037       N->getOperand(2),
2038       N->getOperand(3),
2039       N->getOperand(4),
2040       N->getOperand(5),
2041       N->getOperand(6),
2042       N->getOperand(7),
2043       N->getOperand(8),
2044       N->getOperand(9),
2045       N->getOperand(10),
2046       N->getOperand(11),
2047       N->getOperand(12),
2048       N->getOperand(13),
2049       N->getOperand(14),
2050       N->getOperand(15),
2051       N->getOperand(16),
2052       N->getOperand(17),
2053       N->getOperand(18),
2054     };
2055     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
2056     return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
2057   }
2058 
2059   case ISD::LOAD: {
2060     LoadSDNode *LoadNode = cast<LoadSDNode>(N);
2061     SDValue Ptr = LoadNode->getBasePtr();
2062     if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
2063          isa<ConstantSDNode>(Ptr))
2064       return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
2065     break;
2066   }
2067 
2068   default: break;
2069   }
2070 
2071   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2072 }
2073 
2074 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
2075                                      SDValue &Src, SDValue &Neg, SDValue &Abs,
2076                                      SDValue &Sel, SDValue &Imm,
2077                                      SelectionDAG &DAG) const {
2078   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2079   if (!Src.isMachineOpcode())
2080     return false;
2081 
2082   switch (Src.getMachineOpcode()) {
2083   case R600::FNEG_R600:
2084     if (!Neg.getNode())
2085       return false;
2086     Src = Src.getOperand(0);
2087     Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2088     return true;
2089   case R600::FABS_R600:
2090     if (!Abs.getNode())
2091       return false;
2092     Src = Src.getOperand(0);
2093     Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2094     return true;
2095   case R600::CONST_COPY: {
2096     unsigned Opcode = ParentNode->getMachineOpcode();
2097     bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2098 
2099     if (!Sel.getNode())
2100       return false;
2101 
2102     SDValue CstOffset = Src.getOperand(0);
2103     if (ParentNode->getValueType(0).isVector())
2104       return false;
2105 
2106     // Gather constants values
2107     int SrcIndices[] = {
2108       TII->getOperandIdx(Opcode, R600::OpName::src0),
2109       TII->getOperandIdx(Opcode, R600::OpName::src1),
2110       TII->getOperandIdx(Opcode, R600::OpName::src2),
2111       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2112       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2113       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2114       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2115       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2116       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2117       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2118       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2119     };
2120     std::vector<unsigned> Consts;
2121     for (int OtherSrcIdx : SrcIndices) {
2122       int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
2123       if (OtherSrcIdx < 0 || OtherSelIdx < 0)
2124         continue;
2125       if (HasDst) {
2126         OtherSrcIdx--;
2127         OtherSelIdx--;
2128       }
2129       if (RegisterSDNode *Reg =
2130           dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2131         if (Reg->getReg() == R600::ALU_CONST) {
2132           ConstantSDNode *Cst
2133             = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
2134           Consts.push_back(Cst->getZExtValue());
2135         }
2136       }
2137     }
2138 
2139     ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2140     Consts.push_back(Cst->getZExtValue());
2141     if (!TII->fitsConstReadLimitations(Consts)) {
2142       return false;
2143     }
2144 
2145     Sel = CstOffset;
2146     Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2147     return true;
2148   }
2149   case R600::MOV_IMM_GLOBAL_ADDR:
2150     // Check if the Imm slot is used. Taken from below.
2151     if (cast<ConstantSDNode>(Imm)->getZExtValue())
2152       return false;
2153     Imm = Src.getOperand(0);
2154     Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2155     return true;
2156   case R600::MOV_IMM_I32:
2157   case R600::MOV_IMM_F32: {
2158     unsigned ImmReg = R600::ALU_LITERAL_X;
2159     uint64_t ImmValue = 0;
2160 
2161     if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2162       ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
2163       float FloatValue = FPC->getValueAPF().convertToFloat();
2164       if (FloatValue == 0.0) {
2165         ImmReg = R600::ZERO;
2166       } else if (FloatValue == 0.5) {
2167         ImmReg = R600::HALF;
2168       } else if (FloatValue == 1.0) {
2169         ImmReg = R600::ONE;
2170       } else {
2171         ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2172       }
2173     } else {
2174       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0));
2175       uint64_t Value = C->getZExtValue();
2176       if (Value == 0) {
2177         ImmReg = R600::ZERO;
2178       } else if (Value == 1) {
2179         ImmReg = R600::ONE_INT;
2180       } else {
2181         ImmValue = Value;
2182       }
2183     }
2184 
2185     // Check that we aren't already using an immediate.
2186     // XXX: It's possible for an instruction to have more than one
2187     // immediate operand, but this is not supported yet.
2188     if (ImmReg == R600::ALU_LITERAL_X) {
2189       if (!Imm.getNode())
2190         return false;
2191       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm);
2192       assert(C);
2193       if (C->getZExtValue())
2194         return false;
2195       Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2196     }
2197     Src = DAG.getRegister(ImmReg, MVT::i32);
2198     return true;
2199   }
2200   default:
2201     return false;
2202   }
2203 }
2204 
2205 /// Fold the instructions after selecting them
2206 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2207                                             SelectionDAG &DAG) const {
2208   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2209   if (!Node->isMachineOpcode())
2210     return Node;
2211 
2212   unsigned Opcode = Node->getMachineOpcode();
2213   SDValue FakeOp;
2214 
2215   std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2216 
2217   if (Opcode == R600::DOT_4) {
2218     int OperandIdx[] = {
2219       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2220       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2221       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2222       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2223       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2224       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2225       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2226       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2227         };
2228     int NegIdx[] = {
2229       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2230       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2231       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2232       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2233       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2234       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2235       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2236       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2237     };
2238     int AbsIdx[] = {
2239       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2240       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2241       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2242       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2243       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2244       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2245       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2246       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2247     };
2248     for (unsigned i = 0; i < 8; i++) {
2249       if (OperandIdx[i] < 0)
2250         return Node;
2251       SDValue &Src = Ops[OperandIdx[i] - 1];
2252       SDValue &Neg = Ops[NegIdx[i] - 1];
2253       SDValue &Abs = Ops[AbsIdx[i] - 1];
2254       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2255       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2256       if (HasDst)
2257         SelIdx--;
2258       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2259       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2260         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2261     }
2262   } else if (Opcode == R600::REG_SEQUENCE) {
2263     for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2264       SDValue &Src = Ops[i];
2265       if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2266         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2267     }
2268   } else {
2269     if (!TII->hasInstrModifiers(Opcode))
2270       return Node;
2271     int OperandIdx[] = {
2272       TII->getOperandIdx(Opcode, R600::OpName::src0),
2273       TII->getOperandIdx(Opcode, R600::OpName::src1),
2274       TII->getOperandIdx(Opcode, R600::OpName::src2)
2275     };
2276     int NegIdx[] = {
2277       TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2278       TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2279       TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2280     };
2281     int AbsIdx[] = {
2282       TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2283       TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2284       -1
2285     };
2286     for (unsigned i = 0; i < 3; i++) {
2287       if (OperandIdx[i] < 0)
2288         return Node;
2289       SDValue &Src = Ops[OperandIdx[i] - 1];
2290       SDValue &Neg = Ops[NegIdx[i] - 1];
2291       SDValue FakeAbs;
2292       SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2293       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2294       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2295       int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2296       if (HasDst) {
2297         SelIdx--;
2298         ImmIdx--;
2299       }
2300       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2301       SDValue &Imm = Ops[ImmIdx];
2302       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2303         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2304     }
2305   }
2306 
2307   return Node;
2308 }
2309