1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for R600 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "R600ISelLowering.h" 15 #include "AMDGPU.h" 16 #include "MCTargetDesc/R600MCTargetDesc.h" 17 #include "R600Defines.h" 18 #include "R600InstrInfo.h" 19 #include "R600MachineFunctionInfo.h" 20 #include "R600Subtarget.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/IR/IntrinsicsAMDGPU.h" 23 #include "llvm/IR/IntrinsicsR600.h" 24 25 using namespace llvm; 26 27 #include "R600GenCallingConv.inc" 28 29 R600TargetLowering::R600TargetLowering(const TargetMachine &TM, 30 const R600Subtarget &STI) 31 : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) { 32 addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass); 33 addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass); 34 addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass); 35 addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass); 36 addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass); 37 addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass); 38 39 setBooleanContents(ZeroOrNegativeOneBooleanContent); 40 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 41 42 computeRegisterProperties(Subtarget->getRegisterInfo()); 43 44 // Legalize loads and stores to the private address space. 45 setOperationAction(ISD::LOAD, MVT::i32, Custom); 46 setOperationAction(ISD::LOAD, MVT::v2i32, Custom); 47 setOperationAction(ISD::LOAD, MVT::v4i32, Custom); 48 49 // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address 50 // spaces, so it is custom lowered to handle those where it isn't. 51 for (MVT VT : MVT::integer_valuetypes()) { 52 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 53 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom); 54 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom); 55 56 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 57 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom); 58 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom); 59 60 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 61 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom); 62 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom); 63 } 64 65 // Workaround for LegalizeDAG asserting on expansion of i1 vector loads. 66 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand); 67 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand); 68 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand); 69 70 setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand); 71 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand); 72 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand); 73 74 setOperationAction(ISD::STORE, MVT::i8, Custom); 75 setOperationAction(ISD::STORE, MVT::i32, Custom); 76 setOperationAction(ISD::STORE, MVT::v2i32, Custom); 77 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 78 79 setTruncStoreAction(MVT::i32, MVT::i8, Custom); 80 setTruncStoreAction(MVT::i32, MVT::i16, Custom); 81 // We need to include these since trunc STORES to PRIVATE need 82 // special handling to accommodate RMW 83 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 84 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom); 85 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom); 86 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom); 87 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom); 88 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 89 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 90 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom); 91 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom); 92 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom); 93 94 // Workaround for LegalizeDAG asserting on expansion of i1 vector stores. 95 setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand); 96 setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand); 97 98 // Set condition code actions 99 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 100 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 101 setCondCodeAction(ISD::SETLT, MVT::f32, Expand); 102 setCondCodeAction(ISD::SETLE, MVT::f32, Expand); 103 setCondCodeAction(ISD::SETOLT, MVT::f32, Expand); 104 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 105 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 106 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 107 setCondCodeAction(ISD::SETUGE, MVT::f32, Expand); 108 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 109 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 110 setCondCodeAction(ISD::SETULE, MVT::f32, Expand); 111 112 setCondCodeAction(ISD::SETLE, MVT::i32, Expand); 113 setCondCodeAction(ISD::SETLT, MVT::i32, Expand); 114 setCondCodeAction(ISD::SETULE, MVT::i32, Expand); 115 setCondCodeAction(ISD::SETULT, MVT::i32, Expand); 116 117 setOperationAction(ISD::FCOS, MVT::f32, Custom); 118 setOperationAction(ISD::FSIN, MVT::f32, Custom); 119 120 setOperationAction(ISD::SETCC, MVT::v4i32, Expand); 121 setOperationAction(ISD::SETCC, MVT::v2i32, Expand); 122 123 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 124 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 125 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 126 127 setOperationAction(ISD::FSUB, MVT::f32, Expand); 128 129 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 130 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 131 setOperationAction(ISD::FRINT, MVT::f64, Custom); 132 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 133 134 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 135 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 136 137 setOperationAction(ISD::SETCC, MVT::i32, Expand); 138 setOperationAction(ISD::SETCC, MVT::f32, Expand); 139 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom); 140 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom); 141 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 142 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 143 144 setOperationAction(ISD::SELECT, MVT::i32, Expand); 145 setOperationAction(ISD::SELECT, MVT::f32, Expand); 146 setOperationAction(ISD::SELECT, MVT::v2i32, Expand); 147 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 148 149 // ADD, SUB overflow. 150 // TODO: turn these into Legal? 151 if (Subtarget->hasCARRY()) 152 setOperationAction(ISD::UADDO, MVT::i32, Custom); 153 154 if (Subtarget->hasBORROW()) 155 setOperationAction(ISD::USUBO, MVT::i32, Custom); 156 157 // Expand sign extension of vectors 158 if (!Subtarget->hasBFE()) 159 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 160 161 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand); 162 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand); 163 164 if (!Subtarget->hasBFE()) 165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 166 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand); 167 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand); 168 169 if (!Subtarget->hasBFE()) 170 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 171 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand); 172 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand); 173 174 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); 175 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand); 176 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand); 177 178 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand); 179 180 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 181 182 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom); 183 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom); 184 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); 185 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 186 187 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom); 188 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom); 189 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 190 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 191 192 // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32 193 // to be Legal/Custom in order to avoid library calls. 194 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 195 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 196 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 197 198 if (!Subtarget->hasFMA()) { 199 setOperationAction(ISD::FMA, MVT::f32, Expand); 200 setOperationAction(ISD::FMA, MVT::f64, Expand); 201 } 202 203 // FIXME: May need no denormals check 204 setOperationAction(ISD::FMAD, MVT::f32, Legal); 205 206 if (!Subtarget->hasBFI()) { 207 // fcopysign can be done in a single instruction with BFI. 208 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 209 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 210 } 211 212 if (!Subtarget->hasBCNT(32)) 213 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 214 215 if (!Subtarget->hasBCNT(64)) 216 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 217 218 if (Subtarget->hasFFBH()) 219 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 220 221 if (Subtarget->hasFFBL()) 222 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 223 224 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we 225 // need it for R600. 226 if (Subtarget->hasBFE()) 227 setHasExtractBitsInsn(true); 228 229 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 230 231 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 232 for (MVT VT : ScalarIntVTs) { 233 setOperationAction(ISD::ADDC, VT, Expand); 234 setOperationAction(ISD::SUBC, VT, Expand); 235 setOperationAction(ISD::ADDE, VT, Expand); 236 setOperationAction(ISD::SUBE, VT, Expand); 237 } 238 239 // LLVM will expand these to atomic_cmp_swap(0) 240 // and atomic_swap, respectively. 241 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); 242 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); 243 244 // We need to custom lower some of the intrinsics 245 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 246 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 247 248 setSchedulingPreference(Sched::Source); 249 250 setTargetDAGCombine(ISD::FP_ROUND); 251 setTargetDAGCombine(ISD::FP_TO_SINT); 252 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 253 setTargetDAGCombine(ISD::SELECT_CC); 254 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 255 setTargetDAGCombine(ISD::LOAD); 256 } 257 258 static inline bool isEOP(MachineBasicBlock::iterator I) { 259 if (std::next(I) == I->getParent()->end()) 260 return false; 261 return std::next(I)->getOpcode() == R600::RETURN; 262 } 263 264 MachineBasicBlock * 265 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 266 MachineBasicBlock *BB) const { 267 MachineFunction *MF = BB->getParent(); 268 MachineRegisterInfo &MRI = MF->getRegInfo(); 269 MachineBasicBlock::iterator I = MI; 270 const R600InstrInfo *TII = Subtarget->getInstrInfo(); 271 272 switch (MI.getOpcode()) { 273 default: 274 // Replace LDS_*_RET instruction that don't have any uses with the 275 // equivalent LDS_*_NORET instruction. 276 if (TII->isLDSRetInstr(MI.getOpcode())) { 277 int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst); 278 assert(DstIdx != -1); 279 MachineInstrBuilder NewMI; 280 // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add 281 // LDS_1A2D support and remove this special case. 282 if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) || 283 MI.getOpcode() == R600::LDS_CMPST_RET) 284 return BB; 285 286 NewMI = BuildMI(*BB, I, BB->findDebugLoc(I), 287 TII->get(R600::getLDSNoRetOp(MI.getOpcode()))); 288 for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) { 289 NewMI.add(MI.getOperand(i)); 290 } 291 } else { 292 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 293 } 294 break; 295 296 case R600::FABS_R600: { 297 MachineInstr *NewMI = TII->buildDefaultInstruction( 298 *BB, I, R600::MOV, MI.getOperand(0).getReg(), 299 MI.getOperand(1).getReg()); 300 TII->addFlag(*NewMI, 0, MO_FLAG_ABS); 301 break; 302 } 303 304 case R600::FNEG_R600: { 305 MachineInstr *NewMI = TII->buildDefaultInstruction( 306 *BB, I, R600::MOV, MI.getOperand(0).getReg(), 307 MI.getOperand(1).getReg()); 308 TII->addFlag(*NewMI, 0, MO_FLAG_NEG); 309 break; 310 } 311 312 case R600::MASK_WRITE: { 313 Register maskedRegister = MI.getOperand(0).getReg(); 314 assert(maskedRegister.isVirtual()); 315 MachineInstr * defInstr = MRI.getVRegDef(maskedRegister); 316 TII->addFlag(*defInstr, 0, MO_FLAG_MASK); 317 break; 318 } 319 320 case R600::MOV_IMM_F32: 321 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1) 322 .getFPImm() 323 ->getValueAPF() 324 .bitcastToAPInt() 325 .getZExtValue()); 326 break; 327 328 case R600::MOV_IMM_I32: 329 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), 330 MI.getOperand(1).getImm()); 331 break; 332 333 case R600::MOV_IMM_GLOBAL_ADDR: { 334 //TODO: Perhaps combine this instruction with the next if possible 335 auto MIB = TII->buildDefaultInstruction( 336 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X); 337 int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal); 338 //TODO: Ugh this is rather ugly 339 MIB->getOperand(Idx) = MI.getOperand(1); 340 break; 341 } 342 343 case R600::CONST_COPY: { 344 MachineInstr *NewMI = TII->buildDefaultInstruction( 345 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST); 346 TII->setImmOperand(*NewMI, R600::OpName::src0_sel, 347 MI.getOperand(1).getImm()); 348 break; 349 } 350 351 case R600::RAT_WRITE_CACHELESS_32_eg: 352 case R600::RAT_WRITE_CACHELESS_64_eg: 353 case R600::RAT_WRITE_CACHELESS_128_eg: 354 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode())) 355 .add(MI.getOperand(0)) 356 .add(MI.getOperand(1)) 357 .addImm(isEOP(I)); // Set End of program bit 358 break; 359 360 case R600::RAT_STORE_TYPED_eg: 361 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode())) 362 .add(MI.getOperand(0)) 363 .add(MI.getOperand(1)) 364 .add(MI.getOperand(2)) 365 .addImm(isEOP(I)); // Set End of program bit 366 break; 367 368 case R600::BRANCH: 369 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP)) 370 .add(MI.getOperand(0)); 371 break; 372 373 case R600::BRANCH_COND_f32: { 374 MachineInstr *NewMI = 375 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X), 376 R600::PREDICATE_BIT) 377 .add(MI.getOperand(1)) 378 .addImm(R600::PRED_SETNE) 379 .addImm(0); // Flags 380 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH); 381 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND)) 382 .add(MI.getOperand(0)) 383 .addReg(R600::PREDICATE_BIT, RegState::Kill); 384 break; 385 } 386 387 case R600::BRANCH_COND_i32: { 388 MachineInstr *NewMI = 389 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X), 390 R600::PREDICATE_BIT) 391 .add(MI.getOperand(1)) 392 .addImm(R600::PRED_SETNE_INT) 393 .addImm(0); // Flags 394 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH); 395 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND)) 396 .add(MI.getOperand(0)) 397 .addReg(R600::PREDICATE_BIT, RegState::Kill); 398 break; 399 } 400 401 case R600::EG_ExportSwz: 402 case R600::R600_ExportSwz: { 403 // Instruction is left unmodified if its not the last one of its type 404 bool isLastInstructionOfItsType = true; 405 unsigned InstExportType = MI.getOperand(1).getImm(); 406 for (MachineBasicBlock::iterator NextExportInst = std::next(I), 407 EndBlock = BB->end(); NextExportInst != EndBlock; 408 NextExportInst = std::next(NextExportInst)) { 409 if (NextExportInst->getOpcode() == R600::EG_ExportSwz || 410 NextExportInst->getOpcode() == R600::R600_ExportSwz) { 411 unsigned CurrentInstExportType = NextExportInst->getOperand(1) 412 .getImm(); 413 if (CurrentInstExportType == InstExportType) { 414 isLastInstructionOfItsType = false; 415 break; 416 } 417 } 418 } 419 bool EOP = isEOP(I); 420 if (!EOP && !isLastInstructionOfItsType) 421 return BB; 422 unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40; 423 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode())) 424 .add(MI.getOperand(0)) 425 .add(MI.getOperand(1)) 426 .add(MI.getOperand(2)) 427 .add(MI.getOperand(3)) 428 .add(MI.getOperand(4)) 429 .add(MI.getOperand(5)) 430 .add(MI.getOperand(6)) 431 .addImm(CfInst) 432 .addImm(EOP); 433 break; 434 } 435 case R600::RETURN: { 436 return BB; 437 } 438 } 439 440 MI.eraseFromParent(); 441 return BB; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // Custom DAG Lowering Operations 446 //===----------------------------------------------------------------------===// 447 448 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 449 MachineFunction &MF = DAG.getMachineFunction(); 450 R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>(); 451 switch (Op.getOpcode()) { 452 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 453 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 454 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 455 case ISD::SHL_PARTS: 456 case ISD::SRA_PARTS: 457 case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG); 458 case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY); 459 case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW); 460 case ISD::FCOS: 461 case ISD::FSIN: return LowerTrig(Op, DAG); 462 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 463 case ISD::STORE: return LowerSTORE(Op, DAG); 464 case ISD::LOAD: { 465 SDValue Result = LowerLOAD(Op, DAG); 466 assert((!Result.getNode() || 467 Result.getNode()->getNumValues() == 2) && 468 "Load should return a value and a chain"); 469 return Result; 470 } 471 472 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 473 case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG); 474 case ISD::FrameIndex: return lowerFrameIndex(Op, DAG); 475 case ISD::INTRINSIC_VOID: { 476 SDValue Chain = Op.getOperand(0); 477 unsigned IntrinsicID = 478 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 479 switch (IntrinsicID) { 480 case Intrinsic::r600_store_swizzle: { 481 SDLoc DL(Op); 482 const SDValue Args[8] = { 483 Chain, 484 Op.getOperand(2), // Export Value 485 Op.getOperand(3), // ArrayBase 486 Op.getOperand(4), // Type 487 DAG.getConstant(0, DL, MVT::i32), // SWZ_X 488 DAG.getConstant(1, DL, MVT::i32), // SWZ_Y 489 DAG.getConstant(2, DL, MVT::i32), // SWZ_Z 490 DAG.getConstant(3, DL, MVT::i32) // SWZ_W 491 }; 492 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args); 493 } 494 495 // default for switch(IntrinsicID) 496 default: break; 497 } 498 // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode()) 499 break; 500 } 501 case ISD::INTRINSIC_WO_CHAIN: { 502 unsigned IntrinsicID = 503 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 504 EVT VT = Op.getValueType(); 505 SDLoc DL(Op); 506 switch (IntrinsicID) { 507 case Intrinsic::r600_tex: 508 case Intrinsic::r600_texc: { 509 unsigned TextureOp; 510 switch (IntrinsicID) { 511 case Intrinsic::r600_tex: 512 TextureOp = 0; 513 break; 514 case Intrinsic::r600_texc: 515 TextureOp = 1; 516 break; 517 default: 518 llvm_unreachable("unhandled texture operation"); 519 } 520 521 SDValue TexArgs[19] = { 522 DAG.getConstant(TextureOp, DL, MVT::i32), 523 Op.getOperand(1), 524 DAG.getConstant(0, DL, MVT::i32), 525 DAG.getConstant(1, DL, MVT::i32), 526 DAG.getConstant(2, DL, MVT::i32), 527 DAG.getConstant(3, DL, MVT::i32), 528 Op.getOperand(2), 529 Op.getOperand(3), 530 Op.getOperand(4), 531 DAG.getConstant(0, DL, MVT::i32), 532 DAG.getConstant(1, DL, MVT::i32), 533 DAG.getConstant(2, DL, MVT::i32), 534 DAG.getConstant(3, DL, MVT::i32), 535 Op.getOperand(5), 536 Op.getOperand(6), 537 Op.getOperand(7), 538 Op.getOperand(8), 539 Op.getOperand(9), 540 Op.getOperand(10) 541 }; 542 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs); 543 } 544 case Intrinsic::r600_dot4: { 545 SDValue Args[8] = { 546 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), 547 DAG.getConstant(0, DL, MVT::i32)), 548 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), 549 DAG.getConstant(0, DL, MVT::i32)), 550 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), 551 DAG.getConstant(1, DL, MVT::i32)), 552 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), 553 DAG.getConstant(1, DL, MVT::i32)), 554 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), 555 DAG.getConstant(2, DL, MVT::i32)), 556 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), 557 DAG.getConstant(2, DL, MVT::i32)), 558 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), 559 DAG.getConstant(3, DL, MVT::i32)), 560 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), 561 DAG.getConstant(3, DL, MVT::i32)) 562 }; 563 return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args); 564 } 565 566 case Intrinsic::r600_implicitarg_ptr: { 567 MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS); 568 uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT); 569 return DAG.getConstant(ByteOffset, DL, PtrVT); 570 } 571 case Intrinsic::r600_read_ngroups_x: 572 return LowerImplicitParameter(DAG, VT, DL, 0); 573 case Intrinsic::r600_read_ngroups_y: 574 return LowerImplicitParameter(DAG, VT, DL, 1); 575 case Intrinsic::r600_read_ngroups_z: 576 return LowerImplicitParameter(DAG, VT, DL, 2); 577 case Intrinsic::r600_read_global_size_x: 578 return LowerImplicitParameter(DAG, VT, DL, 3); 579 case Intrinsic::r600_read_global_size_y: 580 return LowerImplicitParameter(DAG, VT, DL, 4); 581 case Intrinsic::r600_read_global_size_z: 582 return LowerImplicitParameter(DAG, VT, DL, 5); 583 case Intrinsic::r600_read_local_size_x: 584 return LowerImplicitParameter(DAG, VT, DL, 6); 585 case Intrinsic::r600_read_local_size_y: 586 return LowerImplicitParameter(DAG, VT, DL, 7); 587 case Intrinsic::r600_read_local_size_z: 588 return LowerImplicitParameter(DAG, VT, DL, 8); 589 590 case Intrinsic::r600_read_tgid_x: 591 case Intrinsic::amdgcn_workgroup_id_x: 592 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 593 R600::T1_X, VT); 594 case Intrinsic::r600_read_tgid_y: 595 case Intrinsic::amdgcn_workgroup_id_y: 596 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 597 R600::T1_Y, VT); 598 case Intrinsic::r600_read_tgid_z: 599 case Intrinsic::amdgcn_workgroup_id_z: 600 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 601 R600::T1_Z, VT); 602 case Intrinsic::r600_read_tidig_x: 603 case Intrinsic::amdgcn_workitem_id_x: 604 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 605 R600::T0_X, VT); 606 case Intrinsic::r600_read_tidig_y: 607 case Intrinsic::amdgcn_workitem_id_y: 608 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 609 R600::T0_Y, VT); 610 case Intrinsic::r600_read_tidig_z: 611 case Intrinsic::amdgcn_workitem_id_z: 612 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 613 R600::T0_Z, VT); 614 615 case Intrinsic::r600_recipsqrt_ieee: 616 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 617 618 case Intrinsic::r600_recipsqrt_clamped: 619 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 620 default: 621 return Op; 622 } 623 624 // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode()) 625 break; 626 } 627 } // end switch(Op.getOpcode()) 628 return SDValue(); 629 } 630 631 void R600TargetLowering::ReplaceNodeResults(SDNode *N, 632 SmallVectorImpl<SDValue> &Results, 633 SelectionDAG &DAG) const { 634 switch (N->getOpcode()) { 635 default: 636 AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG); 637 return; 638 case ISD::FP_TO_UINT: 639 if (N->getValueType(0) == MVT::i1) { 640 Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG)); 641 return; 642 } 643 // Since we don't care about out of bounds values we can use FP_TO_SINT for 644 // uints too. The DAGLegalizer code for uint considers some extra cases 645 // which are not necessary here. 646 LLVM_FALLTHROUGH; 647 case ISD::FP_TO_SINT: { 648 if (N->getValueType(0) == MVT::i1) { 649 Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG)); 650 return; 651 } 652 653 SDValue Result; 654 if (expandFP_TO_SINT(N, Result, DAG)) 655 Results.push_back(Result); 656 return; 657 } 658 case ISD::SDIVREM: { 659 SDValue Op = SDValue(N, 1); 660 SDValue RES = LowerSDIVREM(Op, DAG); 661 Results.push_back(RES); 662 Results.push_back(RES.getValue(1)); 663 break; 664 } 665 case ISD::UDIVREM: { 666 SDValue Op = SDValue(N, 0); 667 LowerUDIVREM64(Op, DAG, Results); 668 break; 669 } 670 } 671 } 672 673 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG, 674 SDValue Vector) const { 675 SDLoc DL(Vector); 676 EVT VecVT = Vector.getValueType(); 677 EVT EltVT = VecVT.getVectorElementType(); 678 SmallVector<SDValue, 8> Args; 679 680 for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) { 681 Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector, 682 DAG.getVectorIdxConstant(i, DL))); 683 } 684 685 return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args); 686 } 687 688 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 689 SelectionDAG &DAG) const { 690 SDLoc DL(Op); 691 SDValue Vector = Op.getOperand(0); 692 SDValue Index = Op.getOperand(1); 693 694 if (isa<ConstantSDNode>(Index) || 695 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR) 696 return Op; 697 698 Vector = vectorToVerticalVector(DAG, Vector); 699 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(), 700 Vector, Index); 701 } 702 703 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 704 SelectionDAG &DAG) const { 705 SDLoc DL(Op); 706 SDValue Vector = Op.getOperand(0); 707 SDValue Value = Op.getOperand(1); 708 SDValue Index = Op.getOperand(2); 709 710 if (isa<ConstantSDNode>(Index) || 711 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR) 712 return Op; 713 714 Vector = vectorToVerticalVector(DAG, Vector); 715 SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(), 716 Vector, Value, Index); 717 return vectorToVerticalVector(DAG, Insert); 718 } 719 720 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 721 SDValue Op, 722 SelectionDAG &DAG) const { 723 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 724 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 725 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 726 727 const DataLayout &DL = DAG.getDataLayout(); 728 const GlobalValue *GV = GSD->getGlobal(); 729 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 730 731 SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT); 732 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA); 733 } 734 735 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 736 // On hw >= R700, COS/SIN input must be between -1. and 1. 737 // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5) 738 EVT VT = Op.getValueType(); 739 SDValue Arg = Op.getOperand(0); 740 SDLoc DL(Op); 741 742 // TODO: Should this propagate fast-math-flags? 743 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT, 744 DAG.getNode(ISD::FADD, DL, VT, 745 DAG.getNode(ISD::FMUL, DL, VT, Arg, 746 DAG.getConstantFP(0.15915494309, DL, MVT::f32)), 747 DAG.getConstantFP(0.5, DL, MVT::f32))); 748 unsigned TrigNode; 749 switch (Op.getOpcode()) { 750 case ISD::FCOS: 751 TrigNode = AMDGPUISD::COS_HW; 752 break; 753 case ISD::FSIN: 754 TrigNode = AMDGPUISD::SIN_HW; 755 break; 756 default: 757 llvm_unreachable("Wrong trig opcode"); 758 } 759 SDValue TrigVal = DAG.getNode(TrigNode, DL, VT, 760 DAG.getNode(ISD::FADD, DL, VT, FractPart, 761 DAG.getConstantFP(-0.5, DL, MVT::f32))); 762 if (Gen >= AMDGPUSubtarget::R700) 763 return TrigVal; 764 // On R600 hw, COS/SIN input must be between -Pi and Pi. 765 return DAG.getNode(ISD::FMUL, DL, VT, TrigVal, 766 DAG.getConstantFP(numbers::pif, DL, MVT::f32)); 767 } 768 769 SDValue R600TargetLowering::LowerShiftParts(SDValue Op, 770 SelectionDAG &DAG) const { 771 SDValue Lo, Hi; 772 expandShiftParts(Op.getNode(), Lo, Hi, DAG); 773 return DAG.getMergeValues({Lo, Hi}, SDLoc(Op)); 774 } 775 776 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG, 777 unsigned mainop, unsigned ovf) const { 778 SDLoc DL(Op); 779 EVT VT = Op.getValueType(); 780 781 SDValue Lo = Op.getOperand(0); 782 SDValue Hi = Op.getOperand(1); 783 784 SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi); 785 // Extend sign. 786 OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF, 787 DAG.getValueType(MVT::i1)); 788 789 SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi); 790 791 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF); 792 } 793 794 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const { 795 SDLoc DL(Op); 796 return DAG.getNode( 797 ISD::SETCC, 798 DL, 799 MVT::i1, 800 Op, DAG.getConstantFP(1.0f, DL, MVT::f32), 801 DAG.getCondCode(ISD::SETEQ)); 802 } 803 804 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const { 805 SDLoc DL(Op); 806 return DAG.getNode( 807 ISD::SETCC, 808 DL, 809 MVT::i1, 810 Op, DAG.getConstantFP(-1.0f, DL, MVT::f32), 811 DAG.getCondCode(ISD::SETEQ)); 812 } 813 814 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT, 815 const SDLoc &DL, 816 unsigned DwordOffset) const { 817 unsigned ByteOffset = DwordOffset * 4; 818 PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()), 819 AMDGPUAS::PARAM_I_ADDRESS); 820 821 // We shouldn't be using an offset wider than 16-bits for implicit parameters. 822 assert(isInt<16>(ByteOffset)); 823 824 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 825 DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR 826 MachinePointerInfo(ConstantPointerNull::get(PtrType))); 827 } 828 829 bool R600TargetLowering::isZero(SDValue Op) const { 830 if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) { 831 return Cst->isZero(); 832 } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){ 833 return CstFP->isZero(); 834 } else { 835 return false; 836 } 837 } 838 839 bool R600TargetLowering::isHWTrueValue(SDValue Op) const { 840 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 841 return CFP->isExactlyValue(1.0); 842 } 843 return isAllOnesConstant(Op); 844 } 845 846 bool R600TargetLowering::isHWFalseValue(SDValue Op) const { 847 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 848 return CFP->getValueAPF().isZero(); 849 } 850 return isNullConstant(Op); 851 } 852 853 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 854 SDLoc DL(Op); 855 EVT VT = Op.getValueType(); 856 857 SDValue LHS = Op.getOperand(0); 858 SDValue RHS = Op.getOperand(1); 859 SDValue True = Op.getOperand(2); 860 SDValue False = Op.getOperand(3); 861 SDValue CC = Op.getOperand(4); 862 SDValue Temp; 863 864 if (VT == MVT::f32) { 865 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 866 SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); 867 if (MinMax) 868 return MinMax; 869 } 870 871 // LHS and RHS are guaranteed to be the same value type 872 EVT CompareVT = LHS.getValueType(); 873 874 // Check if we can lower this to a native operation. 875 876 // Try to lower to a SET* instruction: 877 // 878 // SET* can match the following patterns: 879 // 880 // select_cc f32, f32, -1, 0, cc_supported 881 // select_cc f32, f32, 1.0f, 0.0f, cc_supported 882 // select_cc i32, i32, -1, 0, cc_supported 883 // 884 885 // Move hardware True/False values to the correct operand. 886 if (isHWTrueValue(False) && isHWFalseValue(True)) { 887 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 888 ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT); 889 if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) { 890 std::swap(False, True); 891 CC = DAG.getCondCode(InverseCC); 892 } else { 893 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC); 894 if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) { 895 std::swap(False, True); 896 std::swap(LHS, RHS); 897 CC = DAG.getCondCode(SwapInvCC); 898 } 899 } 900 } 901 902 if (isHWTrueValue(True) && isHWFalseValue(False) && 903 (CompareVT == VT || VT == MVT::i32)) { 904 // This can be matched by a SET* instruction. 905 return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC); 906 } 907 908 // Try to lower to a CND* instruction: 909 // 910 // CND* can match the following patterns: 911 // 912 // select_cc f32, 0.0, f32, f32, cc_supported 913 // select_cc f32, 0.0, i32, i32, cc_supported 914 // select_cc i32, 0, f32, f32, cc_supported 915 // select_cc i32, 0, i32, i32, cc_supported 916 // 917 918 // Try to move the zero value to the RHS 919 if (isZero(LHS)) { 920 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 921 // Try swapping the operands 922 ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode); 923 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) { 924 std::swap(LHS, RHS); 925 CC = DAG.getCondCode(CCSwapped); 926 } else { 927 // Try inverting the conditon and then swapping the operands 928 ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT); 929 CCSwapped = ISD::getSetCCSwappedOperands(CCInv); 930 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) { 931 std::swap(True, False); 932 std::swap(LHS, RHS); 933 CC = DAG.getCondCode(CCSwapped); 934 } 935 } 936 } 937 if (isZero(RHS)) { 938 SDValue Cond = LHS; 939 SDValue Zero = RHS; 940 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 941 if (CompareVT != VT) { 942 // Bitcast True / False to the correct types. This will end up being 943 // a nop, but it allows us to define only a single pattern in the 944 // .TD files for each CND* instruction rather than having to have 945 // one pattern for integer True/False and one for fp True/False 946 True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True); 947 False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False); 948 } 949 950 switch (CCOpcode) { 951 case ISD::SETONE: 952 case ISD::SETUNE: 953 case ISD::SETNE: 954 CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT); 955 Temp = True; 956 True = False; 957 False = Temp; 958 break; 959 default: 960 break; 961 } 962 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, 963 Cond, Zero, 964 True, False, 965 DAG.getCondCode(CCOpcode)); 966 return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode); 967 } 968 969 // If we make it this for it means we have no native instructions to handle 970 // this SELECT_CC, so we must lower it. 971 SDValue HWTrue, HWFalse; 972 973 if (CompareVT == MVT::f32) { 974 HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT); 975 HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT); 976 } else if (CompareVT == MVT::i32) { 977 HWTrue = DAG.getConstant(-1, DL, CompareVT); 978 HWFalse = DAG.getConstant(0, DL, CompareVT); 979 } 980 else { 981 llvm_unreachable("Unhandled value type in LowerSELECT_CC"); 982 } 983 984 // Lower this unsupported SELECT_CC into a combination of two supported 985 // SELECT_CC operations. 986 SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC); 987 988 return DAG.getNode(ISD::SELECT_CC, DL, VT, 989 Cond, HWFalse, 990 True, False, 991 DAG.getCondCode(ISD::SETNE)); 992 } 993 994 /// LLVM generates byte-addressed pointers. For indirect addressing, we need to 995 /// convert these pointers to a register index. Each register holds 996 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the 997 /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used 998 /// for indirect addressing. 999 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr, 1000 unsigned StackWidth, 1001 SelectionDAG &DAG) const { 1002 unsigned SRLPad; 1003 switch(StackWidth) { 1004 case 1: 1005 SRLPad = 2; 1006 break; 1007 case 2: 1008 SRLPad = 3; 1009 break; 1010 case 4: 1011 SRLPad = 4; 1012 break; 1013 default: llvm_unreachable("Invalid stack width"); 1014 } 1015 1016 SDLoc DL(Ptr); 1017 return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr, 1018 DAG.getConstant(SRLPad, DL, MVT::i32)); 1019 } 1020 1021 void R600TargetLowering::getStackAddress(unsigned StackWidth, 1022 unsigned ElemIdx, 1023 unsigned &Channel, 1024 unsigned &PtrIncr) const { 1025 switch (StackWidth) { 1026 default: 1027 case 1: 1028 Channel = 0; 1029 if (ElemIdx > 0) { 1030 PtrIncr = 1; 1031 } else { 1032 PtrIncr = 0; 1033 } 1034 break; 1035 case 2: 1036 Channel = ElemIdx % 2; 1037 if (ElemIdx == 2) { 1038 PtrIncr = 1; 1039 } else { 1040 PtrIncr = 0; 1041 } 1042 break; 1043 case 4: 1044 Channel = ElemIdx; 1045 PtrIncr = 0; 1046 break; 1047 } 1048 } 1049 1050 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store, 1051 SelectionDAG &DAG) const { 1052 SDLoc DL(Store); 1053 //TODO: Who creates the i8 stores? 1054 assert(Store->isTruncatingStore() 1055 || Store->getValue().getValueType() == MVT::i8); 1056 assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS); 1057 1058 SDValue Mask; 1059 if (Store->getMemoryVT() == MVT::i8) { 1060 assert(Store->getAlignment() >= 1); 1061 Mask = DAG.getConstant(0xff, DL, MVT::i32); 1062 } else if (Store->getMemoryVT() == MVT::i16) { 1063 assert(Store->getAlignment() >= 2); 1064 Mask = DAG.getConstant(0xffff, DL, MVT::i32); 1065 } else { 1066 llvm_unreachable("Unsupported private trunc store"); 1067 } 1068 1069 SDValue OldChain = Store->getChain(); 1070 bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN); 1071 // Skip dummy 1072 SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain; 1073 SDValue BasePtr = Store->getBasePtr(); 1074 SDValue Offset = Store->getOffset(); 1075 EVT MemVT = Store->getMemoryVT(); 1076 1077 SDValue LoadPtr = BasePtr; 1078 if (!Offset.isUndef()) { 1079 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset); 1080 } 1081 1082 // Get dword location 1083 // TODO: this should be eliminated by the future SHR ptr, 2 1084 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr, 1085 DAG.getConstant(0xfffffffc, DL, MVT::i32)); 1086 1087 // Load dword 1088 // TODO: can we be smarter about machine pointer info? 1089 MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS); 1090 SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo); 1091 1092 Chain = Dst.getValue(1); 1093 1094 // Get offset in dword 1095 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr, 1096 DAG.getConstant(0x3, DL, MVT::i32)); 1097 1098 // Convert byte offset to bit shift 1099 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1100 DAG.getConstant(3, DL, MVT::i32)); 1101 1102 // TODO: Contrary to the name of the functiom, 1103 // it also handles sub i32 non-truncating stores (like i1) 1104 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1105 Store->getValue()); 1106 1107 // Mask the value to the right type 1108 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1109 1110 // Shift the value in place 1111 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1112 MaskedValue, ShiftAmt); 1113 1114 // Shift the mask in place 1115 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt); 1116 1117 // Invert the mask. NOTE: if we had native ROL instructions we could 1118 // use inverted mask 1119 DstMask = DAG.getNOT(DL, DstMask, MVT::i32); 1120 1121 // Cleanup the target bits 1122 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1123 1124 // Add the new bits 1125 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1126 1127 // Store dword 1128 // TODO: Can we be smarter about MachinePointerInfo? 1129 SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo); 1130 1131 // If we are part of expanded vector, make our neighbors depend on this store 1132 if (VectorTrunc) { 1133 // Make all other vector elements depend on this store 1134 Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore); 1135 DAG.ReplaceAllUsesOfValueWith(OldChain, Chain); 1136 } 1137 return NewStore; 1138 } 1139 1140 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1141 StoreSDNode *StoreNode = cast<StoreSDNode>(Op); 1142 unsigned AS = StoreNode->getAddressSpace(); 1143 1144 SDValue Chain = StoreNode->getChain(); 1145 SDValue Ptr = StoreNode->getBasePtr(); 1146 SDValue Value = StoreNode->getValue(); 1147 1148 EVT VT = Value.getValueType(); 1149 EVT MemVT = StoreNode->getMemoryVT(); 1150 EVT PtrVT = Ptr.getValueType(); 1151 1152 SDLoc DL(Op); 1153 1154 const bool TruncatingStore = StoreNode->isTruncatingStore(); 1155 1156 // Neither LOCAL nor PRIVATE can do vectors at the moment 1157 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS || 1158 TruncatingStore) && 1159 VT.isVector()) { 1160 if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) { 1161 // Add an extra level of chain to isolate this vector 1162 SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain); 1163 // TODO: can the chain be replaced without creating a new store? 1164 SDValue NewStore = DAG.getTruncStore( 1165 NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(), 1166 MemVT, StoreNode->getAlignment(), 1167 StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo()); 1168 StoreNode = cast<StoreSDNode>(NewStore); 1169 } 1170 1171 return scalarizeVectorStore(StoreNode, DAG); 1172 } 1173 1174 Align Alignment = StoreNode->getAlign(); 1175 if (Alignment < MemVT.getStoreSize() && 1176 !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment, 1177 StoreNode->getMemOperand()->getFlags(), 1178 nullptr)) { 1179 return expandUnalignedStore(StoreNode, DAG); 1180 } 1181 1182 SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr, 1183 DAG.getConstant(2, DL, PtrVT)); 1184 1185 if (AS == AMDGPUAS::GLOBAL_ADDRESS) { 1186 // It is beneficial to create MSKOR here instead of combiner to avoid 1187 // artificial dependencies introduced by RMW 1188 if (TruncatingStore) { 1189 assert(VT.bitsLE(MVT::i32)); 1190 SDValue MaskConstant; 1191 if (MemVT == MVT::i8) { 1192 MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32); 1193 } else { 1194 assert(MemVT == MVT::i16); 1195 assert(StoreNode->getAlignment() >= 2); 1196 MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32); 1197 } 1198 1199 SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr, 1200 DAG.getConstant(0x00000003, DL, PtrVT)); 1201 SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex, 1202 DAG.getConstant(3, DL, VT)); 1203 1204 // Put the mask in correct place 1205 SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift); 1206 1207 // Put the value bits in correct place 1208 SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant); 1209 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift); 1210 1211 // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32 1212 // vector instead. 1213 SDValue Src[4] = { 1214 ShiftedValue, 1215 DAG.getConstant(0, DL, MVT::i32), 1216 DAG.getConstant(0, DL, MVT::i32), 1217 Mask 1218 }; 1219 SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src); 1220 SDValue Args[3] = { Chain, Input, DWordAddr }; 1221 return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL, 1222 Op->getVTList(), Args, MemVT, 1223 StoreNode->getMemOperand()); 1224 } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) { 1225 // Convert pointer from byte address to dword address. 1226 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr); 1227 1228 if (StoreNode->isIndexed()) { 1229 llvm_unreachable("Indexed stores not supported yet"); 1230 } else { 1231 Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand()); 1232 } 1233 return Chain; 1234 } 1235 } 1236 1237 // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes 1238 if (AS != AMDGPUAS::PRIVATE_ADDRESS) 1239 return SDValue(); 1240 1241 if (MemVT.bitsLT(MVT::i32)) 1242 return lowerPrivateTruncStore(StoreNode, DAG); 1243 1244 // Standard i32+ store, tag it with DWORDADDR to note that the address 1245 // has been shifted 1246 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) { 1247 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr); 1248 return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand()); 1249 } 1250 1251 // Tagged i32+ stores will be matched by patterns 1252 return SDValue(); 1253 } 1254 1255 // return (512 + (kc_bank << 12) 1256 static int 1257 ConstantAddressBlock(unsigned AddressSpace) { 1258 switch (AddressSpace) { 1259 case AMDGPUAS::CONSTANT_BUFFER_0: 1260 return 512; 1261 case AMDGPUAS::CONSTANT_BUFFER_1: 1262 return 512 + 4096; 1263 case AMDGPUAS::CONSTANT_BUFFER_2: 1264 return 512 + 4096 * 2; 1265 case AMDGPUAS::CONSTANT_BUFFER_3: 1266 return 512 + 4096 * 3; 1267 case AMDGPUAS::CONSTANT_BUFFER_4: 1268 return 512 + 4096 * 4; 1269 case AMDGPUAS::CONSTANT_BUFFER_5: 1270 return 512 + 4096 * 5; 1271 case AMDGPUAS::CONSTANT_BUFFER_6: 1272 return 512 + 4096 * 6; 1273 case AMDGPUAS::CONSTANT_BUFFER_7: 1274 return 512 + 4096 * 7; 1275 case AMDGPUAS::CONSTANT_BUFFER_8: 1276 return 512 + 4096 * 8; 1277 case AMDGPUAS::CONSTANT_BUFFER_9: 1278 return 512 + 4096 * 9; 1279 case AMDGPUAS::CONSTANT_BUFFER_10: 1280 return 512 + 4096 * 10; 1281 case AMDGPUAS::CONSTANT_BUFFER_11: 1282 return 512 + 4096 * 11; 1283 case AMDGPUAS::CONSTANT_BUFFER_12: 1284 return 512 + 4096 * 12; 1285 case AMDGPUAS::CONSTANT_BUFFER_13: 1286 return 512 + 4096 * 13; 1287 case AMDGPUAS::CONSTANT_BUFFER_14: 1288 return 512 + 4096 * 14; 1289 case AMDGPUAS::CONSTANT_BUFFER_15: 1290 return 512 + 4096 * 15; 1291 default: 1292 return -1; 1293 } 1294 } 1295 1296 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op, 1297 SelectionDAG &DAG) const { 1298 SDLoc DL(Op); 1299 LoadSDNode *Load = cast<LoadSDNode>(Op); 1300 ISD::LoadExtType ExtType = Load->getExtensionType(); 1301 EVT MemVT = Load->getMemoryVT(); 1302 assert(Load->getAlignment() >= MemVT.getStoreSize()); 1303 1304 SDValue BasePtr = Load->getBasePtr(); 1305 SDValue Chain = Load->getChain(); 1306 SDValue Offset = Load->getOffset(); 1307 1308 SDValue LoadPtr = BasePtr; 1309 if (!Offset.isUndef()) { 1310 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset); 1311 } 1312 1313 // Get dword location 1314 // NOTE: this should be eliminated by the future SHR ptr, 2 1315 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr, 1316 DAG.getConstant(0xfffffffc, DL, MVT::i32)); 1317 1318 // Load dword 1319 // TODO: can we be smarter about machine pointer info? 1320 MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS); 1321 SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo); 1322 1323 // Get offset within the register. 1324 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1325 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32)); 1326 1327 // Bit offset of target byte (byteIdx * 8). 1328 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1329 DAG.getConstant(3, DL, MVT::i32)); 1330 1331 // Shift to the right. 1332 SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt); 1333 1334 // Eliminate the upper bits by setting them to ... 1335 EVT MemEltVT = MemVT.getScalarType(); 1336 1337 if (ExtType == ISD::SEXTLOAD) { // ... ones. 1338 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1339 Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode); 1340 } else { // ... or zeros. 1341 Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT); 1342 } 1343 1344 SDValue Ops[] = { 1345 Ret, 1346 Read.getValue(1) // This should be our output chain 1347 }; 1348 1349 return DAG.getMergeValues(Ops, DL); 1350 } 1351 1352 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1353 LoadSDNode *LoadNode = cast<LoadSDNode>(Op); 1354 unsigned AS = LoadNode->getAddressSpace(); 1355 EVT MemVT = LoadNode->getMemoryVT(); 1356 ISD::LoadExtType ExtType = LoadNode->getExtensionType(); 1357 1358 if (AS == AMDGPUAS::PRIVATE_ADDRESS && 1359 ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) { 1360 return lowerPrivateExtLoad(Op, DAG); 1361 } 1362 1363 SDLoc DL(Op); 1364 EVT VT = Op.getValueType(); 1365 SDValue Chain = LoadNode->getChain(); 1366 SDValue Ptr = LoadNode->getBasePtr(); 1367 1368 if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1369 LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1370 VT.isVector()) { 1371 SDValue Ops[2]; 1372 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG); 1373 return DAG.getMergeValues(Ops, DL); 1374 } 1375 1376 // This is still used for explicit load from addrspace(8) 1377 int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace()); 1378 if (ConstantBlock > -1 && 1379 ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) || 1380 (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) { 1381 SDValue Result; 1382 if (isa<Constant>(LoadNode->getMemOperand()->getValue()) || 1383 isa<ConstantSDNode>(Ptr)) { 1384 return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG); 1385 } else { 1386 //TODO: Does this even work? 1387 // non-constant ptr can't be folded, keeps it as a v4f32 load 1388 Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32, 1389 DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, 1390 DAG.getConstant(4, DL, MVT::i32)), 1391 DAG.getConstant(LoadNode->getAddressSpace() - 1392 AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32) 1393 ); 1394 } 1395 1396 if (!VT.isVector()) { 1397 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result, 1398 DAG.getConstant(0, DL, MVT::i32)); 1399 } 1400 1401 SDValue MergedValues[2] = { 1402 Result, 1403 Chain 1404 }; 1405 return DAG.getMergeValues(MergedValues, DL); 1406 } 1407 1408 // For most operations returning SDValue() will result in the node being 1409 // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we 1410 // need to manually expand loads that may be legal in some address spaces and 1411 // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for 1412 // compute shaders, since the data is sign extended when it is uploaded to the 1413 // buffer. However SEXT loads from other address spaces are not supported, so 1414 // we need to expand them here. 1415 if (LoadNode->getExtensionType() == ISD::SEXTLOAD) { 1416 assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8)); 1417 SDValue NewLoad = DAG.getExtLoad( 1418 ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT, 1419 LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags()); 1420 SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad, 1421 DAG.getValueType(MemVT)); 1422 1423 SDValue MergedValues[2] = { Res, Chain }; 1424 return DAG.getMergeValues(MergedValues, DL); 1425 } 1426 1427 if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) { 1428 return SDValue(); 1429 } 1430 1431 // DWORDADDR ISD marks already shifted address 1432 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) { 1433 assert(VT == MVT::i32); 1434 Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32)); 1435 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr); 1436 return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand()); 1437 } 1438 return SDValue(); 1439 } 1440 1441 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 1442 SDValue Chain = Op.getOperand(0); 1443 SDValue Cond = Op.getOperand(1); 1444 SDValue Jump = Op.getOperand(2); 1445 1446 return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(), 1447 Chain, Jump, Cond); 1448 } 1449 1450 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op, 1451 SelectionDAG &DAG) const { 1452 MachineFunction &MF = DAG.getMachineFunction(); 1453 const R600FrameLowering *TFL = Subtarget->getFrameLowering(); 1454 1455 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 1456 1457 unsigned FrameIndex = FIN->getIndex(); 1458 Register IgnoredFrameReg; 1459 StackOffset Offset = 1460 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); 1461 return DAG.getConstant(Offset.getFixed() * 4 * TFL->getStackWidth(MF), 1462 SDLoc(Op), Op.getValueType()); 1463 } 1464 1465 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1466 bool IsVarArg) const { 1467 switch (CC) { 1468 case CallingConv::AMDGPU_KERNEL: 1469 case CallingConv::SPIR_KERNEL: 1470 case CallingConv::C: 1471 case CallingConv::Fast: 1472 case CallingConv::Cold: 1473 llvm_unreachable("kernels should not be handled here"); 1474 case CallingConv::AMDGPU_VS: 1475 case CallingConv::AMDGPU_GS: 1476 case CallingConv::AMDGPU_PS: 1477 case CallingConv::AMDGPU_CS: 1478 case CallingConv::AMDGPU_HS: 1479 case CallingConv::AMDGPU_ES: 1480 case CallingConv::AMDGPU_LS: 1481 return CC_R600; 1482 default: 1483 report_fatal_error("Unsupported calling convention."); 1484 } 1485 } 1486 1487 /// XXX Only kernel functions are supported, so we can assume for now that 1488 /// every function is a kernel function, but in the future we should use 1489 /// separate calling conventions for kernel and non-kernel functions. 1490 SDValue R600TargetLowering::LowerFormalArguments( 1491 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 1492 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1493 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1494 SmallVector<CCValAssign, 16> ArgLocs; 1495 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1496 *DAG.getContext()); 1497 MachineFunction &MF = DAG.getMachineFunction(); 1498 SmallVector<ISD::InputArg, 8> LocalIns; 1499 1500 if (AMDGPU::isShader(CallConv)) { 1501 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg)); 1502 } else { 1503 analyzeFormalArgumentsCompute(CCInfo, Ins); 1504 } 1505 1506 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 1507 CCValAssign &VA = ArgLocs[i]; 1508 const ISD::InputArg &In = Ins[i]; 1509 EVT VT = In.VT; 1510 EVT MemVT = VA.getLocVT(); 1511 if (!VT.isVector() && MemVT.isVector()) { 1512 // Get load source type if scalarized. 1513 MemVT = MemVT.getVectorElementType(); 1514 } 1515 1516 if (AMDGPU::isShader(CallConv)) { 1517 Register Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass); 1518 SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT); 1519 InVals.push_back(Register); 1520 continue; 1521 } 1522 1523 // i64 isn't a legal type, so the register type used ends up as i32, which 1524 // isn't expected here. It attempts to create this sextload, but it ends up 1525 // being invalid. Somehow this seems to work with i64 arguments, but breaks 1526 // for <1 x i64>. 1527 1528 // The first 36 bytes of the input buffer contains information about 1529 // thread group and global sizes. 1530 ISD::LoadExtType Ext = ISD::NON_EXTLOAD; 1531 if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) { 1532 // FIXME: This should really check the extload type, but the handling of 1533 // extload vector parameters seems to be broken. 1534 1535 // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 1536 Ext = ISD::SEXTLOAD; 1537 } 1538 1539 // Compute the offset from the value. 1540 // XXX - I think PartOffset should give you this, but it seems to give the 1541 // size of the register which isn't useful. 1542 1543 unsigned PartOffset = VA.getLocMemOffset(); 1544 unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset); 1545 1546 MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS); 1547 SDValue Arg = DAG.getLoad( 1548 ISD::UNINDEXED, Ext, VT, DL, Chain, 1549 DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32), 1550 PtrInfo, 1551 MemVT, Alignment, MachineMemOperand::MONonTemporal | 1552 MachineMemOperand::MODereferenceable | 1553 MachineMemOperand::MOInvariant); 1554 1555 InVals.push_back(Arg); 1556 } 1557 return Chain; 1558 } 1559 1560 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1561 EVT VT) const { 1562 if (!VT.isVector()) 1563 return MVT::i32; 1564 return VT.changeVectorElementTypeToInteger(); 1565 } 1566 1567 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1568 const MachineFunction &MF) const { 1569 // Local and Private addresses do not handle vectors. Limit to i32 1570 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) { 1571 return (MemVT.getSizeInBits() <= 32); 1572 } 1573 return true; 1574 } 1575 1576 bool R600TargetLowering::allowsMisalignedMemoryAccesses( 1577 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 1578 bool *IsFast) const { 1579 if (IsFast) 1580 *IsFast = false; 1581 1582 if (!VT.isSimple() || VT == MVT::Other) 1583 return false; 1584 1585 if (VT.bitsLT(MVT::i32)) 1586 return false; 1587 1588 // TODO: This is a rough estimate. 1589 if (IsFast) 1590 *IsFast = true; 1591 1592 return VT.bitsGT(MVT::i32) && Alignment >= Align(4); 1593 } 1594 1595 static SDValue CompactSwizzlableVector( 1596 SelectionDAG &DAG, SDValue VectorEntry, 1597 DenseMap<unsigned, unsigned> &RemapSwizzle) { 1598 assert(RemapSwizzle.empty()); 1599 1600 SDLoc DL(VectorEntry); 1601 EVT EltTy = VectorEntry.getValueType().getVectorElementType(); 1602 1603 SDValue NewBldVec[4]; 1604 for (unsigned i = 0; i < 4; i++) 1605 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry, 1606 DAG.getIntPtrConstant(i, DL)); 1607 1608 for (unsigned i = 0; i < 4; i++) { 1609 if (NewBldVec[i].isUndef()) 1610 // We mask write here to teach later passes that the ith element of this 1611 // vector is undef. Thus we can use it to reduce 128 bits reg usage, 1612 // break false dependencies and additionnaly make assembly easier to read. 1613 RemapSwizzle[i] = 7; // SEL_MASK_WRITE 1614 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) { 1615 if (C->isZero()) { 1616 RemapSwizzle[i] = 4; // SEL_0 1617 NewBldVec[i] = DAG.getUNDEF(MVT::f32); 1618 } else if (C->isExactlyValue(1.0)) { 1619 RemapSwizzle[i] = 5; // SEL_1 1620 NewBldVec[i] = DAG.getUNDEF(MVT::f32); 1621 } 1622 } 1623 1624 if (NewBldVec[i].isUndef()) 1625 continue; 1626 1627 for (unsigned j = 0; j < i; j++) { 1628 if (NewBldVec[i] == NewBldVec[j]) { 1629 NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType()); 1630 RemapSwizzle[i] = j; 1631 break; 1632 } 1633 } 1634 } 1635 1636 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry), 1637 NewBldVec); 1638 } 1639 1640 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry, 1641 DenseMap<unsigned, unsigned> &RemapSwizzle) { 1642 assert(RemapSwizzle.empty()); 1643 1644 SDLoc DL(VectorEntry); 1645 EVT EltTy = VectorEntry.getValueType().getVectorElementType(); 1646 1647 SDValue NewBldVec[4]; 1648 bool isUnmovable[4] = {false, false, false, false}; 1649 for (unsigned i = 0; i < 4; i++) 1650 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry, 1651 DAG.getIntPtrConstant(i, DL)); 1652 1653 for (unsigned i = 0; i < 4; i++) { 1654 RemapSwizzle[i] = i; 1655 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1656 unsigned Idx = cast<ConstantSDNode>(NewBldVec[i].getOperand(1)) 1657 ->getZExtValue(); 1658 if (i == Idx) 1659 isUnmovable[Idx] = true; 1660 } 1661 } 1662 1663 for (unsigned i = 0; i < 4; i++) { 1664 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1665 unsigned Idx = cast<ConstantSDNode>(NewBldVec[i].getOperand(1)) 1666 ->getZExtValue(); 1667 if (isUnmovable[Idx]) 1668 continue; 1669 // Swap i and Idx 1670 std::swap(NewBldVec[Idx], NewBldVec[i]); 1671 std::swap(RemapSwizzle[i], RemapSwizzle[Idx]); 1672 break; 1673 } 1674 } 1675 1676 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry), 1677 NewBldVec); 1678 } 1679 1680 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4], 1681 SelectionDAG &DAG, 1682 const SDLoc &DL) const { 1683 // Old -> New swizzle values 1684 DenseMap<unsigned, unsigned> SwizzleRemap; 1685 1686 BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap); 1687 for (unsigned i = 0; i < 4; i++) { 1688 unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue(); 1689 if (SwizzleRemap.find(Idx) != SwizzleRemap.end()) 1690 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32); 1691 } 1692 1693 SwizzleRemap.clear(); 1694 BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap); 1695 for (unsigned i = 0; i < 4; i++) { 1696 unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue(); 1697 if (SwizzleRemap.find(Idx) != SwizzleRemap.end()) 1698 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32); 1699 } 1700 1701 return BuildVector; 1702 } 1703 1704 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block, 1705 SelectionDAG &DAG) const { 1706 SDLoc DL(LoadNode); 1707 EVT VT = LoadNode->getValueType(0); 1708 SDValue Chain = LoadNode->getChain(); 1709 SDValue Ptr = LoadNode->getBasePtr(); 1710 assert (isa<ConstantSDNode>(Ptr)); 1711 1712 //TODO: Support smaller loads 1713 if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode)) 1714 return SDValue(); 1715 1716 if (LoadNode->getAlignment() < 4) 1717 return SDValue(); 1718 1719 int ConstantBlock = ConstantAddressBlock(Block); 1720 1721 SDValue Slots[4]; 1722 for (unsigned i = 0; i < 4; i++) { 1723 // We want Const position encoded with the following formula : 1724 // (((512 + (kc_bank << 12) + const_index) << 2) + chan) 1725 // const_index is Ptr computed by llvm using an alignment of 16. 1726 // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and 1727 // then div by 4 at the ISel step 1728 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 1729 DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32)); 1730 Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr); 1731 } 1732 EVT NewVT = MVT::v4i32; 1733 unsigned NumElements = 4; 1734 if (VT.isVector()) { 1735 NewVT = VT; 1736 NumElements = VT.getVectorNumElements(); 1737 } 1738 SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements)); 1739 if (!VT.isVector()) { 1740 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result, 1741 DAG.getConstant(0, DL, MVT::i32)); 1742 } 1743 SDValue MergedValues[2] = { 1744 Result, 1745 Chain 1746 }; 1747 return DAG.getMergeValues(MergedValues, DL); 1748 } 1749 1750 //===----------------------------------------------------------------------===// 1751 // Custom DAG Optimizations 1752 //===----------------------------------------------------------------------===// 1753 1754 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N, 1755 DAGCombinerInfo &DCI) const { 1756 SelectionDAG &DAG = DCI.DAG; 1757 SDLoc DL(N); 1758 1759 switch (N->getOpcode()) { 1760 // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a) 1761 case ISD::FP_ROUND: { 1762 SDValue Arg = N->getOperand(0); 1763 if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) { 1764 return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0), 1765 Arg.getOperand(0)); 1766 } 1767 break; 1768 } 1769 1770 // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) -> 1771 // (i32 select_cc f32, f32, -1, 0 cc) 1772 // 1773 // Mesa's GLSL frontend generates the above pattern a lot and we can lower 1774 // this to one of the SET*_DX10 instructions. 1775 case ISD::FP_TO_SINT: { 1776 SDValue FNeg = N->getOperand(0); 1777 if (FNeg.getOpcode() != ISD::FNEG) { 1778 return SDValue(); 1779 } 1780 SDValue SelectCC = FNeg.getOperand(0); 1781 if (SelectCC.getOpcode() != ISD::SELECT_CC || 1782 SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS 1783 SelectCC.getOperand(2).getValueType() != MVT::f32 || // True 1784 !isHWTrueValue(SelectCC.getOperand(2)) || 1785 !isHWFalseValue(SelectCC.getOperand(3))) { 1786 return SDValue(); 1787 } 1788 1789 return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0), 1790 SelectCC.getOperand(0), // LHS 1791 SelectCC.getOperand(1), // RHS 1792 DAG.getConstant(-1, DL, MVT::i32), // True 1793 DAG.getConstant(0, DL, MVT::i32), // False 1794 SelectCC.getOperand(4)); // CC 1795 } 1796 1797 // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx 1798 // => build_vector elt0, ... , NewEltIdx, ... , eltN 1799 case ISD::INSERT_VECTOR_ELT: { 1800 SDValue InVec = N->getOperand(0); 1801 SDValue InVal = N->getOperand(1); 1802 SDValue EltNo = N->getOperand(2); 1803 1804 // If the inserted element is an UNDEF, just use the input vector. 1805 if (InVal.isUndef()) 1806 return InVec; 1807 1808 EVT VT = InVec.getValueType(); 1809 1810 // If we can't generate a legal BUILD_VECTOR, exit 1811 if (!isOperationLegal(ISD::BUILD_VECTOR, VT)) 1812 return SDValue(); 1813 1814 // Check that we know which element is being inserted 1815 if (!isa<ConstantSDNode>(EltNo)) 1816 return SDValue(); 1817 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 1818 1819 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 1820 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 1821 // vector elements. 1822 SmallVector<SDValue, 8> Ops; 1823 if (InVec.getOpcode() == ISD::BUILD_VECTOR) { 1824 Ops.append(InVec.getNode()->op_begin(), 1825 InVec.getNode()->op_end()); 1826 } else if (InVec.isUndef()) { 1827 unsigned NElts = VT.getVectorNumElements(); 1828 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); 1829 } else { 1830 return SDValue(); 1831 } 1832 1833 // Insert the element 1834 if (Elt < Ops.size()) { 1835 // All the operands of BUILD_VECTOR must have the same type; 1836 // we enforce that here. 1837 EVT OpVT = Ops[0].getValueType(); 1838 if (InVal.getValueType() != OpVT) 1839 InVal = OpVT.bitsGT(InVal.getValueType()) ? 1840 DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) : 1841 DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal); 1842 Ops[Elt] = InVal; 1843 } 1844 1845 // Return the new vector 1846 return DAG.getBuildVector(VT, DL, Ops); 1847 } 1848 1849 // Extract_vec (Build_vector) generated by custom lowering 1850 // also needs to be customly combined 1851 case ISD::EXTRACT_VECTOR_ELT: { 1852 SDValue Arg = N->getOperand(0); 1853 if (Arg.getOpcode() == ISD::BUILD_VECTOR) { 1854 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 1855 unsigned Element = Const->getZExtValue(); 1856 return Arg->getOperand(Element); 1857 } 1858 } 1859 if (Arg.getOpcode() == ISD::BITCAST && 1860 Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 1861 (Arg.getOperand(0).getValueType().getVectorNumElements() == 1862 Arg.getValueType().getVectorNumElements())) { 1863 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 1864 unsigned Element = Const->getZExtValue(); 1865 return DAG.getNode(ISD::BITCAST, DL, N->getVTList(), 1866 Arg->getOperand(0).getOperand(Element)); 1867 } 1868 } 1869 break; 1870 } 1871 1872 case ISD::SELECT_CC: { 1873 // Try common optimizations 1874 if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI)) 1875 return Ret; 1876 1877 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq -> 1878 // selectcc x, y, a, b, inv(cc) 1879 // 1880 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne -> 1881 // selectcc x, y, a, b, cc 1882 SDValue LHS = N->getOperand(0); 1883 if (LHS.getOpcode() != ISD::SELECT_CC) { 1884 return SDValue(); 1885 } 1886 1887 SDValue RHS = N->getOperand(1); 1888 SDValue True = N->getOperand(2); 1889 SDValue False = N->getOperand(3); 1890 ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 1891 1892 if (LHS.getOperand(2).getNode() != True.getNode() || 1893 LHS.getOperand(3).getNode() != False.getNode() || 1894 RHS.getNode() != False.getNode()) { 1895 return SDValue(); 1896 } 1897 1898 switch (NCC) { 1899 default: return SDValue(); 1900 case ISD::SETNE: return LHS; 1901 case ISD::SETEQ: { 1902 ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get(); 1903 LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType()); 1904 if (DCI.isBeforeLegalizeOps() || 1905 isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType())) 1906 return DAG.getSelectCC(DL, 1907 LHS.getOperand(0), 1908 LHS.getOperand(1), 1909 LHS.getOperand(2), 1910 LHS.getOperand(3), 1911 LHSCC); 1912 break; 1913 } 1914 } 1915 return SDValue(); 1916 } 1917 1918 case AMDGPUISD::R600_EXPORT: { 1919 SDValue Arg = N->getOperand(1); 1920 if (Arg.getOpcode() != ISD::BUILD_VECTOR) 1921 break; 1922 1923 SDValue NewArgs[8] = { 1924 N->getOperand(0), // Chain 1925 SDValue(), 1926 N->getOperand(2), // ArrayBase 1927 N->getOperand(3), // Type 1928 N->getOperand(4), // SWZ_X 1929 N->getOperand(5), // SWZ_Y 1930 N->getOperand(6), // SWZ_Z 1931 N->getOperand(7) // SWZ_W 1932 }; 1933 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL); 1934 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs); 1935 } 1936 case AMDGPUISD::TEXTURE_FETCH: { 1937 SDValue Arg = N->getOperand(1); 1938 if (Arg.getOpcode() != ISD::BUILD_VECTOR) 1939 break; 1940 1941 SDValue NewArgs[19] = { 1942 N->getOperand(0), 1943 N->getOperand(1), 1944 N->getOperand(2), 1945 N->getOperand(3), 1946 N->getOperand(4), 1947 N->getOperand(5), 1948 N->getOperand(6), 1949 N->getOperand(7), 1950 N->getOperand(8), 1951 N->getOperand(9), 1952 N->getOperand(10), 1953 N->getOperand(11), 1954 N->getOperand(12), 1955 N->getOperand(13), 1956 N->getOperand(14), 1957 N->getOperand(15), 1958 N->getOperand(16), 1959 N->getOperand(17), 1960 N->getOperand(18), 1961 }; 1962 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL); 1963 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs); 1964 } 1965 1966 case ISD::LOAD: { 1967 LoadSDNode *LoadNode = cast<LoadSDNode>(N); 1968 SDValue Ptr = LoadNode->getBasePtr(); 1969 if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS && 1970 isa<ConstantSDNode>(Ptr)) 1971 return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG); 1972 break; 1973 } 1974 1975 default: break; 1976 } 1977 1978 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 1979 } 1980 1981 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx, 1982 SDValue &Src, SDValue &Neg, SDValue &Abs, 1983 SDValue &Sel, SDValue &Imm, 1984 SelectionDAG &DAG) const { 1985 const R600InstrInfo *TII = Subtarget->getInstrInfo(); 1986 if (!Src.isMachineOpcode()) 1987 return false; 1988 1989 switch (Src.getMachineOpcode()) { 1990 case R600::FNEG_R600: 1991 if (!Neg.getNode()) 1992 return false; 1993 Src = Src.getOperand(0); 1994 Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32); 1995 return true; 1996 case R600::FABS_R600: 1997 if (!Abs.getNode()) 1998 return false; 1999 Src = Src.getOperand(0); 2000 Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32); 2001 return true; 2002 case R600::CONST_COPY: { 2003 unsigned Opcode = ParentNode->getMachineOpcode(); 2004 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1; 2005 2006 if (!Sel.getNode()) 2007 return false; 2008 2009 SDValue CstOffset = Src.getOperand(0); 2010 if (ParentNode->getValueType(0).isVector()) 2011 return false; 2012 2013 // Gather constants values 2014 int SrcIndices[] = { 2015 TII->getOperandIdx(Opcode, R600::OpName::src0), 2016 TII->getOperandIdx(Opcode, R600::OpName::src1), 2017 TII->getOperandIdx(Opcode, R600::OpName::src2), 2018 TII->getOperandIdx(Opcode, R600::OpName::src0_X), 2019 TII->getOperandIdx(Opcode, R600::OpName::src0_Y), 2020 TII->getOperandIdx(Opcode, R600::OpName::src0_Z), 2021 TII->getOperandIdx(Opcode, R600::OpName::src0_W), 2022 TII->getOperandIdx(Opcode, R600::OpName::src1_X), 2023 TII->getOperandIdx(Opcode, R600::OpName::src1_Y), 2024 TII->getOperandIdx(Opcode, R600::OpName::src1_Z), 2025 TII->getOperandIdx(Opcode, R600::OpName::src1_W) 2026 }; 2027 std::vector<unsigned> Consts; 2028 for (int OtherSrcIdx : SrcIndices) { 2029 int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx); 2030 if (OtherSrcIdx < 0 || OtherSelIdx < 0) 2031 continue; 2032 if (HasDst) { 2033 OtherSrcIdx--; 2034 OtherSelIdx--; 2035 } 2036 if (RegisterSDNode *Reg = 2037 dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) { 2038 if (Reg->getReg() == R600::ALU_CONST) { 2039 ConstantSDNode *Cst 2040 = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx)); 2041 Consts.push_back(Cst->getZExtValue()); 2042 } 2043 } 2044 } 2045 2046 ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset); 2047 Consts.push_back(Cst->getZExtValue()); 2048 if (!TII->fitsConstReadLimitations(Consts)) { 2049 return false; 2050 } 2051 2052 Sel = CstOffset; 2053 Src = DAG.getRegister(R600::ALU_CONST, MVT::f32); 2054 return true; 2055 } 2056 case R600::MOV_IMM_GLOBAL_ADDR: 2057 // Check if the Imm slot is used. Taken from below. 2058 if (cast<ConstantSDNode>(Imm)->getZExtValue()) 2059 return false; 2060 Imm = Src.getOperand(0); 2061 Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32); 2062 return true; 2063 case R600::MOV_IMM_I32: 2064 case R600::MOV_IMM_F32: { 2065 unsigned ImmReg = R600::ALU_LITERAL_X; 2066 uint64_t ImmValue = 0; 2067 2068 if (Src.getMachineOpcode() == R600::MOV_IMM_F32) { 2069 ConstantFPSDNode *FPC = cast<ConstantFPSDNode>(Src.getOperand(0)); 2070 float FloatValue = FPC->getValueAPF().convertToFloat(); 2071 if (FloatValue == 0.0) { 2072 ImmReg = R600::ZERO; 2073 } else if (FloatValue == 0.5) { 2074 ImmReg = R600::HALF; 2075 } else if (FloatValue == 1.0) { 2076 ImmReg = R600::ONE; 2077 } else { 2078 ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue(); 2079 } 2080 } else { 2081 ConstantSDNode *C = cast<ConstantSDNode>(Src.getOperand(0)); 2082 uint64_t Value = C->getZExtValue(); 2083 if (Value == 0) { 2084 ImmReg = R600::ZERO; 2085 } else if (Value == 1) { 2086 ImmReg = R600::ONE_INT; 2087 } else { 2088 ImmValue = Value; 2089 } 2090 } 2091 2092 // Check that we aren't already using an immediate. 2093 // XXX: It's possible for an instruction to have more than one 2094 // immediate operand, but this is not supported yet. 2095 if (ImmReg == R600::ALU_LITERAL_X) { 2096 if (!Imm.getNode()) 2097 return false; 2098 ConstantSDNode *C = cast<ConstantSDNode>(Imm); 2099 if (C->getZExtValue()) 2100 return false; 2101 Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32); 2102 } 2103 Src = DAG.getRegister(ImmReg, MVT::i32); 2104 return true; 2105 } 2106 default: 2107 return false; 2108 } 2109 } 2110 2111 /// Fold the instructions after selecting them 2112 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node, 2113 SelectionDAG &DAG) const { 2114 const R600InstrInfo *TII = Subtarget->getInstrInfo(); 2115 if (!Node->isMachineOpcode()) 2116 return Node; 2117 2118 unsigned Opcode = Node->getMachineOpcode(); 2119 SDValue FakeOp; 2120 2121 std::vector<SDValue> Ops(Node->op_begin(), Node->op_end()); 2122 2123 if (Opcode == R600::DOT_4) { 2124 int OperandIdx[] = { 2125 TII->getOperandIdx(Opcode, R600::OpName::src0_X), 2126 TII->getOperandIdx(Opcode, R600::OpName::src0_Y), 2127 TII->getOperandIdx(Opcode, R600::OpName::src0_Z), 2128 TII->getOperandIdx(Opcode, R600::OpName::src0_W), 2129 TII->getOperandIdx(Opcode, R600::OpName::src1_X), 2130 TII->getOperandIdx(Opcode, R600::OpName::src1_Y), 2131 TII->getOperandIdx(Opcode, R600::OpName::src1_Z), 2132 TII->getOperandIdx(Opcode, R600::OpName::src1_W) 2133 }; 2134 int NegIdx[] = { 2135 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X), 2136 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y), 2137 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z), 2138 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W), 2139 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X), 2140 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y), 2141 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z), 2142 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W) 2143 }; 2144 int AbsIdx[] = { 2145 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X), 2146 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y), 2147 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z), 2148 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W), 2149 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X), 2150 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y), 2151 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z), 2152 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W) 2153 }; 2154 for (unsigned i = 0; i < 8; i++) { 2155 if (OperandIdx[i] < 0) 2156 return Node; 2157 SDValue &Src = Ops[OperandIdx[i] - 1]; 2158 SDValue &Neg = Ops[NegIdx[i] - 1]; 2159 SDValue &Abs = Ops[AbsIdx[i] - 1]; 2160 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1; 2161 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]); 2162 if (HasDst) 2163 SelIdx--; 2164 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp; 2165 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG)) 2166 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 2167 } 2168 } else if (Opcode == R600::REG_SEQUENCE) { 2169 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) { 2170 SDValue &Src = Ops[i]; 2171 if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG)) 2172 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 2173 } 2174 } else { 2175 if (!TII->hasInstrModifiers(Opcode)) 2176 return Node; 2177 int OperandIdx[] = { 2178 TII->getOperandIdx(Opcode, R600::OpName::src0), 2179 TII->getOperandIdx(Opcode, R600::OpName::src1), 2180 TII->getOperandIdx(Opcode, R600::OpName::src2) 2181 }; 2182 int NegIdx[] = { 2183 TII->getOperandIdx(Opcode, R600::OpName::src0_neg), 2184 TII->getOperandIdx(Opcode, R600::OpName::src1_neg), 2185 TII->getOperandIdx(Opcode, R600::OpName::src2_neg) 2186 }; 2187 int AbsIdx[] = { 2188 TII->getOperandIdx(Opcode, R600::OpName::src0_abs), 2189 TII->getOperandIdx(Opcode, R600::OpName::src1_abs), 2190 -1 2191 }; 2192 for (unsigned i = 0; i < 3; i++) { 2193 if (OperandIdx[i] < 0) 2194 return Node; 2195 SDValue &Src = Ops[OperandIdx[i] - 1]; 2196 SDValue &Neg = Ops[NegIdx[i] - 1]; 2197 SDValue FakeAbs; 2198 SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs; 2199 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1; 2200 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]); 2201 int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal); 2202 if (HasDst) { 2203 SelIdx--; 2204 ImmIdx--; 2205 } 2206 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp; 2207 SDValue &Imm = Ops[ImmIdx]; 2208 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG)) 2209 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 2210 } 2211 } 2212 2213 return Node; 2214 } 2215