1 //===-- R600ControlFlowFinalizer.cpp - Finalize Control Flow Inst----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This pass compute turns all control flow pseudo instructions into native one 12 /// computing their address on the fly ; it also sets STACK_SIZE info. 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "R600Defines.h" 18 #include "R600InstrInfo.h" 19 #include "R600MachineFunctionInfo.h" 20 #include "R600RegisterInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/DebugLoc.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstdint> 38 #include <new> 39 #include <set> 40 #include <utility> 41 #include <vector> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "r600cf" 46 47 namespace { 48 49 struct CFStack { 50 51 enum StackItem { 52 ENTRY = 0, 53 SUB_ENTRY = 1, 54 FIRST_NON_WQM_PUSH = 2, 55 FIRST_NON_WQM_PUSH_W_FULL_ENTRY = 3 56 }; 57 58 const R600Subtarget *ST; 59 std::vector<StackItem> BranchStack; 60 std::vector<StackItem> LoopStack; 61 unsigned MaxStackSize; 62 unsigned CurrentEntries = 0; 63 unsigned CurrentSubEntries = 0; 64 65 CFStack(const R600Subtarget *st, CallingConv::ID cc) : ST(st), 66 // We need to reserve a stack entry for CALL_FS in vertex shaders. 67 MaxStackSize(cc == CallingConv::AMDGPU_VS ? 1 : 0) {} 68 69 unsigned getLoopDepth(); 70 bool branchStackContains(CFStack::StackItem); 71 bool requiresWorkAroundForInst(unsigned Opcode); 72 unsigned getSubEntrySize(CFStack::StackItem Item); 73 void updateMaxStackSize(); 74 void pushBranch(unsigned Opcode, bool isWQM = false); 75 void pushLoop(); 76 void popBranch(); 77 void popLoop(); 78 }; 79 80 unsigned CFStack::getLoopDepth() { 81 return LoopStack.size(); 82 } 83 84 bool CFStack::branchStackContains(CFStack::StackItem Item) { 85 for (std::vector<CFStack::StackItem>::const_iterator I = BranchStack.begin(), 86 E = BranchStack.end(); I != E; ++I) { 87 if (*I == Item) 88 return true; 89 } 90 return false; 91 } 92 93 bool CFStack::requiresWorkAroundForInst(unsigned Opcode) { 94 if (Opcode == AMDGPU::CF_ALU_PUSH_BEFORE && ST->hasCaymanISA() && 95 getLoopDepth() > 1) 96 return true; 97 98 if (!ST->hasCFAluBug()) 99 return false; 100 101 switch(Opcode) { 102 default: return false; 103 case AMDGPU::CF_ALU_PUSH_BEFORE: 104 case AMDGPU::CF_ALU_ELSE_AFTER: 105 case AMDGPU::CF_ALU_BREAK: 106 case AMDGPU::CF_ALU_CONTINUE: 107 if (CurrentSubEntries == 0) 108 return false; 109 if (ST->getWavefrontSize() == 64) { 110 // We are being conservative here. We only require this work-around if 111 // CurrentSubEntries > 3 && 112 // (CurrentSubEntries % 4 == 3 || CurrentSubEntries % 4 == 0) 113 // 114 // We have to be conservative, because we don't know for certain that 115 // our stack allocation algorithm for Evergreen/NI is correct. Applying this 116 // work-around when CurrentSubEntries > 3 allows us to over-allocate stack 117 // resources without any problems. 118 return CurrentSubEntries > 3; 119 } else { 120 assert(ST->getWavefrontSize() == 32); 121 // We are being conservative here. We only require the work-around if 122 // CurrentSubEntries > 7 && 123 // (CurrentSubEntries % 8 == 7 || CurrentSubEntries % 8 == 0) 124 // See the comment on the wavefront size == 64 case for why we are 125 // being conservative. 126 return CurrentSubEntries > 7; 127 } 128 } 129 } 130 131 unsigned CFStack::getSubEntrySize(CFStack::StackItem Item) { 132 switch(Item) { 133 default: 134 return 0; 135 case CFStack::FIRST_NON_WQM_PUSH: 136 assert(!ST->hasCaymanISA()); 137 if (ST->getGeneration() <= R600Subtarget::R700) { 138 // +1 For the push operation. 139 // +2 Extra space required. 140 return 3; 141 } else { 142 // Some documentation says that this is not necessary on Evergreen, 143 // but experimentation has show that we need to allocate 1 extra 144 // sub-entry for the first non-WQM push. 145 // +1 For the push operation. 146 // +1 Extra space required. 147 return 2; 148 } 149 case CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY: 150 assert(ST->getGeneration() >= R600Subtarget::EVERGREEN); 151 // +1 For the push operation. 152 // +1 Extra space required. 153 return 2; 154 case CFStack::SUB_ENTRY: 155 return 1; 156 } 157 } 158 159 void CFStack::updateMaxStackSize() { 160 unsigned CurrentStackSize = 161 CurrentEntries + (alignTo(CurrentSubEntries, 4) / 4); 162 MaxStackSize = std::max(CurrentStackSize, MaxStackSize); 163 } 164 165 void CFStack::pushBranch(unsigned Opcode, bool isWQM) { 166 CFStack::StackItem Item = CFStack::ENTRY; 167 switch(Opcode) { 168 case AMDGPU::CF_PUSH_EG: 169 case AMDGPU::CF_ALU_PUSH_BEFORE: 170 if (!isWQM) { 171 if (!ST->hasCaymanISA() && 172 !branchStackContains(CFStack::FIRST_NON_WQM_PUSH)) 173 Item = CFStack::FIRST_NON_WQM_PUSH; // May not be required on Evergreen/NI 174 // See comment in 175 // CFStack::getSubEntrySize() 176 else if (CurrentEntries > 0 && 177 ST->getGeneration() > R600Subtarget::EVERGREEN && 178 !ST->hasCaymanISA() && 179 !branchStackContains(CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY)) 180 Item = CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY; 181 else 182 Item = CFStack::SUB_ENTRY; 183 } else 184 Item = CFStack::ENTRY; 185 break; 186 } 187 BranchStack.push_back(Item); 188 if (Item == CFStack::ENTRY) 189 CurrentEntries++; 190 else 191 CurrentSubEntries += getSubEntrySize(Item); 192 updateMaxStackSize(); 193 } 194 195 void CFStack::pushLoop() { 196 LoopStack.push_back(CFStack::ENTRY); 197 CurrentEntries++; 198 updateMaxStackSize(); 199 } 200 201 void CFStack::popBranch() { 202 CFStack::StackItem Top = BranchStack.back(); 203 if (Top == CFStack::ENTRY) 204 CurrentEntries--; 205 else 206 CurrentSubEntries-= getSubEntrySize(Top); 207 BranchStack.pop_back(); 208 } 209 210 void CFStack::popLoop() { 211 CurrentEntries--; 212 LoopStack.pop_back(); 213 } 214 215 class R600ControlFlowFinalizer : public MachineFunctionPass { 216 private: 217 typedef std::pair<MachineInstr *, std::vector<MachineInstr *>> ClauseFile; 218 219 enum ControlFlowInstruction { 220 CF_TC, 221 CF_VC, 222 CF_CALL_FS, 223 CF_WHILE_LOOP, 224 CF_END_LOOP, 225 CF_LOOP_BREAK, 226 CF_LOOP_CONTINUE, 227 CF_JUMP, 228 CF_ELSE, 229 CF_POP, 230 CF_END 231 }; 232 233 const R600InstrInfo *TII = nullptr; 234 const R600RegisterInfo *TRI = nullptr; 235 unsigned MaxFetchInst; 236 const R600Subtarget *ST = nullptr; 237 238 bool IsTrivialInst(MachineInstr &MI) const { 239 switch (MI.getOpcode()) { 240 case AMDGPU::KILL: 241 case AMDGPU::RETURN: 242 return true; 243 default: 244 return false; 245 } 246 } 247 248 const MCInstrDesc &getHWInstrDesc(ControlFlowInstruction CFI) const { 249 unsigned Opcode = 0; 250 bool isEg = (ST->getGeneration() >= R600Subtarget::EVERGREEN); 251 switch (CFI) { 252 case CF_TC: 253 Opcode = isEg ? AMDGPU::CF_TC_EG : AMDGPU::CF_TC_R600; 254 break; 255 case CF_VC: 256 Opcode = isEg ? AMDGPU::CF_VC_EG : AMDGPU::CF_VC_R600; 257 break; 258 case CF_CALL_FS: 259 Opcode = isEg ? AMDGPU::CF_CALL_FS_EG : AMDGPU::CF_CALL_FS_R600; 260 break; 261 case CF_WHILE_LOOP: 262 Opcode = isEg ? AMDGPU::WHILE_LOOP_EG : AMDGPU::WHILE_LOOP_R600; 263 break; 264 case CF_END_LOOP: 265 Opcode = isEg ? AMDGPU::END_LOOP_EG : AMDGPU::END_LOOP_R600; 266 break; 267 case CF_LOOP_BREAK: 268 Opcode = isEg ? AMDGPU::LOOP_BREAK_EG : AMDGPU::LOOP_BREAK_R600; 269 break; 270 case CF_LOOP_CONTINUE: 271 Opcode = isEg ? AMDGPU::CF_CONTINUE_EG : AMDGPU::CF_CONTINUE_R600; 272 break; 273 case CF_JUMP: 274 Opcode = isEg ? AMDGPU::CF_JUMP_EG : AMDGPU::CF_JUMP_R600; 275 break; 276 case CF_ELSE: 277 Opcode = isEg ? AMDGPU::CF_ELSE_EG : AMDGPU::CF_ELSE_R600; 278 break; 279 case CF_POP: 280 Opcode = isEg ? AMDGPU::POP_EG : AMDGPU::POP_R600; 281 break; 282 case CF_END: 283 if (ST->hasCaymanISA()) { 284 Opcode = AMDGPU::CF_END_CM; 285 break; 286 } 287 Opcode = isEg ? AMDGPU::CF_END_EG : AMDGPU::CF_END_R600; 288 break; 289 } 290 assert (Opcode && "No opcode selected"); 291 return TII->get(Opcode); 292 } 293 294 bool isCompatibleWithClause(const MachineInstr &MI, 295 std::set<unsigned> &DstRegs) const { 296 unsigned DstMI, SrcMI; 297 for (MachineInstr::const_mop_iterator I = MI.operands_begin(), 298 E = MI.operands_end(); 299 I != E; ++I) { 300 const MachineOperand &MO = *I; 301 if (!MO.isReg()) 302 continue; 303 if (MO.isDef()) { 304 unsigned Reg = MO.getReg(); 305 if (AMDGPU::R600_Reg128RegClass.contains(Reg)) 306 DstMI = Reg; 307 else 308 DstMI = TRI->getMatchingSuperReg(Reg, 309 TRI->getSubRegFromChannel(TRI->getHWRegChan(Reg)), 310 &AMDGPU::R600_Reg128RegClass); 311 } 312 if (MO.isUse()) { 313 unsigned Reg = MO.getReg(); 314 if (AMDGPU::R600_Reg128RegClass.contains(Reg)) 315 SrcMI = Reg; 316 else 317 SrcMI = TRI->getMatchingSuperReg(Reg, 318 TRI->getSubRegFromChannel(TRI->getHWRegChan(Reg)), 319 &AMDGPU::R600_Reg128RegClass); 320 } 321 } 322 if ((DstRegs.find(SrcMI) == DstRegs.end())) { 323 DstRegs.insert(DstMI); 324 return true; 325 } else 326 return false; 327 } 328 329 ClauseFile 330 MakeFetchClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I) 331 const { 332 MachineBasicBlock::iterator ClauseHead = I; 333 std::vector<MachineInstr *> ClauseContent; 334 unsigned AluInstCount = 0; 335 bool IsTex = TII->usesTextureCache(*ClauseHead); 336 std::set<unsigned> DstRegs; 337 for (MachineBasicBlock::iterator E = MBB.end(); I != E; ++I) { 338 if (IsTrivialInst(*I)) 339 continue; 340 if (AluInstCount >= MaxFetchInst) 341 break; 342 if ((IsTex && !TII->usesTextureCache(*I)) || 343 (!IsTex && !TII->usesVertexCache(*I))) 344 break; 345 if (!isCompatibleWithClause(*I, DstRegs)) 346 break; 347 AluInstCount ++; 348 ClauseContent.push_back(&*I); 349 } 350 MachineInstr *MIb = BuildMI(MBB, ClauseHead, MBB.findDebugLoc(ClauseHead), 351 getHWInstrDesc(IsTex?CF_TC:CF_VC)) 352 .addImm(0) // ADDR 353 .addImm(AluInstCount - 1); // COUNT 354 return ClauseFile(MIb, std::move(ClauseContent)); 355 } 356 357 void getLiteral(MachineInstr &MI, std::vector<MachineOperand *> &Lits) const { 358 static const unsigned LiteralRegs[] = { 359 AMDGPU::ALU_LITERAL_X, 360 AMDGPU::ALU_LITERAL_Y, 361 AMDGPU::ALU_LITERAL_Z, 362 AMDGPU::ALU_LITERAL_W 363 }; 364 const SmallVector<std::pair<MachineOperand *, int64_t>, 3> Srcs = 365 TII->getSrcs(MI); 366 for (const auto &Src:Srcs) { 367 if (Src.first->getReg() != AMDGPU::ALU_LITERAL_X) 368 continue; 369 int64_t Imm = Src.second; 370 std::vector<MachineOperand *>::iterator It = 371 llvm::find_if(Lits, [&](MachineOperand *val) { 372 return val->isImm() && (val->getImm() == Imm); 373 }); 374 375 // Get corresponding Operand 376 MachineOperand &Operand = MI.getOperand( 377 TII->getOperandIdx(MI.getOpcode(), AMDGPU::OpName::literal)); 378 379 if (It != Lits.end()) { 380 // Reuse existing literal reg 381 unsigned Index = It - Lits.begin(); 382 Src.first->setReg(LiteralRegs[Index]); 383 } else { 384 // Allocate new literal reg 385 assert(Lits.size() < 4 && "Too many literals in Instruction Group"); 386 Src.first->setReg(LiteralRegs[Lits.size()]); 387 Lits.push_back(&Operand); 388 } 389 } 390 } 391 392 MachineBasicBlock::iterator insertLiterals( 393 MachineBasicBlock::iterator InsertPos, 394 const std::vector<unsigned> &Literals) const { 395 MachineBasicBlock *MBB = InsertPos->getParent(); 396 for (unsigned i = 0, e = Literals.size(); i < e; i+=2) { 397 unsigned LiteralPair0 = Literals[i]; 398 unsigned LiteralPair1 = (i + 1 < e)?Literals[i + 1]:0; 399 InsertPos = BuildMI(MBB, InsertPos->getDebugLoc(), 400 TII->get(AMDGPU::LITERALS)) 401 .addImm(LiteralPair0) 402 .addImm(LiteralPair1); 403 } 404 return InsertPos; 405 } 406 407 ClauseFile 408 MakeALUClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I) 409 const { 410 MachineInstr &ClauseHead = *I; 411 std::vector<MachineInstr *> ClauseContent; 412 I++; 413 for (MachineBasicBlock::instr_iterator E = MBB.instr_end(); I != E;) { 414 if (IsTrivialInst(*I)) { 415 ++I; 416 continue; 417 } 418 if (!I->isBundle() && !TII->isALUInstr(I->getOpcode())) 419 break; 420 std::vector<MachineOperand *>Literals; 421 if (I->isBundle()) { 422 MachineInstr &DeleteMI = *I; 423 MachineBasicBlock::instr_iterator BI = I.getInstrIterator(); 424 while (++BI != E && BI->isBundledWithPred()) { 425 BI->unbundleFromPred(); 426 for (MachineOperand &MO : BI->operands()) { 427 if (MO.isReg() && MO.isInternalRead()) 428 MO.setIsInternalRead(false); 429 } 430 getLiteral(*BI, Literals); 431 ClauseContent.push_back(&*BI); 432 } 433 I = BI; 434 DeleteMI.eraseFromParent(); 435 } else { 436 getLiteral(*I, Literals); 437 ClauseContent.push_back(&*I); 438 I++; 439 } 440 for (unsigned i = 0, e = Literals.size(); i < e; i += 2) { 441 MachineInstrBuilder MILit = BuildMI(MBB, I, I->getDebugLoc(), 442 TII->get(AMDGPU::LITERALS)); 443 if (Literals[i]->isImm()) { 444 MILit.addImm(Literals[i]->getImm()); 445 } else { 446 MILit.addGlobalAddress(Literals[i]->getGlobal(), 447 Literals[i]->getOffset()); 448 } 449 if (i + 1 < e) { 450 if (Literals[i + 1]->isImm()) { 451 MILit.addImm(Literals[i + 1]->getImm()); 452 } else { 453 MILit.addGlobalAddress(Literals[i + 1]->getGlobal(), 454 Literals[i + 1]->getOffset()); 455 } 456 } else 457 MILit.addImm(0); 458 ClauseContent.push_back(MILit); 459 } 460 } 461 assert(ClauseContent.size() < 128 && "ALU clause is too big"); 462 ClauseHead.getOperand(7).setImm(ClauseContent.size() - 1); 463 return ClauseFile(&ClauseHead, std::move(ClauseContent)); 464 } 465 466 void EmitFetchClause(MachineBasicBlock::iterator InsertPos, 467 const DebugLoc &DL, ClauseFile &Clause, 468 unsigned &CfCount) { 469 CounterPropagateAddr(*Clause.first, CfCount); 470 MachineBasicBlock *BB = Clause.first->getParent(); 471 BuildMI(BB, DL, TII->get(AMDGPU::FETCH_CLAUSE)).addImm(CfCount); 472 for (unsigned i = 0, e = Clause.second.size(); i < e; ++i) { 473 BB->splice(InsertPos, BB, Clause.second[i]); 474 } 475 CfCount += 2 * Clause.second.size(); 476 } 477 478 void EmitALUClause(MachineBasicBlock::iterator InsertPos, const DebugLoc &DL, 479 ClauseFile &Clause, unsigned &CfCount) { 480 Clause.first->getOperand(0).setImm(0); 481 CounterPropagateAddr(*Clause.first, CfCount); 482 MachineBasicBlock *BB = Clause.first->getParent(); 483 BuildMI(BB, DL, TII->get(AMDGPU::ALU_CLAUSE)).addImm(CfCount); 484 for (unsigned i = 0, e = Clause.second.size(); i < e; ++i) { 485 BB->splice(InsertPos, BB, Clause.second[i]); 486 } 487 CfCount += Clause.second.size(); 488 } 489 490 void CounterPropagateAddr(MachineInstr &MI, unsigned Addr) const { 491 MI.getOperand(0).setImm(Addr + MI.getOperand(0).getImm()); 492 } 493 void CounterPropagateAddr(const std::set<MachineInstr *> &MIs, 494 unsigned Addr) const { 495 for (MachineInstr *MI : MIs) { 496 CounterPropagateAddr(*MI, Addr); 497 } 498 } 499 500 public: 501 static char ID; 502 503 R600ControlFlowFinalizer() : MachineFunctionPass(ID) {} 504 505 bool runOnMachineFunction(MachineFunction &MF) override { 506 ST = &MF.getSubtarget<R600Subtarget>(); 507 MaxFetchInst = ST->getTexVTXClauseSize(); 508 TII = ST->getInstrInfo(); 509 TRI = ST->getRegisterInfo(); 510 511 R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>(); 512 513 CFStack CFStack(ST, MF.getFunction()->getCallingConv()); 514 for (MachineFunction::iterator MB = MF.begin(), ME = MF.end(); MB != ME; 515 ++MB) { 516 MachineBasicBlock &MBB = *MB; 517 unsigned CfCount = 0; 518 std::vector<std::pair<unsigned, std::set<MachineInstr *>>> LoopStack; 519 std::vector<MachineInstr * > IfThenElseStack; 520 if (MF.getFunction()->getCallingConv() == CallingConv::AMDGPU_VS) { 521 BuildMI(MBB, MBB.begin(), MBB.findDebugLoc(MBB.begin()), 522 getHWInstrDesc(CF_CALL_FS)); 523 CfCount++; 524 } 525 std::vector<ClauseFile> FetchClauses, AluClauses; 526 std::vector<MachineInstr *> LastAlu(1); 527 std::vector<MachineInstr *> ToPopAfter; 528 529 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 530 I != E;) { 531 if (TII->usesTextureCache(*I) || TII->usesVertexCache(*I)) { 532 DEBUG(dbgs() << CfCount << ":"; I->dump();); 533 FetchClauses.push_back(MakeFetchClause(MBB, I)); 534 CfCount++; 535 LastAlu.back() = nullptr; 536 continue; 537 } 538 539 MachineBasicBlock::iterator MI = I; 540 if (MI->getOpcode() != AMDGPU::ENDIF) 541 LastAlu.back() = nullptr; 542 if (MI->getOpcode() == AMDGPU::CF_ALU) 543 LastAlu.back() = &*MI; 544 I++; 545 bool RequiresWorkAround = 546 CFStack.requiresWorkAroundForInst(MI->getOpcode()); 547 switch (MI->getOpcode()) { 548 case AMDGPU::CF_ALU_PUSH_BEFORE: 549 if (RequiresWorkAround) { 550 DEBUG(dbgs() << "Applying bug work-around for ALU_PUSH_BEFORE\n"); 551 BuildMI(MBB, MI, MBB.findDebugLoc(MI), TII->get(AMDGPU::CF_PUSH_EG)) 552 .addImm(CfCount + 1) 553 .addImm(1); 554 MI->setDesc(TII->get(AMDGPU::CF_ALU)); 555 CfCount++; 556 CFStack.pushBranch(AMDGPU::CF_PUSH_EG); 557 } else 558 CFStack.pushBranch(AMDGPU::CF_ALU_PUSH_BEFORE); 559 LLVM_FALLTHROUGH; 560 case AMDGPU::CF_ALU: 561 I = MI; 562 AluClauses.push_back(MakeALUClause(MBB, I)); 563 DEBUG(dbgs() << CfCount << ":"; MI->dump();); 564 CfCount++; 565 break; 566 case AMDGPU::WHILELOOP: { 567 CFStack.pushLoop(); 568 MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI), 569 getHWInstrDesc(CF_WHILE_LOOP)) 570 .addImm(1); 571 std::pair<unsigned, std::set<MachineInstr *>> Pair(CfCount, 572 std::set<MachineInstr *>()); 573 Pair.second.insert(MIb); 574 LoopStack.push_back(std::move(Pair)); 575 MI->eraseFromParent(); 576 CfCount++; 577 break; 578 } 579 case AMDGPU::ENDLOOP: { 580 CFStack.popLoop(); 581 std::pair<unsigned, std::set<MachineInstr *>> Pair = 582 std::move(LoopStack.back()); 583 LoopStack.pop_back(); 584 CounterPropagateAddr(Pair.second, CfCount); 585 BuildMI(MBB, MI, MBB.findDebugLoc(MI), getHWInstrDesc(CF_END_LOOP)) 586 .addImm(Pair.first + 1); 587 MI->eraseFromParent(); 588 CfCount++; 589 break; 590 } 591 case AMDGPU::IF_PREDICATE_SET: { 592 LastAlu.push_back(nullptr); 593 MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI), 594 getHWInstrDesc(CF_JUMP)) 595 .addImm(0) 596 .addImm(0); 597 IfThenElseStack.push_back(MIb); 598 DEBUG(dbgs() << CfCount << ":"; MIb->dump();); 599 MI->eraseFromParent(); 600 CfCount++; 601 break; 602 } 603 case AMDGPU::ELSE: { 604 MachineInstr * JumpInst = IfThenElseStack.back(); 605 IfThenElseStack.pop_back(); 606 CounterPropagateAddr(*JumpInst, CfCount); 607 MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI), 608 getHWInstrDesc(CF_ELSE)) 609 .addImm(0) 610 .addImm(0); 611 DEBUG(dbgs() << CfCount << ":"; MIb->dump();); 612 IfThenElseStack.push_back(MIb); 613 MI->eraseFromParent(); 614 CfCount++; 615 break; 616 } 617 case AMDGPU::ENDIF: { 618 CFStack.popBranch(); 619 if (LastAlu.back()) { 620 ToPopAfter.push_back(LastAlu.back()); 621 } else { 622 MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI), 623 getHWInstrDesc(CF_POP)) 624 .addImm(CfCount + 1) 625 .addImm(1); 626 (void)MIb; 627 DEBUG(dbgs() << CfCount << ":"; MIb->dump();); 628 CfCount++; 629 } 630 631 MachineInstr *IfOrElseInst = IfThenElseStack.back(); 632 IfThenElseStack.pop_back(); 633 CounterPropagateAddr(*IfOrElseInst, CfCount); 634 IfOrElseInst->getOperand(1).setImm(1); 635 LastAlu.pop_back(); 636 MI->eraseFromParent(); 637 break; 638 } 639 case AMDGPU::BREAK: { 640 CfCount ++; 641 MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI), 642 getHWInstrDesc(CF_LOOP_BREAK)) 643 .addImm(0); 644 LoopStack.back().second.insert(MIb); 645 MI->eraseFromParent(); 646 break; 647 } 648 case AMDGPU::CONTINUE: { 649 MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI), 650 getHWInstrDesc(CF_LOOP_CONTINUE)) 651 .addImm(0); 652 LoopStack.back().second.insert(MIb); 653 MI->eraseFromParent(); 654 CfCount++; 655 break; 656 } 657 case AMDGPU::RETURN: { 658 DebugLoc DL = MBB.findDebugLoc(MI); 659 BuildMI(MBB, MI, DL, getHWInstrDesc(CF_END)); 660 CfCount++; 661 if (CfCount % 2) { 662 BuildMI(MBB, I, DL, TII->get(AMDGPU::PAD)); 663 CfCount++; 664 } 665 MI->eraseFromParent(); 666 for (unsigned i = 0, e = FetchClauses.size(); i < e; i++) 667 EmitFetchClause(I, DL, FetchClauses[i], CfCount); 668 for (unsigned i = 0, e = AluClauses.size(); i < e; i++) 669 EmitALUClause(I, DL, AluClauses[i], CfCount); 670 break; 671 } 672 default: 673 if (TII->isExport(MI->getOpcode())) { 674 DEBUG(dbgs() << CfCount << ":"; MI->dump();); 675 CfCount++; 676 } 677 break; 678 } 679 } 680 for (unsigned i = 0, e = ToPopAfter.size(); i < e; ++i) { 681 MachineInstr *Alu = ToPopAfter[i]; 682 BuildMI(MBB, Alu, MBB.findDebugLoc((MachineBasicBlock::iterator)Alu), 683 TII->get(AMDGPU::CF_ALU_POP_AFTER)) 684 .addImm(Alu->getOperand(0).getImm()) 685 .addImm(Alu->getOperand(1).getImm()) 686 .addImm(Alu->getOperand(2).getImm()) 687 .addImm(Alu->getOperand(3).getImm()) 688 .addImm(Alu->getOperand(4).getImm()) 689 .addImm(Alu->getOperand(5).getImm()) 690 .addImm(Alu->getOperand(6).getImm()) 691 .addImm(Alu->getOperand(7).getImm()) 692 .addImm(Alu->getOperand(8).getImm()); 693 Alu->eraseFromParent(); 694 } 695 MFI->CFStackSize = CFStack.MaxStackSize; 696 } 697 698 return false; 699 } 700 701 StringRef getPassName() const override { 702 return "R600 Control Flow Finalizer Pass"; 703 } 704 }; 705 706 } // end anonymous namespace 707 708 INITIALIZE_PASS_BEGIN(R600ControlFlowFinalizer, DEBUG_TYPE, 709 "R600 Control Flow Finalizer", false, false) 710 INITIALIZE_PASS_END(R600ControlFlowFinalizer, DEBUG_TYPE, 711 "R600 Control Flow Finalizer", false, false) 712 713 char R600ControlFlowFinalizer::ID = 0; 714 715 char &llvm::R600ControlFlowFinalizerID = R600ControlFlowFinalizer::ID; 716 717 FunctionPass *llvm::createR600ControlFlowFinalizer() { 718 return new R600ControlFlowFinalizer(); 719 } 720