1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This contains a MachineSchedStrategy implementation for maximizing wave 12 /// occupancy on GCN hardware. 13 //===----------------------------------------------------------------------===// 14 15 #include "GCNSchedStrategy.h" 16 #include "AMDGPUSubtarget.h" 17 #include "SIInstrInfo.h" 18 #include "SIMachineFunctionInfo.h" 19 #include "SIRegisterInfo.h" 20 #include "llvm/CodeGen/RegisterClassInfo.h" 21 #include "llvm/Support/MathExtras.h" 22 23 #define DEBUG_TYPE "misched" 24 25 using namespace llvm; 26 27 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( 28 const MachineSchedContext *C) : 29 GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { } 30 31 static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs, 32 const MachineFunction &MF) { 33 34 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 35 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 36 unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs), 37 ST.getOccupancyWithNumVGPRs(VGPRs)); 38 return std::min(MinRegOccupancy, 39 ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(), 40 *MF.getFunction())); 41 } 42 43 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { 44 GenericScheduler::initialize(DAG); 45 46 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 47 48 if (MF != &DAG->MF) 49 TargetOccupancy = 0; 50 MF = &DAG->MF; 51 52 const SISubtarget &ST = MF->getSubtarget<SISubtarget>(); 53 54 // FIXME: This is also necessary, because some passes that run after 55 // scheduling and before regalloc increase register pressure. 56 const int ErrorMargin = 3; 57 58 SGPRExcessLimit = Context->RegClassInfo 59 ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin; 60 VGPRExcessLimit = Context->RegClassInfo 61 ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin; 62 if (TargetOccupancy) { 63 SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true); 64 VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy); 65 } else { 66 SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 67 SRI->getSGPRPressureSet()); 68 VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 69 SRI->getVGPRPressureSet()); 70 } 71 72 SGPRCriticalLimit -= ErrorMargin; 73 VGPRCriticalLimit -= ErrorMargin; 74 } 75 76 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, 77 bool AtTop, const RegPressureTracker &RPTracker, 78 const SIRegisterInfo *SRI, 79 unsigned SGPRPressure, 80 unsigned VGPRPressure) { 81 82 Cand.SU = SU; 83 Cand.AtTop = AtTop; 84 85 // getDownwardPressure() and getUpwardPressure() make temporary changes to 86 // the the tracker, so we need to pass those function a non-const copy. 87 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 88 89 std::vector<unsigned> Pressure; 90 std::vector<unsigned> MaxPressure; 91 92 if (AtTop) 93 TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); 94 else { 95 // FIXME: I think for bottom up scheduling, the register pressure is cached 96 // and can be retrieved by DAG->getPressureDif(SU). 97 TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); 98 } 99 100 unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()]; 101 unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()]; 102 103 // If two instructions increase the pressure of different register sets 104 // by the same amount, the generic scheduler will prefer to schedule the 105 // instruction that increases the set with the least amount of registers, 106 // which in our case would be SGPRs. This is rarely what we want, so 107 // when we report excess/critical register pressure, we do it either 108 // only for VGPRs or only for SGPRs. 109 110 // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. 111 const unsigned MaxVGPRPressureInc = 16; 112 bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; 113 bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; 114 115 116 // FIXME: We have to enter REG-EXCESS before we reach the actual threshold 117 // to increase the likelihood we don't go over the limits. We should improve 118 // the analysis to look through dependencies to find the path with the least 119 // register pressure. 120 121 // We only need to update the RPDelata for instructions that increase 122 // register pressure. Instructions that decrease or keep reg pressure 123 // the same will be marked as RegExcess in tryCandidate() when they 124 // are compared with instructions that increase the register pressure. 125 if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { 126 Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet()); 127 Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); 128 } 129 130 if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { 131 Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet()); 132 Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); 133 } 134 135 // Register pressure is considered 'CRITICAL' if it is approaching a value 136 // that would reduce the wave occupancy for the execution unit. When 137 // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both 138 // has the same cost, so we don't need to prefer one over the other. 139 140 int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; 141 int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; 142 143 if (SGPRDelta >= 0 || VGPRDelta >= 0) { 144 if (SGPRDelta > VGPRDelta) { 145 Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet()); 146 Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); 147 } else { 148 Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet()); 149 Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); 150 } 151 } 152 } 153 154 // This function is mostly cut and pasted from 155 // GenericScheduler::pickNodeFromQueue() 156 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, 157 const CandPolicy &ZonePolicy, 158 const RegPressureTracker &RPTracker, 159 SchedCandidate &Cand) { 160 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 161 ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos(); 162 unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()]; 163 unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()]; 164 ReadyQueue &Q = Zone.Available; 165 for (SUnit *SU : Q) { 166 167 SchedCandidate TryCand(ZonePolicy); 168 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, 169 SGPRPressure, VGPRPressure); 170 // Pass SchedBoundary only when comparing nodes from the same boundary. 171 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 172 GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); 173 if (TryCand.Reason != NoCand) { 174 // Initialize resource delta if needed in case future heuristics query it. 175 if (TryCand.ResDelta == SchedResourceDelta()) 176 TryCand.initResourceDelta(Zone.DAG, SchedModel); 177 Cand.setBest(TryCand); 178 } 179 } 180 } 181 182 // This function is mostly cut and pasted from 183 // GenericScheduler::pickNodeBidirectional() 184 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { 185 // Schedule as far as possible in the direction of no choice. This is most 186 // efficient, but also provides the best heuristics for CriticalPSets. 187 if (SUnit *SU = Bot.pickOnlyChoice()) { 188 IsTopNode = false; 189 return SU; 190 } 191 if (SUnit *SU = Top.pickOnlyChoice()) { 192 IsTopNode = true; 193 return SU; 194 } 195 // Set the bottom-up policy based on the state of the current bottom zone and 196 // the instructions outside the zone, including the top zone. 197 CandPolicy BotPolicy; 198 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 199 // Set the top-down policy based on the state of the current top zone and 200 // the instructions outside the zone, including the bottom zone. 201 CandPolicy TopPolicy; 202 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 203 204 // See if BotCand is still valid (because we previously scheduled from Top). 205 DEBUG(dbgs() << "Picking from Bot:\n"); 206 if (!BotCand.isValid() || BotCand.SU->isScheduled || 207 BotCand.Policy != BotPolicy) { 208 BotCand.reset(CandPolicy()); 209 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 210 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 211 } else { 212 DEBUG(traceCandidate(BotCand)); 213 } 214 215 // Check if the top Q has a better candidate. 216 DEBUG(dbgs() << "Picking from Top:\n"); 217 if (!TopCand.isValid() || TopCand.SU->isScheduled || 218 TopCand.Policy != TopPolicy) { 219 TopCand.reset(CandPolicy()); 220 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 221 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 222 } else { 223 DEBUG(traceCandidate(TopCand)); 224 } 225 226 // Pick best from BotCand and TopCand. 227 DEBUG( 228 dbgs() << "Top Cand: "; 229 traceCandidate(TopCand); 230 dbgs() << "Bot Cand: "; 231 traceCandidate(BotCand); 232 ); 233 SchedCandidate Cand; 234 if (TopCand.Reason == BotCand.Reason) { 235 Cand = BotCand; 236 GenericSchedulerBase::CandReason TopReason = TopCand.Reason; 237 TopCand.Reason = NoCand; 238 GenericScheduler::tryCandidate(Cand, TopCand, nullptr); 239 if (TopCand.Reason != NoCand) { 240 Cand.setBest(TopCand); 241 } else { 242 TopCand.Reason = TopReason; 243 } 244 } else { 245 if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) { 246 Cand = TopCand; 247 } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) { 248 Cand = BotCand; 249 } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) { 250 Cand = TopCand; 251 } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) { 252 Cand = BotCand; 253 } else { 254 if (BotCand.Reason > TopCand.Reason) { 255 Cand = TopCand; 256 } else { 257 Cand = BotCand; 258 } 259 } 260 } 261 DEBUG( 262 dbgs() << "Picking: "; 263 traceCandidate(Cand); 264 ); 265 266 IsTopNode = Cand.AtTop; 267 return Cand.SU; 268 } 269 270 // This function is mostly cut and pasted from 271 // GenericScheduler::pickNode() 272 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { 273 if (DAG->top() == DAG->bottom()) { 274 assert(Top.Available.empty() && Top.Pending.empty() && 275 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 276 return nullptr; 277 } 278 SUnit *SU; 279 do { 280 if (RegionPolicy.OnlyTopDown) { 281 SU = Top.pickOnlyChoice(); 282 if (!SU) { 283 CandPolicy NoPolicy; 284 TopCand.reset(NoPolicy); 285 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 286 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 287 SU = TopCand.SU; 288 } 289 IsTopNode = true; 290 } else if (RegionPolicy.OnlyBottomUp) { 291 SU = Bot.pickOnlyChoice(); 292 if (!SU) { 293 CandPolicy NoPolicy; 294 BotCand.reset(NoPolicy); 295 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 296 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 297 SU = BotCand.SU; 298 } 299 IsTopNode = false; 300 } else { 301 SU = pickNodeBidirectional(IsTopNode); 302 } 303 } while (SU->isScheduled); 304 305 if (SU->isTopReady()) 306 Top.removeReady(SU); 307 if (SU->isBottomReady()) 308 Bot.removeReady(SU); 309 310 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 311 return SU; 312 } 313 314 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C, 315 std::unique_ptr<MachineSchedStrategy> S) : 316 ScheduleDAGMILive(C, std::move(S)), 317 ST(MF.getSubtarget<SISubtarget>()), 318 MFI(*MF.getInfo<SIMachineFunctionInfo>()), 319 StartingOccupancy(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(), 320 *MF.getFunction())), 321 MinOccupancy(StartingOccupancy), Stage(0) { 322 323 DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n"); 324 } 325 326 void GCNScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 327 MachineBasicBlock::iterator begin, 328 MachineBasicBlock::iterator end, 329 unsigned regioninstrs) { 330 ScheduleDAGMILive::enterRegion(bb, begin, end, regioninstrs); 331 332 if (Stage == 0) 333 Regions.push_back(std::make_pair(begin, end)); 334 } 335 336 void GCNScheduleDAGMILive::schedule() { 337 std::vector<MachineInstr*> Unsched; 338 Unsched.reserve(NumRegionInstrs); 339 for (auto &I : *this) 340 Unsched.push_back(&I); 341 342 std::pair<unsigned, unsigned> PressureBefore; 343 if (LIS) { 344 DEBUG(dbgs() << "Pressure before scheduling:\n"); 345 discoverLiveIns(); 346 PressureBefore = getRealRegPressure(); 347 } 348 349 ScheduleDAGMILive::schedule(); 350 if (!LIS) 351 return; 352 353 // Check the results of scheduling. 354 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 355 DEBUG(dbgs() << "Pressure after scheduling:\n"); 356 auto PressureAfter = getRealRegPressure(); 357 LiveIns.clear(); 358 359 if (PressureAfter.first <= S.SGPRCriticalLimit && 360 PressureAfter.second <= S.VGPRCriticalLimit) { 361 DEBUG(dbgs() << "Pressure in desired limits, done.\n"); 362 return; 363 } 364 unsigned WavesAfter = getMaxWaves(PressureAfter.first, 365 PressureAfter.second, MF); 366 unsigned WavesBefore = getMaxWaves(PressureBefore.first, 367 PressureBefore.second, MF); 368 DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore << 369 ", after " << WavesAfter << ".\n"); 370 371 // We could not keep current target occupancy because of the just scheduled 372 // region. Record new occupancy for next scheduling cycle. 373 unsigned NewOccupancy = std::max(WavesAfter, WavesBefore); 374 if (NewOccupancy < MinOccupancy) { 375 MinOccupancy = NewOccupancy; 376 DEBUG(dbgs() << "Occupancy lowered for the function to " 377 << MinOccupancy << ".\n"); 378 } 379 380 if (WavesAfter >= WavesBefore) 381 return; 382 383 DEBUG(dbgs() << "Attempting to revert scheduling.\n"); 384 RegionEnd = RegionBegin; 385 for (MachineInstr *MI : Unsched) { 386 if (MI->getIterator() != RegionEnd) { 387 BB->remove(MI); 388 BB->insert(RegionEnd, MI); 389 LIS->handleMove(*MI, true); 390 } 391 // Reset read-undef flags and update them later. 392 for (auto &Op : MI->operands()) 393 if (Op.isReg() && Op.isDef()) 394 Op.setIsUndef(false); 395 RegisterOperands RegOpers; 396 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 397 if (ShouldTrackLaneMasks) { 398 // Adjust liveness and add missing dead+read-undef flags. 399 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 400 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 401 } else { 402 // Adjust for missing dead-def flags. 403 RegOpers.detectDeadDefs(*MI, *LIS); 404 } 405 RegionEnd = MI->getIterator(); 406 ++RegionEnd; 407 DEBUG(dbgs() << "Scheduling " << *MI); 408 } 409 RegionBegin = Unsched.front()->getIterator(); 410 411 placeDebugValues(); 412 } 413 414 static inline void setMask(const MachineRegisterInfo &MRI, 415 const SIRegisterInfo *SRI, unsigned Reg, 416 LaneBitmask &PrevMask, LaneBitmask NewMask, 417 unsigned &SGPRs, unsigned &VGPRs) { 418 int NewRegs = countPopulation(NewMask.getAsInteger()) - 419 countPopulation(PrevMask.getAsInteger()); 420 if (SRI->isSGPRReg(MRI, Reg)) 421 SGPRs += NewRegs; 422 if (SRI->isVGPR(MRI, Reg)) 423 VGPRs += NewRegs; 424 assert ((int)SGPRs >= 0 && (int)VGPRs >= 0); 425 PrevMask = NewMask; 426 } 427 428 void GCNScheduleDAGMILive::discoverLiveIns() { 429 unsigned SGPRs = 0; 430 unsigned VGPRs = 0; 431 432 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 433 SlotIndex SI = LIS->getInstructionIndex(*begin()).getBaseIndex(); 434 assert (SI.isValid()); 435 436 DEBUG(dbgs() << "Region live-ins:"); 437 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 438 unsigned Reg = TargetRegisterInfo::index2VirtReg(I); 439 if (MRI.reg_nodbg_empty(Reg)) 440 continue; 441 const LiveInterval &LI = LIS->getInterval(Reg); 442 LaneBitmask LaneMask = LaneBitmask::getNone(); 443 if (LI.hasSubRanges()) { 444 for (const auto &S : LI.subranges()) 445 if (S.liveAt(SI)) 446 LaneMask |= S.LaneMask; 447 } else if (LI.liveAt(SI)) { 448 LaneMask = MRI.getMaxLaneMaskForVReg(Reg); 449 } 450 451 if (LaneMask.any()) { 452 setMask(MRI, SRI, Reg, LiveIns[Reg], LaneMask, SGPRs, VGPRs); 453 454 DEBUG(dbgs() << ' ' << PrintVRegOrUnit(Reg, SRI) << ':' 455 << PrintLaneMask(LiveIns[Reg])); 456 } 457 } 458 459 LiveInPressure = std::make_pair(SGPRs, VGPRs); 460 461 DEBUG(dbgs() << "\nLive-in pressure:\nSGPR = " << SGPRs 462 << "\nVGPR = " << VGPRs << '\n'); 463 } 464 465 std::pair<unsigned, unsigned> 466 GCNScheduleDAGMILive::getRealRegPressure() const { 467 unsigned SGPRs, MaxSGPRs, VGPRs, MaxVGPRs; 468 SGPRs = MaxSGPRs = LiveInPressure.first; 469 VGPRs = MaxVGPRs = LiveInPressure.second; 470 471 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 472 DenseMap<unsigned, LaneBitmask> LiveRegs(LiveIns); 473 474 for (const MachineInstr &MI : *this) { 475 if (MI.isDebugValue()) 476 continue; 477 SlotIndex SI = LIS->getInstructionIndex(MI).getBaseIndex(); 478 assert (SI.isValid()); 479 480 // Remove dead registers or mask bits. 481 for (auto &It : LiveRegs) { 482 if (It.second.none()) 483 continue; 484 const LiveInterval &LI = LIS->getInterval(It.first); 485 if (LI.hasSubRanges()) { 486 for (const auto &S : LI.subranges()) 487 if (!S.liveAt(SI)) 488 setMask(MRI, SRI, It.first, It.second, It.second & ~S.LaneMask, 489 SGPRs, VGPRs); 490 } else if (!LI.liveAt(SI)) { 491 setMask(MRI, SRI, It.first, It.second, LaneBitmask::getNone(), 492 SGPRs, VGPRs); 493 } 494 } 495 496 // Add new registers or mask bits. 497 for (const auto &MO : MI.defs()) { 498 if (!MO.isReg()) 499 continue; 500 unsigned Reg = MO.getReg(); 501 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 502 continue; 503 unsigned SubRegIdx = MO.getSubReg(); 504 LaneBitmask LaneMask = SubRegIdx != 0 505 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 506 : MRI.getMaxLaneMaskForVReg(Reg); 507 LaneBitmask &LM = LiveRegs[Reg]; 508 setMask(MRI, SRI, Reg, LM, LM | LaneMask, SGPRs, VGPRs); 509 } 510 MaxSGPRs = std::max(MaxSGPRs, SGPRs); 511 MaxVGPRs = std::max(MaxVGPRs, VGPRs); 512 } 513 514 DEBUG(dbgs() << "Real region's register pressure:\nSGPR = " << MaxSGPRs 515 << "\nVGPR = " << MaxVGPRs << '\n'); 516 517 return std::make_pair(MaxSGPRs, MaxVGPRs); 518 } 519 520 void GCNScheduleDAGMILive::finalizeSchedule() { 521 // Retry function scheduling if we found resulting occupancy and it is 522 // lower than used for first pass scheduling. This will give more freedom 523 // to schedule low register pressure blocks. 524 // Code is partially copied from MachineSchedulerBase::scheduleRegions(). 525 526 if (!LIS || StartingOccupancy <= MinOccupancy) 527 return; 528 529 DEBUG(dbgs() << "Retrying function scheduling with lowest recorded occupancy " 530 << MinOccupancy << ".\n"); 531 532 Stage++; 533 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 534 S.TargetOccupancy = MinOccupancy; 535 536 MachineBasicBlock *MBB = nullptr; 537 for (auto Region : Regions) { 538 RegionBegin = Region.first; 539 RegionEnd = Region.second; 540 541 if (RegionBegin->getParent() != MBB) { 542 if (MBB) finishBlock(); 543 MBB = RegionBegin->getParent(); 544 startBlock(MBB); 545 } 546 547 unsigned NumRegionInstrs = std::distance(begin(), end()); 548 enterRegion(MBB, begin(), end(), NumRegionInstrs); 549 550 // Skip empty scheduling regions (0 or 1 schedulable instructions). 551 if (begin() == end() || begin() == std::prev(end())) { 552 exitRegion(); 553 continue; 554 } 555 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 556 DEBUG(dbgs() << MF.getName() 557 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 558 << "\n From: " << *begin() << " To: "; 559 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 560 else dbgs() << "End"; 561 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 562 563 schedule(); 564 565 exitRegion(); 566 } 567 finishBlock(); 568 LiveIns.shrink_and_clear(); 569 } 570