1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This contains a MachineSchedStrategy implementation for maximizing wave
12 /// occupancy on GCN hardware.
13 //===----------------------------------------------------------------------===//
14 
15 #include "GCNSchedStrategy.h"
16 #include "AMDGPUSubtarget.h"
17 #include "SIInstrInfo.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/CodeGen/RegisterClassInfo.h"
21 #include "llvm/Support/MathExtras.h"
22 
23 #define DEBUG_TYPE "machine-scheduler"
24 
25 using namespace llvm;
26 
27 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
28     const MachineSchedContext *C) :
29     GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { }
30 
31 static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs,
32                             const MachineFunction &MF) {
33 
34   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
35   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
36   unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs),
37                                       ST.getOccupancyWithNumVGPRs(VGPRs));
38   return std::min(MinRegOccupancy,
39                   ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
40                                                   MF.getFunction()));
41 }
42 
43 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
44   GenericScheduler::initialize(DAG);
45 
46   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
47 
48   MF = &DAG->MF;
49 
50   const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
51 
52   // FIXME: This is also necessary, because some passes that run after
53   // scheduling and before regalloc increase register pressure.
54   const int ErrorMargin = 3;
55 
56   SGPRExcessLimit = Context->RegClassInfo
57     ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
58   VGPRExcessLimit = Context->RegClassInfo
59     ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
60   if (TargetOccupancy) {
61     SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
62     VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
63   } else {
64     SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
65                                                     SRI->getSGPRPressureSet());
66     VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
67                                                     SRI->getVGPRPressureSet());
68   }
69 
70   SGPRCriticalLimit -= ErrorMargin;
71   VGPRCriticalLimit -= ErrorMargin;
72 }
73 
74 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
75                                      bool AtTop, const RegPressureTracker &RPTracker,
76                                      const SIRegisterInfo *SRI,
77                                      unsigned SGPRPressure,
78                                      unsigned VGPRPressure) {
79 
80   Cand.SU = SU;
81   Cand.AtTop = AtTop;
82 
83   // getDownwardPressure() and getUpwardPressure() make temporary changes to
84   // the tracker, so we need to pass those function a non-const copy.
85   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
86 
87   std::vector<unsigned> Pressure;
88   std::vector<unsigned> MaxPressure;
89 
90   if (AtTop)
91     TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
92   else {
93     // FIXME: I think for bottom up scheduling, the register pressure is cached
94     // and can be retrieved by DAG->getPressureDif(SU).
95     TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
96   }
97 
98   unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
99   unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
100 
101   // If two instructions increase the pressure of different register sets
102   // by the same amount, the generic scheduler will prefer to schedule the
103   // instruction that increases the set with the least amount of registers,
104   // which in our case would be SGPRs.  This is rarely what we want, so
105   // when we report excess/critical register pressure, we do it either
106   // only for VGPRs or only for SGPRs.
107 
108   // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
109   const unsigned MaxVGPRPressureInc = 16;
110   bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
111   bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
112 
113 
114   // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
115   // to increase the likelihood we don't go over the limits.  We should improve
116   // the analysis to look through dependencies to find the path with the least
117   // register pressure.
118 
119   // We only need to update the RPDelata for instructions that increase
120   // register pressure.  Instructions that decrease or keep reg pressure
121   // the same will be marked as RegExcess in tryCandidate() when they
122   // are compared with instructions that increase the register pressure.
123   if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
124     Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
125     Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
126   }
127 
128   if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
129     Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
130     Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
131   }
132 
133   // Register pressure is considered 'CRITICAL' if it is approaching a value
134   // that would reduce the wave occupancy for the execution unit.  When
135   // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
136   // has the same cost, so we don't need to prefer one over the other.
137 
138   int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
139   int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
140 
141   if (SGPRDelta >= 0 || VGPRDelta >= 0) {
142     if (SGPRDelta > VGPRDelta) {
143       Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
144       Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
145     } else {
146       Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
147       Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
148     }
149   }
150 }
151 
152 // This function is mostly cut and pasted from
153 // GenericScheduler::pickNodeFromQueue()
154 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
155                                          const CandPolicy &ZonePolicy,
156                                          const RegPressureTracker &RPTracker,
157                                          SchedCandidate &Cand) {
158   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
159   ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
160   unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
161   unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
162   ReadyQueue &Q = Zone.Available;
163   for (SUnit *SU : Q) {
164 
165     SchedCandidate TryCand(ZonePolicy);
166     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
167                   SGPRPressure, VGPRPressure);
168     // Pass SchedBoundary only when comparing nodes from the same boundary.
169     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
170     GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
171     if (TryCand.Reason != NoCand) {
172       // Initialize resource delta if needed in case future heuristics query it.
173       if (TryCand.ResDelta == SchedResourceDelta())
174         TryCand.initResourceDelta(Zone.DAG, SchedModel);
175       Cand.setBest(TryCand);
176     }
177   }
178 }
179 
180 // This function is mostly cut and pasted from
181 // GenericScheduler::pickNodeBidirectional()
182 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
183   // Schedule as far as possible in the direction of no choice. This is most
184   // efficient, but also provides the best heuristics for CriticalPSets.
185   if (SUnit *SU = Bot.pickOnlyChoice()) {
186     IsTopNode = false;
187     return SU;
188   }
189   if (SUnit *SU = Top.pickOnlyChoice()) {
190     IsTopNode = true;
191     return SU;
192   }
193   // Set the bottom-up policy based on the state of the current bottom zone and
194   // the instructions outside the zone, including the top zone.
195   CandPolicy BotPolicy;
196   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
197   // Set the top-down policy based on the state of the current top zone and
198   // the instructions outside the zone, including the bottom zone.
199   CandPolicy TopPolicy;
200   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
201 
202   // See if BotCand is still valid (because we previously scheduled from Top).
203   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
204   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
205       BotCand.Policy != BotPolicy) {
206     BotCand.reset(CandPolicy());
207     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
208     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
209   } else {
210     LLVM_DEBUG(traceCandidate(BotCand));
211   }
212 
213   // Check if the top Q has a better candidate.
214   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
215   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
216       TopCand.Policy != TopPolicy) {
217     TopCand.reset(CandPolicy());
218     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
219     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
220   } else {
221     LLVM_DEBUG(traceCandidate(TopCand));
222   }
223 
224   // Pick best from BotCand and TopCand.
225   LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
226              dbgs() << "Bot Cand: "; traceCandidate(BotCand););
227   SchedCandidate Cand;
228   if (TopCand.Reason == BotCand.Reason) {
229     Cand = BotCand;
230     GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
231     TopCand.Reason = NoCand;
232     GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
233     if (TopCand.Reason != NoCand) {
234       Cand.setBest(TopCand);
235     } else {
236       TopCand.Reason = TopReason;
237     }
238   } else {
239     if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
240       Cand = TopCand;
241     } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
242       Cand = BotCand;
243     } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
244       Cand = TopCand;
245     } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
246       Cand = BotCand;
247     } else {
248       if (BotCand.Reason > TopCand.Reason) {
249         Cand = TopCand;
250       } else {
251         Cand = BotCand;
252       }
253     }
254   }
255   LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
256 
257   IsTopNode = Cand.AtTop;
258   return Cand.SU;
259 }
260 
261 // This function is mostly cut and pasted from
262 // GenericScheduler::pickNode()
263 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
264   if (DAG->top() == DAG->bottom()) {
265     assert(Top.Available.empty() && Top.Pending.empty() &&
266            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
267     return nullptr;
268   }
269   SUnit *SU;
270   do {
271     if (RegionPolicy.OnlyTopDown) {
272       SU = Top.pickOnlyChoice();
273       if (!SU) {
274         CandPolicy NoPolicy;
275         TopCand.reset(NoPolicy);
276         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
277         assert(TopCand.Reason != NoCand && "failed to find a candidate");
278         SU = TopCand.SU;
279       }
280       IsTopNode = true;
281     } else if (RegionPolicy.OnlyBottomUp) {
282       SU = Bot.pickOnlyChoice();
283       if (!SU) {
284         CandPolicy NoPolicy;
285         BotCand.reset(NoPolicy);
286         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
287         assert(BotCand.Reason != NoCand && "failed to find a candidate");
288         SU = BotCand.SU;
289       }
290       IsTopNode = false;
291     } else {
292       SU = pickNodeBidirectional(IsTopNode);
293     }
294   } while (SU->isScheduled);
295 
296   if (SU->isTopReady())
297     Top.removeReady(SU);
298   if (SU->isBottomReady())
299     Bot.removeReady(SU);
300 
301   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
302                     << *SU->getInstr());
303   return SU;
304 }
305 
306 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
307                         std::unique_ptr<MachineSchedStrategy> S) :
308   ScheduleDAGMILive(C, std::move(S)),
309   ST(MF.getSubtarget<SISubtarget>()),
310   MFI(*MF.getInfo<SIMachineFunctionInfo>()),
311   StartingOccupancy(std::min(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(),
312                                                              MF.getFunction()),
313                              MFI.getMaxWavesPerEU())),
314   MinOccupancy(StartingOccupancy), Stage(0), RegionIdx(0) {
315 
316   LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
317 }
318 
319 void GCNScheduleDAGMILive::schedule() {
320   if (Stage == 0) {
321     // Just record regions at the first pass.
322     Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
323     return;
324   }
325 
326   std::vector<MachineInstr*> Unsched;
327   Unsched.reserve(NumRegionInstrs);
328   for (auto &I : *this) {
329     Unsched.push_back(&I);
330   }
331 
332   GCNRegPressure PressureBefore;
333   if (LIS) {
334     PressureBefore = Pressure[RegionIdx];
335 
336     LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
337                GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
338                dbgs() << "Region live-in pressure:  ";
339                llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
340                dbgs() << "Region register pressure: ";
341                PressureBefore.print(dbgs()));
342   }
343 
344   ScheduleDAGMILive::schedule();
345   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
346 
347   if (!LIS)
348     return;
349 
350   // Check the results of scheduling.
351   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
352   auto PressureAfter = getRealRegPressure();
353 
354   LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
355              PressureAfter.print(dbgs()));
356 
357   if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
358       PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) {
359     Pressure[RegionIdx] = PressureAfter;
360     LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
361     return;
362   }
363   unsigned WavesAfter = getMaxWaves(PressureAfter.getSGPRNum(),
364                                     PressureAfter.getVGPRNum(), MF);
365   unsigned WavesBefore = getMaxWaves(PressureBefore.getSGPRNum(),
366                                      PressureBefore.getVGPRNum(), MF);
367   WavesAfter = std::min(WavesAfter, MFI.getMaxWavesPerEU());
368   WavesBefore = std::min(WavesBefore, MFI.getMaxWavesPerEU());
369   LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
370                     << ", after " << WavesAfter << ".\n");
371 
372   // We could not keep current target occupancy because of the just scheduled
373   // region. Record new occupancy for next scheduling cycle.
374   unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
375   // Allow memory bound functions to drop to 4 waves if not limited by an
376   // attribute.
377   unsigned MinMemBoundWaves = std::max(MFI.getMinWavesPerEU(), 4u);
378   if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy &&
379       WavesAfter >= MinMemBoundWaves &&
380       (MFI.isMemoryBound() || MFI.needsWaveLimiter())) {
381     LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
382                       << MinMemBoundWaves << " waves\n");
383     NewOccupancy = WavesAfter;
384   }
385   if (NewOccupancy < MinOccupancy) {
386     MinOccupancy = NewOccupancy;
387     LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
388                       << MinOccupancy << ".\n");
389   }
390 
391   if (WavesAfter >= MinOccupancy) {
392     Pressure[RegionIdx] = PressureAfter;
393     return;
394   }
395 
396   LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
397   RegionEnd = RegionBegin;
398   for (MachineInstr *MI : Unsched) {
399     if (MI->isDebugInstr())
400       continue;
401 
402     if (MI->getIterator() != RegionEnd) {
403       BB->remove(MI);
404       BB->insert(RegionEnd, MI);
405       if (!MI->isDebugInstr())
406         LIS->handleMove(*MI, true);
407     }
408     // Reset read-undef flags and update them later.
409     for (auto &Op : MI->operands())
410       if (Op.isReg() && Op.isDef())
411         Op.setIsUndef(false);
412     RegisterOperands RegOpers;
413     RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
414     if (!MI->isDebugInstr()) {
415       if (ShouldTrackLaneMasks) {
416         // Adjust liveness and add missing dead+read-undef flags.
417         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
418         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
419       } else {
420         // Adjust for missing dead-def flags.
421         RegOpers.detectDeadDefs(*MI, *LIS);
422       }
423     }
424     RegionEnd = MI->getIterator();
425     ++RegionEnd;
426     LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
427   }
428   RegionBegin = Unsched.front()->getIterator();
429   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
430 
431   placeDebugValues();
432 }
433 
434 GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
435   GCNDownwardRPTracker RPTracker(*LIS);
436   RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
437   return RPTracker.moveMaxPressure();
438 }
439 
440 void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
441   GCNDownwardRPTracker RPTracker(*LIS);
442 
443   // If the block has the only successor then live-ins of that successor are
444   // live-outs of the current block. We can reuse calculated live set if the
445   // successor will be sent to scheduling past current block.
446   const MachineBasicBlock *OnlySucc = nullptr;
447   if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
448     SlotIndexes *Ind = LIS->getSlotIndexes();
449     if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
450       OnlySucc = *MBB->succ_begin();
451   }
452 
453   // Scheduler sends regions from the end of the block upwards.
454   size_t CurRegion = RegionIdx;
455   for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
456     if (Regions[CurRegion].first->getParent() != MBB)
457       break;
458   --CurRegion;
459 
460   auto I = MBB->begin();
461   auto LiveInIt = MBBLiveIns.find(MBB);
462   if (LiveInIt != MBBLiveIns.end()) {
463     auto LiveIn = std::move(LiveInIt->second);
464     RPTracker.reset(*MBB->begin(), &LiveIn);
465     MBBLiveIns.erase(LiveInIt);
466   } else {
467     I = Regions[CurRegion].first;
468     RPTracker.reset(*I);
469   }
470 
471   for ( ; ; ) {
472     I = RPTracker.getNext();
473 
474     if (Regions[CurRegion].first == I) {
475       LiveIns[CurRegion] = RPTracker.getLiveRegs();
476       RPTracker.clearMaxPressure();
477     }
478 
479     if (Regions[CurRegion].second == I) {
480       Pressure[CurRegion] = RPTracker.moveMaxPressure();
481       if (CurRegion-- == RegionIdx)
482         break;
483     }
484     RPTracker.advanceToNext();
485     RPTracker.advanceBeforeNext();
486   }
487 
488   if (OnlySucc) {
489     if (I != MBB->end()) {
490       RPTracker.advanceToNext();
491       RPTracker.advance(MBB->end());
492     }
493     RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
494     RPTracker.advanceBeforeNext();
495     MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
496   }
497 }
498 
499 void GCNScheduleDAGMILive::finalizeSchedule() {
500   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
501   LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
502 
503   LiveIns.resize(Regions.size());
504   Pressure.resize(Regions.size());
505 
506   do {
507     Stage++;
508     RegionIdx = 0;
509     MachineBasicBlock *MBB = nullptr;
510 
511     if (Stage > 1) {
512       // Retry function scheduling if we found resulting occupancy and it is
513       // lower than used for first pass scheduling. This will give more freedom
514       // to schedule low register pressure blocks.
515       // Code is partially copied from MachineSchedulerBase::scheduleRegions().
516 
517       if (!LIS || StartingOccupancy <= MinOccupancy)
518         break;
519 
520       LLVM_DEBUG(
521           dbgs()
522           << "Retrying function scheduling with lowest recorded occupancy "
523           << MinOccupancy << ".\n");
524 
525       S.setTargetOccupancy(MinOccupancy);
526     }
527 
528     for (auto Region : Regions) {
529       RegionBegin = Region.first;
530       RegionEnd = Region.second;
531 
532       if (RegionBegin->getParent() != MBB) {
533         if (MBB) finishBlock();
534         MBB = RegionBegin->getParent();
535         startBlock(MBB);
536         if (Stage == 1)
537           computeBlockPressure(MBB);
538       }
539 
540       unsigned NumRegionInstrs = std::distance(begin(), end());
541       enterRegion(MBB, begin(), end(), NumRegionInstrs);
542 
543       // Skip empty scheduling regions (0 or 1 schedulable instructions).
544       if (begin() == end() || begin() == std::prev(end())) {
545         exitRegion();
546         continue;
547       }
548 
549       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
550       LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
551                         << MBB->getName() << "\n  From: " << *begin()
552                         << "    To: ";
553                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
554                  else dbgs() << "End";
555                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
556 
557       schedule();
558 
559       exitRegion();
560       ++RegionIdx;
561     }
562     finishBlock();
563 
564   } while (Stage < 2);
565 }
566