1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This contains a MachineSchedStrategy implementation for maximizing wave 12 /// occupancy on GCN hardware. 13 //===----------------------------------------------------------------------===// 14 15 #include "GCNSchedStrategy.h" 16 #include "AMDGPUSubtarget.h" 17 #include "SIInstrInfo.h" 18 #include "SIMachineFunctionInfo.h" 19 #include "SIRegisterInfo.h" 20 #include "llvm/CodeGen/RegisterClassInfo.h" 21 #include "llvm/Support/MathExtras.h" 22 23 #define DEBUG_TYPE "machine-scheduler" 24 25 using namespace llvm; 26 27 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( 28 const MachineSchedContext *C) : 29 GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { } 30 31 static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs, 32 const MachineFunction &MF) { 33 34 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 35 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 36 unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs), 37 ST.getOccupancyWithNumVGPRs(VGPRs)); 38 return std::min(MinRegOccupancy, 39 ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(), 40 MF.getFunction())); 41 } 42 43 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { 44 GenericScheduler::initialize(DAG); 45 46 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 47 48 MF = &DAG->MF; 49 50 const SISubtarget &ST = MF->getSubtarget<SISubtarget>(); 51 52 // FIXME: This is also necessary, because some passes that run after 53 // scheduling and before regalloc increase register pressure. 54 const int ErrorMargin = 3; 55 56 SGPRExcessLimit = Context->RegClassInfo 57 ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin; 58 VGPRExcessLimit = Context->RegClassInfo 59 ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin; 60 if (TargetOccupancy) { 61 SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true); 62 VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy); 63 } else { 64 SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 65 SRI->getSGPRPressureSet()); 66 VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 67 SRI->getVGPRPressureSet()); 68 } 69 70 SGPRCriticalLimit -= ErrorMargin; 71 VGPRCriticalLimit -= ErrorMargin; 72 } 73 74 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, 75 bool AtTop, const RegPressureTracker &RPTracker, 76 const SIRegisterInfo *SRI, 77 unsigned SGPRPressure, 78 unsigned VGPRPressure) { 79 80 Cand.SU = SU; 81 Cand.AtTop = AtTop; 82 83 // getDownwardPressure() and getUpwardPressure() make temporary changes to 84 // the tracker, so we need to pass those function a non-const copy. 85 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 86 87 std::vector<unsigned> Pressure; 88 std::vector<unsigned> MaxPressure; 89 90 if (AtTop) 91 TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); 92 else { 93 // FIXME: I think for bottom up scheduling, the register pressure is cached 94 // and can be retrieved by DAG->getPressureDif(SU). 95 TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); 96 } 97 98 unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()]; 99 unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()]; 100 101 // If two instructions increase the pressure of different register sets 102 // by the same amount, the generic scheduler will prefer to schedule the 103 // instruction that increases the set with the least amount of registers, 104 // which in our case would be SGPRs. This is rarely what we want, so 105 // when we report excess/critical register pressure, we do it either 106 // only for VGPRs or only for SGPRs. 107 108 // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. 109 const unsigned MaxVGPRPressureInc = 16; 110 bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; 111 bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; 112 113 114 // FIXME: We have to enter REG-EXCESS before we reach the actual threshold 115 // to increase the likelihood we don't go over the limits. We should improve 116 // the analysis to look through dependencies to find the path with the least 117 // register pressure. 118 119 // We only need to update the RPDelata for instructions that increase 120 // register pressure. Instructions that decrease or keep reg pressure 121 // the same will be marked as RegExcess in tryCandidate() when they 122 // are compared with instructions that increase the register pressure. 123 if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { 124 Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet()); 125 Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); 126 } 127 128 if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { 129 Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet()); 130 Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); 131 } 132 133 // Register pressure is considered 'CRITICAL' if it is approaching a value 134 // that would reduce the wave occupancy for the execution unit. When 135 // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both 136 // has the same cost, so we don't need to prefer one over the other. 137 138 int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; 139 int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; 140 141 if (SGPRDelta >= 0 || VGPRDelta >= 0) { 142 if (SGPRDelta > VGPRDelta) { 143 Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet()); 144 Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); 145 } else { 146 Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet()); 147 Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); 148 } 149 } 150 } 151 152 // This function is mostly cut and pasted from 153 // GenericScheduler::pickNodeFromQueue() 154 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, 155 const CandPolicy &ZonePolicy, 156 const RegPressureTracker &RPTracker, 157 SchedCandidate &Cand) { 158 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 159 ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos(); 160 unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()]; 161 unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()]; 162 ReadyQueue &Q = Zone.Available; 163 for (SUnit *SU : Q) { 164 165 SchedCandidate TryCand(ZonePolicy); 166 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, 167 SGPRPressure, VGPRPressure); 168 // Pass SchedBoundary only when comparing nodes from the same boundary. 169 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 170 GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); 171 if (TryCand.Reason != NoCand) { 172 // Initialize resource delta if needed in case future heuristics query it. 173 if (TryCand.ResDelta == SchedResourceDelta()) 174 TryCand.initResourceDelta(Zone.DAG, SchedModel); 175 Cand.setBest(TryCand); 176 } 177 } 178 } 179 180 // This function is mostly cut and pasted from 181 // GenericScheduler::pickNodeBidirectional() 182 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { 183 // Schedule as far as possible in the direction of no choice. This is most 184 // efficient, but also provides the best heuristics for CriticalPSets. 185 if (SUnit *SU = Bot.pickOnlyChoice()) { 186 IsTopNode = false; 187 return SU; 188 } 189 if (SUnit *SU = Top.pickOnlyChoice()) { 190 IsTopNode = true; 191 return SU; 192 } 193 // Set the bottom-up policy based on the state of the current bottom zone and 194 // the instructions outside the zone, including the top zone. 195 CandPolicy BotPolicy; 196 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 197 // Set the top-down policy based on the state of the current top zone and 198 // the instructions outside the zone, including the bottom zone. 199 CandPolicy TopPolicy; 200 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 201 202 // See if BotCand is still valid (because we previously scheduled from Top). 203 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 204 if (!BotCand.isValid() || BotCand.SU->isScheduled || 205 BotCand.Policy != BotPolicy) { 206 BotCand.reset(CandPolicy()); 207 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 208 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 209 } else { 210 LLVM_DEBUG(traceCandidate(BotCand)); 211 } 212 213 // Check if the top Q has a better candidate. 214 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 215 if (!TopCand.isValid() || TopCand.SU->isScheduled || 216 TopCand.Policy != TopPolicy) { 217 TopCand.reset(CandPolicy()); 218 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 219 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 220 } else { 221 LLVM_DEBUG(traceCandidate(TopCand)); 222 } 223 224 // Pick best from BotCand and TopCand. 225 LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand); 226 dbgs() << "Bot Cand: "; traceCandidate(BotCand);); 227 SchedCandidate Cand; 228 if (TopCand.Reason == BotCand.Reason) { 229 Cand = BotCand; 230 GenericSchedulerBase::CandReason TopReason = TopCand.Reason; 231 TopCand.Reason = NoCand; 232 GenericScheduler::tryCandidate(Cand, TopCand, nullptr); 233 if (TopCand.Reason != NoCand) { 234 Cand.setBest(TopCand); 235 } else { 236 TopCand.Reason = TopReason; 237 } 238 } else { 239 if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) { 240 Cand = TopCand; 241 } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) { 242 Cand = BotCand; 243 } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) { 244 Cand = TopCand; 245 } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) { 246 Cand = BotCand; 247 } else { 248 if (BotCand.Reason > TopCand.Reason) { 249 Cand = TopCand; 250 } else { 251 Cand = BotCand; 252 } 253 } 254 } 255 LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand);); 256 257 IsTopNode = Cand.AtTop; 258 return Cand.SU; 259 } 260 261 // This function is mostly cut and pasted from 262 // GenericScheduler::pickNode() 263 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { 264 if (DAG->top() == DAG->bottom()) { 265 assert(Top.Available.empty() && Top.Pending.empty() && 266 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 267 return nullptr; 268 } 269 SUnit *SU; 270 do { 271 if (RegionPolicy.OnlyTopDown) { 272 SU = Top.pickOnlyChoice(); 273 if (!SU) { 274 CandPolicy NoPolicy; 275 TopCand.reset(NoPolicy); 276 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 277 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 278 SU = TopCand.SU; 279 } 280 IsTopNode = true; 281 } else if (RegionPolicy.OnlyBottomUp) { 282 SU = Bot.pickOnlyChoice(); 283 if (!SU) { 284 CandPolicy NoPolicy; 285 BotCand.reset(NoPolicy); 286 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 287 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 288 SU = BotCand.SU; 289 } 290 IsTopNode = false; 291 } else { 292 SU = pickNodeBidirectional(IsTopNode); 293 } 294 } while (SU->isScheduled); 295 296 if (SU->isTopReady()) 297 Top.removeReady(SU); 298 if (SU->isBottomReady()) 299 Bot.removeReady(SU); 300 301 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 302 << *SU->getInstr()); 303 return SU; 304 } 305 306 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C, 307 std::unique_ptr<MachineSchedStrategy> S) : 308 ScheduleDAGMILive(C, std::move(S)), 309 ST(MF.getSubtarget<SISubtarget>()), 310 MFI(*MF.getInfo<SIMachineFunctionInfo>()), 311 StartingOccupancy(std::min(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(), 312 MF.getFunction()), 313 MFI.getMaxWavesPerEU())), 314 MinOccupancy(StartingOccupancy), Stage(0), RegionIdx(0) { 315 316 LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n"); 317 } 318 319 void GCNScheduleDAGMILive::schedule() { 320 if (Stage == 0) { 321 // Just record regions at the first pass. 322 Regions.push_back(std::make_pair(RegionBegin, RegionEnd)); 323 return; 324 } 325 326 std::vector<MachineInstr*> Unsched; 327 Unsched.reserve(NumRegionInstrs); 328 for (auto &I : *this) { 329 Unsched.push_back(&I); 330 } 331 332 GCNRegPressure PressureBefore; 333 if (LIS) { 334 PressureBefore = Pressure[RegionIdx]; 335 336 LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:"; 337 GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI); 338 dbgs() << "Region live-in pressure: "; 339 llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs()); 340 dbgs() << "Region register pressure: "; 341 PressureBefore.print(dbgs())); 342 } 343 344 ScheduleDAGMILive::schedule(); 345 Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd); 346 347 if (!LIS) 348 return; 349 350 // Check the results of scheduling. 351 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 352 auto PressureAfter = getRealRegPressure(); 353 354 LLVM_DEBUG(dbgs() << "Pressure after scheduling: "; 355 PressureAfter.print(dbgs())); 356 357 if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit && 358 PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) { 359 Pressure[RegionIdx] = PressureAfter; 360 LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n"); 361 return; 362 } 363 unsigned WavesAfter = getMaxWaves(PressureAfter.getSGPRNum(), 364 PressureAfter.getVGPRNum(), MF); 365 unsigned WavesBefore = getMaxWaves(PressureBefore.getSGPRNum(), 366 PressureBefore.getVGPRNum(), MF); 367 WavesAfter = std::min(WavesAfter, MFI.getMaxWavesPerEU()); 368 WavesBefore = std::min(WavesBefore, MFI.getMaxWavesPerEU()); 369 LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore 370 << ", after " << WavesAfter << ".\n"); 371 372 // We could not keep current target occupancy because of the just scheduled 373 // region. Record new occupancy for next scheduling cycle. 374 unsigned NewOccupancy = std::max(WavesAfter, WavesBefore); 375 // Allow memory bound functions to drop to 4 waves if not limited by an 376 // attribute. 377 unsigned MinMemBoundWaves = std::max(MFI.getMinWavesPerEU(), 4u); 378 if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy && 379 WavesAfter >= MinMemBoundWaves && 380 (MFI.isMemoryBound() || MFI.needsWaveLimiter())) { 381 LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to " 382 << MinMemBoundWaves << " waves\n"); 383 NewOccupancy = WavesAfter; 384 } 385 if (NewOccupancy < MinOccupancy) { 386 MinOccupancy = NewOccupancy; 387 LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to " 388 << MinOccupancy << ".\n"); 389 } 390 391 if (WavesAfter >= MinOccupancy) { 392 Pressure[RegionIdx] = PressureAfter; 393 return; 394 } 395 396 LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n"); 397 RegionEnd = RegionBegin; 398 for (MachineInstr *MI : Unsched) { 399 if (MI->isDebugInstr()) 400 continue; 401 402 if (MI->getIterator() != RegionEnd) { 403 BB->remove(MI); 404 BB->insert(RegionEnd, MI); 405 if (!MI->isDebugInstr()) 406 LIS->handleMove(*MI, true); 407 } 408 // Reset read-undef flags and update them later. 409 for (auto &Op : MI->operands()) 410 if (Op.isReg() && Op.isDef()) 411 Op.setIsUndef(false); 412 RegisterOperands RegOpers; 413 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 414 if (!MI->isDebugInstr()) { 415 if (ShouldTrackLaneMasks) { 416 // Adjust liveness and add missing dead+read-undef flags. 417 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 418 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 419 } else { 420 // Adjust for missing dead-def flags. 421 RegOpers.detectDeadDefs(*MI, *LIS); 422 } 423 } 424 RegionEnd = MI->getIterator(); 425 ++RegionEnd; 426 LLVM_DEBUG(dbgs() << "Scheduling " << *MI); 427 } 428 RegionBegin = Unsched.front()->getIterator(); 429 Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd); 430 431 placeDebugValues(); 432 } 433 434 GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const { 435 GCNDownwardRPTracker RPTracker(*LIS); 436 RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]); 437 return RPTracker.moveMaxPressure(); 438 } 439 440 void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) { 441 GCNDownwardRPTracker RPTracker(*LIS); 442 443 // If the block has the only successor then live-ins of that successor are 444 // live-outs of the current block. We can reuse calculated live set if the 445 // successor will be sent to scheduling past current block. 446 const MachineBasicBlock *OnlySucc = nullptr; 447 if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) { 448 SlotIndexes *Ind = LIS->getSlotIndexes(); 449 if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin())) 450 OnlySucc = *MBB->succ_begin(); 451 } 452 453 // Scheduler sends regions from the end of the block upwards. 454 size_t CurRegion = RegionIdx; 455 for (size_t E = Regions.size(); CurRegion != E; ++CurRegion) 456 if (Regions[CurRegion].first->getParent() != MBB) 457 break; 458 --CurRegion; 459 460 auto I = MBB->begin(); 461 auto LiveInIt = MBBLiveIns.find(MBB); 462 if (LiveInIt != MBBLiveIns.end()) { 463 auto LiveIn = std::move(LiveInIt->second); 464 RPTracker.reset(*MBB->begin(), &LiveIn); 465 MBBLiveIns.erase(LiveInIt); 466 } else { 467 I = Regions[CurRegion].first; 468 RPTracker.reset(*I); 469 } 470 471 for ( ; ; ) { 472 I = RPTracker.getNext(); 473 474 if (Regions[CurRegion].first == I) { 475 LiveIns[CurRegion] = RPTracker.getLiveRegs(); 476 RPTracker.clearMaxPressure(); 477 } 478 479 if (Regions[CurRegion].second == I) { 480 Pressure[CurRegion] = RPTracker.moveMaxPressure(); 481 if (CurRegion-- == RegionIdx) 482 break; 483 } 484 RPTracker.advanceToNext(); 485 RPTracker.advanceBeforeNext(); 486 } 487 488 if (OnlySucc) { 489 if (I != MBB->end()) { 490 RPTracker.advanceToNext(); 491 RPTracker.advance(MBB->end()); 492 } 493 RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs()); 494 RPTracker.advanceBeforeNext(); 495 MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs(); 496 } 497 } 498 499 void GCNScheduleDAGMILive::finalizeSchedule() { 500 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 501 LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n"); 502 503 LiveIns.resize(Regions.size()); 504 Pressure.resize(Regions.size()); 505 506 do { 507 Stage++; 508 RegionIdx = 0; 509 MachineBasicBlock *MBB = nullptr; 510 511 if (Stage > 1) { 512 // Retry function scheduling if we found resulting occupancy and it is 513 // lower than used for first pass scheduling. This will give more freedom 514 // to schedule low register pressure blocks. 515 // Code is partially copied from MachineSchedulerBase::scheduleRegions(). 516 517 if (!LIS || StartingOccupancy <= MinOccupancy) 518 break; 519 520 LLVM_DEBUG( 521 dbgs() 522 << "Retrying function scheduling with lowest recorded occupancy " 523 << MinOccupancy << ".\n"); 524 525 S.setTargetOccupancy(MinOccupancy); 526 } 527 528 for (auto Region : Regions) { 529 RegionBegin = Region.first; 530 RegionEnd = Region.second; 531 532 if (RegionBegin->getParent() != MBB) { 533 if (MBB) finishBlock(); 534 MBB = RegionBegin->getParent(); 535 startBlock(MBB); 536 if (Stage == 1) 537 computeBlockPressure(MBB); 538 } 539 540 unsigned NumRegionInstrs = std::distance(begin(), end()); 541 enterRegion(MBB, begin(), end(), NumRegionInstrs); 542 543 // Skip empty scheduling regions (0 or 1 schedulable instructions). 544 if (begin() == end() || begin() == std::prev(end())) { 545 exitRegion(); 546 continue; 547 } 548 549 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 550 LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " " 551 << MBB->getName() << "\n From: " << *begin() 552 << " To: "; 553 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 554 else dbgs() << "End"; 555 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 556 557 schedule(); 558 559 exitRegion(); 560 ++RegionIdx; 561 } 562 finishBlock(); 563 564 } while (Stage < 2); 565 } 566