1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This contains a MachineSchedStrategy implementation for maximizing wave 11 /// occupancy on GCN hardware. 12 //===----------------------------------------------------------------------===// 13 14 #include "GCNSchedStrategy.h" 15 #include "AMDGPUSubtarget.h" 16 #include "SIMachineFunctionInfo.h" 17 18 #define DEBUG_TYPE "machine-scheduler" 19 20 using namespace llvm; 21 22 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( 23 const MachineSchedContext *C) : 24 GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { } 25 26 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { 27 GenericScheduler::initialize(DAG); 28 29 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 30 31 MF = &DAG->MF; 32 33 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 34 35 // FIXME: This is also necessary, because some passes that run after 36 // scheduling and before regalloc increase register pressure. 37 const int ErrorMargin = 3; 38 39 SGPRExcessLimit = Context->RegClassInfo 40 ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin; 41 VGPRExcessLimit = Context->RegClassInfo 42 ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin; 43 if (TargetOccupancy) { 44 SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true); 45 VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy); 46 } else { 47 SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 48 AMDGPU::RegisterPressureSets::SReg_32); 49 VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 50 AMDGPU::RegisterPressureSets::VGPR_32); 51 } 52 53 SGPRCriticalLimit -= ErrorMargin; 54 VGPRCriticalLimit -= ErrorMargin; 55 } 56 57 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, 58 bool AtTop, const RegPressureTracker &RPTracker, 59 const SIRegisterInfo *SRI, 60 unsigned SGPRPressure, 61 unsigned VGPRPressure) { 62 63 Cand.SU = SU; 64 Cand.AtTop = AtTop; 65 66 // getDownwardPressure() and getUpwardPressure() make temporary changes to 67 // the tracker, so we need to pass those function a non-const copy. 68 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 69 70 Pressure.clear(); 71 MaxPressure.clear(); 72 73 if (AtTop) 74 TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); 75 else { 76 // FIXME: I think for bottom up scheduling, the register pressure is cached 77 // and can be retrieved by DAG->getPressureDif(SU). 78 TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); 79 } 80 81 unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32]; 82 unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32]; 83 84 // If two instructions increase the pressure of different register sets 85 // by the same amount, the generic scheduler will prefer to schedule the 86 // instruction that increases the set with the least amount of registers, 87 // which in our case would be SGPRs. This is rarely what we want, so 88 // when we report excess/critical register pressure, we do it either 89 // only for VGPRs or only for SGPRs. 90 91 // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. 92 const unsigned MaxVGPRPressureInc = 16; 93 bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; 94 bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; 95 96 97 // FIXME: We have to enter REG-EXCESS before we reach the actual threshold 98 // to increase the likelihood we don't go over the limits. We should improve 99 // the analysis to look through dependencies to find the path with the least 100 // register pressure. 101 102 // We only need to update the RPDelta for instructions that increase register 103 // pressure. Instructions that decrease or keep reg pressure the same will be 104 // marked as RegExcess in tryCandidate() when they are compared with 105 // instructions that increase the register pressure. 106 if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { 107 Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32); 108 Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); 109 } 110 111 if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { 112 Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32); 113 Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); 114 } 115 116 // Register pressure is considered 'CRITICAL' if it is approaching a value 117 // that would reduce the wave occupancy for the execution unit. When 118 // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both 119 // has the same cost, so we don't need to prefer one over the other. 120 121 int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; 122 int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; 123 124 if (SGPRDelta >= 0 || VGPRDelta >= 0) { 125 if (SGPRDelta > VGPRDelta) { 126 Cand.RPDelta.CriticalMax = 127 PressureChange(AMDGPU::RegisterPressureSets::SReg_32); 128 Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); 129 } else { 130 Cand.RPDelta.CriticalMax = 131 PressureChange(AMDGPU::RegisterPressureSets::VGPR_32); 132 Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); 133 } 134 } 135 } 136 137 // This function is mostly cut and pasted from 138 // GenericScheduler::pickNodeFromQueue() 139 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, 140 const CandPolicy &ZonePolicy, 141 const RegPressureTracker &RPTracker, 142 SchedCandidate &Cand) { 143 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 144 ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos(); 145 unsigned SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32]; 146 unsigned VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32]; 147 ReadyQueue &Q = Zone.Available; 148 for (SUnit *SU : Q) { 149 150 SchedCandidate TryCand(ZonePolicy); 151 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, 152 SGPRPressure, VGPRPressure); 153 // Pass SchedBoundary only when comparing nodes from the same boundary. 154 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 155 GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); 156 if (TryCand.Reason != NoCand) { 157 // Initialize resource delta if needed in case future heuristics query it. 158 if (TryCand.ResDelta == SchedResourceDelta()) 159 TryCand.initResourceDelta(Zone.DAG, SchedModel); 160 Cand.setBest(TryCand); 161 LLVM_DEBUG(traceCandidate(Cand)); 162 } 163 } 164 } 165 166 // This function is mostly cut and pasted from 167 // GenericScheduler::pickNodeBidirectional() 168 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { 169 // Schedule as far as possible in the direction of no choice. This is most 170 // efficient, but also provides the best heuristics for CriticalPSets. 171 if (SUnit *SU = Bot.pickOnlyChoice()) { 172 IsTopNode = false; 173 return SU; 174 } 175 if (SUnit *SU = Top.pickOnlyChoice()) { 176 IsTopNode = true; 177 return SU; 178 } 179 // Set the bottom-up policy based on the state of the current bottom zone and 180 // the instructions outside the zone, including the top zone. 181 CandPolicy BotPolicy; 182 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 183 // Set the top-down policy based on the state of the current top zone and 184 // the instructions outside the zone, including the bottom zone. 185 CandPolicy TopPolicy; 186 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 187 188 // See if BotCand is still valid (because we previously scheduled from Top). 189 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 190 if (!BotCand.isValid() || BotCand.SU->isScheduled || 191 BotCand.Policy != BotPolicy) { 192 BotCand.reset(CandPolicy()); 193 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 194 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 195 } else { 196 LLVM_DEBUG(traceCandidate(BotCand)); 197 #ifndef NDEBUG 198 if (VerifyScheduling) { 199 SchedCandidate TCand; 200 TCand.reset(CandPolicy()); 201 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 202 assert(TCand.SU == BotCand.SU && 203 "Last pick result should correspond to re-picking right now"); 204 } 205 #endif 206 } 207 208 // Check if the top Q has a better candidate. 209 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 210 if (!TopCand.isValid() || TopCand.SU->isScheduled || 211 TopCand.Policy != TopPolicy) { 212 TopCand.reset(CandPolicy()); 213 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 214 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 215 } else { 216 LLVM_DEBUG(traceCandidate(TopCand)); 217 #ifndef NDEBUG 218 if (VerifyScheduling) { 219 SchedCandidate TCand; 220 TCand.reset(CandPolicy()); 221 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 222 assert(TCand.SU == TopCand.SU && 223 "Last pick result should correspond to re-picking right now"); 224 } 225 #endif 226 } 227 228 // Pick best from BotCand and TopCand. 229 LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand); 230 dbgs() << "Bot Cand: "; traceCandidate(BotCand);); 231 SchedCandidate Cand = BotCand; 232 TopCand.Reason = NoCand; 233 GenericScheduler::tryCandidate(Cand, TopCand, nullptr); 234 if (TopCand.Reason != NoCand) { 235 Cand.setBest(TopCand); 236 } 237 LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand);); 238 239 IsTopNode = Cand.AtTop; 240 return Cand.SU; 241 } 242 243 // This function is mostly cut and pasted from 244 // GenericScheduler::pickNode() 245 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { 246 if (DAG->top() == DAG->bottom()) { 247 assert(Top.Available.empty() && Top.Pending.empty() && 248 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 249 return nullptr; 250 } 251 SUnit *SU; 252 do { 253 if (RegionPolicy.OnlyTopDown) { 254 SU = Top.pickOnlyChoice(); 255 if (!SU) { 256 CandPolicy NoPolicy; 257 TopCand.reset(NoPolicy); 258 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 259 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 260 SU = TopCand.SU; 261 } 262 IsTopNode = true; 263 } else if (RegionPolicy.OnlyBottomUp) { 264 SU = Bot.pickOnlyChoice(); 265 if (!SU) { 266 CandPolicy NoPolicy; 267 BotCand.reset(NoPolicy); 268 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 269 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 270 SU = BotCand.SU; 271 } 272 IsTopNode = false; 273 } else { 274 SU = pickNodeBidirectional(IsTopNode); 275 } 276 } while (SU->isScheduled); 277 278 if (SU->isTopReady()) 279 Top.removeReady(SU); 280 if (SU->isBottomReady()) 281 Bot.removeReady(SU); 282 283 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 284 << *SU->getInstr()); 285 return SU; 286 } 287 288 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C, 289 std::unique_ptr<MachineSchedStrategy> S) : 290 ScheduleDAGMILive(C, std::move(S)), 291 ST(MF.getSubtarget<GCNSubtarget>()), 292 MFI(*MF.getInfo<SIMachineFunctionInfo>()), 293 StartingOccupancy(MFI.getOccupancy()), 294 MinOccupancy(StartingOccupancy), Stage(Collect), RegionIdx(0) { 295 296 LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n"); 297 } 298 299 void GCNScheduleDAGMILive::schedule() { 300 if (Stage == Collect) { 301 // Just record regions at the first pass. 302 Regions.push_back(std::make_pair(RegionBegin, RegionEnd)); 303 return; 304 } 305 306 std::vector<MachineInstr*> Unsched; 307 Unsched.reserve(NumRegionInstrs); 308 for (auto &I : *this) { 309 Unsched.push_back(&I); 310 } 311 312 GCNRegPressure PressureBefore; 313 if (LIS) { 314 PressureBefore = Pressure[RegionIdx]; 315 316 LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:"; 317 GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI); 318 dbgs() << "Region live-in pressure: "; 319 llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs()); 320 dbgs() << "Region register pressure: "; 321 PressureBefore.print(dbgs())); 322 } 323 324 ScheduleDAGMILive::schedule(); 325 Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd); 326 RescheduleRegions[RegionIdx] = false; 327 328 if (!LIS) 329 return; 330 331 // Check the results of scheduling. 332 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 333 auto PressureAfter = getRealRegPressure(); 334 335 LLVM_DEBUG(dbgs() << "Pressure after scheduling: "; 336 PressureAfter.print(dbgs())); 337 338 if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit && 339 PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) { 340 Pressure[RegionIdx] = PressureAfter; 341 LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n"); 342 return; 343 } 344 unsigned Occ = MFI.getOccupancy(); 345 unsigned WavesAfter = std::min(Occ, PressureAfter.getOccupancy(ST)); 346 unsigned WavesBefore = std::min(Occ, PressureBefore.getOccupancy(ST)); 347 LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore 348 << ", after " << WavesAfter << ".\n"); 349 350 // We could not keep current target occupancy because of the just scheduled 351 // region. Record new occupancy for next scheduling cycle. 352 unsigned NewOccupancy = std::max(WavesAfter, WavesBefore); 353 // Allow memory bound functions to drop to 4 waves if not limited by an 354 // attribute. 355 if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy && 356 WavesAfter >= MFI.getMinAllowedOccupancy()) { 357 LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to " 358 << MFI.getMinAllowedOccupancy() << " waves\n"); 359 NewOccupancy = WavesAfter; 360 } 361 if (NewOccupancy < MinOccupancy) { 362 MinOccupancy = NewOccupancy; 363 MFI.limitOccupancy(MinOccupancy); 364 LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to " 365 << MinOccupancy << ".\n"); 366 } 367 368 unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF); 369 unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF); 370 if (PressureAfter.getVGPRNum() > MaxVGPRs || 371 PressureAfter.getSGPRNum() > MaxSGPRs) 372 RescheduleRegions[RegionIdx] = true; 373 374 if (WavesAfter >= MinOccupancy) { 375 if (Stage == UnclusteredReschedule && 376 !PressureAfter.less(ST, PressureBefore)) { 377 LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n"); 378 } else if (WavesAfter > MFI.getMinWavesPerEU() || 379 PressureAfter.less(ST, PressureBefore) || 380 !RescheduleRegions[RegionIdx]) { 381 Pressure[RegionIdx] = PressureAfter; 382 return; 383 } else { 384 LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n"); 385 } 386 } 387 388 LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n"); 389 RescheduleRegions[RegionIdx] = true; 390 RegionEnd = RegionBegin; 391 for (MachineInstr *MI : Unsched) { 392 if (MI->isDebugInstr()) 393 continue; 394 395 if (MI->getIterator() != RegionEnd) { 396 BB->remove(MI); 397 BB->insert(RegionEnd, MI); 398 if (!MI->isDebugInstr()) 399 LIS->handleMove(*MI, true); 400 } 401 // Reset read-undef flags and update them later. 402 for (auto &Op : MI->operands()) 403 if (Op.isReg() && Op.isDef()) 404 Op.setIsUndef(false); 405 RegisterOperands RegOpers; 406 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 407 if (!MI->isDebugInstr()) { 408 if (ShouldTrackLaneMasks) { 409 // Adjust liveness and add missing dead+read-undef flags. 410 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 411 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 412 } else { 413 // Adjust for missing dead-def flags. 414 RegOpers.detectDeadDefs(*MI, *LIS); 415 } 416 } 417 RegionEnd = MI->getIterator(); 418 ++RegionEnd; 419 LLVM_DEBUG(dbgs() << "Scheduling " << *MI); 420 } 421 RegionBegin = Unsched.front()->getIterator(); 422 Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd); 423 424 placeDebugValues(); 425 } 426 427 GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const { 428 GCNDownwardRPTracker RPTracker(*LIS); 429 RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]); 430 return RPTracker.moveMaxPressure(); 431 } 432 433 void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) { 434 GCNDownwardRPTracker RPTracker(*LIS); 435 436 // If the block has the only successor then live-ins of that successor are 437 // live-outs of the current block. We can reuse calculated live set if the 438 // successor will be sent to scheduling past current block. 439 const MachineBasicBlock *OnlySucc = nullptr; 440 if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) { 441 SlotIndexes *Ind = LIS->getSlotIndexes(); 442 if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin())) 443 OnlySucc = *MBB->succ_begin(); 444 } 445 446 // Scheduler sends regions from the end of the block upwards. 447 size_t CurRegion = RegionIdx; 448 for (size_t E = Regions.size(); CurRegion != E; ++CurRegion) 449 if (Regions[CurRegion].first->getParent() != MBB) 450 break; 451 --CurRegion; 452 453 auto I = MBB->begin(); 454 auto LiveInIt = MBBLiveIns.find(MBB); 455 if (LiveInIt != MBBLiveIns.end()) { 456 auto LiveIn = std::move(LiveInIt->second); 457 RPTracker.reset(*MBB->begin(), &LiveIn); 458 MBBLiveIns.erase(LiveInIt); 459 } else { 460 auto &Rgn = Regions[CurRegion]; 461 I = Rgn.first; 462 auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second); 463 auto LRS = BBLiveInMap.lookup(NonDbgMI); 464 assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS)); 465 RPTracker.reset(*I, &LRS); 466 } 467 468 for ( ; ; ) { 469 I = RPTracker.getNext(); 470 471 if (Regions[CurRegion].first == I) { 472 LiveIns[CurRegion] = RPTracker.getLiveRegs(); 473 RPTracker.clearMaxPressure(); 474 } 475 476 if (Regions[CurRegion].second == I) { 477 Pressure[CurRegion] = RPTracker.moveMaxPressure(); 478 if (CurRegion-- == RegionIdx) 479 break; 480 } 481 RPTracker.advanceToNext(); 482 RPTracker.advanceBeforeNext(); 483 } 484 485 if (OnlySucc) { 486 if (I != MBB->end()) { 487 RPTracker.advanceToNext(); 488 RPTracker.advance(MBB->end()); 489 } 490 RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs()); 491 RPTracker.advanceBeforeNext(); 492 MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs(); 493 } 494 } 495 496 DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet> 497 GCNScheduleDAGMILive::getBBLiveInMap() const { 498 assert(!Regions.empty()); 499 std::vector<MachineInstr *> BBStarters; 500 BBStarters.reserve(Regions.size()); 501 auto I = Regions.rbegin(), E = Regions.rend(); 502 auto *BB = I->first->getParent(); 503 do { 504 auto *MI = &*skipDebugInstructionsForward(I->first, I->second); 505 BBStarters.push_back(MI); 506 do { 507 ++I; 508 } while (I != E && I->first->getParent() == BB); 509 } while (I != E); 510 return getLiveRegMap(BBStarters, false /*After*/, *LIS); 511 } 512 513 void GCNScheduleDAGMILive::finalizeSchedule() { 514 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 515 LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n"); 516 517 LiveIns.resize(Regions.size()); 518 Pressure.resize(Regions.size()); 519 RescheduleRegions.resize(Regions.size()); 520 RescheduleRegions.set(); 521 522 if (!Regions.empty()) 523 BBLiveInMap = getBBLiveInMap(); 524 525 std::vector<std::unique_ptr<ScheduleDAGMutation>> SavedMutations; 526 527 do { 528 Stage++; 529 RegionIdx = 0; 530 MachineBasicBlock *MBB = nullptr; 531 532 if (Stage > InitialSchedule) { 533 if (!LIS) 534 break; 535 536 // Retry function scheduling if we found resulting occupancy and it is 537 // lower than used for first pass scheduling. This will give more freedom 538 // to schedule low register pressure blocks. 539 // Code is partially copied from MachineSchedulerBase::scheduleRegions(). 540 541 if (Stage == UnclusteredReschedule) { 542 if (RescheduleRegions.none()) 543 continue; 544 LLVM_DEBUG(dbgs() << 545 "Retrying function scheduling without clustering.\n"); 546 } 547 548 if (Stage == ClusteredLowOccupancyReschedule) { 549 if (StartingOccupancy <= MinOccupancy) 550 break; 551 552 LLVM_DEBUG( 553 dbgs() 554 << "Retrying function scheduling with lowest recorded occupancy " 555 << MinOccupancy << ".\n"); 556 557 S.setTargetOccupancy(MinOccupancy); 558 } 559 } 560 561 if (Stage == UnclusteredReschedule) 562 SavedMutations.swap(Mutations); 563 564 for (auto Region : Regions) { 565 if (Stage == UnclusteredReschedule && !RescheduleRegions[RegionIdx]) { 566 ++RegionIdx; 567 continue; 568 } 569 570 RegionBegin = Region.first; 571 RegionEnd = Region.second; 572 573 if (RegionBegin->getParent() != MBB) { 574 if (MBB) finishBlock(); 575 MBB = RegionBegin->getParent(); 576 startBlock(MBB); 577 if (Stage == InitialSchedule) 578 computeBlockPressure(MBB); 579 } 580 581 unsigned NumRegionInstrs = std::distance(begin(), end()); 582 enterRegion(MBB, begin(), end(), NumRegionInstrs); 583 584 // Skip empty scheduling regions (0 or 1 schedulable instructions). 585 if (begin() == end() || begin() == std::prev(end())) { 586 exitRegion(); 587 continue; 588 } 589 590 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 591 LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " " 592 << MBB->getName() << "\n From: " << *begin() 593 << " To: "; 594 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 595 else dbgs() << "End"; 596 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 597 598 schedule(); 599 600 exitRegion(); 601 ++RegionIdx; 602 } 603 finishBlock(); 604 605 if (Stage == UnclusteredReschedule) 606 SavedMutations.swap(Mutations); 607 } while (Stage != LastStage); 608 } 609