1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This contains a MachineSchedStrategy implementation for maximizing wave 12 /// occupancy on GCN hardware. 13 //===----------------------------------------------------------------------===// 14 15 #include "GCNSchedStrategy.h" 16 #include "AMDGPUSubtarget.h" 17 #include "SIInstrInfo.h" 18 #include "SIMachineFunctionInfo.h" 19 #include "SIRegisterInfo.h" 20 #include "llvm/CodeGen/RegisterClassInfo.h" 21 #include "llvm/Support/MathExtras.h" 22 23 #define DEBUG_TYPE "misched" 24 25 using namespace llvm; 26 27 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( 28 const MachineSchedContext *C) : 29 GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { } 30 31 static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs, 32 const MachineFunction &MF) { 33 34 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 35 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 36 unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs), 37 ST.getOccupancyWithNumVGPRs(VGPRs)); 38 return std::min(MinRegOccupancy, 39 ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(), 40 *MF.getFunction())); 41 } 42 43 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { 44 GenericScheduler::initialize(DAG); 45 46 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 47 48 MF = &DAG->MF; 49 50 const SISubtarget &ST = MF->getSubtarget<SISubtarget>(); 51 52 // FIXME: This is also necessary, because some passes that run after 53 // scheduling and before regalloc increase register pressure. 54 const int ErrorMargin = 3; 55 56 SGPRExcessLimit = Context->RegClassInfo 57 ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin; 58 VGPRExcessLimit = Context->RegClassInfo 59 ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin; 60 if (TargetOccupancy) { 61 SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true); 62 VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy); 63 } else { 64 SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 65 SRI->getSGPRPressureSet()); 66 VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 67 SRI->getVGPRPressureSet()); 68 } 69 70 SGPRCriticalLimit -= ErrorMargin; 71 VGPRCriticalLimit -= ErrorMargin; 72 } 73 74 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, 75 bool AtTop, const RegPressureTracker &RPTracker, 76 const SIRegisterInfo *SRI, 77 unsigned SGPRPressure, 78 unsigned VGPRPressure) { 79 80 Cand.SU = SU; 81 Cand.AtTop = AtTop; 82 83 // getDownwardPressure() and getUpwardPressure() make temporary changes to 84 // the the tracker, so we need to pass those function a non-const copy. 85 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 86 87 std::vector<unsigned> Pressure; 88 std::vector<unsigned> MaxPressure; 89 90 if (AtTop) 91 TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); 92 else { 93 // FIXME: I think for bottom up scheduling, the register pressure is cached 94 // and can be retrieved by DAG->getPressureDif(SU). 95 TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); 96 } 97 98 unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()]; 99 unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()]; 100 101 // If two instructions increase the pressure of different register sets 102 // by the same amount, the generic scheduler will prefer to schedule the 103 // instruction that increases the set with the least amount of registers, 104 // which in our case would be SGPRs. This is rarely what we want, so 105 // when we report excess/critical register pressure, we do it either 106 // only for VGPRs or only for SGPRs. 107 108 // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. 109 const unsigned MaxVGPRPressureInc = 16; 110 bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; 111 bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; 112 113 114 // FIXME: We have to enter REG-EXCESS before we reach the actual threshold 115 // to increase the likelihood we don't go over the limits. We should improve 116 // the analysis to look through dependencies to find the path with the least 117 // register pressure. 118 119 // We only need to update the RPDelata for instructions that increase 120 // register pressure. Instructions that decrease or keep reg pressure 121 // the same will be marked as RegExcess in tryCandidate() when they 122 // are compared with instructions that increase the register pressure. 123 if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { 124 Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet()); 125 Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); 126 } 127 128 if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { 129 Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet()); 130 Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); 131 } 132 133 // Register pressure is considered 'CRITICAL' if it is approaching a value 134 // that would reduce the wave occupancy for the execution unit. When 135 // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both 136 // has the same cost, so we don't need to prefer one over the other. 137 138 int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; 139 int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; 140 141 if (SGPRDelta >= 0 || VGPRDelta >= 0) { 142 if (SGPRDelta > VGPRDelta) { 143 Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet()); 144 Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); 145 } else { 146 Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet()); 147 Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); 148 } 149 } 150 } 151 152 // This function is mostly cut and pasted from 153 // GenericScheduler::pickNodeFromQueue() 154 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, 155 const CandPolicy &ZonePolicy, 156 const RegPressureTracker &RPTracker, 157 SchedCandidate &Cand) { 158 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 159 ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos(); 160 unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()]; 161 unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()]; 162 ReadyQueue &Q = Zone.Available; 163 for (SUnit *SU : Q) { 164 165 SchedCandidate TryCand(ZonePolicy); 166 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, 167 SGPRPressure, VGPRPressure); 168 // Pass SchedBoundary only when comparing nodes from the same boundary. 169 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 170 GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); 171 if (TryCand.Reason != NoCand) { 172 // Initialize resource delta if needed in case future heuristics query it. 173 if (TryCand.ResDelta == SchedResourceDelta()) 174 TryCand.initResourceDelta(Zone.DAG, SchedModel); 175 Cand.setBest(TryCand); 176 } 177 } 178 } 179 180 // This function is mostly cut and pasted from 181 // GenericScheduler::pickNodeBidirectional() 182 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { 183 // Schedule as far as possible in the direction of no choice. This is most 184 // efficient, but also provides the best heuristics for CriticalPSets. 185 if (SUnit *SU = Bot.pickOnlyChoice()) { 186 IsTopNode = false; 187 return SU; 188 } 189 if (SUnit *SU = Top.pickOnlyChoice()) { 190 IsTopNode = true; 191 return SU; 192 } 193 // Set the bottom-up policy based on the state of the current bottom zone and 194 // the instructions outside the zone, including the top zone. 195 CandPolicy BotPolicy; 196 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 197 // Set the top-down policy based on the state of the current top zone and 198 // the instructions outside the zone, including the bottom zone. 199 CandPolicy TopPolicy; 200 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 201 202 // See if BotCand is still valid (because we previously scheduled from Top). 203 DEBUG(dbgs() << "Picking from Bot:\n"); 204 if (!BotCand.isValid() || BotCand.SU->isScheduled || 205 BotCand.Policy != BotPolicy) { 206 BotCand.reset(CandPolicy()); 207 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 208 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 209 } else { 210 DEBUG(traceCandidate(BotCand)); 211 } 212 213 // Check if the top Q has a better candidate. 214 DEBUG(dbgs() << "Picking from Top:\n"); 215 if (!TopCand.isValid() || TopCand.SU->isScheduled || 216 TopCand.Policy != TopPolicy) { 217 TopCand.reset(CandPolicy()); 218 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 219 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 220 } else { 221 DEBUG(traceCandidate(TopCand)); 222 } 223 224 // Pick best from BotCand and TopCand. 225 DEBUG( 226 dbgs() << "Top Cand: "; 227 traceCandidate(TopCand); 228 dbgs() << "Bot Cand: "; 229 traceCandidate(BotCand); 230 ); 231 SchedCandidate Cand; 232 if (TopCand.Reason == BotCand.Reason) { 233 Cand = BotCand; 234 GenericSchedulerBase::CandReason TopReason = TopCand.Reason; 235 TopCand.Reason = NoCand; 236 GenericScheduler::tryCandidate(Cand, TopCand, nullptr); 237 if (TopCand.Reason != NoCand) { 238 Cand.setBest(TopCand); 239 } else { 240 TopCand.Reason = TopReason; 241 } 242 } else { 243 if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) { 244 Cand = TopCand; 245 } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) { 246 Cand = BotCand; 247 } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) { 248 Cand = TopCand; 249 } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) { 250 Cand = BotCand; 251 } else { 252 if (BotCand.Reason > TopCand.Reason) { 253 Cand = TopCand; 254 } else { 255 Cand = BotCand; 256 } 257 } 258 } 259 DEBUG( 260 dbgs() << "Picking: "; 261 traceCandidate(Cand); 262 ); 263 264 IsTopNode = Cand.AtTop; 265 return Cand.SU; 266 } 267 268 // This function is mostly cut and pasted from 269 // GenericScheduler::pickNode() 270 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { 271 if (DAG->top() == DAG->bottom()) { 272 assert(Top.Available.empty() && Top.Pending.empty() && 273 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 274 return nullptr; 275 } 276 SUnit *SU; 277 do { 278 if (RegionPolicy.OnlyTopDown) { 279 SU = Top.pickOnlyChoice(); 280 if (!SU) { 281 CandPolicy NoPolicy; 282 TopCand.reset(NoPolicy); 283 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 284 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 285 SU = TopCand.SU; 286 } 287 IsTopNode = true; 288 } else if (RegionPolicy.OnlyBottomUp) { 289 SU = Bot.pickOnlyChoice(); 290 if (!SU) { 291 CandPolicy NoPolicy; 292 BotCand.reset(NoPolicy); 293 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 294 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 295 SU = BotCand.SU; 296 } 297 IsTopNode = false; 298 } else { 299 SU = pickNodeBidirectional(IsTopNode); 300 } 301 } while (SU->isScheduled); 302 303 if (SU->isTopReady()) 304 Top.removeReady(SU); 305 if (SU->isBottomReady()) 306 Bot.removeReady(SU); 307 308 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 309 return SU; 310 } 311 312 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C, 313 std::unique_ptr<MachineSchedStrategy> S) : 314 ScheduleDAGMILive(C, std::move(S)), 315 ST(MF.getSubtarget<SISubtarget>()), 316 MFI(*MF.getInfo<SIMachineFunctionInfo>()), 317 StartingOccupancy(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(), 318 *MF.getFunction())), 319 MinOccupancy(StartingOccupancy), Stage(0) { 320 321 DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n"); 322 } 323 324 void GCNScheduleDAGMILive::schedule() { 325 std::vector<MachineInstr*> Unsched; 326 Unsched.reserve(NumRegionInstrs); 327 for (auto &I : *this) 328 Unsched.push_back(&I); 329 330 std::pair<unsigned, unsigned> PressureBefore; 331 if (LIS) { 332 DEBUG(dbgs() << "Pressure before scheduling:\n"); 333 discoverLiveIns(); 334 PressureBefore = getRealRegPressure(); 335 } 336 337 ScheduleDAGMILive::schedule(); 338 if (Stage == 0) 339 Regions.push_back(std::make_pair(RegionBegin, RegionEnd)); 340 341 if (!LIS) 342 return; 343 344 // Check the results of scheduling. 345 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 346 DEBUG(dbgs() << "Pressure after scheduling:\n"); 347 auto PressureAfter = getRealRegPressure(); 348 LiveIns.clear(); 349 350 if (PressureAfter.first <= S.SGPRCriticalLimit && 351 PressureAfter.second <= S.VGPRCriticalLimit) { 352 DEBUG(dbgs() << "Pressure in desired limits, done.\n"); 353 return; 354 } 355 unsigned WavesAfter = getMaxWaves(PressureAfter.first, 356 PressureAfter.second, MF); 357 unsigned WavesBefore = getMaxWaves(PressureBefore.first, 358 PressureBefore.second, MF); 359 DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore << 360 ", after " << WavesAfter << ".\n"); 361 362 // We could not keep current target occupancy because of the just scheduled 363 // region. Record new occupancy for next scheduling cycle. 364 unsigned NewOccupancy = std::max(WavesAfter, WavesBefore); 365 if (NewOccupancy < MinOccupancy) { 366 MinOccupancy = NewOccupancy; 367 DEBUG(dbgs() << "Occupancy lowered for the function to " 368 << MinOccupancy << ".\n"); 369 } 370 371 if (WavesAfter >= WavesBefore) 372 return; 373 374 DEBUG(dbgs() << "Attempting to revert scheduling.\n"); 375 RegionEnd = RegionBegin; 376 for (MachineInstr *MI : Unsched) { 377 if (MI->getIterator() != RegionEnd) { 378 BB->remove(MI); 379 BB->insert(RegionEnd, MI); 380 LIS->handleMove(*MI, true); 381 } 382 // Reset read-undef flags and update them later. 383 for (auto &Op : MI->operands()) 384 if (Op.isReg() && Op.isDef()) 385 Op.setIsUndef(false); 386 RegisterOperands RegOpers; 387 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 388 if (ShouldTrackLaneMasks) { 389 // Adjust liveness and add missing dead+read-undef flags. 390 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 391 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 392 } else { 393 // Adjust for missing dead-def flags. 394 RegOpers.detectDeadDefs(*MI, *LIS); 395 } 396 RegionEnd = MI->getIterator(); 397 ++RegionEnd; 398 DEBUG(dbgs() << "Scheduling " << *MI); 399 } 400 RegionBegin = Unsched.front()->getIterator(); 401 if (Stage == 0) 402 Regions.back() = std::make_pair(RegionBegin, RegionEnd); 403 404 placeDebugValues(); 405 } 406 407 static inline void setMask(const MachineRegisterInfo &MRI, 408 const SIRegisterInfo *SRI, unsigned Reg, 409 LaneBitmask &PrevMask, LaneBitmask NewMask, 410 unsigned &SGPRs, unsigned &VGPRs) { 411 int NewRegs = countPopulation(NewMask.getAsInteger()) - 412 countPopulation(PrevMask.getAsInteger()); 413 if (SRI->isSGPRReg(MRI, Reg)) 414 SGPRs += NewRegs; 415 if (SRI->isVGPR(MRI, Reg)) 416 VGPRs += NewRegs; 417 assert ((int)SGPRs >= 0 && (int)VGPRs >= 0); 418 PrevMask = NewMask; 419 } 420 421 void GCNScheduleDAGMILive::discoverLiveIns() { 422 unsigned SGPRs = 0; 423 unsigned VGPRs = 0; 424 425 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 426 SlotIndex SI = LIS->getInstructionIndex(*begin()).getBaseIndex(); 427 assert (SI.isValid()); 428 429 DEBUG(dbgs() << "Region live-ins:"); 430 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 431 unsigned Reg = TargetRegisterInfo::index2VirtReg(I); 432 if (MRI.reg_nodbg_empty(Reg)) 433 continue; 434 const LiveInterval &LI = LIS->getInterval(Reg); 435 LaneBitmask LaneMask = LaneBitmask::getNone(); 436 if (LI.hasSubRanges()) { 437 for (const auto &S : LI.subranges()) 438 if (S.liveAt(SI)) 439 LaneMask |= S.LaneMask; 440 } else if (LI.liveAt(SI)) { 441 LaneMask = MRI.getMaxLaneMaskForVReg(Reg); 442 } 443 444 if (LaneMask.any()) { 445 setMask(MRI, SRI, Reg, LiveIns[Reg], LaneMask, SGPRs, VGPRs); 446 447 DEBUG(dbgs() << ' ' << PrintVRegOrUnit(Reg, SRI) << ':' 448 << PrintLaneMask(LiveIns[Reg])); 449 } 450 } 451 452 LiveInPressure = std::make_pair(SGPRs, VGPRs); 453 454 DEBUG(dbgs() << "\nLive-in pressure:\nSGPR = " << SGPRs 455 << "\nVGPR = " << VGPRs << '\n'); 456 } 457 458 std::pair<unsigned, unsigned> 459 GCNScheduleDAGMILive::getRealRegPressure() const { 460 unsigned SGPRs, MaxSGPRs, VGPRs, MaxVGPRs; 461 SGPRs = MaxSGPRs = LiveInPressure.first; 462 VGPRs = MaxVGPRs = LiveInPressure.second; 463 464 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 465 DenseMap<unsigned, LaneBitmask> LiveRegs(LiveIns); 466 467 for (const MachineInstr &MI : *this) { 468 if (MI.isDebugValue()) 469 continue; 470 SlotIndex SI = LIS->getInstructionIndex(MI).getBaseIndex(); 471 assert (SI.isValid()); 472 473 // Remove dead registers or mask bits. 474 for (auto &It : LiveRegs) { 475 if (It.second.none()) 476 continue; 477 const LiveInterval &LI = LIS->getInterval(It.first); 478 if (LI.hasSubRanges()) { 479 for (const auto &S : LI.subranges()) 480 if (!S.liveAt(SI)) 481 setMask(MRI, SRI, It.first, It.second, It.second & ~S.LaneMask, 482 SGPRs, VGPRs); 483 } else if (!LI.liveAt(SI)) { 484 setMask(MRI, SRI, It.first, It.second, LaneBitmask::getNone(), 485 SGPRs, VGPRs); 486 } 487 } 488 489 // Add new registers or mask bits. 490 for (const auto &MO : MI.defs()) { 491 if (!MO.isReg()) 492 continue; 493 unsigned Reg = MO.getReg(); 494 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 495 continue; 496 unsigned SubRegIdx = MO.getSubReg(); 497 LaneBitmask LaneMask = SubRegIdx != 0 498 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 499 : MRI.getMaxLaneMaskForVReg(Reg); 500 LaneBitmask &LM = LiveRegs[Reg]; 501 setMask(MRI, SRI, Reg, LM, LM | LaneMask, SGPRs, VGPRs); 502 } 503 MaxSGPRs = std::max(MaxSGPRs, SGPRs); 504 MaxVGPRs = std::max(MaxVGPRs, VGPRs); 505 } 506 507 DEBUG(dbgs() << "Real region's register pressure:\nSGPR = " << MaxSGPRs 508 << "\nVGPR = " << MaxVGPRs << '\n'); 509 510 return std::make_pair(MaxSGPRs, MaxVGPRs); 511 } 512 513 void GCNScheduleDAGMILive::finalizeSchedule() { 514 // Retry function scheduling if we found resulting occupancy and it is 515 // lower than used for first pass scheduling. This will give more freedom 516 // to schedule low register pressure blocks. 517 // Code is partially copied from MachineSchedulerBase::scheduleRegions(). 518 519 if (!LIS || StartingOccupancy <= MinOccupancy) 520 return; 521 522 DEBUG(dbgs() << "Retrying function scheduling with lowest recorded occupancy " 523 << MinOccupancy << ".\n"); 524 525 Stage++; 526 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 527 S.setTargetOccupancy(MinOccupancy); 528 529 MachineBasicBlock *MBB = nullptr; 530 for (auto Region : Regions) { 531 RegionBegin = Region.first; 532 RegionEnd = Region.second; 533 534 if (RegionBegin->getParent() != MBB) { 535 if (MBB) finishBlock(); 536 MBB = RegionBegin->getParent(); 537 startBlock(MBB); 538 } 539 540 unsigned NumRegionInstrs = std::distance(begin(), end()); 541 enterRegion(MBB, begin(), end(), NumRegionInstrs); 542 543 // Skip empty scheduling regions (0 or 1 schedulable instructions). 544 if (begin() == end() || begin() == std::prev(end())) { 545 exitRegion(); 546 continue; 547 } 548 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 549 DEBUG(dbgs() << MF.getName() 550 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 551 << "\n From: " << *begin() << " To: "; 552 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 553 else dbgs() << "End"; 554 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 555 556 schedule(); 557 558 exitRegion(); 559 } 560 finishBlock(); 561 LiveIns.shrink_and_clear(); 562 } 563