1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This contains a MachineSchedStrategy implementation for maximizing wave 12 /// occupancy on GCN hardware. 13 //===----------------------------------------------------------------------===// 14 15 #include "GCNSchedStrategy.h" 16 #include "AMDGPUSubtarget.h" 17 #include "SIInstrInfo.h" 18 #include "SIMachineFunctionInfo.h" 19 #include "SIRegisterInfo.h" 20 #include "llvm/CodeGen/RegisterClassInfo.h" 21 #include "llvm/Support/MathExtras.h" 22 23 #define DEBUG_TYPE "misched" 24 25 using namespace llvm; 26 27 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( 28 const MachineSchedContext *C) : 29 GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { } 30 31 static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs, 32 const MachineFunction &MF) { 33 34 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 35 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 36 unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs), 37 ST.getOccupancyWithNumVGPRs(VGPRs)); 38 return std::min(MinRegOccupancy, 39 ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(), 40 *MF.getFunction())); 41 } 42 43 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { 44 GenericScheduler::initialize(DAG); 45 46 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 47 48 if (MF != &DAG->MF) 49 TargetOccupancy = 0; 50 MF = &DAG->MF; 51 52 const SISubtarget &ST = MF->getSubtarget<SISubtarget>(); 53 54 // FIXME: This is also necessary, because some passes that run after 55 // scheduling and before regalloc increase register pressure. 56 const int ErrorMargin = 3; 57 58 SGPRExcessLimit = Context->RegClassInfo 59 ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin; 60 VGPRExcessLimit = Context->RegClassInfo 61 ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin; 62 if (TargetOccupancy) { 63 SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true); 64 VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy); 65 } else { 66 SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 67 SRI->getSGPRPressureSet()); 68 VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 69 SRI->getVGPRPressureSet()); 70 } 71 72 SGPRCriticalLimit -= ErrorMargin; 73 VGPRCriticalLimit -= ErrorMargin; 74 } 75 76 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, 77 bool AtTop, const RegPressureTracker &RPTracker, 78 const SIRegisterInfo *SRI, 79 unsigned SGPRPressure, 80 unsigned VGPRPressure) { 81 82 Cand.SU = SU; 83 Cand.AtTop = AtTop; 84 85 // getDownwardPressure() and getUpwardPressure() make temporary changes to 86 // the the tracker, so we need to pass those function a non-const copy. 87 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 88 89 std::vector<unsigned> Pressure; 90 std::vector<unsigned> MaxPressure; 91 92 if (AtTop) 93 TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); 94 else { 95 // FIXME: I think for bottom up scheduling, the register pressure is cached 96 // and can be retrieved by DAG->getPressureDif(SU). 97 TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); 98 } 99 100 unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()]; 101 unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()]; 102 103 // If two instructions increase the pressure of different register sets 104 // by the same amount, the generic scheduler will prefer to schedule the 105 // instruction that increases the set with the least amount of registers, 106 // which in our case would be SGPRs. This is rarely what we want, so 107 // when we report excess/critical register pressure, we do it either 108 // only for VGPRs or only for SGPRs. 109 110 // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. 111 const unsigned MaxVGPRPressureInc = 16; 112 bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; 113 bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; 114 115 116 // FIXME: We have to enter REG-EXCESS before we reach the actual threshold 117 // to increase the likelihood we don't go over the limits. We should improve 118 // the analysis to look through dependencies to find the path with the least 119 // register pressure. 120 121 // We only need to update the RPDelata for instructions that increase 122 // register pressure. Instructions that decrease or keep reg pressure 123 // the same will be marked as RegExcess in tryCandidate() when they 124 // are compared with instructions that increase the register pressure. 125 if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { 126 Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet()); 127 Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); 128 } 129 130 if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { 131 Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet()); 132 Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); 133 } 134 135 // Register pressure is considered 'CRITICAL' if it is approaching a value 136 // that would reduce the wave occupancy for the execution unit. When 137 // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both 138 // has the same cost, so we don't need to prefer one over the other. 139 140 int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; 141 int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; 142 143 if (SGPRDelta >= 0 || VGPRDelta >= 0) { 144 if (SGPRDelta > VGPRDelta) { 145 Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet()); 146 Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); 147 } else { 148 Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet()); 149 Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); 150 } 151 } 152 } 153 154 // This function is mostly cut and pasted from 155 // GenericScheduler::pickNodeFromQueue() 156 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, 157 const CandPolicy &ZonePolicy, 158 const RegPressureTracker &RPTracker, 159 SchedCandidate &Cand) { 160 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 161 ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos(); 162 unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()]; 163 unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()]; 164 ReadyQueue &Q = Zone.Available; 165 for (SUnit *SU : Q) { 166 167 SchedCandidate TryCand(ZonePolicy); 168 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, 169 SGPRPressure, VGPRPressure); 170 // Pass SchedBoundary only when comparing nodes from the same boundary. 171 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 172 GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); 173 if (TryCand.Reason != NoCand) { 174 // Initialize resource delta if needed in case future heuristics query it. 175 if (TryCand.ResDelta == SchedResourceDelta()) 176 TryCand.initResourceDelta(Zone.DAG, SchedModel); 177 Cand.setBest(TryCand); 178 } 179 } 180 } 181 182 static int getBidirectionalReasonRank(GenericSchedulerBase::CandReason Reason) { 183 switch (Reason) { 184 default: 185 return Reason; 186 case GenericSchedulerBase::RegCritical: 187 case GenericSchedulerBase::RegExcess: 188 return -Reason; 189 } 190 } 191 192 // This function is mostly cut and pasted from 193 // GenericScheduler::pickNodeBidirectional() 194 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { 195 // Schedule as far as possible in the direction of no choice. This is most 196 // efficient, but also provides the best heuristics for CriticalPSets. 197 if (SUnit *SU = Bot.pickOnlyChoice()) { 198 IsTopNode = false; 199 return SU; 200 } 201 if (SUnit *SU = Top.pickOnlyChoice()) { 202 IsTopNode = true; 203 return SU; 204 } 205 // Set the bottom-up policy based on the state of the current bottom zone and 206 // the instructions outside the zone, including the top zone. 207 CandPolicy BotPolicy; 208 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 209 // Set the top-down policy based on the state of the current top zone and 210 // the instructions outside the zone, including the bottom zone. 211 CandPolicy TopPolicy; 212 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 213 214 // See if BotCand is still valid (because we previously scheduled from Top). 215 DEBUG(dbgs() << "Picking from Bot:\n"); 216 if (!BotCand.isValid() || BotCand.SU->isScheduled || 217 BotCand.Policy != BotPolicy) { 218 BotCand.reset(CandPolicy()); 219 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 220 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 221 } else { 222 DEBUG(traceCandidate(BotCand)); 223 } 224 225 // Check if the top Q has a better candidate. 226 DEBUG(dbgs() << "Picking from Top:\n"); 227 if (!TopCand.isValid() || TopCand.SU->isScheduled || 228 TopCand.Policy != TopPolicy) { 229 TopCand.reset(CandPolicy()); 230 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 231 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 232 } else { 233 DEBUG(traceCandidate(TopCand)); 234 } 235 236 // Pick best from BotCand and TopCand. 237 DEBUG( 238 dbgs() << "Top Cand: "; 239 traceCandidate(TopCand); 240 dbgs() << "Bot Cand: "; 241 traceCandidate(BotCand); 242 ); 243 SchedCandidate Cand; 244 if (TopCand.Reason == BotCand.Reason) { 245 Cand = BotCand; 246 GenericSchedulerBase::CandReason TopReason = TopCand.Reason; 247 TopCand.Reason = NoCand; 248 GenericScheduler::tryCandidate(Cand, TopCand, nullptr); 249 if (TopCand.Reason != NoCand) { 250 Cand.setBest(TopCand); 251 } else { 252 TopCand.Reason = TopReason; 253 } 254 } else { 255 if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) { 256 Cand = TopCand; 257 } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) { 258 Cand = BotCand; 259 } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) { 260 Cand = TopCand; 261 } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) { 262 Cand = BotCand; 263 } else { 264 int TopRank = getBidirectionalReasonRank(TopCand.Reason); 265 int BotRank = getBidirectionalReasonRank(BotCand.Reason); 266 if (TopRank > BotRank) { 267 Cand = TopCand; 268 } else { 269 Cand = BotCand; 270 } 271 } 272 } 273 DEBUG( 274 dbgs() << "Picking: "; 275 traceCandidate(Cand); 276 ); 277 278 IsTopNode = Cand.AtTop; 279 return Cand.SU; 280 } 281 282 // This function is mostly cut and pasted from 283 // GenericScheduler::pickNode() 284 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { 285 if (DAG->top() == DAG->bottom()) { 286 assert(Top.Available.empty() && Top.Pending.empty() && 287 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 288 return nullptr; 289 } 290 SUnit *SU; 291 do { 292 if (RegionPolicy.OnlyTopDown) { 293 SU = Top.pickOnlyChoice(); 294 if (!SU) { 295 CandPolicy NoPolicy; 296 TopCand.reset(NoPolicy); 297 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 298 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 299 SU = TopCand.SU; 300 } 301 IsTopNode = true; 302 } else if (RegionPolicy.OnlyBottomUp) { 303 SU = Bot.pickOnlyChoice(); 304 if (!SU) { 305 CandPolicy NoPolicy; 306 BotCand.reset(NoPolicy); 307 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 308 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 309 SU = BotCand.SU; 310 } 311 IsTopNode = false; 312 } else { 313 SU = pickNodeBidirectional(IsTopNode); 314 } 315 } while (SU->isScheduled); 316 317 if (SU->isTopReady()) 318 Top.removeReady(SU); 319 if (SU->isBottomReady()) 320 Bot.removeReady(SU); 321 322 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 323 return SU; 324 } 325 326 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C, 327 std::unique_ptr<MachineSchedStrategy> S) : 328 ScheduleDAGMILive(C, std::move(S)), 329 ST(MF.getSubtarget<SISubtarget>()), 330 MFI(*MF.getInfo<SIMachineFunctionInfo>()), 331 StartingOccupancy(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(), 332 *MF.getFunction())), 333 MinOccupancy(StartingOccupancy), Stage(0) { 334 335 DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n"); 336 } 337 338 void GCNScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 339 MachineBasicBlock::iterator begin, 340 MachineBasicBlock::iterator end, 341 unsigned regioninstrs) { 342 ScheduleDAGMILive::enterRegion(bb, begin, end, regioninstrs); 343 344 if (Stage == 0) 345 Regions.push_back(std::make_pair(begin, end)); 346 } 347 348 void GCNScheduleDAGMILive::schedule() { 349 std::vector<MachineInstr*> Unsched; 350 Unsched.reserve(NumRegionInstrs); 351 for (auto &I : *this) 352 Unsched.push_back(&I); 353 354 std::pair<unsigned, unsigned> PressureBefore; 355 if (LIS) { 356 DEBUG(dbgs() << "Pressure before scheduling:\n"); 357 discoverLiveIns(); 358 PressureBefore = getRealRegPressure(); 359 } 360 361 ScheduleDAGMILive::schedule(); 362 if (!LIS) 363 return; 364 365 // Check the results of scheduling. 366 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 367 DEBUG(dbgs() << "Pressure after scheduling:\n"); 368 auto PressureAfter = getRealRegPressure(); 369 LiveIns.clear(); 370 371 if (PressureAfter.first <= S.SGPRCriticalLimit && 372 PressureAfter.second <= S.VGPRCriticalLimit) { 373 DEBUG(dbgs() << "Pressure in desired limits, done.\n"); 374 return; 375 } 376 unsigned WavesAfter = getMaxWaves(PressureAfter.first, 377 PressureAfter.second, MF); 378 unsigned WavesBefore = getMaxWaves(PressureBefore.first, 379 PressureBefore.second, MF); 380 DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore << 381 ", after " << WavesAfter << ".\n"); 382 383 // We could not keep current target occupancy because of the just scheduled 384 // region. Record new occupancy for next scheduling cycle. 385 unsigned NewOccupancy = std::max(WavesAfter, WavesBefore); 386 if (NewOccupancy < MinOccupancy) { 387 MinOccupancy = NewOccupancy; 388 DEBUG(dbgs() << "Occupancy lowered for the function to " 389 << MinOccupancy << ".\n"); 390 } 391 392 if (WavesAfter >= WavesBefore) 393 return; 394 395 DEBUG(dbgs() << "Attempting to revert scheduling.\n"); 396 RegionEnd = RegionBegin; 397 for (MachineInstr *MI : Unsched) { 398 if (MI->getIterator() != RegionEnd) { 399 BB->remove(MI); 400 BB->insert(RegionEnd, MI); 401 LIS->handleMove(*MI, true); 402 } 403 // Reset read-undef flags and update them later. 404 for (auto &Op : MI->operands()) 405 if (Op.isReg() && Op.isDef()) 406 Op.setIsUndef(false); 407 RegisterOperands RegOpers; 408 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 409 if (ShouldTrackLaneMasks) { 410 // Adjust liveness and add missing dead+read-undef flags. 411 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 412 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 413 } else { 414 // Adjust for missing dead-def flags. 415 RegOpers.detectDeadDefs(*MI, *LIS); 416 } 417 RegionEnd = MI->getIterator(); 418 ++RegionEnd; 419 DEBUG(dbgs() << "Scheduling " << *MI); 420 } 421 RegionBegin = Unsched.front()->getIterator(); 422 423 placeDebugValues(); 424 } 425 426 static inline void setMask(const MachineRegisterInfo &MRI, 427 const SIRegisterInfo *SRI, unsigned Reg, 428 LaneBitmask &PrevMask, LaneBitmask NewMask, 429 unsigned &SGPRs, unsigned &VGPRs) { 430 int NewRegs = countPopulation(NewMask.getAsInteger()) - 431 countPopulation(PrevMask.getAsInteger()); 432 if (SRI->isSGPRReg(MRI, Reg)) 433 SGPRs += NewRegs; 434 if (SRI->isVGPR(MRI, Reg)) 435 VGPRs += NewRegs; 436 assert ((int)SGPRs >= 0 && (int)VGPRs >= 0); 437 PrevMask = NewMask; 438 } 439 440 void GCNScheduleDAGMILive::discoverLiveIns() { 441 unsigned SGPRs = 0; 442 unsigned VGPRs = 0; 443 444 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 445 SlotIndex SI = LIS->getInstructionIndex(*begin()).getBaseIndex(); 446 assert (SI.isValid()); 447 448 DEBUG(dbgs() << "Region live-ins:"); 449 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 450 unsigned Reg = TargetRegisterInfo::index2VirtReg(I); 451 if (MRI.reg_nodbg_empty(Reg)) 452 continue; 453 const LiveInterval &LI = LIS->getInterval(Reg); 454 LaneBitmask LaneMask = LaneBitmask::getNone(); 455 if (LI.hasSubRanges()) { 456 for (const auto &S : LI.subranges()) 457 if (S.liveAt(SI)) 458 LaneMask |= S.LaneMask; 459 } else if (LI.liveAt(SI)) { 460 LaneMask = MRI.getMaxLaneMaskForVReg(Reg); 461 } 462 463 if (LaneMask.any()) { 464 setMask(MRI, SRI, Reg, LiveIns[Reg], LaneMask, SGPRs, VGPRs); 465 466 DEBUG(dbgs() << ' ' << PrintVRegOrUnit(Reg, SRI) << ':' 467 << PrintLaneMask(LiveIns[Reg])); 468 } 469 } 470 471 LiveInPressure = std::make_pair(SGPRs, VGPRs); 472 473 DEBUG(dbgs() << "\nLive-in pressure:\nSGPR = " << SGPRs 474 << "\nVGPR = " << VGPRs << '\n'); 475 } 476 477 std::pair<unsigned, unsigned> 478 GCNScheduleDAGMILive::getRealRegPressure() const { 479 unsigned SGPRs, MaxSGPRs, VGPRs, MaxVGPRs; 480 SGPRs = MaxSGPRs = LiveInPressure.first; 481 VGPRs = MaxVGPRs = LiveInPressure.second; 482 483 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 484 DenseMap<unsigned, LaneBitmask> LiveRegs(LiveIns); 485 486 for (const MachineInstr &MI : *this) { 487 if (MI.isDebugValue()) 488 continue; 489 SlotIndex SI = LIS->getInstructionIndex(MI).getBaseIndex(); 490 assert (SI.isValid()); 491 492 // Remove dead registers or mask bits. 493 for (auto &It : LiveRegs) { 494 if (It.second.none()) 495 continue; 496 const LiveInterval &LI = LIS->getInterval(It.first); 497 if (LI.hasSubRanges()) { 498 for (const auto &S : LI.subranges()) 499 if (!S.liveAt(SI)) 500 setMask(MRI, SRI, It.first, It.second, It.second & ~S.LaneMask, 501 SGPRs, VGPRs); 502 } else if (!LI.liveAt(SI)) { 503 setMask(MRI, SRI, It.first, It.second, LaneBitmask::getNone(), 504 SGPRs, VGPRs); 505 } 506 } 507 508 // Add new registers or mask bits. 509 for (const auto &MO : MI.defs()) { 510 if (!MO.isReg()) 511 continue; 512 unsigned Reg = MO.getReg(); 513 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 514 continue; 515 unsigned SubRegIdx = MO.getSubReg(); 516 LaneBitmask LaneMask = SubRegIdx != 0 517 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 518 : MRI.getMaxLaneMaskForVReg(Reg); 519 LaneBitmask &LM = LiveRegs[Reg]; 520 setMask(MRI, SRI, Reg, LM, LM | LaneMask, SGPRs, VGPRs); 521 } 522 MaxSGPRs = std::max(MaxSGPRs, SGPRs); 523 MaxVGPRs = std::max(MaxVGPRs, VGPRs); 524 } 525 526 DEBUG(dbgs() << "Real region's register pressure:\nSGPR = " << MaxSGPRs 527 << "\nVGPR = " << MaxVGPRs << '\n'); 528 529 return std::make_pair(MaxSGPRs, MaxVGPRs); 530 } 531 532 void GCNScheduleDAGMILive::finalizeSchedule() { 533 // Retry function scheduling if we found resulting occupancy and it is 534 // lower than used for first pass scheduling. This will give more freedom 535 // to schedule low register pressure blocks. 536 // Code is partially copied from MachineSchedulerBase::scheduleRegions(). 537 538 if (!LIS || StartingOccupancy <= MinOccupancy) 539 return; 540 541 DEBUG(dbgs() << "Retrying function scheduling with lowest recorded occupancy " 542 << MinOccupancy << ".\n"); 543 544 Stage++; 545 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 546 S.TargetOccupancy = MinOccupancy; 547 548 MachineBasicBlock *MBB = nullptr; 549 for (auto Region : Regions) { 550 RegionBegin = Region.first; 551 RegionEnd = Region.second; 552 553 if (RegionBegin->getParent() != MBB) { 554 if (MBB) finishBlock(); 555 MBB = RegionBegin->getParent(); 556 startBlock(MBB); 557 } 558 559 unsigned NumRegionInstrs = std::distance(begin(), end()); 560 enterRegion(MBB, begin(), end(), NumRegionInstrs); 561 562 // Skip empty scheduling regions (0 or 1 schedulable instructions). 563 if (begin() == end() || begin() == std::prev(end())) { 564 exitRegion(); 565 continue; 566 } 567 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 568 DEBUG(dbgs() << MF.getName() 569 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 570 << "\n From: " << *begin() << " To: "; 571 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 572 else dbgs() << "End"; 573 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 574 575 schedule(); 576 577 exitRegion(); 578 } 579 finishBlock(); 580 LiveIns.shrink_and_clear(); 581 } 582