1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This contains a MachineSchedStrategy implementation for maximizing wave
12 /// occupancy on GCN hardware.
13 //===----------------------------------------------------------------------===//
14 
15 #include "GCNSchedStrategy.h"
16 #include "AMDGPUSubtarget.h"
17 #include "SIInstrInfo.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/CodeGen/RegisterClassInfo.h"
21 #include "llvm/Support/MathExtras.h"
22 
23 #define DEBUG_TYPE "misched"
24 
25 using namespace llvm;
26 
27 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
28     const MachineSchedContext *C) :
29     GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { }
30 
31 static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs,
32                             const MachineFunction &MF) {
33 
34   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
35   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
36   unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs),
37                                       ST.getOccupancyWithNumVGPRs(VGPRs));
38   return std::min(MinRegOccupancy,
39                   ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
40                                                   *MF.getFunction()));
41 }
42 
43 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
44   GenericScheduler::initialize(DAG);
45 
46   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
47 
48   if (MF != &DAG->MF)
49     TargetOccupancy = 0;
50   MF = &DAG->MF;
51 
52   const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
53 
54   // FIXME: This is also necessary, because some passes that run after
55   // scheduling and before regalloc increase register pressure.
56   const int ErrorMargin = 3;
57 
58   SGPRExcessLimit = Context->RegClassInfo
59     ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
60   VGPRExcessLimit = Context->RegClassInfo
61     ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
62   if (TargetOccupancy) {
63     SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
64     VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
65   } else {
66     SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
67                                                     SRI->getSGPRPressureSet());
68     VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
69                                                     SRI->getVGPRPressureSet());
70   }
71 
72   SGPRCriticalLimit -= ErrorMargin;
73   VGPRCriticalLimit -= ErrorMargin;
74 }
75 
76 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
77                                      bool AtTop, const RegPressureTracker &RPTracker,
78                                      const SIRegisterInfo *SRI,
79                                      unsigned SGPRPressure,
80                                      unsigned VGPRPressure) {
81 
82   Cand.SU = SU;
83   Cand.AtTop = AtTop;
84 
85   // getDownwardPressure() and getUpwardPressure() make temporary changes to
86   // the the tracker, so we need to pass those function a non-const copy.
87   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
88 
89   std::vector<unsigned> Pressure;
90   std::vector<unsigned> MaxPressure;
91 
92   if (AtTop)
93     TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
94   else {
95     // FIXME: I think for bottom up scheduling, the register pressure is cached
96     // and can be retrieved by DAG->getPressureDif(SU).
97     TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
98   }
99 
100   unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
101   unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
102 
103   // If two instructions increase the pressure of different register sets
104   // by the same amount, the generic scheduler will prefer to schedule the
105   // instruction that increases the set with the least amount of registers,
106   // which in our case would be SGPRs.  This is rarely what we want, so
107   // when we report excess/critical register pressure, we do it either
108   // only for VGPRs or only for SGPRs.
109 
110   // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
111   const unsigned MaxVGPRPressureInc = 16;
112   bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
113   bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
114 
115 
116   // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
117   // to increase the likelihood we don't go over the limits.  We should improve
118   // the analysis to look through dependencies to find the path with the least
119   // register pressure.
120 
121   // We only need to update the RPDelata for instructions that increase
122   // register pressure.  Instructions that decrease or keep reg pressure
123   // the same will be marked as RegExcess in tryCandidate() when they
124   // are compared with instructions that increase the register pressure.
125   if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
126     Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
127     Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
128   }
129 
130   if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
131     Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
132     Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
133   }
134 
135   // Register pressure is considered 'CRITICAL' if it is approaching a value
136   // that would reduce the wave occupancy for the execution unit.  When
137   // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
138   // has the same cost, so we don't need to prefer one over the other.
139 
140   int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
141   int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
142 
143   if (SGPRDelta >= 0 || VGPRDelta >= 0) {
144     if (SGPRDelta > VGPRDelta) {
145       Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
146       Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
147     } else {
148       Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
149       Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
150     }
151   }
152 }
153 
154 // This function is mostly cut and pasted from
155 // GenericScheduler::pickNodeFromQueue()
156 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
157                                          const CandPolicy &ZonePolicy,
158                                          const RegPressureTracker &RPTracker,
159                                          SchedCandidate &Cand) {
160   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
161   ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
162   unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
163   unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
164   ReadyQueue &Q = Zone.Available;
165   for (SUnit *SU : Q) {
166 
167     SchedCandidate TryCand(ZonePolicy);
168     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
169                   SGPRPressure, VGPRPressure);
170     // Pass SchedBoundary only when comparing nodes from the same boundary.
171     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
172     GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
173     if (TryCand.Reason != NoCand) {
174       // Initialize resource delta if needed in case future heuristics query it.
175       if (TryCand.ResDelta == SchedResourceDelta())
176         TryCand.initResourceDelta(Zone.DAG, SchedModel);
177       Cand.setBest(TryCand);
178     }
179   }
180 }
181 
182 static int getBidirectionalReasonRank(GenericSchedulerBase::CandReason Reason) {
183   switch (Reason) {
184   default:
185     return Reason;
186   case GenericSchedulerBase::RegCritical:
187   case GenericSchedulerBase::RegExcess:
188     return -Reason;
189  }
190 }
191 
192 // This function is mostly cut and pasted from
193 // GenericScheduler::pickNodeBidirectional()
194 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
195   // Schedule as far as possible in the direction of no choice. This is most
196   // efficient, but also provides the best heuristics for CriticalPSets.
197   if (SUnit *SU = Bot.pickOnlyChoice()) {
198     IsTopNode = false;
199     return SU;
200   }
201   if (SUnit *SU = Top.pickOnlyChoice()) {
202     IsTopNode = true;
203     return SU;
204   }
205   // Set the bottom-up policy based on the state of the current bottom zone and
206   // the instructions outside the zone, including the top zone.
207   CandPolicy BotPolicy;
208   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
209   // Set the top-down policy based on the state of the current top zone and
210   // the instructions outside the zone, including the bottom zone.
211   CandPolicy TopPolicy;
212   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
213 
214   // See if BotCand is still valid (because we previously scheduled from Top).
215   DEBUG(dbgs() << "Picking from Bot:\n");
216   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
217       BotCand.Policy != BotPolicy) {
218     BotCand.reset(CandPolicy());
219     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
220     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
221   } else {
222     DEBUG(traceCandidate(BotCand));
223   }
224 
225   // Check if the top Q has a better candidate.
226   DEBUG(dbgs() << "Picking from Top:\n");
227   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
228       TopCand.Policy != TopPolicy) {
229     TopCand.reset(CandPolicy());
230     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
231     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
232   } else {
233     DEBUG(traceCandidate(TopCand));
234   }
235 
236   // Pick best from BotCand and TopCand.
237   DEBUG(
238     dbgs() << "Top Cand: ";
239     traceCandidate(TopCand);
240     dbgs() << "Bot Cand: ";
241     traceCandidate(BotCand);
242   );
243   SchedCandidate Cand;
244   if (TopCand.Reason == BotCand.Reason) {
245     Cand = BotCand;
246     GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
247     TopCand.Reason = NoCand;
248     GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
249     if (TopCand.Reason != NoCand) {
250       Cand.setBest(TopCand);
251     } else {
252       TopCand.Reason = TopReason;
253     }
254   } else {
255     if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
256       Cand = TopCand;
257     } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
258       Cand = BotCand;
259     } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
260       Cand = TopCand;
261     } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
262       Cand = BotCand;
263     } else {
264       int TopRank = getBidirectionalReasonRank(TopCand.Reason);
265       int BotRank = getBidirectionalReasonRank(BotCand.Reason);
266       if (TopRank > BotRank) {
267         Cand = TopCand;
268       } else {
269         Cand = BotCand;
270       }
271     }
272   }
273   DEBUG(
274     dbgs() << "Picking: ";
275     traceCandidate(Cand);
276   );
277 
278   IsTopNode = Cand.AtTop;
279   return Cand.SU;
280 }
281 
282 // This function is mostly cut and pasted from
283 // GenericScheduler::pickNode()
284 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
285   if (DAG->top() == DAG->bottom()) {
286     assert(Top.Available.empty() && Top.Pending.empty() &&
287            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
288     return nullptr;
289   }
290   SUnit *SU;
291   do {
292     if (RegionPolicy.OnlyTopDown) {
293       SU = Top.pickOnlyChoice();
294       if (!SU) {
295         CandPolicy NoPolicy;
296         TopCand.reset(NoPolicy);
297         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
298         assert(TopCand.Reason != NoCand && "failed to find a candidate");
299         SU = TopCand.SU;
300       }
301       IsTopNode = true;
302     } else if (RegionPolicy.OnlyBottomUp) {
303       SU = Bot.pickOnlyChoice();
304       if (!SU) {
305         CandPolicy NoPolicy;
306         BotCand.reset(NoPolicy);
307         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
308         assert(BotCand.Reason != NoCand && "failed to find a candidate");
309         SU = BotCand.SU;
310       }
311       IsTopNode = false;
312     } else {
313       SU = pickNodeBidirectional(IsTopNode);
314     }
315   } while (SU->isScheduled);
316 
317   if (SU->isTopReady())
318     Top.removeReady(SU);
319   if (SU->isBottomReady())
320     Bot.removeReady(SU);
321 
322   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
323   return SU;
324 }
325 
326 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
327                         std::unique_ptr<MachineSchedStrategy> S) :
328   ScheduleDAGMILive(C, std::move(S)),
329   ST(MF.getSubtarget<SISubtarget>()),
330   MFI(*MF.getInfo<SIMachineFunctionInfo>()),
331   StartingOccupancy(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(),
332                                                     *MF.getFunction())),
333   MinOccupancy(StartingOccupancy), Stage(0) {
334 
335   DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
336 }
337 
338 void GCNScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
339                                        MachineBasicBlock::iterator begin,
340                                        MachineBasicBlock::iterator end,
341                                        unsigned regioninstrs) {
342   ScheduleDAGMILive::enterRegion(bb, begin, end, regioninstrs);
343 
344   if (Stage == 0)
345     Regions.push_back(std::make_pair(begin, end));
346 }
347 
348 void GCNScheduleDAGMILive::schedule() {
349   std::vector<MachineInstr*> Unsched;
350   Unsched.reserve(NumRegionInstrs);
351   for (auto &I : *this)
352     Unsched.push_back(&I);
353 
354   std::pair<unsigned, unsigned> PressureBefore;
355   if (LIS) {
356     DEBUG(dbgs() << "Pressure before scheduling:\n");
357     discoverLiveIns();
358     PressureBefore = getRealRegPressure();
359   }
360 
361   ScheduleDAGMILive::schedule();
362   if (!LIS)
363     return;
364 
365   // Check the results of scheduling.
366   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
367   DEBUG(dbgs() << "Pressure after scheduling:\n");
368   auto PressureAfter = getRealRegPressure();
369   LiveIns.clear();
370 
371   if (PressureAfter.first <= S.SGPRCriticalLimit &&
372       PressureAfter.second <= S.VGPRCriticalLimit) {
373     DEBUG(dbgs() << "Pressure in desired limits, done.\n");
374     return;
375   }
376   unsigned WavesAfter = getMaxWaves(PressureAfter.first,
377                                     PressureAfter.second, MF);
378   unsigned WavesBefore = getMaxWaves(PressureBefore.first,
379                                       PressureBefore.second, MF);
380   DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore <<
381                   ", after " << WavesAfter << ".\n");
382 
383   // We could not keep current target occupancy because of the just scheduled
384   // region. Record new occupancy for next scheduling cycle.
385   unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
386   if (NewOccupancy < MinOccupancy) {
387     MinOccupancy = NewOccupancy;
388     DEBUG(dbgs() << "Occupancy lowered for the function to "
389                  << MinOccupancy << ".\n");
390   }
391 
392   if (WavesAfter >= WavesBefore)
393     return;
394 
395   DEBUG(dbgs() << "Attempting to revert scheduling.\n");
396   RegionEnd = RegionBegin;
397   for (MachineInstr *MI : Unsched) {
398     if (MI->getIterator() != RegionEnd) {
399       BB->remove(MI);
400       BB->insert(RegionEnd, MI);
401       LIS->handleMove(*MI, true);
402     }
403     // Reset read-undef flags and update them later.
404     for (auto &Op : MI->operands())
405       if (Op.isReg() && Op.isDef())
406         Op.setIsUndef(false);
407     RegisterOperands RegOpers;
408     RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
409     if (ShouldTrackLaneMasks) {
410       // Adjust liveness and add missing dead+read-undef flags.
411       SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
412       RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
413     } else {
414       // Adjust for missing dead-def flags.
415       RegOpers.detectDeadDefs(*MI, *LIS);
416     }
417     RegionEnd = MI->getIterator();
418     ++RegionEnd;
419     DEBUG(dbgs() << "Scheduling " << *MI);
420   }
421   RegionBegin = Unsched.front()->getIterator();
422 
423   placeDebugValues();
424 }
425 
426 static inline void setMask(const MachineRegisterInfo &MRI,
427                            const SIRegisterInfo *SRI, unsigned Reg,
428                            LaneBitmask &PrevMask, LaneBitmask NewMask,
429                            unsigned &SGPRs, unsigned &VGPRs) {
430   int NewRegs = countPopulation(NewMask.getAsInteger()) -
431                 countPopulation(PrevMask.getAsInteger());
432   if (SRI->isSGPRReg(MRI, Reg))
433     SGPRs += NewRegs;
434   if (SRI->isVGPR(MRI, Reg))
435     VGPRs += NewRegs;
436   assert ((int)SGPRs >= 0 && (int)VGPRs >= 0);
437   PrevMask = NewMask;
438 }
439 
440 void GCNScheduleDAGMILive::discoverLiveIns() {
441   unsigned SGPRs = 0;
442   unsigned VGPRs = 0;
443 
444   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
445   SlotIndex SI = LIS->getInstructionIndex(*begin()).getBaseIndex();
446   assert (SI.isValid());
447 
448   DEBUG(dbgs() << "Region live-ins:");
449   for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
450     unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
451     if (MRI.reg_nodbg_empty(Reg))
452       continue;
453     const LiveInterval &LI = LIS->getInterval(Reg);
454     LaneBitmask LaneMask = LaneBitmask::getNone();
455     if (LI.hasSubRanges()) {
456       for (const auto &S : LI.subranges())
457         if (S.liveAt(SI))
458           LaneMask |= S.LaneMask;
459     } else if (LI.liveAt(SI)) {
460       LaneMask = MRI.getMaxLaneMaskForVReg(Reg);
461     }
462 
463     if (LaneMask.any()) {
464       setMask(MRI, SRI, Reg, LiveIns[Reg], LaneMask, SGPRs, VGPRs);
465 
466       DEBUG(dbgs() << ' ' << PrintVRegOrUnit(Reg, SRI) << ':'
467                    << PrintLaneMask(LiveIns[Reg]));
468     }
469   }
470 
471   LiveInPressure = std::make_pair(SGPRs, VGPRs);
472 
473   DEBUG(dbgs() << "\nLive-in pressure:\nSGPR = " << SGPRs
474                << "\nVGPR = " << VGPRs << '\n');
475 }
476 
477 std::pair<unsigned, unsigned>
478 GCNScheduleDAGMILive::getRealRegPressure() const {
479   unsigned SGPRs, MaxSGPRs, VGPRs, MaxVGPRs;
480   SGPRs = MaxSGPRs = LiveInPressure.first;
481   VGPRs = MaxVGPRs = LiveInPressure.second;
482 
483   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
484   DenseMap<unsigned, LaneBitmask> LiveRegs(LiveIns);
485 
486   for (const MachineInstr &MI : *this) {
487     if (MI.isDebugValue())
488       continue;
489     SlotIndex SI = LIS->getInstructionIndex(MI).getBaseIndex();
490     assert (SI.isValid());
491 
492     // Remove dead registers or mask bits.
493     for (auto &It : LiveRegs) {
494       if (It.second.none())
495         continue;
496       const LiveInterval &LI = LIS->getInterval(It.first);
497       if (LI.hasSubRanges()) {
498         for (const auto &S : LI.subranges())
499           if (!S.liveAt(SI))
500             setMask(MRI, SRI, It.first, It.second, It.second & ~S.LaneMask,
501                     SGPRs, VGPRs);
502       } else if (!LI.liveAt(SI)) {
503         setMask(MRI, SRI, It.first, It.second, LaneBitmask::getNone(),
504                 SGPRs, VGPRs);
505       }
506     }
507 
508     // Add new registers or mask bits.
509     for (const auto &MO : MI.defs()) {
510       if (!MO.isReg())
511         continue;
512       unsigned Reg = MO.getReg();
513       if (!TargetRegisterInfo::isVirtualRegister(Reg))
514         continue;
515       unsigned SubRegIdx = MO.getSubReg();
516       LaneBitmask LaneMask = SubRegIdx != 0
517                              ? TRI->getSubRegIndexLaneMask(SubRegIdx)
518                              : MRI.getMaxLaneMaskForVReg(Reg);
519       LaneBitmask &LM = LiveRegs[Reg];
520       setMask(MRI, SRI, Reg, LM, LM | LaneMask, SGPRs, VGPRs);
521     }
522     MaxSGPRs = std::max(MaxSGPRs, SGPRs);
523     MaxVGPRs = std::max(MaxVGPRs, VGPRs);
524   }
525 
526   DEBUG(dbgs() << "Real region's register pressure:\nSGPR = " << MaxSGPRs
527                << "\nVGPR = " << MaxVGPRs << '\n');
528 
529   return std::make_pair(MaxSGPRs, MaxVGPRs);
530 }
531 
532 void GCNScheduleDAGMILive::finalizeSchedule() {
533   // Retry function scheduling if we found resulting occupancy and it is
534   // lower than used for first pass scheduling. This will give more freedom
535   // to schedule low register pressure blocks.
536   // Code is partially copied from MachineSchedulerBase::scheduleRegions().
537 
538   if (!LIS || StartingOccupancy <= MinOccupancy)
539     return;
540 
541   DEBUG(dbgs() << "Retrying function scheduling with lowest recorded occupancy "
542                << MinOccupancy << ".\n");
543 
544   Stage++;
545   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
546   S.TargetOccupancy = MinOccupancy;
547 
548   MachineBasicBlock *MBB = nullptr;
549   for (auto Region : Regions) {
550     RegionBegin = Region.first;
551     RegionEnd = Region.second;
552 
553     if (RegionBegin->getParent() != MBB) {
554       if (MBB) finishBlock();
555       MBB = RegionBegin->getParent();
556       startBlock(MBB);
557     }
558 
559     unsigned NumRegionInstrs = std::distance(begin(), end());
560     enterRegion(MBB, begin(), end(), NumRegionInstrs);
561 
562     // Skip empty scheduling regions (0 or 1 schedulable instructions).
563     if (begin() == end() || begin() == std::prev(end())) {
564       exitRegion();
565       continue;
566     }
567     DEBUG(dbgs() << "********** MI Scheduling **********\n");
568     DEBUG(dbgs() << MF.getName()
569           << ":BB#" << MBB->getNumber() << " " << MBB->getName()
570           << "\n  From: " << *begin() << "    To: ";
571           if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
572           else dbgs() << "End";
573           dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
574 
575     schedule();
576 
577     exitRegion();
578   }
579   finishBlock();
580   LiveIns.shrink_and_clear();
581 }
582