1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This contains a MachineSchedStrategy implementation for maximizing wave
12 /// occupancy on GCN hardware.
13 //===----------------------------------------------------------------------===//
14 
15 #include "GCNSchedStrategy.h"
16 #include "AMDGPUSubtarget.h"
17 #include "SIInstrInfo.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/CodeGen/RegisterClassInfo.h"
21 #include "llvm/Support/MathExtras.h"
22 
23 #define DEBUG_TYPE "machine-scheduler"
24 
25 using namespace llvm;
26 
27 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
28     const MachineSchedContext *C) :
29     GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { }
30 
31 static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs,
32                             const MachineFunction &MF) {
33 
34   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
35   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
36   unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs),
37                                       ST.getOccupancyWithNumVGPRs(VGPRs));
38   return std::min(MinRegOccupancy,
39                   ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
40                                                   MF.getFunction()));
41 }
42 
43 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
44   GenericScheduler::initialize(DAG);
45 
46   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
47 
48   MF = &DAG->MF;
49 
50   const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
51 
52   // FIXME: This is also necessary, because some passes that run after
53   // scheduling and before regalloc increase register pressure.
54   const int ErrorMargin = 3;
55 
56   SGPRExcessLimit = Context->RegClassInfo
57     ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
58   VGPRExcessLimit = Context->RegClassInfo
59     ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
60   if (TargetOccupancy) {
61     SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
62     VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
63   } else {
64     SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
65                                                     SRI->getSGPRPressureSet());
66     VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
67                                                     SRI->getVGPRPressureSet());
68   }
69 
70   SGPRCriticalLimit -= ErrorMargin;
71   VGPRCriticalLimit -= ErrorMargin;
72 }
73 
74 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
75                                      bool AtTop, const RegPressureTracker &RPTracker,
76                                      const SIRegisterInfo *SRI,
77                                      unsigned SGPRPressure,
78                                      unsigned VGPRPressure) {
79 
80   Cand.SU = SU;
81   Cand.AtTop = AtTop;
82 
83   // getDownwardPressure() and getUpwardPressure() make temporary changes to
84   // the tracker, so we need to pass those function a non-const copy.
85   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
86 
87   std::vector<unsigned> Pressure;
88   std::vector<unsigned> MaxPressure;
89 
90   if (AtTop)
91     TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
92   else {
93     // FIXME: I think for bottom up scheduling, the register pressure is cached
94     // and can be retrieved by DAG->getPressureDif(SU).
95     TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
96   }
97 
98   unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
99   unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
100 
101   // If two instructions increase the pressure of different register sets
102   // by the same amount, the generic scheduler will prefer to schedule the
103   // instruction that increases the set with the least amount of registers,
104   // which in our case would be SGPRs.  This is rarely what we want, so
105   // when we report excess/critical register pressure, we do it either
106   // only for VGPRs or only for SGPRs.
107 
108   // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
109   const unsigned MaxVGPRPressureInc = 16;
110   bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
111   bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
112 
113 
114   // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
115   // to increase the likelihood we don't go over the limits.  We should improve
116   // the analysis to look through dependencies to find the path with the least
117   // register pressure.
118 
119   // We only need to update the RPDelata for instructions that increase
120   // register pressure.  Instructions that decrease or keep reg pressure
121   // the same will be marked as RegExcess in tryCandidate() when they
122   // are compared with instructions that increase the register pressure.
123   if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
124     Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
125     Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
126   }
127 
128   if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
129     Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
130     Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
131   }
132 
133   // Register pressure is considered 'CRITICAL' if it is approaching a value
134   // that would reduce the wave occupancy for the execution unit.  When
135   // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
136   // has the same cost, so we don't need to prefer one over the other.
137 
138   int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
139   int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
140 
141   if (SGPRDelta >= 0 || VGPRDelta >= 0) {
142     if (SGPRDelta > VGPRDelta) {
143       Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
144       Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
145     } else {
146       Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
147       Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
148     }
149   }
150 }
151 
152 // This function is mostly cut and pasted from
153 // GenericScheduler::pickNodeFromQueue()
154 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
155                                          const CandPolicy &ZonePolicy,
156                                          const RegPressureTracker &RPTracker,
157                                          SchedCandidate &Cand) {
158   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
159   ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
160   unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
161   unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
162   ReadyQueue &Q = Zone.Available;
163   for (SUnit *SU : Q) {
164 
165     SchedCandidate TryCand(ZonePolicy);
166     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
167                   SGPRPressure, VGPRPressure);
168     // Pass SchedBoundary only when comparing nodes from the same boundary.
169     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
170     GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
171     if (TryCand.Reason != NoCand) {
172       // Initialize resource delta if needed in case future heuristics query it.
173       if (TryCand.ResDelta == SchedResourceDelta())
174         TryCand.initResourceDelta(Zone.DAG, SchedModel);
175       Cand.setBest(TryCand);
176     }
177   }
178 }
179 
180 // This function is mostly cut and pasted from
181 // GenericScheduler::pickNodeBidirectional()
182 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
183   // Schedule as far as possible in the direction of no choice. This is most
184   // efficient, but also provides the best heuristics for CriticalPSets.
185   if (SUnit *SU = Bot.pickOnlyChoice()) {
186     IsTopNode = false;
187     return SU;
188   }
189   if (SUnit *SU = Top.pickOnlyChoice()) {
190     IsTopNode = true;
191     return SU;
192   }
193   // Set the bottom-up policy based on the state of the current bottom zone and
194   // the instructions outside the zone, including the top zone.
195   CandPolicy BotPolicy;
196   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
197   // Set the top-down policy based on the state of the current top zone and
198   // the instructions outside the zone, including the bottom zone.
199   CandPolicy TopPolicy;
200   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
201 
202   // See if BotCand is still valid (because we previously scheduled from Top).
203   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
204   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
205       BotCand.Policy != BotPolicy) {
206     BotCand.reset(CandPolicy());
207     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
208     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
209   } else {
210     LLVM_DEBUG(traceCandidate(BotCand));
211   }
212 
213   // Check if the top Q has a better candidate.
214   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
215   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
216       TopCand.Policy != TopPolicy) {
217     TopCand.reset(CandPolicy());
218     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
219     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
220   } else {
221     LLVM_DEBUG(traceCandidate(TopCand));
222   }
223 
224   // Pick best from BotCand and TopCand.
225   LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
226              dbgs() << "Bot Cand: "; traceCandidate(BotCand););
227   SchedCandidate Cand;
228   if (TopCand.Reason == BotCand.Reason) {
229     Cand = BotCand;
230     GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
231     TopCand.Reason = NoCand;
232     GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
233     if (TopCand.Reason != NoCand) {
234       Cand.setBest(TopCand);
235     } else {
236       TopCand.Reason = TopReason;
237     }
238   } else {
239     if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
240       Cand = TopCand;
241     } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
242       Cand = BotCand;
243     } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
244       Cand = TopCand;
245     } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
246       Cand = BotCand;
247     } else {
248       if (BotCand.Reason > TopCand.Reason) {
249         Cand = TopCand;
250       } else {
251         Cand = BotCand;
252       }
253     }
254   }
255   LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
256 
257   IsTopNode = Cand.AtTop;
258   return Cand.SU;
259 }
260 
261 // This function is mostly cut and pasted from
262 // GenericScheduler::pickNode()
263 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
264   if (DAG->top() == DAG->bottom()) {
265     assert(Top.Available.empty() && Top.Pending.empty() &&
266            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
267     return nullptr;
268   }
269   SUnit *SU;
270   do {
271     if (RegionPolicy.OnlyTopDown) {
272       SU = Top.pickOnlyChoice();
273       if (!SU) {
274         CandPolicy NoPolicy;
275         TopCand.reset(NoPolicy);
276         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
277         assert(TopCand.Reason != NoCand && "failed to find a candidate");
278         SU = TopCand.SU;
279       }
280       IsTopNode = true;
281     } else if (RegionPolicy.OnlyBottomUp) {
282       SU = Bot.pickOnlyChoice();
283       if (!SU) {
284         CandPolicy NoPolicy;
285         BotCand.reset(NoPolicy);
286         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
287         assert(BotCand.Reason != NoCand && "failed to find a candidate");
288         SU = BotCand.SU;
289       }
290       IsTopNode = false;
291     } else {
292       SU = pickNodeBidirectional(IsTopNode);
293     }
294   } while (SU->isScheduled);
295 
296   if (SU->isTopReady())
297     Top.removeReady(SU);
298   if (SU->isBottomReady())
299     Bot.removeReady(SU);
300 
301   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
302                     << *SU->getInstr());
303   return SU;
304 }
305 
306 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
307                         std::unique_ptr<MachineSchedStrategy> S) :
308   ScheduleDAGMILive(C, std::move(S)),
309   ST(MF.getSubtarget<SISubtarget>()),
310   MFI(*MF.getInfo<SIMachineFunctionInfo>()),
311   StartingOccupancy(std::min(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(),
312                                                              MF.getFunction()),
313                              MFI.getMaxWavesPerEU())),
314   MinOccupancy(StartingOccupancy), Stage(0), RegionIdx(0) {
315 
316   LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
317 }
318 
319 void GCNScheduleDAGMILive::schedule() {
320   if (Stage == 0) {
321     // Just record regions at the first pass.
322     Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
323     return;
324   }
325 
326   std::vector<MachineInstr*> Unsched;
327   Unsched.reserve(NumRegionInstrs);
328   for (auto &I : *this) {
329     Unsched.push_back(&I);
330   }
331 
332   GCNRegPressure PressureBefore;
333   if (LIS) {
334     PressureBefore = Pressure[RegionIdx];
335 
336     LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
337                GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
338                dbgs() << "Region live-in pressure:  ";
339                llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
340                dbgs() << "Region register pressure: ";
341                PressureBefore.print(dbgs()));
342   }
343 
344   ScheduleDAGMILive::schedule();
345   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
346 
347   if (!LIS)
348     return;
349 
350   // Check the results of scheduling.
351   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
352   auto PressureAfter = getRealRegPressure();
353 
354   LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
355              PressureAfter.print(dbgs()));
356 
357   if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
358       PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) {
359     Pressure[RegionIdx] = PressureAfter;
360     LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
361     return;
362   }
363   unsigned WavesAfter = getMaxWaves(PressureAfter.getSGPRNum(),
364                                     PressureAfter.getVGPRNum(), MF);
365   unsigned WavesBefore = getMaxWaves(PressureBefore.getSGPRNum(),
366                                      PressureBefore.getVGPRNum(), MF);
367   WavesAfter = std::min(WavesAfter, MFI.getMaxWavesPerEU());
368   WavesBefore = std::min(WavesBefore, MFI.getMaxWavesPerEU());
369   LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
370                     << ", after " << WavesAfter << ".\n");
371 
372   // We could not keep current target occupancy because of the just scheduled
373   // region. Record new occupancy for next scheduling cycle.
374   unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
375   if (NewOccupancy < MinOccupancy) {
376     MinOccupancy = NewOccupancy;
377     LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
378                       << MinOccupancy << ".\n");
379   }
380 
381   if (WavesAfter >= WavesBefore) {
382     Pressure[RegionIdx] = PressureAfter;
383     return;
384   }
385 
386   LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
387   RegionEnd = RegionBegin;
388   for (MachineInstr *MI : Unsched) {
389     if (MI->isDebugInstr())
390       continue;
391 
392     if (MI->getIterator() != RegionEnd) {
393       BB->remove(MI);
394       BB->insert(RegionEnd, MI);
395       if (!MI->isDebugInstr())
396         LIS->handleMove(*MI, true);
397     }
398     // Reset read-undef flags and update them later.
399     for (auto &Op : MI->operands())
400       if (Op.isReg() && Op.isDef())
401         Op.setIsUndef(false);
402     RegisterOperands RegOpers;
403     RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
404     if (!MI->isDebugInstr()) {
405       if (ShouldTrackLaneMasks) {
406         // Adjust liveness and add missing dead+read-undef flags.
407         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
408         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
409       } else {
410         // Adjust for missing dead-def flags.
411         RegOpers.detectDeadDefs(*MI, *LIS);
412       }
413     }
414     RegionEnd = MI->getIterator();
415     ++RegionEnd;
416     LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
417   }
418   RegionBegin = Unsched.front()->getIterator();
419   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
420 
421   placeDebugValues();
422 }
423 
424 GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
425   GCNDownwardRPTracker RPTracker(*LIS);
426   RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
427   return RPTracker.moveMaxPressure();
428 }
429 
430 void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
431   GCNDownwardRPTracker RPTracker(*LIS);
432 
433   // If the block has the only successor then live-ins of that successor are
434   // live-outs of the current block. We can reuse calculated live set if the
435   // successor will be sent to scheduling past current block.
436   const MachineBasicBlock *OnlySucc = nullptr;
437   if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
438     SlotIndexes *Ind = LIS->getSlotIndexes();
439     if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
440       OnlySucc = *MBB->succ_begin();
441   }
442 
443   // Scheduler sends regions from the end of the block upwards.
444   size_t CurRegion = RegionIdx;
445   for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
446     if (Regions[CurRegion].first->getParent() != MBB)
447       break;
448   --CurRegion;
449 
450   auto I = MBB->begin();
451   auto LiveInIt = MBBLiveIns.find(MBB);
452   if (LiveInIt != MBBLiveIns.end()) {
453     auto LiveIn = std::move(LiveInIt->second);
454     RPTracker.reset(*MBB->begin(), &LiveIn);
455     MBBLiveIns.erase(LiveInIt);
456   } else {
457     I = Regions[CurRegion].first;
458     RPTracker.reset(*I);
459   }
460 
461   for ( ; ; ) {
462     I = RPTracker.getNext();
463 
464     if (Regions[CurRegion].first == I) {
465       LiveIns[CurRegion] = RPTracker.getLiveRegs();
466       RPTracker.clearMaxPressure();
467     }
468 
469     if (Regions[CurRegion].second == I) {
470       Pressure[CurRegion] = RPTracker.moveMaxPressure();
471       if (CurRegion-- == RegionIdx)
472         break;
473     }
474     RPTracker.advanceToNext();
475     RPTracker.advanceBeforeNext();
476   }
477 
478   if (OnlySucc) {
479     if (I != MBB->end()) {
480       RPTracker.advanceToNext();
481       RPTracker.advance(MBB->end());
482     }
483     RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
484     RPTracker.advanceBeforeNext();
485     MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
486   }
487 }
488 
489 void GCNScheduleDAGMILive::finalizeSchedule() {
490   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
491   LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
492 
493   LiveIns.resize(Regions.size());
494   Pressure.resize(Regions.size());
495 
496   do {
497     Stage++;
498     RegionIdx = 0;
499     MachineBasicBlock *MBB = nullptr;
500 
501     if (Stage > 1) {
502       // Retry function scheduling if we found resulting occupancy and it is
503       // lower than used for first pass scheduling. This will give more freedom
504       // to schedule low register pressure blocks.
505       // Code is partially copied from MachineSchedulerBase::scheduleRegions().
506 
507       if (!LIS || StartingOccupancy <= MinOccupancy)
508         break;
509 
510       LLVM_DEBUG(
511           dbgs()
512           << "Retrying function scheduling with lowest recorded occupancy "
513           << MinOccupancy << ".\n");
514 
515       S.setTargetOccupancy(MinOccupancy);
516     }
517 
518     for (auto Region : Regions) {
519       RegionBegin = Region.first;
520       RegionEnd = Region.second;
521 
522       if (RegionBegin->getParent() != MBB) {
523         if (MBB) finishBlock();
524         MBB = RegionBegin->getParent();
525         startBlock(MBB);
526         if (Stage == 1)
527           computeBlockPressure(MBB);
528       }
529 
530       unsigned NumRegionInstrs = std::distance(begin(), end());
531       enterRegion(MBB, begin(), end(), NumRegionInstrs);
532 
533       // Skip empty scheduling regions (0 or 1 schedulable instructions).
534       if (begin() == end() || begin() == std::prev(end())) {
535         exitRegion();
536         continue;
537       }
538 
539       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
540       LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
541                         << MBB->getName() << "\n  From: " << *begin()
542                         << "    To: ";
543                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
544                  else dbgs() << "End";
545                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
546 
547       schedule();
548 
549       exitRegion();
550       ++RegionIdx;
551     }
552     finishBlock();
553 
554   } while (Stage < 2);
555 }
556