1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This contains a MachineSchedStrategy implementation for maximizing wave 12 /// occupancy on GCN hardware. 13 //===----------------------------------------------------------------------===// 14 15 #include "GCNSchedStrategy.h" 16 #include "AMDGPUSubtarget.h" 17 #include "SIInstrInfo.h" 18 #include "SIMachineFunctionInfo.h" 19 #include "SIRegisterInfo.h" 20 #include "llvm/CodeGen/RegisterClassInfo.h" 21 #include "llvm/Support/MathExtras.h" 22 23 #define DEBUG_TYPE "machine-scheduler" 24 25 using namespace llvm; 26 27 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( 28 const MachineSchedContext *C) : 29 GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { } 30 31 static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs, 32 const MachineFunction &MF) { 33 34 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 35 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 36 unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs), 37 ST.getOccupancyWithNumVGPRs(VGPRs)); 38 return std::min(MinRegOccupancy, 39 ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(), 40 MF.getFunction())); 41 } 42 43 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { 44 GenericScheduler::initialize(DAG); 45 46 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 47 48 MF = &DAG->MF; 49 50 const SISubtarget &ST = MF->getSubtarget<SISubtarget>(); 51 52 // FIXME: This is also necessary, because some passes that run after 53 // scheduling and before regalloc increase register pressure. 54 const int ErrorMargin = 3; 55 56 SGPRExcessLimit = Context->RegClassInfo 57 ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin; 58 VGPRExcessLimit = Context->RegClassInfo 59 ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin; 60 if (TargetOccupancy) { 61 SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true); 62 VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy); 63 } else { 64 SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 65 SRI->getSGPRPressureSet()); 66 VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 67 SRI->getVGPRPressureSet()); 68 } 69 70 SGPRCriticalLimit -= ErrorMargin; 71 VGPRCriticalLimit -= ErrorMargin; 72 } 73 74 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, 75 bool AtTop, const RegPressureTracker &RPTracker, 76 const SIRegisterInfo *SRI, 77 unsigned SGPRPressure, 78 unsigned VGPRPressure) { 79 80 Cand.SU = SU; 81 Cand.AtTop = AtTop; 82 83 // getDownwardPressure() and getUpwardPressure() make temporary changes to 84 // the tracker, so we need to pass those function a non-const copy. 85 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 86 87 std::vector<unsigned> Pressure; 88 std::vector<unsigned> MaxPressure; 89 90 if (AtTop) 91 TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); 92 else { 93 // FIXME: I think for bottom up scheduling, the register pressure is cached 94 // and can be retrieved by DAG->getPressureDif(SU). 95 TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); 96 } 97 98 unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()]; 99 unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()]; 100 101 // If two instructions increase the pressure of different register sets 102 // by the same amount, the generic scheduler will prefer to schedule the 103 // instruction that increases the set with the least amount of registers, 104 // which in our case would be SGPRs. This is rarely what we want, so 105 // when we report excess/critical register pressure, we do it either 106 // only for VGPRs or only for SGPRs. 107 108 // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. 109 const unsigned MaxVGPRPressureInc = 16; 110 bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; 111 bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; 112 113 114 // FIXME: We have to enter REG-EXCESS before we reach the actual threshold 115 // to increase the likelihood we don't go over the limits. We should improve 116 // the analysis to look through dependencies to find the path with the least 117 // register pressure. 118 119 // We only need to update the RPDelata for instructions that increase 120 // register pressure. Instructions that decrease or keep reg pressure 121 // the same will be marked as RegExcess in tryCandidate() when they 122 // are compared with instructions that increase the register pressure. 123 if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { 124 Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet()); 125 Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); 126 } 127 128 if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { 129 Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet()); 130 Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); 131 } 132 133 // Register pressure is considered 'CRITICAL' if it is approaching a value 134 // that would reduce the wave occupancy for the execution unit. When 135 // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both 136 // has the same cost, so we don't need to prefer one over the other. 137 138 int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; 139 int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; 140 141 if (SGPRDelta >= 0 || VGPRDelta >= 0) { 142 if (SGPRDelta > VGPRDelta) { 143 Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet()); 144 Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); 145 } else { 146 Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet()); 147 Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); 148 } 149 } 150 } 151 152 // This function is mostly cut and pasted from 153 // GenericScheduler::pickNodeFromQueue() 154 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, 155 const CandPolicy &ZonePolicy, 156 const RegPressureTracker &RPTracker, 157 SchedCandidate &Cand) { 158 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 159 ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos(); 160 unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()]; 161 unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()]; 162 ReadyQueue &Q = Zone.Available; 163 for (SUnit *SU : Q) { 164 165 SchedCandidate TryCand(ZonePolicy); 166 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, 167 SGPRPressure, VGPRPressure); 168 // Pass SchedBoundary only when comparing nodes from the same boundary. 169 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 170 GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); 171 if (TryCand.Reason != NoCand) { 172 // Initialize resource delta if needed in case future heuristics query it. 173 if (TryCand.ResDelta == SchedResourceDelta()) 174 TryCand.initResourceDelta(Zone.DAG, SchedModel); 175 Cand.setBest(TryCand); 176 } 177 } 178 } 179 180 // This function is mostly cut and pasted from 181 // GenericScheduler::pickNodeBidirectional() 182 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { 183 // Schedule as far as possible in the direction of no choice. This is most 184 // efficient, but also provides the best heuristics for CriticalPSets. 185 if (SUnit *SU = Bot.pickOnlyChoice()) { 186 IsTopNode = false; 187 return SU; 188 } 189 if (SUnit *SU = Top.pickOnlyChoice()) { 190 IsTopNode = true; 191 return SU; 192 } 193 // Set the bottom-up policy based on the state of the current bottom zone and 194 // the instructions outside the zone, including the top zone. 195 CandPolicy BotPolicy; 196 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 197 // Set the top-down policy based on the state of the current top zone and 198 // the instructions outside the zone, including the bottom zone. 199 CandPolicy TopPolicy; 200 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 201 202 // See if BotCand is still valid (because we previously scheduled from Top). 203 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 204 if (!BotCand.isValid() || BotCand.SU->isScheduled || 205 BotCand.Policy != BotPolicy) { 206 BotCand.reset(CandPolicy()); 207 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 208 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 209 } else { 210 LLVM_DEBUG(traceCandidate(BotCand)); 211 } 212 213 // Check if the top Q has a better candidate. 214 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 215 if (!TopCand.isValid() || TopCand.SU->isScheduled || 216 TopCand.Policy != TopPolicy) { 217 TopCand.reset(CandPolicy()); 218 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 219 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 220 } else { 221 LLVM_DEBUG(traceCandidate(TopCand)); 222 } 223 224 // Pick best from BotCand and TopCand. 225 LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand); 226 dbgs() << "Bot Cand: "; traceCandidate(BotCand);); 227 SchedCandidate Cand; 228 if (TopCand.Reason == BotCand.Reason) { 229 Cand = BotCand; 230 GenericSchedulerBase::CandReason TopReason = TopCand.Reason; 231 TopCand.Reason = NoCand; 232 GenericScheduler::tryCandidate(Cand, TopCand, nullptr); 233 if (TopCand.Reason != NoCand) { 234 Cand.setBest(TopCand); 235 } else { 236 TopCand.Reason = TopReason; 237 } 238 } else { 239 if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) { 240 Cand = TopCand; 241 } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) { 242 Cand = BotCand; 243 } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) { 244 Cand = TopCand; 245 } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) { 246 Cand = BotCand; 247 } else { 248 if (BotCand.Reason > TopCand.Reason) { 249 Cand = TopCand; 250 } else { 251 Cand = BotCand; 252 } 253 } 254 } 255 LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand);); 256 257 IsTopNode = Cand.AtTop; 258 return Cand.SU; 259 } 260 261 // This function is mostly cut and pasted from 262 // GenericScheduler::pickNode() 263 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { 264 if (DAG->top() == DAG->bottom()) { 265 assert(Top.Available.empty() && Top.Pending.empty() && 266 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 267 return nullptr; 268 } 269 SUnit *SU; 270 do { 271 if (RegionPolicy.OnlyTopDown) { 272 SU = Top.pickOnlyChoice(); 273 if (!SU) { 274 CandPolicy NoPolicy; 275 TopCand.reset(NoPolicy); 276 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 277 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 278 SU = TopCand.SU; 279 } 280 IsTopNode = true; 281 } else if (RegionPolicy.OnlyBottomUp) { 282 SU = Bot.pickOnlyChoice(); 283 if (!SU) { 284 CandPolicy NoPolicy; 285 BotCand.reset(NoPolicy); 286 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 287 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 288 SU = BotCand.SU; 289 } 290 IsTopNode = false; 291 } else { 292 SU = pickNodeBidirectional(IsTopNode); 293 } 294 } while (SU->isScheduled); 295 296 if (SU->isTopReady()) 297 Top.removeReady(SU); 298 if (SU->isBottomReady()) 299 Bot.removeReady(SU); 300 301 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 302 << *SU->getInstr()); 303 return SU; 304 } 305 306 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C, 307 std::unique_ptr<MachineSchedStrategy> S) : 308 ScheduleDAGMILive(C, std::move(S)), 309 ST(MF.getSubtarget<SISubtarget>()), 310 MFI(*MF.getInfo<SIMachineFunctionInfo>()), 311 StartingOccupancy(std::min(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(), 312 MF.getFunction()), 313 MFI.getMaxWavesPerEU())), 314 MinOccupancy(StartingOccupancy), Stage(0), RegionIdx(0) { 315 316 LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n"); 317 } 318 319 void GCNScheduleDAGMILive::schedule() { 320 if (Stage == 0) { 321 // Just record regions at the first pass. 322 Regions.push_back(std::make_pair(RegionBegin, RegionEnd)); 323 return; 324 } 325 326 std::vector<MachineInstr*> Unsched; 327 Unsched.reserve(NumRegionInstrs); 328 for (auto &I : *this) { 329 Unsched.push_back(&I); 330 } 331 332 GCNRegPressure PressureBefore; 333 if (LIS) { 334 PressureBefore = Pressure[RegionIdx]; 335 336 LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:"; 337 GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI); 338 dbgs() << "Region live-in pressure: "; 339 llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs()); 340 dbgs() << "Region register pressure: "; 341 PressureBefore.print(dbgs())); 342 } 343 344 ScheduleDAGMILive::schedule(); 345 Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd); 346 347 if (!LIS) 348 return; 349 350 // Check the results of scheduling. 351 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 352 auto PressureAfter = getRealRegPressure(); 353 354 LLVM_DEBUG(dbgs() << "Pressure after scheduling: "; 355 PressureAfter.print(dbgs())); 356 357 if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit && 358 PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) { 359 Pressure[RegionIdx] = PressureAfter; 360 LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n"); 361 return; 362 } 363 unsigned WavesAfter = getMaxWaves(PressureAfter.getSGPRNum(), 364 PressureAfter.getVGPRNum(), MF); 365 unsigned WavesBefore = getMaxWaves(PressureBefore.getSGPRNum(), 366 PressureBefore.getVGPRNum(), MF); 367 WavesAfter = std::min(WavesAfter, MFI.getMaxWavesPerEU()); 368 WavesBefore = std::min(WavesBefore, MFI.getMaxWavesPerEU()); 369 LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore 370 << ", after " << WavesAfter << ".\n"); 371 372 // We could not keep current target occupancy because of the just scheduled 373 // region. Record new occupancy for next scheduling cycle. 374 unsigned NewOccupancy = std::max(WavesAfter, WavesBefore); 375 if (NewOccupancy < MinOccupancy) { 376 MinOccupancy = NewOccupancy; 377 LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to " 378 << MinOccupancy << ".\n"); 379 } 380 381 if (WavesAfter >= WavesBefore) { 382 Pressure[RegionIdx] = PressureAfter; 383 return; 384 } 385 386 LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n"); 387 RegionEnd = RegionBegin; 388 for (MachineInstr *MI : Unsched) { 389 if (MI->isDebugInstr()) 390 continue; 391 392 if (MI->getIterator() != RegionEnd) { 393 BB->remove(MI); 394 BB->insert(RegionEnd, MI); 395 if (!MI->isDebugInstr()) 396 LIS->handleMove(*MI, true); 397 } 398 // Reset read-undef flags and update them later. 399 for (auto &Op : MI->operands()) 400 if (Op.isReg() && Op.isDef()) 401 Op.setIsUndef(false); 402 RegisterOperands RegOpers; 403 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 404 if (!MI->isDebugInstr()) { 405 if (ShouldTrackLaneMasks) { 406 // Adjust liveness and add missing dead+read-undef flags. 407 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 408 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 409 } else { 410 // Adjust for missing dead-def flags. 411 RegOpers.detectDeadDefs(*MI, *LIS); 412 } 413 } 414 RegionEnd = MI->getIterator(); 415 ++RegionEnd; 416 LLVM_DEBUG(dbgs() << "Scheduling " << *MI); 417 } 418 RegionBegin = Unsched.front()->getIterator(); 419 Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd); 420 421 placeDebugValues(); 422 } 423 424 GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const { 425 GCNDownwardRPTracker RPTracker(*LIS); 426 RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]); 427 return RPTracker.moveMaxPressure(); 428 } 429 430 void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) { 431 GCNDownwardRPTracker RPTracker(*LIS); 432 433 // If the block has the only successor then live-ins of that successor are 434 // live-outs of the current block. We can reuse calculated live set if the 435 // successor will be sent to scheduling past current block. 436 const MachineBasicBlock *OnlySucc = nullptr; 437 if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) { 438 SlotIndexes *Ind = LIS->getSlotIndexes(); 439 if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin())) 440 OnlySucc = *MBB->succ_begin(); 441 } 442 443 // Scheduler sends regions from the end of the block upwards. 444 size_t CurRegion = RegionIdx; 445 for (size_t E = Regions.size(); CurRegion != E; ++CurRegion) 446 if (Regions[CurRegion].first->getParent() != MBB) 447 break; 448 --CurRegion; 449 450 auto I = MBB->begin(); 451 auto LiveInIt = MBBLiveIns.find(MBB); 452 if (LiveInIt != MBBLiveIns.end()) { 453 auto LiveIn = std::move(LiveInIt->second); 454 RPTracker.reset(*MBB->begin(), &LiveIn); 455 MBBLiveIns.erase(LiveInIt); 456 } else { 457 I = Regions[CurRegion].first; 458 RPTracker.reset(*I); 459 } 460 461 for ( ; ; ) { 462 I = RPTracker.getNext(); 463 464 if (Regions[CurRegion].first == I) { 465 LiveIns[CurRegion] = RPTracker.getLiveRegs(); 466 RPTracker.clearMaxPressure(); 467 } 468 469 if (Regions[CurRegion].second == I) { 470 Pressure[CurRegion] = RPTracker.moveMaxPressure(); 471 if (CurRegion-- == RegionIdx) 472 break; 473 } 474 RPTracker.advanceToNext(); 475 RPTracker.advanceBeforeNext(); 476 } 477 478 if (OnlySucc) { 479 if (I != MBB->end()) { 480 RPTracker.advanceToNext(); 481 RPTracker.advance(MBB->end()); 482 } 483 RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs()); 484 RPTracker.advanceBeforeNext(); 485 MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs(); 486 } 487 } 488 489 void GCNScheduleDAGMILive::finalizeSchedule() { 490 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 491 LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n"); 492 493 LiveIns.resize(Regions.size()); 494 Pressure.resize(Regions.size()); 495 496 do { 497 Stage++; 498 RegionIdx = 0; 499 MachineBasicBlock *MBB = nullptr; 500 501 if (Stage > 1) { 502 // Retry function scheduling if we found resulting occupancy and it is 503 // lower than used for first pass scheduling. This will give more freedom 504 // to schedule low register pressure blocks. 505 // Code is partially copied from MachineSchedulerBase::scheduleRegions(). 506 507 if (!LIS || StartingOccupancy <= MinOccupancy) 508 break; 509 510 LLVM_DEBUG( 511 dbgs() 512 << "Retrying function scheduling with lowest recorded occupancy " 513 << MinOccupancy << ".\n"); 514 515 S.setTargetOccupancy(MinOccupancy); 516 } 517 518 for (auto Region : Regions) { 519 RegionBegin = Region.first; 520 RegionEnd = Region.second; 521 522 if (RegionBegin->getParent() != MBB) { 523 if (MBB) finishBlock(); 524 MBB = RegionBegin->getParent(); 525 startBlock(MBB); 526 if (Stage == 1) 527 computeBlockPressure(MBB); 528 } 529 530 unsigned NumRegionInstrs = std::distance(begin(), end()); 531 enterRegion(MBB, begin(), end(), NumRegionInstrs); 532 533 // Skip empty scheduling regions (0 or 1 schedulable instructions). 534 if (begin() == end() || begin() == std::prev(end())) { 535 exitRegion(); 536 continue; 537 } 538 539 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 540 LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " " 541 << MBB->getName() << "\n From: " << *begin() 542 << " To: "; 543 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 544 else dbgs() << "End"; 545 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 546 547 schedule(); 548 549 exitRegion(); 550 ++RegionIdx; 551 } 552 finishBlock(); 553 554 } while (Stage < 2); 555 } 556