1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This contains a MachineSchedStrategy implementation for maximizing wave
11 /// occupancy on GCN hardware.
12 //===----------------------------------------------------------------------===//
13 
14 #include "GCNSchedStrategy.h"
15 #include "AMDGPUSubtarget.h"
16 #include "SIInstrInfo.h"
17 #include "SIMachineFunctionInfo.h"
18 #include "SIRegisterInfo.h"
19 #include "llvm/CodeGen/RegisterClassInfo.h"
20 #include "llvm/Support/MathExtras.h"
21 
22 #define DEBUG_TYPE "machine-scheduler"
23 
24 using namespace llvm;
25 
26 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
27     const MachineSchedContext *C) :
28     GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { }
29 
30 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
31   GenericScheduler::initialize(DAG);
32 
33   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
34 
35   MF = &DAG->MF;
36 
37   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
38 
39   // FIXME: This is also necessary, because some passes that run after
40   // scheduling and before regalloc increase register pressure.
41   const int ErrorMargin = 3;
42 
43   SGPRExcessLimit = Context->RegClassInfo
44     ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
45   VGPRExcessLimit = Context->RegClassInfo
46     ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
47   if (TargetOccupancy) {
48     SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
49     VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
50   } else {
51     SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
52                                                     SRI->getSGPRPressureSet());
53     VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
54                                                     SRI->getVGPRPressureSet());
55   }
56 
57   SGPRCriticalLimit -= ErrorMargin;
58   VGPRCriticalLimit -= ErrorMargin;
59 }
60 
61 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
62                                      bool AtTop, const RegPressureTracker &RPTracker,
63                                      const SIRegisterInfo *SRI,
64                                      unsigned SGPRPressure,
65                                      unsigned VGPRPressure) {
66 
67   Cand.SU = SU;
68   Cand.AtTop = AtTop;
69 
70   // getDownwardPressure() and getUpwardPressure() make temporary changes to
71   // the tracker, so we need to pass those function a non-const copy.
72   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
73 
74   Pressure.clear();
75   MaxPressure.clear();
76 
77   if (AtTop)
78     TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
79   else {
80     // FIXME: I think for bottom up scheduling, the register pressure is cached
81     // and can be retrieved by DAG->getPressureDif(SU).
82     TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
83   }
84 
85   unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
86   unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
87 
88   // If two instructions increase the pressure of different register sets
89   // by the same amount, the generic scheduler will prefer to schedule the
90   // instruction that increases the set with the least amount of registers,
91   // which in our case would be SGPRs.  This is rarely what we want, so
92   // when we report excess/critical register pressure, we do it either
93   // only for VGPRs or only for SGPRs.
94 
95   // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
96   const unsigned MaxVGPRPressureInc = 16;
97   bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
98   bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
99 
100 
101   // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
102   // to increase the likelihood we don't go over the limits.  We should improve
103   // the analysis to look through dependencies to find the path with the least
104   // register pressure.
105 
106   // We only need to update the RPDelta for instructions that increase register
107   // pressure. Instructions that decrease or keep reg pressure the same will be
108   // marked as RegExcess in tryCandidate() when they are compared with
109   // instructions that increase the register pressure.
110   if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
111     Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
112     Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
113   }
114 
115   if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
116     Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
117     Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
118   }
119 
120   // Register pressure is considered 'CRITICAL' if it is approaching a value
121   // that would reduce the wave occupancy for the execution unit.  When
122   // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
123   // has the same cost, so we don't need to prefer one over the other.
124 
125   int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
126   int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
127 
128   if (SGPRDelta >= 0 || VGPRDelta >= 0) {
129     if (SGPRDelta > VGPRDelta) {
130       Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
131       Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
132     } else {
133       Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
134       Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
135     }
136   }
137 }
138 
139 // This function is mostly cut and pasted from
140 // GenericScheduler::pickNodeFromQueue()
141 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
142                                          const CandPolicy &ZonePolicy,
143                                          const RegPressureTracker &RPTracker,
144                                          SchedCandidate &Cand) {
145   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
146   ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
147   unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
148   unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
149   ReadyQueue &Q = Zone.Available;
150   for (SUnit *SU : Q) {
151 
152     SchedCandidate TryCand(ZonePolicy);
153     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
154                   SGPRPressure, VGPRPressure);
155     // Pass SchedBoundary only when comparing nodes from the same boundary.
156     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
157     GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
158     if (TryCand.Reason != NoCand) {
159       // Initialize resource delta if needed in case future heuristics query it.
160       if (TryCand.ResDelta == SchedResourceDelta())
161         TryCand.initResourceDelta(Zone.DAG, SchedModel);
162       Cand.setBest(TryCand);
163       LLVM_DEBUG(traceCandidate(Cand));
164     }
165   }
166 }
167 
168 // This function is mostly cut and pasted from
169 // GenericScheduler::pickNodeBidirectional()
170 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
171   // Schedule as far as possible in the direction of no choice. This is most
172   // efficient, but also provides the best heuristics for CriticalPSets.
173   if (SUnit *SU = Bot.pickOnlyChoice()) {
174     IsTopNode = false;
175     return SU;
176   }
177   if (SUnit *SU = Top.pickOnlyChoice()) {
178     IsTopNode = true;
179     return SU;
180   }
181   // Set the bottom-up policy based on the state of the current bottom zone and
182   // the instructions outside the zone, including the top zone.
183   CandPolicy BotPolicy;
184   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
185   // Set the top-down policy based on the state of the current top zone and
186   // the instructions outside the zone, including the bottom zone.
187   CandPolicy TopPolicy;
188   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
189 
190   // See if BotCand is still valid (because we previously scheduled from Top).
191   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
192   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
193       BotCand.Policy != BotPolicy) {
194     BotCand.reset(CandPolicy());
195     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
196     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
197   } else {
198     LLVM_DEBUG(traceCandidate(BotCand));
199   }
200 
201   // Check if the top Q has a better candidate.
202   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
203   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
204       TopCand.Policy != TopPolicy) {
205     TopCand.reset(CandPolicy());
206     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
207     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
208   } else {
209     LLVM_DEBUG(traceCandidate(TopCand));
210   }
211 
212   // Pick best from BotCand and TopCand.
213   LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
214              dbgs() << "Bot Cand: "; traceCandidate(BotCand););
215   SchedCandidate Cand;
216   if (TopCand.Reason == BotCand.Reason) {
217     Cand = BotCand;
218     GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
219     TopCand.Reason = NoCand;
220     GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
221     if (TopCand.Reason != NoCand) {
222       Cand.setBest(TopCand);
223     } else {
224       TopCand.Reason = TopReason;
225     }
226   } else {
227     if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
228       Cand = TopCand;
229     } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
230       Cand = BotCand;
231     } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
232       Cand = TopCand;
233     } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
234       Cand = BotCand;
235     } else {
236       if (BotCand.Reason > TopCand.Reason) {
237         Cand = TopCand;
238       } else {
239         Cand = BotCand;
240       }
241     }
242   }
243   LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
244 
245   IsTopNode = Cand.AtTop;
246   return Cand.SU;
247 }
248 
249 // This function is mostly cut and pasted from
250 // GenericScheduler::pickNode()
251 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
252   if (DAG->top() == DAG->bottom()) {
253     assert(Top.Available.empty() && Top.Pending.empty() &&
254            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
255     return nullptr;
256   }
257   SUnit *SU;
258   do {
259     if (RegionPolicy.OnlyTopDown) {
260       SU = Top.pickOnlyChoice();
261       if (!SU) {
262         CandPolicy NoPolicy;
263         TopCand.reset(NoPolicy);
264         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
265         assert(TopCand.Reason != NoCand && "failed to find a candidate");
266         SU = TopCand.SU;
267       }
268       IsTopNode = true;
269     } else if (RegionPolicy.OnlyBottomUp) {
270       SU = Bot.pickOnlyChoice();
271       if (!SU) {
272         CandPolicy NoPolicy;
273         BotCand.reset(NoPolicy);
274         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
275         assert(BotCand.Reason != NoCand && "failed to find a candidate");
276         SU = BotCand.SU;
277       }
278       IsTopNode = false;
279     } else {
280       SU = pickNodeBidirectional(IsTopNode);
281     }
282   } while (SU->isScheduled);
283 
284   if (SU->isTopReady())
285     Top.removeReady(SU);
286   if (SU->isBottomReady())
287     Bot.removeReady(SU);
288 
289   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
290                     << *SU->getInstr());
291   return SU;
292 }
293 
294 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
295                         std::unique_ptr<MachineSchedStrategy> S) :
296   ScheduleDAGMILive(C, std::move(S)),
297   ST(MF.getSubtarget<GCNSubtarget>()),
298   MFI(*MF.getInfo<SIMachineFunctionInfo>()),
299   StartingOccupancy(MFI.getOccupancy()),
300   MinOccupancy(StartingOccupancy), Stage(0), RegionIdx(0) {
301 
302   LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
303 }
304 
305 void GCNScheduleDAGMILive::schedule() {
306   if (Stage == 0) {
307     // Just record regions at the first pass.
308     Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
309     return;
310   }
311 
312   std::vector<MachineInstr*> Unsched;
313   Unsched.reserve(NumRegionInstrs);
314   for (auto &I : *this) {
315     Unsched.push_back(&I);
316   }
317 
318   GCNRegPressure PressureBefore;
319   if (LIS) {
320     PressureBefore = Pressure[RegionIdx];
321 
322     LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
323                GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
324                dbgs() << "Region live-in pressure:  ";
325                llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
326                dbgs() << "Region register pressure: ";
327                PressureBefore.print(dbgs()));
328   }
329 
330   ScheduleDAGMILive::schedule();
331   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
332 
333   if (!LIS)
334     return;
335 
336   // Check the results of scheduling.
337   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
338   auto PressureAfter = getRealRegPressure();
339 
340   LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
341              PressureAfter.print(dbgs()));
342 
343   if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
344       PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) {
345     Pressure[RegionIdx] = PressureAfter;
346     LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
347     return;
348   }
349   unsigned Occ = MFI.getOccupancy();
350   unsigned WavesAfter = std::min(Occ, PressureAfter.getOccupancy(ST));
351   unsigned WavesBefore = std::min(Occ, PressureBefore.getOccupancy(ST));
352   LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
353                     << ", after " << WavesAfter << ".\n");
354 
355   // We could not keep current target occupancy because of the just scheduled
356   // region. Record new occupancy for next scheduling cycle.
357   unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
358   // Allow memory bound functions to drop to 4 waves if not limited by an
359   // attribute.
360   if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy &&
361       WavesAfter >= MFI.getMinAllowedOccupancy()) {
362     LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
363                       << MFI.getMinAllowedOccupancy() << " waves\n");
364     NewOccupancy = WavesAfter;
365   }
366   if (NewOccupancy < MinOccupancy) {
367     MinOccupancy = NewOccupancy;
368     MFI.limitOccupancy(MinOccupancy);
369     LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
370                       << MinOccupancy << ".\n");
371   }
372 
373   if (WavesAfter >= MinOccupancy) {
374     Pressure[RegionIdx] = PressureAfter;
375     return;
376   }
377 
378   LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
379   RegionEnd = RegionBegin;
380   for (MachineInstr *MI : Unsched) {
381     if (MI->isDebugInstr())
382       continue;
383 
384     if (MI->getIterator() != RegionEnd) {
385       BB->remove(MI);
386       BB->insert(RegionEnd, MI);
387       if (!MI->isDebugInstr())
388         LIS->handleMove(*MI, true);
389     }
390     // Reset read-undef flags and update them later.
391     for (auto &Op : MI->operands())
392       if (Op.isReg() && Op.isDef())
393         Op.setIsUndef(false);
394     RegisterOperands RegOpers;
395     RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
396     if (!MI->isDebugInstr()) {
397       if (ShouldTrackLaneMasks) {
398         // Adjust liveness and add missing dead+read-undef flags.
399         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
400         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
401       } else {
402         // Adjust for missing dead-def flags.
403         RegOpers.detectDeadDefs(*MI, *LIS);
404       }
405     }
406     RegionEnd = MI->getIterator();
407     ++RegionEnd;
408     LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
409   }
410   RegionBegin = Unsched.front()->getIterator();
411   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
412 
413   placeDebugValues();
414 }
415 
416 GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
417   GCNDownwardRPTracker RPTracker(*LIS);
418   RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
419   return RPTracker.moveMaxPressure();
420 }
421 
422 void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
423   GCNDownwardRPTracker RPTracker(*LIS);
424 
425   // If the block has the only successor then live-ins of that successor are
426   // live-outs of the current block. We can reuse calculated live set if the
427   // successor will be sent to scheduling past current block.
428   const MachineBasicBlock *OnlySucc = nullptr;
429   if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
430     SlotIndexes *Ind = LIS->getSlotIndexes();
431     if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
432       OnlySucc = *MBB->succ_begin();
433   }
434 
435   // Scheduler sends regions from the end of the block upwards.
436   size_t CurRegion = RegionIdx;
437   for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
438     if (Regions[CurRegion].first->getParent() != MBB)
439       break;
440   --CurRegion;
441 
442   auto I = MBB->begin();
443   auto LiveInIt = MBBLiveIns.find(MBB);
444   if (LiveInIt != MBBLiveIns.end()) {
445     auto LiveIn = std::move(LiveInIt->second);
446     RPTracker.reset(*MBB->begin(), &LiveIn);
447     MBBLiveIns.erase(LiveInIt);
448   } else {
449     auto &Rgn = Regions[CurRegion];
450     I = Rgn.first;
451     auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
452     auto LRS = BBLiveInMap.lookup(NonDbgMI);
453     assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
454     RPTracker.reset(*I, &LRS);
455   }
456 
457   for ( ; ; ) {
458     I = RPTracker.getNext();
459 
460     if (Regions[CurRegion].first == I) {
461       LiveIns[CurRegion] = RPTracker.getLiveRegs();
462       RPTracker.clearMaxPressure();
463     }
464 
465     if (Regions[CurRegion].second == I) {
466       Pressure[CurRegion] = RPTracker.moveMaxPressure();
467       if (CurRegion-- == RegionIdx)
468         break;
469     }
470     RPTracker.advanceToNext();
471     RPTracker.advanceBeforeNext();
472   }
473 
474   if (OnlySucc) {
475     if (I != MBB->end()) {
476       RPTracker.advanceToNext();
477       RPTracker.advance(MBB->end());
478     }
479     RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
480     RPTracker.advanceBeforeNext();
481     MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
482   }
483 }
484 
485 DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
486 GCNScheduleDAGMILive::getBBLiveInMap() const {
487   assert(!Regions.empty());
488   std::vector<MachineInstr *> BBStarters;
489   BBStarters.reserve(Regions.size());
490   auto I = Regions.rbegin(), E = Regions.rend();
491   auto *BB = I->first->getParent();
492   do {
493     auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
494     BBStarters.push_back(MI);
495     do {
496       ++I;
497     } while (I != E && I->first->getParent() == BB);
498   } while (I != E);
499   return getLiveRegMap(BBStarters, false /*After*/, *LIS);
500 }
501 
502 void GCNScheduleDAGMILive::finalizeSchedule() {
503   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
504   LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
505 
506   LiveIns.resize(Regions.size());
507   Pressure.resize(Regions.size());
508 
509   if (!Regions.empty())
510     BBLiveInMap = getBBLiveInMap();
511 
512   do {
513     Stage++;
514     RegionIdx = 0;
515     MachineBasicBlock *MBB = nullptr;
516 
517     if (Stage > 1) {
518       // Retry function scheduling if we found resulting occupancy and it is
519       // lower than used for first pass scheduling. This will give more freedom
520       // to schedule low register pressure blocks.
521       // Code is partially copied from MachineSchedulerBase::scheduleRegions().
522 
523       if (!LIS || StartingOccupancy <= MinOccupancy)
524         break;
525 
526       LLVM_DEBUG(
527           dbgs()
528           << "Retrying function scheduling with lowest recorded occupancy "
529           << MinOccupancy << ".\n");
530 
531       S.setTargetOccupancy(MinOccupancy);
532     }
533 
534     for (auto Region : Regions) {
535       RegionBegin = Region.first;
536       RegionEnd = Region.second;
537 
538       if (RegionBegin->getParent() != MBB) {
539         if (MBB) finishBlock();
540         MBB = RegionBegin->getParent();
541         startBlock(MBB);
542         if (Stage == 1)
543           computeBlockPressure(MBB);
544       }
545 
546       unsigned NumRegionInstrs = std::distance(begin(), end());
547       enterRegion(MBB, begin(), end(), NumRegionInstrs);
548 
549       // Skip empty scheduling regions (0 or 1 schedulable instructions).
550       if (begin() == end() || begin() == std::prev(end())) {
551         exitRegion();
552         continue;
553       }
554 
555       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
556       LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
557                         << MBB->getName() << "\n  From: " << *begin()
558                         << "    To: ";
559                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
560                  else dbgs() << "End";
561                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
562 
563       schedule();
564 
565       exitRegion();
566       ++RegionIdx;
567     }
568     finishBlock();
569 
570   } while (Stage < 2);
571 }
572