1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "GCNSubtarget.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/ScheduleDAG.h" 19 #include "llvm/Support/TargetParser.h" 20 21 using namespace llvm; 22 23 namespace { 24 25 struct MFMAPaddingRatioParser : public cl::parser<unsigned> { 26 MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {} 27 28 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 29 if (Arg.getAsInteger(0, Value)) 30 return O.error("'" + Arg + "' value invalid for uint argument!"); 31 32 if (Value > 100) 33 return O.error("'" + Arg + "' value must be in the range [0, 100]!"); 34 35 return false; 36 } 37 }; 38 39 } // end anonymous namespace 40 41 static cl::opt<unsigned, false, MFMAPaddingRatioParser> 42 MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden, 43 cl::desc("Fill a percentage of the latency between " 44 "neighboring MFMA with s_nops.")); 45 46 //===----------------------------------------------------------------------===// 47 // Hazard Recognizer Implementation 48 //===----------------------------------------------------------------------===// 49 50 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 51 const GCNSubtarget &ST); 52 53 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 54 IsHazardRecognizerMode(false), 55 CurrCycleInstr(nullptr), 56 MF(MF), 57 ST(MF.getSubtarget<GCNSubtarget>()), 58 TII(*ST.getInstrInfo()), 59 TRI(TII.getRegisterInfo()), 60 ClauseUses(TRI.getNumRegUnits()), 61 ClauseDefs(TRI.getNumRegUnits()) { 62 MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5; 63 TSchedModel.init(&ST); 64 RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST); 65 } 66 67 void GCNHazardRecognizer::Reset() { 68 EmittedInstrs.clear(); 69 } 70 71 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 72 EmitInstruction(SU->getInstr()); 73 } 74 75 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 76 CurrCycleInstr = MI; 77 } 78 79 static bool isDivFMas(unsigned Opcode) { 80 return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64; 81 } 82 83 static bool isSGetReg(unsigned Opcode) { 84 return Opcode == AMDGPU::S_GETREG_B32; 85 } 86 87 static bool isSSetReg(unsigned Opcode) { 88 switch (Opcode) { 89 case AMDGPU::S_SETREG_B32: 90 case AMDGPU::S_SETREG_B32_mode: 91 case AMDGPU::S_SETREG_IMM32_B32: 92 case AMDGPU::S_SETREG_IMM32_B32_mode: 93 return true; 94 } 95 return false; 96 } 97 98 static bool isRWLane(unsigned Opcode) { 99 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 100 } 101 102 static bool isRFE(unsigned Opcode) { 103 return Opcode == AMDGPU::S_RFE_B64; 104 } 105 106 static bool isSMovRel(unsigned Opcode) { 107 switch (Opcode) { 108 case AMDGPU::S_MOVRELS_B32: 109 case AMDGPU::S_MOVRELS_B64: 110 case AMDGPU::S_MOVRELD_B32: 111 case AMDGPU::S_MOVRELD_B64: 112 return true; 113 default: 114 return false; 115 } 116 } 117 118 static bool isDGEMM(unsigned Opcode) { 119 return AMDGPU::getMAIIsDGEMM(Opcode); 120 } 121 122 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) { 123 unsigned Opcode = MI.getOpcode(); 124 125 if (!SIInstrInfo::isMAI(MI) || 126 isDGEMM(Opcode) || 127 Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 128 Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64) 129 return false; 130 131 if (!ST.hasGFX940Insts()) 132 return true; 133 134 return AMDGPU::getMAIIsGFX940XDL(Opcode); 135 } 136 137 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 138 const MachineInstr &MI) { 139 if (TII.isAlwaysGDS(MI.getOpcode())) 140 return true; 141 142 switch (MI.getOpcode()) { 143 case AMDGPU::S_SENDMSG: 144 case AMDGPU::S_SENDMSGHALT: 145 case AMDGPU::S_TTRACEDATA: 146 return true; 147 // These DS opcodes don't support GDS. 148 case AMDGPU::DS_NOP: 149 case AMDGPU::DS_PERMUTE_B32: 150 case AMDGPU::DS_BPERMUTE_B32: 151 return false; 152 default: 153 if (TII.isDS(MI.getOpcode())) { 154 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 155 AMDGPU::OpName::gds); 156 if (MI.getOperand(GDS).getImm()) 157 return true; 158 } 159 return false; 160 } 161 } 162 163 static bool isPermlane(const MachineInstr &MI) { 164 unsigned Opcode = MI.getOpcode(); 165 return Opcode == AMDGPU::V_PERMLANE16_B32_e64 || 166 Opcode == AMDGPU::V_PERMLANEX16_B32_e64; 167 } 168 169 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 170 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 171 AMDGPU::OpName::simm16); 172 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 173 } 174 175 ScheduleHazardRecognizer::HazardType 176 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 177 MachineInstr *MI = SU->getInstr(); 178 // If we are not in "HazardRecognizerMode" and therefore not being run from 179 // the scheduler, track possible stalls from hazards but don't insert noops. 180 auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard; 181 182 if (MI->isBundle()) 183 return NoHazard; 184 185 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 186 return HazardType; 187 188 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 189 return HazardType; 190 191 if (checkFPAtomicToDenormModeHazard(MI) > 0) 192 return HazardType; 193 194 if (ST.hasNoDataDepHazard()) 195 return NoHazard; 196 197 // FIXME: Should flat be considered vmem? 198 if ((SIInstrInfo::isVMEM(*MI) || 199 SIInstrInfo::isFLAT(*MI)) 200 && checkVMEMHazards(MI) > 0) 201 return HazardType; 202 203 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 204 return HazardType; 205 206 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 207 return HazardType; 208 209 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 210 return HazardType; 211 212 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 213 return HazardType; 214 215 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 216 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 217 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 218 return HazardType; 219 220 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 221 return HazardType; 222 223 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 224 return HazardType; 225 226 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 227 return HazardType; 228 229 if (ST.hasReadM0MovRelInterpHazard() && 230 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) && 231 checkReadM0Hazards(MI) > 0) 232 return HazardType; 233 234 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) && 235 checkReadM0Hazards(MI) > 0) 236 return HazardType; 237 238 if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0) 239 return HazardType; 240 241 if ((SIInstrInfo::isVMEM(*MI) || 242 SIInstrInfo::isFLAT(*MI) || 243 SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0) 244 return HazardType; 245 246 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 247 return HazardType; 248 249 return NoHazard; 250 } 251 252 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII, 253 unsigned Quantity) { 254 while (Quantity > 0) { 255 unsigned Arg = std::min(Quantity, 8u); 256 Quantity -= Arg; 257 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 258 .addImm(Arg - 1); 259 } 260 } 261 262 unsigned 263 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const { 264 const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI); 265 assert(TSchedModel.getWriteProcResBegin(SC) != 266 TSchedModel.getWriteProcResEnd(SC)); 267 return TSchedModel.getWriteProcResBegin(SC)->Cycles; 268 } 269 270 void GCNHazardRecognizer::processBundle() { 271 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 272 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 273 // Check bundled MachineInstr's for hazards. 274 for (; MI != E && MI->isInsideBundle(); ++MI) { 275 CurrCycleInstr = &*MI; 276 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 277 278 if (IsHazardRecognizerMode) { 279 fixHazards(CurrCycleInstr); 280 281 insertNoopsInBundle(CurrCycleInstr, TII, WaitStates); 282 } 283 284 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 285 // include the bundled MI directly after, only add a maximum of 286 // (MaxLookAhead - 1) noops to EmittedInstrs. 287 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 288 EmittedInstrs.push_front(nullptr); 289 290 EmittedInstrs.push_front(CurrCycleInstr); 291 EmittedInstrs.resize(MaxLookAhead); 292 } 293 CurrCycleInstr = nullptr; 294 } 295 296 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 297 IsHazardRecognizerMode = true; 298 CurrCycleInstr = MI; 299 unsigned W = PreEmitNoopsCommon(MI); 300 fixHazards(MI); 301 CurrCycleInstr = nullptr; 302 return W; 303 } 304 305 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 306 if (MI->isBundle()) 307 return 0; 308 309 int WaitStates = 0; 310 311 if (SIInstrInfo::isSMRD(*MI)) 312 return std::max(WaitStates, checkSMRDHazards(MI)); 313 314 if (ST.hasNSAtoVMEMBug()) 315 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 316 317 WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI)); 318 319 if (ST.hasNoDataDepHazard()) 320 return WaitStates; 321 322 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 323 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 324 325 if (SIInstrInfo::isVALU(*MI)) 326 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 327 328 if (SIInstrInfo::isDPP(*MI)) 329 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 330 331 if (isDivFMas(MI->getOpcode())) 332 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 333 334 if (isRWLane(MI->getOpcode())) 335 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 336 337 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 338 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 339 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 340 WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI)); 341 342 if (MI->isInlineAsm()) 343 return std::max(WaitStates, checkInlineAsmHazards(MI)); 344 345 if (isSGetReg(MI->getOpcode())) 346 return std::max(WaitStates, checkGetRegHazards(MI)); 347 348 if (isSSetReg(MI->getOpcode())) 349 return std::max(WaitStates, checkSetRegHazards(MI)); 350 351 if (isRFE(MI->getOpcode())) 352 return std::max(WaitStates, checkRFEHazards(MI)); 353 354 if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) || 355 isSMovRel(MI->getOpcode()))) 356 return std::max(WaitStates, checkReadM0Hazards(MI)); 357 358 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) 359 return std::max(WaitStates, checkReadM0Hazards(MI)); 360 361 if (SIInstrInfo::isMAI(*MI)) 362 return std::max(WaitStates, checkMAIHazards(MI)); 363 364 if (SIInstrInfo::isVMEM(*MI) || 365 SIInstrInfo::isFLAT(*MI) || 366 SIInstrInfo::isDS(*MI)) 367 return std::max(WaitStates, checkMAILdStHazards(MI)); 368 369 return WaitStates; 370 } 371 372 void GCNHazardRecognizer::EmitNoop() { 373 EmittedInstrs.push_front(nullptr); 374 } 375 376 void GCNHazardRecognizer::AdvanceCycle() { 377 // When the scheduler detects a stall, it will call AdvanceCycle() without 378 // emitting any instructions. 379 if (!CurrCycleInstr) { 380 EmittedInstrs.push_front(nullptr); 381 return; 382 } 383 384 if (CurrCycleInstr->isBundle()) { 385 processBundle(); 386 return; 387 } 388 389 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 390 if (!NumWaitStates) { 391 CurrCycleInstr = nullptr; 392 return; 393 } 394 395 // Keep track of emitted instructions 396 EmittedInstrs.push_front(CurrCycleInstr); 397 398 // Add a nullptr for each additional wait state after the first. Make sure 399 // not to add more than getMaxLookAhead() items to the list, since we 400 // truncate the list to that size right after this loop. 401 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 402 i < e; ++i) { 403 EmittedInstrs.push_front(nullptr); 404 } 405 406 // getMaxLookahead() is the largest number of wait states we will ever need 407 // to insert, so there is no point in keeping track of more than that many 408 // wait states. 409 EmittedInstrs.resize(getMaxLookAhead()); 410 411 CurrCycleInstr = nullptr; 412 } 413 414 void GCNHazardRecognizer::RecedeCycle() { 415 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 416 } 417 418 //===----------------------------------------------------------------------===// 419 // Helper Functions 420 //===----------------------------------------------------------------------===// 421 422 typedef function_ref<bool(const MachineInstr &, int WaitStates)> IsExpiredFn; 423 424 // Returns a minimum wait states since \p I walking all predecessors. 425 // Only scans until \p IsExpired does not return true. 426 // Can only be run in a hazard recognizer mode. 427 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 428 const MachineBasicBlock *MBB, 429 MachineBasicBlock::const_reverse_instr_iterator I, 430 int WaitStates, IsExpiredFn IsExpired, 431 DenseSet<const MachineBasicBlock *> &Visited) { 432 for (auto E = MBB->instr_rend(); I != E; ++I) { 433 // Don't add WaitStates for parent BUNDLE instructions. 434 if (I->isBundle()) 435 continue; 436 437 if (IsHazard(*I)) 438 return WaitStates; 439 440 if (I->isInlineAsm()) 441 continue; 442 443 WaitStates += SIInstrInfo::getNumWaitStates(*I); 444 445 if (IsExpired(*I, WaitStates)) 446 return std::numeric_limits<int>::max(); 447 } 448 449 int MinWaitStates = std::numeric_limits<int>::max(); 450 for (MachineBasicBlock *Pred : MBB->predecessors()) { 451 if (!Visited.insert(Pred).second) 452 continue; 453 454 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), 455 WaitStates, IsExpired, Visited); 456 457 MinWaitStates = std::min(MinWaitStates, W); 458 } 459 460 return MinWaitStates; 461 } 462 463 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 464 const MachineInstr *MI, IsExpiredFn IsExpired) { 465 DenseSet<const MachineBasicBlock *> Visited; 466 return getWaitStatesSince(IsHazard, MI->getParent(), 467 std::next(MI->getReverseIterator()), 468 0, IsExpired, Visited); 469 } 470 471 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 472 if (IsHazardRecognizerMode) { 473 auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) { 474 return WaitStates >= Limit; 475 }; 476 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 477 } 478 479 int WaitStates = 0; 480 for (MachineInstr *MI : EmittedInstrs) { 481 if (MI) { 482 if (IsHazard(*MI)) 483 return WaitStates; 484 485 if (MI->isInlineAsm()) 486 continue; 487 } 488 ++WaitStates; 489 490 if (WaitStates >= Limit) 491 break; 492 } 493 return std::numeric_limits<int>::max(); 494 } 495 496 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 497 IsHazardFn IsHazardDef, 498 int Limit) { 499 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 500 501 auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) { 502 return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI); 503 }; 504 505 return getWaitStatesSince(IsHazardFn, Limit); 506 } 507 508 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 509 int Limit) { 510 auto IsHazardFn = [IsHazard](const MachineInstr &MI) { 511 return isSSetReg(MI.getOpcode()) && IsHazard(MI); 512 }; 513 514 return getWaitStatesSince(IsHazardFn, Limit); 515 } 516 517 //===----------------------------------------------------------------------===// 518 // No-op Hazard Detection 519 //===----------------------------------------------------------------------===// 520 521 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV, 522 MCRegister Reg) { 523 for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI) 524 BV.set(*RUI); 525 } 526 527 static void addRegsToSet(const SIRegisterInfo &TRI, 528 iterator_range<MachineInstr::const_mop_iterator> Ops, 529 BitVector &Set) { 530 for (const MachineOperand &Op : Ops) { 531 if (Op.isReg()) 532 addRegUnits(TRI, Set, Op.getReg().asMCReg()); 533 } 534 } 535 536 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 537 // XXX: Do we need to worry about implicit operands 538 addRegsToSet(TRI, MI.defs(), ClauseDefs); 539 addRegsToSet(TRI, MI.uses(), ClauseUses); 540 } 541 542 static bool breaksSMEMSoftClause(MachineInstr *MI) { 543 return !SIInstrInfo::isSMRD(*MI); 544 } 545 546 static bool breaksVMEMSoftClause(MachineInstr *MI) { 547 return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI); 548 } 549 550 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 551 // SMEM soft clause are only present on VI+, and only matter if xnack is 552 // enabled. 553 if (!ST.isXNACKEnabled()) 554 return 0; 555 556 bool IsSMRD = TII.isSMRD(*MEM); 557 558 resetClause(); 559 560 // A soft-clause is any group of consecutive SMEM instructions. The 561 // instructions in this group may return out of order and/or may be 562 // replayed (i.e. the same instruction issued more than once). 563 // 564 // In order to handle these situations correctly we need to make sure that 565 // when a clause has more than one instruction, no instruction in the clause 566 // writes to a register that is read by another instruction in the clause 567 // (including itself). If we encounter this situation, we need to break the 568 // clause by inserting a non SMEM instruction. 569 570 for (MachineInstr *MI : EmittedInstrs) { 571 // When we hit a non-SMEM instruction then we have passed the start of the 572 // clause and we can stop. 573 if (!MI) 574 break; 575 576 if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI)) 577 break; 578 579 addClauseInst(*MI); 580 } 581 582 if (ClauseDefs.none()) 583 return 0; 584 585 // We need to make sure not to put loads and stores in the same clause if they 586 // use the same address. For now, just start a new clause whenever we see a 587 // store. 588 if (MEM->mayStore()) 589 return 1; 590 591 addClauseInst(*MEM); 592 593 // If the set of defs and uses intersect then we cannot add this instruction 594 // to the clause, so we have a hazard. 595 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 596 } 597 598 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 599 int WaitStatesNeeded = 0; 600 601 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 602 603 // This SMRD hazard only affects SI. 604 if (!ST.hasSMRDReadVALUDefHazard()) 605 return WaitStatesNeeded; 606 607 // A read of an SGPR by SMRD instruction requires 4 wait states when the 608 // SGPR was written by a VALU instruction. 609 int SmrdSgprWaitStates = 4; 610 auto IsHazardDefFn = [this](const MachineInstr &MI) { 611 return TII.isVALU(MI); 612 }; 613 auto IsBufferHazardDefFn = [this](const MachineInstr &MI) { 614 return TII.isSALU(MI); 615 }; 616 617 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 618 619 for (const MachineOperand &Use : SMRD->uses()) { 620 if (!Use.isReg()) 621 continue; 622 int WaitStatesNeededForUse = 623 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 624 SmrdSgprWaitStates); 625 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 626 627 // This fixes what appears to be undocumented hardware behavior in SI where 628 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 629 // needs some number of nops in between. We don't know how many we need, but 630 // let's use 4. This wasn't discovered before probably because the only 631 // case when this happens is when we expand a 64-bit pointer into a full 632 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 633 // probably never encountered in the closed-source land. 634 if (IsBufferSMRD) { 635 int WaitStatesNeededForUse = 636 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 637 IsBufferHazardDefFn, 638 SmrdSgprWaitStates); 639 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 640 } 641 } 642 643 return WaitStatesNeeded; 644 } 645 646 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 647 if (!ST.hasVMEMReadSGPRVALUDefHazard()) 648 return 0; 649 650 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 651 652 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 653 // SGPR was written by a VALU Instruction. 654 const int VmemSgprWaitStates = 5; 655 auto IsHazardDefFn = [this](const MachineInstr &MI) { 656 return TII.isVALU(MI); 657 }; 658 for (const MachineOperand &Use : VMEM->uses()) { 659 if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg())) 660 continue; 661 662 int WaitStatesNeededForUse = 663 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 664 VmemSgprWaitStates); 665 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 666 } 667 return WaitStatesNeeded; 668 } 669 670 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 671 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 672 const SIInstrInfo *TII = ST.getInstrInfo(); 673 674 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 675 int DppVgprWaitStates = 2; 676 int DppExecWaitStates = 5; 677 int WaitStatesNeeded = 0; 678 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 679 return TII->isVALU(MI); 680 }; 681 682 for (const MachineOperand &Use : DPP->uses()) { 683 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 684 continue; 685 int WaitStatesNeededForUse = 686 DppVgprWaitStates - getWaitStatesSinceDef( 687 Use.getReg(), 688 [](const MachineInstr &) { return true; }, 689 DppVgprWaitStates); 690 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 691 } 692 693 WaitStatesNeeded = std::max( 694 WaitStatesNeeded, 695 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 696 DppExecWaitStates)); 697 698 return WaitStatesNeeded; 699 } 700 701 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 702 const SIInstrInfo *TII = ST.getInstrInfo(); 703 704 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 705 // instruction. 706 const int DivFMasWaitStates = 4; 707 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 708 return TII->isVALU(MI); 709 }; 710 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 711 DivFMasWaitStates); 712 713 return DivFMasWaitStates - WaitStatesNeeded; 714 } 715 716 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 717 const SIInstrInfo *TII = ST.getInstrInfo(); 718 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 719 720 const int GetRegWaitStates = 2; 721 auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) { 722 return GetRegHWReg == getHWReg(TII, MI); 723 }; 724 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 725 726 return GetRegWaitStates - WaitStatesNeeded; 727 } 728 729 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 730 const SIInstrInfo *TII = ST.getInstrInfo(); 731 unsigned HWReg = getHWReg(TII, *SetRegInstr); 732 733 const int SetRegWaitStates = ST.getSetRegWaitStates(); 734 auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) { 735 return HWReg == getHWReg(TII, MI); 736 }; 737 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 738 return SetRegWaitStates - WaitStatesNeeded; 739 } 740 741 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 742 if (!MI.mayStore()) 743 return -1; 744 745 const SIInstrInfo *TII = ST.getInstrInfo(); 746 unsigned Opcode = MI.getOpcode(); 747 const MCInstrDesc &Desc = MI.getDesc(); 748 749 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 750 int VDataRCID = -1; 751 if (VDataIdx != -1) 752 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 753 754 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 755 // There is no hazard if the instruction does not use vector regs 756 // (like wbinvl1) 757 if (VDataIdx == -1) 758 return -1; 759 // For MUBUF/MTBUF instructions this hazard only exists if the 760 // instruction is not using a register in the soffset field. 761 const MachineOperand *SOffset = 762 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 763 // If we have no soffset operand, then assume this field has been 764 // hardcoded to zero. 765 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 766 (!SOffset || !SOffset->isReg())) 767 return VDataIdx; 768 } 769 770 // MIMG instructions create a hazard if they don't use a 256-bit T# and 771 // the store size is greater than 8 bytes and they have more than two bits 772 // of their dmask set. 773 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 774 if (TII->isMIMG(MI)) { 775 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 776 assert(SRsrcIdx != -1 && 777 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 778 (void)SRsrcIdx; 779 } 780 781 if (TII->isFLAT(MI)) { 782 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 783 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 784 return DataIdx; 785 } 786 787 return -1; 788 } 789 790 int 791 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 792 const MachineRegisterInfo &MRI) { 793 // Helper to check for the hazard where VMEM instructions that store more than 794 // 8 bytes can have there store data over written by the next instruction. 795 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 796 797 const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1; 798 int WaitStatesNeeded = 0; 799 800 if (!TRI->isVectorRegister(MRI, Def.getReg())) 801 return WaitStatesNeeded; 802 Register Reg = Def.getReg(); 803 auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) { 804 int DataIdx = createsVALUHazard(MI); 805 return DataIdx >= 0 && 806 TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg); 807 }; 808 int WaitStatesNeededForDef = 809 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 810 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 811 812 return WaitStatesNeeded; 813 } 814 815 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 816 int WaitStatesNeeded = 0; 817 818 if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) { 819 const int TransDefWaitstates = 1; 820 821 auto IsTransDefFn = [this, VALU](const MachineInstr &MI) { 822 if (!SIInstrInfo::isTRANS(MI)) 823 return false; 824 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 825 const SIInstrInfo *TII = ST.getInstrInfo(); 826 Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg(); 827 828 for (const MachineOperand &Use : VALU->explicit_uses()) { 829 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 830 return true; 831 } 832 833 return false; 834 }; 835 836 int WaitStatesNeededForDef = 837 TransDefWaitstates - 838 getWaitStatesSince(IsTransDefFn, TransDefWaitstates); 839 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 840 } 841 842 if (ST.hasDstSelForwardingHazard()) { 843 const int Shift16DefWaitstates = 1; 844 845 auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) { 846 if (!SIInstrInfo::isVALU(MI)) 847 return false; 848 const SIInstrInfo *TII = ST.getInstrInfo(); 849 if (SIInstrInfo::isSDWA(MI)) { 850 if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel)) 851 if (DstSel->getImm() == AMDGPU::SDWA::DWORD) 852 return false; 853 } else { 854 if ((AMDGPU::getNamedOperandIdx(MI.getOpcode(), 855 AMDGPU::OpName::op_sel) == -1) || 856 !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers) 857 ->getImm() & 858 SISrcMods::DST_OP_SEL)) 859 return false; 860 } 861 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 862 if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) { 863 Register Def = Dst->getReg(); 864 865 for (const MachineOperand &Use : VALU->explicit_uses()) { 866 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 867 return true; 868 } 869 } 870 871 return false; 872 }; 873 874 int WaitStatesNeededForDef = 875 Shift16DefWaitstates - 876 getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates); 877 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 878 } 879 880 if (ST.hasVDecCoExecHazard()) { 881 const int VALUWriteSGPRVALUReadWaitstates = 2; 882 const int VALUWriteEXECRWLane = 4; 883 const int VALUWriteVGPRReadlaneRead = 1; 884 885 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 886 const MachineRegisterInfo &MRI = MF.getRegInfo(); 887 Register UseReg; 888 auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) { 889 if (!SIInstrInfo::isVALU(MI)) 890 return false; 891 return MI.modifiesRegister(UseReg, TRI); 892 }; 893 894 for (const MachineOperand &Use : VALU->explicit_uses()) { 895 if (!Use.isReg()) 896 continue; 897 898 UseReg = Use.getReg(); 899 if (TRI->isSGPRReg(MRI, UseReg)) { 900 int WaitStatesNeededForDef = 901 VALUWriteSGPRVALUReadWaitstates - 902 getWaitStatesSince(IsVALUDefSGPRFn, 903 VALUWriteSGPRVALUReadWaitstates); 904 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 905 } 906 } 907 908 if (VALU->readsRegister(AMDGPU::VCC, TRI)) { 909 UseReg = AMDGPU::VCC; 910 int WaitStatesNeededForDef = 911 VALUWriteSGPRVALUReadWaitstates - 912 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates); 913 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 914 } 915 916 switch (VALU->getOpcode()) { 917 case AMDGPU::V_READLANE_B32: 918 case AMDGPU::V_READFIRSTLANE_B32: { 919 MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0); 920 UseReg = Src->getReg(); 921 int WaitStatesNeededForDef = 922 VALUWriteVGPRReadlaneRead - 923 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead); 924 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 925 } 926 LLVM_FALLTHROUGH; 927 case AMDGPU::V_WRITELANE_B32: { 928 UseReg = AMDGPU::EXEC; 929 int WaitStatesNeededForDef = 930 VALUWriteEXECRWLane - 931 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane); 932 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 933 break; 934 } 935 default: 936 break; 937 } 938 } 939 940 // This checks for the hazard where VMEM instructions that store more than 941 // 8 bytes can have there store data over written by the next instruction. 942 if (!ST.has12DWordStoreHazard()) 943 return WaitStatesNeeded; 944 945 const MachineRegisterInfo &MRI = MF.getRegInfo(); 946 947 for (const MachineOperand &Def : VALU->defs()) { 948 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 949 } 950 951 return WaitStatesNeeded; 952 } 953 954 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 955 // This checks for hazards associated with inline asm statements. 956 // Since inline asms can contain just about anything, we use this 957 // to call/leverage other check*Hazard routines. Note that 958 // this function doesn't attempt to address all possible inline asm 959 // hazards (good luck), but is a collection of what has been 960 // problematic thus far. 961 962 // see checkVALUHazards() 963 if (!ST.has12DWordStoreHazard()) 964 return 0; 965 966 const MachineRegisterInfo &MRI = MF.getRegInfo(); 967 int WaitStatesNeeded = 0; 968 969 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands(); 970 I != E; ++I) { 971 const MachineOperand &Op = IA->getOperand(I); 972 if (Op.isReg() && Op.isDef()) { 973 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 974 } 975 } 976 977 return WaitStatesNeeded; 978 } 979 980 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 981 const SIInstrInfo *TII = ST.getInstrInfo(); 982 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 983 const MachineRegisterInfo &MRI = MF.getRegInfo(); 984 985 const MachineOperand *LaneSelectOp = 986 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 987 988 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 989 return 0; 990 991 Register LaneSelectReg = LaneSelectOp->getReg(); 992 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); }; 993 994 const int RWLaneWaitStates = 4; 995 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 996 RWLaneWaitStates); 997 return RWLaneWaitStates - WaitStatesSince; 998 } 999 1000 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 1001 if (!ST.hasRFEHazards()) 1002 return 0; 1003 1004 const SIInstrInfo *TII = ST.getInstrInfo(); 1005 1006 const int RFEWaitStates = 1; 1007 1008 auto IsHazardFn = [TII](const MachineInstr &MI) { 1009 return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS; 1010 }; 1011 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 1012 return RFEWaitStates - WaitStatesNeeded; 1013 } 1014 1015 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 1016 const SIInstrInfo *TII = ST.getInstrInfo(); 1017 const int SMovRelWaitStates = 1; 1018 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); }; 1019 return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, 1020 SMovRelWaitStates); 1021 } 1022 1023 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 1024 fixVMEMtoScalarWriteHazards(MI); 1025 fixVcmpxPermlaneHazards(MI); 1026 fixSMEMtoVectorWriteHazards(MI); 1027 fixVcmpxExecWARHazard(MI); 1028 fixLdsBranchVmemWARHazard(MI); 1029 } 1030 1031 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { 1032 if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI)) 1033 return false; 1034 1035 const SIInstrInfo *TII = ST.getInstrInfo(); 1036 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVOPC(MI); }; 1037 1038 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1039 unsigned Opc = MI.getOpcode(); 1040 return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 && 1041 Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa; 1042 }; 1043 1044 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1045 std::numeric_limits<int>::max()) 1046 return false; 1047 1048 // V_NOP will be discarded by SQ. 1049 // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* 1050 // which is always a VGPR and available. 1051 auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1052 Register Reg = Src0->getReg(); 1053 bool IsUndef = Src0->isUndef(); 1054 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1055 TII->get(AMDGPU::V_MOV_B32_e32)) 1056 .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0)) 1057 .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill); 1058 1059 return true; 1060 } 1061 1062 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 1063 if (!ST.hasVMEMtoScalarWriteHazard()) 1064 return false; 1065 1066 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 1067 return false; 1068 1069 if (MI->getNumDefs() == 0) 1070 return false; 1071 1072 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1073 1074 auto IsHazardFn = [TRI, MI](const MachineInstr &I) { 1075 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) && 1076 !SIInstrInfo::isFLAT(I)) 1077 return false; 1078 1079 for (const MachineOperand &Def : MI->defs()) { 1080 const MachineOperand *Op = 1081 I.findRegisterUseOperand(Def.getReg(), false, TRI); 1082 if (!Op) 1083 continue; 1084 return true; 1085 } 1086 return false; 1087 }; 1088 1089 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1090 return SIInstrInfo::isVALU(MI) || 1091 (MI.getOpcode() == AMDGPU::S_WAITCNT && 1092 !MI.getOperand(0).getImm()) || 1093 (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1094 MI.getOperand(0).getImm() == 0xffe3); 1095 }; 1096 1097 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1098 std::numeric_limits<int>::max()) 1099 return false; 1100 1101 const SIInstrInfo *TII = ST.getInstrInfo(); 1102 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1103 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1104 .addImm(0xffe3); 1105 return true; 1106 } 1107 1108 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 1109 if (!ST.hasSMEMtoVectorWriteHazard()) 1110 return false; 1111 1112 if (!SIInstrInfo::isVALU(*MI)) 1113 return false; 1114 1115 unsigned SDSTName; 1116 switch (MI->getOpcode()) { 1117 case AMDGPU::V_READLANE_B32: 1118 case AMDGPU::V_READFIRSTLANE_B32: 1119 SDSTName = AMDGPU::OpName::vdst; 1120 break; 1121 default: 1122 SDSTName = AMDGPU::OpName::sdst; 1123 break; 1124 } 1125 1126 const SIInstrInfo *TII = ST.getInstrInfo(); 1127 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1128 const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU()); 1129 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 1130 if (!SDST) { 1131 for (const auto &MO : MI->implicit_operands()) { 1132 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) { 1133 SDST = &MO; 1134 break; 1135 } 1136 } 1137 } 1138 1139 if (!SDST) 1140 return false; 1141 1142 const Register SDSTReg = SDST->getReg(); 1143 auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) { 1144 return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI); 1145 }; 1146 1147 auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) { 1148 if (TII->isSALU(MI)) { 1149 switch (MI.getOpcode()) { 1150 case AMDGPU::S_SETVSKIP: 1151 case AMDGPU::S_VERSION: 1152 case AMDGPU::S_WAITCNT_VSCNT: 1153 case AMDGPU::S_WAITCNT_VMCNT: 1154 case AMDGPU::S_WAITCNT_EXPCNT: 1155 // These instructions cannot not mitigate the hazard. 1156 return false; 1157 case AMDGPU::S_WAITCNT_LGKMCNT: 1158 // Reducing lgkmcnt count to 0 always mitigates the hazard. 1159 return (MI.getOperand(1).getImm() == 0) && 1160 (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1161 case AMDGPU::S_WAITCNT: { 1162 const int64_t Imm = MI.getOperand(0).getImm(); 1163 AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm); 1164 return (Decoded.LgkmCnt == 0); 1165 } 1166 default: 1167 // SOPP instructions cannot mitigate the hazard. 1168 if (TII->isSOPP(MI)) 1169 return false; 1170 // At this point the SALU can be assumed to mitigate the hazard 1171 // because either: 1172 // (a) it is independent of the at risk SMEM (breaking chain), 1173 // or 1174 // (b) it is dependent on the SMEM, in which case an appropriate 1175 // s_waitcnt lgkmcnt _must_ exist between it and the at risk 1176 // SMEM instruction. 1177 return true; 1178 } 1179 } 1180 return false; 1181 }; 1182 1183 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1184 std::numeric_limits<int>::max()) 1185 return false; 1186 1187 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1188 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 1189 .addImm(0); 1190 return true; 1191 } 1192 1193 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 1194 if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI)) 1195 return false; 1196 1197 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1198 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1199 return false; 1200 1201 auto IsHazardFn = [TRI](const MachineInstr &I) { 1202 if (SIInstrInfo::isVALU(I)) 1203 return false; 1204 return I.readsRegister(AMDGPU::EXEC, TRI); 1205 }; 1206 1207 const SIInstrInfo *TII = ST.getInstrInfo(); 1208 auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) { 1209 if (SIInstrInfo::isVALU(MI)) { 1210 if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst)) 1211 return true; 1212 for (auto MO : MI.implicit_operands()) 1213 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) 1214 return true; 1215 } 1216 if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1217 (MI.getOperand(0).getImm() & 0xfffe) == 0xfffe) 1218 return true; 1219 return false; 1220 }; 1221 1222 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1223 std::numeric_limits<int>::max()) 1224 return false; 1225 1226 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1227 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1228 .addImm(0xfffe); 1229 return true; 1230 } 1231 1232 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 1233 const GCNSubtarget &ST) { 1234 if (!ST.hasLdsBranchVmemWARHazard()) 1235 return false; 1236 1237 // Check if the necessary condition for the hazard is met: both LDS and VMEM 1238 // instructions need to appear in the same function. 1239 bool HasLds = false; 1240 bool HasVmem = false; 1241 for (auto &MBB : MF) { 1242 for (auto &MI : MBB) { 1243 HasLds |= SIInstrInfo::isDS(MI); 1244 HasVmem |= 1245 SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI); 1246 if (HasLds && HasVmem) 1247 return true; 1248 } 1249 } 1250 return false; 1251 } 1252 1253 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 1254 if (!RunLdsBranchVmemWARHazardFixup) 1255 return false; 1256 1257 assert(ST.hasLdsBranchVmemWARHazard()); 1258 1259 auto IsHazardInst = [](const MachineInstr &MI) { 1260 if (SIInstrInfo::isDS(MI)) 1261 return 1; 1262 if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) 1263 return 2; 1264 return 0; 1265 }; 1266 1267 auto InstType = IsHazardInst(*MI); 1268 if (!InstType) 1269 return false; 1270 1271 auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) { 1272 return IsHazardInst(I) || (I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1273 I.getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1274 !I.getOperand(1).getImm()); 1275 }; 1276 1277 auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) { 1278 if (!I.isBranch()) 1279 return false; 1280 1281 auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) { 1282 auto InstType2 = IsHazardInst(I); 1283 return InstType2 && InstType != InstType2; 1284 }; 1285 1286 auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) { 1287 auto InstType2 = IsHazardInst(I); 1288 if (InstType == InstType2) 1289 return true; 1290 1291 return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1292 I.getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1293 !I.getOperand(1).getImm(); 1294 }; 1295 1296 return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) != 1297 std::numeric_limits<int>::max(); 1298 }; 1299 1300 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1301 std::numeric_limits<int>::max()) 1302 return false; 1303 1304 const SIInstrInfo *TII = ST.getInstrInfo(); 1305 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1306 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1307 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1308 .addImm(0); 1309 1310 return true; 1311 } 1312 1313 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1314 int NSAtoVMEMWaitStates = 1; 1315 1316 if (!ST.hasNSAtoVMEMBug()) 1317 return 0; 1318 1319 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1320 return 0; 1321 1322 const SIInstrInfo *TII = ST.getInstrInfo(); 1323 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1324 if (!Offset || (Offset->getImm() & 6) == 0) 1325 return 0; 1326 1327 auto IsHazardFn = [TII](const MachineInstr &I) { 1328 if (!SIInstrInfo::isMIMG(I)) 1329 return false; 1330 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode()); 1331 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1332 TII->getInstSizeInBytes(I) >= 16; 1333 }; 1334 1335 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1336 } 1337 1338 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) { 1339 int FPAtomicToDenormModeWaitStates = 3; 1340 1341 if (MI->getOpcode() != AMDGPU::S_DENORM_MODE) 1342 return 0; 1343 1344 auto IsHazardFn = [](const MachineInstr &I) { 1345 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I)) 1346 return false; 1347 return SIInstrInfo::isFPAtomic(I); 1348 }; 1349 1350 auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) { 1351 if (WaitStates >= 3 || SIInstrInfo::isVALU(MI)) 1352 return true; 1353 1354 switch (MI.getOpcode()) { 1355 case AMDGPU::S_WAITCNT: 1356 case AMDGPU::S_WAITCNT_VSCNT: 1357 case AMDGPU::S_WAITCNT_VMCNT: 1358 case AMDGPU::S_WAITCNT_EXPCNT: 1359 case AMDGPU::S_WAITCNT_LGKMCNT: 1360 case AMDGPU::S_WAIT_IDLE: 1361 return true; 1362 default: 1363 break; 1364 } 1365 1366 return false; 1367 }; 1368 1369 return FPAtomicToDenormModeWaitStates - 1370 ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn); 1371 } 1372 1373 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) { 1374 assert(SIInstrInfo::isMAI(*MI)); 1375 1376 return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI); 1377 } 1378 1379 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) { 1380 // Early exit if no padding is requested. 1381 if (MFMAPaddingRatio == 0) 1382 return 0; 1383 1384 auto IsMFMAFn = [](const MachineInstr &MI) { 1385 return SIInstrInfo::isMAI(MI) && 1386 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 && 1387 MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64; 1388 }; 1389 1390 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1391 if (!IsMFMAFn(*MI) || MFI->getOccupancy() < 2) 1392 return 0; 1393 1394 int NeighborMFMALatency = 0; 1395 auto IsNeighboringMFMA = [&IsMFMAFn, &NeighborMFMALatency, 1396 this](const MachineInstr &MI) { 1397 if (!IsMFMAFn(MI)) 1398 return false; 1399 1400 NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI); 1401 return true; 1402 }; 1403 1404 const int MaxMFMAPipelineWaitStates = 16; 1405 int WaitStatesSinceNeighborMFMA = 1406 getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates); 1407 1408 int NeighborMFMAPaddingNeeded = 1409 (NeighborMFMALatency * MFMAPaddingRatio / 100) - 1410 WaitStatesSinceNeighborMFMA; 1411 1412 return std::max(0, NeighborMFMAPaddingNeeded); 1413 } 1414 1415 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) { 1416 int WaitStatesNeeded = 0; 1417 unsigned Opc = MI->getOpcode(); 1418 1419 auto IsVALUFn = [](const MachineInstr &MI) { 1420 return SIInstrInfo::isVALU(MI); 1421 }; 1422 1423 if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write 1424 const int LegacyVALUWritesVGPRWaitStates = 2; 1425 const int VALUWritesExecWaitStates = 4; 1426 const int MaxWaitStates = 4; 1427 1428 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 1429 getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates); 1430 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1431 1432 if (WaitStatesNeeded < MaxWaitStates) { 1433 for (const MachineOperand &Use : MI->explicit_uses()) { 1434 const int MaxWaitStates = 2; 1435 1436 if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1437 continue; 1438 1439 int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates - 1440 getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates); 1441 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1442 1443 if (WaitStatesNeeded == MaxWaitStates) 1444 break; 1445 } 1446 } 1447 } 1448 1449 auto IsMFMAFn = [](const MachineInstr &MI) { 1450 return SIInstrInfo::isMAI(MI) && 1451 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 && 1452 MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64; 1453 }; 1454 1455 for (const MachineOperand &Op : MI->explicit_operands()) { 1456 if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg())) 1457 continue; 1458 1459 if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 1460 continue; 1461 1462 const int MFMAWritesAGPROverlappedSrcABWaitStates = 4; 1463 const int MFMAWritesAGPROverlappedSrcCWaitStates = 2; 1464 const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4; 1465 const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10; 1466 const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18; 1467 const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1; 1468 const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7; 1469 const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15; 1470 const int MaxWaitStates = 18; 1471 Register Reg = Op.getReg(); 1472 unsigned HazardDefLatency = 0; 1473 1474 auto IsOverlappedMFMAFn = [Reg, &IsMFMAFn, &HazardDefLatency, 1475 this](const MachineInstr &MI) { 1476 if (!IsMFMAFn(MI)) 1477 return false; 1478 Register DstReg = MI.getOperand(0).getReg(); 1479 if (DstReg == Reg) 1480 return false; 1481 HazardDefLatency = 1482 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 1483 return TRI.regsOverlap(DstReg, Reg); 1484 }; 1485 1486 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, 1487 MaxWaitStates); 1488 int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates; 1489 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1490 int OpNo = MI->getOperandNo(&Op); 1491 if (OpNo == SrcCIdx) { 1492 NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates; 1493 } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) { 1494 switch (HazardDefLatency) { 1495 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates; 1496 break; 1497 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates; 1498 break; 1499 case 16: LLVM_FALLTHROUGH; 1500 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates; 1501 break; 1502 } 1503 } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 1504 switch (HazardDefLatency) { 1505 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates; 1506 break; 1507 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates; 1508 break; 1509 case 16: LLVM_FALLTHROUGH; 1510 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates; 1511 break; 1512 } 1513 } 1514 1515 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 1516 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1517 1518 if (WaitStatesNeeded == MaxWaitStates) 1519 return WaitStatesNeeded; // Early exit. 1520 1521 auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) { 1522 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 1523 return false; 1524 Register DstReg = MI.getOperand(0).getReg(); 1525 return TRI.regsOverlap(Reg, DstReg); 1526 }; 1527 1528 const int AccVGPRWriteMFMAReadSrcCWaitStates = 1; 1529 const int AccVGPRWriteMFMAReadSrcABWaitStates = 3; 1530 const int AccVGPRWriteAccVgprReadWaitStates = 3; 1531 NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates; 1532 if (OpNo == SrcCIdx) 1533 NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates; 1534 else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) 1535 NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates; 1536 1537 WaitStatesNeededForUse = NeedWaitStates - 1538 getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates); 1539 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1540 1541 if (WaitStatesNeeded == MaxWaitStates) 1542 return WaitStatesNeeded; // Early exit. 1543 } 1544 1545 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 1546 const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0; 1547 const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5; 1548 const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13; 1549 const int MaxWaitStates = 13; 1550 Register DstReg = MI->getOperand(0).getReg(); 1551 unsigned HazardDefLatency = 0; 1552 1553 auto IsSrcCMFMAFn = [DstReg, &IsMFMAFn, &HazardDefLatency, 1554 this](const MachineInstr &MI) { 1555 if (!IsMFMAFn(MI)) 1556 return false; 1557 Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg(); 1558 HazardDefLatency = 1559 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 1560 return TRI.regsOverlap(Reg, DstReg); 1561 }; 1562 1563 int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates); 1564 int NeedWaitStates; 1565 switch (HazardDefLatency) { 1566 case 2: NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates; 1567 break; 1568 case 8: NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates; 1569 break; 1570 case 16: LLVM_FALLTHROUGH; 1571 default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates; 1572 break; 1573 } 1574 1575 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince; 1576 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1577 } 1578 1579 // Pad neighboring MFMA with noops for better inter-wave performance. 1580 WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI)); 1581 1582 return WaitStatesNeeded; 1583 } 1584 1585 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) { 1586 int WaitStatesNeeded = 0; 1587 unsigned Opc = MI->getOpcode(); 1588 1589 auto IsMFMAFn = [](const MachineInstr &MI) { 1590 return SIInstrInfo::isMAI(MI) && 1591 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 && 1592 MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64; 1593 }; 1594 1595 auto IsLegacyVALUFn = [&IsMFMAFn](const MachineInstr &MI) { 1596 return SIInstrInfo::isVALU(MI) && !IsMFMAFn(MI); 1597 }; 1598 1599 auto IsLegacyVALUNotDotFn = [&IsMFMAFn](const MachineInstr &MI) { 1600 return SIInstrInfo::isVALU(MI) && !IsMFMAFn(MI) && !SIInstrInfo::isDOT(MI); 1601 }; 1602 1603 if (!IsMFMAFn(*MI)) 1604 return WaitStatesNeeded; 1605 1606 const int VALUWritesExecWaitStates = 4; 1607 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 1608 getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn, 1609 VALUWritesExecWaitStates); 1610 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1611 1612 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1613 1614 // Loop for both DGEMM and S/HGEMM 2nd instruction. 1615 for (const MachineOperand &Use : MI->explicit_uses()) { 1616 const int LegacyVALUNotDotWritesVGPRWaitStates = 2; 1617 const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2; 1618 const int GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates = 3; 1619 const int GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates = 5; 1620 const int GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates = 4; 1621 const int GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates = 9; 1622 const int GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates = 8; 1623 const int GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates = 17; 1624 const int GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates = 16; 1625 const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8; 1626 const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16; 1627 const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3; 1628 const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9; 1629 const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17; 1630 const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9; 1631 const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4; 1632 const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5; 1633 const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11; 1634 const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19; 1635 const int GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates = 4; 1636 const int GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates = 6; 1637 const int GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates = 10; 1638 const int GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates = 18; 1639 const int GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates = 5; 1640 const int GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates = 7; 1641 const int GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates = 11; 1642 const int GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates = 19; 1643 const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6; 1644 const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11; 1645 const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4; 1646 const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2; 1647 const int MaxWaitStates = 19; 1648 1649 if (!Use.isReg()) 1650 continue; 1651 Register Reg = Use.getReg(); 1652 bool FullReg; 1653 const MachineInstr *MI1; 1654 1655 auto IsOverlappedMFMAFn = [Reg, &IsMFMAFn, &FullReg, &MI1, 1656 this](const MachineInstr &MI) { 1657 if (!IsMFMAFn(MI)) 1658 return false; 1659 Register DstReg = MI.getOperand(0).getReg(); 1660 FullReg = (DstReg == Reg); 1661 MI1 = &MI; 1662 return TRI.regsOverlap(DstReg, Reg); 1663 }; 1664 1665 WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates - 1666 getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates); 1667 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1668 1669 int NumWaitStates = 1670 getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates); 1671 if (NumWaitStates == std::numeric_limits<int>::max()) 1672 continue; 1673 1674 int OpNo = MI->getOperandNo(&Use); 1675 unsigned Opc1 = MI1->getOpcode(); 1676 int NeedWaitStates = 0; 1677 if (OpNo == SrcCIdx) { 1678 if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) { 1679 NeedWaitStates = 0; 1680 } else if (FullReg) { 1681 if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 1682 Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) && 1683 (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 1684 Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64)) 1685 NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates; 1686 else if (ST.hasGFX940Insts() && 1687 TSchedModel.computeInstrLatency(MI1) == 2) 1688 NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates; 1689 } else { 1690 switch (Opc1) { 1691 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 1692 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 1693 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 1694 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 1695 if (!isXDL(ST, *MI)) 1696 NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates; 1697 break; 1698 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 1699 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 1700 if (!isXDL(ST, *MI)) 1701 NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates; 1702 break; 1703 default: 1704 if (ST.hasGFX940Insts() && isXDL(ST, *MI) && !isXDL(ST, *MI1)) 1705 break; 1706 switch (TSchedModel.computeInstrLatency(MI1)) { 1707 case 2: 1708 NeedWaitStates = ST.hasGFX940Insts() 1709 ? isXDL(ST, *MI1) 1710 ? GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates 1711 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates 1712 : isDGEMM(Opc) 1713 ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates 1714 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates; 1715 break; 1716 case 4: 1717 assert(ST.hasGFX940Insts()); 1718 NeedWaitStates = isXDL(ST, *MI1) 1719 ? GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates 1720 : GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates; 1721 break; 1722 case 8: 1723 NeedWaitStates = ST.hasGFX940Insts() 1724 ? isXDL(ST, *MI1) 1725 ? GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates 1726 : GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates 1727 : isDGEMM(Opc) 1728 ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates 1729 : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates; 1730 break; 1731 case 16: LLVM_FALLTHROUGH; 1732 default: 1733 NeedWaitStates = ST.hasGFX940Insts() 1734 ? isXDL(ST, *MI1) 1735 ? GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates 1736 : GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates 1737 : isDGEMM(Opc) 1738 ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates 1739 : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates; 1740 } 1741 } 1742 } 1743 } else { 1744 switch (Opc1) { 1745 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 1746 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 1747 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 1748 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 1749 NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates; 1750 break; 1751 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 1752 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 1753 NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates; 1754 break; 1755 default: 1756 switch (TSchedModel.computeInstrLatency(MI1)) { 1757 case 2: 1758 NeedWaitStates = ST.hasGFX940Insts() 1759 ? isXDL(ST, *MI1) 1760 ? GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates 1761 : GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates 1762 : SMFMA4x4WritesVGPROverlappedSrcABWaitStates; 1763 break; 1764 case 4: 1765 assert(ST.hasGFX940Insts()); 1766 NeedWaitStates = isXDL(ST, *MI1) 1767 ? GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates 1768 : GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates; 1769 break; 1770 case 8: 1771 NeedWaitStates = ST.hasGFX940Insts() 1772 ? isXDL(ST, *MI1) 1773 ? GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates 1774 : GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates 1775 : SMFMA16x16WritesVGPROverlappedSrcABWaitStates; 1776 break; 1777 case 16: LLVM_FALLTHROUGH; 1778 default: 1779 NeedWaitStates = ST.hasGFX940Insts() 1780 ? isXDL(ST, *MI1) 1781 ? GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates 1782 : GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates 1783 : SMFMA32x32WritesVGPROverlappedSrcABWaitStates; 1784 } 1785 } 1786 } 1787 if (WaitStatesNeeded >= NeedWaitStates) 1788 continue; 1789 1790 WaitStatesNeededForUse = NeedWaitStates - NumWaitStates; 1791 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1792 1793 if (WaitStatesNeeded == MaxWaitStates) 1794 break; 1795 } 1796 1797 return WaitStatesNeeded; 1798 } 1799 1800 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) { 1801 // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards() 1802 if (!ST.hasMAIInsts() || ST.hasGFX90AInsts()) 1803 return 0; 1804 1805 int WaitStatesNeeded = 0; 1806 1807 auto IsAccVgprReadFn = [](const MachineInstr &MI) { 1808 return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64; 1809 }; 1810 1811 for (const MachineOperand &Op : MI->explicit_uses()) { 1812 if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg())) 1813 continue; 1814 1815 Register Reg = Op.getReg(); 1816 1817 const int AccVgprReadLdStWaitStates = 2; 1818 const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1; 1819 const int MaxWaitStates = 2; 1820 1821 int WaitStatesNeededForUse = AccVgprReadLdStWaitStates - 1822 getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates); 1823 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1824 1825 if (WaitStatesNeeded == MaxWaitStates) 1826 return WaitStatesNeeded; // Early exit. 1827 1828 auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) { 1829 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 && 1830 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 1831 return false; 1832 auto IsVALUFn = [](const MachineInstr &MI) { 1833 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI); 1834 }; 1835 return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) < 1836 std::numeric_limits<int>::max(); 1837 }; 1838 1839 WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates - 1840 getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates); 1841 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1842 } 1843 1844 return WaitStatesNeeded; 1845 } 1846 1847 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) { 1848 if (!ST.hasGFX90AInsts()) 1849 return 0; 1850 1851 auto IsMFMAFn = [](const MachineInstr &MI) -> bool { 1852 return SIInstrInfo::isMAI(MI) && 1853 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 && 1854 MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64; 1855 }; 1856 1857 auto IsDGEMMFn = [](const MachineInstr &MI) -> bool { 1858 return isDGEMM(MI.getOpcode()); 1859 }; 1860 1861 // This is checked in checkMAIHazards90A() 1862 if (IsMFMAFn(*MI)) 1863 return 0; 1864 1865 int WaitStatesNeeded = 0; 1866 1867 bool IsMemOrExport = SIInstrInfo::isVMEM(*MI) || 1868 SIInstrInfo::isFLAT(*MI) || 1869 SIInstrInfo::isDS(*MI) || 1870 SIInstrInfo::isEXP(*MI); 1871 bool IsVALU = SIInstrInfo::isVALU(*MI); 1872 1873 const MachineInstr *MFMA = nullptr; 1874 unsigned Reg; 1875 auto IsMFMAWriteFn = [&Reg, &IsMFMAFn, &MFMA, this](const MachineInstr &MI) { 1876 if (!IsMFMAFn(MI) || !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 1877 return false; 1878 MFMA = &MI; 1879 return true; 1880 }; 1881 1882 const MachineInstr *DOT = nullptr; 1883 auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) { 1884 if (!SIInstrInfo::isDOT(MI) || 1885 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 1886 return false; 1887 DOT = &MI; 1888 return true; 1889 }; 1890 1891 int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), 1892 AMDGPU::OpName::src2); 1893 1894 if (IsMemOrExport || IsVALU) { 1895 const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5; 1896 const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11; 1897 const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19; 1898 const int GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates = 4; 1899 const int GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates = 6; 1900 const int GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates = 10; 1901 const int GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates = 18; 1902 const int GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates = 5; 1903 const int GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates = 7; 1904 const int GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates = 11; 1905 const int GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates = 19; 1906 const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9; 1907 const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18; 1908 const int DMFMA4x4WriteVgprVALUReadWaitStates = 6; 1909 const int DMFMA16x16WriteVgprVALUReadWaitStates = 11; 1910 const int DotWriteSameDotReadSrcAB = 3; 1911 const int DotWriteDifferentVALURead = 3; 1912 const int MaxWaitStates = 19; 1913 1914 for (const MachineOperand &Use : MI->explicit_uses()) { 1915 if (!Use.isReg()) 1916 continue; 1917 Reg = Use.getReg(); 1918 1919 DOT = nullptr; 1920 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 1921 MaxWaitStates); 1922 if (DOT) { 1923 int NeedWaitStates = 0; 1924 if (DOT->getOpcode() == MI->getOpcode()) { 1925 if (&Use - &MI->getOperand(0) != SrcCIdx) 1926 NeedWaitStates = DotWriteSameDotReadSrcAB; 1927 } else { 1928 NeedWaitStates = DotWriteDifferentVALURead; 1929 } 1930 1931 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 1932 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1933 } 1934 1935 MFMA = nullptr; 1936 WaitStatesSinceDef = 1937 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 1938 if (!MFMA) 1939 continue; 1940 1941 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 1942 int NeedWaitStates = MaxWaitStates; 1943 switch (HazardDefLatency) { 1944 case 2: 1945 NeedWaitStates = 1946 ST.hasGFX940Insts() 1947 ? isXDL(ST, *MFMA) 1948 ? GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates 1949 : GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates 1950 : SMFMA4x4WriteVgprVALUMemExpReadWaitStates; 1951 break; 1952 case 4: 1953 assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts()); 1954 NeedWaitStates = 1955 isDGEMM(MFMA->getOpcode()) 1956 ? IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates 1957 : DMFMA4x4WriteVgprVALUReadWaitStates 1958 : isXDL(ST, *MFMA) 1959 ? GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates 1960 : GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates; 1961 break; 1962 case 8: 1963 NeedWaitStates = 1964 ST.hasGFX940Insts() 1965 ? isXDL(ST, *MFMA) 1966 ? GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates 1967 : GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates 1968 : SMFMA16x16WriteVgprVALUMemExpReadWaitStates; 1969 break; 1970 case 16: LLVM_FALLTHROUGH; 1971 default: 1972 NeedWaitStates = 1973 isDGEMM(MFMA->getOpcode()) 1974 ? IsMemOrExport ? DMFMA16x16WriteVgprMemExpReadWaitStates 1975 : DMFMA16x16WriteVgprVALUReadWaitStates 1976 : ST.hasGFX940Insts() 1977 ? isXDL(ST, *MFMA) 1978 ? GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates 1979 : GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates 1980 : SMFMA32x32WriteVgprVALUMemExpReadWaitStates; 1981 break; 1982 } 1983 1984 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 1985 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1986 1987 if (WaitStatesNeeded == MaxWaitStates) 1988 break; 1989 } 1990 } 1991 1992 unsigned Opc = MI->getOpcode(); 1993 const int DMFMAToFMA64WaitStates = 2; 1994 if ((Opc == AMDGPU::V_FMA_F64_e64 || 1995 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 || 1996 Opc == AMDGPU::V_FMAC_F64_dpp) && 1997 WaitStatesNeeded < DMFMAToFMA64WaitStates) { 1998 int WaitStatesNeededForUse = DMFMAToFMA64WaitStates - 1999 getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates); 2000 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2001 } 2002 2003 if (!IsVALU && !IsMemOrExport) 2004 return WaitStatesNeeded; 2005 2006 for (const MachineOperand &Def : MI->defs()) { 2007 const int SMFMA4x4WriteVgprVALUWawWaitStates = 5; 2008 const int SMFMA16x16WriteVgprVALUWawWaitStates = 11; 2009 const int SMFMA32x32WriteVgprVALUWawWaitStates = 19; 2010 const int GFX940_SMFMA2PassWriteVgprVALUWawWaitStates = 4; 2011 const int GFX940_SMFMA4PassWriteVgprVALUWawWaitStates = 6; 2012 const int GFX940_SMFMA8PassWriteVgprVALUWawWaitStates = 10; 2013 const int GFX940_SMFMA16PassWriteVgprVALUWawWaitStates = 18; 2014 const int GFX940_XDL2PassWriteVgprVALUWawWaitStates = 5; 2015 const int GFX940_XDL4PassWriteVgprVALUWawWaitStates = 7; 2016 const int GFX940_XDL8PassWriteVgprVALUWawWaitStates = 11; 2017 const int GFX940_XDL16PassWriteVgprVALUWawWaitStates = 19; 2018 const int SMFMA4x4ReadVgprVALUWarWaitStates = 1; 2019 const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3; 2020 const int SMFMA16x16ReadVgprVALUWarWaitStates = 7; 2021 const int SMFMA32x32ReadVgprVALUWarWaitStates = 15; 2022 const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6; 2023 const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11; 2024 const int DotWriteDifferentVALUWrite = 3; 2025 const int MaxWaitStates = 19; 2026 const int MaxWarWaitStates = 15; 2027 2028 Reg = Def.getReg(); 2029 2030 DOT = nullptr; 2031 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2032 MaxWaitStates); 2033 if (DOT && DOT->getOpcode() != MI->getOpcode()) 2034 WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite - 2035 WaitStatesSinceDef); 2036 2037 MFMA = nullptr; 2038 WaitStatesSinceDef = 2039 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2040 if (MFMA) { 2041 int NeedWaitStates = MaxWaitStates; 2042 switch (TSchedModel.computeInstrLatency(MFMA)) { 2043 case 2: 2044 NeedWaitStates = ST.hasGFX940Insts() 2045 ? isXDL(ST, *MFMA) 2046 ? GFX940_XDL2PassWriteVgprVALUWawWaitStates 2047 : GFX940_SMFMA2PassWriteVgprVALUWawWaitStates 2048 : SMFMA4x4WriteVgprVALUWawWaitStates; 2049 break; 2050 case 4: 2051 assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts()); 2052 NeedWaitStates = isDGEMM(MFMA->getOpcode()) 2053 ? DMFMA4x4WriteVgprVALUWriteWaitStates 2054 : isXDL(ST, *MFMA) 2055 ? GFX940_XDL4PassWriteVgprVALUWawWaitStates 2056 : GFX940_SMFMA4PassWriteVgprVALUWawWaitStates; 2057 break; 2058 case 8: 2059 NeedWaitStates = ST.hasGFX940Insts() 2060 ? isXDL(ST, *MFMA) 2061 ? GFX940_XDL8PassWriteVgprVALUWawWaitStates 2062 : GFX940_SMFMA8PassWriteVgprVALUWawWaitStates 2063 : SMFMA16x16WriteVgprVALUWawWaitStates; 2064 break; 2065 case 16: LLVM_FALLTHROUGH; 2066 default: 2067 NeedWaitStates = isDGEMM(MFMA->getOpcode()) 2068 ? DMFMA16x16WriteVgprVALUWriteWaitStates 2069 : ST.hasGFX940Insts() 2070 ? isXDL(ST, *MFMA) 2071 ? GFX940_XDL16PassWriteVgprVALUWawWaitStates 2072 : GFX940_SMFMA16PassWriteVgprVALUWawWaitStates 2073 : SMFMA32x32WriteVgprVALUWawWaitStates; 2074 break; 2075 } 2076 2077 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2078 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2079 2080 if (WaitStatesNeeded == MaxWaitStates) 2081 break; 2082 } 2083 2084 auto IsSMFMAReadAsCFn = [&Reg, &IsMFMAFn, &MFMA, 2085 this](const MachineInstr &MI) { 2086 if (!IsMFMAFn(MI) || isDGEMM(MI.getOpcode()) || 2087 !MI.readsRegister(Reg, &TRI)) 2088 return false; 2089 2090 if (ST.hasGFX940Insts() && !isXDL(ST, MI)) 2091 return false; 2092 2093 const MachineOperand *SrcC = 2094 TII.getNamedOperand(MI, AMDGPU::OpName::src2); 2095 assert(SrcC); 2096 if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg)) 2097 return false; 2098 2099 MFMA = &MI; 2100 return true; 2101 }; 2102 2103 MFMA = nullptr; 2104 int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn, 2105 MaxWarWaitStates); 2106 if (!MFMA) 2107 continue; 2108 2109 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2110 int NeedWaitStates = MaxWaitStates; 2111 switch (HazardDefLatency) { 2112 case 2: NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates; 2113 break; 2114 case 4: assert(ST.hasGFX940Insts()); 2115 NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates; 2116 break; 2117 case 8: NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates; 2118 break; 2119 case 16: LLVM_FALLTHROUGH; 2120 default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates; 2121 break; 2122 } 2123 2124 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse; 2125 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2126 } 2127 2128 return WaitStatesNeeded; 2129 } 2130 2131 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) { 2132 if (!SU->isInstr()) 2133 return false; 2134 2135 const MachineInstr *MAI = nullptr; 2136 auto IsMFMAFn = [&MAI](const MachineInstr &MI) { 2137 MAI = nullptr; 2138 if (SIInstrInfo::isMAI(MI) && 2139 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 && 2140 MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64) 2141 MAI = &MI; 2142 return MAI != nullptr; 2143 }; 2144 2145 MachineInstr *MI = SU->getInstr(); 2146 if (IsMFMAFn(*MI)) { 2147 int W = getWaitStatesSince(IsMFMAFn, 16); 2148 if (MAI) 2149 return W < (int)TSchedModel.computeInstrLatency(MAI); 2150 } 2151 2152 return false; 2153 } 2154