1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements hazard recognizers for scheduling on GCN processors. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "GCNHazardRecognizer.h" 15 #include "AMDGPUSubtarget.h" 16 #include "SIDefines.h" 17 #include "SIInstrInfo.h" 18 #include "SIRegisterInfo.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/ScheduleDAG.h" 25 #include "llvm/MC/MCInstrDesc.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include <algorithm> 28 #include <cassert> 29 #include <limits> 30 #include <set> 31 #include <vector> 32 33 using namespace llvm; 34 35 //===----------------------------------------------------------------------===// 36 // Hazard Recoginizer Implementation 37 //===----------------------------------------------------------------------===// 38 39 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 40 CurrCycleInstr(nullptr), 41 MF(MF), 42 ST(MF.getSubtarget<SISubtarget>()), 43 TII(*ST.getInstrInfo()) { 44 MaxLookAhead = 5; 45 } 46 47 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 48 EmitInstruction(SU->getInstr()); 49 } 50 51 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 52 CurrCycleInstr = MI; 53 } 54 55 static bool isDivFMas(unsigned Opcode) { 56 return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64; 57 } 58 59 static bool isSGetReg(unsigned Opcode) { 60 return Opcode == AMDGPU::S_GETREG_B32; 61 } 62 63 static bool isSSetReg(unsigned Opcode) { 64 return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32; 65 } 66 67 static bool isRWLane(unsigned Opcode) { 68 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 69 } 70 71 static bool isRFE(unsigned Opcode) { 72 return Opcode == AMDGPU::S_RFE_B64; 73 } 74 75 static bool isSMovRel(unsigned Opcode) { 76 switch (Opcode) { 77 case AMDGPU::S_MOVRELS_B32: 78 case AMDGPU::S_MOVRELS_B64: 79 case AMDGPU::S_MOVRELD_B32: 80 case AMDGPU::S_MOVRELD_B64: 81 return true; 82 default: 83 return false; 84 } 85 } 86 87 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 88 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 89 AMDGPU::OpName::simm16); 90 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 91 } 92 93 ScheduleHazardRecognizer::HazardType 94 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 95 MachineInstr *MI = SU->getInstr(); 96 97 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 98 return NoopHazard; 99 100 if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0) 101 return NoopHazard; 102 103 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 104 return NoopHazard; 105 106 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 107 return NoopHazard; 108 109 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 110 return NoopHazard; 111 112 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 113 return NoopHazard; 114 115 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 116 return NoopHazard; 117 118 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 119 return NoopHazard; 120 121 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 122 return NoopHazard; 123 124 if ((TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) && 125 checkReadM0Hazards(MI) > 0) 126 return NoopHazard; 127 128 if (checkAnyInstHazards(MI) > 0) 129 return NoopHazard; 130 131 return NoHazard; 132 } 133 134 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { 135 return PreEmitNoops(SU->getInstr()); 136 } 137 138 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 139 int WaitStates = std::max(0, checkAnyInstHazards(MI)); 140 141 if (SIInstrInfo::isSMRD(*MI)) 142 return std::max(WaitStates, checkSMRDHazards(MI)); 143 144 if (SIInstrInfo::isVALU(*MI)) { 145 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 146 147 if (SIInstrInfo::isVMEM(*MI)) 148 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 149 150 if (SIInstrInfo::isDPP(*MI)) 151 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 152 153 if (isDivFMas(MI->getOpcode())) 154 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 155 156 if (isRWLane(MI->getOpcode())) 157 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 158 159 if (TII.isVINTRP(*MI)) 160 WaitStates = std::max(WaitStates, checkReadM0Hazards(MI)); 161 162 return WaitStates; 163 } 164 165 if (isSGetReg(MI->getOpcode())) 166 return std::max(WaitStates, checkGetRegHazards(MI)); 167 168 if (isSSetReg(MI->getOpcode())) 169 return std::max(WaitStates, checkSetRegHazards(MI)); 170 171 if (isRFE(MI->getOpcode())) 172 return std::max(WaitStates, checkRFEHazards(MI)); 173 174 if (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) 175 return std::max(WaitStates, checkReadM0Hazards(MI)); 176 177 return WaitStates; 178 } 179 180 void GCNHazardRecognizer::EmitNoop() { 181 EmittedInstrs.push_front(nullptr); 182 } 183 184 void GCNHazardRecognizer::AdvanceCycle() { 185 // When the scheduler detects a stall, it will call AdvanceCycle() without 186 // emitting any instructions. 187 if (!CurrCycleInstr) 188 return; 189 190 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 191 192 // Keep track of emitted instructions 193 EmittedInstrs.push_front(CurrCycleInstr); 194 195 // Add a nullptr for each additional wait state after the first. Make sure 196 // not to add more than getMaxLookAhead() items to the list, since we 197 // truncate the list to that size right after this loop. 198 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 199 i < e; ++i) { 200 EmittedInstrs.push_front(nullptr); 201 } 202 203 // getMaxLookahead() is the largest number of wait states we will ever need 204 // to insert, so there is no point in keeping track of more than that many 205 // wait states. 206 EmittedInstrs.resize(getMaxLookAhead()); 207 208 CurrCycleInstr = nullptr; 209 } 210 211 void GCNHazardRecognizer::RecedeCycle() { 212 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 213 } 214 215 //===----------------------------------------------------------------------===// 216 // Helper Functions 217 //===----------------------------------------------------------------------===// 218 219 int GCNHazardRecognizer::getWaitStatesSince( 220 function_ref<bool(MachineInstr *)> IsHazard) { 221 int WaitStates = 0; 222 for (MachineInstr *MI : EmittedInstrs) { 223 if (MI) { 224 if (IsHazard(MI)) 225 return WaitStates; 226 227 unsigned Opcode = MI->getOpcode(); 228 if (Opcode == AMDGPU::DBG_VALUE || Opcode == AMDGPU::IMPLICIT_DEF || 229 Opcode == AMDGPU::INLINEASM) 230 continue; 231 } 232 ++WaitStates; 233 } 234 return std::numeric_limits<int>::max(); 235 } 236 237 int GCNHazardRecognizer::getWaitStatesSinceDef( 238 unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) { 239 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 240 241 auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) { 242 return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI); 243 }; 244 245 return getWaitStatesSince(IsHazardFn); 246 } 247 248 int GCNHazardRecognizer::getWaitStatesSinceSetReg( 249 function_ref<bool(MachineInstr *)> IsHazard) { 250 auto IsHazardFn = [IsHazard] (MachineInstr *MI) { 251 return isSSetReg(MI->getOpcode()) && IsHazard(MI); 252 }; 253 254 return getWaitStatesSince(IsHazardFn); 255 } 256 257 //===----------------------------------------------------------------------===// 258 // No-op Hazard Detection 259 //===----------------------------------------------------------------------===// 260 261 static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops, 262 std::set<unsigned> &Set) { 263 for (const MachineOperand &Op : Ops) { 264 if (Op.isReg()) 265 Set.insert(Op.getReg()); 266 } 267 } 268 269 int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) { 270 // SMEM soft clause are only present on VI+ 271 if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) 272 return 0; 273 274 // A soft-clause is any group of consecutive SMEM instructions. The 275 // instructions in this group may return out of order and/or may be 276 // replayed (i.e. the same instruction issued more than once). 277 // 278 // In order to handle these situations correctly we need to make sure 279 // that when a clause has more than one instruction, no instruction in the 280 // clause writes to a register that is read another instruction in the clause 281 // (including itself). If we encounter this situaion, we need to break the 282 // clause by inserting a non SMEM instruction. 283 284 std::set<unsigned> ClauseDefs; 285 std::set<unsigned> ClauseUses; 286 287 for (MachineInstr *MI : EmittedInstrs) { 288 289 // When we hit a non-SMEM instruction then we have passed the start of the 290 // clause and we can stop. 291 if (!MI || !SIInstrInfo::isSMRD(*MI)) 292 break; 293 294 addRegsToSet(MI->defs(), ClauseDefs); 295 addRegsToSet(MI->uses(), ClauseUses); 296 } 297 298 if (ClauseDefs.empty()) 299 return 0; 300 301 // FIXME: When we support stores, we need to make sure not to put loads and 302 // stores in the same clause if they use the same address. For now, just 303 // start a new clause whenever we see a store. 304 if (SMEM->mayStore()) 305 return 1; 306 307 addRegsToSet(SMEM->defs(), ClauseDefs); 308 addRegsToSet(SMEM->uses(), ClauseUses); 309 310 std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size())); 311 std::vector<unsigned>::iterator End; 312 313 End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(), 314 ClauseUses.begin(), ClauseUses.end(), Result.begin()); 315 316 // If the set of defs and uses intersect then we cannot add this instruction 317 // to the clause, so we have a hazard. 318 if (End != Result.begin()) 319 return 1; 320 321 return 0; 322 } 323 324 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 325 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 326 int WaitStatesNeeded = 0; 327 328 WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD); 329 330 // This SMRD hazard only affects SI. 331 if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS) 332 return WaitStatesNeeded; 333 334 // A read of an SGPR by SMRD instruction requires 4 wait states when the 335 // SGPR was written by a VALU instruction. 336 int SmrdSgprWaitStates = 4; 337 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 338 339 for (const MachineOperand &Use : SMRD->uses()) { 340 if (!Use.isReg()) 341 continue; 342 int WaitStatesNeededForUse = 343 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); 344 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 345 } 346 return WaitStatesNeeded; 347 } 348 349 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 350 const SIInstrInfo *TII = ST.getInstrInfo(); 351 352 if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) 353 return 0; 354 355 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 356 357 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 358 // SGPR was written by a VALU Instruction. 359 int VmemSgprWaitStates = 5; 360 int WaitStatesNeeded = 0; 361 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 362 363 for (const MachineOperand &Use : VMEM->uses()) { 364 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 365 continue; 366 367 int WaitStatesNeededForUse = 368 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); 369 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 370 } 371 return WaitStatesNeeded; 372 } 373 374 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 375 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 376 const SIInstrInfo *TII = ST.getInstrInfo(); 377 378 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 379 int DppVgprWaitStates = 2; 380 int DppExecWaitStates = 5; 381 int WaitStatesNeeded = 0; 382 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 383 384 for (const MachineOperand &Use : DPP->uses()) { 385 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 386 continue; 387 int WaitStatesNeededForUse = 388 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg()); 389 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 390 } 391 392 WaitStatesNeeded = std::max( 393 WaitStatesNeeded, 394 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn)); 395 396 return WaitStatesNeeded; 397 } 398 399 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 400 const SIInstrInfo *TII = ST.getInstrInfo(); 401 402 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 403 // instruction. 404 const int DivFMasWaitStates = 4; 405 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 406 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn); 407 408 return DivFMasWaitStates - WaitStatesNeeded; 409 } 410 411 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 412 const SIInstrInfo *TII = ST.getInstrInfo(); 413 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 414 415 const int GetRegWaitStates = 2; 416 auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) { 417 return GetRegHWReg == getHWReg(TII, *MI); 418 }; 419 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 420 421 return GetRegWaitStates - WaitStatesNeeded; 422 } 423 424 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 425 const SIInstrInfo *TII = ST.getInstrInfo(); 426 unsigned HWReg = getHWReg(TII, *SetRegInstr); 427 428 const int SetRegWaitStates = 429 ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2; 430 auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) { 431 return HWReg == getHWReg(TII, *MI); 432 }; 433 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 434 return SetRegWaitStates - WaitStatesNeeded; 435 } 436 437 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 438 if (!MI.mayStore()) 439 return -1; 440 441 const SIInstrInfo *TII = ST.getInstrInfo(); 442 unsigned Opcode = MI.getOpcode(); 443 const MCInstrDesc &Desc = MI.getDesc(); 444 445 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 446 int VDataRCID = -1; 447 if (VDataIdx != -1) 448 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 449 450 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 451 // There is no hazard if the instruction does not use vector regs 452 // (like wbinvl1) 453 if (VDataIdx == -1) 454 return -1; 455 // For MUBUF/MTBUF instructions this hazard only exists if the 456 // instruction is not using a register in the soffset field. 457 const MachineOperand *SOffset = 458 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 459 // If we have no soffset operand, then assume this field has been 460 // hardcoded to zero. 461 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 462 (!SOffset || !SOffset->isReg())) 463 return VDataIdx; 464 } 465 466 // MIMG instructions create a hazard if they don't use a 256-bit T# and 467 // the store size is greater than 8 bytes and they have more than two bits 468 // of their dmask set. 469 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 470 if (TII->isMIMG(MI)) { 471 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 472 assert(SRsrcIdx != -1 && 473 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 474 (void)SRsrcIdx; 475 } 476 477 if (TII->isFLAT(MI)) { 478 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 479 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 480 return DataIdx; 481 } 482 483 return -1; 484 } 485 486 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 487 // This checks for the hazard where VMEM instructions that store more than 488 // 8 bytes can have there store data over written by the next instruction. 489 if (!ST.has12DWordStoreHazard()) 490 return 0; 491 492 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 493 const MachineRegisterInfo &MRI = VALU->getParent()->getParent()->getRegInfo(); 494 495 const int VALUWaitStates = 1; 496 int WaitStatesNeeded = 0; 497 498 for (const MachineOperand &Def : VALU->defs()) { 499 if (!TRI->isVGPR(MRI, Def.getReg())) 500 continue; 501 unsigned Reg = Def.getReg(); 502 auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) { 503 int DataIdx = createsVALUHazard(*MI); 504 return DataIdx >= 0 && 505 TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg); 506 }; 507 int WaitStatesNeededForDef = 508 VALUWaitStates - getWaitStatesSince(IsHazardFn); 509 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 510 } 511 return WaitStatesNeeded; 512 } 513 514 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 515 const SIInstrInfo *TII = ST.getInstrInfo(); 516 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 517 const MachineRegisterInfo &MRI = 518 RWLane->getParent()->getParent()->getRegInfo(); 519 520 const MachineOperand *LaneSelectOp = 521 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 522 523 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 524 return 0; 525 526 unsigned LaneSelectReg = LaneSelectOp->getReg(); 527 auto IsHazardFn = [TII] (MachineInstr *MI) { 528 return TII->isVALU(*MI); 529 }; 530 531 const int RWLaneWaitStates = 4; 532 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn); 533 return RWLaneWaitStates - WaitStatesSince; 534 } 535 536 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 537 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 538 return 0; 539 540 const SIInstrInfo *TII = ST.getInstrInfo(); 541 542 const int RFEWaitStates = 1; 543 544 auto IsHazardFn = [TII] (MachineInstr *MI) { 545 return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS; 546 }; 547 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 548 return RFEWaitStates - WaitStatesNeeded; 549 } 550 551 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) { 552 if (MI->isDebugValue()) 553 return 0; 554 555 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 556 if (!ST.hasSMovFedHazard()) 557 return 0; 558 559 // Check for any instruction reading an SGPR after a write from 560 // s_mov_fed_b32. 561 int MovFedWaitStates = 1; 562 int WaitStatesNeeded = 0; 563 564 for (const MachineOperand &Use : MI->uses()) { 565 if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 566 continue; 567 auto IsHazardFn = [] (MachineInstr *MI) { 568 return MI->getOpcode() == AMDGPU::S_MOV_FED_B32; 569 }; 570 int WaitStatesNeededForUse = 571 MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn); 572 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 573 } 574 575 return WaitStatesNeeded; 576 } 577 578 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 579 if (!ST.hasReadM0Hazard()) 580 return 0; 581 582 const SIInstrInfo *TII = ST.getInstrInfo(); 583 int SMovRelWaitStates = 1; 584 auto IsHazardFn = [TII] (MachineInstr *MI) { 585 return TII->isSALU(*MI); 586 }; 587 return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn); 588 } 589