1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCDecoderOps.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/TargetRegistry.h"
33 #include "llvm/Support/AMDHSAKernelDescriptor.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "amdgpu-disassembler"
38 
39 #define SGPR_MAX                                                               \
40   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
41                  : AMDGPU::EncValues::SGPR_MAX_SI)
42 
43 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
44 
45 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
46                                        MCContext &Ctx,
47                                        MCInstrInfo const *MCII) :
48   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
49   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
50 
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
95     Offset = Imm & 0xFFFFF;
96   } else {                    // GFX9+ supports 21-bit signed offsets.
97     Offset = SignExtend64<21>(Imm);
98   }
99   return addOperand(Inst, MCOperand::createImm(Offset));
100 }
101 
102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
103                                   const MCDisassembler *Decoder) {
104   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
105   return addOperand(Inst, DAsm->decodeBoolReg(Val));
106 }
107 
108 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
109   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
110                                         uint64_t /*Addr*/,                     \
111                                         const MCDisassembler *Decoder) {       \
112     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
113     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
114   }
115 
116 #define DECODE_OPERAND_REG(RegClass) \
117 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
118 
119 DECODE_OPERAND_REG(VGPR_32)
120 DECODE_OPERAND_REG(VRegOrLds_32)
121 DECODE_OPERAND_REG(VS_32)
122 DECODE_OPERAND_REG(VS_64)
123 DECODE_OPERAND_REG(VS_128)
124 
125 DECODE_OPERAND_REG(VReg_64)
126 DECODE_OPERAND_REG(VReg_96)
127 DECODE_OPERAND_REG(VReg_128)
128 DECODE_OPERAND_REG(VReg_256)
129 DECODE_OPERAND_REG(VReg_512)
130 DECODE_OPERAND_REG(VReg_1024)
131 
132 DECODE_OPERAND_REG(SReg_32)
133 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
134 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
135 DECODE_OPERAND_REG(SRegOrLds_32)
136 DECODE_OPERAND_REG(SReg_64)
137 DECODE_OPERAND_REG(SReg_64_XEXEC)
138 DECODE_OPERAND_REG(SReg_128)
139 DECODE_OPERAND_REG(SReg_256)
140 DECODE_OPERAND_REG(SReg_512)
141 
142 DECODE_OPERAND_REG(AGPR_32)
143 DECODE_OPERAND_REG(AReg_64)
144 DECODE_OPERAND_REG(AReg_128)
145 DECODE_OPERAND_REG(AReg_256)
146 DECODE_OPERAND_REG(AReg_512)
147 DECODE_OPERAND_REG(AReg_1024)
148 DECODE_OPERAND_REG(AV_32)
149 DECODE_OPERAND_REG(AV_64)
150 DECODE_OPERAND_REG(AV_128)
151 DECODE_OPERAND_REG(AV_512)
152 
153 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
154                                          uint64_t Addr,
155                                          const MCDisassembler *Decoder) {
156   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
157   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
158 }
159 
160 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
161                                            uint64_t Addr,
162                                            const MCDisassembler *Decoder) {
163   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
164   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
165 }
166 
167 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
168                                            uint64_t Addr,
169                                            const MCDisassembler *Decoder) {
170   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
171   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
172 }
173 
174 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
175                                         uint64_t Addr,
176                                         const MCDisassembler *Decoder) {
177   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
178   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
179 }
180 
181 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
182                                         uint64_t Addr,
183                                         const MCDisassembler *Decoder) {
184   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
185   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
186 }
187 
188 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
189                                           uint64_t Addr,
190                                           const MCDisassembler *Decoder) {
191   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
192   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
193 }
194 
195 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
196                                            uint64_t Addr,
197                                            const MCDisassembler *Decoder) {
198   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
199   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
200 }
201 
202 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
203                                            uint64_t Addr,
204                                            const MCDisassembler *Decoder) {
205   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
206   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
207 }
208 
209 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
210                                            uint64_t Addr,
211                                            const MCDisassembler *Decoder) {
212   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
213   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
214 }
215 
216 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
217                                             uint64_t Addr,
218                                             const MCDisassembler *Decoder) {
219   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
220   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
221 }
222 
223 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
224                                           uint64_t Addr,
225                                           const MCDisassembler *Decoder) {
226   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
227   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
228 }
229 
230 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
231                                            uint64_t Addr,
232                                            const MCDisassembler *Decoder) {
233   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
234   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
235 }
236 
237 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
238                                            uint64_t Addr,
239                                            const MCDisassembler *Decoder) {
240   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
241   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
242 }
243 
244 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
245                                            uint64_t Addr,
246                                            const MCDisassembler *Decoder) {
247   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
248   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
249 }
250 
251 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
252                                             uint64_t Addr,
253                                             const MCDisassembler *Decoder) {
254   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
255   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
256 }
257 
258 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
259                                           uint64_t Addr,
260                                           const MCDisassembler *Decoder) {
261   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
262   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
263 }
264 
265 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
266                                           uint64_t Addr,
267                                           const MCDisassembler *Decoder) {
268   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
269   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
270 }
271 
272 static DecodeStatus
273 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
274                              const MCDisassembler *Decoder) {
275   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
276   return addOperand(
277       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
278 }
279 
280 static DecodeStatus
281 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
282                              const MCDisassembler *Decoder) {
283   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
284   return addOperand(
285       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
286 }
287 
288 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
289                           const MCRegisterInfo *MRI) {
290   if (OpIdx < 0)
291     return false;
292 
293   const MCOperand &Op = Inst.getOperand(OpIdx);
294   if (!Op.isReg())
295     return false;
296 
297   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
298   auto Reg = Sub ? Sub : Op.getReg();
299   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
300 }
301 
302 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
303                                              AMDGPUDisassembler::OpWidthTy Opw,
304                                              const MCDisassembler *Decoder) {
305   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
306   if (!DAsm->isGFX90A()) {
307     Imm &= 511;
308   } else {
309     // If atomic has both vdata and vdst their register classes are tied.
310     // The bit is decoded along with the vdst, first operand. We need to
311     // change register class to AGPR if vdst was AGPR.
312     // If a DS instruction has both data0 and data1 their register classes
313     // are also tied.
314     unsigned Opc = Inst.getOpcode();
315     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
316     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
317                                                         : AMDGPU::OpName::vdata;
318     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
319     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
320     if ((int)Inst.getNumOperands() == DataIdx) {
321       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
322       if (IsAGPROperand(Inst, DstIdx, MRI))
323         Imm |= 512;
324     }
325 
326     if (TSFlags & SIInstrFlags::DS) {
327       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
328       if ((int)Inst.getNumOperands() == Data2Idx &&
329           IsAGPROperand(Inst, DataIdx, MRI))
330         Imm |= 512;
331     }
332   }
333   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
334 }
335 
336 static DecodeStatus
337 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
338                              const MCDisassembler *Decoder) {
339   return decodeOperand_AVLdSt_Any(Inst, Imm,
340                                   AMDGPUDisassembler::OPW32, Decoder);
341 }
342 
343 static DecodeStatus
344 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
345                              const MCDisassembler *Decoder) {
346   return decodeOperand_AVLdSt_Any(Inst, Imm,
347                                   AMDGPUDisassembler::OPW64, Decoder);
348 }
349 
350 static DecodeStatus
351 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
352                              const MCDisassembler *Decoder) {
353   return decodeOperand_AVLdSt_Any(Inst, Imm,
354                                   AMDGPUDisassembler::OPW96, Decoder);
355 }
356 
357 static DecodeStatus
358 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
359                               const MCDisassembler *Decoder) {
360   return decodeOperand_AVLdSt_Any(Inst, Imm,
361                                   AMDGPUDisassembler::OPW128, Decoder);
362 }
363 
364 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
365                                           uint64_t Addr,
366                                           const MCDisassembler *Decoder) {
367   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
368   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
369 }
370 
371 #define DECODE_SDWA(DecName) \
372 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
373 
374 DECODE_SDWA(Src32)
375 DECODE_SDWA(Src16)
376 DECODE_SDWA(VopcDst)
377 
378 #include "AMDGPUGenDisassemblerTables.inc"
379 
380 //===----------------------------------------------------------------------===//
381 //
382 //===----------------------------------------------------------------------===//
383 
384 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
385   assert(Bytes.size() >= sizeof(T));
386   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
387   Bytes = Bytes.slice(sizeof(T));
388   return Res;
389 }
390 
391 // The disassembler is greedy, so we need to check FI operand value to
392 // not parse a dpp if the correct literal is not set. For dpp16 the
393 // autogenerated decoder checks the dpp literal
394 static bool isValidDPP8(const MCInst &MI) {
395   using namespace llvm::AMDGPU::DPP;
396   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
397   assert(FiIdx != -1);
398   if ((unsigned)FiIdx >= MI.getNumOperands())
399     return false;
400   unsigned Fi = MI.getOperand(FiIdx).getImm();
401   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
402 }
403 
404 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
405                                                 ArrayRef<uint8_t> Bytes_,
406                                                 uint64_t Address,
407                                                 raw_ostream &CS) const {
408   CommentStream = &CS;
409   bool IsSDWA = false;
410 
411   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
412   Bytes = Bytes_.slice(0, MaxInstBytesNum);
413 
414   DecodeStatus Res = MCDisassembler::Fail;
415   do {
416     // ToDo: better to switch encoding length using some bit predicate
417     // but it is unknown yet, so try all we can
418 
419     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
420     // encodings
421     if (Bytes.size() >= 8) {
422       const uint64_t QW = eatBytes<uint64_t>(Bytes);
423 
424       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
425         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
426         if (Res) {
427           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
428               == -1)
429             break;
430           if (convertDPP8Inst(MI) == MCDisassembler::Success)
431             break;
432           MI = MCInst(); // clear
433         }
434       }
435 
436       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
437       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
438         break;
439 
440       MI = MCInst(); // clear
441 
442       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
443       if (Res) break;
444 
445       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
446       if (Res) { IsSDWA = true;  break; }
447 
448       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
449       if (Res) { IsSDWA = true;  break; }
450 
451       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
452       if (Res) { IsSDWA = true;  break; }
453 
454       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
455         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
456         if (Res)
457           break;
458       }
459 
460       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
461       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
462       // table first so we print the correct name.
463       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
464         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
465         if (Res)
466           break;
467       }
468     }
469 
470     // Reinitialize Bytes as DPP64 could have eaten too much
471     Bytes = Bytes_.slice(0, MaxInstBytesNum);
472 
473     // Try decode 32-bit instruction
474     if (Bytes.size() < 4) break;
475     const uint32_t DW = eatBytes<uint32_t>(Bytes);
476     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
477     if (Res) break;
478 
479     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
480     if (Res) break;
481 
482     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
483     if (Res) break;
484 
485     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
486       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
487       if (Res)
488         break;
489     }
490 
491     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
492       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
493       if (Res) break;
494     }
495 
496     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
497     if (Res) break;
498 
499     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
500     if (Res) break;
501 
502     if (Bytes.size() < 4) break;
503     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
504 
505     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
506       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
507       if (Res)
508         break;
509     }
510 
511     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
512     if (Res) break;
513 
514     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
515     if (Res) break;
516 
517     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
518     if (Res) break;
519 
520     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
521     if (Res) break;
522 
523     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
524   } while (false);
525 
526   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
527               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
528               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
529               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
530               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
531               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
532               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
533               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
534               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
535               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
536               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
537     // Insert dummy unused src2_modifiers.
538     insertNamedMCOperand(MI, MCOperand::createImm(0),
539                          AMDGPU::OpName::src2_modifiers);
540   }
541 
542   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
543           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
544     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
545                                              AMDGPU::OpName::cpol);
546     if (CPolPos != -1) {
547       unsigned CPol =
548           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
549               AMDGPU::CPol::GLC : 0;
550       if (MI.getNumOperands() <= (unsigned)CPolPos) {
551         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
552                              AMDGPU::OpName::cpol);
553       } else if (CPol) {
554         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
555       }
556     }
557   }
558 
559   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
560               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
561              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
562     // GFX90A lost TFE, its place is occupied by ACC.
563     int TFEOpIdx =
564         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
565     if (TFEOpIdx != -1) {
566       auto TFEIter = MI.begin();
567       std::advance(TFEIter, TFEOpIdx);
568       MI.insert(TFEIter, MCOperand::createImm(0));
569     }
570   }
571 
572   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
573               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
574     int SWZOpIdx =
575         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
576     if (SWZOpIdx != -1) {
577       auto SWZIter = MI.begin();
578       std::advance(SWZIter, SWZOpIdx);
579       MI.insert(SWZIter, MCOperand::createImm(0));
580     }
581   }
582 
583   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
584     int VAddr0Idx =
585         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
586     int RsrcIdx =
587         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
588     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
589     if (VAddr0Idx >= 0 && NSAArgs > 0) {
590       unsigned NSAWords = (NSAArgs + 3) / 4;
591       if (Bytes.size() < 4 * NSAWords) {
592         Res = MCDisassembler::Fail;
593       } else {
594         for (unsigned i = 0; i < NSAArgs; ++i) {
595           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
596                     decodeOperand_VGPR_32(Bytes[i]));
597         }
598         Bytes = Bytes.slice(4 * NSAWords);
599       }
600     }
601 
602     if (Res)
603       Res = convertMIMGInst(MI);
604   }
605 
606   if (Res && IsSDWA)
607     Res = convertSDWAInst(MI);
608 
609   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
610                                               AMDGPU::OpName::vdst_in);
611   if (VDstIn_Idx != -1) {
612     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
613                            MCOI::OperandConstraint::TIED_TO);
614     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
615          !MI.getOperand(VDstIn_Idx).isReg() ||
616          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
617       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
618         MI.erase(&MI.getOperand(VDstIn_Idx));
619       insertNamedMCOperand(MI,
620         MCOperand::createReg(MI.getOperand(Tied).getReg()),
621         AMDGPU::OpName::vdst_in);
622     }
623   }
624 
625   int ImmLitIdx =
626       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
627   if (Res && ImmLitIdx != -1)
628     Res = convertFMAanyK(MI, ImmLitIdx);
629 
630   // if the opcode was not recognized we'll assume a Size of 4 bytes
631   // (unless there are fewer bytes left)
632   Size = Res ? (MaxInstBytesNum - Bytes.size())
633              : std::min((size_t)4, Bytes_.size());
634   return Res;
635 }
636 
637 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
638   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
639       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
640     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
641       // VOPC - insert clamp
642       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
643   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
644     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
645     if (SDst != -1) {
646       // VOPC - insert VCC register as sdst
647       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
648                            AMDGPU::OpName::sdst);
649     } else {
650       // VOP1/2 - insert omod if present in instruction
651       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
652     }
653   }
654   return MCDisassembler::Success;
655 }
656 
657 // We must check FI == literal to reject not genuine dpp8 insts, and we must
658 // first add optional MI operands to check FI
659 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
660   unsigned Opc = MI.getOpcode();
661   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
662 
663   // Insert dummy unused src modifiers.
664   if (MI.getNumOperands() < DescNumOps &&
665       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
666     insertNamedMCOperand(MI, MCOperand::createImm(0),
667                          AMDGPU::OpName::src0_modifiers);
668 
669   if (MI.getNumOperands() < DescNumOps &&
670       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
671     insertNamedMCOperand(MI, MCOperand::createImm(0),
672                          AMDGPU::OpName::src1_modifiers);
673 
674   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
675 }
676 
677 // Note that before gfx10, the MIMG encoding provided no information about
678 // VADDR size. Consequently, decoded instructions always show address as if it
679 // has 1 dword, which could be not really so.
680 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
681 
682   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
683                                            AMDGPU::OpName::vdst);
684 
685   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
686                                             AMDGPU::OpName::vdata);
687   int VAddr0Idx =
688       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
689   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
690                                             AMDGPU::OpName::dmask);
691 
692   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
693                                             AMDGPU::OpName::tfe);
694   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
695                                             AMDGPU::OpName::d16);
696 
697   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
698   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
699       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
700 
701   assert(VDataIdx != -1);
702   if (BaseOpcode->BVH) {
703     // Add A16 operand for intersect_ray instructions
704     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
705       addOperand(MI, MCOperand::createImm(1));
706     }
707     return MCDisassembler::Success;
708   }
709 
710   bool IsAtomic = (VDstIdx != -1);
711   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
712   bool IsNSA = false;
713   unsigned AddrSize = Info->VAddrDwords;
714 
715   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
716     unsigned DimIdx =
717         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
718     int A16Idx =
719         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
720     const AMDGPU::MIMGDimInfo *Dim =
721         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
722     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
723 
724     AddrSize =
725         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
726 
727     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
728     if (!IsNSA) {
729       if (AddrSize > 8)
730         AddrSize = 16;
731     } else {
732       if (AddrSize > Info->VAddrDwords) {
733         // The NSA encoding does not contain enough operands for the combination
734         // of base opcode / dimension. Should this be an error?
735         return MCDisassembler::Success;
736       }
737     }
738   }
739 
740   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
741   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
742 
743   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
744   if (D16 && AMDGPU::hasPackedD16(STI)) {
745     DstSize = (DstSize + 1) / 2;
746   }
747 
748   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
749     DstSize += 1;
750 
751   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
752     return MCDisassembler::Success;
753 
754   int NewOpcode =
755       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
756   if (NewOpcode == -1)
757     return MCDisassembler::Success;
758 
759   // Widen the register to the correct number of enabled channels.
760   unsigned NewVdata = AMDGPU::NoRegister;
761   if (DstSize != Info->VDataDwords) {
762     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
763 
764     // Get first subregister of VData
765     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
766     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
767     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
768 
769     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
770                                        &MRI.getRegClass(DataRCID));
771     if (NewVdata == AMDGPU::NoRegister) {
772       // It's possible to encode this such that the low register + enabled
773       // components exceeds the register count.
774       return MCDisassembler::Success;
775     }
776   }
777 
778   unsigned NewVAddr0 = AMDGPU::NoRegister;
779   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
780       AddrSize != Info->VAddrDwords) {
781     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
782     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
783     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
784 
785     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
786     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
787                                         &MRI.getRegClass(AddrRCID));
788     if (NewVAddr0 == AMDGPU::NoRegister)
789       return MCDisassembler::Success;
790   }
791 
792   MI.setOpcode(NewOpcode);
793 
794   if (NewVdata != AMDGPU::NoRegister) {
795     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
796 
797     if (IsAtomic) {
798       // Atomic operations have an additional operand (a copy of data)
799       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
800     }
801   }
802 
803   if (NewVAddr0 != AMDGPU::NoRegister) {
804     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
805   } else if (IsNSA) {
806     assert(AddrSize <= Info->VAddrDwords);
807     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
808              MI.begin() + VAddr0Idx + Info->VAddrDwords);
809   }
810 
811   return MCDisassembler::Success;
812 }
813 
814 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
815                                                 int ImmLitIdx) const {
816   assert(HasLiteral && "Should have decoded a literal");
817   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
818   unsigned DescNumOps = Desc.getNumOperands();
819   assert(DescNumOps == MI.getNumOperands());
820   for (unsigned I = 0; I < DescNumOps; ++I) {
821     auto &Op = MI.getOperand(I);
822     auto OpType = Desc.OpInfo[I].OperandType;
823     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
824                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
825     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
826         IsDeferredOp)
827       Op.setImm(Literal);
828   }
829   return MCDisassembler::Success;
830 }
831 
832 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
833   return getContext().getRegisterInfo()->
834     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
835 }
836 
837 inline
838 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
839                                          const Twine& ErrMsg) const {
840   *CommentStream << "Error: " + ErrMsg;
841 
842   // ToDo: add support for error operands to MCInst.h
843   // return MCOperand::createError(V);
844   return MCOperand();
845 }
846 
847 inline
848 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
849   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
850 }
851 
852 inline
853 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
854                                                unsigned Val) const {
855   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
856   if (Val >= RegCl.getNumRegs())
857     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
858                            ": unknown register " + Twine(Val));
859   return createRegOperand(RegCl.getRegister(Val));
860 }
861 
862 inline
863 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
864                                                 unsigned Val) const {
865   // ToDo: SI/CI have 104 SGPRs, VI - 102
866   // Valery: here we accepting as much as we can, let assembler sort it out
867   int shift = 0;
868   switch (SRegClassID) {
869   case AMDGPU::SGPR_32RegClassID:
870   case AMDGPU::TTMP_32RegClassID:
871     break;
872   case AMDGPU::SGPR_64RegClassID:
873   case AMDGPU::TTMP_64RegClassID:
874     shift = 1;
875     break;
876   case AMDGPU::SGPR_128RegClassID:
877   case AMDGPU::TTMP_128RegClassID:
878   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
879   // this bundle?
880   case AMDGPU::SGPR_256RegClassID:
881   case AMDGPU::TTMP_256RegClassID:
882     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
883   // this bundle?
884   case AMDGPU::SGPR_512RegClassID:
885   case AMDGPU::TTMP_512RegClassID:
886     shift = 2;
887     break;
888   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
889   // this bundle?
890   default:
891     llvm_unreachable("unhandled register class");
892   }
893 
894   if (Val % (1 << shift)) {
895     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
896                    << ": scalar reg isn't aligned " << Val;
897   }
898 
899   return createRegOperand(SRegClassID, Val >> shift);
900 }
901 
902 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
903   return decodeSrcOp(OPW32, Val);
904 }
905 
906 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
907   return decodeSrcOp(OPW64, Val);
908 }
909 
910 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
911   return decodeSrcOp(OPW128, Val);
912 }
913 
914 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
915   return decodeSrcOp(OPW16, Val);
916 }
917 
918 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
919   return decodeSrcOp(OPWV216, Val);
920 }
921 
922 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
923   return decodeSrcOp(OPWV232, Val);
924 }
925 
926 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
927   // Some instructions have operand restrictions beyond what the encoding
928   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
929   // high bit.
930   Val &= 255;
931 
932   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
933 }
934 
935 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
936   return decodeSrcOp(OPW32, Val);
937 }
938 
939 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
940   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
941 }
942 
943 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
944   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
945 }
946 
947 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
948   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
949 }
950 
951 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
952   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
953 }
954 
955 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
956   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
957 }
958 
959 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
960   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
961 }
962 
963 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
964   return decodeSrcOp(OPW32, Val);
965 }
966 
967 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
968   return decodeSrcOp(OPW64, Val);
969 }
970 
971 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
972   return decodeSrcOp(OPW128, Val);
973 }
974 
975 MCOperand AMDGPUDisassembler::decodeOperand_AV_512(unsigned Val) const {
976   return decodeSrcOp(OPW512, Val);
977 }
978 
979 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
980   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
981 }
982 
983 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
984   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
985 }
986 
987 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
988   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
989 }
990 
991 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
992   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
993 }
994 
995 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
996   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
997 }
998 
999 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1000   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1001 }
1002 
1003 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1004   // table-gen generated disassembler doesn't care about operand types
1005   // leaving only registry class so SSrc_32 operand turns into SReg_32
1006   // and therefore we accept immediates and literals here as well
1007   return decodeSrcOp(OPW32, Val);
1008 }
1009 
1010 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1011   unsigned Val) const {
1012   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1013   return decodeOperand_SReg_32(Val);
1014 }
1015 
1016 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1017   unsigned Val) const {
1018   // SReg_32_XM0 is SReg_32 without EXEC_HI
1019   return decodeOperand_SReg_32(Val);
1020 }
1021 
1022 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1023   // table-gen generated disassembler doesn't care about operand types
1024   // leaving only registry class so SSrc_32 operand turns into SReg_32
1025   // and therefore we accept immediates and literals here as well
1026   return decodeSrcOp(OPW32, Val);
1027 }
1028 
1029 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1030   return decodeSrcOp(OPW64, Val);
1031 }
1032 
1033 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1034   return decodeSrcOp(OPW64, Val);
1035 }
1036 
1037 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1038   return decodeSrcOp(OPW128, Val);
1039 }
1040 
1041 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1042   return decodeDstOp(OPW256, Val);
1043 }
1044 
1045 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1046   return decodeDstOp(OPW512, Val);
1047 }
1048 
1049 // Decode Literals for insts which always have a literal in the encoding
1050 MCOperand
1051 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1052   if (HasLiteral) {
1053     if (Literal != Val)
1054       return errOperand(Val, "More than one unique literal is illegal");
1055   }
1056   HasLiteral = true;
1057   Literal = Val;
1058   return MCOperand::createImm(Literal);
1059 }
1060 
1061 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1062   // For now all literal constants are supposed to be unsigned integer
1063   // ToDo: deal with signed/unsigned 64-bit integer constants
1064   // ToDo: deal with float/double constants
1065   if (!HasLiteral) {
1066     if (Bytes.size() < 4) {
1067       return errOperand(0, "cannot read literal, inst bytes left " +
1068                         Twine(Bytes.size()));
1069     }
1070     HasLiteral = true;
1071     Literal = eatBytes<uint32_t>(Bytes);
1072   }
1073   return MCOperand::createImm(Literal);
1074 }
1075 
1076 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1077   using namespace AMDGPU::EncValues;
1078 
1079   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1080   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1081     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1082     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1083       // Cast prevents negative overflow.
1084 }
1085 
1086 static int64_t getInlineImmVal32(unsigned Imm) {
1087   switch (Imm) {
1088   case 240:
1089     return FloatToBits(0.5f);
1090   case 241:
1091     return FloatToBits(-0.5f);
1092   case 242:
1093     return FloatToBits(1.0f);
1094   case 243:
1095     return FloatToBits(-1.0f);
1096   case 244:
1097     return FloatToBits(2.0f);
1098   case 245:
1099     return FloatToBits(-2.0f);
1100   case 246:
1101     return FloatToBits(4.0f);
1102   case 247:
1103     return FloatToBits(-4.0f);
1104   case 248: // 1 / (2 * PI)
1105     return 0x3e22f983;
1106   default:
1107     llvm_unreachable("invalid fp inline imm");
1108   }
1109 }
1110 
1111 static int64_t getInlineImmVal64(unsigned Imm) {
1112   switch (Imm) {
1113   case 240:
1114     return DoubleToBits(0.5);
1115   case 241:
1116     return DoubleToBits(-0.5);
1117   case 242:
1118     return DoubleToBits(1.0);
1119   case 243:
1120     return DoubleToBits(-1.0);
1121   case 244:
1122     return DoubleToBits(2.0);
1123   case 245:
1124     return DoubleToBits(-2.0);
1125   case 246:
1126     return DoubleToBits(4.0);
1127   case 247:
1128     return DoubleToBits(-4.0);
1129   case 248: // 1 / (2 * PI)
1130     return 0x3fc45f306dc9c882;
1131   default:
1132     llvm_unreachable("invalid fp inline imm");
1133   }
1134 }
1135 
1136 static int64_t getInlineImmVal16(unsigned Imm) {
1137   switch (Imm) {
1138   case 240:
1139     return 0x3800;
1140   case 241:
1141     return 0xB800;
1142   case 242:
1143     return 0x3C00;
1144   case 243:
1145     return 0xBC00;
1146   case 244:
1147     return 0x4000;
1148   case 245:
1149     return 0xC000;
1150   case 246:
1151     return 0x4400;
1152   case 247:
1153     return 0xC400;
1154   case 248: // 1 / (2 * PI)
1155     return 0x3118;
1156   default:
1157     llvm_unreachable("invalid fp inline imm");
1158   }
1159 }
1160 
1161 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1162   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1163       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1164 
1165   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1166   switch (Width) {
1167   case OPW32:
1168   case OPW128: // splat constants
1169   case OPW512:
1170   case OPW1024:
1171   case OPWV232:
1172     return MCOperand::createImm(getInlineImmVal32(Imm));
1173   case OPW64:
1174   case OPW256:
1175     return MCOperand::createImm(getInlineImmVal64(Imm));
1176   case OPW16:
1177   case OPWV216:
1178     return MCOperand::createImm(getInlineImmVal16(Imm));
1179   default:
1180     llvm_unreachable("implement me");
1181   }
1182 }
1183 
1184 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1185   using namespace AMDGPU;
1186 
1187   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1188   switch (Width) {
1189   default: // fall
1190   case OPW32:
1191   case OPW16:
1192   case OPWV216:
1193     return VGPR_32RegClassID;
1194   case OPW64:
1195   case OPWV232: return VReg_64RegClassID;
1196   case OPW96: return VReg_96RegClassID;
1197   case OPW128: return VReg_128RegClassID;
1198   case OPW160: return VReg_160RegClassID;
1199   case OPW256: return VReg_256RegClassID;
1200   case OPW512: return VReg_512RegClassID;
1201   case OPW1024: return VReg_1024RegClassID;
1202   }
1203 }
1204 
1205 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1206   using namespace AMDGPU;
1207 
1208   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1209   switch (Width) {
1210   default: // fall
1211   case OPW32:
1212   case OPW16:
1213   case OPWV216:
1214     return AGPR_32RegClassID;
1215   case OPW64:
1216   case OPWV232: return AReg_64RegClassID;
1217   case OPW96: return AReg_96RegClassID;
1218   case OPW128: return AReg_128RegClassID;
1219   case OPW160: return AReg_160RegClassID;
1220   case OPW256: return AReg_256RegClassID;
1221   case OPW512: return AReg_512RegClassID;
1222   case OPW1024: return AReg_1024RegClassID;
1223   }
1224 }
1225 
1226 
1227 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1228   using namespace AMDGPU;
1229 
1230   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1231   switch (Width) {
1232   default: // fall
1233   case OPW32:
1234   case OPW16:
1235   case OPWV216:
1236     return SGPR_32RegClassID;
1237   case OPW64:
1238   case OPWV232: return SGPR_64RegClassID;
1239   case OPW96: return SGPR_96RegClassID;
1240   case OPW128: return SGPR_128RegClassID;
1241   case OPW160: return SGPR_160RegClassID;
1242   case OPW256: return SGPR_256RegClassID;
1243   case OPW512: return SGPR_512RegClassID;
1244   }
1245 }
1246 
1247 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1248   using namespace AMDGPU;
1249 
1250   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1251   switch (Width) {
1252   default: // fall
1253   case OPW32:
1254   case OPW16:
1255   case OPWV216:
1256     return TTMP_32RegClassID;
1257   case OPW64:
1258   case OPWV232: return TTMP_64RegClassID;
1259   case OPW128: return TTMP_128RegClassID;
1260   case OPW256: return TTMP_256RegClassID;
1261   case OPW512: return TTMP_512RegClassID;
1262   }
1263 }
1264 
1265 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1266   using namespace AMDGPU::EncValues;
1267 
1268   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1269   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1270 
1271   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1272 }
1273 
1274 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1275                                           bool MandatoryLiteral) const {
1276   using namespace AMDGPU::EncValues;
1277 
1278   assert(Val < 1024); // enum10
1279 
1280   bool IsAGPR = Val & 512;
1281   Val &= 511;
1282 
1283   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1284     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1285                                    : getVgprClassId(Width), Val - VGPR_MIN);
1286   }
1287   if (Val <= SGPR_MAX) {
1288     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1289     static_assert(SGPR_MIN == 0, "");
1290     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1291   }
1292 
1293   int TTmpIdx = getTTmpIdx(Val);
1294   if (TTmpIdx >= 0) {
1295     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1296   }
1297 
1298   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1299     return decodeIntImmed(Val);
1300 
1301   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1302     return decodeFPImmed(Width, Val);
1303 
1304   if (Val == LITERAL_CONST) {
1305     if (MandatoryLiteral)
1306       // Keep a sentinel value for deferred setting
1307       return MCOperand::createImm(LITERAL_CONST);
1308     else
1309       return decodeLiteralConstant();
1310   }
1311 
1312   switch (Width) {
1313   case OPW32:
1314   case OPW16:
1315   case OPWV216:
1316     return decodeSpecialReg32(Val);
1317   case OPW64:
1318   case OPWV232:
1319     return decodeSpecialReg64(Val);
1320   default:
1321     llvm_unreachable("unexpected immediate type");
1322   }
1323 }
1324 
1325 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1326   using namespace AMDGPU::EncValues;
1327 
1328   assert(Val < 128);
1329   assert(Width == OPW256 || Width == OPW512);
1330 
1331   if (Val <= SGPR_MAX) {
1332     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1333     static_assert(SGPR_MIN == 0, "");
1334     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1335   }
1336 
1337   int TTmpIdx = getTTmpIdx(Val);
1338   if (TTmpIdx >= 0) {
1339     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1340   }
1341 
1342   llvm_unreachable("unknown dst register");
1343 }
1344 
1345 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1346   using namespace AMDGPU;
1347 
1348   switch (Val) {
1349   case 102: return createRegOperand(FLAT_SCR_LO);
1350   case 103: return createRegOperand(FLAT_SCR_HI);
1351   case 104: return createRegOperand(XNACK_MASK_LO);
1352   case 105: return createRegOperand(XNACK_MASK_HI);
1353   case 106: return createRegOperand(VCC_LO);
1354   case 107: return createRegOperand(VCC_HI);
1355   case 108: return createRegOperand(TBA_LO);
1356   case 109: return createRegOperand(TBA_HI);
1357   case 110: return createRegOperand(TMA_LO);
1358   case 111: return createRegOperand(TMA_HI);
1359   case 124:
1360     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1361   case 125:
1362     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1363   case 126: return createRegOperand(EXEC_LO);
1364   case 127: return createRegOperand(EXEC_HI);
1365   case 235: return createRegOperand(SRC_SHARED_BASE);
1366   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1367   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1368   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1369   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1370   case 251: return createRegOperand(SRC_VCCZ);
1371   case 252: return createRegOperand(SRC_EXECZ);
1372   case 253: return createRegOperand(SRC_SCC);
1373   case 254: return createRegOperand(LDS_DIRECT);
1374   default: break;
1375   }
1376   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1377 }
1378 
1379 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1380   using namespace AMDGPU;
1381 
1382   switch (Val) {
1383   case 102: return createRegOperand(FLAT_SCR);
1384   case 104: return createRegOperand(XNACK_MASK);
1385   case 106: return createRegOperand(VCC);
1386   case 108: return createRegOperand(TBA);
1387   case 110: return createRegOperand(TMA);
1388   case 124:
1389     if (isGFX11Plus())
1390       return createRegOperand(SGPR_NULL);
1391     break;
1392   case 125:
1393     if (!isGFX11Plus())
1394       return createRegOperand(SGPR_NULL);
1395     break;
1396   case 126: return createRegOperand(EXEC);
1397   case 235: return createRegOperand(SRC_SHARED_BASE);
1398   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1399   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1400   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1401   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1402   case 251: return createRegOperand(SRC_VCCZ);
1403   case 252: return createRegOperand(SRC_EXECZ);
1404   case 253: return createRegOperand(SRC_SCC);
1405   default: break;
1406   }
1407   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1408 }
1409 
1410 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1411                                             const unsigned Val) const {
1412   using namespace AMDGPU::SDWA;
1413   using namespace AMDGPU::EncValues;
1414 
1415   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1416       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1417     // XXX: cast to int is needed to avoid stupid warning:
1418     // compare with unsigned is always true
1419     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1420         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1421       return createRegOperand(getVgprClassId(Width),
1422                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1423     }
1424     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1425         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1426                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1427       return createSRegOperand(getSgprClassId(Width),
1428                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1429     }
1430     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1431         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1432       return createSRegOperand(getTtmpClassId(Width),
1433                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1434     }
1435 
1436     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1437 
1438     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1439       return decodeIntImmed(SVal);
1440 
1441     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1442       return decodeFPImmed(Width, SVal);
1443 
1444     return decodeSpecialReg32(SVal);
1445   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1446     return createRegOperand(getVgprClassId(Width), Val);
1447   }
1448   llvm_unreachable("unsupported target");
1449 }
1450 
1451 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1452   return decodeSDWASrc(OPW16, Val);
1453 }
1454 
1455 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1456   return decodeSDWASrc(OPW32, Val);
1457 }
1458 
1459 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1460   using namespace AMDGPU::SDWA;
1461 
1462   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1463           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1464          "SDWAVopcDst should be present only on GFX9+");
1465 
1466   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1467 
1468   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1469     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1470 
1471     int TTmpIdx = getTTmpIdx(Val);
1472     if (TTmpIdx >= 0) {
1473       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1474       return createSRegOperand(TTmpClsId, TTmpIdx);
1475     } else if (Val > SGPR_MAX) {
1476       return IsWave64 ? decodeSpecialReg64(Val)
1477                       : decodeSpecialReg32(Val);
1478     } else {
1479       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1480     }
1481   } else {
1482     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1483   }
1484 }
1485 
1486 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1487   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1488     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1489 }
1490 
1491 bool AMDGPUDisassembler::isVI() const {
1492   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1493 }
1494 
1495 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1496 
1497 bool AMDGPUDisassembler::isGFX90A() const {
1498   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1499 }
1500 
1501 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1502 
1503 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1504 
1505 bool AMDGPUDisassembler::isGFX10Plus() const {
1506   return AMDGPU::isGFX10Plus(STI);
1507 }
1508 
1509 bool AMDGPUDisassembler::isGFX11() const {
1510   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1511 }
1512 
1513 bool AMDGPUDisassembler::isGFX11Plus() const {
1514   return AMDGPU::isGFX11Plus(STI);
1515 }
1516 
1517 
1518 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1519   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1520 }
1521 
1522 //===----------------------------------------------------------------------===//
1523 // AMDGPU specific symbol handling
1524 //===----------------------------------------------------------------------===//
1525 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1526   do {                                                                         \
1527     KdStream << Indent << DIRECTIVE " "                                        \
1528              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1529   } while (0)
1530 
1531 // NOLINTNEXTLINE(readability-identifier-naming)
1532 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1533     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1534   using namespace amdhsa;
1535   StringRef Indent = "\t";
1536 
1537   // We cannot accurately backward compute #VGPRs used from
1538   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1539   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1540   // simply calculate the inverse of what the assembler does.
1541 
1542   uint32_t GranulatedWorkitemVGPRCount =
1543       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1544       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1545 
1546   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1547                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1548 
1549   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1550 
1551   // We cannot backward compute values used to calculate
1552   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1553   // directives can't be computed:
1554   // .amdhsa_reserve_vcc
1555   // .amdhsa_reserve_flat_scratch
1556   // .amdhsa_reserve_xnack_mask
1557   // They take their respective default values if not specified in the assembly.
1558   //
1559   // GRANULATED_WAVEFRONT_SGPR_COUNT
1560   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1561   //
1562   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1563   // are set to 0. So while disassembling we consider that:
1564   //
1565   // GRANULATED_WAVEFRONT_SGPR_COUNT
1566   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1567   //
1568   // The disassembler cannot recover the original values of those 3 directives.
1569 
1570   uint32_t GranulatedWavefrontSGPRCount =
1571       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1572       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1573 
1574   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1575     return MCDisassembler::Fail;
1576 
1577   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1578                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1579 
1580   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1581   if (!hasArchitectedFlatScratch())
1582     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1583   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1584   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1585 
1586   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1587     return MCDisassembler::Fail;
1588 
1589   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1590                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1591   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1592                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1593   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1594                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1595   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1596                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1597 
1598   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1599     return MCDisassembler::Fail;
1600 
1601   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1602 
1603   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1604     return MCDisassembler::Fail;
1605 
1606   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1607 
1608   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1609     return MCDisassembler::Fail;
1610 
1611   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1612     return MCDisassembler::Fail;
1613 
1614   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1615 
1616   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1617     return MCDisassembler::Fail;
1618 
1619   if (isGFX10Plus()) {
1620     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1621                     COMPUTE_PGM_RSRC1_WGP_MODE);
1622     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1623     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1624   }
1625   return MCDisassembler::Success;
1626 }
1627 
1628 // NOLINTNEXTLINE(readability-identifier-naming)
1629 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1630     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1631   using namespace amdhsa;
1632   StringRef Indent = "\t";
1633   if (hasArchitectedFlatScratch())
1634     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1635                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1636   else
1637     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1638                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1639   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1640                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1641   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1642                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1643   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1644                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1645   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1646                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1647   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1648                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1649 
1650   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1651     return MCDisassembler::Fail;
1652 
1653   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1654     return MCDisassembler::Fail;
1655 
1656   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1657     return MCDisassembler::Fail;
1658 
1659   PRINT_DIRECTIVE(
1660       ".amdhsa_exception_fp_ieee_invalid_op",
1661       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1662   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1663                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1664   PRINT_DIRECTIVE(
1665       ".amdhsa_exception_fp_ieee_div_zero",
1666       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1667   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1668                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1669   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1670                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1671   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1672                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1673   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1674                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1675 
1676   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1677     return MCDisassembler::Fail;
1678 
1679   return MCDisassembler::Success;
1680 }
1681 
1682 #undef PRINT_DIRECTIVE
1683 
1684 MCDisassembler::DecodeStatus
1685 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1686     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1687     raw_string_ostream &KdStream) const {
1688 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1689   do {                                                                         \
1690     KdStream << Indent << DIRECTIVE " "                                        \
1691              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1692   } while (0)
1693 
1694   uint16_t TwoByteBuffer = 0;
1695   uint32_t FourByteBuffer = 0;
1696 
1697   StringRef ReservedBytes;
1698   StringRef Indent = "\t";
1699 
1700   assert(Bytes.size() == 64);
1701   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1702 
1703   switch (Cursor.tell()) {
1704   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1705     FourByteBuffer = DE.getU32(Cursor);
1706     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1707              << '\n';
1708     return MCDisassembler::Success;
1709 
1710   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1711     FourByteBuffer = DE.getU32(Cursor);
1712     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1713              << FourByteBuffer << '\n';
1714     return MCDisassembler::Success;
1715 
1716   case amdhsa::KERNARG_SIZE_OFFSET:
1717     FourByteBuffer = DE.getU32(Cursor);
1718     KdStream << Indent << ".amdhsa_kernarg_size "
1719              << FourByteBuffer << '\n';
1720     return MCDisassembler::Success;
1721 
1722   case amdhsa::RESERVED0_OFFSET:
1723     // 4 reserved bytes, must be 0.
1724     ReservedBytes = DE.getBytes(Cursor, 4);
1725     for (int I = 0; I < 4; ++I) {
1726       if (ReservedBytes[I] != 0) {
1727         return MCDisassembler::Fail;
1728       }
1729     }
1730     return MCDisassembler::Success;
1731 
1732   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1733     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1734     // So far no directive controls this for Code Object V3, so simply skip for
1735     // disassembly.
1736     DE.skip(Cursor, 8);
1737     return MCDisassembler::Success;
1738 
1739   case amdhsa::RESERVED1_OFFSET:
1740     // 20 reserved bytes, must be 0.
1741     ReservedBytes = DE.getBytes(Cursor, 20);
1742     for (int I = 0; I < 20; ++I) {
1743       if (ReservedBytes[I] != 0) {
1744         return MCDisassembler::Fail;
1745       }
1746     }
1747     return MCDisassembler::Success;
1748 
1749   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1750     // COMPUTE_PGM_RSRC3
1751     //  - Only set for GFX10, GFX6-9 have this to be 0.
1752     //  - Currently no directives directly control this.
1753     FourByteBuffer = DE.getU32(Cursor);
1754     if (!isGFX10Plus() && FourByteBuffer) {
1755       return MCDisassembler::Fail;
1756     }
1757     return MCDisassembler::Success;
1758 
1759   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1760     FourByteBuffer = DE.getU32(Cursor);
1761     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1762         MCDisassembler::Fail) {
1763       return MCDisassembler::Fail;
1764     }
1765     return MCDisassembler::Success;
1766 
1767   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1768     FourByteBuffer = DE.getU32(Cursor);
1769     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1770         MCDisassembler::Fail) {
1771       return MCDisassembler::Fail;
1772     }
1773     return MCDisassembler::Success;
1774 
1775   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1776     using namespace amdhsa;
1777     TwoByteBuffer = DE.getU16(Cursor);
1778 
1779     if (!hasArchitectedFlatScratch())
1780       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1781                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1782     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1783                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1784     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1785                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1786     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1787                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1788     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1789                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1790     if (!hasArchitectedFlatScratch())
1791       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1792                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1793     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1794                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1795 
1796     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1797       return MCDisassembler::Fail;
1798 
1799     // Reserved for GFX9
1800     if (isGFX9() &&
1801         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1802       return MCDisassembler::Fail;
1803     } else if (isGFX10Plus()) {
1804       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1805                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1806     }
1807 
1808     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1809       return MCDisassembler::Fail;
1810 
1811     return MCDisassembler::Success;
1812 
1813   case amdhsa::RESERVED2_OFFSET:
1814     // 6 bytes from here are reserved, must be 0.
1815     ReservedBytes = DE.getBytes(Cursor, 6);
1816     for (int I = 0; I < 6; ++I) {
1817       if (ReservedBytes[I] != 0)
1818         return MCDisassembler::Fail;
1819     }
1820     return MCDisassembler::Success;
1821 
1822   default:
1823     llvm_unreachable("Unhandled index. Case statements cover everything.");
1824     return MCDisassembler::Fail;
1825   }
1826 #undef PRINT_DIRECTIVE
1827 }
1828 
1829 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1830     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1831   // CP microcode requires the kernel descriptor to be 64 aligned.
1832   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1833     return MCDisassembler::Fail;
1834 
1835   std::string Kd;
1836   raw_string_ostream KdStream(Kd);
1837   KdStream << ".amdhsa_kernel " << KdName << '\n';
1838 
1839   DataExtractor::Cursor C(0);
1840   while (C && C.tell() < Bytes.size()) {
1841     MCDisassembler::DecodeStatus Status =
1842         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1843 
1844     cantFail(C.takeError());
1845 
1846     if (Status == MCDisassembler::Fail)
1847       return MCDisassembler::Fail;
1848   }
1849   KdStream << ".end_amdhsa_kernel\n";
1850   outs() << KdStream.str();
1851   return MCDisassembler::Success;
1852 }
1853 
1854 Optional<MCDisassembler::DecodeStatus>
1855 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1856                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1857                                   raw_ostream &CStream) const {
1858   // Right now only kernel descriptor needs to be handled.
1859   // We ignore all other symbols for target specific handling.
1860   // TODO:
1861   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1862   // Object V2 and V3 when symbols are marked protected.
1863 
1864   // amd_kernel_code_t for Code Object V2.
1865   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1866     Size = 256;
1867     return MCDisassembler::Fail;
1868   }
1869 
1870   // Code Object V3 kernel descriptors.
1871   StringRef Name = Symbol.Name;
1872   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1873     Size = 64; // Size = 64 regardless of success or failure.
1874     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1875   }
1876   return None;
1877 }
1878 
1879 //===----------------------------------------------------------------------===//
1880 // AMDGPUSymbolizer
1881 //===----------------------------------------------------------------------===//
1882 
1883 // Try to find symbol name for specified label
1884 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1885                                 raw_ostream &/*cStream*/, int64_t Value,
1886                                 uint64_t /*Address*/, bool IsBranch,
1887                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1888 
1889   if (!IsBranch) {
1890     return false;
1891   }
1892 
1893   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1894   if (!Symbols)
1895     return false;
1896 
1897   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1898     return Val.Addr == static_cast<uint64_t>(Value) &&
1899            Val.Type == ELF::STT_NOTYPE;
1900   });
1901   if (Result != Symbols->end()) {
1902     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1903     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1904     Inst.addOperand(MCOperand::createExpr(Add));
1905     return true;
1906   }
1907   // Add to list of referenced addresses, so caller can synthesize a label.
1908   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1909   return false;
1910 }
1911 
1912 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1913                                                        int64_t Value,
1914                                                        uint64_t Address) {
1915   llvm_unreachable("unimplemented");
1916 }
1917 
1918 //===----------------------------------------------------------------------===//
1919 // Initialization
1920 //===----------------------------------------------------------------------===//
1921 
1922 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1923                               LLVMOpInfoCallback /*GetOpInfo*/,
1924                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1925                               void *DisInfo,
1926                               MCContext *Ctx,
1927                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1928   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1929 }
1930 
1931 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1932                                                 const MCSubtargetInfo &STI,
1933                                                 MCContext &Ctx) {
1934   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1935 }
1936 
1937 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1938   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1939                                          createAMDGPUDisassembler);
1940   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1941                                        createAMDGPUSymbolizer);
1942 }
1943