1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCFixedLenDisassembler.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/TargetRegistry.h"
33 #include "llvm/Support/AMDHSAKernelDescriptor.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "amdgpu-disassembler"
38 
39 #define SGPR_MAX                                                               \
40   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
41                  : AMDGPU::EncValues::SGPR_MAX_SI)
42 
43 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
44 
45 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
46                                        MCContext &Ctx,
47                                        MCInstrInfo const *MCII) :
48   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
49   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
50 
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
95     Offset = Imm & 0xFFFFF;
96   } else {                    // GFX9+ supports 21-bit signed offsets.
97     Offset = SignExtend64<21>(Imm);
98   }
99   return addOperand(Inst, MCOperand::createImm(Offset));
100 }
101 
102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
103                                   const MCDisassembler *Decoder) {
104   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
105   return addOperand(Inst, DAsm->decodeBoolReg(Val));
106 }
107 
108 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
109   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
110                                         uint64_t /*Addr*/,                     \
111                                         const MCDisassembler *Decoder) {       \
112     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
113     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
114   }
115 
116 #define DECODE_OPERAND_REG(RegClass) \
117 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
118 
119 DECODE_OPERAND_REG(VGPR_32)
120 DECODE_OPERAND_REG(VRegOrLds_32)
121 DECODE_OPERAND_REG(VS_32)
122 DECODE_OPERAND_REG(VS_64)
123 DECODE_OPERAND_REG(VS_128)
124 
125 DECODE_OPERAND_REG(VReg_64)
126 DECODE_OPERAND_REG(VReg_96)
127 DECODE_OPERAND_REG(VReg_128)
128 DECODE_OPERAND_REG(VReg_256)
129 DECODE_OPERAND_REG(VReg_512)
130 DECODE_OPERAND_REG(VReg_1024)
131 
132 DECODE_OPERAND_REG(SReg_32)
133 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
134 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
135 DECODE_OPERAND_REG(SRegOrLds_32)
136 DECODE_OPERAND_REG(SReg_64)
137 DECODE_OPERAND_REG(SReg_64_XEXEC)
138 DECODE_OPERAND_REG(SReg_128)
139 DECODE_OPERAND_REG(SReg_256)
140 DECODE_OPERAND_REG(SReg_512)
141 
142 DECODE_OPERAND_REG(AGPR_32)
143 DECODE_OPERAND_REG(AReg_64)
144 DECODE_OPERAND_REG(AReg_128)
145 DECODE_OPERAND_REG(AReg_256)
146 DECODE_OPERAND_REG(AReg_512)
147 DECODE_OPERAND_REG(AReg_1024)
148 DECODE_OPERAND_REG(AV_32)
149 DECODE_OPERAND_REG(AV_64)
150 DECODE_OPERAND_REG(AV_128)
151 DECODE_OPERAND_REG(AV_512)
152 
153 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
154                                          uint64_t Addr,
155                                          const MCDisassembler *Decoder) {
156   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
157   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
158 }
159 
160 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
161                                            uint64_t Addr,
162                                            const MCDisassembler *Decoder) {
163   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
164   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
165 }
166 
167 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
168                                            uint64_t Addr,
169                                            const MCDisassembler *Decoder) {
170   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
171   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
172 }
173 
174 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
175                                         uint64_t Addr,
176                                         const MCDisassembler *Decoder) {
177   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
178   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
179 }
180 
181 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
182                                         uint64_t Addr,
183                                         const MCDisassembler *Decoder) {
184   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
185   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
186 }
187 
188 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
189                                           uint64_t Addr,
190                                           const MCDisassembler *Decoder) {
191   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
192   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
193 }
194 
195 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
196                                            uint64_t Addr,
197                                            const MCDisassembler *Decoder) {
198   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
199   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
200 }
201 
202 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
203                                            uint64_t Addr,
204                                            const MCDisassembler *Decoder) {
205   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
206   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
207 }
208 
209 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
210                                            uint64_t Addr,
211                                            const MCDisassembler *Decoder) {
212   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
213   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
214 }
215 
216 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
217                                             uint64_t Addr,
218                                             const MCDisassembler *Decoder) {
219   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
220   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
221 }
222 
223 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
224                                           uint64_t Addr,
225                                           const MCDisassembler *Decoder) {
226   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
227   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
228 }
229 
230 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
231                                            uint64_t Addr,
232                                            const MCDisassembler *Decoder) {
233   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
234   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
235 }
236 
237 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
238                                            uint64_t Addr,
239                                            const MCDisassembler *Decoder) {
240   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
241   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
242 }
243 
244 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
245                                            uint64_t Addr,
246                                            const MCDisassembler *Decoder) {
247   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
248   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
249 }
250 
251 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
252                                             uint64_t Addr,
253                                             const MCDisassembler *Decoder) {
254   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
255   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
256 }
257 
258 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
259                                           uint64_t Addr,
260                                           const MCDisassembler *Decoder) {
261   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
262   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
263 }
264 
265 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
266                                           uint64_t Addr,
267                                           const MCDisassembler *Decoder) {
268   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
269   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
270 }
271 
272 static DecodeStatus
273 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
274                              const MCDisassembler *Decoder) {
275   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
276   return addOperand(
277       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
278 }
279 
280 static DecodeStatus
281 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
282                              const MCDisassembler *Decoder) {
283   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
284   return addOperand(
285       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
286 }
287 
288 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
289                           const MCRegisterInfo *MRI) {
290   if (OpIdx < 0)
291     return false;
292 
293   const MCOperand &Op = Inst.getOperand(OpIdx);
294   if (!Op.isReg())
295     return false;
296 
297   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
298   auto Reg = Sub ? Sub : Op.getReg();
299   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
300 }
301 
302 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
303                                              AMDGPUDisassembler::OpWidthTy Opw,
304                                              const MCDisassembler *Decoder) {
305   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
306   if (!DAsm->isGFX90A()) {
307     Imm &= 511;
308   } else {
309     // If atomic has both vdata and vdst their register classes are tied.
310     // The bit is decoded along with the vdst, first operand. We need to
311     // change register class to AGPR if vdst was AGPR.
312     // If a DS instruction has both data0 and data1 their register classes
313     // are also tied.
314     unsigned Opc = Inst.getOpcode();
315     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
316     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
317                                                         : AMDGPU::OpName::vdata;
318     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
319     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
320     if ((int)Inst.getNumOperands() == DataIdx) {
321       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
322       if (IsAGPROperand(Inst, DstIdx, MRI))
323         Imm |= 512;
324     }
325 
326     if (TSFlags & SIInstrFlags::DS) {
327       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
328       if ((int)Inst.getNumOperands() == Data2Idx &&
329           IsAGPROperand(Inst, DataIdx, MRI))
330         Imm |= 512;
331     }
332   }
333   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
334 }
335 
336 static DecodeStatus
337 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
338                              const MCDisassembler *Decoder) {
339   return decodeOperand_AVLdSt_Any(Inst, Imm,
340                                   AMDGPUDisassembler::OPW32, Decoder);
341 }
342 
343 static DecodeStatus
344 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
345                              const MCDisassembler *Decoder) {
346   return decodeOperand_AVLdSt_Any(Inst, Imm,
347                                   AMDGPUDisassembler::OPW64, Decoder);
348 }
349 
350 static DecodeStatus
351 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
352                              const MCDisassembler *Decoder) {
353   return decodeOperand_AVLdSt_Any(Inst, Imm,
354                                   AMDGPUDisassembler::OPW96, Decoder);
355 }
356 
357 static DecodeStatus
358 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
359                               const MCDisassembler *Decoder) {
360   return decodeOperand_AVLdSt_Any(Inst, Imm,
361                                   AMDGPUDisassembler::OPW128, Decoder);
362 }
363 
364 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
365                                           uint64_t Addr,
366                                           const MCDisassembler *Decoder) {
367   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
368   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
369 }
370 
371 #define DECODE_SDWA(DecName) \
372 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
373 
374 DECODE_SDWA(Src32)
375 DECODE_SDWA(Src16)
376 DECODE_SDWA(VopcDst)
377 
378 #include "AMDGPUGenDisassemblerTables.inc"
379 
380 //===----------------------------------------------------------------------===//
381 //
382 //===----------------------------------------------------------------------===//
383 
384 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
385   assert(Bytes.size() >= sizeof(T));
386   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
387   Bytes = Bytes.slice(sizeof(T));
388   return Res;
389 }
390 
391 DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
392                                                MCInst &MI,
393                                                uint64_t Inst,
394                                                uint64_t Address) const {
395   assert(MI.getOpcode() == 0);
396   assert(MI.getNumOperands() == 0);
397   MCInst TmpInst;
398   HasLiteral = false;
399   const auto SavedBytes = Bytes;
400   if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
401     MI = TmpInst;
402     return MCDisassembler::Success;
403   }
404   Bytes = SavedBytes;
405   return MCDisassembler::Fail;
406 }
407 
408 // The disassembler is greedy, so we need to check FI operand value to
409 // not parse a dpp if the correct literal is not set. For dpp16 the
410 // autogenerated decoder checks the dpp literal
411 static bool isValidDPP8(const MCInst &MI) {
412   using namespace llvm::AMDGPU::DPP;
413   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
414   assert(FiIdx != -1);
415   if ((unsigned)FiIdx >= MI.getNumOperands())
416     return false;
417   unsigned Fi = MI.getOperand(FiIdx).getImm();
418   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
419 }
420 
421 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
422                                                 ArrayRef<uint8_t> Bytes_,
423                                                 uint64_t Address,
424                                                 raw_ostream &CS) const {
425   CommentStream = &CS;
426   bool IsSDWA = false;
427 
428   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
429   Bytes = Bytes_.slice(0, MaxInstBytesNum);
430 
431   DecodeStatus Res = MCDisassembler::Fail;
432   do {
433     // ToDo: better to switch encoding length using some bit predicate
434     // but it is unknown yet, so try all we can
435 
436     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
437     // encodings
438     if (Bytes.size() >= 8) {
439       const uint64_t QW = eatBytes<uint64_t>(Bytes);
440 
441       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
442         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
443         if (Res) {
444           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
445               == -1)
446             break;
447           if (convertDPP8Inst(MI) == MCDisassembler::Success)
448             break;
449           MI = MCInst(); // clear
450         }
451       }
452 
453       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
454       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
455         break;
456 
457       MI = MCInst(); // clear
458 
459       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
460       if (Res) break;
461 
462       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
463       if (Res) { IsSDWA = true;  break; }
464 
465       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
466       if (Res) { IsSDWA = true;  break; }
467 
468       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
469       if (Res) { IsSDWA = true;  break; }
470 
471       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
472         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
473         if (Res)
474           break;
475       }
476 
477       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
478       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
479       // table first so we print the correct name.
480       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
481         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
482         if (Res)
483           break;
484       }
485     }
486 
487     // Reinitialize Bytes as DPP64 could have eaten too much
488     Bytes = Bytes_.slice(0, MaxInstBytesNum);
489 
490     // Try decode 32-bit instruction
491     if (Bytes.size() < 4) break;
492     const uint32_t DW = eatBytes<uint32_t>(Bytes);
493     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
494     if (Res) break;
495 
496     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
497     if (Res) break;
498 
499     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
500     if (Res) break;
501 
502     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
503       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
504       if (Res)
505         break;
506     }
507 
508     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
509       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
510       if (Res) break;
511     }
512 
513     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
514     if (Res) break;
515 
516     if (Bytes.size() < 4) break;
517     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
518 
519     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
520       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
521       if (Res)
522         break;
523     }
524 
525     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
526     if (Res) break;
527 
528     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
529     if (Res) break;
530 
531     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
532     if (Res) break;
533 
534     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
535   } while (false);
536 
537   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
538               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
539               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
540               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
541               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
542               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
543               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
544               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
545               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
546               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
547               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
548     // Insert dummy unused src2_modifiers.
549     insertNamedMCOperand(MI, MCOperand::createImm(0),
550                          AMDGPU::OpName::src2_modifiers);
551   }
552 
553   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
554           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
555     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
556                                              AMDGPU::OpName::cpol);
557     if (CPolPos != -1) {
558       unsigned CPol =
559           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
560               AMDGPU::CPol::GLC : 0;
561       if (MI.getNumOperands() <= (unsigned)CPolPos) {
562         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
563                              AMDGPU::OpName::cpol);
564       } else if (CPol) {
565         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
566       }
567     }
568   }
569 
570   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
571               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
572              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
573     // GFX90A lost TFE, its place is occupied by ACC.
574     int TFEOpIdx =
575         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
576     if (TFEOpIdx != -1) {
577       auto TFEIter = MI.begin();
578       std::advance(TFEIter, TFEOpIdx);
579       MI.insert(TFEIter, MCOperand::createImm(0));
580     }
581   }
582 
583   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
584               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
585     int SWZOpIdx =
586         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
587     if (SWZOpIdx != -1) {
588       auto SWZIter = MI.begin();
589       std::advance(SWZIter, SWZOpIdx);
590       MI.insert(SWZIter, MCOperand::createImm(0));
591     }
592   }
593 
594   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
595     int VAddr0Idx =
596         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
597     int RsrcIdx =
598         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
599     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
600     if (VAddr0Idx >= 0 && NSAArgs > 0) {
601       unsigned NSAWords = (NSAArgs + 3) / 4;
602       if (Bytes.size() < 4 * NSAWords) {
603         Res = MCDisassembler::Fail;
604       } else {
605         for (unsigned i = 0; i < NSAArgs; ++i) {
606           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
607                     decodeOperand_VGPR_32(Bytes[i]));
608         }
609         Bytes = Bytes.slice(4 * NSAWords);
610       }
611     }
612 
613     if (Res)
614       Res = convertMIMGInst(MI);
615   }
616 
617   if (Res && IsSDWA)
618     Res = convertSDWAInst(MI);
619 
620   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
621                                               AMDGPU::OpName::vdst_in);
622   if (VDstIn_Idx != -1) {
623     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
624                            MCOI::OperandConstraint::TIED_TO);
625     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
626          !MI.getOperand(VDstIn_Idx).isReg() ||
627          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
628       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
629         MI.erase(&MI.getOperand(VDstIn_Idx));
630       insertNamedMCOperand(MI,
631         MCOperand::createReg(MI.getOperand(Tied).getReg()),
632         AMDGPU::OpName::vdst_in);
633     }
634   }
635 
636   int ImmLitIdx =
637       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
638   if (Res && ImmLitIdx != -1)
639     Res = convertFMAanyK(MI, ImmLitIdx);
640 
641   // if the opcode was not recognized we'll assume a Size of 4 bytes
642   // (unless there are fewer bytes left)
643   Size = Res ? (MaxInstBytesNum - Bytes.size())
644              : std::min((size_t)4, Bytes_.size());
645   return Res;
646 }
647 
648 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
649   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
650       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
651     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
652       // VOPC - insert clamp
653       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
654   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
655     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
656     if (SDst != -1) {
657       // VOPC - insert VCC register as sdst
658       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
659                            AMDGPU::OpName::sdst);
660     } else {
661       // VOP1/2 - insert omod if present in instruction
662       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
663     }
664   }
665   return MCDisassembler::Success;
666 }
667 
668 // We must check FI == literal to reject not genuine dpp8 insts, and we must
669 // first add optional MI operands to check FI
670 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
671   unsigned Opc = MI.getOpcode();
672   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
673 
674   // Insert dummy unused src modifiers.
675   if (MI.getNumOperands() < DescNumOps &&
676       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
677     insertNamedMCOperand(MI, MCOperand::createImm(0),
678                          AMDGPU::OpName::src0_modifiers);
679 
680   if (MI.getNumOperands() < DescNumOps &&
681       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
682     insertNamedMCOperand(MI, MCOperand::createImm(0),
683                          AMDGPU::OpName::src1_modifiers);
684 
685   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
686 }
687 
688 // Note that before gfx10, the MIMG encoding provided no information about
689 // VADDR size. Consequently, decoded instructions always show address as if it
690 // has 1 dword, which could be not really so.
691 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
692 
693   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
694                                            AMDGPU::OpName::vdst);
695 
696   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
697                                             AMDGPU::OpName::vdata);
698   int VAddr0Idx =
699       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
700   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
701                                             AMDGPU::OpName::dmask);
702 
703   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
704                                             AMDGPU::OpName::tfe);
705   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
706                                             AMDGPU::OpName::d16);
707 
708   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
709   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
710       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
711 
712   assert(VDataIdx != -1);
713   if (BaseOpcode->BVH) {
714     // Add A16 operand for intersect_ray instructions
715     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
716       addOperand(MI, MCOperand::createImm(1));
717     }
718     return MCDisassembler::Success;
719   }
720 
721   bool IsAtomic = (VDstIdx != -1);
722   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
723   bool IsNSA = false;
724   unsigned AddrSize = Info->VAddrDwords;
725 
726   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
727     unsigned DimIdx =
728         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
729     int A16Idx =
730         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
731     const AMDGPU::MIMGDimInfo *Dim =
732         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
733     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
734 
735     AddrSize =
736         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
737 
738     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
739     if (!IsNSA) {
740       if (AddrSize > 8)
741         AddrSize = 16;
742     } else {
743       if (AddrSize > Info->VAddrDwords) {
744         // The NSA encoding does not contain enough operands for the combination
745         // of base opcode / dimension. Should this be an error?
746         return MCDisassembler::Success;
747       }
748     }
749   }
750 
751   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
752   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
753 
754   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
755   if (D16 && AMDGPU::hasPackedD16(STI)) {
756     DstSize = (DstSize + 1) / 2;
757   }
758 
759   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
760     DstSize += 1;
761 
762   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
763     return MCDisassembler::Success;
764 
765   int NewOpcode =
766       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
767   if (NewOpcode == -1)
768     return MCDisassembler::Success;
769 
770   // Widen the register to the correct number of enabled channels.
771   unsigned NewVdata = AMDGPU::NoRegister;
772   if (DstSize != Info->VDataDwords) {
773     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
774 
775     // Get first subregister of VData
776     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
777     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
778     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
779 
780     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
781                                        &MRI.getRegClass(DataRCID));
782     if (NewVdata == AMDGPU::NoRegister) {
783       // It's possible to encode this such that the low register + enabled
784       // components exceeds the register count.
785       return MCDisassembler::Success;
786     }
787   }
788 
789   unsigned NewVAddr0 = AMDGPU::NoRegister;
790   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
791       AddrSize != Info->VAddrDwords) {
792     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
793     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
794     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
795 
796     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
797     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
798                                         &MRI.getRegClass(AddrRCID));
799     if (NewVAddr0 == AMDGPU::NoRegister)
800       return MCDisassembler::Success;
801   }
802 
803   MI.setOpcode(NewOpcode);
804 
805   if (NewVdata != AMDGPU::NoRegister) {
806     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
807 
808     if (IsAtomic) {
809       // Atomic operations have an additional operand (a copy of data)
810       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
811     }
812   }
813 
814   if (NewVAddr0 != AMDGPU::NoRegister) {
815     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
816   } else if (IsNSA) {
817     assert(AddrSize <= Info->VAddrDwords);
818     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
819              MI.begin() + VAddr0Idx + Info->VAddrDwords);
820   }
821 
822   return MCDisassembler::Success;
823 }
824 
825 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
826                                                 int ImmLitIdx) const {
827   assert(HasLiteral && "Should have decoded a literal");
828   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
829   unsigned DescNumOps = Desc.getNumOperands();
830   assert(DescNumOps == MI.getNumOperands());
831   for (unsigned I = 0; I < DescNumOps; ++I) {
832     auto &Op = MI.getOperand(I);
833     auto OpType = Desc.OpInfo[I].OperandType;
834     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
835                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
836     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
837         IsDeferredOp)
838       Op.setImm(Literal);
839   }
840   return MCDisassembler::Success;
841 }
842 
843 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
844   return getContext().getRegisterInfo()->
845     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
846 }
847 
848 inline
849 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
850                                          const Twine& ErrMsg) const {
851   *CommentStream << "Error: " + ErrMsg;
852 
853   // ToDo: add support for error operands to MCInst.h
854   // return MCOperand::createError(V);
855   return MCOperand();
856 }
857 
858 inline
859 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
860   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
861 }
862 
863 inline
864 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
865                                                unsigned Val) const {
866   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
867   if (Val >= RegCl.getNumRegs())
868     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
869                            ": unknown register " + Twine(Val));
870   return createRegOperand(RegCl.getRegister(Val));
871 }
872 
873 inline
874 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
875                                                 unsigned Val) const {
876   // ToDo: SI/CI have 104 SGPRs, VI - 102
877   // Valery: here we accepting as much as we can, let assembler sort it out
878   int shift = 0;
879   switch (SRegClassID) {
880   case AMDGPU::SGPR_32RegClassID:
881   case AMDGPU::TTMP_32RegClassID:
882     break;
883   case AMDGPU::SGPR_64RegClassID:
884   case AMDGPU::TTMP_64RegClassID:
885     shift = 1;
886     break;
887   case AMDGPU::SGPR_128RegClassID:
888   case AMDGPU::TTMP_128RegClassID:
889   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
890   // this bundle?
891   case AMDGPU::SGPR_256RegClassID:
892   case AMDGPU::TTMP_256RegClassID:
893     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
894   // this bundle?
895   case AMDGPU::SGPR_512RegClassID:
896   case AMDGPU::TTMP_512RegClassID:
897     shift = 2;
898     break;
899   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
900   // this bundle?
901   default:
902     llvm_unreachable("unhandled register class");
903   }
904 
905   if (Val % (1 << shift)) {
906     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
907                    << ": scalar reg isn't aligned " << Val;
908   }
909 
910   return createRegOperand(SRegClassID, Val >> shift);
911 }
912 
913 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
914   return decodeSrcOp(OPW32, Val);
915 }
916 
917 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
918   return decodeSrcOp(OPW64, Val);
919 }
920 
921 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
922   return decodeSrcOp(OPW128, Val);
923 }
924 
925 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
926   return decodeSrcOp(OPW16, Val);
927 }
928 
929 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
930   return decodeSrcOp(OPWV216, Val);
931 }
932 
933 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
934   return decodeSrcOp(OPWV232, Val);
935 }
936 
937 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
938   // Some instructions have operand restrictions beyond what the encoding
939   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
940   // high bit.
941   Val &= 255;
942 
943   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
944 }
945 
946 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
947   return decodeSrcOp(OPW32, Val);
948 }
949 
950 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
951   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
952 }
953 
954 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
955   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
956 }
957 
958 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
959   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
960 }
961 
962 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
963   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
964 }
965 
966 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
967   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
968 }
969 
970 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
971   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
972 }
973 
974 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
975   return decodeSrcOp(OPW32, Val);
976 }
977 
978 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
979   return decodeSrcOp(OPW64, Val);
980 }
981 
982 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
983   return decodeSrcOp(OPW128, Val);
984 }
985 
986 MCOperand AMDGPUDisassembler::decodeOperand_AV_512(unsigned Val) const {
987   return decodeSrcOp(OPW512, Val);
988 }
989 
990 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
991   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
992 }
993 
994 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
995   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
996 }
997 
998 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
999   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1000 }
1001 
1002 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1003   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1004 }
1005 
1006 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1007   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1008 }
1009 
1010 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1011   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1012 }
1013 
1014 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1015   // table-gen generated disassembler doesn't care about operand types
1016   // leaving only registry class so SSrc_32 operand turns into SReg_32
1017   // and therefore we accept immediates and literals here as well
1018   return decodeSrcOp(OPW32, Val);
1019 }
1020 
1021 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1022   unsigned Val) const {
1023   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1024   return decodeOperand_SReg_32(Val);
1025 }
1026 
1027 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1028   unsigned Val) const {
1029   // SReg_32_XM0 is SReg_32 without EXEC_HI
1030   return decodeOperand_SReg_32(Val);
1031 }
1032 
1033 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1034   // table-gen generated disassembler doesn't care about operand types
1035   // leaving only registry class so SSrc_32 operand turns into SReg_32
1036   // and therefore we accept immediates and literals here as well
1037   return decodeSrcOp(OPW32, Val);
1038 }
1039 
1040 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1041   return decodeSrcOp(OPW64, Val);
1042 }
1043 
1044 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1045   return decodeSrcOp(OPW64, Val);
1046 }
1047 
1048 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1049   return decodeSrcOp(OPW128, Val);
1050 }
1051 
1052 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1053   return decodeDstOp(OPW256, Val);
1054 }
1055 
1056 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1057   return decodeDstOp(OPW512, Val);
1058 }
1059 
1060 // Decode Literals for insts which always have a literal in the encoding
1061 MCOperand
1062 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1063   if (HasLiteral) {
1064     if (Literal != Val)
1065       return errOperand(Val, "More than one unique literal is illegal");
1066   }
1067   HasLiteral = true;
1068   Literal = Val;
1069   return MCOperand::createImm(Literal);
1070 }
1071 
1072 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1073   // For now all literal constants are supposed to be unsigned integer
1074   // ToDo: deal with signed/unsigned 64-bit integer constants
1075   // ToDo: deal with float/double constants
1076   if (!HasLiteral) {
1077     if (Bytes.size() < 4) {
1078       return errOperand(0, "cannot read literal, inst bytes left " +
1079                         Twine(Bytes.size()));
1080     }
1081     HasLiteral = true;
1082     Literal = eatBytes<uint32_t>(Bytes);
1083   }
1084   return MCOperand::createImm(Literal);
1085 }
1086 
1087 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1088   using namespace AMDGPU::EncValues;
1089 
1090   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1091   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1092     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1093     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1094       // Cast prevents negative overflow.
1095 }
1096 
1097 static int64_t getInlineImmVal32(unsigned Imm) {
1098   switch (Imm) {
1099   case 240:
1100     return FloatToBits(0.5f);
1101   case 241:
1102     return FloatToBits(-0.5f);
1103   case 242:
1104     return FloatToBits(1.0f);
1105   case 243:
1106     return FloatToBits(-1.0f);
1107   case 244:
1108     return FloatToBits(2.0f);
1109   case 245:
1110     return FloatToBits(-2.0f);
1111   case 246:
1112     return FloatToBits(4.0f);
1113   case 247:
1114     return FloatToBits(-4.0f);
1115   case 248: // 1 / (2 * PI)
1116     return 0x3e22f983;
1117   default:
1118     llvm_unreachable("invalid fp inline imm");
1119   }
1120 }
1121 
1122 static int64_t getInlineImmVal64(unsigned Imm) {
1123   switch (Imm) {
1124   case 240:
1125     return DoubleToBits(0.5);
1126   case 241:
1127     return DoubleToBits(-0.5);
1128   case 242:
1129     return DoubleToBits(1.0);
1130   case 243:
1131     return DoubleToBits(-1.0);
1132   case 244:
1133     return DoubleToBits(2.0);
1134   case 245:
1135     return DoubleToBits(-2.0);
1136   case 246:
1137     return DoubleToBits(4.0);
1138   case 247:
1139     return DoubleToBits(-4.0);
1140   case 248: // 1 / (2 * PI)
1141     return 0x3fc45f306dc9c882;
1142   default:
1143     llvm_unreachable("invalid fp inline imm");
1144   }
1145 }
1146 
1147 static int64_t getInlineImmVal16(unsigned Imm) {
1148   switch (Imm) {
1149   case 240:
1150     return 0x3800;
1151   case 241:
1152     return 0xB800;
1153   case 242:
1154     return 0x3C00;
1155   case 243:
1156     return 0xBC00;
1157   case 244:
1158     return 0x4000;
1159   case 245:
1160     return 0xC000;
1161   case 246:
1162     return 0x4400;
1163   case 247:
1164     return 0xC400;
1165   case 248: // 1 / (2 * PI)
1166     return 0x3118;
1167   default:
1168     llvm_unreachable("invalid fp inline imm");
1169   }
1170 }
1171 
1172 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1173   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1174       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1175 
1176   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1177   switch (Width) {
1178   case OPW32:
1179   case OPW128: // splat constants
1180   case OPW512:
1181   case OPW1024:
1182   case OPWV232:
1183     return MCOperand::createImm(getInlineImmVal32(Imm));
1184   case OPW64:
1185   case OPW256:
1186     return MCOperand::createImm(getInlineImmVal64(Imm));
1187   case OPW16:
1188   case OPWV216:
1189     return MCOperand::createImm(getInlineImmVal16(Imm));
1190   default:
1191     llvm_unreachable("implement me");
1192   }
1193 }
1194 
1195 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1196   using namespace AMDGPU;
1197 
1198   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1199   switch (Width) {
1200   default: // fall
1201   case OPW32:
1202   case OPW16:
1203   case OPWV216:
1204     return VGPR_32RegClassID;
1205   case OPW64:
1206   case OPWV232: return VReg_64RegClassID;
1207   case OPW96: return VReg_96RegClassID;
1208   case OPW128: return VReg_128RegClassID;
1209   case OPW160: return VReg_160RegClassID;
1210   case OPW256: return VReg_256RegClassID;
1211   case OPW512: return VReg_512RegClassID;
1212   case OPW1024: return VReg_1024RegClassID;
1213   }
1214 }
1215 
1216 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1217   using namespace AMDGPU;
1218 
1219   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1220   switch (Width) {
1221   default: // fall
1222   case OPW32:
1223   case OPW16:
1224   case OPWV216:
1225     return AGPR_32RegClassID;
1226   case OPW64:
1227   case OPWV232: return AReg_64RegClassID;
1228   case OPW96: return AReg_96RegClassID;
1229   case OPW128: return AReg_128RegClassID;
1230   case OPW160: return AReg_160RegClassID;
1231   case OPW256: return AReg_256RegClassID;
1232   case OPW512: return AReg_512RegClassID;
1233   case OPW1024: return AReg_1024RegClassID;
1234   }
1235 }
1236 
1237 
1238 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1239   using namespace AMDGPU;
1240 
1241   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1242   switch (Width) {
1243   default: // fall
1244   case OPW32:
1245   case OPW16:
1246   case OPWV216:
1247     return SGPR_32RegClassID;
1248   case OPW64:
1249   case OPWV232: return SGPR_64RegClassID;
1250   case OPW96: return SGPR_96RegClassID;
1251   case OPW128: return SGPR_128RegClassID;
1252   case OPW160: return SGPR_160RegClassID;
1253   case OPW256: return SGPR_256RegClassID;
1254   case OPW512: return SGPR_512RegClassID;
1255   }
1256 }
1257 
1258 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1259   using namespace AMDGPU;
1260 
1261   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1262   switch (Width) {
1263   default: // fall
1264   case OPW32:
1265   case OPW16:
1266   case OPWV216:
1267     return TTMP_32RegClassID;
1268   case OPW64:
1269   case OPWV232: return TTMP_64RegClassID;
1270   case OPW128: return TTMP_128RegClassID;
1271   case OPW256: return TTMP_256RegClassID;
1272   case OPW512: return TTMP_512RegClassID;
1273   }
1274 }
1275 
1276 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1277   using namespace AMDGPU::EncValues;
1278 
1279   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1280   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1281 
1282   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1283 }
1284 
1285 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1286                                           bool MandatoryLiteral) const {
1287   using namespace AMDGPU::EncValues;
1288 
1289   assert(Val < 1024); // enum10
1290 
1291   bool IsAGPR = Val & 512;
1292   Val &= 511;
1293 
1294   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1295     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1296                                    : getVgprClassId(Width), Val - VGPR_MIN);
1297   }
1298   if (Val <= SGPR_MAX) {
1299     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1300     static_assert(SGPR_MIN == 0, "");
1301     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1302   }
1303 
1304   int TTmpIdx = getTTmpIdx(Val);
1305   if (TTmpIdx >= 0) {
1306     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1307   }
1308 
1309   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1310     return decodeIntImmed(Val);
1311 
1312   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1313     return decodeFPImmed(Width, Val);
1314 
1315   if (Val == LITERAL_CONST) {
1316     if (MandatoryLiteral)
1317       // Keep a sentinel value for deferred setting
1318       return MCOperand::createImm(LITERAL_CONST);
1319     else
1320       return decodeLiteralConstant();
1321   }
1322 
1323   switch (Width) {
1324   case OPW32:
1325   case OPW16:
1326   case OPWV216:
1327     return decodeSpecialReg32(Val);
1328   case OPW64:
1329   case OPWV232:
1330     return decodeSpecialReg64(Val);
1331   default:
1332     llvm_unreachable("unexpected immediate type");
1333   }
1334 }
1335 
1336 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1337   using namespace AMDGPU::EncValues;
1338 
1339   assert(Val < 128);
1340   assert(Width == OPW256 || Width == OPW512);
1341 
1342   if (Val <= SGPR_MAX) {
1343     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1344     static_assert(SGPR_MIN == 0, "");
1345     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1346   }
1347 
1348   int TTmpIdx = getTTmpIdx(Val);
1349   if (TTmpIdx >= 0) {
1350     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1351   }
1352 
1353   llvm_unreachable("unknown dst register");
1354 }
1355 
1356 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1357   using namespace AMDGPU;
1358 
1359   switch (Val) {
1360   case 102: return createRegOperand(FLAT_SCR_LO);
1361   case 103: return createRegOperand(FLAT_SCR_HI);
1362   case 104: return createRegOperand(XNACK_MASK_LO);
1363   case 105: return createRegOperand(XNACK_MASK_HI);
1364   case 106: return createRegOperand(VCC_LO);
1365   case 107: return createRegOperand(VCC_HI);
1366   case 108: return createRegOperand(TBA_LO);
1367   case 109: return createRegOperand(TBA_HI);
1368   case 110: return createRegOperand(TMA_LO);
1369   case 111: return createRegOperand(TMA_HI);
1370   case 124: return createRegOperand(M0);
1371   case 125: return createRegOperand(SGPR_NULL);
1372   case 126: return createRegOperand(EXEC_LO);
1373   case 127: return createRegOperand(EXEC_HI);
1374   case 235: return createRegOperand(SRC_SHARED_BASE);
1375   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1376   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1377   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1378   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1379   case 251: return createRegOperand(SRC_VCCZ);
1380   case 252: return createRegOperand(SRC_EXECZ);
1381   case 253: return createRegOperand(SRC_SCC);
1382   case 254: return createRegOperand(LDS_DIRECT);
1383   default: break;
1384   }
1385   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1386 }
1387 
1388 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1389   using namespace AMDGPU;
1390 
1391   switch (Val) {
1392   case 102: return createRegOperand(FLAT_SCR);
1393   case 104: return createRegOperand(XNACK_MASK);
1394   case 106: return createRegOperand(VCC);
1395   case 108: return createRegOperand(TBA);
1396   case 110: return createRegOperand(TMA);
1397   case 125: return createRegOperand(SGPR_NULL);
1398   case 126: return createRegOperand(EXEC);
1399   case 235: return createRegOperand(SRC_SHARED_BASE);
1400   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1401   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1402   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1403   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1404   case 251: return createRegOperand(SRC_VCCZ);
1405   case 252: return createRegOperand(SRC_EXECZ);
1406   case 253: return createRegOperand(SRC_SCC);
1407   default: break;
1408   }
1409   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1410 }
1411 
1412 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1413                                             const unsigned Val) const {
1414   using namespace AMDGPU::SDWA;
1415   using namespace AMDGPU::EncValues;
1416 
1417   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1418       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1419     // XXX: cast to int is needed to avoid stupid warning:
1420     // compare with unsigned is always true
1421     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1422         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1423       return createRegOperand(getVgprClassId(Width),
1424                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1425     }
1426     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1427         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1428                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1429       return createSRegOperand(getSgprClassId(Width),
1430                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1431     }
1432     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1433         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1434       return createSRegOperand(getTtmpClassId(Width),
1435                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1436     }
1437 
1438     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1439 
1440     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1441       return decodeIntImmed(SVal);
1442 
1443     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1444       return decodeFPImmed(Width, SVal);
1445 
1446     return decodeSpecialReg32(SVal);
1447   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1448     return createRegOperand(getVgprClassId(Width), Val);
1449   }
1450   llvm_unreachable("unsupported target");
1451 }
1452 
1453 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1454   return decodeSDWASrc(OPW16, Val);
1455 }
1456 
1457 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1458   return decodeSDWASrc(OPW32, Val);
1459 }
1460 
1461 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1462   using namespace AMDGPU::SDWA;
1463 
1464   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1465           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1466          "SDWAVopcDst should be present only on GFX9+");
1467 
1468   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1469 
1470   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1471     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1472 
1473     int TTmpIdx = getTTmpIdx(Val);
1474     if (TTmpIdx >= 0) {
1475       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1476       return createSRegOperand(TTmpClsId, TTmpIdx);
1477     } else if (Val > SGPR_MAX) {
1478       return IsWave64 ? decodeSpecialReg64(Val)
1479                       : decodeSpecialReg32(Val);
1480     } else {
1481       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1482     }
1483   } else {
1484     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1485   }
1486 }
1487 
1488 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1489   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1490     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1491 }
1492 
1493 bool AMDGPUDisassembler::isVI() const {
1494   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1495 }
1496 
1497 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1498 
1499 bool AMDGPUDisassembler::isGFX90A() const {
1500   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1501 }
1502 
1503 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1504 
1505 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1506 
1507 bool AMDGPUDisassembler::isGFX10Plus() const {
1508   return AMDGPU::isGFX10Plus(STI);
1509 }
1510 
1511 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1512   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1513 }
1514 
1515 //===----------------------------------------------------------------------===//
1516 // AMDGPU specific symbol handling
1517 //===----------------------------------------------------------------------===//
1518 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1519   do {                                                                         \
1520     KdStream << Indent << DIRECTIVE " "                                        \
1521              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1522   } while (0)
1523 
1524 // NOLINTNEXTLINE(readability-identifier-naming)
1525 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1526     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1527   using namespace amdhsa;
1528   StringRef Indent = "\t";
1529 
1530   // We cannot accurately backward compute #VGPRs used from
1531   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1532   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1533   // simply calculate the inverse of what the assembler does.
1534 
1535   uint32_t GranulatedWorkitemVGPRCount =
1536       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1537       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1538 
1539   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1540                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1541 
1542   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1543 
1544   // We cannot backward compute values used to calculate
1545   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1546   // directives can't be computed:
1547   // .amdhsa_reserve_vcc
1548   // .amdhsa_reserve_flat_scratch
1549   // .amdhsa_reserve_xnack_mask
1550   // They take their respective default values if not specified in the assembly.
1551   //
1552   // GRANULATED_WAVEFRONT_SGPR_COUNT
1553   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1554   //
1555   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1556   // are set to 0. So while disassembling we consider that:
1557   //
1558   // GRANULATED_WAVEFRONT_SGPR_COUNT
1559   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1560   //
1561   // The disassembler cannot recover the original values of those 3 directives.
1562 
1563   uint32_t GranulatedWavefrontSGPRCount =
1564       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1565       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1566 
1567   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1568     return MCDisassembler::Fail;
1569 
1570   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1571                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1572 
1573   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1574   if (!hasArchitectedFlatScratch())
1575     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1576   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1577   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1578 
1579   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1580     return MCDisassembler::Fail;
1581 
1582   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1583                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1584   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1585                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1586   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1587                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1588   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1589                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1590 
1591   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1592     return MCDisassembler::Fail;
1593 
1594   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1595 
1596   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1597     return MCDisassembler::Fail;
1598 
1599   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1600 
1601   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1602     return MCDisassembler::Fail;
1603 
1604   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1605     return MCDisassembler::Fail;
1606 
1607   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1608 
1609   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1610     return MCDisassembler::Fail;
1611 
1612   if (isGFX10Plus()) {
1613     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1614                     COMPUTE_PGM_RSRC1_WGP_MODE);
1615     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1616     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1617   }
1618   return MCDisassembler::Success;
1619 }
1620 
1621 // NOLINTNEXTLINE(readability-identifier-naming)
1622 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1623     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1624   using namespace amdhsa;
1625   StringRef Indent = "\t";
1626   if (hasArchitectedFlatScratch())
1627     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1628                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1629   else
1630     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1631                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1632   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1633                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1634   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1635                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1636   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1637                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1638   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1639                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1640   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1641                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1642 
1643   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1644     return MCDisassembler::Fail;
1645 
1646   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1647     return MCDisassembler::Fail;
1648 
1649   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1650     return MCDisassembler::Fail;
1651 
1652   PRINT_DIRECTIVE(
1653       ".amdhsa_exception_fp_ieee_invalid_op",
1654       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1655   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1656                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1657   PRINT_DIRECTIVE(
1658       ".amdhsa_exception_fp_ieee_div_zero",
1659       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1660   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1661                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1662   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1663                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1664   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1665                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1666   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1667                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1668 
1669   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1670     return MCDisassembler::Fail;
1671 
1672   return MCDisassembler::Success;
1673 }
1674 
1675 #undef PRINT_DIRECTIVE
1676 
1677 MCDisassembler::DecodeStatus
1678 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1679     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1680     raw_string_ostream &KdStream) const {
1681 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1682   do {                                                                         \
1683     KdStream << Indent << DIRECTIVE " "                                        \
1684              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1685   } while (0)
1686 
1687   uint16_t TwoByteBuffer = 0;
1688   uint32_t FourByteBuffer = 0;
1689 
1690   StringRef ReservedBytes;
1691   StringRef Indent = "\t";
1692 
1693   assert(Bytes.size() == 64);
1694   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1695 
1696   switch (Cursor.tell()) {
1697   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1698     FourByteBuffer = DE.getU32(Cursor);
1699     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1700              << '\n';
1701     return MCDisassembler::Success;
1702 
1703   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1704     FourByteBuffer = DE.getU32(Cursor);
1705     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1706              << FourByteBuffer << '\n';
1707     return MCDisassembler::Success;
1708 
1709   case amdhsa::KERNARG_SIZE_OFFSET:
1710     FourByteBuffer = DE.getU32(Cursor);
1711     KdStream << Indent << ".amdhsa_kernarg_size "
1712              << FourByteBuffer << '\n';
1713     return MCDisassembler::Success;
1714 
1715   case amdhsa::RESERVED0_OFFSET:
1716     // 4 reserved bytes, must be 0.
1717     ReservedBytes = DE.getBytes(Cursor, 4);
1718     for (int I = 0; I < 4; ++I) {
1719       if (ReservedBytes[I] != 0) {
1720         return MCDisassembler::Fail;
1721       }
1722     }
1723     return MCDisassembler::Success;
1724 
1725   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1726     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1727     // So far no directive controls this for Code Object V3, so simply skip for
1728     // disassembly.
1729     DE.skip(Cursor, 8);
1730     return MCDisassembler::Success;
1731 
1732   case amdhsa::RESERVED1_OFFSET:
1733     // 20 reserved bytes, must be 0.
1734     ReservedBytes = DE.getBytes(Cursor, 20);
1735     for (int I = 0; I < 20; ++I) {
1736       if (ReservedBytes[I] != 0) {
1737         return MCDisassembler::Fail;
1738       }
1739     }
1740     return MCDisassembler::Success;
1741 
1742   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1743     // COMPUTE_PGM_RSRC3
1744     //  - Only set for GFX10, GFX6-9 have this to be 0.
1745     //  - Currently no directives directly control this.
1746     FourByteBuffer = DE.getU32(Cursor);
1747     if (!isGFX10Plus() && FourByteBuffer) {
1748       return MCDisassembler::Fail;
1749     }
1750     return MCDisassembler::Success;
1751 
1752   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1753     FourByteBuffer = DE.getU32(Cursor);
1754     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1755         MCDisassembler::Fail) {
1756       return MCDisassembler::Fail;
1757     }
1758     return MCDisassembler::Success;
1759 
1760   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1761     FourByteBuffer = DE.getU32(Cursor);
1762     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1763         MCDisassembler::Fail) {
1764       return MCDisassembler::Fail;
1765     }
1766     return MCDisassembler::Success;
1767 
1768   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1769     using namespace amdhsa;
1770     TwoByteBuffer = DE.getU16(Cursor);
1771 
1772     if (!hasArchitectedFlatScratch())
1773       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1774                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1775     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1776                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1777     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1778                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1779     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1780                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1781     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1782                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1783     if (!hasArchitectedFlatScratch())
1784       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1785                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1786     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1787                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1788 
1789     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1790       return MCDisassembler::Fail;
1791 
1792     // Reserved for GFX9
1793     if (isGFX9() &&
1794         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1795       return MCDisassembler::Fail;
1796     } else if (isGFX10Plus()) {
1797       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1798                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1799     }
1800 
1801     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1802       return MCDisassembler::Fail;
1803 
1804     return MCDisassembler::Success;
1805 
1806   case amdhsa::RESERVED2_OFFSET:
1807     // 6 bytes from here are reserved, must be 0.
1808     ReservedBytes = DE.getBytes(Cursor, 6);
1809     for (int I = 0; I < 6; ++I) {
1810       if (ReservedBytes[I] != 0)
1811         return MCDisassembler::Fail;
1812     }
1813     return MCDisassembler::Success;
1814 
1815   default:
1816     llvm_unreachable("Unhandled index. Case statements cover everything.");
1817     return MCDisassembler::Fail;
1818   }
1819 #undef PRINT_DIRECTIVE
1820 }
1821 
1822 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1823     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1824   // CP microcode requires the kernel descriptor to be 64 aligned.
1825   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1826     return MCDisassembler::Fail;
1827 
1828   std::string Kd;
1829   raw_string_ostream KdStream(Kd);
1830   KdStream << ".amdhsa_kernel " << KdName << '\n';
1831 
1832   DataExtractor::Cursor C(0);
1833   while (C && C.tell() < Bytes.size()) {
1834     MCDisassembler::DecodeStatus Status =
1835         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1836 
1837     cantFail(C.takeError());
1838 
1839     if (Status == MCDisassembler::Fail)
1840       return MCDisassembler::Fail;
1841   }
1842   KdStream << ".end_amdhsa_kernel\n";
1843   outs() << KdStream.str();
1844   return MCDisassembler::Success;
1845 }
1846 
1847 Optional<MCDisassembler::DecodeStatus>
1848 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1849                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1850                                   raw_ostream &CStream) const {
1851   // Right now only kernel descriptor needs to be handled.
1852   // We ignore all other symbols for target specific handling.
1853   // TODO:
1854   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1855   // Object V2 and V3 when symbols are marked protected.
1856 
1857   // amd_kernel_code_t for Code Object V2.
1858   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1859     Size = 256;
1860     return MCDisassembler::Fail;
1861   }
1862 
1863   // Code Object V3 kernel descriptors.
1864   StringRef Name = Symbol.Name;
1865   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1866     Size = 64; // Size = 64 regardless of success or failure.
1867     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1868   }
1869   return None;
1870 }
1871 
1872 //===----------------------------------------------------------------------===//
1873 // AMDGPUSymbolizer
1874 //===----------------------------------------------------------------------===//
1875 
1876 // Try to find symbol name for specified label
1877 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1878                                 raw_ostream &/*cStream*/, int64_t Value,
1879                                 uint64_t /*Address*/, bool IsBranch,
1880                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1881 
1882   if (!IsBranch) {
1883     return false;
1884   }
1885 
1886   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1887   if (!Symbols)
1888     return false;
1889 
1890   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1891     return Val.Addr == static_cast<uint64_t>(Value) &&
1892            Val.Type == ELF::STT_NOTYPE;
1893   });
1894   if (Result != Symbols->end()) {
1895     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1896     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1897     Inst.addOperand(MCOperand::createExpr(Add));
1898     return true;
1899   }
1900   // Add to list of referenced addresses, so caller can synthesize a label.
1901   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1902   return false;
1903 }
1904 
1905 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1906                                                        int64_t Value,
1907                                                        uint64_t Address) {
1908   llvm_unreachable("unimplemented");
1909 }
1910 
1911 //===----------------------------------------------------------------------===//
1912 // Initialization
1913 //===----------------------------------------------------------------------===//
1914 
1915 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1916                               LLVMOpInfoCallback /*GetOpInfo*/,
1917                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1918                               void *DisInfo,
1919                               MCContext *Ctx,
1920                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1921   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1922 }
1923 
1924 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1925                                                 const MCSubtargetInfo &STI,
1926                                                 MCContext &Ctx) {
1927   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1928 }
1929 
1930 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1931   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1932                                          createAMDGPUDisassembler);
1933   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1934                                        createAMDGPUSymbolizer);
1935 }
1936