1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VRegOrLds_32)
123 DECODE_OPERAND_REG(VS_32)
124 DECODE_OPERAND_REG(VS_64)
125 DECODE_OPERAND_REG(VS_128)
126 
127 DECODE_OPERAND_REG(VReg_64)
128 DECODE_OPERAND_REG(VReg_96)
129 DECODE_OPERAND_REG(VReg_128)
130 DECODE_OPERAND_REG(VReg_256)
131 DECODE_OPERAND_REG(VReg_512)
132 DECODE_OPERAND_REG(VReg_1024)
133 
134 DECODE_OPERAND_REG(SReg_32)
135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
137 DECODE_OPERAND_REG(SRegOrLds_32)
138 DECODE_OPERAND_REG(SReg_64)
139 DECODE_OPERAND_REG(SReg_64_XEXEC)
140 DECODE_OPERAND_REG(SReg_128)
141 DECODE_OPERAND_REG(SReg_256)
142 DECODE_OPERAND_REG(SReg_512)
143 
144 DECODE_OPERAND_REG(AGPR_32)
145 DECODE_OPERAND_REG(AReg_64)
146 DECODE_OPERAND_REG(AReg_128)
147 DECODE_OPERAND_REG(AReg_256)
148 DECODE_OPERAND_REG(AReg_512)
149 DECODE_OPERAND_REG(AReg_1024)
150 DECODE_OPERAND_REG(AV_32)
151 DECODE_OPERAND_REG(AV_64)
152 DECODE_OPERAND_REG(AV_128)
153 DECODE_OPERAND_REG(AVDst_128)
154 DECODE_OPERAND_REG(AVDst_512)
155 
156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
157                                          uint64_t Addr,
158                                          const MCDisassembler *Decoder) {
159   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
160   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
161 }
162 
163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
164                                            uint64_t Addr,
165                                            const MCDisassembler *Decoder) {
166   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
167   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
168 }
169 
170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
171                                            uint64_t Addr,
172                                            const MCDisassembler *Decoder) {
173   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
174   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
175 }
176 
177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
178                                         uint64_t Addr,
179                                         const MCDisassembler *Decoder) {
180   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
181   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
182 }
183 
184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
185                                         uint64_t Addr,
186                                         const MCDisassembler *Decoder) {
187   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
188   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
189 }
190 
191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
192                                           uint64_t Addr,
193                                           const MCDisassembler *Decoder) {
194   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
195   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
196 }
197 
198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
199                                            uint64_t Addr,
200                                            const MCDisassembler *Decoder) {
201   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
202   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
203 }
204 
205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
206                                            uint64_t Addr,
207                                            const MCDisassembler *Decoder) {
208   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
209   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
210 }
211 
212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
213                                            uint64_t Addr,
214                                            const MCDisassembler *Decoder) {
215   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
216   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
217 }
218 
219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
220                                             uint64_t Addr,
221                                             const MCDisassembler *Decoder) {
222   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
223   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
224 }
225 
226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
227                                           uint64_t Addr,
228                                           const MCDisassembler *Decoder) {
229   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
230   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
231 }
232 
233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
234                                            uint64_t Addr,
235                                            const MCDisassembler *Decoder) {
236   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
237   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
238 }
239 
240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
241                                            uint64_t Addr,
242                                            const MCDisassembler *Decoder) {
243   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
244   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
245 }
246 
247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
248                                            uint64_t Addr,
249                                            const MCDisassembler *Decoder) {
250   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
251   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
252 }
253 
254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
255                                             uint64_t Addr,
256                                             const MCDisassembler *Decoder) {
257   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
258   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
259 }
260 
261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
262                                           uint64_t Addr,
263                                           const MCDisassembler *Decoder) {
264   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
265   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
266 }
267 
268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
269                                           uint64_t Addr,
270                                           const MCDisassembler *Decoder) {
271   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
272   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
273 }
274 
275 static DecodeStatus
276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
277                              const MCDisassembler *Decoder) {
278   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
279   return addOperand(
280       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
281 }
282 
283 static DecodeStatus
284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
285                              const MCDisassembler *Decoder) {
286   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(
288       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
289 }
290 
291 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
292                           const MCRegisterInfo *MRI) {
293   if (OpIdx < 0)
294     return false;
295 
296   const MCOperand &Op = Inst.getOperand(OpIdx);
297   if (!Op.isReg())
298     return false;
299 
300   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
301   auto Reg = Sub ? Sub : Op.getReg();
302   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
303 }
304 
305 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
306                                              AMDGPUDisassembler::OpWidthTy Opw,
307                                              const MCDisassembler *Decoder) {
308   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
309   if (!DAsm->isGFX90A()) {
310     Imm &= 511;
311   } else {
312     // If atomic has both vdata and vdst their register classes are tied.
313     // The bit is decoded along with the vdst, first operand. We need to
314     // change register class to AGPR if vdst was AGPR.
315     // If a DS instruction has both data0 and data1 their register classes
316     // are also tied.
317     unsigned Opc = Inst.getOpcode();
318     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
319     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
320                                                         : AMDGPU::OpName::vdata;
321     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
322     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
323     if ((int)Inst.getNumOperands() == DataIdx) {
324       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
325       if (IsAGPROperand(Inst, DstIdx, MRI))
326         Imm |= 512;
327     }
328 
329     if (TSFlags & SIInstrFlags::DS) {
330       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
331       if ((int)Inst.getNumOperands() == Data2Idx &&
332           IsAGPROperand(Inst, DataIdx, MRI))
333         Imm |= 512;
334     }
335   }
336   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
337 }
338 
339 static DecodeStatus
340 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
341                              const MCDisassembler *Decoder) {
342   return decodeOperand_AVLdSt_Any(Inst, Imm,
343                                   AMDGPUDisassembler::OPW32, Decoder);
344 }
345 
346 static DecodeStatus
347 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
348                              const MCDisassembler *Decoder) {
349   return decodeOperand_AVLdSt_Any(Inst, Imm,
350                                   AMDGPUDisassembler::OPW64, Decoder);
351 }
352 
353 static DecodeStatus
354 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
355                              const MCDisassembler *Decoder) {
356   return decodeOperand_AVLdSt_Any(Inst, Imm,
357                                   AMDGPUDisassembler::OPW96, Decoder);
358 }
359 
360 static DecodeStatus
361 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
362                               const MCDisassembler *Decoder) {
363   return decodeOperand_AVLdSt_Any(Inst, Imm,
364                                   AMDGPUDisassembler::OPW128, Decoder);
365 }
366 
367 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
368                                           uint64_t Addr,
369                                           const MCDisassembler *Decoder) {
370   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
371   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
372 }
373 
374 #define DECODE_SDWA(DecName) \
375 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
376 
377 DECODE_SDWA(Src32)
378 DECODE_SDWA(Src16)
379 DECODE_SDWA(VopcDst)
380 
381 #include "AMDGPUGenDisassemblerTables.inc"
382 
383 //===----------------------------------------------------------------------===//
384 //
385 //===----------------------------------------------------------------------===//
386 
387 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
388   assert(Bytes.size() >= sizeof(T));
389   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
390   Bytes = Bytes.slice(sizeof(T));
391   return Res;
392 }
393 
394 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
395   assert(Bytes.size() >= 12);
396   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
397       Bytes.data());
398   Bytes = Bytes.slice(8);
399   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
400       Bytes.data());
401   Bytes = Bytes.slice(4);
402   return DecoderUInt128(Lo, Hi);
403 }
404 
405 // The disassembler is greedy, so we need to check FI operand value to
406 // not parse a dpp if the correct literal is not set. For dpp16 the
407 // autogenerated decoder checks the dpp literal
408 static bool isValidDPP8(const MCInst &MI) {
409   using namespace llvm::AMDGPU::DPP;
410   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
411   assert(FiIdx != -1);
412   if ((unsigned)FiIdx >= MI.getNumOperands())
413     return false;
414   unsigned Fi = MI.getOperand(FiIdx).getImm();
415   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
416 }
417 
418 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
419                                                 ArrayRef<uint8_t> Bytes_,
420                                                 uint64_t Address,
421                                                 raw_ostream &CS) const {
422   CommentStream = &CS;
423   bool IsSDWA = false;
424 
425   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
426   Bytes = Bytes_.slice(0, MaxInstBytesNum);
427 
428   DecodeStatus Res = MCDisassembler::Fail;
429   do {
430     // ToDo: better to switch encoding length using some bit predicate
431     // but it is unknown yet, so try all we can
432 
433     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
434     // encodings
435     if (isGFX11Plus() && Bytes.size() >= 12 ) {
436       DecoderUInt128 DecW = eat12Bytes(Bytes);
437       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
438                                           Address);
439       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
440         break;
441       MI = MCInst(); // clear
442       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
443                                           Address);
444       if (Res) {
445         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
446           convertVOP3PDPPInst(MI);
447         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
448           convertVOPCDPPInst(MI);
449         break;
450       }
451     }
452     // Reinitialize Bytes
453     Bytes = Bytes_.slice(0, MaxInstBytesNum);
454 
455     if (Bytes.size() >= 8) {
456       const uint64_t QW = eatBytes<uint64_t>(Bytes);
457 
458       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
459         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
460         if (Res) {
461           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
462               == -1)
463             break;
464           if (convertDPP8Inst(MI) == MCDisassembler::Success)
465             break;
466           MI = MCInst(); // clear
467         }
468       }
469 
470       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
471       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
472         break;
473       MI = MCInst(); // clear
474 
475       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
476       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
477         break;
478       MI = MCInst(); // clear
479 
480       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
481       if (Res) break;
482 
483       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
484       if (Res) {
485         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
486           convertVOPCDPPInst(MI);
487         break;
488       }
489 
490       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
491       if (Res) { IsSDWA = true;  break; }
492 
493       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
494       if (Res) { IsSDWA = true;  break; }
495 
496       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
497       if (Res) { IsSDWA = true;  break; }
498 
499       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
500         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
501         if (Res)
502           break;
503       }
504 
505       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
506       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
507       // table first so we print the correct name.
508       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
509         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
510         if (Res)
511           break;
512       }
513     }
514 
515     // Reinitialize Bytes as DPP64 could have eaten too much
516     Bytes = Bytes_.slice(0, MaxInstBytesNum);
517 
518     // Try decode 32-bit instruction
519     if (Bytes.size() < 4) break;
520     const uint32_t DW = eatBytes<uint32_t>(Bytes);
521     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
522     if (Res) break;
523 
524     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
525     if (Res) break;
526 
527     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
528     if (Res) break;
529 
530     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
531       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
532       if (Res)
533         break;
534     }
535 
536     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
537       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
538       if (Res) break;
539     }
540 
541     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
542     if (Res) break;
543 
544     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
545     if (Res) break;
546 
547     if (Bytes.size() < 4) break;
548     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
549 
550     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
551       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
552       if (Res)
553         break;
554     }
555 
556     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
557     if (Res) break;
558 
559     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
560     if (Res) break;
561 
562     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
563     if (Res) break;
564 
565     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
566     if (Res) break;
567 
568     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
569   } while (false);
570 
571   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
572               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
573               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
574               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
575               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
576               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
577               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
578               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
579               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
580               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 ||
581               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
582               MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
583               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 ||
584               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx11)) {
585     // Insert dummy unused src2_modifiers.
586     insertNamedMCOperand(MI, MCOperand::createImm(0),
587                          AMDGPU::OpName::src2_modifiers);
588   }
589 
590   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
591           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
592     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
593                                              AMDGPU::OpName::cpol);
594     if (CPolPos != -1) {
595       unsigned CPol =
596           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
597               AMDGPU::CPol::GLC : 0;
598       if (MI.getNumOperands() <= (unsigned)CPolPos) {
599         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
600                              AMDGPU::OpName::cpol);
601       } else if (CPol) {
602         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
603       }
604     }
605   }
606 
607   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
608               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
609              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
610     // GFX90A lost TFE, its place is occupied by ACC.
611     int TFEOpIdx =
612         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
613     if (TFEOpIdx != -1) {
614       auto TFEIter = MI.begin();
615       std::advance(TFEIter, TFEOpIdx);
616       MI.insert(TFEIter, MCOperand::createImm(0));
617     }
618   }
619 
620   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
621               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
622     int SWZOpIdx =
623         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
624     if (SWZOpIdx != -1) {
625       auto SWZIter = MI.begin();
626       std::advance(SWZIter, SWZOpIdx);
627       MI.insert(SWZIter, MCOperand::createImm(0));
628     }
629   }
630 
631   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
632     int VAddr0Idx =
633         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
634     int RsrcIdx =
635         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
636     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
637     if (VAddr0Idx >= 0 && NSAArgs > 0) {
638       unsigned NSAWords = (NSAArgs + 3) / 4;
639       if (Bytes.size() < 4 * NSAWords) {
640         Res = MCDisassembler::Fail;
641       } else {
642         for (unsigned i = 0; i < NSAArgs; ++i) {
643           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
644           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
645           MI.insert(MI.begin() + VAddrIdx,
646                     createRegOperand(VAddrRCID, Bytes[i]));
647         }
648         Bytes = Bytes.slice(4 * NSAWords);
649       }
650     }
651 
652     if (Res)
653       Res = convertMIMGInst(MI);
654   }
655 
656   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
657     Res = convertEXPInst(MI);
658 
659   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
660     Res = convertVINTERPInst(MI);
661 
662   if (Res && IsSDWA)
663     Res = convertSDWAInst(MI);
664 
665   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
666                                               AMDGPU::OpName::vdst_in);
667   if (VDstIn_Idx != -1) {
668     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
669                            MCOI::OperandConstraint::TIED_TO);
670     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
671          !MI.getOperand(VDstIn_Idx).isReg() ||
672          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
673       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
674         MI.erase(&MI.getOperand(VDstIn_Idx));
675       insertNamedMCOperand(MI,
676         MCOperand::createReg(MI.getOperand(Tied).getReg()),
677         AMDGPU::OpName::vdst_in);
678     }
679   }
680 
681   int ImmLitIdx =
682       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
683   if (Res && ImmLitIdx != -1)
684     Res = convertFMAanyK(MI, ImmLitIdx);
685 
686   // if the opcode was not recognized we'll assume a Size of 4 bytes
687   // (unless there are fewer bytes left)
688   Size = Res ? (MaxInstBytesNum - Bytes.size())
689              : std::min((size_t)4, Bytes_.size());
690   return Res;
691 }
692 
693 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
694   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
695     // The MCInst still has these fields even though they are no longer encoded
696     // in the GFX11 instruction.
697     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
698     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
699   }
700   return MCDisassembler::Success;
701 }
702 
703 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
704   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
705       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
706       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
707       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
708     // The MCInst has this field that is not directly encoded in the
709     // instruction.
710     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
711   }
712   return MCDisassembler::Success;
713 }
714 
715 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
716   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
717       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
718     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
719       // VOPC - insert clamp
720       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
721   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
722     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
723     if (SDst != -1) {
724       // VOPC - insert VCC register as sdst
725       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
726                            AMDGPU::OpName::sdst);
727     } else {
728       // VOP1/2 - insert omod if present in instruction
729       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
730     }
731   }
732   return MCDisassembler::Success;
733 }
734 
735 // We must check FI == literal to reject not genuine dpp8 insts, and we must
736 // first add optional MI operands to check FI
737 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
738   unsigned Opc = MI.getOpcode();
739   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
740   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
741     convertVOP3PDPPInst(MI);
742   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
743              AMDGPU::isVOPC64DPP(Opc)) {
744     convertVOPCDPPInst(MI);
745   } else {
746     // Insert dummy unused src modifiers.
747     if (MI.getNumOperands() < DescNumOps &&
748         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
749       insertNamedMCOperand(MI, MCOperand::createImm(0),
750                            AMDGPU::OpName::src0_modifiers);
751 
752     if (MI.getNumOperands() < DescNumOps &&
753         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
754       insertNamedMCOperand(MI, MCOperand::createImm(0),
755                            AMDGPU::OpName::src1_modifiers);
756   }
757   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
758 }
759 
760 // Note that before gfx10, the MIMG encoding provided no information about
761 // VADDR size. Consequently, decoded instructions always show address as if it
762 // has 1 dword, which could be not really so.
763 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
764 
765   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
766                                            AMDGPU::OpName::vdst);
767 
768   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
769                                             AMDGPU::OpName::vdata);
770   int VAddr0Idx =
771       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
772   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
773                                             AMDGPU::OpName::dmask);
774 
775   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
776                                             AMDGPU::OpName::tfe);
777   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
778                                             AMDGPU::OpName::d16);
779 
780   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
781   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
782       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
783 
784   assert(VDataIdx != -1);
785   if (BaseOpcode->BVH) {
786     // Add A16 operand for intersect_ray instructions
787     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
788       addOperand(MI, MCOperand::createImm(1));
789     }
790     return MCDisassembler::Success;
791   }
792 
793   bool IsAtomic = (VDstIdx != -1);
794   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
795   bool IsNSA = false;
796   unsigned AddrSize = Info->VAddrDwords;
797 
798   if (isGFX10Plus()) {
799     unsigned DimIdx =
800         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
801     int A16Idx =
802         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
803     const AMDGPU::MIMGDimInfo *Dim =
804         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
805     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
806 
807     AddrSize =
808         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
809 
810     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
811             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
812     if (!IsNSA) {
813       if (AddrSize > 8)
814         AddrSize = 16;
815     } else {
816       if (AddrSize > Info->VAddrDwords) {
817         // The NSA encoding does not contain enough operands for the combination
818         // of base opcode / dimension. Should this be an error?
819         return MCDisassembler::Success;
820       }
821     }
822   }
823 
824   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
825   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
826 
827   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
828   if (D16 && AMDGPU::hasPackedD16(STI)) {
829     DstSize = (DstSize + 1) / 2;
830   }
831 
832   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
833     DstSize += 1;
834 
835   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
836     return MCDisassembler::Success;
837 
838   int NewOpcode =
839       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
840   if (NewOpcode == -1)
841     return MCDisassembler::Success;
842 
843   // Widen the register to the correct number of enabled channels.
844   unsigned NewVdata = AMDGPU::NoRegister;
845   if (DstSize != Info->VDataDwords) {
846     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
847 
848     // Get first subregister of VData
849     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
850     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
851     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
852 
853     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
854                                        &MRI.getRegClass(DataRCID));
855     if (NewVdata == AMDGPU::NoRegister) {
856       // It's possible to encode this such that the low register + enabled
857       // components exceeds the register count.
858       return MCDisassembler::Success;
859     }
860   }
861 
862   // If not using NSA on GFX10+, widen address register to correct size.
863   unsigned NewVAddr0 = AMDGPU::NoRegister;
864   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
865     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
866     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
867     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
868 
869     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
870     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
871                                         &MRI.getRegClass(AddrRCID));
872     if (NewVAddr0 == AMDGPU::NoRegister)
873       return MCDisassembler::Success;
874   }
875 
876   MI.setOpcode(NewOpcode);
877 
878   if (NewVdata != AMDGPU::NoRegister) {
879     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
880 
881     if (IsAtomic) {
882       // Atomic operations have an additional operand (a copy of data)
883       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
884     }
885   }
886 
887   if (NewVAddr0 != AMDGPU::NoRegister) {
888     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
889   } else if (IsNSA) {
890     assert(AddrSize <= Info->VAddrDwords);
891     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
892              MI.begin() + VAddr0Idx + Info->VAddrDwords);
893   }
894 
895   return MCDisassembler::Success;
896 }
897 
898 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
899 // decoder only adds to src_modifiers, so manually add the bits to the other
900 // operands.
901 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
902   unsigned Opc = MI.getOpcode();
903   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
904 
905   if (MI.getNumOperands() < DescNumOps &&
906       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1)
907     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
908 
909   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
910                         AMDGPU::OpName::src1_modifiers,
911                         AMDGPU::OpName::src2_modifiers};
912   unsigned OpSel = 0;
913   unsigned OpSelHi = 0;
914   unsigned NegLo = 0;
915   unsigned NegHi = 0;
916   for (int J = 0; J < 3; ++J) {
917     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
918     if (OpIdx == -1)
919       break;
920     unsigned Val = MI.getOperand(OpIdx).getImm();
921 
922     OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
923     OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
924     NegLo |= !!(Val & SISrcMods::NEG) << J;
925     NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
926   }
927 
928   if (MI.getNumOperands() < DescNumOps &&
929       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1)
930     insertNamedMCOperand(MI, MCOperand::createImm(OpSel),
931                          AMDGPU::OpName::op_sel);
932   if (MI.getNumOperands() < DescNumOps &&
933       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi) != -1)
934     insertNamedMCOperand(MI, MCOperand::createImm(OpSelHi),
935                          AMDGPU::OpName::op_sel_hi);
936   if (MI.getNumOperands() < DescNumOps &&
937       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo) != -1)
938     insertNamedMCOperand(MI, MCOperand::createImm(NegLo),
939                          AMDGPU::OpName::neg_lo);
940   if (MI.getNumOperands() < DescNumOps &&
941       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi) != -1)
942     insertNamedMCOperand(MI, MCOperand::createImm(NegHi),
943                          AMDGPU::OpName::neg_hi);
944 
945   return MCDisassembler::Success;
946 }
947 
948 // Create dummy old operand and insert optional operands
949 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
950   unsigned Opc = MI.getOpcode();
951   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
952 
953   if (MI.getNumOperands() < DescNumOps &&
954       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::old) != -1)
955     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
956 
957   if (MI.getNumOperands() < DescNumOps &&
958       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
959     insertNamedMCOperand(MI, MCOperand::createImm(0),
960                          AMDGPU::OpName::src0_modifiers);
961 
962   if (MI.getNumOperands() < DescNumOps &&
963       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
964     insertNamedMCOperand(MI, MCOperand::createImm(0),
965                          AMDGPU::OpName::src1_modifiers);
966   return MCDisassembler::Success;
967 }
968 
969 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
970                                                 int ImmLitIdx) const {
971   assert(HasLiteral && "Should have decoded a literal");
972   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
973   unsigned DescNumOps = Desc.getNumOperands();
974   assert(DescNumOps == MI.getNumOperands());
975   for (unsigned I = 0; I < DescNumOps; ++I) {
976     auto &Op = MI.getOperand(I);
977     auto OpType = Desc.OpInfo[I].OperandType;
978     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
979                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
980     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
981         IsDeferredOp)
982       Op.setImm(Literal);
983   }
984   return MCDisassembler::Success;
985 }
986 
987 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
988   return getContext().getRegisterInfo()->
989     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
990 }
991 
992 inline
993 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
994                                          const Twine& ErrMsg) const {
995   *CommentStream << "Error: " + ErrMsg;
996 
997   // ToDo: add support for error operands to MCInst.h
998   // return MCOperand::createError(V);
999   return MCOperand();
1000 }
1001 
1002 inline
1003 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1004   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1005 }
1006 
1007 inline
1008 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1009                                                unsigned Val) const {
1010   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1011   if (Val >= RegCl.getNumRegs())
1012     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1013                            ": unknown register " + Twine(Val));
1014   return createRegOperand(RegCl.getRegister(Val));
1015 }
1016 
1017 inline
1018 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1019                                                 unsigned Val) const {
1020   // ToDo: SI/CI have 104 SGPRs, VI - 102
1021   // Valery: here we accepting as much as we can, let assembler sort it out
1022   int shift = 0;
1023   switch (SRegClassID) {
1024   case AMDGPU::SGPR_32RegClassID:
1025   case AMDGPU::TTMP_32RegClassID:
1026     break;
1027   case AMDGPU::SGPR_64RegClassID:
1028   case AMDGPU::TTMP_64RegClassID:
1029     shift = 1;
1030     break;
1031   case AMDGPU::SGPR_128RegClassID:
1032   case AMDGPU::TTMP_128RegClassID:
1033   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1034   // this bundle?
1035   case AMDGPU::SGPR_256RegClassID:
1036   case AMDGPU::TTMP_256RegClassID:
1037     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1038   // this bundle?
1039   case AMDGPU::SGPR_512RegClassID:
1040   case AMDGPU::TTMP_512RegClassID:
1041     shift = 2;
1042     break;
1043   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1044   // this bundle?
1045   default:
1046     llvm_unreachable("unhandled register class");
1047   }
1048 
1049   if (Val % (1 << shift)) {
1050     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1051                    << ": scalar reg isn't aligned " << Val;
1052   }
1053 
1054   return createRegOperand(SRegClassID, Val >> shift);
1055 }
1056 
1057 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
1058   return decodeSrcOp(OPW32, Val);
1059 }
1060 
1061 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
1062   return decodeSrcOp(OPW64, Val);
1063 }
1064 
1065 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
1066   return decodeSrcOp(OPW128, Val);
1067 }
1068 
1069 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
1070   return decodeSrcOp(OPW16, Val);
1071 }
1072 
1073 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
1074   return decodeSrcOp(OPWV216, Val);
1075 }
1076 
1077 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
1078   return decodeSrcOp(OPWV232, Val);
1079 }
1080 
1081 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
1082   // Some instructions have operand restrictions beyond what the encoding
1083   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1084   // high bit.
1085   Val &= 255;
1086 
1087   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1088 }
1089 
1090 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1091   return decodeSrcOp(OPW32, Val);
1092 }
1093 
1094 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1095   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1096 }
1097 
1098 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1099   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1100 }
1101 
1102 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1103   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1104 }
1105 
1106 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1107   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1108 }
1109 
1110 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1111   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1112 }
1113 
1114 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1115   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1116 }
1117 
1118 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1119   return decodeSrcOp(OPW32, Val);
1120 }
1121 
1122 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1123   return decodeSrcOp(OPW64, Val);
1124 }
1125 
1126 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1127   return decodeSrcOp(OPW128, Val);
1128 }
1129 
1130 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1131   using namespace AMDGPU::EncValues;
1132   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1133   return decodeSrcOp(OPW128, Val | IS_VGPR);
1134 }
1135 
1136 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1137   using namespace AMDGPU::EncValues;
1138   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1139   return decodeSrcOp(OPW512, Val | IS_VGPR);
1140 }
1141 
1142 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1143   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1144 }
1145 
1146 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1147   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1148 }
1149 
1150 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1151   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1152 }
1153 
1154 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1155   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1156 }
1157 
1158 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1159   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1160 }
1161 
1162 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1163   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1164 }
1165 
1166 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1167   // table-gen generated disassembler doesn't care about operand types
1168   // leaving only registry class so SSrc_32 operand turns into SReg_32
1169   // and therefore we accept immediates and literals here as well
1170   return decodeSrcOp(OPW32, Val);
1171 }
1172 
1173 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1174   unsigned Val) const {
1175   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1176   return decodeOperand_SReg_32(Val);
1177 }
1178 
1179 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1180   unsigned Val) const {
1181   // SReg_32_XM0 is SReg_32 without EXEC_HI
1182   return decodeOperand_SReg_32(Val);
1183 }
1184 
1185 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1186   // table-gen generated disassembler doesn't care about operand types
1187   // leaving only registry class so SSrc_32 operand turns into SReg_32
1188   // and therefore we accept immediates and literals here as well
1189   return decodeSrcOp(OPW32, Val);
1190 }
1191 
1192 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1193   return decodeSrcOp(OPW64, Val);
1194 }
1195 
1196 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1197   return decodeSrcOp(OPW64, Val);
1198 }
1199 
1200 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1201   return decodeSrcOp(OPW128, Val);
1202 }
1203 
1204 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1205   return decodeDstOp(OPW256, Val);
1206 }
1207 
1208 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1209   return decodeDstOp(OPW512, Val);
1210 }
1211 
1212 // Decode Literals for insts which always have a literal in the encoding
1213 MCOperand
1214 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1215   if (HasLiteral) {
1216     if (Literal != Val)
1217       return errOperand(Val, "More than one unique literal is illegal");
1218   }
1219   HasLiteral = true;
1220   Literal = Val;
1221   return MCOperand::createImm(Literal);
1222 }
1223 
1224 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1225   // For now all literal constants are supposed to be unsigned integer
1226   // ToDo: deal with signed/unsigned 64-bit integer constants
1227   // ToDo: deal with float/double constants
1228   if (!HasLiteral) {
1229     if (Bytes.size() < 4) {
1230       return errOperand(0, "cannot read literal, inst bytes left " +
1231                         Twine(Bytes.size()));
1232     }
1233     HasLiteral = true;
1234     Literal = eatBytes<uint32_t>(Bytes);
1235   }
1236   return MCOperand::createImm(Literal);
1237 }
1238 
1239 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1240   using namespace AMDGPU::EncValues;
1241 
1242   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1243   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1244     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1245     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1246       // Cast prevents negative overflow.
1247 }
1248 
1249 static int64_t getInlineImmVal32(unsigned Imm) {
1250   switch (Imm) {
1251   case 240:
1252     return FloatToBits(0.5f);
1253   case 241:
1254     return FloatToBits(-0.5f);
1255   case 242:
1256     return FloatToBits(1.0f);
1257   case 243:
1258     return FloatToBits(-1.0f);
1259   case 244:
1260     return FloatToBits(2.0f);
1261   case 245:
1262     return FloatToBits(-2.0f);
1263   case 246:
1264     return FloatToBits(4.0f);
1265   case 247:
1266     return FloatToBits(-4.0f);
1267   case 248: // 1 / (2 * PI)
1268     return 0x3e22f983;
1269   default:
1270     llvm_unreachable("invalid fp inline imm");
1271   }
1272 }
1273 
1274 static int64_t getInlineImmVal64(unsigned Imm) {
1275   switch (Imm) {
1276   case 240:
1277     return DoubleToBits(0.5);
1278   case 241:
1279     return DoubleToBits(-0.5);
1280   case 242:
1281     return DoubleToBits(1.0);
1282   case 243:
1283     return DoubleToBits(-1.0);
1284   case 244:
1285     return DoubleToBits(2.0);
1286   case 245:
1287     return DoubleToBits(-2.0);
1288   case 246:
1289     return DoubleToBits(4.0);
1290   case 247:
1291     return DoubleToBits(-4.0);
1292   case 248: // 1 / (2 * PI)
1293     return 0x3fc45f306dc9c882;
1294   default:
1295     llvm_unreachable("invalid fp inline imm");
1296   }
1297 }
1298 
1299 static int64_t getInlineImmVal16(unsigned Imm) {
1300   switch (Imm) {
1301   case 240:
1302     return 0x3800;
1303   case 241:
1304     return 0xB800;
1305   case 242:
1306     return 0x3C00;
1307   case 243:
1308     return 0xBC00;
1309   case 244:
1310     return 0x4000;
1311   case 245:
1312     return 0xC000;
1313   case 246:
1314     return 0x4400;
1315   case 247:
1316     return 0xC400;
1317   case 248: // 1 / (2 * PI)
1318     return 0x3118;
1319   default:
1320     llvm_unreachable("invalid fp inline imm");
1321   }
1322 }
1323 
1324 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1325   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1326       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1327 
1328   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1329   switch (Width) {
1330   case OPW32:
1331   case OPW128: // splat constants
1332   case OPW512:
1333   case OPW1024:
1334   case OPWV232:
1335     return MCOperand::createImm(getInlineImmVal32(Imm));
1336   case OPW64:
1337   case OPW256:
1338     return MCOperand::createImm(getInlineImmVal64(Imm));
1339   case OPW16:
1340   case OPWV216:
1341     return MCOperand::createImm(getInlineImmVal16(Imm));
1342   default:
1343     llvm_unreachable("implement me");
1344   }
1345 }
1346 
1347 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1348   using namespace AMDGPU;
1349 
1350   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1351   switch (Width) {
1352   default: // fall
1353   case OPW32:
1354   case OPW16:
1355   case OPWV216:
1356     return VGPR_32RegClassID;
1357   case OPW64:
1358   case OPWV232: return VReg_64RegClassID;
1359   case OPW96: return VReg_96RegClassID;
1360   case OPW128: return VReg_128RegClassID;
1361   case OPW160: return VReg_160RegClassID;
1362   case OPW256: return VReg_256RegClassID;
1363   case OPW512: return VReg_512RegClassID;
1364   case OPW1024: return VReg_1024RegClassID;
1365   }
1366 }
1367 
1368 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1369   using namespace AMDGPU;
1370 
1371   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1372   switch (Width) {
1373   default: // fall
1374   case OPW32:
1375   case OPW16:
1376   case OPWV216:
1377     return AGPR_32RegClassID;
1378   case OPW64:
1379   case OPWV232: return AReg_64RegClassID;
1380   case OPW96: return AReg_96RegClassID;
1381   case OPW128: return AReg_128RegClassID;
1382   case OPW160: return AReg_160RegClassID;
1383   case OPW256: return AReg_256RegClassID;
1384   case OPW512: return AReg_512RegClassID;
1385   case OPW1024: return AReg_1024RegClassID;
1386   }
1387 }
1388 
1389 
1390 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1391   using namespace AMDGPU;
1392 
1393   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1394   switch (Width) {
1395   default: // fall
1396   case OPW32:
1397   case OPW16:
1398   case OPWV216:
1399     return SGPR_32RegClassID;
1400   case OPW64:
1401   case OPWV232: return SGPR_64RegClassID;
1402   case OPW96: return SGPR_96RegClassID;
1403   case OPW128: return SGPR_128RegClassID;
1404   case OPW160: return SGPR_160RegClassID;
1405   case OPW256: return SGPR_256RegClassID;
1406   case OPW512: return SGPR_512RegClassID;
1407   }
1408 }
1409 
1410 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1411   using namespace AMDGPU;
1412 
1413   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1414   switch (Width) {
1415   default: // fall
1416   case OPW32:
1417   case OPW16:
1418   case OPWV216:
1419     return TTMP_32RegClassID;
1420   case OPW64:
1421   case OPWV232: return TTMP_64RegClassID;
1422   case OPW128: return TTMP_128RegClassID;
1423   case OPW256: return TTMP_256RegClassID;
1424   case OPW512: return TTMP_512RegClassID;
1425   }
1426 }
1427 
1428 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1429   using namespace AMDGPU::EncValues;
1430 
1431   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1432   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1433 
1434   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1435 }
1436 
1437 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1438                                           bool MandatoryLiteral) const {
1439   using namespace AMDGPU::EncValues;
1440 
1441   assert(Val < 1024); // enum10
1442 
1443   bool IsAGPR = Val & 512;
1444   Val &= 511;
1445 
1446   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1447     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1448                                    : getVgprClassId(Width), Val - VGPR_MIN);
1449   }
1450   if (Val <= SGPR_MAX) {
1451     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1452     static_assert(SGPR_MIN == 0, "");
1453     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1454   }
1455 
1456   int TTmpIdx = getTTmpIdx(Val);
1457   if (TTmpIdx >= 0) {
1458     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1459   }
1460 
1461   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1462     return decodeIntImmed(Val);
1463 
1464   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1465     return decodeFPImmed(Width, Val);
1466 
1467   if (Val == LITERAL_CONST) {
1468     if (MandatoryLiteral)
1469       // Keep a sentinel value for deferred setting
1470       return MCOperand::createImm(LITERAL_CONST);
1471     else
1472       return decodeLiteralConstant();
1473   }
1474 
1475   switch (Width) {
1476   case OPW32:
1477   case OPW16:
1478   case OPWV216:
1479     return decodeSpecialReg32(Val);
1480   case OPW64:
1481   case OPWV232:
1482     return decodeSpecialReg64(Val);
1483   default:
1484     llvm_unreachable("unexpected immediate type");
1485   }
1486 }
1487 
1488 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1489   using namespace AMDGPU::EncValues;
1490 
1491   assert(Val < 128);
1492   assert(Width == OPW256 || Width == OPW512);
1493 
1494   if (Val <= SGPR_MAX) {
1495     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1496     static_assert(SGPR_MIN == 0, "");
1497     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1498   }
1499 
1500   int TTmpIdx = getTTmpIdx(Val);
1501   if (TTmpIdx >= 0) {
1502     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1503   }
1504 
1505   llvm_unreachable("unknown dst register");
1506 }
1507 
1508 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1509   using namespace AMDGPU;
1510 
1511   switch (Val) {
1512   case 102: return createRegOperand(FLAT_SCR_LO);
1513   case 103: return createRegOperand(FLAT_SCR_HI);
1514   case 104: return createRegOperand(XNACK_MASK_LO);
1515   case 105: return createRegOperand(XNACK_MASK_HI);
1516   case 106: return createRegOperand(VCC_LO);
1517   case 107: return createRegOperand(VCC_HI);
1518   case 108: return createRegOperand(TBA_LO);
1519   case 109: return createRegOperand(TBA_HI);
1520   case 110: return createRegOperand(TMA_LO);
1521   case 111: return createRegOperand(TMA_HI);
1522   case 124:
1523     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1524   case 125:
1525     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1526   case 126: return createRegOperand(EXEC_LO);
1527   case 127: return createRegOperand(EXEC_HI);
1528   case 235: return createRegOperand(SRC_SHARED_BASE);
1529   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1530   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1531   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1532   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1533   case 251: return createRegOperand(SRC_VCCZ);
1534   case 252: return createRegOperand(SRC_EXECZ);
1535   case 253: return createRegOperand(SRC_SCC);
1536   case 254: return createRegOperand(LDS_DIRECT);
1537   default: break;
1538   }
1539   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1540 }
1541 
1542 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1543   using namespace AMDGPU;
1544 
1545   switch (Val) {
1546   case 102: return createRegOperand(FLAT_SCR);
1547   case 104: return createRegOperand(XNACK_MASK);
1548   case 106: return createRegOperand(VCC);
1549   case 108: return createRegOperand(TBA);
1550   case 110: return createRegOperand(TMA);
1551   case 124:
1552     if (isGFX11Plus())
1553       return createRegOperand(SGPR_NULL);
1554     break;
1555   case 125:
1556     if (!isGFX11Plus())
1557       return createRegOperand(SGPR_NULL);
1558     break;
1559   case 126: return createRegOperand(EXEC);
1560   case 235: return createRegOperand(SRC_SHARED_BASE);
1561   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1562   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1563   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1564   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1565   case 251: return createRegOperand(SRC_VCCZ);
1566   case 252: return createRegOperand(SRC_EXECZ);
1567   case 253: return createRegOperand(SRC_SCC);
1568   default: break;
1569   }
1570   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1571 }
1572 
1573 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1574                                             const unsigned Val) const {
1575   using namespace AMDGPU::SDWA;
1576   using namespace AMDGPU::EncValues;
1577 
1578   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1579       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1580     // XXX: cast to int is needed to avoid stupid warning:
1581     // compare with unsigned is always true
1582     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1583         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1584       return createRegOperand(getVgprClassId(Width),
1585                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1586     }
1587     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1588         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1589                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1590       return createSRegOperand(getSgprClassId(Width),
1591                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1592     }
1593     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1594         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1595       return createSRegOperand(getTtmpClassId(Width),
1596                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1597     }
1598 
1599     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1600 
1601     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1602       return decodeIntImmed(SVal);
1603 
1604     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1605       return decodeFPImmed(Width, SVal);
1606 
1607     return decodeSpecialReg32(SVal);
1608   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1609     return createRegOperand(getVgprClassId(Width), Val);
1610   }
1611   llvm_unreachable("unsupported target");
1612 }
1613 
1614 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1615   return decodeSDWASrc(OPW16, Val);
1616 }
1617 
1618 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1619   return decodeSDWASrc(OPW32, Val);
1620 }
1621 
1622 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1623   using namespace AMDGPU::SDWA;
1624 
1625   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1626           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1627          "SDWAVopcDst should be present only on GFX9+");
1628 
1629   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1630 
1631   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1632     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1633 
1634     int TTmpIdx = getTTmpIdx(Val);
1635     if (TTmpIdx >= 0) {
1636       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1637       return createSRegOperand(TTmpClsId, TTmpIdx);
1638     } else if (Val > SGPR_MAX) {
1639       return IsWave64 ? decodeSpecialReg64(Val)
1640                       : decodeSpecialReg32(Val);
1641     } else {
1642       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1643     }
1644   } else {
1645     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1646   }
1647 }
1648 
1649 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1650   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1651     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1652 }
1653 
1654 bool AMDGPUDisassembler::isVI() const {
1655   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1656 }
1657 
1658 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1659 
1660 bool AMDGPUDisassembler::isGFX90A() const {
1661   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1662 }
1663 
1664 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1665 
1666 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1667 
1668 bool AMDGPUDisassembler::isGFX10Plus() const {
1669   return AMDGPU::isGFX10Plus(STI);
1670 }
1671 
1672 bool AMDGPUDisassembler::isGFX11() const {
1673   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1674 }
1675 
1676 bool AMDGPUDisassembler::isGFX11Plus() const {
1677   return AMDGPU::isGFX11Plus(STI);
1678 }
1679 
1680 
1681 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1682   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1683 }
1684 
1685 //===----------------------------------------------------------------------===//
1686 // AMDGPU specific symbol handling
1687 //===----------------------------------------------------------------------===//
1688 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1689   do {                                                                         \
1690     KdStream << Indent << DIRECTIVE " "                                        \
1691              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1692   } while (0)
1693 
1694 // NOLINTNEXTLINE(readability-identifier-naming)
1695 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1696     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1697   using namespace amdhsa;
1698   StringRef Indent = "\t";
1699 
1700   // We cannot accurately backward compute #VGPRs used from
1701   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1702   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1703   // simply calculate the inverse of what the assembler does.
1704 
1705   uint32_t GranulatedWorkitemVGPRCount =
1706       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1707       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1708 
1709   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1710                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1711 
1712   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1713 
1714   // We cannot backward compute values used to calculate
1715   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1716   // directives can't be computed:
1717   // .amdhsa_reserve_vcc
1718   // .amdhsa_reserve_flat_scratch
1719   // .amdhsa_reserve_xnack_mask
1720   // They take their respective default values if not specified in the assembly.
1721   //
1722   // GRANULATED_WAVEFRONT_SGPR_COUNT
1723   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1724   //
1725   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1726   // are set to 0. So while disassembling we consider that:
1727   //
1728   // GRANULATED_WAVEFRONT_SGPR_COUNT
1729   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1730   //
1731   // The disassembler cannot recover the original values of those 3 directives.
1732 
1733   uint32_t GranulatedWavefrontSGPRCount =
1734       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1735       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1736 
1737   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1738     return MCDisassembler::Fail;
1739 
1740   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1741                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1742 
1743   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1744   if (!hasArchitectedFlatScratch())
1745     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1746   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1747   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1748 
1749   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1750     return MCDisassembler::Fail;
1751 
1752   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1753                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1754   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1755                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1756   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1757                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1758   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1759                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1760 
1761   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1762     return MCDisassembler::Fail;
1763 
1764   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1765 
1766   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1767     return MCDisassembler::Fail;
1768 
1769   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1770 
1771   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1772     return MCDisassembler::Fail;
1773 
1774   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1775     return MCDisassembler::Fail;
1776 
1777   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1778 
1779   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1780     return MCDisassembler::Fail;
1781 
1782   if (isGFX10Plus()) {
1783     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1784                     COMPUTE_PGM_RSRC1_WGP_MODE);
1785     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1786     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1787   }
1788   return MCDisassembler::Success;
1789 }
1790 
1791 // NOLINTNEXTLINE(readability-identifier-naming)
1792 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1793     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1794   using namespace amdhsa;
1795   StringRef Indent = "\t";
1796   if (hasArchitectedFlatScratch())
1797     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1798                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1799   else
1800     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1801                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1802   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1803                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1804   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1805                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1806   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1807                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1808   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1809                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1810   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1811                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1812 
1813   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1814     return MCDisassembler::Fail;
1815 
1816   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1817     return MCDisassembler::Fail;
1818 
1819   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1820     return MCDisassembler::Fail;
1821 
1822   PRINT_DIRECTIVE(
1823       ".amdhsa_exception_fp_ieee_invalid_op",
1824       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1825   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1826                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1827   PRINT_DIRECTIVE(
1828       ".amdhsa_exception_fp_ieee_div_zero",
1829       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1830   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1831                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1832   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1833                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1834   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1835                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1836   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1837                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1838 
1839   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1840     return MCDisassembler::Fail;
1841 
1842   return MCDisassembler::Success;
1843 }
1844 
1845 #undef PRINT_DIRECTIVE
1846 
1847 MCDisassembler::DecodeStatus
1848 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1849     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1850     raw_string_ostream &KdStream) const {
1851 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1852   do {                                                                         \
1853     KdStream << Indent << DIRECTIVE " "                                        \
1854              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1855   } while (0)
1856 
1857   uint16_t TwoByteBuffer = 0;
1858   uint32_t FourByteBuffer = 0;
1859 
1860   StringRef ReservedBytes;
1861   StringRef Indent = "\t";
1862 
1863   assert(Bytes.size() == 64);
1864   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1865 
1866   switch (Cursor.tell()) {
1867   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1868     FourByteBuffer = DE.getU32(Cursor);
1869     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1870              << '\n';
1871     return MCDisassembler::Success;
1872 
1873   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1874     FourByteBuffer = DE.getU32(Cursor);
1875     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1876              << FourByteBuffer << '\n';
1877     return MCDisassembler::Success;
1878 
1879   case amdhsa::KERNARG_SIZE_OFFSET:
1880     FourByteBuffer = DE.getU32(Cursor);
1881     KdStream << Indent << ".amdhsa_kernarg_size "
1882              << FourByteBuffer << '\n';
1883     return MCDisassembler::Success;
1884 
1885   case amdhsa::RESERVED0_OFFSET:
1886     // 4 reserved bytes, must be 0.
1887     ReservedBytes = DE.getBytes(Cursor, 4);
1888     for (int I = 0; I < 4; ++I) {
1889       if (ReservedBytes[I] != 0) {
1890         return MCDisassembler::Fail;
1891       }
1892     }
1893     return MCDisassembler::Success;
1894 
1895   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1896     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1897     // So far no directive controls this for Code Object V3, so simply skip for
1898     // disassembly.
1899     DE.skip(Cursor, 8);
1900     return MCDisassembler::Success;
1901 
1902   case amdhsa::RESERVED1_OFFSET:
1903     // 20 reserved bytes, must be 0.
1904     ReservedBytes = DE.getBytes(Cursor, 20);
1905     for (int I = 0; I < 20; ++I) {
1906       if (ReservedBytes[I] != 0) {
1907         return MCDisassembler::Fail;
1908       }
1909     }
1910     return MCDisassembler::Success;
1911 
1912   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1913     // COMPUTE_PGM_RSRC3
1914     //  - Only set for GFX10, GFX6-9 have this to be 0.
1915     //  - Currently no directives directly control this.
1916     FourByteBuffer = DE.getU32(Cursor);
1917     if (!isGFX10Plus() && FourByteBuffer) {
1918       return MCDisassembler::Fail;
1919     }
1920     return MCDisassembler::Success;
1921 
1922   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1923     FourByteBuffer = DE.getU32(Cursor);
1924     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1925         MCDisassembler::Fail) {
1926       return MCDisassembler::Fail;
1927     }
1928     return MCDisassembler::Success;
1929 
1930   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1931     FourByteBuffer = DE.getU32(Cursor);
1932     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1933         MCDisassembler::Fail) {
1934       return MCDisassembler::Fail;
1935     }
1936     return MCDisassembler::Success;
1937 
1938   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1939     using namespace amdhsa;
1940     TwoByteBuffer = DE.getU16(Cursor);
1941 
1942     if (!hasArchitectedFlatScratch())
1943       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1944                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1945     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1946                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1947     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1948                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1949     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1950                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1951     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1952                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1953     if (!hasArchitectedFlatScratch())
1954       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1955                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1956     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1957                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1958 
1959     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1960       return MCDisassembler::Fail;
1961 
1962     // Reserved for GFX9
1963     if (isGFX9() &&
1964         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1965       return MCDisassembler::Fail;
1966     } else if (isGFX10Plus()) {
1967       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1968                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1969     }
1970 
1971     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1972       return MCDisassembler::Fail;
1973 
1974     return MCDisassembler::Success;
1975 
1976   case amdhsa::RESERVED2_OFFSET:
1977     // 6 bytes from here are reserved, must be 0.
1978     ReservedBytes = DE.getBytes(Cursor, 6);
1979     for (int I = 0; I < 6; ++I) {
1980       if (ReservedBytes[I] != 0)
1981         return MCDisassembler::Fail;
1982     }
1983     return MCDisassembler::Success;
1984 
1985   default:
1986     llvm_unreachable("Unhandled index. Case statements cover everything.");
1987     return MCDisassembler::Fail;
1988   }
1989 #undef PRINT_DIRECTIVE
1990 }
1991 
1992 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1993     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1994   // CP microcode requires the kernel descriptor to be 64 aligned.
1995   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1996     return MCDisassembler::Fail;
1997 
1998   std::string Kd;
1999   raw_string_ostream KdStream(Kd);
2000   KdStream << ".amdhsa_kernel " << KdName << '\n';
2001 
2002   DataExtractor::Cursor C(0);
2003   while (C && C.tell() < Bytes.size()) {
2004     MCDisassembler::DecodeStatus Status =
2005         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2006 
2007     cantFail(C.takeError());
2008 
2009     if (Status == MCDisassembler::Fail)
2010       return MCDisassembler::Fail;
2011   }
2012   KdStream << ".end_amdhsa_kernel\n";
2013   outs() << KdStream.str();
2014   return MCDisassembler::Success;
2015 }
2016 
2017 Optional<MCDisassembler::DecodeStatus>
2018 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2019                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2020                                   raw_ostream &CStream) const {
2021   // Right now only kernel descriptor needs to be handled.
2022   // We ignore all other symbols for target specific handling.
2023   // TODO:
2024   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2025   // Object V2 and V3 when symbols are marked protected.
2026 
2027   // amd_kernel_code_t for Code Object V2.
2028   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2029     Size = 256;
2030     return MCDisassembler::Fail;
2031   }
2032 
2033   // Code Object V3 kernel descriptors.
2034   StringRef Name = Symbol.Name;
2035   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2036     Size = 64; // Size = 64 regardless of success or failure.
2037     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2038   }
2039   return None;
2040 }
2041 
2042 //===----------------------------------------------------------------------===//
2043 // AMDGPUSymbolizer
2044 //===----------------------------------------------------------------------===//
2045 
2046 // Try to find symbol name for specified label
2047 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2048     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2049     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2050     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2051 
2052   if (!IsBranch) {
2053     return false;
2054   }
2055 
2056   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2057   if (!Symbols)
2058     return false;
2059 
2060   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2061     return Val.Addr == static_cast<uint64_t>(Value) &&
2062            Val.Type == ELF::STT_NOTYPE;
2063   });
2064   if (Result != Symbols->end()) {
2065     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2066     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2067     Inst.addOperand(MCOperand::createExpr(Add));
2068     return true;
2069   }
2070   // Add to list of referenced addresses, so caller can synthesize a label.
2071   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2072   return false;
2073 }
2074 
2075 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2076                                                        int64_t Value,
2077                                                        uint64_t Address) {
2078   llvm_unreachable("unimplemented");
2079 }
2080 
2081 //===----------------------------------------------------------------------===//
2082 // Initialization
2083 //===----------------------------------------------------------------------===//
2084 
2085 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2086                               LLVMOpInfoCallback /*GetOpInfo*/,
2087                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2088                               void *DisInfo,
2089                               MCContext *Ctx,
2090                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2091   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2092 }
2093 
2094 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2095                                                 const MCSubtargetInfo &STI,
2096                                                 MCContext &Ctx) {
2097   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2098 }
2099 
2100 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2101   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2102                                          createAMDGPUDisassembler);
2103   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2104                                        createAMDGPUSymbolizer);
2105 }
2106