1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, 49 MCInstrInfo const *MCII) : 50 MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 51 TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) { 52 53 // ToDo: AMDGPUDisassembler supports only VI ISA. 54 if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus()) 55 report_fatal_error("Disassembly not yet supported for subtarget"); 56 } 57 58 inline static MCDisassembler::DecodeStatus 59 addOperand(MCInst &Inst, const MCOperand& Opnd) { 60 Inst.addOperand(Opnd); 61 return Opnd.isValid() ? 62 MCDisassembler::Success : 63 MCDisassembler::Fail; 64 } 65 66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 67 uint16_t NameIdx) { 68 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 69 if (OpIdx != -1) { 70 auto I = MI.begin(); 71 std::advance(I, OpIdx); 72 MI.insert(I, Op); 73 } 74 return OpIdx; 75 } 76 77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm, 78 uint64_t Addr, 79 const MCDisassembler *Decoder) { 80 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 81 82 // Our branches take a simm16, but we need two extra bits to account for the 83 // factor of 4. 84 APInt SignedOffset(18, Imm * 4, true); 85 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 86 87 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 88 return MCDisassembler::Success; 89 return addOperand(Inst, MCOperand::createImm(Imm)); 90 } 91 92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 93 const MCDisassembler *Decoder) { 94 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 95 int64_t Offset; 96 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 97 Offset = Imm & 0xFFFFF; 98 } else { // GFX9+ supports 21-bit signed offsets. 99 Offset = SignExtend64<21>(Imm); 100 } 101 return addOperand(Inst, MCOperand::createImm(Offset)); 102 } 103 104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 105 const MCDisassembler *Decoder) { 106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 107 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 108 } 109 110 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 111 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 112 uint64_t /*Addr*/, \ 113 const MCDisassembler *Decoder) { \ 114 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 115 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 116 } 117 118 #define DECODE_OPERAND_REG(RegClass) \ 119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass) 120 121 DECODE_OPERAND_REG(VGPR_32) 122 DECODE_OPERAND_REG(VRegOrLds_32) 123 DECODE_OPERAND_REG(VS_32) 124 DECODE_OPERAND_REG(VS_64) 125 DECODE_OPERAND_REG(VS_128) 126 127 DECODE_OPERAND_REG(VReg_64) 128 DECODE_OPERAND_REG(VReg_96) 129 DECODE_OPERAND_REG(VReg_128) 130 DECODE_OPERAND_REG(VReg_256) 131 DECODE_OPERAND_REG(VReg_512) 132 DECODE_OPERAND_REG(VReg_1024) 133 134 DECODE_OPERAND_REG(SReg_32) 135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC) 136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI) 137 DECODE_OPERAND_REG(SRegOrLds_32) 138 DECODE_OPERAND_REG(SReg_64) 139 DECODE_OPERAND_REG(SReg_64_XEXEC) 140 DECODE_OPERAND_REG(SReg_128) 141 DECODE_OPERAND_REG(SReg_256) 142 DECODE_OPERAND_REG(SReg_512) 143 144 DECODE_OPERAND_REG(AGPR_32) 145 DECODE_OPERAND_REG(AReg_64) 146 DECODE_OPERAND_REG(AReg_128) 147 DECODE_OPERAND_REG(AReg_256) 148 DECODE_OPERAND_REG(AReg_512) 149 DECODE_OPERAND_REG(AReg_1024) 150 DECODE_OPERAND_REG(AV_32) 151 DECODE_OPERAND_REG(AV_64) 152 DECODE_OPERAND_REG(AV_128) 153 DECODE_OPERAND_REG(AVDst_128) 154 DECODE_OPERAND_REG(AVDst_512) 155 156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm, 157 uint64_t Addr, 158 const MCDisassembler *Decoder) { 159 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 160 return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm)); 161 } 162 163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm, 164 uint64_t Addr, 165 const MCDisassembler *Decoder) { 166 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 167 return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm)); 168 } 169 170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm, 171 uint64_t Addr, 172 const MCDisassembler *Decoder) { 173 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 174 return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm)); 175 } 176 177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm, 178 uint64_t Addr, 179 const MCDisassembler *Decoder) { 180 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 181 return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm)); 182 } 183 184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm, 185 uint64_t Addr, 186 const MCDisassembler *Decoder) { 187 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 188 return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm)); 189 } 190 191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm, 192 uint64_t Addr, 193 const MCDisassembler *Decoder) { 194 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 195 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512)); 196 } 197 198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm, 199 uint64_t Addr, 200 const MCDisassembler *Decoder) { 201 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 202 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512)); 203 } 204 205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm, 206 uint64_t Addr, 207 const MCDisassembler *Decoder) { 208 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 209 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512)); 210 } 211 212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm, 213 uint64_t Addr, 214 const MCDisassembler *Decoder) { 215 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 216 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512)); 217 } 218 219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm, 220 uint64_t Addr, 221 const MCDisassembler *Decoder) { 222 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 223 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512)); 224 } 225 226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm, 227 uint64_t Addr, 228 const MCDisassembler *Decoder) { 229 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 230 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm)); 231 } 232 233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm, 234 uint64_t Addr, 235 const MCDisassembler *Decoder) { 236 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 237 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm)); 238 } 239 240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm, 241 uint64_t Addr, 242 const MCDisassembler *Decoder) { 243 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 244 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm)); 245 } 246 247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm, 248 uint64_t Addr, 249 const MCDisassembler *Decoder) { 250 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 251 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm)); 252 } 253 254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm, 255 uint64_t Addr, 256 const MCDisassembler *Decoder) { 257 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 258 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm)); 259 } 260 261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm, 262 uint64_t Addr, 263 const MCDisassembler *Decoder) { 264 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 265 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 266 } 267 268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm, 269 uint64_t Addr, 270 const MCDisassembler *Decoder) { 271 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 272 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 273 } 274 275 static DecodeStatus 276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr, 277 const MCDisassembler *Decoder) { 278 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 279 return addOperand( 280 Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true)); 281 } 282 283 static DecodeStatus 284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr, 285 const MCDisassembler *Decoder) { 286 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 287 return addOperand( 288 Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true)); 289 } 290 291 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 292 const MCRegisterInfo *MRI) { 293 if (OpIdx < 0) 294 return false; 295 296 const MCOperand &Op = Inst.getOperand(OpIdx); 297 if (!Op.isReg()) 298 return false; 299 300 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 301 auto Reg = Sub ? Sub : Op.getReg(); 302 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 303 } 304 305 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 306 AMDGPUDisassembler::OpWidthTy Opw, 307 const MCDisassembler *Decoder) { 308 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 309 if (!DAsm->isGFX90A()) { 310 Imm &= 511; 311 } else { 312 // If atomic has both vdata and vdst their register classes are tied. 313 // The bit is decoded along with the vdst, first operand. We need to 314 // change register class to AGPR if vdst was AGPR. 315 // If a DS instruction has both data0 and data1 their register classes 316 // are also tied. 317 unsigned Opc = Inst.getOpcode(); 318 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 319 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 320 : AMDGPU::OpName::vdata; 321 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 322 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 323 if ((int)Inst.getNumOperands() == DataIdx) { 324 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 325 if (IsAGPROperand(Inst, DstIdx, MRI)) 326 Imm |= 512; 327 } 328 329 if (TSFlags & SIInstrFlags::DS) { 330 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 331 if ((int)Inst.getNumOperands() == Data2Idx && 332 IsAGPROperand(Inst, DataIdx, MRI)) 333 Imm |= 512; 334 } 335 } 336 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 337 } 338 339 static DecodeStatus 340 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 341 const MCDisassembler *Decoder) { 342 return decodeOperand_AVLdSt_Any(Inst, Imm, 343 AMDGPUDisassembler::OPW32, Decoder); 344 } 345 346 static DecodeStatus 347 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 348 const MCDisassembler *Decoder) { 349 return decodeOperand_AVLdSt_Any(Inst, Imm, 350 AMDGPUDisassembler::OPW64, Decoder); 351 } 352 353 static DecodeStatus 354 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 355 const MCDisassembler *Decoder) { 356 return decodeOperand_AVLdSt_Any(Inst, Imm, 357 AMDGPUDisassembler::OPW96, Decoder); 358 } 359 360 static DecodeStatus 361 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 362 const MCDisassembler *Decoder) { 363 return decodeOperand_AVLdSt_Any(Inst, Imm, 364 AMDGPUDisassembler::OPW128, Decoder); 365 } 366 367 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm, 368 uint64_t Addr, 369 const MCDisassembler *Decoder) { 370 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 371 return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm)); 372 } 373 374 #define DECODE_SDWA(DecName) \ 375 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 376 377 DECODE_SDWA(Src32) 378 DECODE_SDWA(Src16) 379 DECODE_SDWA(VopcDst) 380 381 #include "AMDGPUGenDisassemblerTables.inc" 382 383 //===----------------------------------------------------------------------===// 384 // 385 //===----------------------------------------------------------------------===// 386 387 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 388 assert(Bytes.size() >= sizeof(T)); 389 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data()); 390 Bytes = Bytes.slice(sizeof(T)); 391 return Res; 392 } 393 394 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 395 assert(Bytes.size() >= 12); 396 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>( 397 Bytes.data()); 398 Bytes = Bytes.slice(8); 399 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>( 400 Bytes.data()); 401 Bytes = Bytes.slice(4); 402 return DecoderUInt128(Lo, Hi); 403 } 404 405 // The disassembler is greedy, so we need to check FI operand value to 406 // not parse a dpp if the correct literal is not set. For dpp16 the 407 // autogenerated decoder checks the dpp literal 408 static bool isValidDPP8(const MCInst &MI) { 409 using namespace llvm::AMDGPU::DPP; 410 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 411 assert(FiIdx != -1); 412 if ((unsigned)FiIdx >= MI.getNumOperands()) 413 return false; 414 unsigned Fi = MI.getOperand(FiIdx).getImm(); 415 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 416 } 417 418 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 419 ArrayRef<uint8_t> Bytes_, 420 uint64_t Address, 421 raw_ostream &CS) const { 422 CommentStream = &CS; 423 bool IsSDWA = false; 424 425 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 426 Bytes = Bytes_.slice(0, MaxInstBytesNum); 427 428 DecodeStatus Res = MCDisassembler::Fail; 429 do { 430 // ToDo: better to switch encoding length using some bit predicate 431 // but it is unknown yet, so try all we can 432 433 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 434 // encodings 435 if (isGFX11Plus() && Bytes.size() >= 12 ) { 436 DecoderUInt128 DecW = eat12Bytes(Bytes); 437 Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, 438 Address); 439 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 440 break; 441 MI = MCInst(); // clear 442 Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, 443 Address); 444 if (Res) { 445 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 446 convertVOP3PDPPInst(MI); 447 else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) 448 convertVOPCDPPInst(MI); 449 break; 450 } 451 } 452 // Reinitialize Bytes 453 Bytes = Bytes_.slice(0, MaxInstBytesNum); 454 455 if (Bytes.size() >= 8) { 456 const uint64_t QW = eatBytes<uint64_t>(Bytes); 457 458 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { 459 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address); 460 if (Res) { 461 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 462 == -1) 463 break; 464 if (convertDPP8Inst(MI) == MCDisassembler::Success) 465 break; 466 MI = MCInst(); // clear 467 } 468 } 469 470 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address); 471 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 472 break; 473 MI = MCInst(); // clear 474 475 Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address); 476 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 477 break; 478 MI = MCInst(); // clear 479 480 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address); 481 if (Res) break; 482 483 Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address); 484 if (Res) { 485 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 486 convertVOPCDPPInst(MI); 487 break; 488 } 489 490 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address); 491 if (Res) { IsSDWA = true; break; } 492 493 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address); 494 if (Res) { IsSDWA = true; break; } 495 496 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address); 497 if (Res) { IsSDWA = true; break; } 498 499 if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) { 500 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address); 501 if (Res) 502 break; 503 } 504 505 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 506 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 507 // table first so we print the correct name. 508 if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) { 509 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address); 510 if (Res) 511 break; 512 } 513 } 514 515 // Reinitialize Bytes as DPP64 could have eaten too much 516 Bytes = Bytes_.slice(0, MaxInstBytesNum); 517 518 // Try decode 32-bit instruction 519 if (Bytes.size() < 4) break; 520 const uint32_t DW = eatBytes<uint32_t>(Bytes); 521 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address); 522 if (Res) break; 523 524 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address); 525 if (Res) break; 526 527 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address); 528 if (Res) break; 529 530 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { 531 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address); 532 if (Res) 533 break; 534 } 535 536 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { 537 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address); 538 if (Res) break; 539 } 540 541 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address); 542 if (Res) break; 543 544 Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address); 545 if (Res) break; 546 547 if (Bytes.size() < 4) break; 548 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 549 550 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { 551 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address); 552 if (Res) 553 break; 554 } 555 556 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address); 557 if (Res) break; 558 559 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address); 560 if (Res) break; 561 562 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address); 563 if (Res) break; 564 565 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address); 566 if (Res) break; 567 568 Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address); 569 } while (false); 570 571 if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi || 572 MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 || 573 MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 || 574 MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 || 575 MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 || 576 MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi || 577 MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a || 578 MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi || 579 MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 || 580 MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 || 581 MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 || 582 MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 || 583 MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 || 584 MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx11)) { 585 // Insert dummy unused src2_modifiers. 586 insertNamedMCOperand(MI, MCOperand::createImm(0), 587 AMDGPU::OpName::src2_modifiers); 588 } 589 590 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 591 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 592 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 593 AMDGPU::OpName::cpol); 594 if (CPolPos != -1) { 595 unsigned CPol = 596 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 597 AMDGPU::CPol::GLC : 0; 598 if (MI.getNumOperands() <= (unsigned)CPolPos) { 599 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 600 AMDGPU::OpName::cpol); 601 } else if (CPol) { 602 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 603 } 604 } 605 } 606 607 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 608 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 609 (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) { 610 // GFX90A lost TFE, its place is occupied by ACC. 611 int TFEOpIdx = 612 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 613 if (TFEOpIdx != -1) { 614 auto TFEIter = MI.begin(); 615 std::advance(TFEIter, TFEOpIdx); 616 MI.insert(TFEIter, MCOperand::createImm(0)); 617 } 618 } 619 620 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 621 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 622 int SWZOpIdx = 623 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 624 if (SWZOpIdx != -1) { 625 auto SWZIter = MI.begin(); 626 std::advance(SWZIter, SWZOpIdx); 627 MI.insert(SWZIter, MCOperand::createImm(0)); 628 } 629 } 630 631 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 632 int VAddr0Idx = 633 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 634 int RsrcIdx = 635 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 636 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 637 if (VAddr0Idx >= 0 && NSAArgs > 0) { 638 unsigned NSAWords = (NSAArgs + 3) / 4; 639 if (Bytes.size() < 4 * NSAWords) { 640 Res = MCDisassembler::Fail; 641 } else { 642 for (unsigned i = 0; i < NSAArgs; ++i) { 643 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 644 auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass; 645 MI.insert(MI.begin() + VAddrIdx, 646 createRegOperand(VAddrRCID, Bytes[i])); 647 } 648 Bytes = Bytes.slice(4 * NSAWords); 649 } 650 } 651 652 if (Res) 653 Res = convertMIMGInst(MI); 654 } 655 656 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 657 Res = convertEXPInst(MI); 658 659 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 660 Res = convertVINTERPInst(MI); 661 662 if (Res && IsSDWA) 663 Res = convertSDWAInst(MI); 664 665 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 666 AMDGPU::OpName::vdst_in); 667 if (VDstIn_Idx != -1) { 668 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 669 MCOI::OperandConstraint::TIED_TO); 670 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 671 !MI.getOperand(VDstIn_Idx).isReg() || 672 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 673 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 674 MI.erase(&MI.getOperand(VDstIn_Idx)); 675 insertNamedMCOperand(MI, 676 MCOperand::createReg(MI.getOperand(Tied).getReg()), 677 AMDGPU::OpName::vdst_in); 678 } 679 } 680 681 int ImmLitIdx = 682 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 683 if (Res && ImmLitIdx != -1) 684 Res = convertFMAanyK(MI, ImmLitIdx); 685 686 // if the opcode was not recognized we'll assume a Size of 4 bytes 687 // (unless there are fewer bytes left) 688 Size = Res ? (MaxInstBytesNum - Bytes.size()) 689 : std::min((size_t)4, Bytes_.size()); 690 return Res; 691 } 692 693 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 694 if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) { 695 // The MCInst still has these fields even though they are no longer encoded 696 // in the GFX11 instruction. 697 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 698 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 699 } 700 return MCDisassembler::Success; 701 } 702 703 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 704 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 705 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 706 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 707 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) { 708 // The MCInst has this field that is not directly encoded in the 709 // instruction. 710 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 711 } 712 return MCDisassembler::Success; 713 } 714 715 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 716 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 717 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { 718 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1) 719 // VOPC - insert clamp 720 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 721 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { 722 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 723 if (SDst != -1) { 724 // VOPC - insert VCC register as sdst 725 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 726 AMDGPU::OpName::sdst); 727 } else { 728 // VOP1/2 - insert omod if present in instruction 729 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 730 } 731 } 732 return MCDisassembler::Success; 733 } 734 735 // We must check FI == literal to reject not genuine dpp8 insts, and we must 736 // first add optional MI operands to check FI 737 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 738 unsigned Opc = MI.getOpcode(); 739 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 740 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 741 convertVOP3PDPPInst(MI); 742 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 743 AMDGPU::isVOPC64DPP(Opc)) { 744 convertVOPCDPPInst(MI); 745 } else { 746 // Insert dummy unused src modifiers. 747 if (MI.getNumOperands() < DescNumOps && 748 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1) 749 insertNamedMCOperand(MI, MCOperand::createImm(0), 750 AMDGPU::OpName::src0_modifiers); 751 752 if (MI.getNumOperands() < DescNumOps && 753 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1) 754 insertNamedMCOperand(MI, MCOperand::createImm(0), 755 AMDGPU::OpName::src1_modifiers); 756 } 757 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 758 } 759 760 // Note that before gfx10, the MIMG encoding provided no information about 761 // VADDR size. Consequently, decoded instructions always show address as if it 762 // has 1 dword, which could be not really so. 763 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 764 765 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 766 AMDGPU::OpName::vdst); 767 768 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 769 AMDGPU::OpName::vdata); 770 int VAddr0Idx = 771 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 772 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 773 AMDGPU::OpName::dmask); 774 775 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 776 AMDGPU::OpName::tfe); 777 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 778 AMDGPU::OpName::d16); 779 780 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 781 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 782 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 783 784 assert(VDataIdx != -1); 785 if (BaseOpcode->BVH) { 786 // Add A16 operand for intersect_ray instructions 787 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) { 788 addOperand(MI, MCOperand::createImm(1)); 789 } 790 return MCDisassembler::Success; 791 } 792 793 bool IsAtomic = (VDstIdx != -1); 794 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4; 795 bool IsNSA = false; 796 unsigned AddrSize = Info->VAddrDwords; 797 798 if (isGFX10Plus()) { 799 unsigned DimIdx = 800 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 801 int A16Idx = 802 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 803 const AMDGPU::MIMGDimInfo *Dim = 804 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 805 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 806 807 AddrSize = 808 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 809 810 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 811 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA; 812 if (!IsNSA) { 813 if (AddrSize > 8) 814 AddrSize = 16; 815 } else { 816 if (AddrSize > Info->VAddrDwords) { 817 // The NSA encoding does not contain enough operands for the combination 818 // of base opcode / dimension. Should this be an error? 819 return MCDisassembler::Success; 820 } 821 } 822 } 823 824 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 825 unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u); 826 827 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 828 if (D16 && AMDGPU::hasPackedD16(STI)) { 829 DstSize = (DstSize + 1) / 2; 830 } 831 832 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 833 DstSize += 1; 834 835 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 836 return MCDisassembler::Success; 837 838 int NewOpcode = 839 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 840 if (NewOpcode == -1) 841 return MCDisassembler::Success; 842 843 // Widen the register to the correct number of enabled channels. 844 unsigned NewVdata = AMDGPU::NoRegister; 845 if (DstSize != Info->VDataDwords) { 846 auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass; 847 848 // Get first subregister of VData 849 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 850 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 851 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 852 853 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 854 &MRI.getRegClass(DataRCID)); 855 if (NewVdata == AMDGPU::NoRegister) { 856 // It's possible to encode this such that the low register + enabled 857 // components exceeds the register count. 858 return MCDisassembler::Success; 859 } 860 } 861 862 // If not using NSA on GFX10+, widen address register to correct size. 863 unsigned NewVAddr0 = AMDGPU::NoRegister; 864 if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) { 865 unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg(); 866 unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0); 867 VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0; 868 869 auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass; 870 NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0, 871 &MRI.getRegClass(AddrRCID)); 872 if (NewVAddr0 == AMDGPU::NoRegister) 873 return MCDisassembler::Success; 874 } 875 876 MI.setOpcode(NewOpcode); 877 878 if (NewVdata != AMDGPU::NoRegister) { 879 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 880 881 if (IsAtomic) { 882 // Atomic operations have an additional operand (a copy of data) 883 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 884 } 885 } 886 887 if (NewVAddr0 != AMDGPU::NoRegister) { 888 MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0); 889 } else if (IsNSA) { 890 assert(AddrSize <= Info->VAddrDwords); 891 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 892 MI.begin() + VAddr0Idx + Info->VAddrDwords); 893 } 894 895 return MCDisassembler::Success; 896 } 897 898 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 899 // decoder only adds to src_modifiers, so manually add the bits to the other 900 // operands. 901 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 902 unsigned Opc = MI.getOpcode(); 903 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 904 905 if (MI.getNumOperands() < DescNumOps && 906 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1) 907 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 908 909 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 910 AMDGPU::OpName::src1_modifiers, 911 AMDGPU::OpName::src2_modifiers}; 912 unsigned OpSel = 0; 913 unsigned OpSelHi = 0; 914 unsigned NegLo = 0; 915 unsigned NegHi = 0; 916 for (int J = 0; J < 3; ++J) { 917 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 918 if (OpIdx == -1) 919 break; 920 unsigned Val = MI.getOperand(OpIdx).getImm(); 921 922 OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 923 OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 924 NegLo |= !!(Val & SISrcMods::NEG) << J; 925 NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 926 } 927 928 if (MI.getNumOperands() < DescNumOps && 929 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1) 930 insertNamedMCOperand(MI, MCOperand::createImm(OpSel), 931 AMDGPU::OpName::op_sel); 932 if (MI.getNumOperands() < DescNumOps && 933 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi) != -1) 934 insertNamedMCOperand(MI, MCOperand::createImm(OpSelHi), 935 AMDGPU::OpName::op_sel_hi); 936 if (MI.getNumOperands() < DescNumOps && 937 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo) != -1) 938 insertNamedMCOperand(MI, MCOperand::createImm(NegLo), 939 AMDGPU::OpName::neg_lo); 940 if (MI.getNumOperands() < DescNumOps && 941 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi) != -1) 942 insertNamedMCOperand(MI, MCOperand::createImm(NegHi), 943 AMDGPU::OpName::neg_hi); 944 945 return MCDisassembler::Success; 946 } 947 948 // Create dummy old operand and insert optional operands 949 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 950 unsigned Opc = MI.getOpcode(); 951 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 952 953 if (MI.getNumOperands() < DescNumOps && 954 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::old) != -1) 955 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 956 957 if (MI.getNumOperands() < DescNumOps && 958 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1) 959 insertNamedMCOperand(MI, MCOperand::createImm(0), 960 AMDGPU::OpName::src0_modifiers); 961 962 if (MI.getNumOperands() < DescNumOps && 963 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1) 964 insertNamedMCOperand(MI, MCOperand::createImm(0), 965 AMDGPU::OpName::src1_modifiers); 966 return MCDisassembler::Success; 967 } 968 969 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 970 int ImmLitIdx) const { 971 assert(HasLiteral && "Should have decoded a literal"); 972 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 973 unsigned DescNumOps = Desc.getNumOperands(); 974 assert(DescNumOps == MI.getNumOperands()); 975 for (unsigned I = 0; I < DescNumOps; ++I) { 976 auto &Op = MI.getOperand(I); 977 auto OpType = Desc.OpInfo[I].OperandType; 978 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 979 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 980 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 981 IsDeferredOp) 982 Op.setImm(Literal); 983 } 984 return MCDisassembler::Success; 985 } 986 987 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 988 return getContext().getRegisterInfo()-> 989 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 990 } 991 992 inline 993 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 994 const Twine& ErrMsg) const { 995 *CommentStream << "Error: " + ErrMsg; 996 997 // ToDo: add support for error operands to MCInst.h 998 // return MCOperand::createError(V); 999 return MCOperand(); 1000 } 1001 1002 inline 1003 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1004 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1005 } 1006 1007 inline 1008 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1009 unsigned Val) const { 1010 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1011 if (Val >= RegCl.getNumRegs()) 1012 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1013 ": unknown register " + Twine(Val)); 1014 return createRegOperand(RegCl.getRegister(Val)); 1015 } 1016 1017 inline 1018 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1019 unsigned Val) const { 1020 // ToDo: SI/CI have 104 SGPRs, VI - 102 1021 // Valery: here we accepting as much as we can, let assembler sort it out 1022 int shift = 0; 1023 switch (SRegClassID) { 1024 case AMDGPU::SGPR_32RegClassID: 1025 case AMDGPU::TTMP_32RegClassID: 1026 break; 1027 case AMDGPU::SGPR_64RegClassID: 1028 case AMDGPU::TTMP_64RegClassID: 1029 shift = 1; 1030 break; 1031 case AMDGPU::SGPR_128RegClassID: 1032 case AMDGPU::TTMP_128RegClassID: 1033 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1034 // this bundle? 1035 case AMDGPU::SGPR_256RegClassID: 1036 case AMDGPU::TTMP_256RegClassID: 1037 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1038 // this bundle? 1039 case AMDGPU::SGPR_512RegClassID: 1040 case AMDGPU::TTMP_512RegClassID: 1041 shift = 2; 1042 break; 1043 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1044 // this bundle? 1045 default: 1046 llvm_unreachable("unhandled register class"); 1047 } 1048 1049 if (Val % (1 << shift)) { 1050 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1051 << ": scalar reg isn't aligned " << Val; 1052 } 1053 1054 return createRegOperand(SRegClassID, Val >> shift); 1055 } 1056 1057 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const { 1058 return decodeSrcOp(OPW32, Val); 1059 } 1060 1061 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const { 1062 return decodeSrcOp(OPW64, Val); 1063 } 1064 1065 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const { 1066 return decodeSrcOp(OPW128, Val); 1067 } 1068 1069 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const { 1070 return decodeSrcOp(OPW16, Val); 1071 } 1072 1073 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const { 1074 return decodeSrcOp(OPWV216, Val); 1075 } 1076 1077 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const { 1078 return decodeSrcOp(OPWV232, Val); 1079 } 1080 1081 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const { 1082 // Some instructions have operand restrictions beyond what the encoding 1083 // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra 1084 // high bit. 1085 Val &= 255; 1086 1087 return createRegOperand(AMDGPU::VGPR_32RegClassID, Val); 1088 } 1089 1090 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const { 1091 return decodeSrcOp(OPW32, Val); 1092 } 1093 1094 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const { 1095 return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255); 1096 } 1097 1098 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const { 1099 return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255); 1100 } 1101 1102 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const { 1103 return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255); 1104 } 1105 1106 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const { 1107 return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255); 1108 } 1109 1110 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const { 1111 return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255); 1112 } 1113 1114 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const { 1115 return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255); 1116 } 1117 1118 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const { 1119 return decodeSrcOp(OPW32, Val); 1120 } 1121 1122 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const { 1123 return decodeSrcOp(OPW64, Val); 1124 } 1125 1126 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const { 1127 return decodeSrcOp(OPW128, Val); 1128 } 1129 1130 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const { 1131 using namespace AMDGPU::EncValues; 1132 assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1. 1133 return decodeSrcOp(OPW128, Val | IS_VGPR); 1134 } 1135 1136 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const { 1137 using namespace AMDGPU::EncValues; 1138 assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1. 1139 return decodeSrcOp(OPW512, Val | IS_VGPR); 1140 } 1141 1142 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const { 1143 return createRegOperand(AMDGPU::VReg_64RegClassID, Val); 1144 } 1145 1146 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const { 1147 return createRegOperand(AMDGPU::VReg_96RegClassID, Val); 1148 } 1149 1150 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const { 1151 return createRegOperand(AMDGPU::VReg_128RegClassID, Val); 1152 } 1153 1154 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const { 1155 return createRegOperand(AMDGPU::VReg_256RegClassID, Val); 1156 } 1157 1158 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const { 1159 return createRegOperand(AMDGPU::VReg_512RegClassID, Val); 1160 } 1161 1162 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const { 1163 return createRegOperand(AMDGPU::VReg_1024RegClassID, Val); 1164 } 1165 1166 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const { 1167 // table-gen generated disassembler doesn't care about operand types 1168 // leaving only registry class so SSrc_32 operand turns into SReg_32 1169 // and therefore we accept immediates and literals here as well 1170 return decodeSrcOp(OPW32, Val); 1171 } 1172 1173 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC( 1174 unsigned Val) const { 1175 // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI 1176 return decodeOperand_SReg_32(Val); 1177 } 1178 1179 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI( 1180 unsigned Val) const { 1181 // SReg_32_XM0 is SReg_32 without EXEC_HI 1182 return decodeOperand_SReg_32(Val); 1183 } 1184 1185 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const { 1186 // table-gen generated disassembler doesn't care about operand types 1187 // leaving only registry class so SSrc_32 operand turns into SReg_32 1188 // and therefore we accept immediates and literals here as well 1189 return decodeSrcOp(OPW32, Val); 1190 } 1191 1192 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const { 1193 return decodeSrcOp(OPW64, Val); 1194 } 1195 1196 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const { 1197 return decodeSrcOp(OPW64, Val); 1198 } 1199 1200 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const { 1201 return decodeSrcOp(OPW128, Val); 1202 } 1203 1204 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const { 1205 return decodeDstOp(OPW256, Val); 1206 } 1207 1208 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const { 1209 return decodeDstOp(OPW512, Val); 1210 } 1211 1212 // Decode Literals for insts which always have a literal in the encoding 1213 MCOperand 1214 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1215 if (HasLiteral) { 1216 if (Literal != Val) 1217 return errOperand(Val, "More than one unique literal is illegal"); 1218 } 1219 HasLiteral = true; 1220 Literal = Val; 1221 return MCOperand::createImm(Literal); 1222 } 1223 1224 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { 1225 // For now all literal constants are supposed to be unsigned integer 1226 // ToDo: deal with signed/unsigned 64-bit integer constants 1227 // ToDo: deal with float/double constants 1228 if (!HasLiteral) { 1229 if (Bytes.size() < 4) { 1230 return errOperand(0, "cannot read literal, inst bytes left " + 1231 Twine(Bytes.size())); 1232 } 1233 HasLiteral = true; 1234 Literal = eatBytes<uint32_t>(Bytes); 1235 } 1236 return MCOperand::createImm(Literal); 1237 } 1238 1239 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1240 using namespace AMDGPU::EncValues; 1241 1242 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1243 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1244 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1245 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1246 // Cast prevents negative overflow. 1247 } 1248 1249 static int64_t getInlineImmVal32(unsigned Imm) { 1250 switch (Imm) { 1251 case 240: 1252 return FloatToBits(0.5f); 1253 case 241: 1254 return FloatToBits(-0.5f); 1255 case 242: 1256 return FloatToBits(1.0f); 1257 case 243: 1258 return FloatToBits(-1.0f); 1259 case 244: 1260 return FloatToBits(2.0f); 1261 case 245: 1262 return FloatToBits(-2.0f); 1263 case 246: 1264 return FloatToBits(4.0f); 1265 case 247: 1266 return FloatToBits(-4.0f); 1267 case 248: // 1 / (2 * PI) 1268 return 0x3e22f983; 1269 default: 1270 llvm_unreachable("invalid fp inline imm"); 1271 } 1272 } 1273 1274 static int64_t getInlineImmVal64(unsigned Imm) { 1275 switch (Imm) { 1276 case 240: 1277 return DoubleToBits(0.5); 1278 case 241: 1279 return DoubleToBits(-0.5); 1280 case 242: 1281 return DoubleToBits(1.0); 1282 case 243: 1283 return DoubleToBits(-1.0); 1284 case 244: 1285 return DoubleToBits(2.0); 1286 case 245: 1287 return DoubleToBits(-2.0); 1288 case 246: 1289 return DoubleToBits(4.0); 1290 case 247: 1291 return DoubleToBits(-4.0); 1292 case 248: // 1 / (2 * PI) 1293 return 0x3fc45f306dc9c882; 1294 default: 1295 llvm_unreachable("invalid fp inline imm"); 1296 } 1297 } 1298 1299 static int64_t getInlineImmVal16(unsigned Imm) { 1300 switch (Imm) { 1301 case 240: 1302 return 0x3800; 1303 case 241: 1304 return 0xB800; 1305 case 242: 1306 return 0x3C00; 1307 case 243: 1308 return 0xBC00; 1309 case 244: 1310 return 0x4000; 1311 case 245: 1312 return 0xC000; 1313 case 246: 1314 return 0x4400; 1315 case 247: 1316 return 0xC400; 1317 case 248: // 1 / (2 * PI) 1318 return 0x3118; 1319 default: 1320 llvm_unreachable("invalid fp inline imm"); 1321 } 1322 } 1323 1324 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) { 1325 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1326 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1327 1328 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1329 switch (Width) { 1330 case OPW32: 1331 case OPW128: // splat constants 1332 case OPW512: 1333 case OPW1024: 1334 case OPWV232: 1335 return MCOperand::createImm(getInlineImmVal32(Imm)); 1336 case OPW64: 1337 case OPW256: 1338 return MCOperand::createImm(getInlineImmVal64(Imm)); 1339 case OPW16: 1340 case OPWV216: 1341 return MCOperand::createImm(getInlineImmVal16(Imm)); 1342 default: 1343 llvm_unreachable("implement me"); 1344 } 1345 } 1346 1347 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1348 using namespace AMDGPU; 1349 1350 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1351 switch (Width) { 1352 default: // fall 1353 case OPW32: 1354 case OPW16: 1355 case OPWV216: 1356 return VGPR_32RegClassID; 1357 case OPW64: 1358 case OPWV232: return VReg_64RegClassID; 1359 case OPW96: return VReg_96RegClassID; 1360 case OPW128: return VReg_128RegClassID; 1361 case OPW160: return VReg_160RegClassID; 1362 case OPW256: return VReg_256RegClassID; 1363 case OPW512: return VReg_512RegClassID; 1364 case OPW1024: return VReg_1024RegClassID; 1365 } 1366 } 1367 1368 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1369 using namespace AMDGPU; 1370 1371 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1372 switch (Width) { 1373 default: // fall 1374 case OPW32: 1375 case OPW16: 1376 case OPWV216: 1377 return AGPR_32RegClassID; 1378 case OPW64: 1379 case OPWV232: return AReg_64RegClassID; 1380 case OPW96: return AReg_96RegClassID; 1381 case OPW128: return AReg_128RegClassID; 1382 case OPW160: return AReg_160RegClassID; 1383 case OPW256: return AReg_256RegClassID; 1384 case OPW512: return AReg_512RegClassID; 1385 case OPW1024: return AReg_1024RegClassID; 1386 } 1387 } 1388 1389 1390 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1391 using namespace AMDGPU; 1392 1393 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1394 switch (Width) { 1395 default: // fall 1396 case OPW32: 1397 case OPW16: 1398 case OPWV216: 1399 return SGPR_32RegClassID; 1400 case OPW64: 1401 case OPWV232: return SGPR_64RegClassID; 1402 case OPW96: return SGPR_96RegClassID; 1403 case OPW128: return SGPR_128RegClassID; 1404 case OPW160: return SGPR_160RegClassID; 1405 case OPW256: return SGPR_256RegClassID; 1406 case OPW512: return SGPR_512RegClassID; 1407 } 1408 } 1409 1410 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1411 using namespace AMDGPU; 1412 1413 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1414 switch (Width) { 1415 default: // fall 1416 case OPW32: 1417 case OPW16: 1418 case OPWV216: 1419 return TTMP_32RegClassID; 1420 case OPW64: 1421 case OPWV232: return TTMP_64RegClassID; 1422 case OPW128: return TTMP_128RegClassID; 1423 case OPW256: return TTMP_256RegClassID; 1424 case OPW512: return TTMP_512RegClassID; 1425 } 1426 } 1427 1428 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1429 using namespace AMDGPU::EncValues; 1430 1431 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1432 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1433 1434 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1435 } 1436 1437 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1438 bool MandatoryLiteral) const { 1439 using namespace AMDGPU::EncValues; 1440 1441 assert(Val < 1024); // enum10 1442 1443 bool IsAGPR = Val & 512; 1444 Val &= 511; 1445 1446 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1447 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1448 : getVgprClassId(Width), Val - VGPR_MIN); 1449 } 1450 if (Val <= SGPR_MAX) { 1451 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1452 static_assert(SGPR_MIN == 0, ""); 1453 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1454 } 1455 1456 int TTmpIdx = getTTmpIdx(Val); 1457 if (TTmpIdx >= 0) { 1458 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1459 } 1460 1461 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1462 return decodeIntImmed(Val); 1463 1464 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1465 return decodeFPImmed(Width, Val); 1466 1467 if (Val == LITERAL_CONST) { 1468 if (MandatoryLiteral) 1469 // Keep a sentinel value for deferred setting 1470 return MCOperand::createImm(LITERAL_CONST); 1471 else 1472 return decodeLiteralConstant(); 1473 } 1474 1475 switch (Width) { 1476 case OPW32: 1477 case OPW16: 1478 case OPWV216: 1479 return decodeSpecialReg32(Val); 1480 case OPW64: 1481 case OPWV232: 1482 return decodeSpecialReg64(Val); 1483 default: 1484 llvm_unreachable("unexpected immediate type"); 1485 } 1486 } 1487 1488 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const { 1489 using namespace AMDGPU::EncValues; 1490 1491 assert(Val < 128); 1492 assert(Width == OPW256 || Width == OPW512); 1493 1494 if (Val <= SGPR_MAX) { 1495 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1496 static_assert(SGPR_MIN == 0, ""); 1497 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1498 } 1499 1500 int TTmpIdx = getTTmpIdx(Val); 1501 if (TTmpIdx >= 0) { 1502 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1503 } 1504 1505 llvm_unreachable("unknown dst register"); 1506 } 1507 1508 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1509 using namespace AMDGPU; 1510 1511 switch (Val) { 1512 case 102: return createRegOperand(FLAT_SCR_LO); 1513 case 103: return createRegOperand(FLAT_SCR_HI); 1514 case 104: return createRegOperand(XNACK_MASK_LO); 1515 case 105: return createRegOperand(XNACK_MASK_HI); 1516 case 106: return createRegOperand(VCC_LO); 1517 case 107: return createRegOperand(VCC_HI); 1518 case 108: return createRegOperand(TBA_LO); 1519 case 109: return createRegOperand(TBA_HI); 1520 case 110: return createRegOperand(TMA_LO); 1521 case 111: return createRegOperand(TMA_HI); 1522 case 124: 1523 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1524 case 125: 1525 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1526 case 126: return createRegOperand(EXEC_LO); 1527 case 127: return createRegOperand(EXEC_HI); 1528 case 235: return createRegOperand(SRC_SHARED_BASE); 1529 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1530 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1531 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1532 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1533 case 251: return createRegOperand(SRC_VCCZ); 1534 case 252: return createRegOperand(SRC_EXECZ); 1535 case 253: return createRegOperand(SRC_SCC); 1536 case 254: return createRegOperand(LDS_DIRECT); 1537 default: break; 1538 } 1539 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1540 } 1541 1542 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1543 using namespace AMDGPU; 1544 1545 switch (Val) { 1546 case 102: return createRegOperand(FLAT_SCR); 1547 case 104: return createRegOperand(XNACK_MASK); 1548 case 106: return createRegOperand(VCC); 1549 case 108: return createRegOperand(TBA); 1550 case 110: return createRegOperand(TMA); 1551 case 124: 1552 if (isGFX11Plus()) 1553 return createRegOperand(SGPR_NULL); 1554 break; 1555 case 125: 1556 if (!isGFX11Plus()) 1557 return createRegOperand(SGPR_NULL); 1558 break; 1559 case 126: return createRegOperand(EXEC); 1560 case 235: return createRegOperand(SRC_SHARED_BASE); 1561 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1562 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1563 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1564 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1565 case 251: return createRegOperand(SRC_VCCZ); 1566 case 252: return createRegOperand(SRC_EXECZ); 1567 case 253: return createRegOperand(SRC_SCC); 1568 default: break; 1569 } 1570 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1571 } 1572 1573 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1574 const unsigned Val) const { 1575 using namespace AMDGPU::SDWA; 1576 using namespace AMDGPU::EncValues; 1577 1578 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 1579 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { 1580 // XXX: cast to int is needed to avoid stupid warning: 1581 // compare with unsigned is always true 1582 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1583 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1584 return createRegOperand(getVgprClassId(Width), 1585 Val - SDWA9EncValues::SRC_VGPR_MIN); 1586 } 1587 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1588 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1589 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1590 return createSRegOperand(getSgprClassId(Width), 1591 Val - SDWA9EncValues::SRC_SGPR_MIN); 1592 } 1593 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1594 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1595 return createSRegOperand(getTtmpClassId(Width), 1596 Val - SDWA9EncValues::SRC_TTMP_MIN); 1597 } 1598 1599 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1600 1601 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1602 return decodeIntImmed(SVal); 1603 1604 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1605 return decodeFPImmed(Width, SVal); 1606 1607 return decodeSpecialReg32(SVal); 1608 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { 1609 return createRegOperand(getVgprClassId(Width), Val); 1610 } 1611 llvm_unreachable("unsupported target"); 1612 } 1613 1614 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1615 return decodeSDWASrc(OPW16, Val); 1616 } 1617 1618 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1619 return decodeSDWASrc(OPW32, Val); 1620 } 1621 1622 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1623 using namespace AMDGPU::SDWA; 1624 1625 assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 1626 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) && 1627 "SDWAVopcDst should be present only on GFX9+"); 1628 1629 bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64]; 1630 1631 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1632 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1633 1634 int TTmpIdx = getTTmpIdx(Val); 1635 if (TTmpIdx >= 0) { 1636 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1637 return createSRegOperand(TTmpClsId, TTmpIdx); 1638 } else if (Val > SGPR_MAX) { 1639 return IsWave64 ? decodeSpecialReg64(Val) 1640 : decodeSpecialReg32(Val); 1641 } else { 1642 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1643 } 1644 } else { 1645 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1646 } 1647 } 1648 1649 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1650 return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ? 1651 decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val); 1652 } 1653 1654 bool AMDGPUDisassembler::isVI() const { 1655 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1656 } 1657 1658 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1659 1660 bool AMDGPUDisassembler::isGFX90A() const { 1661 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; 1662 } 1663 1664 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1665 1666 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1667 1668 bool AMDGPUDisassembler::isGFX10Plus() const { 1669 return AMDGPU::isGFX10Plus(STI); 1670 } 1671 1672 bool AMDGPUDisassembler::isGFX11() const { 1673 return STI.getFeatureBits()[AMDGPU::FeatureGFX11]; 1674 } 1675 1676 bool AMDGPUDisassembler::isGFX11Plus() const { 1677 return AMDGPU::isGFX11Plus(STI); 1678 } 1679 1680 1681 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1682 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch]; 1683 } 1684 1685 //===----------------------------------------------------------------------===// 1686 // AMDGPU specific symbol handling 1687 //===----------------------------------------------------------------------===// 1688 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1689 do { \ 1690 KdStream << Indent << DIRECTIVE " " \ 1691 << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1692 } while (0) 1693 1694 // NOLINTNEXTLINE(readability-identifier-naming) 1695 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1696 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1697 using namespace amdhsa; 1698 StringRef Indent = "\t"; 1699 1700 // We cannot accurately backward compute #VGPRs used from 1701 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1702 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1703 // simply calculate the inverse of what the assembler does. 1704 1705 uint32_t GranulatedWorkitemVGPRCount = 1706 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >> 1707 COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT; 1708 1709 uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) * 1710 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI); 1711 1712 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1713 1714 // We cannot backward compute values used to calculate 1715 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1716 // directives can't be computed: 1717 // .amdhsa_reserve_vcc 1718 // .amdhsa_reserve_flat_scratch 1719 // .amdhsa_reserve_xnack_mask 1720 // They take their respective default values if not specified in the assembly. 1721 // 1722 // GRANULATED_WAVEFRONT_SGPR_COUNT 1723 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1724 // 1725 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1726 // are set to 0. So while disassembling we consider that: 1727 // 1728 // GRANULATED_WAVEFRONT_SGPR_COUNT 1729 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1730 // 1731 // The disassembler cannot recover the original values of those 3 directives. 1732 1733 uint32_t GranulatedWavefrontSGPRCount = 1734 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >> 1735 COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT; 1736 1737 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1738 return MCDisassembler::Fail; 1739 1740 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1741 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1742 1743 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1744 if (!hasArchitectedFlatScratch()) 1745 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1746 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1747 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1748 1749 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1750 return MCDisassembler::Fail; 1751 1752 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1753 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1754 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1755 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1756 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1757 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1758 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1759 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1760 1761 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1762 return MCDisassembler::Fail; 1763 1764 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP); 1765 1766 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1767 return MCDisassembler::Fail; 1768 1769 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE); 1770 1771 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1772 return MCDisassembler::Fail; 1773 1774 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1775 return MCDisassembler::Fail; 1776 1777 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL); 1778 1779 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0) 1780 return MCDisassembler::Fail; 1781 1782 if (isGFX10Plus()) { 1783 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1784 COMPUTE_PGM_RSRC1_WGP_MODE); 1785 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED); 1786 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS); 1787 } 1788 return MCDisassembler::Success; 1789 } 1790 1791 // NOLINTNEXTLINE(readability-identifier-naming) 1792 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1793 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1794 using namespace amdhsa; 1795 StringRef Indent = "\t"; 1796 if (hasArchitectedFlatScratch()) 1797 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1798 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1799 else 1800 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1801 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1802 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1803 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1804 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1805 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1806 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1807 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1808 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1809 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1810 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1811 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1812 1813 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1814 return MCDisassembler::Fail; 1815 1816 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1817 return MCDisassembler::Fail; 1818 1819 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1820 return MCDisassembler::Fail; 1821 1822 PRINT_DIRECTIVE( 1823 ".amdhsa_exception_fp_ieee_invalid_op", 1824 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1825 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1826 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1827 PRINT_DIRECTIVE( 1828 ".amdhsa_exception_fp_ieee_div_zero", 1829 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1830 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1831 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1832 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1833 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1834 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1835 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1836 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1837 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1838 1839 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1840 return MCDisassembler::Fail; 1841 1842 return MCDisassembler::Success; 1843 } 1844 1845 #undef PRINT_DIRECTIVE 1846 1847 MCDisassembler::DecodeStatus 1848 AMDGPUDisassembler::decodeKernelDescriptorDirective( 1849 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 1850 raw_string_ostream &KdStream) const { 1851 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1852 do { \ 1853 KdStream << Indent << DIRECTIVE " " \ 1854 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1855 } while (0) 1856 1857 uint16_t TwoByteBuffer = 0; 1858 uint32_t FourByteBuffer = 0; 1859 1860 StringRef ReservedBytes; 1861 StringRef Indent = "\t"; 1862 1863 assert(Bytes.size() == 64); 1864 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 1865 1866 switch (Cursor.tell()) { 1867 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 1868 FourByteBuffer = DE.getU32(Cursor); 1869 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 1870 << '\n'; 1871 return MCDisassembler::Success; 1872 1873 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 1874 FourByteBuffer = DE.getU32(Cursor); 1875 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 1876 << FourByteBuffer << '\n'; 1877 return MCDisassembler::Success; 1878 1879 case amdhsa::KERNARG_SIZE_OFFSET: 1880 FourByteBuffer = DE.getU32(Cursor); 1881 KdStream << Indent << ".amdhsa_kernarg_size " 1882 << FourByteBuffer << '\n'; 1883 return MCDisassembler::Success; 1884 1885 case amdhsa::RESERVED0_OFFSET: 1886 // 4 reserved bytes, must be 0. 1887 ReservedBytes = DE.getBytes(Cursor, 4); 1888 for (int I = 0; I < 4; ++I) { 1889 if (ReservedBytes[I] != 0) { 1890 return MCDisassembler::Fail; 1891 } 1892 } 1893 return MCDisassembler::Success; 1894 1895 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 1896 // KERNEL_CODE_ENTRY_BYTE_OFFSET 1897 // So far no directive controls this for Code Object V3, so simply skip for 1898 // disassembly. 1899 DE.skip(Cursor, 8); 1900 return MCDisassembler::Success; 1901 1902 case amdhsa::RESERVED1_OFFSET: 1903 // 20 reserved bytes, must be 0. 1904 ReservedBytes = DE.getBytes(Cursor, 20); 1905 for (int I = 0; I < 20; ++I) { 1906 if (ReservedBytes[I] != 0) { 1907 return MCDisassembler::Fail; 1908 } 1909 } 1910 return MCDisassembler::Success; 1911 1912 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 1913 // COMPUTE_PGM_RSRC3 1914 // - Only set for GFX10, GFX6-9 have this to be 0. 1915 // - Currently no directives directly control this. 1916 FourByteBuffer = DE.getU32(Cursor); 1917 if (!isGFX10Plus() && FourByteBuffer) { 1918 return MCDisassembler::Fail; 1919 } 1920 return MCDisassembler::Success; 1921 1922 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 1923 FourByteBuffer = DE.getU32(Cursor); 1924 if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) == 1925 MCDisassembler::Fail) { 1926 return MCDisassembler::Fail; 1927 } 1928 return MCDisassembler::Success; 1929 1930 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 1931 FourByteBuffer = DE.getU32(Cursor); 1932 if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) == 1933 MCDisassembler::Fail) { 1934 return MCDisassembler::Fail; 1935 } 1936 return MCDisassembler::Success; 1937 1938 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 1939 using namespace amdhsa; 1940 TwoByteBuffer = DE.getU16(Cursor); 1941 1942 if (!hasArchitectedFlatScratch()) 1943 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 1944 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 1945 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 1946 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 1947 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 1948 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 1949 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 1950 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 1951 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 1952 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 1953 if (!hasArchitectedFlatScratch()) 1954 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 1955 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 1956 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 1957 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 1958 1959 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 1960 return MCDisassembler::Fail; 1961 1962 // Reserved for GFX9 1963 if (isGFX9() && 1964 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 1965 return MCDisassembler::Fail; 1966 } else if (isGFX10Plus()) { 1967 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 1968 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 1969 } 1970 1971 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 1972 return MCDisassembler::Fail; 1973 1974 return MCDisassembler::Success; 1975 1976 case amdhsa::RESERVED2_OFFSET: 1977 // 6 bytes from here are reserved, must be 0. 1978 ReservedBytes = DE.getBytes(Cursor, 6); 1979 for (int I = 0; I < 6; ++I) { 1980 if (ReservedBytes[I] != 0) 1981 return MCDisassembler::Fail; 1982 } 1983 return MCDisassembler::Success; 1984 1985 default: 1986 llvm_unreachable("Unhandled index. Case statements cover everything."); 1987 return MCDisassembler::Fail; 1988 } 1989 #undef PRINT_DIRECTIVE 1990 } 1991 1992 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 1993 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 1994 // CP microcode requires the kernel descriptor to be 64 aligned. 1995 if (Bytes.size() != 64 || KdAddress % 64 != 0) 1996 return MCDisassembler::Fail; 1997 1998 std::string Kd; 1999 raw_string_ostream KdStream(Kd); 2000 KdStream << ".amdhsa_kernel " << KdName << '\n'; 2001 2002 DataExtractor::Cursor C(0); 2003 while (C && C.tell() < Bytes.size()) { 2004 MCDisassembler::DecodeStatus Status = 2005 decodeKernelDescriptorDirective(C, Bytes, KdStream); 2006 2007 cantFail(C.takeError()); 2008 2009 if (Status == MCDisassembler::Fail) 2010 return MCDisassembler::Fail; 2011 } 2012 KdStream << ".end_amdhsa_kernel\n"; 2013 outs() << KdStream.str(); 2014 return MCDisassembler::Success; 2015 } 2016 2017 Optional<MCDisassembler::DecodeStatus> 2018 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 2019 ArrayRef<uint8_t> Bytes, uint64_t Address, 2020 raw_ostream &CStream) const { 2021 // Right now only kernel descriptor needs to be handled. 2022 // We ignore all other symbols for target specific handling. 2023 // TODO: 2024 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2025 // Object V2 and V3 when symbols are marked protected. 2026 2027 // amd_kernel_code_t for Code Object V2. 2028 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2029 Size = 256; 2030 return MCDisassembler::Fail; 2031 } 2032 2033 // Code Object V3 kernel descriptors. 2034 StringRef Name = Symbol.Name; 2035 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) { 2036 Size = 64; // Size = 64 regardless of success or failure. 2037 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2038 } 2039 return None; 2040 } 2041 2042 //===----------------------------------------------------------------------===// 2043 // AMDGPUSymbolizer 2044 //===----------------------------------------------------------------------===// 2045 2046 // Try to find symbol name for specified label 2047 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2048 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2049 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2050 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2051 2052 if (!IsBranch) { 2053 return false; 2054 } 2055 2056 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2057 if (!Symbols) 2058 return false; 2059 2060 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2061 return Val.Addr == static_cast<uint64_t>(Value) && 2062 Val.Type == ELF::STT_NOTYPE; 2063 }); 2064 if (Result != Symbols->end()) { 2065 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2066 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2067 Inst.addOperand(MCOperand::createExpr(Add)); 2068 return true; 2069 } 2070 // Add to list of referenced addresses, so caller can synthesize a label. 2071 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2072 return false; 2073 } 2074 2075 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2076 int64_t Value, 2077 uint64_t Address) { 2078 llvm_unreachable("unimplemented"); 2079 } 2080 2081 //===----------------------------------------------------------------------===// 2082 // Initialization 2083 //===----------------------------------------------------------------------===// 2084 2085 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2086 LLVMOpInfoCallback /*GetOpInfo*/, 2087 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2088 void *DisInfo, 2089 MCContext *Ctx, 2090 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2091 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2092 } 2093 2094 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2095 const MCSubtargetInfo &STI, 2096 MCContext &Ctx) { 2097 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2098 } 2099 2100 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2101 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2102 createAMDGPUDisassembler); 2103 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2104 createAMDGPUSymbolizer); 2105 } 2106