1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, 49 MCInstrInfo const *MCII) : 50 MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 51 TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) { 52 53 // ToDo: AMDGPUDisassembler supports only VI ISA. 54 if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus()) 55 report_fatal_error("Disassembly not yet supported for subtarget"); 56 } 57 58 inline static MCDisassembler::DecodeStatus 59 addOperand(MCInst &Inst, const MCOperand& Opnd) { 60 Inst.addOperand(Opnd); 61 return Opnd.isValid() ? 62 MCDisassembler::Success : 63 MCDisassembler::Fail; 64 } 65 66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 67 uint16_t NameIdx) { 68 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 69 if (OpIdx != -1) { 70 auto I = MI.begin(); 71 std::advance(I, OpIdx); 72 MI.insert(I, Op); 73 } 74 return OpIdx; 75 } 76 77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm, 78 uint64_t Addr, 79 const MCDisassembler *Decoder) { 80 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 81 82 // Our branches take a simm16, but we need two extra bits to account for the 83 // factor of 4. 84 APInt SignedOffset(18, Imm * 4, true); 85 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 86 87 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 88 return MCDisassembler::Success; 89 return addOperand(Inst, MCOperand::createImm(Imm)); 90 } 91 92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 93 const MCDisassembler *Decoder) { 94 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 95 int64_t Offset; 96 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 97 Offset = Imm & 0xFFFFF; 98 } else { // GFX9+ supports 21-bit signed offsets. 99 Offset = SignExtend64<21>(Imm); 100 } 101 return addOperand(Inst, MCOperand::createImm(Offset)); 102 } 103 104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 105 const MCDisassembler *Decoder) { 106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 107 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 108 } 109 110 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 111 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 112 uint64_t /*Addr*/, \ 113 const MCDisassembler *Decoder) { \ 114 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 115 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 116 } 117 118 #define DECODE_OPERAND_REG(RegClass) \ 119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass) 120 121 DECODE_OPERAND_REG(VGPR_32) 122 DECODE_OPERAND_REG(VRegOrLds_32) 123 DECODE_OPERAND_REG(VS_32) 124 DECODE_OPERAND_REG(VS_64) 125 DECODE_OPERAND_REG(VS_128) 126 127 DECODE_OPERAND_REG(VReg_64) 128 DECODE_OPERAND_REG(VReg_96) 129 DECODE_OPERAND_REG(VReg_128) 130 DECODE_OPERAND_REG(VReg_256) 131 DECODE_OPERAND_REG(VReg_512) 132 DECODE_OPERAND_REG(VReg_1024) 133 134 DECODE_OPERAND_REG(SReg_32) 135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC) 136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI) 137 DECODE_OPERAND_REG(SRegOrLds_32) 138 DECODE_OPERAND_REG(SReg_64) 139 DECODE_OPERAND_REG(SReg_64_XEXEC) 140 DECODE_OPERAND_REG(SReg_128) 141 DECODE_OPERAND_REG(SReg_256) 142 DECODE_OPERAND_REG(SReg_512) 143 144 DECODE_OPERAND_REG(AGPR_32) 145 DECODE_OPERAND_REG(AReg_64) 146 DECODE_OPERAND_REG(AReg_128) 147 DECODE_OPERAND_REG(AReg_256) 148 DECODE_OPERAND_REG(AReg_512) 149 DECODE_OPERAND_REG(AReg_1024) 150 DECODE_OPERAND_REG(AV_32) 151 DECODE_OPERAND_REG(AV_64) 152 DECODE_OPERAND_REG(AV_128) 153 DECODE_OPERAND_REG(AVDst_128) 154 DECODE_OPERAND_REG(AVDst_512) 155 156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm, 157 uint64_t Addr, 158 const MCDisassembler *Decoder) { 159 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 160 return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm)); 161 } 162 163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm, 164 uint64_t Addr, 165 const MCDisassembler *Decoder) { 166 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 167 return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm)); 168 } 169 170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm, 171 uint64_t Addr, 172 const MCDisassembler *Decoder) { 173 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 174 return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm)); 175 } 176 177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm, 178 uint64_t Addr, 179 const MCDisassembler *Decoder) { 180 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 181 return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm)); 182 } 183 184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm, 185 uint64_t Addr, 186 const MCDisassembler *Decoder) { 187 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 188 return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm)); 189 } 190 191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm, 192 uint64_t Addr, 193 const MCDisassembler *Decoder) { 194 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 195 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512)); 196 } 197 198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm, 199 uint64_t Addr, 200 const MCDisassembler *Decoder) { 201 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 202 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512)); 203 } 204 205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm, 206 uint64_t Addr, 207 const MCDisassembler *Decoder) { 208 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 209 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512)); 210 } 211 212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm, 213 uint64_t Addr, 214 const MCDisassembler *Decoder) { 215 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 216 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512)); 217 } 218 219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm, 220 uint64_t Addr, 221 const MCDisassembler *Decoder) { 222 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 223 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512)); 224 } 225 226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm, 227 uint64_t Addr, 228 const MCDisassembler *Decoder) { 229 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 230 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm)); 231 } 232 233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm, 234 uint64_t Addr, 235 const MCDisassembler *Decoder) { 236 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 237 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm)); 238 } 239 240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm, 241 uint64_t Addr, 242 const MCDisassembler *Decoder) { 243 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 244 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm)); 245 } 246 247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm, 248 uint64_t Addr, 249 const MCDisassembler *Decoder) { 250 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 251 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm)); 252 } 253 254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm, 255 uint64_t Addr, 256 const MCDisassembler *Decoder) { 257 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 258 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm)); 259 } 260 261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm, 262 uint64_t Addr, 263 const MCDisassembler *Decoder) { 264 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 265 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 266 } 267 268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm, 269 uint64_t Addr, 270 const MCDisassembler *Decoder) { 271 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 272 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 273 } 274 275 static DecodeStatus 276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr, 277 const MCDisassembler *Decoder) { 278 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 279 return addOperand( 280 Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true)); 281 } 282 283 static DecodeStatus 284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr, 285 const MCDisassembler *Decoder) { 286 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 287 return addOperand( 288 Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true)); 289 } 290 291 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 292 const MCRegisterInfo *MRI) { 293 if (OpIdx < 0) 294 return false; 295 296 const MCOperand &Op = Inst.getOperand(OpIdx); 297 if (!Op.isReg()) 298 return false; 299 300 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 301 auto Reg = Sub ? Sub : Op.getReg(); 302 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 303 } 304 305 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 306 AMDGPUDisassembler::OpWidthTy Opw, 307 const MCDisassembler *Decoder) { 308 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 309 if (!DAsm->isGFX90A()) { 310 Imm &= 511; 311 } else { 312 // If atomic has both vdata and vdst their register classes are tied. 313 // The bit is decoded along with the vdst, first operand. We need to 314 // change register class to AGPR if vdst was AGPR. 315 // If a DS instruction has both data0 and data1 their register classes 316 // are also tied. 317 unsigned Opc = Inst.getOpcode(); 318 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 319 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 320 : AMDGPU::OpName::vdata; 321 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 322 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 323 if ((int)Inst.getNumOperands() == DataIdx) { 324 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 325 if (IsAGPROperand(Inst, DstIdx, MRI)) 326 Imm |= 512; 327 } 328 329 if (TSFlags & SIInstrFlags::DS) { 330 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 331 if ((int)Inst.getNumOperands() == Data2Idx && 332 IsAGPROperand(Inst, DataIdx, MRI)) 333 Imm |= 512; 334 } 335 } 336 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 337 } 338 339 static DecodeStatus 340 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 341 const MCDisassembler *Decoder) { 342 return decodeOperand_AVLdSt_Any(Inst, Imm, 343 AMDGPUDisassembler::OPW32, Decoder); 344 } 345 346 static DecodeStatus 347 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 348 const MCDisassembler *Decoder) { 349 return decodeOperand_AVLdSt_Any(Inst, Imm, 350 AMDGPUDisassembler::OPW64, Decoder); 351 } 352 353 static DecodeStatus 354 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 355 const MCDisassembler *Decoder) { 356 return decodeOperand_AVLdSt_Any(Inst, Imm, 357 AMDGPUDisassembler::OPW96, Decoder); 358 } 359 360 static DecodeStatus 361 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 362 const MCDisassembler *Decoder) { 363 return decodeOperand_AVLdSt_Any(Inst, Imm, 364 AMDGPUDisassembler::OPW128, Decoder); 365 } 366 367 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm, 368 uint64_t Addr, 369 const MCDisassembler *Decoder) { 370 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 371 return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm)); 372 } 373 374 #define DECODE_SDWA(DecName) \ 375 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 376 377 DECODE_SDWA(Src32) 378 DECODE_SDWA(Src16) 379 DECODE_SDWA(VopcDst) 380 381 #include "AMDGPUGenDisassemblerTables.inc" 382 383 //===----------------------------------------------------------------------===// 384 // 385 //===----------------------------------------------------------------------===// 386 387 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 388 assert(Bytes.size() >= sizeof(T)); 389 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data()); 390 Bytes = Bytes.slice(sizeof(T)); 391 return Res; 392 } 393 394 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 395 assert(Bytes.size() >= 12); 396 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>( 397 Bytes.data()); 398 Bytes = Bytes.slice(8); 399 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>( 400 Bytes.data()); 401 Bytes = Bytes.slice(4); 402 return DecoderUInt128(Lo, Hi); 403 } 404 405 // The disassembler is greedy, so we need to check FI operand value to 406 // not parse a dpp if the correct literal is not set. For dpp16 the 407 // autogenerated decoder checks the dpp literal 408 static bool isValidDPP8(const MCInst &MI) { 409 using namespace llvm::AMDGPU::DPP; 410 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 411 assert(FiIdx != -1); 412 if ((unsigned)FiIdx >= MI.getNumOperands()) 413 return false; 414 unsigned Fi = MI.getOperand(FiIdx).getImm(); 415 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 416 } 417 418 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 419 ArrayRef<uint8_t> Bytes_, 420 uint64_t Address, 421 raw_ostream &CS) const { 422 CommentStream = &CS; 423 bool IsSDWA = false; 424 425 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 426 Bytes = Bytes_.slice(0, MaxInstBytesNum); 427 428 DecodeStatus Res = MCDisassembler::Fail; 429 do { 430 // ToDo: better to switch encoding length using some bit predicate 431 // but it is unknown yet, so try all we can 432 433 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 434 // encodings 435 if (isGFX11Plus() && Bytes.size() >= 12 ) { 436 DecoderUInt128 DecW = eat12Bytes(Bytes); 437 Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, 438 Address); 439 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 440 break; 441 MI = MCInst(); // clear 442 Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, 443 Address); 444 if (Res) { 445 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 446 convertVOP3PDPPInst(MI); 447 break; 448 } 449 } 450 // Reinitialize Bytes 451 Bytes = Bytes_.slice(0, MaxInstBytesNum); 452 453 if (Bytes.size() >= 8) { 454 const uint64_t QW = eatBytes<uint64_t>(Bytes); 455 456 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { 457 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address); 458 if (Res) { 459 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 460 == -1) 461 break; 462 if (convertDPP8Inst(MI) == MCDisassembler::Success) 463 break; 464 MI = MCInst(); // clear 465 } 466 } 467 468 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address); 469 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 470 break; 471 MI = MCInst(); // clear 472 473 Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address); 474 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 475 break; 476 MI = MCInst(); // clear 477 478 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address); 479 if (Res) break; 480 481 Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address); 482 if (Res) 483 break; 484 485 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address); 486 if (Res) { IsSDWA = true; break; } 487 488 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address); 489 if (Res) { IsSDWA = true; break; } 490 491 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address); 492 if (Res) { IsSDWA = true; break; } 493 494 if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) { 495 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address); 496 if (Res) 497 break; 498 } 499 500 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 501 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 502 // table first so we print the correct name. 503 if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) { 504 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address); 505 if (Res) 506 break; 507 } 508 } 509 510 // Reinitialize Bytes as DPP64 could have eaten too much 511 Bytes = Bytes_.slice(0, MaxInstBytesNum); 512 513 // Try decode 32-bit instruction 514 if (Bytes.size() < 4) break; 515 const uint32_t DW = eatBytes<uint32_t>(Bytes); 516 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address); 517 if (Res) break; 518 519 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address); 520 if (Res) break; 521 522 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address); 523 if (Res) break; 524 525 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { 526 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address); 527 if (Res) 528 break; 529 } 530 531 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { 532 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address); 533 if (Res) break; 534 } 535 536 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address); 537 if (Res) break; 538 539 Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address); 540 if (Res) break; 541 542 if (Bytes.size() < 4) break; 543 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 544 545 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { 546 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address); 547 if (Res) 548 break; 549 } 550 551 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address); 552 if (Res) break; 553 554 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address); 555 if (Res) break; 556 557 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address); 558 if (Res) break; 559 560 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address); 561 if (Res) break; 562 563 Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address); 564 } while (false); 565 566 if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi || 567 MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 || 568 MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 || 569 MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 || 570 MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 || 571 MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi || 572 MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a || 573 MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi || 574 MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 || 575 MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 || 576 MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 || 577 MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 || 578 MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 || 579 MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx11)) { 580 // Insert dummy unused src2_modifiers. 581 insertNamedMCOperand(MI, MCOperand::createImm(0), 582 AMDGPU::OpName::src2_modifiers); 583 } 584 585 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 586 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 587 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 588 AMDGPU::OpName::cpol); 589 if (CPolPos != -1) { 590 unsigned CPol = 591 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 592 AMDGPU::CPol::GLC : 0; 593 if (MI.getNumOperands() <= (unsigned)CPolPos) { 594 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 595 AMDGPU::OpName::cpol); 596 } else if (CPol) { 597 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 598 } 599 } 600 } 601 602 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 603 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 604 (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) { 605 // GFX90A lost TFE, its place is occupied by ACC. 606 int TFEOpIdx = 607 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 608 if (TFEOpIdx != -1) { 609 auto TFEIter = MI.begin(); 610 std::advance(TFEIter, TFEOpIdx); 611 MI.insert(TFEIter, MCOperand::createImm(0)); 612 } 613 } 614 615 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 616 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 617 int SWZOpIdx = 618 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 619 if (SWZOpIdx != -1) { 620 auto SWZIter = MI.begin(); 621 std::advance(SWZIter, SWZOpIdx); 622 MI.insert(SWZIter, MCOperand::createImm(0)); 623 } 624 } 625 626 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 627 int VAddr0Idx = 628 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 629 int RsrcIdx = 630 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 631 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 632 if (VAddr0Idx >= 0 && NSAArgs > 0) { 633 unsigned NSAWords = (NSAArgs + 3) / 4; 634 if (Bytes.size() < 4 * NSAWords) { 635 Res = MCDisassembler::Fail; 636 } else { 637 for (unsigned i = 0; i < NSAArgs; ++i) { 638 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 639 auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass; 640 MI.insert(MI.begin() + VAddrIdx, 641 createRegOperand(VAddrRCID, Bytes[i])); 642 } 643 Bytes = Bytes.slice(4 * NSAWords); 644 } 645 } 646 647 if (Res) 648 Res = convertMIMGInst(MI); 649 } 650 651 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 652 Res = convertEXPInst(MI); 653 654 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 655 Res = convertVINTERPInst(MI); 656 657 if (Res && IsSDWA) 658 Res = convertSDWAInst(MI); 659 660 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 661 AMDGPU::OpName::vdst_in); 662 if (VDstIn_Idx != -1) { 663 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 664 MCOI::OperandConstraint::TIED_TO); 665 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 666 !MI.getOperand(VDstIn_Idx).isReg() || 667 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 668 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 669 MI.erase(&MI.getOperand(VDstIn_Idx)); 670 insertNamedMCOperand(MI, 671 MCOperand::createReg(MI.getOperand(Tied).getReg()), 672 AMDGPU::OpName::vdst_in); 673 } 674 } 675 676 int ImmLitIdx = 677 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 678 if (Res && ImmLitIdx != -1) 679 Res = convertFMAanyK(MI, ImmLitIdx); 680 681 // if the opcode was not recognized we'll assume a Size of 4 bytes 682 // (unless there are fewer bytes left) 683 Size = Res ? (MaxInstBytesNum - Bytes.size()) 684 : std::min((size_t)4, Bytes_.size()); 685 return Res; 686 } 687 688 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 689 if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) { 690 // The MCInst still has these fields even though they are no longer encoded 691 // in the GFX11 instruction. 692 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 693 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 694 } 695 return MCDisassembler::Success; 696 } 697 698 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 699 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 700 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 701 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 702 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) { 703 // The MCInst has this field that is not directly encoded in the 704 // instruction. 705 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 706 } 707 return MCDisassembler::Success; 708 } 709 710 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 711 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 712 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { 713 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1) 714 // VOPC - insert clamp 715 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 716 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { 717 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 718 if (SDst != -1) { 719 // VOPC - insert VCC register as sdst 720 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 721 AMDGPU::OpName::sdst); 722 } else { 723 // VOP1/2 - insert omod if present in instruction 724 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 725 } 726 } 727 return MCDisassembler::Success; 728 } 729 730 // We must check FI == literal to reject not genuine dpp8 insts, and we must 731 // first add optional MI operands to check FI 732 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 733 unsigned Opc = MI.getOpcode(); 734 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 735 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 736 convertVOP3PDPPInst(MI); 737 } else { 738 // Insert dummy unused src modifiers. 739 if (MI.getNumOperands() < DescNumOps && 740 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1) 741 insertNamedMCOperand(MI, MCOperand::createImm(0), 742 AMDGPU::OpName::src0_modifiers); 743 744 if (MI.getNumOperands() < DescNumOps && 745 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1) 746 insertNamedMCOperand(MI, MCOperand::createImm(0), 747 AMDGPU::OpName::src1_modifiers); 748 } 749 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 750 } 751 752 // Note that before gfx10, the MIMG encoding provided no information about 753 // VADDR size. Consequently, decoded instructions always show address as if it 754 // has 1 dword, which could be not really so. 755 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 756 757 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 758 AMDGPU::OpName::vdst); 759 760 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 761 AMDGPU::OpName::vdata); 762 int VAddr0Idx = 763 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 764 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 765 AMDGPU::OpName::dmask); 766 767 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 768 AMDGPU::OpName::tfe); 769 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 770 AMDGPU::OpName::d16); 771 772 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 773 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 774 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 775 776 assert(VDataIdx != -1); 777 if (BaseOpcode->BVH) { 778 // Add A16 operand for intersect_ray instructions 779 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) { 780 addOperand(MI, MCOperand::createImm(1)); 781 } 782 return MCDisassembler::Success; 783 } 784 785 bool IsAtomic = (VDstIdx != -1); 786 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4; 787 bool IsNSA = false; 788 unsigned AddrSize = Info->VAddrDwords; 789 790 if (isGFX10Plus()) { 791 unsigned DimIdx = 792 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 793 int A16Idx = 794 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 795 const AMDGPU::MIMGDimInfo *Dim = 796 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 797 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 798 799 AddrSize = 800 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 801 802 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 803 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA; 804 if (!IsNSA) { 805 if (AddrSize > 8) 806 AddrSize = 16; 807 } else { 808 if (AddrSize > Info->VAddrDwords) { 809 // The NSA encoding does not contain enough operands for the combination 810 // of base opcode / dimension. Should this be an error? 811 return MCDisassembler::Success; 812 } 813 } 814 } 815 816 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 817 unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u); 818 819 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 820 if (D16 && AMDGPU::hasPackedD16(STI)) { 821 DstSize = (DstSize + 1) / 2; 822 } 823 824 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 825 DstSize += 1; 826 827 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 828 return MCDisassembler::Success; 829 830 int NewOpcode = 831 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 832 if (NewOpcode == -1) 833 return MCDisassembler::Success; 834 835 // Widen the register to the correct number of enabled channels. 836 unsigned NewVdata = AMDGPU::NoRegister; 837 if (DstSize != Info->VDataDwords) { 838 auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass; 839 840 // Get first subregister of VData 841 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 842 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 843 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 844 845 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 846 &MRI.getRegClass(DataRCID)); 847 if (NewVdata == AMDGPU::NoRegister) { 848 // It's possible to encode this such that the low register + enabled 849 // components exceeds the register count. 850 return MCDisassembler::Success; 851 } 852 } 853 854 // If not using NSA on GFX10+, widen address register to correct size. 855 unsigned NewVAddr0 = AMDGPU::NoRegister; 856 if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) { 857 unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg(); 858 unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0); 859 VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0; 860 861 auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass; 862 NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0, 863 &MRI.getRegClass(AddrRCID)); 864 if (NewVAddr0 == AMDGPU::NoRegister) 865 return MCDisassembler::Success; 866 } 867 868 MI.setOpcode(NewOpcode); 869 870 if (NewVdata != AMDGPU::NoRegister) { 871 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 872 873 if (IsAtomic) { 874 // Atomic operations have an additional operand (a copy of data) 875 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 876 } 877 } 878 879 if (NewVAddr0 != AMDGPU::NoRegister) { 880 MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0); 881 } else if (IsNSA) { 882 assert(AddrSize <= Info->VAddrDwords); 883 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 884 MI.begin() + VAddr0Idx + Info->VAddrDwords); 885 } 886 887 return MCDisassembler::Success; 888 } 889 890 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 891 // decoder only adds to src_modifiers, so manually add the bits to the other 892 // operands. 893 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 894 unsigned Opc = MI.getOpcode(); 895 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 896 897 if (MI.getNumOperands() < DescNumOps && 898 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1) 899 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 900 901 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 902 AMDGPU::OpName::src1_modifiers, 903 AMDGPU::OpName::src2_modifiers}; 904 unsigned OpSel = 0; 905 unsigned OpSelHi = 0; 906 unsigned NegLo = 0; 907 unsigned NegHi = 0; 908 for (int J = 0; J < 3; ++J) { 909 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 910 if (OpIdx == -1) 911 break; 912 unsigned Val = MI.getOperand(OpIdx).getImm(); 913 914 OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 915 OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 916 NegLo |= !!(Val & SISrcMods::NEG) << J; 917 NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 918 } 919 920 if (MI.getNumOperands() < DescNumOps && 921 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1) 922 insertNamedMCOperand(MI, MCOperand::createImm(OpSel), 923 AMDGPU::OpName::op_sel); 924 if (MI.getNumOperands() < DescNumOps && 925 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi) != -1) 926 insertNamedMCOperand(MI, MCOperand::createImm(OpSelHi), 927 AMDGPU::OpName::op_sel_hi); 928 if (MI.getNumOperands() < DescNumOps && 929 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo) != -1) 930 insertNamedMCOperand(MI, MCOperand::createImm(NegLo), 931 AMDGPU::OpName::neg_lo); 932 if (MI.getNumOperands() < DescNumOps && 933 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi) != -1) 934 insertNamedMCOperand(MI, MCOperand::createImm(NegHi), 935 AMDGPU::OpName::neg_hi); 936 937 return MCDisassembler::Success; 938 } 939 940 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 941 int ImmLitIdx) const { 942 assert(HasLiteral && "Should have decoded a literal"); 943 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 944 unsigned DescNumOps = Desc.getNumOperands(); 945 assert(DescNumOps == MI.getNumOperands()); 946 for (unsigned I = 0; I < DescNumOps; ++I) { 947 auto &Op = MI.getOperand(I); 948 auto OpType = Desc.OpInfo[I].OperandType; 949 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 950 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 951 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 952 IsDeferredOp) 953 Op.setImm(Literal); 954 } 955 return MCDisassembler::Success; 956 } 957 958 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 959 return getContext().getRegisterInfo()-> 960 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 961 } 962 963 inline 964 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 965 const Twine& ErrMsg) const { 966 *CommentStream << "Error: " + ErrMsg; 967 968 // ToDo: add support for error operands to MCInst.h 969 // return MCOperand::createError(V); 970 return MCOperand(); 971 } 972 973 inline 974 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 975 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 976 } 977 978 inline 979 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 980 unsigned Val) const { 981 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 982 if (Val >= RegCl.getNumRegs()) 983 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 984 ": unknown register " + Twine(Val)); 985 return createRegOperand(RegCl.getRegister(Val)); 986 } 987 988 inline 989 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 990 unsigned Val) const { 991 // ToDo: SI/CI have 104 SGPRs, VI - 102 992 // Valery: here we accepting as much as we can, let assembler sort it out 993 int shift = 0; 994 switch (SRegClassID) { 995 case AMDGPU::SGPR_32RegClassID: 996 case AMDGPU::TTMP_32RegClassID: 997 break; 998 case AMDGPU::SGPR_64RegClassID: 999 case AMDGPU::TTMP_64RegClassID: 1000 shift = 1; 1001 break; 1002 case AMDGPU::SGPR_128RegClassID: 1003 case AMDGPU::TTMP_128RegClassID: 1004 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1005 // this bundle? 1006 case AMDGPU::SGPR_256RegClassID: 1007 case AMDGPU::TTMP_256RegClassID: 1008 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1009 // this bundle? 1010 case AMDGPU::SGPR_512RegClassID: 1011 case AMDGPU::TTMP_512RegClassID: 1012 shift = 2; 1013 break; 1014 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1015 // this bundle? 1016 default: 1017 llvm_unreachable("unhandled register class"); 1018 } 1019 1020 if (Val % (1 << shift)) { 1021 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1022 << ": scalar reg isn't aligned " << Val; 1023 } 1024 1025 return createRegOperand(SRegClassID, Val >> shift); 1026 } 1027 1028 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const { 1029 return decodeSrcOp(OPW32, Val); 1030 } 1031 1032 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const { 1033 return decodeSrcOp(OPW64, Val); 1034 } 1035 1036 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const { 1037 return decodeSrcOp(OPW128, Val); 1038 } 1039 1040 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const { 1041 return decodeSrcOp(OPW16, Val); 1042 } 1043 1044 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const { 1045 return decodeSrcOp(OPWV216, Val); 1046 } 1047 1048 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const { 1049 return decodeSrcOp(OPWV232, Val); 1050 } 1051 1052 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const { 1053 // Some instructions have operand restrictions beyond what the encoding 1054 // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra 1055 // high bit. 1056 Val &= 255; 1057 1058 return createRegOperand(AMDGPU::VGPR_32RegClassID, Val); 1059 } 1060 1061 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const { 1062 return decodeSrcOp(OPW32, Val); 1063 } 1064 1065 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const { 1066 return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255); 1067 } 1068 1069 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const { 1070 return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255); 1071 } 1072 1073 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const { 1074 return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255); 1075 } 1076 1077 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const { 1078 return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255); 1079 } 1080 1081 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const { 1082 return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255); 1083 } 1084 1085 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const { 1086 return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255); 1087 } 1088 1089 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const { 1090 return decodeSrcOp(OPW32, Val); 1091 } 1092 1093 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const { 1094 return decodeSrcOp(OPW64, Val); 1095 } 1096 1097 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const { 1098 return decodeSrcOp(OPW128, Val); 1099 } 1100 1101 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const { 1102 using namespace AMDGPU::EncValues; 1103 assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1. 1104 return decodeSrcOp(OPW128, Val | IS_VGPR); 1105 } 1106 1107 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const { 1108 using namespace AMDGPU::EncValues; 1109 assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1. 1110 return decodeSrcOp(OPW512, Val | IS_VGPR); 1111 } 1112 1113 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const { 1114 return createRegOperand(AMDGPU::VReg_64RegClassID, Val); 1115 } 1116 1117 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const { 1118 return createRegOperand(AMDGPU::VReg_96RegClassID, Val); 1119 } 1120 1121 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const { 1122 return createRegOperand(AMDGPU::VReg_128RegClassID, Val); 1123 } 1124 1125 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const { 1126 return createRegOperand(AMDGPU::VReg_256RegClassID, Val); 1127 } 1128 1129 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const { 1130 return createRegOperand(AMDGPU::VReg_512RegClassID, Val); 1131 } 1132 1133 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const { 1134 return createRegOperand(AMDGPU::VReg_1024RegClassID, Val); 1135 } 1136 1137 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const { 1138 // table-gen generated disassembler doesn't care about operand types 1139 // leaving only registry class so SSrc_32 operand turns into SReg_32 1140 // and therefore we accept immediates and literals here as well 1141 return decodeSrcOp(OPW32, Val); 1142 } 1143 1144 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC( 1145 unsigned Val) const { 1146 // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI 1147 return decodeOperand_SReg_32(Val); 1148 } 1149 1150 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI( 1151 unsigned Val) const { 1152 // SReg_32_XM0 is SReg_32 without EXEC_HI 1153 return decodeOperand_SReg_32(Val); 1154 } 1155 1156 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const { 1157 // table-gen generated disassembler doesn't care about operand types 1158 // leaving only registry class so SSrc_32 operand turns into SReg_32 1159 // and therefore we accept immediates and literals here as well 1160 return decodeSrcOp(OPW32, Val); 1161 } 1162 1163 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const { 1164 return decodeSrcOp(OPW64, Val); 1165 } 1166 1167 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const { 1168 return decodeSrcOp(OPW64, Val); 1169 } 1170 1171 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const { 1172 return decodeSrcOp(OPW128, Val); 1173 } 1174 1175 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const { 1176 return decodeDstOp(OPW256, Val); 1177 } 1178 1179 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const { 1180 return decodeDstOp(OPW512, Val); 1181 } 1182 1183 // Decode Literals for insts which always have a literal in the encoding 1184 MCOperand 1185 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1186 if (HasLiteral) { 1187 if (Literal != Val) 1188 return errOperand(Val, "More than one unique literal is illegal"); 1189 } 1190 HasLiteral = true; 1191 Literal = Val; 1192 return MCOperand::createImm(Literal); 1193 } 1194 1195 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { 1196 // For now all literal constants are supposed to be unsigned integer 1197 // ToDo: deal with signed/unsigned 64-bit integer constants 1198 // ToDo: deal with float/double constants 1199 if (!HasLiteral) { 1200 if (Bytes.size() < 4) { 1201 return errOperand(0, "cannot read literal, inst bytes left " + 1202 Twine(Bytes.size())); 1203 } 1204 HasLiteral = true; 1205 Literal = eatBytes<uint32_t>(Bytes); 1206 } 1207 return MCOperand::createImm(Literal); 1208 } 1209 1210 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1211 using namespace AMDGPU::EncValues; 1212 1213 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1214 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1215 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1216 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1217 // Cast prevents negative overflow. 1218 } 1219 1220 static int64_t getInlineImmVal32(unsigned Imm) { 1221 switch (Imm) { 1222 case 240: 1223 return FloatToBits(0.5f); 1224 case 241: 1225 return FloatToBits(-0.5f); 1226 case 242: 1227 return FloatToBits(1.0f); 1228 case 243: 1229 return FloatToBits(-1.0f); 1230 case 244: 1231 return FloatToBits(2.0f); 1232 case 245: 1233 return FloatToBits(-2.0f); 1234 case 246: 1235 return FloatToBits(4.0f); 1236 case 247: 1237 return FloatToBits(-4.0f); 1238 case 248: // 1 / (2 * PI) 1239 return 0x3e22f983; 1240 default: 1241 llvm_unreachable("invalid fp inline imm"); 1242 } 1243 } 1244 1245 static int64_t getInlineImmVal64(unsigned Imm) { 1246 switch (Imm) { 1247 case 240: 1248 return DoubleToBits(0.5); 1249 case 241: 1250 return DoubleToBits(-0.5); 1251 case 242: 1252 return DoubleToBits(1.0); 1253 case 243: 1254 return DoubleToBits(-1.0); 1255 case 244: 1256 return DoubleToBits(2.0); 1257 case 245: 1258 return DoubleToBits(-2.0); 1259 case 246: 1260 return DoubleToBits(4.0); 1261 case 247: 1262 return DoubleToBits(-4.0); 1263 case 248: // 1 / (2 * PI) 1264 return 0x3fc45f306dc9c882; 1265 default: 1266 llvm_unreachable("invalid fp inline imm"); 1267 } 1268 } 1269 1270 static int64_t getInlineImmVal16(unsigned Imm) { 1271 switch (Imm) { 1272 case 240: 1273 return 0x3800; 1274 case 241: 1275 return 0xB800; 1276 case 242: 1277 return 0x3C00; 1278 case 243: 1279 return 0xBC00; 1280 case 244: 1281 return 0x4000; 1282 case 245: 1283 return 0xC000; 1284 case 246: 1285 return 0x4400; 1286 case 247: 1287 return 0xC400; 1288 case 248: // 1 / (2 * PI) 1289 return 0x3118; 1290 default: 1291 llvm_unreachable("invalid fp inline imm"); 1292 } 1293 } 1294 1295 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) { 1296 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1297 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1298 1299 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1300 switch (Width) { 1301 case OPW32: 1302 case OPW128: // splat constants 1303 case OPW512: 1304 case OPW1024: 1305 case OPWV232: 1306 return MCOperand::createImm(getInlineImmVal32(Imm)); 1307 case OPW64: 1308 case OPW256: 1309 return MCOperand::createImm(getInlineImmVal64(Imm)); 1310 case OPW16: 1311 case OPWV216: 1312 return MCOperand::createImm(getInlineImmVal16(Imm)); 1313 default: 1314 llvm_unreachable("implement me"); 1315 } 1316 } 1317 1318 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1319 using namespace AMDGPU; 1320 1321 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1322 switch (Width) { 1323 default: // fall 1324 case OPW32: 1325 case OPW16: 1326 case OPWV216: 1327 return VGPR_32RegClassID; 1328 case OPW64: 1329 case OPWV232: return VReg_64RegClassID; 1330 case OPW96: return VReg_96RegClassID; 1331 case OPW128: return VReg_128RegClassID; 1332 case OPW160: return VReg_160RegClassID; 1333 case OPW256: return VReg_256RegClassID; 1334 case OPW512: return VReg_512RegClassID; 1335 case OPW1024: return VReg_1024RegClassID; 1336 } 1337 } 1338 1339 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1340 using namespace AMDGPU; 1341 1342 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1343 switch (Width) { 1344 default: // fall 1345 case OPW32: 1346 case OPW16: 1347 case OPWV216: 1348 return AGPR_32RegClassID; 1349 case OPW64: 1350 case OPWV232: return AReg_64RegClassID; 1351 case OPW96: return AReg_96RegClassID; 1352 case OPW128: return AReg_128RegClassID; 1353 case OPW160: return AReg_160RegClassID; 1354 case OPW256: return AReg_256RegClassID; 1355 case OPW512: return AReg_512RegClassID; 1356 case OPW1024: return AReg_1024RegClassID; 1357 } 1358 } 1359 1360 1361 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1362 using namespace AMDGPU; 1363 1364 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1365 switch (Width) { 1366 default: // fall 1367 case OPW32: 1368 case OPW16: 1369 case OPWV216: 1370 return SGPR_32RegClassID; 1371 case OPW64: 1372 case OPWV232: return SGPR_64RegClassID; 1373 case OPW96: return SGPR_96RegClassID; 1374 case OPW128: return SGPR_128RegClassID; 1375 case OPW160: return SGPR_160RegClassID; 1376 case OPW256: return SGPR_256RegClassID; 1377 case OPW512: return SGPR_512RegClassID; 1378 } 1379 } 1380 1381 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1382 using namespace AMDGPU; 1383 1384 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1385 switch (Width) { 1386 default: // fall 1387 case OPW32: 1388 case OPW16: 1389 case OPWV216: 1390 return TTMP_32RegClassID; 1391 case OPW64: 1392 case OPWV232: return TTMP_64RegClassID; 1393 case OPW128: return TTMP_128RegClassID; 1394 case OPW256: return TTMP_256RegClassID; 1395 case OPW512: return TTMP_512RegClassID; 1396 } 1397 } 1398 1399 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1400 using namespace AMDGPU::EncValues; 1401 1402 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1403 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1404 1405 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1406 } 1407 1408 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1409 bool MandatoryLiteral) const { 1410 using namespace AMDGPU::EncValues; 1411 1412 assert(Val < 1024); // enum10 1413 1414 bool IsAGPR = Val & 512; 1415 Val &= 511; 1416 1417 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1418 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1419 : getVgprClassId(Width), Val - VGPR_MIN); 1420 } 1421 if (Val <= SGPR_MAX) { 1422 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1423 static_assert(SGPR_MIN == 0, ""); 1424 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1425 } 1426 1427 int TTmpIdx = getTTmpIdx(Val); 1428 if (TTmpIdx >= 0) { 1429 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1430 } 1431 1432 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1433 return decodeIntImmed(Val); 1434 1435 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1436 return decodeFPImmed(Width, Val); 1437 1438 if (Val == LITERAL_CONST) { 1439 if (MandatoryLiteral) 1440 // Keep a sentinel value for deferred setting 1441 return MCOperand::createImm(LITERAL_CONST); 1442 else 1443 return decodeLiteralConstant(); 1444 } 1445 1446 switch (Width) { 1447 case OPW32: 1448 case OPW16: 1449 case OPWV216: 1450 return decodeSpecialReg32(Val); 1451 case OPW64: 1452 case OPWV232: 1453 return decodeSpecialReg64(Val); 1454 default: 1455 llvm_unreachable("unexpected immediate type"); 1456 } 1457 } 1458 1459 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const { 1460 using namespace AMDGPU::EncValues; 1461 1462 assert(Val < 128); 1463 assert(Width == OPW256 || Width == OPW512); 1464 1465 if (Val <= SGPR_MAX) { 1466 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1467 static_assert(SGPR_MIN == 0, ""); 1468 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1469 } 1470 1471 int TTmpIdx = getTTmpIdx(Val); 1472 if (TTmpIdx >= 0) { 1473 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1474 } 1475 1476 llvm_unreachable("unknown dst register"); 1477 } 1478 1479 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1480 using namespace AMDGPU; 1481 1482 switch (Val) { 1483 case 102: return createRegOperand(FLAT_SCR_LO); 1484 case 103: return createRegOperand(FLAT_SCR_HI); 1485 case 104: return createRegOperand(XNACK_MASK_LO); 1486 case 105: return createRegOperand(XNACK_MASK_HI); 1487 case 106: return createRegOperand(VCC_LO); 1488 case 107: return createRegOperand(VCC_HI); 1489 case 108: return createRegOperand(TBA_LO); 1490 case 109: return createRegOperand(TBA_HI); 1491 case 110: return createRegOperand(TMA_LO); 1492 case 111: return createRegOperand(TMA_HI); 1493 case 124: 1494 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1495 case 125: 1496 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1497 case 126: return createRegOperand(EXEC_LO); 1498 case 127: return createRegOperand(EXEC_HI); 1499 case 235: return createRegOperand(SRC_SHARED_BASE); 1500 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1501 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1502 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1503 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1504 case 251: return createRegOperand(SRC_VCCZ); 1505 case 252: return createRegOperand(SRC_EXECZ); 1506 case 253: return createRegOperand(SRC_SCC); 1507 case 254: return createRegOperand(LDS_DIRECT); 1508 default: break; 1509 } 1510 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1511 } 1512 1513 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1514 using namespace AMDGPU; 1515 1516 switch (Val) { 1517 case 102: return createRegOperand(FLAT_SCR); 1518 case 104: return createRegOperand(XNACK_MASK); 1519 case 106: return createRegOperand(VCC); 1520 case 108: return createRegOperand(TBA); 1521 case 110: return createRegOperand(TMA); 1522 case 124: 1523 if (isGFX11Plus()) 1524 return createRegOperand(SGPR_NULL); 1525 break; 1526 case 125: 1527 if (!isGFX11Plus()) 1528 return createRegOperand(SGPR_NULL); 1529 break; 1530 case 126: return createRegOperand(EXEC); 1531 case 235: return createRegOperand(SRC_SHARED_BASE); 1532 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1533 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1534 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1535 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1536 case 251: return createRegOperand(SRC_VCCZ); 1537 case 252: return createRegOperand(SRC_EXECZ); 1538 case 253: return createRegOperand(SRC_SCC); 1539 default: break; 1540 } 1541 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1542 } 1543 1544 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1545 const unsigned Val) const { 1546 using namespace AMDGPU::SDWA; 1547 using namespace AMDGPU::EncValues; 1548 1549 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 1550 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { 1551 // XXX: cast to int is needed to avoid stupid warning: 1552 // compare with unsigned is always true 1553 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1554 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1555 return createRegOperand(getVgprClassId(Width), 1556 Val - SDWA9EncValues::SRC_VGPR_MIN); 1557 } 1558 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1559 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1560 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1561 return createSRegOperand(getSgprClassId(Width), 1562 Val - SDWA9EncValues::SRC_SGPR_MIN); 1563 } 1564 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1565 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1566 return createSRegOperand(getTtmpClassId(Width), 1567 Val - SDWA9EncValues::SRC_TTMP_MIN); 1568 } 1569 1570 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1571 1572 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1573 return decodeIntImmed(SVal); 1574 1575 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1576 return decodeFPImmed(Width, SVal); 1577 1578 return decodeSpecialReg32(SVal); 1579 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { 1580 return createRegOperand(getVgprClassId(Width), Val); 1581 } 1582 llvm_unreachable("unsupported target"); 1583 } 1584 1585 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1586 return decodeSDWASrc(OPW16, Val); 1587 } 1588 1589 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1590 return decodeSDWASrc(OPW32, Val); 1591 } 1592 1593 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1594 using namespace AMDGPU::SDWA; 1595 1596 assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] || 1597 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) && 1598 "SDWAVopcDst should be present only on GFX9+"); 1599 1600 bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64]; 1601 1602 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1603 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1604 1605 int TTmpIdx = getTTmpIdx(Val); 1606 if (TTmpIdx >= 0) { 1607 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1608 return createSRegOperand(TTmpClsId, TTmpIdx); 1609 } else if (Val > SGPR_MAX) { 1610 return IsWave64 ? decodeSpecialReg64(Val) 1611 : decodeSpecialReg32(Val); 1612 } else { 1613 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1614 } 1615 } else { 1616 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1617 } 1618 } 1619 1620 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1621 return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ? 1622 decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val); 1623 } 1624 1625 bool AMDGPUDisassembler::isVI() const { 1626 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1627 } 1628 1629 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1630 1631 bool AMDGPUDisassembler::isGFX90A() const { 1632 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; 1633 } 1634 1635 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1636 1637 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1638 1639 bool AMDGPUDisassembler::isGFX10Plus() const { 1640 return AMDGPU::isGFX10Plus(STI); 1641 } 1642 1643 bool AMDGPUDisassembler::isGFX11() const { 1644 return STI.getFeatureBits()[AMDGPU::FeatureGFX11]; 1645 } 1646 1647 bool AMDGPUDisassembler::isGFX11Plus() const { 1648 return AMDGPU::isGFX11Plus(STI); 1649 } 1650 1651 1652 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1653 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch]; 1654 } 1655 1656 //===----------------------------------------------------------------------===// 1657 // AMDGPU specific symbol handling 1658 //===----------------------------------------------------------------------===// 1659 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1660 do { \ 1661 KdStream << Indent << DIRECTIVE " " \ 1662 << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1663 } while (0) 1664 1665 // NOLINTNEXTLINE(readability-identifier-naming) 1666 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1667 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1668 using namespace amdhsa; 1669 StringRef Indent = "\t"; 1670 1671 // We cannot accurately backward compute #VGPRs used from 1672 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1673 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1674 // simply calculate the inverse of what the assembler does. 1675 1676 uint32_t GranulatedWorkitemVGPRCount = 1677 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >> 1678 COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT; 1679 1680 uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) * 1681 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI); 1682 1683 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1684 1685 // We cannot backward compute values used to calculate 1686 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1687 // directives can't be computed: 1688 // .amdhsa_reserve_vcc 1689 // .amdhsa_reserve_flat_scratch 1690 // .amdhsa_reserve_xnack_mask 1691 // They take their respective default values if not specified in the assembly. 1692 // 1693 // GRANULATED_WAVEFRONT_SGPR_COUNT 1694 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1695 // 1696 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1697 // are set to 0. So while disassembling we consider that: 1698 // 1699 // GRANULATED_WAVEFRONT_SGPR_COUNT 1700 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1701 // 1702 // The disassembler cannot recover the original values of those 3 directives. 1703 1704 uint32_t GranulatedWavefrontSGPRCount = 1705 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >> 1706 COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT; 1707 1708 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1709 return MCDisassembler::Fail; 1710 1711 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1712 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1713 1714 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1715 if (!hasArchitectedFlatScratch()) 1716 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1717 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1718 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1719 1720 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1721 return MCDisassembler::Fail; 1722 1723 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1724 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1725 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1726 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1727 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1728 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1729 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1730 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1731 1732 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1733 return MCDisassembler::Fail; 1734 1735 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP); 1736 1737 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1738 return MCDisassembler::Fail; 1739 1740 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE); 1741 1742 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1743 return MCDisassembler::Fail; 1744 1745 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1746 return MCDisassembler::Fail; 1747 1748 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL); 1749 1750 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0) 1751 return MCDisassembler::Fail; 1752 1753 if (isGFX10Plus()) { 1754 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1755 COMPUTE_PGM_RSRC1_WGP_MODE); 1756 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED); 1757 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS); 1758 } 1759 return MCDisassembler::Success; 1760 } 1761 1762 // NOLINTNEXTLINE(readability-identifier-naming) 1763 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1764 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1765 using namespace amdhsa; 1766 StringRef Indent = "\t"; 1767 if (hasArchitectedFlatScratch()) 1768 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1769 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1770 else 1771 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1772 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1773 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1774 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1775 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1776 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1777 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1778 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1779 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1780 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1781 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1782 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1783 1784 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1785 return MCDisassembler::Fail; 1786 1787 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1788 return MCDisassembler::Fail; 1789 1790 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1791 return MCDisassembler::Fail; 1792 1793 PRINT_DIRECTIVE( 1794 ".amdhsa_exception_fp_ieee_invalid_op", 1795 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1796 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1797 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1798 PRINT_DIRECTIVE( 1799 ".amdhsa_exception_fp_ieee_div_zero", 1800 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1801 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1802 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1803 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1804 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1805 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1806 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1807 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1808 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1809 1810 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1811 return MCDisassembler::Fail; 1812 1813 return MCDisassembler::Success; 1814 } 1815 1816 #undef PRINT_DIRECTIVE 1817 1818 MCDisassembler::DecodeStatus 1819 AMDGPUDisassembler::decodeKernelDescriptorDirective( 1820 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 1821 raw_string_ostream &KdStream) const { 1822 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1823 do { \ 1824 KdStream << Indent << DIRECTIVE " " \ 1825 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1826 } while (0) 1827 1828 uint16_t TwoByteBuffer = 0; 1829 uint32_t FourByteBuffer = 0; 1830 1831 StringRef ReservedBytes; 1832 StringRef Indent = "\t"; 1833 1834 assert(Bytes.size() == 64); 1835 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 1836 1837 switch (Cursor.tell()) { 1838 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 1839 FourByteBuffer = DE.getU32(Cursor); 1840 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 1841 << '\n'; 1842 return MCDisassembler::Success; 1843 1844 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 1845 FourByteBuffer = DE.getU32(Cursor); 1846 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 1847 << FourByteBuffer << '\n'; 1848 return MCDisassembler::Success; 1849 1850 case amdhsa::KERNARG_SIZE_OFFSET: 1851 FourByteBuffer = DE.getU32(Cursor); 1852 KdStream << Indent << ".amdhsa_kernarg_size " 1853 << FourByteBuffer << '\n'; 1854 return MCDisassembler::Success; 1855 1856 case amdhsa::RESERVED0_OFFSET: 1857 // 4 reserved bytes, must be 0. 1858 ReservedBytes = DE.getBytes(Cursor, 4); 1859 for (int I = 0; I < 4; ++I) { 1860 if (ReservedBytes[I] != 0) { 1861 return MCDisassembler::Fail; 1862 } 1863 } 1864 return MCDisassembler::Success; 1865 1866 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 1867 // KERNEL_CODE_ENTRY_BYTE_OFFSET 1868 // So far no directive controls this for Code Object V3, so simply skip for 1869 // disassembly. 1870 DE.skip(Cursor, 8); 1871 return MCDisassembler::Success; 1872 1873 case amdhsa::RESERVED1_OFFSET: 1874 // 20 reserved bytes, must be 0. 1875 ReservedBytes = DE.getBytes(Cursor, 20); 1876 for (int I = 0; I < 20; ++I) { 1877 if (ReservedBytes[I] != 0) { 1878 return MCDisassembler::Fail; 1879 } 1880 } 1881 return MCDisassembler::Success; 1882 1883 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 1884 // COMPUTE_PGM_RSRC3 1885 // - Only set for GFX10, GFX6-9 have this to be 0. 1886 // - Currently no directives directly control this. 1887 FourByteBuffer = DE.getU32(Cursor); 1888 if (!isGFX10Plus() && FourByteBuffer) { 1889 return MCDisassembler::Fail; 1890 } 1891 return MCDisassembler::Success; 1892 1893 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 1894 FourByteBuffer = DE.getU32(Cursor); 1895 if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) == 1896 MCDisassembler::Fail) { 1897 return MCDisassembler::Fail; 1898 } 1899 return MCDisassembler::Success; 1900 1901 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 1902 FourByteBuffer = DE.getU32(Cursor); 1903 if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) == 1904 MCDisassembler::Fail) { 1905 return MCDisassembler::Fail; 1906 } 1907 return MCDisassembler::Success; 1908 1909 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 1910 using namespace amdhsa; 1911 TwoByteBuffer = DE.getU16(Cursor); 1912 1913 if (!hasArchitectedFlatScratch()) 1914 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 1915 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 1916 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 1917 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 1918 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 1919 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 1920 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 1921 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 1922 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 1923 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 1924 if (!hasArchitectedFlatScratch()) 1925 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 1926 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 1927 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 1928 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 1929 1930 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 1931 return MCDisassembler::Fail; 1932 1933 // Reserved for GFX9 1934 if (isGFX9() && 1935 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 1936 return MCDisassembler::Fail; 1937 } else if (isGFX10Plus()) { 1938 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 1939 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 1940 } 1941 1942 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 1943 return MCDisassembler::Fail; 1944 1945 return MCDisassembler::Success; 1946 1947 case amdhsa::RESERVED2_OFFSET: 1948 // 6 bytes from here are reserved, must be 0. 1949 ReservedBytes = DE.getBytes(Cursor, 6); 1950 for (int I = 0; I < 6; ++I) { 1951 if (ReservedBytes[I] != 0) 1952 return MCDisassembler::Fail; 1953 } 1954 return MCDisassembler::Success; 1955 1956 default: 1957 llvm_unreachable("Unhandled index. Case statements cover everything."); 1958 return MCDisassembler::Fail; 1959 } 1960 #undef PRINT_DIRECTIVE 1961 } 1962 1963 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 1964 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 1965 // CP microcode requires the kernel descriptor to be 64 aligned. 1966 if (Bytes.size() != 64 || KdAddress % 64 != 0) 1967 return MCDisassembler::Fail; 1968 1969 std::string Kd; 1970 raw_string_ostream KdStream(Kd); 1971 KdStream << ".amdhsa_kernel " << KdName << '\n'; 1972 1973 DataExtractor::Cursor C(0); 1974 while (C && C.tell() < Bytes.size()) { 1975 MCDisassembler::DecodeStatus Status = 1976 decodeKernelDescriptorDirective(C, Bytes, KdStream); 1977 1978 cantFail(C.takeError()); 1979 1980 if (Status == MCDisassembler::Fail) 1981 return MCDisassembler::Fail; 1982 } 1983 KdStream << ".end_amdhsa_kernel\n"; 1984 outs() << KdStream.str(); 1985 return MCDisassembler::Success; 1986 } 1987 1988 Optional<MCDisassembler::DecodeStatus> 1989 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 1990 ArrayRef<uint8_t> Bytes, uint64_t Address, 1991 raw_ostream &CStream) const { 1992 // Right now only kernel descriptor needs to be handled. 1993 // We ignore all other symbols for target specific handling. 1994 // TODO: 1995 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 1996 // Object V2 and V3 when symbols are marked protected. 1997 1998 // amd_kernel_code_t for Code Object V2. 1999 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2000 Size = 256; 2001 return MCDisassembler::Fail; 2002 } 2003 2004 // Code Object V3 kernel descriptors. 2005 StringRef Name = Symbol.Name; 2006 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) { 2007 Size = 64; // Size = 64 regardless of success or failure. 2008 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2009 } 2010 return None; 2011 } 2012 2013 //===----------------------------------------------------------------------===// 2014 // AMDGPUSymbolizer 2015 //===----------------------------------------------------------------------===// 2016 2017 // Try to find symbol name for specified label 2018 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2019 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2020 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2021 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2022 2023 if (!IsBranch) { 2024 return false; 2025 } 2026 2027 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2028 if (!Symbols) 2029 return false; 2030 2031 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2032 return Val.Addr == static_cast<uint64_t>(Value) && 2033 Val.Type == ELF::STT_NOTYPE; 2034 }); 2035 if (Result != Symbols->end()) { 2036 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2037 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2038 Inst.addOperand(MCOperand::createExpr(Add)); 2039 return true; 2040 } 2041 // Add to list of referenced addresses, so caller can synthesize a label. 2042 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2043 return false; 2044 } 2045 2046 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2047 int64_t Value, 2048 uint64_t Address) { 2049 llvm_unreachable("unimplemented"); 2050 } 2051 2052 //===----------------------------------------------------------------------===// 2053 // Initialization 2054 //===----------------------------------------------------------------------===// 2055 2056 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2057 LLVMOpInfoCallback /*GetOpInfo*/, 2058 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2059 void *DisInfo, 2060 MCContext *Ctx, 2061 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2062 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2063 } 2064 2065 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2066 const MCSubtargetInfo &STI, 2067 MCContext &Ctx) { 2068 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2069 } 2070 2071 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2072 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2073 createAMDGPUDisassembler); 2074 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2075 createAMDGPUSymbolizer); 2076 } 2077