1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCFixedLenDisassembler.h"
28 #include "llvm/Support/AMDHSAKernelDescriptor.h"
29 #include "llvm/Support/TargetRegistry.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "amdgpu-disassembler"
34 
35 #define SGPR_MAX                                                               \
36   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
37                  : AMDGPU::EncValues::SGPR_MAX_SI)
38 
39 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
40 
41 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
42                                        MCContext &Ctx,
43                                        MCInstrInfo const *MCII) :
44   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
45   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
46 
47   // ToDo: AMDGPUDisassembler supports only VI ISA.
48   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
49     report_fatal_error("Disassembly not yet supported for subtarget");
50 }
51 
52 inline static MCDisassembler::DecodeStatus
53 addOperand(MCInst &Inst, const MCOperand& Opnd) {
54   Inst.addOperand(Opnd);
55   return Opnd.isValid() ?
56     MCDisassembler::Success :
57     MCDisassembler::Fail;
58 }
59 
60 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
61                                 uint16_t NameIdx) {
62   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
63   if (OpIdx != -1) {
64     auto I = MI.begin();
65     std::advance(I, OpIdx);
66     MI.insert(I, Op);
67   }
68   return OpIdx;
69 }
70 
71 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
72                                        uint64_t Addr, const void *Decoder) {
73   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
74 
75   // Our branches take a simm16, but we need two extra bits to account for the
76   // factor of 4.
77   APInt SignedOffset(18, Imm * 4, true);
78   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
79 
80   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
81     return MCDisassembler::Success;
82   return addOperand(Inst, MCOperand::createImm(Imm));
83 }
84 
85 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm,
86                                      uint64_t Addr, const void *Decoder) {
87   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
88   int64_t Offset;
89   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
90     Offset = Imm & 0xFFFFF;
91   } else {                    // GFX9+ supports 21-bit signed offsets.
92     Offset = SignExtend64<21>(Imm);
93   }
94   return addOperand(Inst, MCOperand::createImm(Offset));
95 }
96 
97 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val,
98                                   uint64_t Addr, const void *Decoder) {
99   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
100   return addOperand(Inst, DAsm->decodeBoolReg(Val));
101 }
102 
103 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \
104 static DecodeStatus StaticDecoderName(MCInst &Inst, \
105                                        unsigned Imm, \
106                                        uint64_t /*Addr*/, \
107                                        const void *Decoder) { \
108   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \
109   return addOperand(Inst, DAsm->DecoderName(Imm)); \
110 }
111 
112 #define DECODE_OPERAND_REG(RegClass) \
113 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
114 
115 DECODE_OPERAND_REG(VGPR_32)
116 DECODE_OPERAND_REG(VRegOrLds_32)
117 DECODE_OPERAND_REG(VS_32)
118 DECODE_OPERAND_REG(VS_64)
119 DECODE_OPERAND_REG(VS_128)
120 
121 DECODE_OPERAND_REG(VReg_64)
122 DECODE_OPERAND_REG(VReg_96)
123 DECODE_OPERAND_REG(VReg_128)
124 DECODE_OPERAND_REG(VReg_256)
125 DECODE_OPERAND_REG(VReg_512)
126 
127 DECODE_OPERAND_REG(SReg_32)
128 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
129 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
130 DECODE_OPERAND_REG(SRegOrLds_32)
131 DECODE_OPERAND_REG(SReg_64)
132 DECODE_OPERAND_REG(SReg_64_XEXEC)
133 DECODE_OPERAND_REG(SReg_128)
134 DECODE_OPERAND_REG(SReg_256)
135 DECODE_OPERAND_REG(SReg_512)
136 
137 DECODE_OPERAND_REG(AGPR_32)
138 DECODE_OPERAND_REG(AReg_128)
139 DECODE_OPERAND_REG(AReg_512)
140 DECODE_OPERAND_REG(AReg_1024)
141 DECODE_OPERAND_REG(AV_32)
142 DECODE_OPERAND_REG(AV_64)
143 
144 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
145                                          unsigned Imm,
146                                          uint64_t Addr,
147                                          const void *Decoder) {
148   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
149   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
150 }
151 
152 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst,
153                                          unsigned Imm,
154                                          uint64_t Addr,
155                                          const void *Decoder) {
156   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
157   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
158 }
159 
160 static DecodeStatus decodeOperand_VS_16(MCInst &Inst,
161                                         unsigned Imm,
162                                         uint64_t Addr,
163                                         const void *Decoder) {
164   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
165   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
166 }
167 
168 static DecodeStatus decodeOperand_VS_32(MCInst &Inst,
169                                         unsigned Imm,
170                                         uint64_t Addr,
171                                         const void *Decoder) {
172   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
173   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
174 }
175 
176 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst,
177                                            unsigned Imm,
178                                            uint64_t Addr,
179                                            const void *Decoder) {
180   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
181   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
182 }
183 
184 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst,
185                                            unsigned Imm,
186                                            uint64_t Addr,
187                                            const void *Decoder) {
188   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
189   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
190 }
191 
192 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst,
193                                             unsigned Imm,
194                                             uint64_t Addr,
195                                             const void *Decoder) {
196   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
197   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
198 }
199 
200 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst,
201                                           unsigned Imm,
202                                           uint64_t Addr,
203                                           const void *Decoder) {
204   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
205   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
206 }
207 
208 static DecodeStatus decodeOperand_VGPR_32(MCInst &Inst,
209                                          unsigned Imm,
210                                          uint64_t Addr,
211                                          const void *Decoder) {
212   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
213   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW32, Imm));
214 }
215 
216 #define DECODE_SDWA(DecName) \
217 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
218 
219 DECODE_SDWA(Src32)
220 DECODE_SDWA(Src16)
221 DECODE_SDWA(VopcDst)
222 
223 #include "AMDGPUGenDisassemblerTables.inc"
224 
225 //===----------------------------------------------------------------------===//
226 //
227 //===----------------------------------------------------------------------===//
228 
229 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
230   assert(Bytes.size() >= sizeof(T));
231   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
232   Bytes = Bytes.slice(sizeof(T));
233   return Res;
234 }
235 
236 DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
237                                                MCInst &MI,
238                                                uint64_t Inst,
239                                                uint64_t Address) const {
240   assert(MI.getOpcode() == 0);
241   assert(MI.getNumOperands() == 0);
242   MCInst TmpInst;
243   HasLiteral = false;
244   const auto SavedBytes = Bytes;
245   if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
246     MI = TmpInst;
247     return MCDisassembler::Success;
248   }
249   Bytes = SavedBytes;
250   return MCDisassembler::Fail;
251 }
252 
253 static bool isValidDPP8(const MCInst &MI) {
254   using namespace llvm::AMDGPU::DPP;
255   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
256   assert(FiIdx != -1);
257   if ((unsigned)FiIdx >= MI.getNumOperands())
258     return false;
259   unsigned Fi = MI.getOperand(FiIdx).getImm();
260   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
261 }
262 
263 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
264                                                 ArrayRef<uint8_t> Bytes_,
265                                                 uint64_t Address,
266                                                 raw_ostream &CS) const {
267   CommentStream = &CS;
268   bool IsSDWA = false;
269 
270   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
271   Bytes = Bytes_.slice(0, MaxInstBytesNum);
272 
273   DecodeStatus Res = MCDisassembler::Fail;
274   do {
275     // ToDo: better to switch encoding length using some bit predicate
276     // but it is unknown yet, so try all we can
277 
278     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
279     // encodings
280     if (Bytes.size() >= 8) {
281       const uint64_t QW = eatBytes<uint64_t>(Bytes);
282 
283       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
284         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
285         if (Res) {
286           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
287               == -1)
288             break;
289           if (convertDPP8Inst(MI) == MCDisassembler::Success)
290             break;
291           MI = MCInst(); // clear
292         }
293       }
294 
295       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
296       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
297         break;
298 
299       MI = MCInst(); // clear
300 
301       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
302       if (Res) break;
303 
304       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
305       if (Res) { IsSDWA = true;  break; }
306 
307       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
308       if (Res) { IsSDWA = true;  break; }
309 
310       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
311       if (Res) { IsSDWA = true;  break; }
312 
313       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
314         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
315         if (Res)
316           break;
317       }
318 
319       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
320       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
321       // table first so we print the correct name.
322       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
323         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
324         if (Res)
325           break;
326       }
327     }
328 
329     // Reinitialize Bytes as DPP64 could have eaten too much
330     Bytes = Bytes_.slice(0, MaxInstBytesNum);
331 
332     // Try decode 32-bit instruction
333     if (Bytes.size() < 4) break;
334     const uint32_t DW = eatBytes<uint32_t>(Bytes);
335     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
336     if (Res) break;
337 
338     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
339     if (Res) break;
340 
341     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
342     if (Res) break;
343 
344     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
345       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
346       if (Res) break;
347     }
348 
349     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
350     if (Res) break;
351 
352     if (Bytes.size() < 4) break;
353     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
354     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
355     if (Res) break;
356 
357     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
358     if (Res) break;
359 
360     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
361     if (Res) break;
362 
363     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
364   } while (false);
365 
366   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
367               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
368               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
369               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
370               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
371               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
372               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
373               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
374               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
375               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
376     // Insert dummy unused src2_modifiers.
377     insertNamedMCOperand(MI, MCOperand::createImm(0),
378                          AMDGPU::OpName::src2_modifiers);
379   }
380 
381   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
382                         (SIInstrFlags::MUBUF | SIInstrFlags::FLAT)) &&
383       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::glc1) != -1) {
384     insertNamedMCOperand(MI, MCOperand::createImm(1), AMDGPU::OpName::glc1);
385   }
386 
387   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
388     int VAddr0Idx =
389         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
390     int RsrcIdx =
391         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
392     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
393     if (VAddr0Idx >= 0 && NSAArgs > 0) {
394       unsigned NSAWords = (NSAArgs + 3) / 4;
395       if (Bytes.size() < 4 * NSAWords) {
396         Res = MCDisassembler::Fail;
397       } else {
398         for (unsigned i = 0; i < NSAArgs; ++i) {
399           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
400                     decodeOperand_VGPR_32(Bytes[i]));
401         }
402         Bytes = Bytes.slice(4 * NSAWords);
403       }
404     }
405 
406     if (Res)
407       Res = convertMIMGInst(MI);
408   }
409 
410   if (Res && IsSDWA)
411     Res = convertSDWAInst(MI);
412 
413   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
414                                               AMDGPU::OpName::vdst_in);
415   if (VDstIn_Idx != -1) {
416     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
417                            MCOI::OperandConstraint::TIED_TO);
418     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
419          !MI.getOperand(VDstIn_Idx).isReg() ||
420          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
421       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
422         MI.erase(&MI.getOperand(VDstIn_Idx));
423       insertNamedMCOperand(MI,
424         MCOperand::createReg(MI.getOperand(Tied).getReg()),
425         AMDGPU::OpName::vdst_in);
426     }
427   }
428 
429   // if the opcode was not recognized we'll assume a Size of 4 bytes
430   // (unless there are fewer bytes left)
431   Size = Res ? (MaxInstBytesNum - Bytes.size())
432              : std::min((size_t)4, Bytes_.size());
433   return Res;
434 }
435 
436 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
437   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
438       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
439     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
440       // VOPC - insert clamp
441       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
442   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
443     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
444     if (SDst != -1) {
445       // VOPC - insert VCC register as sdst
446       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
447                            AMDGPU::OpName::sdst);
448     } else {
449       // VOP1/2 - insert omod if present in instruction
450       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
451     }
452   }
453   return MCDisassembler::Success;
454 }
455 
456 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
457   unsigned Opc = MI.getOpcode();
458   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
459 
460   // Insert dummy unused src modifiers.
461   if (MI.getNumOperands() < DescNumOps &&
462       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
463     insertNamedMCOperand(MI, MCOperand::createImm(0),
464                          AMDGPU::OpName::src0_modifiers);
465 
466   if (MI.getNumOperands() < DescNumOps &&
467       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
468     insertNamedMCOperand(MI, MCOperand::createImm(0),
469                          AMDGPU::OpName::src1_modifiers);
470 
471   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
472 }
473 
474 // Note that before gfx10, the MIMG encoding provided no information about
475 // VADDR size. Consequently, decoded instructions always show address as if it
476 // has 1 dword, which could be not really so.
477 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
478 
479   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
480                                            AMDGPU::OpName::vdst);
481 
482   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
483                                             AMDGPU::OpName::vdata);
484   int VAddr0Idx =
485       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
486   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
487                                             AMDGPU::OpName::dmask);
488 
489   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
490                                             AMDGPU::OpName::tfe);
491   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
492                                             AMDGPU::OpName::d16);
493 
494   assert(VDataIdx != -1);
495   if (DMaskIdx == -1 || TFEIdx == -1) {// intersect_ray
496     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
497       assert(MI.getOpcode() == AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_sa ||
498              MI.getOpcode() == AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa ||
499              MI.getOpcode() == AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_sa ||
500              MI.getOpcode() == AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa);
501       addOperand(MI, MCOperand::createImm(1));
502     }
503     return MCDisassembler::Success;
504   }
505 
506   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
507   bool IsAtomic = (VDstIdx != -1);
508   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
509 
510   bool IsNSA = false;
511   unsigned AddrSize = Info->VAddrDwords;
512 
513   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
514     unsigned DimIdx =
515         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
516     const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
517         AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
518     const AMDGPU::MIMGDimInfo *Dim =
519         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
520 
521     AddrSize = BaseOpcode->NumExtraArgs +
522                (BaseOpcode->Gradients ? Dim->NumGradients : 0) +
523                (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
524                (BaseOpcode->LodOrClampOrMip ? 1 : 0);
525     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
526     if (!IsNSA) {
527       if (AddrSize > 8)
528         AddrSize = 16;
529       else if (AddrSize > 4)
530         AddrSize = 8;
531     } else {
532       if (AddrSize > Info->VAddrDwords) {
533         // The NSA encoding does not contain enough operands for the combination
534         // of base opcode / dimension. Should this be an error?
535         return MCDisassembler::Success;
536       }
537     }
538   }
539 
540   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
541   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
542 
543   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
544   if (D16 && AMDGPU::hasPackedD16(STI)) {
545     DstSize = (DstSize + 1) / 2;
546   }
547 
548   // FIXME: Add tfe support
549   if (MI.getOperand(TFEIdx).getImm())
550     return MCDisassembler::Success;
551 
552   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
553     return MCDisassembler::Success;
554 
555   int NewOpcode =
556       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
557   if (NewOpcode == -1)
558     return MCDisassembler::Success;
559 
560   // Widen the register to the correct number of enabled channels.
561   unsigned NewVdata = AMDGPU::NoRegister;
562   if (DstSize != Info->VDataDwords) {
563     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
564 
565     // Get first subregister of VData
566     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
567     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
568     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
569 
570     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
571                                        &MRI.getRegClass(DataRCID));
572     if (NewVdata == AMDGPU::NoRegister) {
573       // It's possible to encode this such that the low register + enabled
574       // components exceeds the register count.
575       return MCDisassembler::Success;
576     }
577   }
578 
579   unsigned NewVAddr0 = AMDGPU::NoRegister;
580   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
581       AddrSize != Info->VAddrDwords) {
582     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
583     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
584     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
585 
586     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
587     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
588                                         &MRI.getRegClass(AddrRCID));
589     if (NewVAddr0 == AMDGPU::NoRegister)
590       return MCDisassembler::Success;
591   }
592 
593   MI.setOpcode(NewOpcode);
594 
595   if (NewVdata != AMDGPU::NoRegister) {
596     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
597 
598     if (IsAtomic) {
599       // Atomic operations have an additional operand (a copy of data)
600       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
601     }
602   }
603 
604   if (NewVAddr0 != AMDGPU::NoRegister) {
605     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
606   } else if (IsNSA) {
607     assert(AddrSize <= Info->VAddrDwords);
608     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
609              MI.begin() + VAddr0Idx + Info->VAddrDwords);
610   }
611 
612   return MCDisassembler::Success;
613 }
614 
615 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
616   return getContext().getRegisterInfo()->
617     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
618 }
619 
620 inline
621 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
622                                          const Twine& ErrMsg) const {
623   *CommentStream << "Error: " + ErrMsg;
624 
625   // ToDo: add support for error operands to MCInst.h
626   // return MCOperand::createError(V);
627   return MCOperand();
628 }
629 
630 inline
631 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
632   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
633 }
634 
635 inline
636 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
637                                                unsigned Val) const {
638   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
639   if (Val >= RegCl.getNumRegs())
640     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
641                            ": unknown register " + Twine(Val));
642   return createRegOperand(RegCl.getRegister(Val));
643 }
644 
645 inline
646 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
647                                                 unsigned Val) const {
648   // ToDo: SI/CI have 104 SGPRs, VI - 102
649   // Valery: here we accepting as much as we can, let assembler sort it out
650   int shift = 0;
651   switch (SRegClassID) {
652   case AMDGPU::SGPR_32RegClassID:
653   case AMDGPU::TTMP_32RegClassID:
654     break;
655   case AMDGPU::SGPR_64RegClassID:
656   case AMDGPU::TTMP_64RegClassID:
657     shift = 1;
658     break;
659   case AMDGPU::SGPR_128RegClassID:
660   case AMDGPU::TTMP_128RegClassID:
661   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
662   // this bundle?
663   case AMDGPU::SGPR_256RegClassID:
664   case AMDGPU::TTMP_256RegClassID:
665     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
666   // this bundle?
667   case AMDGPU::SGPR_512RegClassID:
668   case AMDGPU::TTMP_512RegClassID:
669     shift = 2;
670     break;
671   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
672   // this bundle?
673   default:
674     llvm_unreachable("unhandled register class");
675   }
676 
677   if (Val % (1 << shift)) {
678     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
679                    << ": scalar reg isn't aligned " << Val;
680   }
681 
682   return createRegOperand(SRegClassID, Val >> shift);
683 }
684 
685 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
686   return decodeSrcOp(OPW32, Val);
687 }
688 
689 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
690   return decodeSrcOp(OPW64, Val);
691 }
692 
693 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
694   return decodeSrcOp(OPW128, Val);
695 }
696 
697 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
698   return decodeSrcOp(OPW16, Val);
699 }
700 
701 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
702   return decodeSrcOp(OPWV216, Val);
703 }
704 
705 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
706   // Some instructions have operand restrictions beyond what the encoding
707   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
708   // high bit.
709   Val &= 255;
710 
711   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
712 }
713 
714 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
715   return decodeSrcOp(OPW32, Val);
716 }
717 
718 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
719   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
720 }
721 
722 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
723   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
724 }
725 
726 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
727   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
728 }
729 
730 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
731   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
732 }
733 
734 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
735   return decodeSrcOp(OPW32, Val);
736 }
737 
738 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
739   return decodeSrcOp(OPW64, Val);
740 }
741 
742 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
743   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
744 }
745 
746 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
747   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
748 }
749 
750 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
751   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
752 }
753 
754 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
755   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
756 }
757 
758 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
759   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
760 }
761 
762 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
763   // table-gen generated disassembler doesn't care about operand types
764   // leaving only registry class so SSrc_32 operand turns into SReg_32
765   // and therefore we accept immediates and literals here as well
766   return decodeSrcOp(OPW32, Val);
767 }
768 
769 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
770   unsigned Val) const {
771   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
772   return decodeOperand_SReg_32(Val);
773 }
774 
775 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
776   unsigned Val) const {
777   // SReg_32_XM0 is SReg_32 without EXEC_HI
778   return decodeOperand_SReg_32(Val);
779 }
780 
781 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
782   // table-gen generated disassembler doesn't care about operand types
783   // leaving only registry class so SSrc_32 operand turns into SReg_32
784   // and therefore we accept immediates and literals here as well
785   return decodeSrcOp(OPW32, Val);
786 }
787 
788 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
789   return decodeSrcOp(OPW64, Val);
790 }
791 
792 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
793   return decodeSrcOp(OPW64, Val);
794 }
795 
796 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
797   return decodeSrcOp(OPW128, Val);
798 }
799 
800 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
801   return decodeDstOp(OPW256, Val);
802 }
803 
804 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
805   return decodeDstOp(OPW512, Val);
806 }
807 
808 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
809   // For now all literal constants are supposed to be unsigned integer
810   // ToDo: deal with signed/unsigned 64-bit integer constants
811   // ToDo: deal with float/double constants
812   if (!HasLiteral) {
813     if (Bytes.size() < 4) {
814       return errOperand(0, "cannot read literal, inst bytes left " +
815                         Twine(Bytes.size()));
816     }
817     HasLiteral = true;
818     Literal = eatBytes<uint32_t>(Bytes);
819   }
820   return MCOperand::createImm(Literal);
821 }
822 
823 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
824   using namespace AMDGPU::EncValues;
825 
826   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
827   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
828     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
829     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
830       // Cast prevents negative overflow.
831 }
832 
833 static int64_t getInlineImmVal32(unsigned Imm) {
834   switch (Imm) {
835   case 240:
836     return FloatToBits(0.5f);
837   case 241:
838     return FloatToBits(-0.5f);
839   case 242:
840     return FloatToBits(1.0f);
841   case 243:
842     return FloatToBits(-1.0f);
843   case 244:
844     return FloatToBits(2.0f);
845   case 245:
846     return FloatToBits(-2.0f);
847   case 246:
848     return FloatToBits(4.0f);
849   case 247:
850     return FloatToBits(-4.0f);
851   case 248: // 1 / (2 * PI)
852     return 0x3e22f983;
853   default:
854     llvm_unreachable("invalid fp inline imm");
855   }
856 }
857 
858 static int64_t getInlineImmVal64(unsigned Imm) {
859   switch (Imm) {
860   case 240:
861     return DoubleToBits(0.5);
862   case 241:
863     return DoubleToBits(-0.5);
864   case 242:
865     return DoubleToBits(1.0);
866   case 243:
867     return DoubleToBits(-1.0);
868   case 244:
869     return DoubleToBits(2.0);
870   case 245:
871     return DoubleToBits(-2.0);
872   case 246:
873     return DoubleToBits(4.0);
874   case 247:
875     return DoubleToBits(-4.0);
876   case 248: // 1 / (2 * PI)
877     return 0x3fc45f306dc9c882;
878   default:
879     llvm_unreachable("invalid fp inline imm");
880   }
881 }
882 
883 static int64_t getInlineImmVal16(unsigned Imm) {
884   switch (Imm) {
885   case 240:
886     return 0x3800;
887   case 241:
888     return 0xB800;
889   case 242:
890     return 0x3C00;
891   case 243:
892     return 0xBC00;
893   case 244:
894     return 0x4000;
895   case 245:
896     return 0xC000;
897   case 246:
898     return 0x4400;
899   case 247:
900     return 0xC400;
901   case 248: // 1 / (2 * PI)
902     return 0x3118;
903   default:
904     llvm_unreachable("invalid fp inline imm");
905   }
906 }
907 
908 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
909   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
910       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
911 
912   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
913   switch (Width) {
914   case OPW32:
915   case OPW128: // splat constants
916   case OPW512:
917   case OPW1024:
918     return MCOperand::createImm(getInlineImmVal32(Imm));
919   case OPW64:
920     return MCOperand::createImm(getInlineImmVal64(Imm));
921   case OPW16:
922   case OPWV216:
923     return MCOperand::createImm(getInlineImmVal16(Imm));
924   default:
925     llvm_unreachable("implement me");
926   }
927 }
928 
929 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
930   using namespace AMDGPU;
931 
932   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
933   switch (Width) {
934   default: // fall
935   case OPW32:
936   case OPW16:
937   case OPWV216:
938     return VGPR_32RegClassID;
939   case OPW64: return VReg_64RegClassID;
940   case OPW128: return VReg_128RegClassID;
941   }
942 }
943 
944 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
945   using namespace AMDGPU;
946 
947   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
948   switch (Width) {
949   default: // fall
950   case OPW32:
951   case OPW16:
952   case OPWV216:
953     return AGPR_32RegClassID;
954   case OPW64: return AReg_64RegClassID;
955   case OPW128: return AReg_128RegClassID;
956   case OPW256: return AReg_256RegClassID;
957   case OPW512: return AReg_512RegClassID;
958   case OPW1024: return AReg_1024RegClassID;
959   }
960 }
961 
962 
963 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
964   using namespace AMDGPU;
965 
966   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
967   switch (Width) {
968   default: // fall
969   case OPW32:
970   case OPW16:
971   case OPWV216:
972     return SGPR_32RegClassID;
973   case OPW64: return SGPR_64RegClassID;
974   case OPW128: return SGPR_128RegClassID;
975   case OPW256: return SGPR_256RegClassID;
976   case OPW512: return SGPR_512RegClassID;
977   }
978 }
979 
980 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
981   using namespace AMDGPU;
982 
983   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
984   switch (Width) {
985   default: // fall
986   case OPW32:
987   case OPW16:
988   case OPWV216:
989     return TTMP_32RegClassID;
990   case OPW64: return TTMP_64RegClassID;
991   case OPW128: return TTMP_128RegClassID;
992   case OPW256: return TTMP_256RegClassID;
993   case OPW512: return TTMP_512RegClassID;
994   }
995 }
996 
997 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
998   using namespace AMDGPU::EncValues;
999 
1000   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9_GFX10_MIN : TTMP_VI_MIN;
1001   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9_GFX10_MAX : TTMP_VI_MAX;
1002 
1003   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1004 }
1005 
1006 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val) const {
1007   using namespace AMDGPU::EncValues;
1008 
1009   assert(Val < 1024); // enum10
1010 
1011   bool IsAGPR = Val & 512;
1012   Val &= 511;
1013 
1014   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1015     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1016                                    : getVgprClassId(Width), Val - VGPR_MIN);
1017   }
1018   if (Val <= SGPR_MAX) {
1019     assert(SGPR_MIN == 0); // "SGPR_MIN <= Val" is always true and causes compilation warning.
1020     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1021   }
1022 
1023   int TTmpIdx = getTTmpIdx(Val);
1024   if (TTmpIdx >= 0) {
1025     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1026   }
1027 
1028   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1029     return decodeIntImmed(Val);
1030 
1031   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1032     return decodeFPImmed(Width, Val);
1033 
1034   if (Val == LITERAL_CONST)
1035     return decodeLiteralConstant();
1036 
1037   switch (Width) {
1038   case OPW32:
1039   case OPW16:
1040   case OPWV216:
1041     return decodeSpecialReg32(Val);
1042   case OPW64:
1043     return decodeSpecialReg64(Val);
1044   default:
1045     llvm_unreachable("unexpected immediate type");
1046   }
1047 }
1048 
1049 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1050   using namespace AMDGPU::EncValues;
1051 
1052   assert(Val < 128);
1053   assert(Width == OPW256 || Width == OPW512);
1054 
1055   if (Val <= SGPR_MAX) {
1056     assert(SGPR_MIN == 0); // "SGPR_MIN <= Val" is always true and causes compilation warning.
1057     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1058   }
1059 
1060   int TTmpIdx = getTTmpIdx(Val);
1061   if (TTmpIdx >= 0) {
1062     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1063   }
1064 
1065   llvm_unreachable("unknown dst register");
1066 }
1067 
1068 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1069   using namespace AMDGPU;
1070 
1071   switch (Val) {
1072   case 102: return createRegOperand(FLAT_SCR_LO);
1073   case 103: return createRegOperand(FLAT_SCR_HI);
1074   case 104: return createRegOperand(XNACK_MASK_LO);
1075   case 105: return createRegOperand(XNACK_MASK_HI);
1076   case 106: return createRegOperand(VCC_LO);
1077   case 107: return createRegOperand(VCC_HI);
1078   case 108: return createRegOperand(TBA_LO);
1079   case 109: return createRegOperand(TBA_HI);
1080   case 110: return createRegOperand(TMA_LO);
1081   case 111: return createRegOperand(TMA_HI);
1082   case 124: return createRegOperand(M0);
1083   case 125: return createRegOperand(SGPR_NULL);
1084   case 126: return createRegOperand(EXEC_LO);
1085   case 127: return createRegOperand(EXEC_HI);
1086   case 235: return createRegOperand(SRC_SHARED_BASE);
1087   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1088   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1089   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1090   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1091   case 251: return createRegOperand(SRC_VCCZ);
1092   case 252: return createRegOperand(SRC_EXECZ);
1093   case 253: return createRegOperand(SRC_SCC);
1094   case 254: return createRegOperand(LDS_DIRECT);
1095   default: break;
1096   }
1097   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1098 }
1099 
1100 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1101   using namespace AMDGPU;
1102 
1103   switch (Val) {
1104   case 102: return createRegOperand(FLAT_SCR);
1105   case 104: return createRegOperand(XNACK_MASK);
1106   case 106: return createRegOperand(VCC);
1107   case 108: return createRegOperand(TBA);
1108   case 110: return createRegOperand(TMA);
1109   case 125: return createRegOperand(SGPR_NULL);
1110   case 126: return createRegOperand(EXEC);
1111   case 235: return createRegOperand(SRC_SHARED_BASE);
1112   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1113   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1114   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1115   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1116   case 251: return createRegOperand(SRC_VCCZ);
1117   case 252: return createRegOperand(SRC_EXECZ);
1118   case 253: return createRegOperand(SRC_SCC);
1119   default: break;
1120   }
1121   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1122 }
1123 
1124 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1125                                             const unsigned Val) const {
1126   using namespace AMDGPU::SDWA;
1127   using namespace AMDGPU::EncValues;
1128 
1129   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1130       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1131     // XXX: cast to int is needed to avoid stupid warning:
1132     // compare with unsigned is always true
1133     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1134         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1135       return createRegOperand(getVgprClassId(Width),
1136                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1137     }
1138     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1139         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1140                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1141       return createSRegOperand(getSgprClassId(Width),
1142                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1143     }
1144     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1145         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1146       return createSRegOperand(getTtmpClassId(Width),
1147                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1148     }
1149 
1150     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1151 
1152     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1153       return decodeIntImmed(SVal);
1154 
1155     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1156       return decodeFPImmed(Width, SVal);
1157 
1158     return decodeSpecialReg32(SVal);
1159   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1160     return createRegOperand(getVgprClassId(Width), Val);
1161   }
1162   llvm_unreachable("unsupported target");
1163 }
1164 
1165 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1166   return decodeSDWASrc(OPW16, Val);
1167 }
1168 
1169 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1170   return decodeSDWASrc(OPW32, Val);
1171 }
1172 
1173 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1174   using namespace AMDGPU::SDWA;
1175 
1176   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1177           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1178          "SDWAVopcDst should be present only on GFX9+");
1179 
1180   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1181 
1182   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1183     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1184 
1185     int TTmpIdx = getTTmpIdx(Val);
1186     if (TTmpIdx >= 0) {
1187       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1188       return createSRegOperand(TTmpClsId, TTmpIdx);
1189     } else if (Val > SGPR_MAX) {
1190       return IsWave64 ? decodeSpecialReg64(Val)
1191                       : decodeSpecialReg32(Val);
1192     } else {
1193       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1194     }
1195   } else {
1196     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1197   }
1198 }
1199 
1200 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1201   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1202     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1203 }
1204 
1205 bool AMDGPUDisassembler::isVI() const {
1206   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1207 }
1208 
1209 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1210 
1211 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1212 
1213 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1214 
1215 bool AMDGPUDisassembler::isGFX10Plus() const {
1216   return AMDGPU::isGFX10Plus(STI);
1217 }
1218 
1219 //===----------------------------------------------------------------------===//
1220 // AMDGPU specific symbol handling
1221 //===----------------------------------------------------------------------===//
1222 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1223   do {                                                                         \
1224     KdStream << Indent << DIRECTIVE " "                                        \
1225              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1226   } while (0)
1227 
1228 // NOLINTNEXTLINE(readability-identifier-naming)
1229 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1230     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1231   using namespace amdhsa;
1232   StringRef Indent = "\t";
1233 
1234   // We cannot accurately backward compute #VGPRs used from
1235   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1236   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1237   // simply calculate the inverse of what the assembler does.
1238 
1239   uint32_t GranulatedWorkitemVGPRCount =
1240       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1241       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1242 
1243   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1244                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1245 
1246   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1247 
1248   // We cannot backward compute values used to calculate
1249   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1250   // directives can't be computed:
1251   // .amdhsa_reserve_vcc
1252   // .amdhsa_reserve_flat_scratch
1253   // .amdhsa_reserve_xnack_mask
1254   // They take their respective default values if not specified in the assembly.
1255   //
1256   // GRANULATED_WAVEFRONT_SGPR_COUNT
1257   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1258   //
1259   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1260   // are set to 0. So while disassembling we consider that:
1261   //
1262   // GRANULATED_WAVEFRONT_SGPR_COUNT
1263   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1264   //
1265   // The disassembler cannot recover the original values of those 3 directives.
1266 
1267   uint32_t GranulatedWavefrontSGPRCount =
1268       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1269       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1270 
1271   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1272     return MCDisassembler::Fail;
1273 
1274   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1275                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1276 
1277   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1278   KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1279   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1280   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1281 
1282   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1283     return MCDisassembler::Fail;
1284 
1285   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1286                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1287   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1288                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1289   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1290                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1291   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1292                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1293 
1294   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1295     return MCDisassembler::Fail;
1296 
1297   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1298 
1299   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1300     return MCDisassembler::Fail;
1301 
1302   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1303 
1304   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1305     return MCDisassembler::Fail;
1306 
1307   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1308     return MCDisassembler::Fail;
1309 
1310   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1311 
1312   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1313     return MCDisassembler::Fail;
1314 
1315   if (isGFX10Plus()) {
1316     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1317                     COMPUTE_PGM_RSRC1_WGP_MODE);
1318     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1319     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1320   }
1321   return MCDisassembler::Success;
1322 }
1323 
1324 // NOLINTNEXTLINE(readability-identifier-naming)
1325 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1326     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1327   using namespace amdhsa;
1328   StringRef Indent = "\t";
1329   PRINT_DIRECTIVE(
1330       ".amdhsa_system_sgpr_private_segment_wavefront_offset",
1331       COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1332   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1333                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1334   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1335                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1336   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1337                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1338   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1339                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1340   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1341                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1342 
1343   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1344     return MCDisassembler::Fail;
1345 
1346   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1347     return MCDisassembler::Fail;
1348 
1349   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1350     return MCDisassembler::Fail;
1351 
1352   PRINT_DIRECTIVE(
1353       ".amdhsa_exception_fp_ieee_invalid_op",
1354       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1355   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1356                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1357   PRINT_DIRECTIVE(
1358       ".amdhsa_exception_fp_ieee_div_zero",
1359       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1360   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1361                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1362   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1363                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1364   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1365                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1366   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1367                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1368 
1369   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1370     return MCDisassembler::Fail;
1371 
1372   return MCDisassembler::Success;
1373 }
1374 
1375 #undef PRINT_DIRECTIVE
1376 
1377 MCDisassembler::DecodeStatus
1378 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1379     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1380     raw_string_ostream &KdStream) const {
1381 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1382   do {                                                                         \
1383     KdStream << Indent << DIRECTIVE " "                                        \
1384              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1385   } while (0)
1386 
1387   uint16_t TwoByteBuffer = 0;
1388   uint32_t FourByteBuffer = 0;
1389   uint64_t EightByteBuffer = 0;
1390 
1391   StringRef ReservedBytes;
1392   StringRef Indent = "\t";
1393 
1394   assert(Bytes.size() == 64);
1395   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1396 
1397   switch (Cursor.tell()) {
1398   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1399     FourByteBuffer = DE.getU32(Cursor);
1400     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1401              << '\n';
1402     return MCDisassembler::Success;
1403 
1404   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1405     FourByteBuffer = DE.getU32(Cursor);
1406     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1407              << FourByteBuffer << '\n';
1408     return MCDisassembler::Success;
1409 
1410   case amdhsa::RESERVED0_OFFSET:
1411     // 8 reserved bytes, must be 0.
1412     EightByteBuffer = DE.getU64(Cursor);
1413     if (EightByteBuffer) {
1414       return MCDisassembler::Fail;
1415     }
1416     return MCDisassembler::Success;
1417 
1418   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1419     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1420     // So far no directive controls this for Code Object V3, so simply skip for
1421     // disassembly.
1422     DE.skip(Cursor, 8);
1423     return MCDisassembler::Success;
1424 
1425   case amdhsa::RESERVED1_OFFSET:
1426     // 20 reserved bytes, must be 0.
1427     ReservedBytes = DE.getBytes(Cursor, 20);
1428     for (int I = 0; I < 20; ++I) {
1429       if (ReservedBytes[I] != 0) {
1430         return MCDisassembler::Fail;
1431       }
1432     }
1433     return MCDisassembler::Success;
1434 
1435   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1436     // COMPUTE_PGM_RSRC3
1437     //  - Only set for GFX10, GFX6-9 have this to be 0.
1438     //  - Currently no directives directly control this.
1439     FourByteBuffer = DE.getU32(Cursor);
1440     if (!isGFX10Plus() && FourByteBuffer) {
1441       return MCDisassembler::Fail;
1442     }
1443     return MCDisassembler::Success;
1444 
1445   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1446     FourByteBuffer = DE.getU32(Cursor);
1447     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1448         MCDisassembler::Fail) {
1449       return MCDisassembler::Fail;
1450     }
1451     return MCDisassembler::Success;
1452 
1453   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1454     FourByteBuffer = DE.getU32(Cursor);
1455     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1456         MCDisassembler::Fail) {
1457       return MCDisassembler::Fail;
1458     }
1459     return MCDisassembler::Success;
1460 
1461   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1462     using namespace amdhsa;
1463     TwoByteBuffer = DE.getU16(Cursor);
1464 
1465     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1466                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1467     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1468                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1469     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1470                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1471     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1472                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1473     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1474                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1475     PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1476                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1477     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1478                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1479 
1480     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1481       return MCDisassembler::Fail;
1482 
1483     // Reserved for GFX9
1484     if (isGFX9() &&
1485         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1486       return MCDisassembler::Fail;
1487     } else if (isGFX10Plus()) {
1488       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1489                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1490     }
1491 
1492     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1493       return MCDisassembler::Fail;
1494 
1495     return MCDisassembler::Success;
1496 
1497   case amdhsa::RESERVED2_OFFSET:
1498     // 6 bytes from here are reserved, must be 0.
1499     ReservedBytes = DE.getBytes(Cursor, 6);
1500     for (int I = 0; I < 6; ++I) {
1501       if (ReservedBytes[I] != 0)
1502         return MCDisassembler::Fail;
1503     }
1504     return MCDisassembler::Success;
1505 
1506   default:
1507     llvm_unreachable("Unhandled index. Case statements cover everything.");
1508     return MCDisassembler::Fail;
1509   }
1510 #undef PRINT_DIRECTIVE
1511 }
1512 
1513 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1514     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1515   // CP microcode requires the kernel descriptor to be 64 aligned.
1516   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1517     return MCDisassembler::Fail;
1518 
1519   std::string Kd;
1520   raw_string_ostream KdStream(Kd);
1521   KdStream << ".amdhsa_kernel " << KdName << '\n';
1522 
1523   DataExtractor::Cursor C(0);
1524   while (C && C.tell() < Bytes.size()) {
1525     MCDisassembler::DecodeStatus Status =
1526         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1527 
1528     cantFail(C.takeError());
1529 
1530     if (Status == MCDisassembler::Fail)
1531       return MCDisassembler::Fail;
1532   }
1533   KdStream << ".end_amdhsa_kernel\n";
1534   outs() << KdStream.str();
1535   return MCDisassembler::Success;
1536 }
1537 
1538 Optional<MCDisassembler::DecodeStatus>
1539 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1540                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1541                                   raw_ostream &CStream) const {
1542   // Right now only kernel descriptor needs to be handled.
1543   // We ignore all other symbols for target specific handling.
1544   // TODO:
1545   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1546   // Object V2 and V3 when symbols are marked protected.
1547 
1548   // amd_kernel_code_t for Code Object V2.
1549   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1550     Size = 256;
1551     return MCDisassembler::Fail;
1552   }
1553 
1554   // Code Object V3 kernel descriptors.
1555   StringRef Name = Symbol.Name;
1556   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1557     Size = 64; // Size = 64 regardless of success or failure.
1558     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1559   }
1560   return None;
1561 }
1562 
1563 //===----------------------------------------------------------------------===//
1564 // AMDGPUSymbolizer
1565 //===----------------------------------------------------------------------===//
1566 
1567 // Try to find symbol name for specified label
1568 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1569                                 raw_ostream &/*cStream*/, int64_t Value,
1570                                 uint64_t /*Address*/, bool IsBranch,
1571                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1572 
1573   if (!IsBranch) {
1574     return false;
1575   }
1576 
1577   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1578   if (!Symbols)
1579     return false;
1580 
1581   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1582     return Val.Addr == static_cast<uint64_t>(Value) &&
1583            Val.Type == ELF::STT_NOTYPE;
1584   });
1585   if (Result != Symbols->end()) {
1586     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1587     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1588     Inst.addOperand(MCOperand::createExpr(Add));
1589     return true;
1590   }
1591   return false;
1592 }
1593 
1594 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1595                                                        int64_t Value,
1596                                                        uint64_t Address) {
1597   llvm_unreachable("unimplemented");
1598 }
1599 
1600 //===----------------------------------------------------------------------===//
1601 // Initialization
1602 //===----------------------------------------------------------------------===//
1603 
1604 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1605                               LLVMOpInfoCallback /*GetOpInfo*/,
1606                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1607                               void *DisInfo,
1608                               MCContext *Ctx,
1609                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1610   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1611 }
1612 
1613 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1614                                                 const MCSubtargetInfo &STI,
1615                                                 MCContext &Ctx) {
1616   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1617 }
1618 
1619 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1620   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1621                                          createAMDGPUDisassembler);
1622   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1623                                        createAMDGPUSymbolizer);
1624 }
1625