1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCFixedLenDisassembler.h"
28 #include "llvm/MC/TargetRegistry.h"
29 #include "llvm/Support/AMDHSAKernelDescriptor.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "amdgpu-disassembler"
34 
35 #define SGPR_MAX                                                               \
36   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
37                  : AMDGPU::EncValues::SGPR_MAX_SI)
38 
39 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
40 
41 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
42                                        MCContext &Ctx,
43                                        MCInstrInfo const *MCII) :
44   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
45   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
46 
47   // ToDo: AMDGPUDisassembler supports only VI ISA.
48   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
49     report_fatal_error("Disassembly not yet supported for subtarget");
50 }
51 
52 inline static MCDisassembler::DecodeStatus
53 addOperand(MCInst &Inst, const MCOperand& Opnd) {
54   Inst.addOperand(Opnd);
55   return Opnd.isValid() ?
56     MCDisassembler::Success :
57     MCDisassembler::Fail;
58 }
59 
60 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
61                                 uint16_t NameIdx) {
62   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
63   if (OpIdx != -1) {
64     auto I = MI.begin();
65     std::advance(I, OpIdx);
66     MI.insert(I, Op);
67   }
68   return OpIdx;
69 }
70 
71 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
72                                        uint64_t Addr, const void *Decoder) {
73   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
74 
75   // Our branches take a simm16, but we need two extra bits to account for the
76   // factor of 4.
77   APInt SignedOffset(18, Imm * 4, true);
78   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
79 
80   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
81     return MCDisassembler::Success;
82   return addOperand(Inst, MCOperand::createImm(Imm));
83 }
84 
85 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm,
86                                      uint64_t Addr, const void *Decoder) {
87   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
88   int64_t Offset;
89   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
90     Offset = Imm & 0xFFFFF;
91   } else {                    // GFX9+ supports 21-bit signed offsets.
92     Offset = SignExtend64<21>(Imm);
93   }
94   return addOperand(Inst, MCOperand::createImm(Offset));
95 }
96 
97 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val,
98                                   uint64_t Addr, const void *Decoder) {
99   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
100   return addOperand(Inst, DAsm->decodeBoolReg(Val));
101 }
102 
103 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \
104 static DecodeStatus StaticDecoderName(MCInst &Inst, \
105                                        unsigned Imm, \
106                                        uint64_t /*Addr*/, \
107                                        const void *Decoder) { \
108   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \
109   return addOperand(Inst, DAsm->DecoderName(Imm)); \
110 }
111 
112 #define DECODE_OPERAND_REG(RegClass) \
113 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
114 
115 DECODE_OPERAND_REG(VGPR_32)
116 DECODE_OPERAND_REG(VRegOrLds_32)
117 DECODE_OPERAND_REG(VS_32)
118 DECODE_OPERAND_REG(VS_64)
119 DECODE_OPERAND_REG(VS_128)
120 
121 DECODE_OPERAND_REG(VReg_64)
122 DECODE_OPERAND_REG(VReg_96)
123 DECODE_OPERAND_REG(VReg_128)
124 DECODE_OPERAND_REG(VReg_256)
125 DECODE_OPERAND_REG(VReg_512)
126 DECODE_OPERAND_REG(VReg_1024)
127 
128 DECODE_OPERAND_REG(SReg_32)
129 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
130 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
131 DECODE_OPERAND_REG(SRegOrLds_32)
132 DECODE_OPERAND_REG(SReg_64)
133 DECODE_OPERAND_REG(SReg_64_XEXEC)
134 DECODE_OPERAND_REG(SReg_128)
135 DECODE_OPERAND_REG(SReg_256)
136 DECODE_OPERAND_REG(SReg_512)
137 
138 DECODE_OPERAND_REG(AGPR_32)
139 DECODE_OPERAND_REG(AReg_64)
140 DECODE_OPERAND_REG(AReg_128)
141 DECODE_OPERAND_REG(AReg_256)
142 DECODE_OPERAND_REG(AReg_512)
143 DECODE_OPERAND_REG(AReg_1024)
144 DECODE_OPERAND_REG(AV_32)
145 DECODE_OPERAND_REG(AV_64)
146 
147 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
148                                          unsigned Imm,
149                                          uint64_t Addr,
150                                          const void *Decoder) {
151   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
152   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
153 }
154 
155 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst,
156                                          unsigned Imm,
157                                          uint64_t Addr,
158                                          const void *Decoder) {
159   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
160   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
161 }
162 
163 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst,
164                                            unsigned Imm,
165                                            uint64_t Addr,
166                                            const void *Decoder) {
167   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
168   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
169 }
170 
171 static DecodeStatus decodeOperand_VS_16(MCInst &Inst,
172                                         unsigned Imm,
173                                         uint64_t Addr,
174                                         const void *Decoder) {
175   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
176   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
177 }
178 
179 static DecodeStatus decodeOperand_VS_32(MCInst &Inst,
180                                         unsigned Imm,
181                                         uint64_t Addr,
182                                         const void *Decoder) {
183   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
184   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
185 }
186 
187 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst,
188                                           unsigned Imm,
189                                           uint64_t Addr,
190                                           const void *Decoder) {
191   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
192   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
193 }
194 
195 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst,
196                                            unsigned Imm,
197                                            uint64_t Addr,
198                                            const void *Decoder) {
199   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
200   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
201 }
202 
203 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst,
204                                            unsigned Imm,
205                                            uint64_t Addr,
206                                            const void *Decoder) {
207   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
208   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
209 }
210 
211 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst,
212                                            unsigned Imm,
213                                            uint64_t Addr,
214                                            const void *Decoder) {
215   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
216   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
217 }
218 
219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst,
220                                             unsigned Imm,
221                                             uint64_t Addr,
222                                             const void *Decoder) {
223   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
224   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
225 }
226 
227 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst,
228                                           unsigned Imm,
229                                           uint64_t Addr,
230                                           const void *Decoder) {
231   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
232   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
233 }
234 
235 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst,
236                                            unsigned Imm,
237                                            uint64_t Addr,
238                                            const void *Decoder) {
239   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
240   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
241 }
242 
243 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst,
244                                            unsigned Imm,
245                                            uint64_t Addr,
246                                            const void *Decoder) {
247   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
248   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
249 }
250 
251 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst,
252                                            unsigned Imm,
253                                            uint64_t Addr,
254                                            const void *Decoder) {
255   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
256   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
257 }
258 
259 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst,
260                                             unsigned Imm,
261                                             uint64_t Addr,
262                                             const void *Decoder) {
263   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
264   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
265 }
266 
267 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
268                           const MCRegisterInfo *MRI) {
269   if (OpIdx < 0)
270     return false;
271 
272   const MCOperand &Op = Inst.getOperand(OpIdx);
273   if (!Op.isReg())
274     return false;
275 
276   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
277   auto Reg = Sub ? Sub : Op.getReg();
278   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
279 }
280 
281 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst,
282                                              unsigned Imm,
283                                              AMDGPUDisassembler::OpWidthTy Opw,
284                                              const void *Decoder) {
285   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
286   if (!DAsm->isGFX90A()) {
287     Imm &= 511;
288   } else {
289     // If atomic has both vdata and vdst their register classes are tied.
290     // The bit is decoded along with the vdst, first operand. We need to
291     // change register class to AGPR if vdst was AGPR.
292     // If a DS instruction has both data0 and data1 their register classes
293     // are also tied.
294     unsigned Opc = Inst.getOpcode();
295     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
296     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
297                                                         : AMDGPU::OpName::vdata;
298     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
299     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
300     if ((int)Inst.getNumOperands() == DataIdx) {
301       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
302       if (IsAGPROperand(Inst, DstIdx, MRI))
303         Imm |= 512;
304     }
305 
306     if (TSFlags & SIInstrFlags::DS) {
307       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
308       if ((int)Inst.getNumOperands() == Data2Idx &&
309           IsAGPROperand(Inst, DataIdx, MRI))
310         Imm |= 512;
311     }
312   }
313   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
314 }
315 
316 static DecodeStatus DecodeAVLdSt_32RegisterClass(MCInst &Inst,
317                                                  unsigned Imm,
318                                                  uint64_t Addr,
319                                                  const void *Decoder) {
320   return decodeOperand_AVLdSt_Any(Inst, Imm,
321                                   AMDGPUDisassembler::OPW32, Decoder);
322 }
323 
324 static DecodeStatus DecodeAVLdSt_64RegisterClass(MCInst &Inst,
325                                                  unsigned Imm,
326                                                  uint64_t Addr,
327                                                  const void *Decoder) {
328   return decodeOperand_AVLdSt_Any(Inst, Imm,
329                                   AMDGPUDisassembler::OPW64, Decoder);
330 }
331 
332 static DecodeStatus DecodeAVLdSt_96RegisterClass(MCInst &Inst,
333                                                  unsigned Imm,
334                                                  uint64_t Addr,
335                                                  const void *Decoder) {
336   return decodeOperand_AVLdSt_Any(Inst, Imm,
337                                   AMDGPUDisassembler::OPW96, Decoder);
338 }
339 
340 static DecodeStatus DecodeAVLdSt_128RegisterClass(MCInst &Inst,
341                                                   unsigned Imm,
342                                                   uint64_t Addr,
343                                                   const void *Decoder) {
344   return decodeOperand_AVLdSt_Any(Inst, Imm,
345                                   AMDGPUDisassembler::OPW128, Decoder);
346 }
347 
348 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst,
349                                           unsigned Imm,
350                                           uint64_t Addr,
351                                           const void *Decoder) {
352   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
353   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
354 }
355 
356 static DecodeStatus decodeOperand_VGPR_32(MCInst &Inst,
357                                          unsigned Imm,
358                                          uint64_t Addr,
359                                          const void *Decoder) {
360   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
361   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW32, Imm));
362 }
363 
364 #define DECODE_SDWA(DecName) \
365 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
366 
367 DECODE_SDWA(Src32)
368 DECODE_SDWA(Src16)
369 DECODE_SDWA(VopcDst)
370 
371 #include "AMDGPUGenDisassemblerTables.inc"
372 
373 //===----------------------------------------------------------------------===//
374 //
375 //===----------------------------------------------------------------------===//
376 
377 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
378   assert(Bytes.size() >= sizeof(T));
379   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
380   Bytes = Bytes.slice(sizeof(T));
381   return Res;
382 }
383 
384 DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
385                                                MCInst &MI,
386                                                uint64_t Inst,
387                                                uint64_t Address) const {
388   assert(MI.getOpcode() == 0);
389   assert(MI.getNumOperands() == 0);
390   MCInst TmpInst;
391   HasLiteral = false;
392   const auto SavedBytes = Bytes;
393   if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
394     MI = TmpInst;
395     return MCDisassembler::Success;
396   }
397   Bytes = SavedBytes;
398   return MCDisassembler::Fail;
399 }
400 
401 // The disassembler is greedy, so we need to check FI operand value to
402 // not parse a dpp if the correct literal is not set. For dpp16 the
403 // autogenerated decoder checks the dpp literal
404 static bool isValidDPP8(const MCInst &MI) {
405   using namespace llvm::AMDGPU::DPP;
406   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
407   assert(FiIdx != -1);
408   if ((unsigned)FiIdx >= MI.getNumOperands())
409     return false;
410   unsigned Fi = MI.getOperand(FiIdx).getImm();
411   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
412 }
413 
414 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
415                                                 ArrayRef<uint8_t> Bytes_,
416                                                 uint64_t Address,
417                                                 raw_ostream &CS) const {
418   CommentStream = &CS;
419   bool IsSDWA = false;
420 
421   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
422   Bytes = Bytes_.slice(0, MaxInstBytesNum);
423 
424   DecodeStatus Res = MCDisassembler::Fail;
425   do {
426     // ToDo: better to switch encoding length using some bit predicate
427     // but it is unknown yet, so try all we can
428 
429     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
430     // encodings
431     if (Bytes.size() >= 8) {
432       const uint64_t QW = eatBytes<uint64_t>(Bytes);
433 
434       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
435         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
436         if (Res) {
437           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
438               == -1)
439             break;
440           if (convertDPP8Inst(MI) == MCDisassembler::Success)
441             break;
442           MI = MCInst(); // clear
443         }
444       }
445 
446       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
447       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
448         break;
449 
450       MI = MCInst(); // clear
451 
452       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
453       if (Res) break;
454 
455       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
456       if (Res) { IsSDWA = true;  break; }
457 
458       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
459       if (Res) { IsSDWA = true;  break; }
460 
461       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
462       if (Res) { IsSDWA = true;  break; }
463 
464       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
465         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
466         if (Res)
467           break;
468       }
469 
470       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
471       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
472       // table first so we print the correct name.
473       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
474         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
475         if (Res)
476           break;
477       }
478     }
479 
480     // Reinitialize Bytes as DPP64 could have eaten too much
481     Bytes = Bytes_.slice(0, MaxInstBytesNum);
482 
483     // Try decode 32-bit instruction
484     if (Bytes.size() < 4) break;
485     const uint32_t DW = eatBytes<uint32_t>(Bytes);
486     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
487     if (Res) break;
488 
489     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
490     if (Res) break;
491 
492     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
493     if (Res) break;
494 
495     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
496       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
497       if (Res)
498         break;
499     }
500 
501     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
502       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
503       if (Res) break;
504     }
505 
506     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
507     if (Res) break;
508 
509     if (Bytes.size() < 4) break;
510     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
511 
512     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
513       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
514       if (Res)
515         break;
516     }
517 
518     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
519     if (Res) break;
520 
521     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
522     if (Res) break;
523 
524     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
525     if (Res) break;
526 
527     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
528   } while (false);
529 
530   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
531               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
532               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
533               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
534               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
535               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
536               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
537               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
538               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
539               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
540               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
541     // Insert dummy unused src2_modifiers.
542     insertNamedMCOperand(MI, MCOperand::createImm(0),
543                          AMDGPU::OpName::src2_modifiers);
544   }
545 
546   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
547           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
548     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
549                                              AMDGPU::OpName::cpol);
550     if (CPolPos != -1) {
551       unsigned CPol =
552           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
553               AMDGPU::CPol::GLC : 0;
554       if (MI.getNumOperands() <= (unsigned)CPolPos) {
555         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
556                              AMDGPU::OpName::cpol);
557       } else if (CPol) {
558         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
559       }
560     }
561   }
562 
563   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
564               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
565              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
566     // GFX90A lost TFE, its place is occupied by ACC.
567     int TFEOpIdx =
568         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
569     if (TFEOpIdx != -1) {
570       auto TFEIter = MI.begin();
571       std::advance(TFEIter, TFEOpIdx);
572       MI.insert(TFEIter, MCOperand::createImm(0));
573     }
574   }
575 
576   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
577               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
578     int SWZOpIdx =
579         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
580     if (SWZOpIdx != -1) {
581       auto SWZIter = MI.begin();
582       std::advance(SWZIter, SWZOpIdx);
583       MI.insert(SWZIter, MCOperand::createImm(0));
584     }
585   }
586 
587   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
588     int VAddr0Idx =
589         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
590     int RsrcIdx =
591         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
592     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
593     if (VAddr0Idx >= 0 && NSAArgs > 0) {
594       unsigned NSAWords = (NSAArgs + 3) / 4;
595       if (Bytes.size() < 4 * NSAWords) {
596         Res = MCDisassembler::Fail;
597       } else {
598         for (unsigned i = 0; i < NSAArgs; ++i) {
599           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
600                     decodeOperand_VGPR_32(Bytes[i]));
601         }
602         Bytes = Bytes.slice(4 * NSAWords);
603       }
604     }
605 
606     if (Res)
607       Res = convertMIMGInst(MI);
608   }
609 
610   if (Res && IsSDWA)
611     Res = convertSDWAInst(MI);
612 
613   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
614                                               AMDGPU::OpName::vdst_in);
615   if (VDstIn_Idx != -1) {
616     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
617                            MCOI::OperandConstraint::TIED_TO);
618     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
619          !MI.getOperand(VDstIn_Idx).isReg() ||
620          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
621       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
622         MI.erase(&MI.getOperand(VDstIn_Idx));
623       insertNamedMCOperand(MI,
624         MCOperand::createReg(MI.getOperand(Tied).getReg()),
625         AMDGPU::OpName::vdst_in);
626     }
627   }
628 
629   // if the opcode was not recognized we'll assume a Size of 4 bytes
630   // (unless there are fewer bytes left)
631   Size = Res ? (MaxInstBytesNum - Bytes.size())
632              : std::min((size_t)4, Bytes_.size());
633   return Res;
634 }
635 
636 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
637   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
638       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
639     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
640       // VOPC - insert clamp
641       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
642   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
643     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
644     if (SDst != -1) {
645       // VOPC - insert VCC register as sdst
646       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
647                            AMDGPU::OpName::sdst);
648     } else {
649       // VOP1/2 - insert omod if present in instruction
650       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
651     }
652   }
653   return MCDisassembler::Success;
654 }
655 
656 // We must check FI == literal to reject not genuine dpp8 insts, and we must
657 // first add optional MI operands to check FI
658 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
659   unsigned Opc = MI.getOpcode();
660   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
661 
662   // Insert dummy unused src modifiers.
663   if (MI.getNumOperands() < DescNumOps &&
664       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
665     insertNamedMCOperand(MI, MCOperand::createImm(0),
666                          AMDGPU::OpName::src0_modifiers);
667 
668   if (MI.getNumOperands() < DescNumOps &&
669       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
670     insertNamedMCOperand(MI, MCOperand::createImm(0),
671                          AMDGPU::OpName::src1_modifiers);
672 
673   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
674 }
675 
676 // Note that before gfx10, the MIMG encoding provided no information about
677 // VADDR size. Consequently, decoded instructions always show address as if it
678 // has 1 dword, which could be not really so.
679 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
680 
681   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
682                                            AMDGPU::OpName::vdst);
683 
684   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
685                                             AMDGPU::OpName::vdata);
686   int VAddr0Idx =
687       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
688   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
689                                             AMDGPU::OpName::dmask);
690 
691   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
692                                             AMDGPU::OpName::tfe);
693   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
694                                             AMDGPU::OpName::d16);
695 
696   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
697   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
698       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
699 
700   assert(VDataIdx != -1);
701   if (BaseOpcode->BVH) {
702     // Add A16 operand for intersect_ray instructions
703     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
704       addOperand(MI, MCOperand::createImm(1));
705     }
706     return MCDisassembler::Success;
707   }
708 
709   bool IsAtomic = (VDstIdx != -1);
710   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
711   bool IsNSA = false;
712   unsigned AddrSize = Info->VAddrDwords;
713 
714   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
715     unsigned DimIdx =
716         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
717     int A16Idx =
718         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
719     const AMDGPU::MIMGDimInfo *Dim =
720         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
721     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
722 
723     AddrSize =
724         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
725 
726     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
727     if (!IsNSA) {
728       if (AddrSize > 8)
729         AddrSize = 16;
730     } else {
731       if (AddrSize > Info->VAddrDwords) {
732         // The NSA encoding does not contain enough operands for the combination
733         // of base opcode / dimension. Should this be an error?
734         return MCDisassembler::Success;
735       }
736     }
737   }
738 
739   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
740   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
741 
742   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
743   if (D16 && AMDGPU::hasPackedD16(STI)) {
744     DstSize = (DstSize + 1) / 2;
745   }
746 
747   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
748     DstSize += 1;
749 
750   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
751     return MCDisassembler::Success;
752 
753   int NewOpcode =
754       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
755   if (NewOpcode == -1)
756     return MCDisassembler::Success;
757 
758   // Widen the register to the correct number of enabled channels.
759   unsigned NewVdata = AMDGPU::NoRegister;
760   if (DstSize != Info->VDataDwords) {
761     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
762 
763     // Get first subregister of VData
764     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
765     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
766     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
767 
768     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
769                                        &MRI.getRegClass(DataRCID));
770     if (NewVdata == AMDGPU::NoRegister) {
771       // It's possible to encode this such that the low register + enabled
772       // components exceeds the register count.
773       return MCDisassembler::Success;
774     }
775   }
776 
777   unsigned NewVAddr0 = AMDGPU::NoRegister;
778   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
779       AddrSize != Info->VAddrDwords) {
780     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
781     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
782     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
783 
784     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
785     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
786                                         &MRI.getRegClass(AddrRCID));
787     if (NewVAddr0 == AMDGPU::NoRegister)
788       return MCDisassembler::Success;
789   }
790 
791   MI.setOpcode(NewOpcode);
792 
793   if (NewVdata != AMDGPU::NoRegister) {
794     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
795 
796     if (IsAtomic) {
797       // Atomic operations have an additional operand (a copy of data)
798       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
799     }
800   }
801 
802   if (NewVAddr0 != AMDGPU::NoRegister) {
803     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
804   } else if (IsNSA) {
805     assert(AddrSize <= Info->VAddrDwords);
806     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
807              MI.begin() + VAddr0Idx + Info->VAddrDwords);
808   }
809 
810   return MCDisassembler::Success;
811 }
812 
813 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
814   return getContext().getRegisterInfo()->
815     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
816 }
817 
818 inline
819 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
820                                          const Twine& ErrMsg) const {
821   *CommentStream << "Error: " + ErrMsg;
822 
823   // ToDo: add support for error operands to MCInst.h
824   // return MCOperand::createError(V);
825   return MCOperand();
826 }
827 
828 inline
829 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
830   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
831 }
832 
833 inline
834 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
835                                                unsigned Val) const {
836   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
837   if (Val >= RegCl.getNumRegs())
838     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
839                            ": unknown register " + Twine(Val));
840   return createRegOperand(RegCl.getRegister(Val));
841 }
842 
843 inline
844 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
845                                                 unsigned Val) const {
846   // ToDo: SI/CI have 104 SGPRs, VI - 102
847   // Valery: here we accepting as much as we can, let assembler sort it out
848   int shift = 0;
849   switch (SRegClassID) {
850   case AMDGPU::SGPR_32RegClassID:
851   case AMDGPU::TTMP_32RegClassID:
852     break;
853   case AMDGPU::SGPR_64RegClassID:
854   case AMDGPU::TTMP_64RegClassID:
855     shift = 1;
856     break;
857   case AMDGPU::SGPR_128RegClassID:
858   case AMDGPU::TTMP_128RegClassID:
859   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
860   // this bundle?
861   case AMDGPU::SGPR_256RegClassID:
862   case AMDGPU::TTMP_256RegClassID:
863     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
864   // this bundle?
865   case AMDGPU::SGPR_512RegClassID:
866   case AMDGPU::TTMP_512RegClassID:
867     shift = 2;
868     break;
869   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
870   // this bundle?
871   default:
872     llvm_unreachable("unhandled register class");
873   }
874 
875   if (Val % (1 << shift)) {
876     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
877                    << ": scalar reg isn't aligned " << Val;
878   }
879 
880   return createRegOperand(SRegClassID, Val >> shift);
881 }
882 
883 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
884   return decodeSrcOp(OPW32, Val);
885 }
886 
887 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
888   return decodeSrcOp(OPW64, Val);
889 }
890 
891 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
892   return decodeSrcOp(OPW128, Val);
893 }
894 
895 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
896   return decodeSrcOp(OPW16, Val);
897 }
898 
899 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
900   return decodeSrcOp(OPWV216, Val);
901 }
902 
903 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
904   return decodeSrcOp(OPWV232, Val);
905 }
906 
907 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
908   // Some instructions have operand restrictions beyond what the encoding
909   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
910   // high bit.
911   Val &= 255;
912 
913   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
914 }
915 
916 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
917   return decodeSrcOp(OPW32, Val);
918 }
919 
920 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
921   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
922 }
923 
924 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
925   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
926 }
927 
928 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
929   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
930 }
931 
932 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
933   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
934 }
935 
936 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
937   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
938 }
939 
940 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
941   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
942 }
943 
944 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
945   return decodeSrcOp(OPW32, Val);
946 }
947 
948 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
949   return decodeSrcOp(OPW64, Val);
950 }
951 
952 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
953   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
954 }
955 
956 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
957   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
958 }
959 
960 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
961   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
962 }
963 
964 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
965   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
966 }
967 
968 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
969   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
970 }
971 
972 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
973   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
974 }
975 
976 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
977   // table-gen generated disassembler doesn't care about operand types
978   // leaving only registry class so SSrc_32 operand turns into SReg_32
979   // and therefore we accept immediates and literals here as well
980   return decodeSrcOp(OPW32, Val);
981 }
982 
983 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
984   unsigned Val) const {
985   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
986   return decodeOperand_SReg_32(Val);
987 }
988 
989 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
990   unsigned Val) const {
991   // SReg_32_XM0 is SReg_32 without EXEC_HI
992   return decodeOperand_SReg_32(Val);
993 }
994 
995 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
996   // table-gen generated disassembler doesn't care about operand types
997   // leaving only registry class so SSrc_32 operand turns into SReg_32
998   // and therefore we accept immediates and literals here as well
999   return decodeSrcOp(OPW32, Val);
1000 }
1001 
1002 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1003   return decodeSrcOp(OPW64, Val);
1004 }
1005 
1006 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1007   return decodeSrcOp(OPW64, Val);
1008 }
1009 
1010 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1011   return decodeSrcOp(OPW128, Val);
1012 }
1013 
1014 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1015   return decodeDstOp(OPW256, Val);
1016 }
1017 
1018 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1019   return decodeDstOp(OPW512, Val);
1020 }
1021 
1022 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1023   // For now all literal constants are supposed to be unsigned integer
1024   // ToDo: deal with signed/unsigned 64-bit integer constants
1025   // ToDo: deal with float/double constants
1026   if (!HasLiteral) {
1027     if (Bytes.size() < 4) {
1028       return errOperand(0, "cannot read literal, inst bytes left " +
1029                         Twine(Bytes.size()));
1030     }
1031     HasLiteral = true;
1032     Literal = eatBytes<uint32_t>(Bytes);
1033   }
1034   return MCOperand::createImm(Literal);
1035 }
1036 
1037 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1038   using namespace AMDGPU::EncValues;
1039 
1040   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1041   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1042     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1043     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1044       // Cast prevents negative overflow.
1045 }
1046 
1047 static int64_t getInlineImmVal32(unsigned Imm) {
1048   switch (Imm) {
1049   case 240:
1050     return FloatToBits(0.5f);
1051   case 241:
1052     return FloatToBits(-0.5f);
1053   case 242:
1054     return FloatToBits(1.0f);
1055   case 243:
1056     return FloatToBits(-1.0f);
1057   case 244:
1058     return FloatToBits(2.0f);
1059   case 245:
1060     return FloatToBits(-2.0f);
1061   case 246:
1062     return FloatToBits(4.0f);
1063   case 247:
1064     return FloatToBits(-4.0f);
1065   case 248: // 1 / (2 * PI)
1066     return 0x3e22f983;
1067   default:
1068     llvm_unreachable("invalid fp inline imm");
1069   }
1070 }
1071 
1072 static int64_t getInlineImmVal64(unsigned Imm) {
1073   switch (Imm) {
1074   case 240:
1075     return DoubleToBits(0.5);
1076   case 241:
1077     return DoubleToBits(-0.5);
1078   case 242:
1079     return DoubleToBits(1.0);
1080   case 243:
1081     return DoubleToBits(-1.0);
1082   case 244:
1083     return DoubleToBits(2.0);
1084   case 245:
1085     return DoubleToBits(-2.0);
1086   case 246:
1087     return DoubleToBits(4.0);
1088   case 247:
1089     return DoubleToBits(-4.0);
1090   case 248: // 1 / (2 * PI)
1091     return 0x3fc45f306dc9c882;
1092   default:
1093     llvm_unreachable("invalid fp inline imm");
1094   }
1095 }
1096 
1097 static int64_t getInlineImmVal16(unsigned Imm) {
1098   switch (Imm) {
1099   case 240:
1100     return 0x3800;
1101   case 241:
1102     return 0xB800;
1103   case 242:
1104     return 0x3C00;
1105   case 243:
1106     return 0xBC00;
1107   case 244:
1108     return 0x4000;
1109   case 245:
1110     return 0xC000;
1111   case 246:
1112     return 0x4400;
1113   case 247:
1114     return 0xC400;
1115   case 248: // 1 / (2 * PI)
1116     return 0x3118;
1117   default:
1118     llvm_unreachable("invalid fp inline imm");
1119   }
1120 }
1121 
1122 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1123   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1124       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1125 
1126   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1127   switch (Width) {
1128   case OPW32:
1129   case OPW128: // splat constants
1130   case OPW512:
1131   case OPW1024:
1132   case OPWV232:
1133     return MCOperand::createImm(getInlineImmVal32(Imm));
1134   case OPW64:
1135   case OPW256:
1136     return MCOperand::createImm(getInlineImmVal64(Imm));
1137   case OPW16:
1138   case OPWV216:
1139     return MCOperand::createImm(getInlineImmVal16(Imm));
1140   default:
1141     llvm_unreachable("implement me");
1142   }
1143 }
1144 
1145 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1146   using namespace AMDGPU;
1147 
1148   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1149   switch (Width) {
1150   default: // fall
1151   case OPW32:
1152   case OPW16:
1153   case OPWV216:
1154     return VGPR_32RegClassID;
1155   case OPW64:
1156   case OPWV232: return VReg_64RegClassID;
1157   case OPW96: return VReg_96RegClassID;
1158   case OPW128: return VReg_128RegClassID;
1159   case OPW160: return VReg_160RegClassID;
1160   case OPW256: return VReg_256RegClassID;
1161   case OPW512: return VReg_512RegClassID;
1162   case OPW1024: return VReg_1024RegClassID;
1163   }
1164 }
1165 
1166 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1167   using namespace AMDGPU;
1168 
1169   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1170   switch (Width) {
1171   default: // fall
1172   case OPW32:
1173   case OPW16:
1174   case OPWV216:
1175     return AGPR_32RegClassID;
1176   case OPW64:
1177   case OPWV232: return AReg_64RegClassID;
1178   case OPW96: return AReg_96RegClassID;
1179   case OPW128: return AReg_128RegClassID;
1180   case OPW160: return AReg_160RegClassID;
1181   case OPW256: return AReg_256RegClassID;
1182   case OPW512: return AReg_512RegClassID;
1183   case OPW1024: return AReg_1024RegClassID;
1184   }
1185 }
1186 
1187 
1188 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1189   using namespace AMDGPU;
1190 
1191   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1192   switch (Width) {
1193   default: // fall
1194   case OPW32:
1195   case OPW16:
1196   case OPWV216:
1197     return SGPR_32RegClassID;
1198   case OPW64:
1199   case OPWV232: return SGPR_64RegClassID;
1200   case OPW96: return SGPR_96RegClassID;
1201   case OPW128: return SGPR_128RegClassID;
1202   case OPW160: return SGPR_160RegClassID;
1203   case OPW256: return SGPR_256RegClassID;
1204   case OPW512: return SGPR_512RegClassID;
1205   }
1206 }
1207 
1208 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1209   using namespace AMDGPU;
1210 
1211   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1212   switch (Width) {
1213   default: // fall
1214   case OPW32:
1215   case OPW16:
1216   case OPWV216:
1217     return TTMP_32RegClassID;
1218   case OPW64:
1219   case OPWV232: return TTMP_64RegClassID;
1220   case OPW128: return TTMP_128RegClassID;
1221   case OPW256: return TTMP_256RegClassID;
1222   case OPW512: return TTMP_512RegClassID;
1223   }
1224 }
1225 
1226 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1227   using namespace AMDGPU::EncValues;
1228 
1229   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1230   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1231 
1232   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1233 }
1234 
1235 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val) const {
1236   using namespace AMDGPU::EncValues;
1237 
1238   assert(Val < 1024); // enum10
1239 
1240   bool IsAGPR = Val & 512;
1241   Val &= 511;
1242 
1243   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1244     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1245                                    : getVgprClassId(Width), Val - VGPR_MIN);
1246   }
1247   if (Val <= SGPR_MAX) {
1248     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1249     static_assert(SGPR_MIN == 0, "");
1250     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1251   }
1252 
1253   int TTmpIdx = getTTmpIdx(Val);
1254   if (TTmpIdx >= 0) {
1255     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1256   }
1257 
1258   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1259     return decodeIntImmed(Val);
1260 
1261   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1262     return decodeFPImmed(Width, Val);
1263 
1264   if (Val == LITERAL_CONST)
1265     return decodeLiteralConstant();
1266 
1267   switch (Width) {
1268   case OPW32:
1269   case OPW16:
1270   case OPWV216:
1271     return decodeSpecialReg32(Val);
1272   case OPW64:
1273   case OPWV232:
1274     return decodeSpecialReg64(Val);
1275   default:
1276     llvm_unreachable("unexpected immediate type");
1277   }
1278 }
1279 
1280 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1281   using namespace AMDGPU::EncValues;
1282 
1283   assert(Val < 128);
1284   assert(Width == OPW256 || Width == OPW512);
1285 
1286   if (Val <= SGPR_MAX) {
1287     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1288     static_assert(SGPR_MIN == 0, "");
1289     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1290   }
1291 
1292   int TTmpIdx = getTTmpIdx(Val);
1293   if (TTmpIdx >= 0) {
1294     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1295   }
1296 
1297   llvm_unreachable("unknown dst register");
1298 }
1299 
1300 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1301   using namespace AMDGPU;
1302 
1303   switch (Val) {
1304   case 102: return createRegOperand(FLAT_SCR_LO);
1305   case 103: return createRegOperand(FLAT_SCR_HI);
1306   case 104: return createRegOperand(XNACK_MASK_LO);
1307   case 105: return createRegOperand(XNACK_MASK_HI);
1308   case 106: return createRegOperand(VCC_LO);
1309   case 107: return createRegOperand(VCC_HI);
1310   case 108: return createRegOperand(TBA_LO);
1311   case 109: return createRegOperand(TBA_HI);
1312   case 110: return createRegOperand(TMA_LO);
1313   case 111: return createRegOperand(TMA_HI);
1314   case 124: return createRegOperand(M0);
1315   case 125: return createRegOperand(SGPR_NULL);
1316   case 126: return createRegOperand(EXEC_LO);
1317   case 127: return createRegOperand(EXEC_HI);
1318   case 235: return createRegOperand(SRC_SHARED_BASE);
1319   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1320   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1321   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1322   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1323   case 251: return createRegOperand(SRC_VCCZ);
1324   case 252: return createRegOperand(SRC_EXECZ);
1325   case 253: return createRegOperand(SRC_SCC);
1326   case 254: return createRegOperand(LDS_DIRECT);
1327   default: break;
1328   }
1329   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1330 }
1331 
1332 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1333   using namespace AMDGPU;
1334 
1335   switch (Val) {
1336   case 102: return createRegOperand(FLAT_SCR);
1337   case 104: return createRegOperand(XNACK_MASK);
1338   case 106: return createRegOperand(VCC);
1339   case 108: return createRegOperand(TBA);
1340   case 110: return createRegOperand(TMA);
1341   case 125: return createRegOperand(SGPR_NULL);
1342   case 126: return createRegOperand(EXEC);
1343   case 235: return createRegOperand(SRC_SHARED_BASE);
1344   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1345   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1346   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1347   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1348   case 251: return createRegOperand(SRC_VCCZ);
1349   case 252: return createRegOperand(SRC_EXECZ);
1350   case 253: return createRegOperand(SRC_SCC);
1351   default: break;
1352   }
1353   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1354 }
1355 
1356 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1357                                             const unsigned Val) const {
1358   using namespace AMDGPU::SDWA;
1359   using namespace AMDGPU::EncValues;
1360 
1361   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1362       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1363     // XXX: cast to int is needed to avoid stupid warning:
1364     // compare with unsigned is always true
1365     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1366         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1367       return createRegOperand(getVgprClassId(Width),
1368                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1369     }
1370     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1371         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1372                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1373       return createSRegOperand(getSgprClassId(Width),
1374                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1375     }
1376     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1377         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1378       return createSRegOperand(getTtmpClassId(Width),
1379                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1380     }
1381 
1382     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1383 
1384     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1385       return decodeIntImmed(SVal);
1386 
1387     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1388       return decodeFPImmed(Width, SVal);
1389 
1390     return decodeSpecialReg32(SVal);
1391   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1392     return createRegOperand(getVgprClassId(Width), Val);
1393   }
1394   llvm_unreachable("unsupported target");
1395 }
1396 
1397 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1398   return decodeSDWASrc(OPW16, Val);
1399 }
1400 
1401 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1402   return decodeSDWASrc(OPW32, Val);
1403 }
1404 
1405 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1406   using namespace AMDGPU::SDWA;
1407 
1408   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1409           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1410          "SDWAVopcDst should be present only on GFX9+");
1411 
1412   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1413 
1414   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1415     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1416 
1417     int TTmpIdx = getTTmpIdx(Val);
1418     if (TTmpIdx >= 0) {
1419       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1420       return createSRegOperand(TTmpClsId, TTmpIdx);
1421     } else if (Val > SGPR_MAX) {
1422       return IsWave64 ? decodeSpecialReg64(Val)
1423                       : decodeSpecialReg32(Val);
1424     } else {
1425       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1426     }
1427   } else {
1428     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1429   }
1430 }
1431 
1432 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1433   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1434     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1435 }
1436 
1437 bool AMDGPUDisassembler::isVI() const {
1438   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1439 }
1440 
1441 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1442 
1443 bool AMDGPUDisassembler::isGFX90A() const {
1444   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1445 }
1446 
1447 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1448 
1449 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1450 
1451 bool AMDGPUDisassembler::isGFX10Plus() const {
1452   return AMDGPU::isGFX10Plus(STI);
1453 }
1454 
1455 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1456   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1457 }
1458 
1459 //===----------------------------------------------------------------------===//
1460 // AMDGPU specific symbol handling
1461 //===----------------------------------------------------------------------===//
1462 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1463   do {                                                                         \
1464     KdStream << Indent << DIRECTIVE " "                                        \
1465              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1466   } while (0)
1467 
1468 // NOLINTNEXTLINE(readability-identifier-naming)
1469 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1470     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1471   using namespace amdhsa;
1472   StringRef Indent = "\t";
1473 
1474   // We cannot accurately backward compute #VGPRs used from
1475   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1476   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1477   // simply calculate the inverse of what the assembler does.
1478 
1479   uint32_t GranulatedWorkitemVGPRCount =
1480       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1481       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1482 
1483   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1484                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1485 
1486   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1487 
1488   // We cannot backward compute values used to calculate
1489   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1490   // directives can't be computed:
1491   // .amdhsa_reserve_vcc
1492   // .amdhsa_reserve_flat_scratch
1493   // .amdhsa_reserve_xnack_mask
1494   // They take their respective default values if not specified in the assembly.
1495   //
1496   // GRANULATED_WAVEFRONT_SGPR_COUNT
1497   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1498   //
1499   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1500   // are set to 0. So while disassembling we consider that:
1501   //
1502   // GRANULATED_WAVEFRONT_SGPR_COUNT
1503   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1504   //
1505   // The disassembler cannot recover the original values of those 3 directives.
1506 
1507   uint32_t GranulatedWavefrontSGPRCount =
1508       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1509       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1510 
1511   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1512     return MCDisassembler::Fail;
1513 
1514   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1515                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1516 
1517   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1518   if (!hasArchitectedFlatScratch())
1519     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1520   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1521   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1522 
1523   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1524     return MCDisassembler::Fail;
1525 
1526   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1527                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1528   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1529                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1530   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1531                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1532   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1533                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1534 
1535   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1536     return MCDisassembler::Fail;
1537 
1538   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1539 
1540   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1541     return MCDisassembler::Fail;
1542 
1543   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1544 
1545   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1546     return MCDisassembler::Fail;
1547 
1548   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1549     return MCDisassembler::Fail;
1550 
1551   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1552 
1553   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1554     return MCDisassembler::Fail;
1555 
1556   if (isGFX10Plus()) {
1557     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1558                     COMPUTE_PGM_RSRC1_WGP_MODE);
1559     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1560     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1561   }
1562   return MCDisassembler::Success;
1563 }
1564 
1565 // NOLINTNEXTLINE(readability-identifier-naming)
1566 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1567     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1568   using namespace amdhsa;
1569   StringRef Indent = "\t";
1570   if (hasArchitectedFlatScratch())
1571     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1572                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1573   else
1574     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1575                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1576   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1577                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1578   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1579                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1580   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1581                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1582   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1583                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1584   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1585                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1586 
1587   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1588     return MCDisassembler::Fail;
1589 
1590   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1591     return MCDisassembler::Fail;
1592 
1593   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1594     return MCDisassembler::Fail;
1595 
1596   PRINT_DIRECTIVE(
1597       ".amdhsa_exception_fp_ieee_invalid_op",
1598       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1599   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1600                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1601   PRINT_DIRECTIVE(
1602       ".amdhsa_exception_fp_ieee_div_zero",
1603       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1604   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1605                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1606   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1607                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1608   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1609                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1610   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1611                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1612 
1613   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1614     return MCDisassembler::Fail;
1615 
1616   return MCDisassembler::Success;
1617 }
1618 
1619 #undef PRINT_DIRECTIVE
1620 
1621 MCDisassembler::DecodeStatus
1622 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1623     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1624     raw_string_ostream &KdStream) const {
1625 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1626   do {                                                                         \
1627     KdStream << Indent << DIRECTIVE " "                                        \
1628              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1629   } while (0)
1630 
1631   uint16_t TwoByteBuffer = 0;
1632   uint32_t FourByteBuffer = 0;
1633 
1634   StringRef ReservedBytes;
1635   StringRef Indent = "\t";
1636 
1637   assert(Bytes.size() == 64);
1638   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1639 
1640   switch (Cursor.tell()) {
1641   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1642     FourByteBuffer = DE.getU32(Cursor);
1643     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1644              << '\n';
1645     return MCDisassembler::Success;
1646 
1647   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1648     FourByteBuffer = DE.getU32(Cursor);
1649     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1650              << FourByteBuffer << '\n';
1651     return MCDisassembler::Success;
1652 
1653   case amdhsa::KERNARG_SIZE_OFFSET:
1654     FourByteBuffer = DE.getU32(Cursor);
1655     KdStream << Indent << ".amdhsa_kernarg_size "
1656              << FourByteBuffer << '\n';
1657     return MCDisassembler::Success;
1658 
1659   case amdhsa::RESERVED0_OFFSET:
1660     // 4 reserved bytes, must be 0.
1661     ReservedBytes = DE.getBytes(Cursor, 4);
1662     for (int I = 0; I < 4; ++I) {
1663       if (ReservedBytes[I] != 0) {
1664         return MCDisassembler::Fail;
1665       }
1666     }
1667     return MCDisassembler::Success;
1668 
1669   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1670     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1671     // So far no directive controls this for Code Object V3, so simply skip for
1672     // disassembly.
1673     DE.skip(Cursor, 8);
1674     return MCDisassembler::Success;
1675 
1676   case amdhsa::RESERVED1_OFFSET:
1677     // 20 reserved bytes, must be 0.
1678     ReservedBytes = DE.getBytes(Cursor, 20);
1679     for (int I = 0; I < 20; ++I) {
1680       if (ReservedBytes[I] != 0) {
1681         return MCDisassembler::Fail;
1682       }
1683     }
1684     return MCDisassembler::Success;
1685 
1686   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1687     // COMPUTE_PGM_RSRC3
1688     //  - Only set for GFX10, GFX6-9 have this to be 0.
1689     //  - Currently no directives directly control this.
1690     FourByteBuffer = DE.getU32(Cursor);
1691     if (!isGFX10Plus() && FourByteBuffer) {
1692       return MCDisassembler::Fail;
1693     }
1694     return MCDisassembler::Success;
1695 
1696   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1697     FourByteBuffer = DE.getU32(Cursor);
1698     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1699         MCDisassembler::Fail) {
1700       return MCDisassembler::Fail;
1701     }
1702     return MCDisassembler::Success;
1703 
1704   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1705     FourByteBuffer = DE.getU32(Cursor);
1706     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1707         MCDisassembler::Fail) {
1708       return MCDisassembler::Fail;
1709     }
1710     return MCDisassembler::Success;
1711 
1712   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1713     using namespace amdhsa;
1714     TwoByteBuffer = DE.getU16(Cursor);
1715 
1716     if (!hasArchitectedFlatScratch())
1717       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1718                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1719     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1720                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1721     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1722                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1723     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1724                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1725     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1726                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1727     if (!hasArchitectedFlatScratch())
1728       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1729                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1730     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1731                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1732 
1733     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1734       return MCDisassembler::Fail;
1735 
1736     // Reserved for GFX9
1737     if (isGFX9() &&
1738         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1739       return MCDisassembler::Fail;
1740     } else if (isGFX10Plus()) {
1741       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1742                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1743     }
1744 
1745     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1746       return MCDisassembler::Fail;
1747 
1748     return MCDisassembler::Success;
1749 
1750   case amdhsa::RESERVED2_OFFSET:
1751     // 6 bytes from here are reserved, must be 0.
1752     ReservedBytes = DE.getBytes(Cursor, 6);
1753     for (int I = 0; I < 6; ++I) {
1754       if (ReservedBytes[I] != 0)
1755         return MCDisassembler::Fail;
1756     }
1757     return MCDisassembler::Success;
1758 
1759   default:
1760     llvm_unreachable("Unhandled index. Case statements cover everything.");
1761     return MCDisassembler::Fail;
1762   }
1763 #undef PRINT_DIRECTIVE
1764 }
1765 
1766 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1767     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1768   // CP microcode requires the kernel descriptor to be 64 aligned.
1769   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1770     return MCDisassembler::Fail;
1771 
1772   std::string Kd;
1773   raw_string_ostream KdStream(Kd);
1774   KdStream << ".amdhsa_kernel " << KdName << '\n';
1775 
1776   DataExtractor::Cursor C(0);
1777   while (C && C.tell() < Bytes.size()) {
1778     MCDisassembler::DecodeStatus Status =
1779         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1780 
1781     cantFail(C.takeError());
1782 
1783     if (Status == MCDisassembler::Fail)
1784       return MCDisassembler::Fail;
1785   }
1786   KdStream << ".end_amdhsa_kernel\n";
1787   outs() << KdStream.str();
1788   return MCDisassembler::Success;
1789 }
1790 
1791 Optional<MCDisassembler::DecodeStatus>
1792 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1793                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1794                                   raw_ostream &CStream) const {
1795   // Right now only kernel descriptor needs to be handled.
1796   // We ignore all other symbols for target specific handling.
1797   // TODO:
1798   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1799   // Object V2 and V3 when symbols are marked protected.
1800 
1801   // amd_kernel_code_t for Code Object V2.
1802   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1803     Size = 256;
1804     return MCDisassembler::Fail;
1805   }
1806 
1807   // Code Object V3 kernel descriptors.
1808   StringRef Name = Symbol.Name;
1809   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1810     Size = 64; // Size = 64 regardless of success or failure.
1811     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1812   }
1813   return None;
1814 }
1815 
1816 //===----------------------------------------------------------------------===//
1817 // AMDGPUSymbolizer
1818 //===----------------------------------------------------------------------===//
1819 
1820 // Try to find symbol name for specified label
1821 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1822                                 raw_ostream &/*cStream*/, int64_t Value,
1823                                 uint64_t /*Address*/, bool IsBranch,
1824                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1825 
1826   if (!IsBranch) {
1827     return false;
1828   }
1829 
1830   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1831   if (!Symbols)
1832     return false;
1833 
1834   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1835     return Val.Addr == static_cast<uint64_t>(Value) &&
1836            Val.Type == ELF::STT_NOTYPE;
1837   });
1838   if (Result != Symbols->end()) {
1839     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1840     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1841     Inst.addOperand(MCOperand::createExpr(Add));
1842     return true;
1843   }
1844   // Add to list of referenced addresses, so caller can synthesize a label.
1845   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1846   return false;
1847 }
1848 
1849 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1850                                                        int64_t Value,
1851                                                        uint64_t Address) {
1852   llvm_unreachable("unimplemented");
1853 }
1854 
1855 //===----------------------------------------------------------------------===//
1856 // Initialization
1857 //===----------------------------------------------------------------------===//
1858 
1859 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1860                               LLVMOpInfoCallback /*GetOpInfo*/,
1861                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1862                               void *DisInfo,
1863                               MCContext *Ctx,
1864                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1865   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1866 }
1867 
1868 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1869                                                 const MCSubtargetInfo &STI,
1870                                                 MCContext &Ctx) {
1871   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1872 }
1873 
1874 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1875   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1876                                          createAMDGPUDisassembler);
1877   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1878                                        createAMDGPUSymbolizer);
1879 }
1880