1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VRegOrLds_32)
123 DECODE_OPERAND_REG(VS_32)
124 DECODE_OPERAND_REG(VS_64)
125 DECODE_OPERAND_REG(VS_128)
126 
127 DECODE_OPERAND_REG(VReg_64)
128 DECODE_OPERAND_REG(VReg_96)
129 DECODE_OPERAND_REG(VReg_128)
130 DECODE_OPERAND_REG(VReg_256)
131 DECODE_OPERAND_REG(VReg_512)
132 DECODE_OPERAND_REG(VReg_1024)
133 
134 DECODE_OPERAND_REG(SReg_32)
135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
137 DECODE_OPERAND_REG(SRegOrLds_32)
138 DECODE_OPERAND_REG(SReg_64)
139 DECODE_OPERAND_REG(SReg_64_XEXEC)
140 DECODE_OPERAND_REG(SReg_128)
141 DECODE_OPERAND_REG(SReg_256)
142 DECODE_OPERAND_REG(SReg_512)
143 
144 DECODE_OPERAND_REG(AGPR_32)
145 DECODE_OPERAND_REG(AReg_64)
146 DECODE_OPERAND_REG(AReg_128)
147 DECODE_OPERAND_REG(AReg_256)
148 DECODE_OPERAND_REG(AReg_512)
149 DECODE_OPERAND_REG(AReg_1024)
150 DECODE_OPERAND_REG(AV_32)
151 DECODE_OPERAND_REG(AV_64)
152 DECODE_OPERAND_REG(AV_128)
153 DECODE_OPERAND_REG(AVDst_128)
154 DECODE_OPERAND_REG(AVDst_512)
155 
156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
157                                          uint64_t Addr,
158                                          const MCDisassembler *Decoder) {
159   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
160   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
161 }
162 
163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
164                                            uint64_t Addr,
165                                            const MCDisassembler *Decoder) {
166   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
167   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
168 }
169 
170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
171                                            uint64_t Addr,
172                                            const MCDisassembler *Decoder) {
173   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
174   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
175 }
176 
177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
178                                         uint64_t Addr,
179                                         const MCDisassembler *Decoder) {
180   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
181   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
182 }
183 
184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
185                                         uint64_t Addr,
186                                         const MCDisassembler *Decoder) {
187   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
188   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
189 }
190 
191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
192                                           uint64_t Addr,
193                                           const MCDisassembler *Decoder) {
194   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
195   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
196 }
197 
198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
199                                            uint64_t Addr,
200                                            const MCDisassembler *Decoder) {
201   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
202   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
203 }
204 
205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
206                                            uint64_t Addr,
207                                            const MCDisassembler *Decoder) {
208   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
209   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
210 }
211 
212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
213                                            uint64_t Addr,
214                                            const MCDisassembler *Decoder) {
215   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
216   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
217 }
218 
219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
220                                             uint64_t Addr,
221                                             const MCDisassembler *Decoder) {
222   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
223   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
224 }
225 
226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
227                                           uint64_t Addr,
228                                           const MCDisassembler *Decoder) {
229   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
230   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
231 }
232 
233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
234                                            uint64_t Addr,
235                                            const MCDisassembler *Decoder) {
236   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
237   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
238 }
239 
240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
241                                            uint64_t Addr,
242                                            const MCDisassembler *Decoder) {
243   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
244   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
245 }
246 
247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
248                                            uint64_t Addr,
249                                            const MCDisassembler *Decoder) {
250   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
251   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
252 }
253 
254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
255                                             uint64_t Addr,
256                                             const MCDisassembler *Decoder) {
257   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
258   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
259 }
260 
261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
262                                           uint64_t Addr,
263                                           const MCDisassembler *Decoder) {
264   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
265   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
266 }
267 
268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
269                                           uint64_t Addr,
270                                           const MCDisassembler *Decoder) {
271   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
272   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
273 }
274 
275 static DecodeStatus
276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
277                              const MCDisassembler *Decoder) {
278   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
279   return addOperand(
280       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
281 }
282 
283 static DecodeStatus
284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
285                              const MCDisassembler *Decoder) {
286   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(
288       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
289 }
290 
291 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
292                           const MCRegisterInfo *MRI) {
293   if (OpIdx < 0)
294     return false;
295 
296   const MCOperand &Op = Inst.getOperand(OpIdx);
297   if (!Op.isReg())
298     return false;
299 
300   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
301   auto Reg = Sub ? Sub : Op.getReg();
302   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
303 }
304 
305 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
306                                              AMDGPUDisassembler::OpWidthTy Opw,
307                                              const MCDisassembler *Decoder) {
308   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
309   if (!DAsm->isGFX90A()) {
310     Imm &= 511;
311   } else {
312     // If atomic has both vdata and vdst their register classes are tied.
313     // The bit is decoded along with the vdst, first operand. We need to
314     // change register class to AGPR if vdst was AGPR.
315     // If a DS instruction has both data0 and data1 their register classes
316     // are also tied.
317     unsigned Opc = Inst.getOpcode();
318     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
319     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
320                                                         : AMDGPU::OpName::vdata;
321     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
322     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
323     if ((int)Inst.getNumOperands() == DataIdx) {
324       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
325       if (IsAGPROperand(Inst, DstIdx, MRI))
326         Imm |= 512;
327     }
328 
329     if (TSFlags & SIInstrFlags::DS) {
330       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
331       if ((int)Inst.getNumOperands() == Data2Idx &&
332           IsAGPROperand(Inst, DataIdx, MRI))
333         Imm |= 512;
334     }
335   }
336   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
337 }
338 
339 static DecodeStatus
340 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
341                              const MCDisassembler *Decoder) {
342   return decodeOperand_AVLdSt_Any(Inst, Imm,
343                                   AMDGPUDisassembler::OPW32, Decoder);
344 }
345 
346 static DecodeStatus
347 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
348                              const MCDisassembler *Decoder) {
349   return decodeOperand_AVLdSt_Any(Inst, Imm,
350                                   AMDGPUDisassembler::OPW64, Decoder);
351 }
352 
353 static DecodeStatus
354 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
355                              const MCDisassembler *Decoder) {
356   return decodeOperand_AVLdSt_Any(Inst, Imm,
357                                   AMDGPUDisassembler::OPW96, Decoder);
358 }
359 
360 static DecodeStatus
361 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
362                               const MCDisassembler *Decoder) {
363   return decodeOperand_AVLdSt_Any(Inst, Imm,
364                                   AMDGPUDisassembler::OPW128, Decoder);
365 }
366 
367 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
368                                           uint64_t Addr,
369                                           const MCDisassembler *Decoder) {
370   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
371   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
372 }
373 
374 #define DECODE_SDWA(DecName) \
375 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
376 
377 DECODE_SDWA(Src32)
378 DECODE_SDWA(Src16)
379 DECODE_SDWA(VopcDst)
380 
381 #include "AMDGPUGenDisassemblerTables.inc"
382 
383 //===----------------------------------------------------------------------===//
384 //
385 //===----------------------------------------------------------------------===//
386 
387 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
388   assert(Bytes.size() >= sizeof(T));
389   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
390   Bytes = Bytes.slice(sizeof(T));
391   return Res;
392 }
393 
394 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
395   assert(Bytes.size() >= 12);
396   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
397       Bytes.data());
398   Bytes = Bytes.slice(8);
399   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
400       Bytes.data());
401   Bytes = Bytes.slice(4);
402   return DecoderUInt128(Lo, Hi);
403 }
404 
405 // The disassembler is greedy, so we need to check FI operand value to
406 // not parse a dpp if the correct literal is not set. For dpp16 the
407 // autogenerated decoder checks the dpp literal
408 static bool isValidDPP8(const MCInst &MI) {
409   using namespace llvm::AMDGPU::DPP;
410   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
411   assert(FiIdx != -1);
412   if ((unsigned)FiIdx >= MI.getNumOperands())
413     return false;
414   unsigned Fi = MI.getOperand(FiIdx).getImm();
415   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
416 }
417 
418 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
419                                                 ArrayRef<uint8_t> Bytes_,
420                                                 uint64_t Address,
421                                                 raw_ostream &CS) const {
422   CommentStream = &CS;
423   bool IsSDWA = false;
424 
425   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
426   Bytes = Bytes_.slice(0, MaxInstBytesNum);
427 
428   DecodeStatus Res = MCDisassembler::Fail;
429   do {
430     // ToDo: better to switch encoding length using some bit predicate
431     // but it is unknown yet, so try all we can
432 
433     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
434     // encodings
435     if (isGFX11Plus() && Bytes.size() >= 12 ) {
436       DecoderUInt128 DecW = eat12Bytes(Bytes);
437       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
438                                           Address);
439       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
440         break;
441       MI = MCInst(); // clear
442       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
443                                           Address);
444       if (Res) {
445         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
446           convertVOP3PDPPInst(MI);
447         break;
448       }
449     }
450     // Reinitialize Bytes
451     Bytes = Bytes_.slice(0, MaxInstBytesNum);
452 
453     if (Bytes.size() >= 8) {
454       const uint64_t QW = eatBytes<uint64_t>(Bytes);
455 
456       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
457         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
458         if (Res) {
459           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
460               == -1)
461             break;
462           if (convertDPP8Inst(MI) == MCDisassembler::Success)
463             break;
464           MI = MCInst(); // clear
465         }
466       }
467 
468       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
469       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
470         break;
471       MI = MCInst(); // clear
472 
473       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
474       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
475         break;
476       MI = MCInst(); // clear
477 
478       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
479       if (Res) break;
480 
481       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
482       if (Res)
483         break;
484 
485       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
486       if (Res) { IsSDWA = true;  break; }
487 
488       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
489       if (Res) { IsSDWA = true;  break; }
490 
491       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
492       if (Res) { IsSDWA = true;  break; }
493 
494       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
495         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
496         if (Res)
497           break;
498       }
499 
500       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
501       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
502       // table first so we print the correct name.
503       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
504         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
505         if (Res)
506           break;
507       }
508     }
509 
510     // Reinitialize Bytes as DPP64 could have eaten too much
511     Bytes = Bytes_.slice(0, MaxInstBytesNum);
512 
513     // Try decode 32-bit instruction
514     if (Bytes.size() < 4) break;
515     const uint32_t DW = eatBytes<uint32_t>(Bytes);
516     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
517     if (Res) break;
518 
519     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
520     if (Res) break;
521 
522     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
523     if (Res) break;
524 
525     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
526       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
527       if (Res)
528         break;
529     }
530 
531     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
532       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
533       if (Res) break;
534     }
535 
536     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
537     if (Res) break;
538 
539     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
540     if (Res) break;
541 
542     if (Bytes.size() < 4) break;
543     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
544 
545     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
546       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
547       if (Res)
548         break;
549     }
550 
551     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
552     if (Res) break;
553 
554     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
555     if (Res) break;
556 
557     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
558     if (Res) break;
559 
560     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
561     if (Res) break;
562 
563     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
564   } while (false);
565 
566   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
567               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
568               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
569               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
570               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
571               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
572               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
573               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
574               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
575               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 ||
576               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
577               MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
578               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 ||
579               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx11)) {
580     // Insert dummy unused src2_modifiers.
581     insertNamedMCOperand(MI, MCOperand::createImm(0),
582                          AMDGPU::OpName::src2_modifiers);
583   }
584 
585   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
586           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
587     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
588                                              AMDGPU::OpName::cpol);
589     if (CPolPos != -1) {
590       unsigned CPol =
591           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
592               AMDGPU::CPol::GLC : 0;
593       if (MI.getNumOperands() <= (unsigned)CPolPos) {
594         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
595                              AMDGPU::OpName::cpol);
596       } else if (CPol) {
597         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
598       }
599     }
600   }
601 
602   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
603               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
604              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
605     // GFX90A lost TFE, its place is occupied by ACC.
606     int TFEOpIdx =
607         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
608     if (TFEOpIdx != -1) {
609       auto TFEIter = MI.begin();
610       std::advance(TFEIter, TFEOpIdx);
611       MI.insert(TFEIter, MCOperand::createImm(0));
612     }
613   }
614 
615   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
616               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
617     int SWZOpIdx =
618         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
619     if (SWZOpIdx != -1) {
620       auto SWZIter = MI.begin();
621       std::advance(SWZIter, SWZOpIdx);
622       MI.insert(SWZIter, MCOperand::createImm(0));
623     }
624   }
625 
626   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
627     int VAddr0Idx =
628         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
629     int RsrcIdx =
630         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
631     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
632     if (VAddr0Idx >= 0 && NSAArgs > 0) {
633       unsigned NSAWords = (NSAArgs + 3) / 4;
634       if (Bytes.size() < 4 * NSAWords) {
635         Res = MCDisassembler::Fail;
636       } else {
637         for (unsigned i = 0; i < NSAArgs; ++i) {
638           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
639           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
640           MI.insert(MI.begin() + VAddrIdx,
641                     createRegOperand(VAddrRCID, Bytes[i]));
642         }
643         Bytes = Bytes.slice(4 * NSAWords);
644       }
645     }
646 
647     if (Res)
648       Res = convertMIMGInst(MI);
649   }
650 
651   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
652     Res = convertEXPInst(MI);
653 
654   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
655     Res = convertVINTERPInst(MI);
656 
657   if (Res && IsSDWA)
658     Res = convertSDWAInst(MI);
659 
660   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
661                                               AMDGPU::OpName::vdst_in);
662   if (VDstIn_Idx != -1) {
663     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
664                            MCOI::OperandConstraint::TIED_TO);
665     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
666          !MI.getOperand(VDstIn_Idx).isReg() ||
667          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
668       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
669         MI.erase(&MI.getOperand(VDstIn_Idx));
670       insertNamedMCOperand(MI,
671         MCOperand::createReg(MI.getOperand(Tied).getReg()),
672         AMDGPU::OpName::vdst_in);
673     }
674   }
675 
676   int ImmLitIdx =
677       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
678   if (Res && ImmLitIdx != -1)
679     Res = convertFMAanyK(MI, ImmLitIdx);
680 
681   // if the opcode was not recognized we'll assume a Size of 4 bytes
682   // (unless there are fewer bytes left)
683   Size = Res ? (MaxInstBytesNum - Bytes.size())
684              : std::min((size_t)4, Bytes_.size());
685   return Res;
686 }
687 
688 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
689   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
690     // The MCInst still has these fields even though they are no longer encoded
691     // in the GFX11 instruction.
692     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
693     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
694   }
695   return MCDisassembler::Success;
696 }
697 
698 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
699   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
700       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
701       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
702       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
703     // The MCInst has this field that is not directly encoded in the
704     // instruction.
705     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
706   }
707   return MCDisassembler::Success;
708 }
709 
710 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
711   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
712       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
713     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
714       // VOPC - insert clamp
715       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
716   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
717     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
718     if (SDst != -1) {
719       // VOPC - insert VCC register as sdst
720       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
721                            AMDGPU::OpName::sdst);
722     } else {
723       // VOP1/2 - insert omod if present in instruction
724       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
725     }
726   }
727   return MCDisassembler::Success;
728 }
729 
730 // We must check FI == literal to reject not genuine dpp8 insts, and we must
731 // first add optional MI operands to check FI
732 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
733   unsigned Opc = MI.getOpcode();
734   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
735   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
736     convertVOP3PDPPInst(MI);
737   } else {
738     // Insert dummy unused src modifiers.
739     if (MI.getNumOperands() < DescNumOps &&
740         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
741       insertNamedMCOperand(MI, MCOperand::createImm(0),
742                            AMDGPU::OpName::src0_modifiers);
743 
744     if (MI.getNumOperands() < DescNumOps &&
745         AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
746       insertNamedMCOperand(MI, MCOperand::createImm(0),
747                            AMDGPU::OpName::src1_modifiers);
748   }
749   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
750 }
751 
752 // Note that before gfx10, the MIMG encoding provided no information about
753 // VADDR size. Consequently, decoded instructions always show address as if it
754 // has 1 dword, which could be not really so.
755 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
756 
757   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
758                                            AMDGPU::OpName::vdst);
759 
760   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
761                                             AMDGPU::OpName::vdata);
762   int VAddr0Idx =
763       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
764   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
765                                             AMDGPU::OpName::dmask);
766 
767   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
768                                             AMDGPU::OpName::tfe);
769   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
770                                             AMDGPU::OpName::d16);
771 
772   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
773   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
774       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
775 
776   assert(VDataIdx != -1);
777   if (BaseOpcode->BVH) {
778     // Add A16 operand for intersect_ray instructions
779     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
780       addOperand(MI, MCOperand::createImm(1));
781     }
782     return MCDisassembler::Success;
783   }
784 
785   bool IsAtomic = (VDstIdx != -1);
786   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
787   bool IsNSA = false;
788   unsigned AddrSize = Info->VAddrDwords;
789 
790   if (isGFX10Plus()) {
791     unsigned DimIdx =
792         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
793     int A16Idx =
794         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
795     const AMDGPU::MIMGDimInfo *Dim =
796         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
797     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
798 
799     AddrSize =
800         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
801 
802     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
803             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
804     if (!IsNSA) {
805       if (AddrSize > 8)
806         AddrSize = 16;
807     } else {
808       if (AddrSize > Info->VAddrDwords) {
809         // The NSA encoding does not contain enough operands for the combination
810         // of base opcode / dimension. Should this be an error?
811         return MCDisassembler::Success;
812       }
813     }
814   }
815 
816   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
817   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
818 
819   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
820   if (D16 && AMDGPU::hasPackedD16(STI)) {
821     DstSize = (DstSize + 1) / 2;
822   }
823 
824   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
825     DstSize += 1;
826 
827   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
828     return MCDisassembler::Success;
829 
830   int NewOpcode =
831       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
832   if (NewOpcode == -1)
833     return MCDisassembler::Success;
834 
835   // Widen the register to the correct number of enabled channels.
836   unsigned NewVdata = AMDGPU::NoRegister;
837   if (DstSize != Info->VDataDwords) {
838     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
839 
840     // Get first subregister of VData
841     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
842     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
843     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
844 
845     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
846                                        &MRI.getRegClass(DataRCID));
847     if (NewVdata == AMDGPU::NoRegister) {
848       // It's possible to encode this such that the low register + enabled
849       // components exceeds the register count.
850       return MCDisassembler::Success;
851     }
852   }
853 
854   // If not using NSA on GFX10+, widen address register to correct size.
855   unsigned NewVAddr0 = AMDGPU::NoRegister;
856   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
857     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
858     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
859     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
860 
861     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
862     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
863                                         &MRI.getRegClass(AddrRCID));
864     if (NewVAddr0 == AMDGPU::NoRegister)
865       return MCDisassembler::Success;
866   }
867 
868   MI.setOpcode(NewOpcode);
869 
870   if (NewVdata != AMDGPU::NoRegister) {
871     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
872 
873     if (IsAtomic) {
874       // Atomic operations have an additional operand (a copy of data)
875       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
876     }
877   }
878 
879   if (NewVAddr0 != AMDGPU::NoRegister) {
880     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
881   } else if (IsNSA) {
882     assert(AddrSize <= Info->VAddrDwords);
883     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
884              MI.begin() + VAddr0Idx + Info->VAddrDwords);
885   }
886 
887   return MCDisassembler::Success;
888 }
889 
890 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
891 // decoder only adds to src_modifiers, so manually add the bits to the other
892 // operands.
893 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
894   unsigned Opc = MI.getOpcode();
895   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
896 
897   if (MI.getNumOperands() < DescNumOps &&
898       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1)
899     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
900 
901   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
902                         AMDGPU::OpName::src1_modifiers,
903                         AMDGPU::OpName::src2_modifiers};
904   unsigned OpSel = 0;
905   unsigned OpSelHi = 0;
906   unsigned NegLo = 0;
907   unsigned NegHi = 0;
908   for (int J = 0; J < 3; ++J) {
909     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
910     if (OpIdx == -1)
911       break;
912     unsigned Val = MI.getOperand(OpIdx).getImm();
913 
914     OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
915     OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
916     NegLo |= !!(Val & SISrcMods::NEG) << J;
917     NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
918   }
919 
920   if (MI.getNumOperands() < DescNumOps &&
921       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1)
922     insertNamedMCOperand(MI, MCOperand::createImm(OpSel),
923                          AMDGPU::OpName::op_sel);
924   if (MI.getNumOperands() < DescNumOps &&
925       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi) != -1)
926     insertNamedMCOperand(MI, MCOperand::createImm(OpSelHi),
927                          AMDGPU::OpName::op_sel_hi);
928   if (MI.getNumOperands() < DescNumOps &&
929       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo) != -1)
930     insertNamedMCOperand(MI, MCOperand::createImm(NegLo),
931                          AMDGPU::OpName::neg_lo);
932   if (MI.getNumOperands() < DescNumOps &&
933       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi) != -1)
934     insertNamedMCOperand(MI, MCOperand::createImm(NegHi),
935                          AMDGPU::OpName::neg_hi);
936 
937   return MCDisassembler::Success;
938 }
939 
940 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
941                                                 int ImmLitIdx) const {
942   assert(HasLiteral && "Should have decoded a literal");
943   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
944   unsigned DescNumOps = Desc.getNumOperands();
945   assert(DescNumOps == MI.getNumOperands());
946   for (unsigned I = 0; I < DescNumOps; ++I) {
947     auto &Op = MI.getOperand(I);
948     auto OpType = Desc.OpInfo[I].OperandType;
949     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
950                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
951     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
952         IsDeferredOp)
953       Op.setImm(Literal);
954   }
955   return MCDisassembler::Success;
956 }
957 
958 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
959   return getContext().getRegisterInfo()->
960     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
961 }
962 
963 inline
964 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
965                                          const Twine& ErrMsg) const {
966   *CommentStream << "Error: " + ErrMsg;
967 
968   // ToDo: add support for error operands to MCInst.h
969   // return MCOperand::createError(V);
970   return MCOperand();
971 }
972 
973 inline
974 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
975   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
976 }
977 
978 inline
979 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
980                                                unsigned Val) const {
981   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
982   if (Val >= RegCl.getNumRegs())
983     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
984                            ": unknown register " + Twine(Val));
985   return createRegOperand(RegCl.getRegister(Val));
986 }
987 
988 inline
989 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
990                                                 unsigned Val) const {
991   // ToDo: SI/CI have 104 SGPRs, VI - 102
992   // Valery: here we accepting as much as we can, let assembler sort it out
993   int shift = 0;
994   switch (SRegClassID) {
995   case AMDGPU::SGPR_32RegClassID:
996   case AMDGPU::TTMP_32RegClassID:
997     break;
998   case AMDGPU::SGPR_64RegClassID:
999   case AMDGPU::TTMP_64RegClassID:
1000     shift = 1;
1001     break;
1002   case AMDGPU::SGPR_128RegClassID:
1003   case AMDGPU::TTMP_128RegClassID:
1004   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1005   // this bundle?
1006   case AMDGPU::SGPR_256RegClassID:
1007   case AMDGPU::TTMP_256RegClassID:
1008     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1009   // this bundle?
1010   case AMDGPU::SGPR_512RegClassID:
1011   case AMDGPU::TTMP_512RegClassID:
1012     shift = 2;
1013     break;
1014   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1015   // this bundle?
1016   default:
1017     llvm_unreachable("unhandled register class");
1018   }
1019 
1020   if (Val % (1 << shift)) {
1021     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1022                    << ": scalar reg isn't aligned " << Val;
1023   }
1024 
1025   return createRegOperand(SRegClassID, Val >> shift);
1026 }
1027 
1028 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
1029   return decodeSrcOp(OPW32, Val);
1030 }
1031 
1032 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
1033   return decodeSrcOp(OPW64, Val);
1034 }
1035 
1036 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
1037   return decodeSrcOp(OPW128, Val);
1038 }
1039 
1040 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
1041   return decodeSrcOp(OPW16, Val);
1042 }
1043 
1044 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
1045   return decodeSrcOp(OPWV216, Val);
1046 }
1047 
1048 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
1049   return decodeSrcOp(OPWV232, Val);
1050 }
1051 
1052 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
1053   // Some instructions have operand restrictions beyond what the encoding
1054   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1055   // high bit.
1056   Val &= 255;
1057 
1058   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1059 }
1060 
1061 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1062   return decodeSrcOp(OPW32, Val);
1063 }
1064 
1065 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1066   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1067 }
1068 
1069 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1070   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1071 }
1072 
1073 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1074   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1075 }
1076 
1077 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1078   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1079 }
1080 
1081 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1082   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1083 }
1084 
1085 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1086   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1087 }
1088 
1089 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1090   return decodeSrcOp(OPW32, Val);
1091 }
1092 
1093 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1094   return decodeSrcOp(OPW64, Val);
1095 }
1096 
1097 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1098   return decodeSrcOp(OPW128, Val);
1099 }
1100 
1101 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1102   using namespace AMDGPU::EncValues;
1103   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1104   return decodeSrcOp(OPW128, Val | IS_VGPR);
1105 }
1106 
1107 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1108   using namespace AMDGPU::EncValues;
1109   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1110   return decodeSrcOp(OPW512, Val | IS_VGPR);
1111 }
1112 
1113 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1114   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1115 }
1116 
1117 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1118   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1119 }
1120 
1121 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1122   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1123 }
1124 
1125 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1126   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1127 }
1128 
1129 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1130   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1131 }
1132 
1133 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1134   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1135 }
1136 
1137 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1138   // table-gen generated disassembler doesn't care about operand types
1139   // leaving only registry class so SSrc_32 operand turns into SReg_32
1140   // and therefore we accept immediates and literals here as well
1141   return decodeSrcOp(OPW32, Val);
1142 }
1143 
1144 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1145   unsigned Val) const {
1146   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1147   return decodeOperand_SReg_32(Val);
1148 }
1149 
1150 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1151   unsigned Val) const {
1152   // SReg_32_XM0 is SReg_32 without EXEC_HI
1153   return decodeOperand_SReg_32(Val);
1154 }
1155 
1156 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1157   // table-gen generated disassembler doesn't care about operand types
1158   // leaving only registry class so SSrc_32 operand turns into SReg_32
1159   // and therefore we accept immediates and literals here as well
1160   return decodeSrcOp(OPW32, Val);
1161 }
1162 
1163 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1164   return decodeSrcOp(OPW64, Val);
1165 }
1166 
1167 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1168   return decodeSrcOp(OPW64, Val);
1169 }
1170 
1171 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1172   return decodeSrcOp(OPW128, Val);
1173 }
1174 
1175 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1176   return decodeDstOp(OPW256, Val);
1177 }
1178 
1179 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1180   return decodeDstOp(OPW512, Val);
1181 }
1182 
1183 // Decode Literals for insts which always have a literal in the encoding
1184 MCOperand
1185 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1186   if (HasLiteral) {
1187     if (Literal != Val)
1188       return errOperand(Val, "More than one unique literal is illegal");
1189   }
1190   HasLiteral = true;
1191   Literal = Val;
1192   return MCOperand::createImm(Literal);
1193 }
1194 
1195 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1196   // For now all literal constants are supposed to be unsigned integer
1197   // ToDo: deal with signed/unsigned 64-bit integer constants
1198   // ToDo: deal with float/double constants
1199   if (!HasLiteral) {
1200     if (Bytes.size() < 4) {
1201       return errOperand(0, "cannot read literal, inst bytes left " +
1202                         Twine(Bytes.size()));
1203     }
1204     HasLiteral = true;
1205     Literal = eatBytes<uint32_t>(Bytes);
1206   }
1207   return MCOperand::createImm(Literal);
1208 }
1209 
1210 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1211   using namespace AMDGPU::EncValues;
1212 
1213   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1214   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1215     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1216     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1217       // Cast prevents negative overflow.
1218 }
1219 
1220 static int64_t getInlineImmVal32(unsigned Imm) {
1221   switch (Imm) {
1222   case 240:
1223     return FloatToBits(0.5f);
1224   case 241:
1225     return FloatToBits(-0.5f);
1226   case 242:
1227     return FloatToBits(1.0f);
1228   case 243:
1229     return FloatToBits(-1.0f);
1230   case 244:
1231     return FloatToBits(2.0f);
1232   case 245:
1233     return FloatToBits(-2.0f);
1234   case 246:
1235     return FloatToBits(4.0f);
1236   case 247:
1237     return FloatToBits(-4.0f);
1238   case 248: // 1 / (2 * PI)
1239     return 0x3e22f983;
1240   default:
1241     llvm_unreachable("invalid fp inline imm");
1242   }
1243 }
1244 
1245 static int64_t getInlineImmVal64(unsigned Imm) {
1246   switch (Imm) {
1247   case 240:
1248     return DoubleToBits(0.5);
1249   case 241:
1250     return DoubleToBits(-0.5);
1251   case 242:
1252     return DoubleToBits(1.0);
1253   case 243:
1254     return DoubleToBits(-1.0);
1255   case 244:
1256     return DoubleToBits(2.0);
1257   case 245:
1258     return DoubleToBits(-2.0);
1259   case 246:
1260     return DoubleToBits(4.0);
1261   case 247:
1262     return DoubleToBits(-4.0);
1263   case 248: // 1 / (2 * PI)
1264     return 0x3fc45f306dc9c882;
1265   default:
1266     llvm_unreachable("invalid fp inline imm");
1267   }
1268 }
1269 
1270 static int64_t getInlineImmVal16(unsigned Imm) {
1271   switch (Imm) {
1272   case 240:
1273     return 0x3800;
1274   case 241:
1275     return 0xB800;
1276   case 242:
1277     return 0x3C00;
1278   case 243:
1279     return 0xBC00;
1280   case 244:
1281     return 0x4000;
1282   case 245:
1283     return 0xC000;
1284   case 246:
1285     return 0x4400;
1286   case 247:
1287     return 0xC400;
1288   case 248: // 1 / (2 * PI)
1289     return 0x3118;
1290   default:
1291     llvm_unreachable("invalid fp inline imm");
1292   }
1293 }
1294 
1295 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1296   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1297       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1298 
1299   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1300   switch (Width) {
1301   case OPW32:
1302   case OPW128: // splat constants
1303   case OPW512:
1304   case OPW1024:
1305   case OPWV232:
1306     return MCOperand::createImm(getInlineImmVal32(Imm));
1307   case OPW64:
1308   case OPW256:
1309     return MCOperand::createImm(getInlineImmVal64(Imm));
1310   case OPW16:
1311   case OPWV216:
1312     return MCOperand::createImm(getInlineImmVal16(Imm));
1313   default:
1314     llvm_unreachable("implement me");
1315   }
1316 }
1317 
1318 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1319   using namespace AMDGPU;
1320 
1321   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1322   switch (Width) {
1323   default: // fall
1324   case OPW32:
1325   case OPW16:
1326   case OPWV216:
1327     return VGPR_32RegClassID;
1328   case OPW64:
1329   case OPWV232: return VReg_64RegClassID;
1330   case OPW96: return VReg_96RegClassID;
1331   case OPW128: return VReg_128RegClassID;
1332   case OPW160: return VReg_160RegClassID;
1333   case OPW256: return VReg_256RegClassID;
1334   case OPW512: return VReg_512RegClassID;
1335   case OPW1024: return VReg_1024RegClassID;
1336   }
1337 }
1338 
1339 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1340   using namespace AMDGPU;
1341 
1342   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1343   switch (Width) {
1344   default: // fall
1345   case OPW32:
1346   case OPW16:
1347   case OPWV216:
1348     return AGPR_32RegClassID;
1349   case OPW64:
1350   case OPWV232: return AReg_64RegClassID;
1351   case OPW96: return AReg_96RegClassID;
1352   case OPW128: return AReg_128RegClassID;
1353   case OPW160: return AReg_160RegClassID;
1354   case OPW256: return AReg_256RegClassID;
1355   case OPW512: return AReg_512RegClassID;
1356   case OPW1024: return AReg_1024RegClassID;
1357   }
1358 }
1359 
1360 
1361 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1362   using namespace AMDGPU;
1363 
1364   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1365   switch (Width) {
1366   default: // fall
1367   case OPW32:
1368   case OPW16:
1369   case OPWV216:
1370     return SGPR_32RegClassID;
1371   case OPW64:
1372   case OPWV232: return SGPR_64RegClassID;
1373   case OPW96: return SGPR_96RegClassID;
1374   case OPW128: return SGPR_128RegClassID;
1375   case OPW160: return SGPR_160RegClassID;
1376   case OPW256: return SGPR_256RegClassID;
1377   case OPW512: return SGPR_512RegClassID;
1378   }
1379 }
1380 
1381 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1382   using namespace AMDGPU;
1383 
1384   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1385   switch (Width) {
1386   default: // fall
1387   case OPW32:
1388   case OPW16:
1389   case OPWV216:
1390     return TTMP_32RegClassID;
1391   case OPW64:
1392   case OPWV232: return TTMP_64RegClassID;
1393   case OPW128: return TTMP_128RegClassID;
1394   case OPW256: return TTMP_256RegClassID;
1395   case OPW512: return TTMP_512RegClassID;
1396   }
1397 }
1398 
1399 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1400   using namespace AMDGPU::EncValues;
1401 
1402   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1403   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1404 
1405   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1406 }
1407 
1408 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1409                                           bool MandatoryLiteral) const {
1410   using namespace AMDGPU::EncValues;
1411 
1412   assert(Val < 1024); // enum10
1413 
1414   bool IsAGPR = Val & 512;
1415   Val &= 511;
1416 
1417   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1418     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1419                                    : getVgprClassId(Width), Val - VGPR_MIN);
1420   }
1421   if (Val <= SGPR_MAX) {
1422     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1423     static_assert(SGPR_MIN == 0, "");
1424     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1425   }
1426 
1427   int TTmpIdx = getTTmpIdx(Val);
1428   if (TTmpIdx >= 0) {
1429     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1430   }
1431 
1432   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1433     return decodeIntImmed(Val);
1434 
1435   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1436     return decodeFPImmed(Width, Val);
1437 
1438   if (Val == LITERAL_CONST) {
1439     if (MandatoryLiteral)
1440       // Keep a sentinel value for deferred setting
1441       return MCOperand::createImm(LITERAL_CONST);
1442     else
1443       return decodeLiteralConstant();
1444   }
1445 
1446   switch (Width) {
1447   case OPW32:
1448   case OPW16:
1449   case OPWV216:
1450     return decodeSpecialReg32(Val);
1451   case OPW64:
1452   case OPWV232:
1453     return decodeSpecialReg64(Val);
1454   default:
1455     llvm_unreachable("unexpected immediate type");
1456   }
1457 }
1458 
1459 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1460   using namespace AMDGPU::EncValues;
1461 
1462   assert(Val < 128);
1463   assert(Width == OPW256 || Width == OPW512);
1464 
1465   if (Val <= SGPR_MAX) {
1466     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1467     static_assert(SGPR_MIN == 0, "");
1468     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1469   }
1470 
1471   int TTmpIdx = getTTmpIdx(Val);
1472   if (TTmpIdx >= 0) {
1473     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1474   }
1475 
1476   llvm_unreachable("unknown dst register");
1477 }
1478 
1479 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1480   using namespace AMDGPU;
1481 
1482   switch (Val) {
1483   case 102: return createRegOperand(FLAT_SCR_LO);
1484   case 103: return createRegOperand(FLAT_SCR_HI);
1485   case 104: return createRegOperand(XNACK_MASK_LO);
1486   case 105: return createRegOperand(XNACK_MASK_HI);
1487   case 106: return createRegOperand(VCC_LO);
1488   case 107: return createRegOperand(VCC_HI);
1489   case 108: return createRegOperand(TBA_LO);
1490   case 109: return createRegOperand(TBA_HI);
1491   case 110: return createRegOperand(TMA_LO);
1492   case 111: return createRegOperand(TMA_HI);
1493   case 124:
1494     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1495   case 125:
1496     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1497   case 126: return createRegOperand(EXEC_LO);
1498   case 127: return createRegOperand(EXEC_HI);
1499   case 235: return createRegOperand(SRC_SHARED_BASE);
1500   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1501   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1502   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1503   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1504   case 251: return createRegOperand(SRC_VCCZ);
1505   case 252: return createRegOperand(SRC_EXECZ);
1506   case 253: return createRegOperand(SRC_SCC);
1507   case 254: return createRegOperand(LDS_DIRECT);
1508   default: break;
1509   }
1510   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1511 }
1512 
1513 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1514   using namespace AMDGPU;
1515 
1516   switch (Val) {
1517   case 102: return createRegOperand(FLAT_SCR);
1518   case 104: return createRegOperand(XNACK_MASK);
1519   case 106: return createRegOperand(VCC);
1520   case 108: return createRegOperand(TBA);
1521   case 110: return createRegOperand(TMA);
1522   case 124:
1523     if (isGFX11Plus())
1524       return createRegOperand(SGPR_NULL);
1525     break;
1526   case 125:
1527     if (!isGFX11Plus())
1528       return createRegOperand(SGPR_NULL);
1529     break;
1530   case 126: return createRegOperand(EXEC);
1531   case 235: return createRegOperand(SRC_SHARED_BASE);
1532   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1533   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1534   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1535   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1536   case 251: return createRegOperand(SRC_VCCZ);
1537   case 252: return createRegOperand(SRC_EXECZ);
1538   case 253: return createRegOperand(SRC_SCC);
1539   default: break;
1540   }
1541   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1542 }
1543 
1544 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1545                                             const unsigned Val) const {
1546   using namespace AMDGPU::SDWA;
1547   using namespace AMDGPU::EncValues;
1548 
1549   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1550       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1551     // XXX: cast to int is needed to avoid stupid warning:
1552     // compare with unsigned is always true
1553     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1554         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1555       return createRegOperand(getVgprClassId(Width),
1556                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1557     }
1558     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1559         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1560                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1561       return createSRegOperand(getSgprClassId(Width),
1562                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1563     }
1564     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1565         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1566       return createSRegOperand(getTtmpClassId(Width),
1567                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1568     }
1569 
1570     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1571 
1572     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1573       return decodeIntImmed(SVal);
1574 
1575     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1576       return decodeFPImmed(Width, SVal);
1577 
1578     return decodeSpecialReg32(SVal);
1579   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1580     return createRegOperand(getVgprClassId(Width), Val);
1581   }
1582   llvm_unreachable("unsupported target");
1583 }
1584 
1585 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1586   return decodeSDWASrc(OPW16, Val);
1587 }
1588 
1589 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1590   return decodeSDWASrc(OPW32, Val);
1591 }
1592 
1593 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1594   using namespace AMDGPU::SDWA;
1595 
1596   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1597           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1598          "SDWAVopcDst should be present only on GFX9+");
1599 
1600   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1601 
1602   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1603     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1604 
1605     int TTmpIdx = getTTmpIdx(Val);
1606     if (TTmpIdx >= 0) {
1607       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1608       return createSRegOperand(TTmpClsId, TTmpIdx);
1609     } else if (Val > SGPR_MAX) {
1610       return IsWave64 ? decodeSpecialReg64(Val)
1611                       : decodeSpecialReg32(Val);
1612     } else {
1613       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1614     }
1615   } else {
1616     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1617   }
1618 }
1619 
1620 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1621   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1622     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1623 }
1624 
1625 bool AMDGPUDisassembler::isVI() const {
1626   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1627 }
1628 
1629 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1630 
1631 bool AMDGPUDisassembler::isGFX90A() const {
1632   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1633 }
1634 
1635 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1636 
1637 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1638 
1639 bool AMDGPUDisassembler::isGFX10Plus() const {
1640   return AMDGPU::isGFX10Plus(STI);
1641 }
1642 
1643 bool AMDGPUDisassembler::isGFX11() const {
1644   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1645 }
1646 
1647 bool AMDGPUDisassembler::isGFX11Plus() const {
1648   return AMDGPU::isGFX11Plus(STI);
1649 }
1650 
1651 
1652 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1653   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1654 }
1655 
1656 //===----------------------------------------------------------------------===//
1657 // AMDGPU specific symbol handling
1658 //===----------------------------------------------------------------------===//
1659 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1660   do {                                                                         \
1661     KdStream << Indent << DIRECTIVE " "                                        \
1662              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1663   } while (0)
1664 
1665 // NOLINTNEXTLINE(readability-identifier-naming)
1666 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1667     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1668   using namespace amdhsa;
1669   StringRef Indent = "\t";
1670 
1671   // We cannot accurately backward compute #VGPRs used from
1672   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1673   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1674   // simply calculate the inverse of what the assembler does.
1675 
1676   uint32_t GranulatedWorkitemVGPRCount =
1677       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1678       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1679 
1680   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1681                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1682 
1683   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1684 
1685   // We cannot backward compute values used to calculate
1686   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1687   // directives can't be computed:
1688   // .amdhsa_reserve_vcc
1689   // .amdhsa_reserve_flat_scratch
1690   // .amdhsa_reserve_xnack_mask
1691   // They take their respective default values if not specified in the assembly.
1692   //
1693   // GRANULATED_WAVEFRONT_SGPR_COUNT
1694   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1695   //
1696   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1697   // are set to 0. So while disassembling we consider that:
1698   //
1699   // GRANULATED_WAVEFRONT_SGPR_COUNT
1700   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1701   //
1702   // The disassembler cannot recover the original values of those 3 directives.
1703 
1704   uint32_t GranulatedWavefrontSGPRCount =
1705       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1706       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1707 
1708   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1709     return MCDisassembler::Fail;
1710 
1711   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1712                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1713 
1714   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1715   if (!hasArchitectedFlatScratch())
1716     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1717   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1718   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1719 
1720   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1721     return MCDisassembler::Fail;
1722 
1723   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1724                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1725   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1726                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1727   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1728                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1729   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1730                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1731 
1732   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1733     return MCDisassembler::Fail;
1734 
1735   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1736 
1737   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1738     return MCDisassembler::Fail;
1739 
1740   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1741 
1742   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1743     return MCDisassembler::Fail;
1744 
1745   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1746     return MCDisassembler::Fail;
1747 
1748   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1749 
1750   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1751     return MCDisassembler::Fail;
1752 
1753   if (isGFX10Plus()) {
1754     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1755                     COMPUTE_PGM_RSRC1_WGP_MODE);
1756     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1757     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1758   }
1759   return MCDisassembler::Success;
1760 }
1761 
1762 // NOLINTNEXTLINE(readability-identifier-naming)
1763 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1764     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1765   using namespace amdhsa;
1766   StringRef Indent = "\t";
1767   if (hasArchitectedFlatScratch())
1768     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1769                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1770   else
1771     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1772                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1773   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1774                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1775   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1776                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1777   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1778                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1779   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1780                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1781   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1782                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1783 
1784   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1785     return MCDisassembler::Fail;
1786 
1787   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1788     return MCDisassembler::Fail;
1789 
1790   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1791     return MCDisassembler::Fail;
1792 
1793   PRINT_DIRECTIVE(
1794       ".amdhsa_exception_fp_ieee_invalid_op",
1795       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1796   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1797                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1798   PRINT_DIRECTIVE(
1799       ".amdhsa_exception_fp_ieee_div_zero",
1800       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1801   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1802                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1803   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1804                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1805   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1806                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1807   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1808                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1809 
1810   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1811     return MCDisassembler::Fail;
1812 
1813   return MCDisassembler::Success;
1814 }
1815 
1816 #undef PRINT_DIRECTIVE
1817 
1818 MCDisassembler::DecodeStatus
1819 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1820     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1821     raw_string_ostream &KdStream) const {
1822 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1823   do {                                                                         \
1824     KdStream << Indent << DIRECTIVE " "                                        \
1825              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1826   } while (0)
1827 
1828   uint16_t TwoByteBuffer = 0;
1829   uint32_t FourByteBuffer = 0;
1830 
1831   StringRef ReservedBytes;
1832   StringRef Indent = "\t";
1833 
1834   assert(Bytes.size() == 64);
1835   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1836 
1837   switch (Cursor.tell()) {
1838   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1839     FourByteBuffer = DE.getU32(Cursor);
1840     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1841              << '\n';
1842     return MCDisassembler::Success;
1843 
1844   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1845     FourByteBuffer = DE.getU32(Cursor);
1846     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1847              << FourByteBuffer << '\n';
1848     return MCDisassembler::Success;
1849 
1850   case amdhsa::KERNARG_SIZE_OFFSET:
1851     FourByteBuffer = DE.getU32(Cursor);
1852     KdStream << Indent << ".amdhsa_kernarg_size "
1853              << FourByteBuffer << '\n';
1854     return MCDisassembler::Success;
1855 
1856   case amdhsa::RESERVED0_OFFSET:
1857     // 4 reserved bytes, must be 0.
1858     ReservedBytes = DE.getBytes(Cursor, 4);
1859     for (int I = 0; I < 4; ++I) {
1860       if (ReservedBytes[I] != 0) {
1861         return MCDisassembler::Fail;
1862       }
1863     }
1864     return MCDisassembler::Success;
1865 
1866   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1867     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1868     // So far no directive controls this for Code Object V3, so simply skip for
1869     // disassembly.
1870     DE.skip(Cursor, 8);
1871     return MCDisassembler::Success;
1872 
1873   case amdhsa::RESERVED1_OFFSET:
1874     // 20 reserved bytes, must be 0.
1875     ReservedBytes = DE.getBytes(Cursor, 20);
1876     for (int I = 0; I < 20; ++I) {
1877       if (ReservedBytes[I] != 0) {
1878         return MCDisassembler::Fail;
1879       }
1880     }
1881     return MCDisassembler::Success;
1882 
1883   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1884     // COMPUTE_PGM_RSRC3
1885     //  - Only set for GFX10, GFX6-9 have this to be 0.
1886     //  - Currently no directives directly control this.
1887     FourByteBuffer = DE.getU32(Cursor);
1888     if (!isGFX10Plus() && FourByteBuffer) {
1889       return MCDisassembler::Fail;
1890     }
1891     return MCDisassembler::Success;
1892 
1893   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1894     FourByteBuffer = DE.getU32(Cursor);
1895     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1896         MCDisassembler::Fail) {
1897       return MCDisassembler::Fail;
1898     }
1899     return MCDisassembler::Success;
1900 
1901   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1902     FourByteBuffer = DE.getU32(Cursor);
1903     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1904         MCDisassembler::Fail) {
1905       return MCDisassembler::Fail;
1906     }
1907     return MCDisassembler::Success;
1908 
1909   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1910     using namespace amdhsa;
1911     TwoByteBuffer = DE.getU16(Cursor);
1912 
1913     if (!hasArchitectedFlatScratch())
1914       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1915                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1916     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1917                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1918     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1919                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1920     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1921                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1922     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1923                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1924     if (!hasArchitectedFlatScratch())
1925       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1926                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1927     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1928                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1929 
1930     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1931       return MCDisassembler::Fail;
1932 
1933     // Reserved for GFX9
1934     if (isGFX9() &&
1935         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1936       return MCDisassembler::Fail;
1937     } else if (isGFX10Plus()) {
1938       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1939                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1940     }
1941 
1942     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1943       return MCDisassembler::Fail;
1944 
1945     return MCDisassembler::Success;
1946 
1947   case amdhsa::RESERVED2_OFFSET:
1948     // 6 bytes from here are reserved, must be 0.
1949     ReservedBytes = DE.getBytes(Cursor, 6);
1950     for (int I = 0; I < 6; ++I) {
1951       if (ReservedBytes[I] != 0)
1952         return MCDisassembler::Fail;
1953     }
1954     return MCDisassembler::Success;
1955 
1956   default:
1957     llvm_unreachable("Unhandled index. Case statements cover everything.");
1958     return MCDisassembler::Fail;
1959   }
1960 #undef PRINT_DIRECTIVE
1961 }
1962 
1963 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1964     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1965   // CP microcode requires the kernel descriptor to be 64 aligned.
1966   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1967     return MCDisassembler::Fail;
1968 
1969   std::string Kd;
1970   raw_string_ostream KdStream(Kd);
1971   KdStream << ".amdhsa_kernel " << KdName << '\n';
1972 
1973   DataExtractor::Cursor C(0);
1974   while (C && C.tell() < Bytes.size()) {
1975     MCDisassembler::DecodeStatus Status =
1976         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1977 
1978     cantFail(C.takeError());
1979 
1980     if (Status == MCDisassembler::Fail)
1981       return MCDisassembler::Fail;
1982   }
1983   KdStream << ".end_amdhsa_kernel\n";
1984   outs() << KdStream.str();
1985   return MCDisassembler::Success;
1986 }
1987 
1988 Optional<MCDisassembler::DecodeStatus>
1989 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1990                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1991                                   raw_ostream &CStream) const {
1992   // Right now only kernel descriptor needs to be handled.
1993   // We ignore all other symbols for target specific handling.
1994   // TODO:
1995   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1996   // Object V2 and V3 when symbols are marked protected.
1997 
1998   // amd_kernel_code_t for Code Object V2.
1999   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2000     Size = 256;
2001     return MCDisassembler::Fail;
2002   }
2003 
2004   // Code Object V3 kernel descriptors.
2005   StringRef Name = Symbol.Name;
2006   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2007     Size = 64; // Size = 64 regardless of success or failure.
2008     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2009   }
2010   return None;
2011 }
2012 
2013 //===----------------------------------------------------------------------===//
2014 // AMDGPUSymbolizer
2015 //===----------------------------------------------------------------------===//
2016 
2017 // Try to find symbol name for specified label
2018 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2019     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2020     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2021     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2022 
2023   if (!IsBranch) {
2024     return false;
2025   }
2026 
2027   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2028   if (!Symbols)
2029     return false;
2030 
2031   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2032     return Val.Addr == static_cast<uint64_t>(Value) &&
2033            Val.Type == ELF::STT_NOTYPE;
2034   });
2035   if (Result != Symbols->end()) {
2036     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2037     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2038     Inst.addOperand(MCOperand::createExpr(Add));
2039     return true;
2040   }
2041   // Add to list of referenced addresses, so caller can synthesize a label.
2042   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2043   return false;
2044 }
2045 
2046 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2047                                                        int64_t Value,
2048                                                        uint64_t Address) {
2049   llvm_unreachable("unimplemented");
2050 }
2051 
2052 //===----------------------------------------------------------------------===//
2053 // Initialization
2054 //===----------------------------------------------------------------------===//
2055 
2056 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2057                               LLVMOpInfoCallback /*GetOpInfo*/,
2058                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2059                               void *DisInfo,
2060                               MCContext *Ctx,
2061                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2062   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2063 }
2064 
2065 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2066                                                 const MCSubtargetInfo &STI,
2067                                                 MCContext &Ctx) {
2068   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2069 }
2070 
2071 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2072   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2073                                          createAMDGPUDisassembler);
2074   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2075                                        createAMDGPUSymbolizer);
2076 }
2077