1 //===- AMDGPUAsmParser.cpp - Parse SI asm to MCInst instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPU.h"
10 #include "AMDKernelCodeT.h"
11 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
12 #include "MCTargetDesc/AMDGPUTargetStreamer.h"
13 #include "SIDefines.h"
14 #include "SIInstrInfo.h"
15 #include "TargetInfo/AMDGPUTargetInfo.h"
16 #include "Utils/AMDGPUAsmUtils.h"
17 #include "Utils/AMDGPUBaseInfo.h"
18 #include "Utils/AMDKernelCodeTUtils.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallBitVector.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/BinaryFormat/ELF.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCParser/MCAsmLexer.h"
36 #include "llvm/MC/MCParser/MCAsmParser.h"
37 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
38 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
39 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/MC/MCStreamer.h"
42 #include "llvm/MC/MCSubtargetInfo.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/Support/AMDGPUMetadata.h"
45 #include "llvm/Support/AMDHSAKernelDescriptor.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Error.h"
49 #include "llvm/Support/MachineValueType.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/SMLoc.h"
52 #include "llvm/Support/TargetParser.h"
53 #include "llvm/Support/TargetRegistry.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <map>
61 #include <memory>
62 #include <string>
63 
64 using namespace llvm;
65 using namespace llvm::AMDGPU;
66 using namespace llvm::amdhsa;
67 
68 namespace {
69 
70 class AMDGPUAsmParser;
71 
72 enum RegisterKind { IS_UNKNOWN, IS_VGPR, IS_SGPR, IS_AGPR, IS_TTMP, IS_SPECIAL };
73 
74 //===----------------------------------------------------------------------===//
75 // Operand
76 //===----------------------------------------------------------------------===//
77 
78 class AMDGPUOperand : public MCParsedAsmOperand {
79   enum KindTy {
80     Token,
81     Immediate,
82     Register,
83     Expression
84   } Kind;
85 
86   SMLoc StartLoc, EndLoc;
87   const AMDGPUAsmParser *AsmParser;
88 
89 public:
90   AMDGPUOperand(KindTy Kind_, const AMDGPUAsmParser *AsmParser_)
91     : MCParsedAsmOperand(), Kind(Kind_), AsmParser(AsmParser_) {}
92 
93   using Ptr = std::unique_ptr<AMDGPUOperand>;
94 
95   struct Modifiers {
96     bool Abs = false;
97     bool Neg = false;
98     bool Sext = false;
99 
100     bool hasFPModifiers() const { return Abs || Neg; }
101     bool hasIntModifiers() const { return Sext; }
102     bool hasModifiers() const { return hasFPModifiers() || hasIntModifiers(); }
103 
104     int64_t getFPModifiersOperand() const {
105       int64_t Operand = 0;
106       Operand |= Abs ? SISrcMods::ABS : 0u;
107       Operand |= Neg ? SISrcMods::NEG : 0u;
108       return Operand;
109     }
110 
111     int64_t getIntModifiersOperand() const {
112       int64_t Operand = 0;
113       Operand |= Sext ? SISrcMods::SEXT : 0u;
114       return Operand;
115     }
116 
117     int64_t getModifiersOperand() const {
118       assert(!(hasFPModifiers() && hasIntModifiers())
119            && "fp and int modifiers should not be used simultaneously");
120       if (hasFPModifiers()) {
121         return getFPModifiersOperand();
122       } else if (hasIntModifiers()) {
123         return getIntModifiersOperand();
124       } else {
125         return 0;
126       }
127     }
128 
129     friend raw_ostream &operator <<(raw_ostream &OS, AMDGPUOperand::Modifiers Mods);
130   };
131 
132   enum ImmTy {
133     ImmTyNone,
134     ImmTyGDS,
135     ImmTyLDS,
136     ImmTyOffen,
137     ImmTyIdxen,
138     ImmTyAddr64,
139     ImmTyOffset,
140     ImmTyInstOffset,
141     ImmTyOffset0,
142     ImmTyOffset1,
143     ImmTyDLC,
144     ImmTyGLC,
145     ImmTySLC,
146     ImmTySWZ,
147     ImmTyTFE,
148     ImmTyD16,
149     ImmTyClampSI,
150     ImmTyOModSI,
151     ImmTyDPP8,
152     ImmTyDppCtrl,
153     ImmTyDppRowMask,
154     ImmTyDppBankMask,
155     ImmTyDppBoundCtrl,
156     ImmTyDppFi,
157     ImmTySdwaDstSel,
158     ImmTySdwaSrc0Sel,
159     ImmTySdwaSrc1Sel,
160     ImmTySdwaDstUnused,
161     ImmTyDMask,
162     ImmTyDim,
163     ImmTyUNorm,
164     ImmTyDA,
165     ImmTyR128A16,
166     ImmTyA16,
167     ImmTyLWE,
168     ImmTyExpTgt,
169     ImmTyExpCompr,
170     ImmTyExpVM,
171     ImmTyFORMAT,
172     ImmTyHwreg,
173     ImmTyOff,
174     ImmTySendMsg,
175     ImmTyInterpSlot,
176     ImmTyInterpAttr,
177     ImmTyAttrChan,
178     ImmTyOpSel,
179     ImmTyOpSelHi,
180     ImmTyNegLo,
181     ImmTyNegHi,
182     ImmTySwizzle,
183     ImmTyGprIdxMode,
184     ImmTyHigh,
185     ImmTyBLGP,
186     ImmTyCBSZ,
187     ImmTyABID,
188     ImmTyEndpgm,
189   };
190 
191   enum ImmKindTy {
192     ImmKindTyNone,
193     ImmKindTyLiteral,
194     ImmKindTyConst,
195   };
196 
197 private:
198   struct TokOp {
199     const char *Data;
200     unsigned Length;
201   };
202 
203   struct ImmOp {
204     int64_t Val;
205     ImmTy Type;
206     bool IsFPImm;
207     mutable ImmKindTy Kind;
208     Modifiers Mods;
209   };
210 
211   struct RegOp {
212     unsigned RegNo;
213     Modifiers Mods;
214   };
215 
216   union {
217     TokOp Tok;
218     ImmOp Imm;
219     RegOp Reg;
220     const MCExpr *Expr;
221   };
222 
223 public:
224   bool isToken() const override {
225     if (Kind == Token)
226       return true;
227 
228     // When parsing operands, we can't always tell if something was meant to be
229     // a token, like 'gds', or an expression that references a global variable.
230     // In this case, we assume the string is an expression, and if we need to
231     // interpret is a token, then we treat the symbol name as the token.
232     return isSymbolRefExpr();
233   }
234 
235   bool isSymbolRefExpr() const {
236     return isExpr() && Expr && isa<MCSymbolRefExpr>(Expr);
237   }
238 
239   bool isImm() const override {
240     return Kind == Immediate;
241   }
242 
243   void setImmKindNone() const {
244     assert(isImm());
245     Imm.Kind = ImmKindTyNone;
246   }
247 
248   void setImmKindLiteral() const {
249     assert(isImm());
250     Imm.Kind = ImmKindTyLiteral;
251   }
252 
253   void setImmKindConst() const {
254     assert(isImm());
255     Imm.Kind = ImmKindTyConst;
256   }
257 
258   bool IsImmKindLiteral() const {
259     return isImm() && Imm.Kind == ImmKindTyLiteral;
260   }
261 
262   bool isImmKindConst() const {
263     return isImm() && Imm.Kind == ImmKindTyConst;
264   }
265 
266   bool isInlinableImm(MVT type) const;
267   bool isLiteralImm(MVT type) const;
268 
269   bool isRegKind() const {
270     return Kind == Register;
271   }
272 
273   bool isReg() const override {
274     return isRegKind() && !hasModifiers();
275   }
276 
277   bool isRegOrImmWithInputMods(unsigned RCID, MVT type) const {
278     return isRegClass(RCID) || isInlinableImm(type) || isLiteralImm(type);
279   }
280 
281   bool isRegOrImmWithInt16InputMods() const {
282     return isRegOrImmWithInputMods(AMDGPU::VS_32RegClassID, MVT::i16);
283   }
284 
285   bool isRegOrImmWithInt32InputMods() const {
286     return isRegOrImmWithInputMods(AMDGPU::VS_32RegClassID, MVT::i32);
287   }
288 
289   bool isRegOrImmWithInt64InputMods() const {
290     return isRegOrImmWithInputMods(AMDGPU::VS_64RegClassID, MVT::i64);
291   }
292 
293   bool isRegOrImmWithFP16InputMods() const {
294     return isRegOrImmWithInputMods(AMDGPU::VS_32RegClassID, MVT::f16);
295   }
296 
297   bool isRegOrImmWithFP32InputMods() const {
298     return isRegOrImmWithInputMods(AMDGPU::VS_32RegClassID, MVT::f32);
299   }
300 
301   bool isRegOrImmWithFP64InputMods() const {
302     return isRegOrImmWithInputMods(AMDGPU::VS_64RegClassID, MVT::f64);
303   }
304 
305   bool isVReg() const {
306     return isRegClass(AMDGPU::VGPR_32RegClassID) ||
307            isRegClass(AMDGPU::VReg_64RegClassID) ||
308            isRegClass(AMDGPU::VReg_96RegClassID) ||
309            isRegClass(AMDGPU::VReg_128RegClassID) ||
310            isRegClass(AMDGPU::VReg_160RegClassID) ||
311            isRegClass(AMDGPU::VReg_192RegClassID) ||
312            isRegClass(AMDGPU::VReg_256RegClassID) ||
313            isRegClass(AMDGPU::VReg_512RegClassID) ||
314            isRegClass(AMDGPU::VReg_1024RegClassID);
315   }
316 
317   bool isVReg32() const {
318     return isRegClass(AMDGPU::VGPR_32RegClassID);
319   }
320 
321   bool isVReg32OrOff() const {
322     return isOff() || isVReg32();
323   }
324 
325   bool isNull() const {
326     return isRegKind() && getReg() == AMDGPU::SGPR_NULL;
327   }
328 
329   bool isSDWAOperand(MVT type) const;
330   bool isSDWAFP16Operand() const;
331   bool isSDWAFP32Operand() const;
332   bool isSDWAInt16Operand() const;
333   bool isSDWAInt32Operand() const;
334 
335   bool isImmTy(ImmTy ImmT) const {
336     return isImm() && Imm.Type == ImmT;
337   }
338 
339   bool isImmModifier() const {
340     return isImm() && Imm.Type != ImmTyNone;
341   }
342 
343   bool isClampSI() const { return isImmTy(ImmTyClampSI); }
344   bool isOModSI() const { return isImmTy(ImmTyOModSI); }
345   bool isDMask() const { return isImmTy(ImmTyDMask); }
346   bool isDim() const { return isImmTy(ImmTyDim); }
347   bool isUNorm() const { return isImmTy(ImmTyUNorm); }
348   bool isDA() const { return isImmTy(ImmTyDA); }
349   bool isR128A16() const { return isImmTy(ImmTyR128A16); }
350   bool isGFX10A16() const { return isImmTy(ImmTyA16); }
351   bool isLWE() const { return isImmTy(ImmTyLWE); }
352   bool isOff() const { return isImmTy(ImmTyOff); }
353   bool isExpTgt() const { return isImmTy(ImmTyExpTgt); }
354   bool isExpVM() const { return isImmTy(ImmTyExpVM); }
355   bool isExpCompr() const { return isImmTy(ImmTyExpCompr); }
356   bool isOffen() const { return isImmTy(ImmTyOffen); }
357   bool isIdxen() const { return isImmTy(ImmTyIdxen); }
358   bool isAddr64() const { return isImmTy(ImmTyAddr64); }
359   bool isOffset() const { return isImmTy(ImmTyOffset) && isUInt<16>(getImm()); }
360   bool isOffset0() const { return isImmTy(ImmTyOffset0) && isUInt<8>(getImm()); }
361   bool isOffset1() const { return isImmTy(ImmTyOffset1) && isUInt<8>(getImm()); }
362 
363   bool isFlatOffset() const { return isImmTy(ImmTyOffset) || isImmTy(ImmTyInstOffset); }
364   bool isGDS() const { return isImmTy(ImmTyGDS); }
365   bool isLDS() const { return isImmTy(ImmTyLDS); }
366   bool isDLC() const { return isImmTy(ImmTyDLC); }
367   bool isGLC() const { return isImmTy(ImmTyGLC); }
368   // "GLC_1" is a MatchClass of the GLC_1 operand with the default and forced
369   // value of the GLC operand.
370   bool isGLC_1() const { return isImmTy(ImmTyGLC); }
371   bool isSLC() const { return isImmTy(ImmTySLC); }
372   bool isSWZ() const { return isImmTy(ImmTySWZ); }
373   bool isTFE() const { return isImmTy(ImmTyTFE); }
374   bool isD16() const { return isImmTy(ImmTyD16); }
375   bool isFORMAT() const { return isImmTy(ImmTyFORMAT) && isUInt<7>(getImm()); }
376   bool isBankMask() const { return isImmTy(ImmTyDppBankMask); }
377   bool isRowMask() const { return isImmTy(ImmTyDppRowMask); }
378   bool isBoundCtrl() const { return isImmTy(ImmTyDppBoundCtrl); }
379   bool isFI() const { return isImmTy(ImmTyDppFi); }
380   bool isSDWADstSel() const { return isImmTy(ImmTySdwaDstSel); }
381   bool isSDWASrc0Sel() const { return isImmTy(ImmTySdwaSrc0Sel); }
382   bool isSDWASrc1Sel() const { return isImmTy(ImmTySdwaSrc1Sel); }
383   bool isSDWADstUnused() const { return isImmTy(ImmTySdwaDstUnused); }
384   bool isInterpSlot() const { return isImmTy(ImmTyInterpSlot); }
385   bool isInterpAttr() const { return isImmTy(ImmTyInterpAttr); }
386   bool isAttrChan() const { return isImmTy(ImmTyAttrChan); }
387   bool isOpSel() const { return isImmTy(ImmTyOpSel); }
388   bool isOpSelHi() const { return isImmTy(ImmTyOpSelHi); }
389   bool isNegLo() const { return isImmTy(ImmTyNegLo); }
390   bool isNegHi() const { return isImmTy(ImmTyNegHi); }
391   bool isHigh() const { return isImmTy(ImmTyHigh); }
392 
393   bool isMod() const {
394     return isClampSI() || isOModSI();
395   }
396 
397   bool isRegOrImm() const {
398     return isReg() || isImm();
399   }
400 
401   bool isRegClass(unsigned RCID) const;
402 
403   bool isInlineValue() const;
404 
405   bool isRegOrInlineNoMods(unsigned RCID, MVT type) const {
406     return (isRegClass(RCID) || isInlinableImm(type)) && !hasModifiers();
407   }
408 
409   bool isSCSrcB16() const {
410     return isRegOrInlineNoMods(AMDGPU::SReg_32RegClassID, MVT::i16);
411   }
412 
413   bool isSCSrcV2B16() const {
414     return isSCSrcB16();
415   }
416 
417   bool isSCSrcB32() const {
418     return isRegOrInlineNoMods(AMDGPU::SReg_32RegClassID, MVT::i32);
419   }
420 
421   bool isSCSrcB64() const {
422     return isRegOrInlineNoMods(AMDGPU::SReg_64RegClassID, MVT::i64);
423   }
424 
425   bool isBoolReg() const;
426 
427   bool isSCSrcF16() const {
428     return isRegOrInlineNoMods(AMDGPU::SReg_32RegClassID, MVT::f16);
429   }
430 
431   bool isSCSrcV2F16() const {
432     return isSCSrcF16();
433   }
434 
435   bool isSCSrcF32() const {
436     return isRegOrInlineNoMods(AMDGPU::SReg_32RegClassID, MVT::f32);
437   }
438 
439   bool isSCSrcF64() const {
440     return isRegOrInlineNoMods(AMDGPU::SReg_64RegClassID, MVT::f64);
441   }
442 
443   bool isSSrcB32() const {
444     return isSCSrcB32() || isLiteralImm(MVT::i32) || isExpr();
445   }
446 
447   bool isSSrcB16() const {
448     return isSCSrcB16() || isLiteralImm(MVT::i16);
449   }
450 
451   bool isSSrcV2B16() const {
452     llvm_unreachable("cannot happen");
453     return isSSrcB16();
454   }
455 
456   bool isSSrcB64() const {
457     // TODO: Find out how SALU supports extension of 32-bit literals to 64 bits.
458     // See isVSrc64().
459     return isSCSrcB64() || isLiteralImm(MVT::i64);
460   }
461 
462   bool isSSrcF32() const {
463     return isSCSrcB32() || isLiteralImm(MVT::f32) || isExpr();
464   }
465 
466   bool isSSrcF64() const {
467     return isSCSrcB64() || isLiteralImm(MVT::f64);
468   }
469 
470   bool isSSrcF16() const {
471     return isSCSrcB16() || isLiteralImm(MVT::f16);
472   }
473 
474   bool isSSrcV2F16() const {
475     llvm_unreachable("cannot happen");
476     return isSSrcF16();
477   }
478 
479   bool isSSrcOrLdsB32() const {
480     return isRegOrInlineNoMods(AMDGPU::SRegOrLds_32RegClassID, MVT::i32) ||
481            isLiteralImm(MVT::i32) || isExpr();
482   }
483 
484   bool isVCSrcB32() const {
485     return isRegOrInlineNoMods(AMDGPU::VS_32RegClassID, MVT::i32);
486   }
487 
488   bool isVCSrcB64() const {
489     return isRegOrInlineNoMods(AMDGPU::VS_64RegClassID, MVT::i64);
490   }
491 
492   bool isVCSrcB16() const {
493     return isRegOrInlineNoMods(AMDGPU::VS_32RegClassID, MVT::i16);
494   }
495 
496   bool isVCSrcV2B16() const {
497     return isVCSrcB16();
498   }
499 
500   bool isVCSrcF32() const {
501     return isRegOrInlineNoMods(AMDGPU::VS_32RegClassID, MVT::f32);
502   }
503 
504   bool isVCSrcF64() const {
505     return isRegOrInlineNoMods(AMDGPU::VS_64RegClassID, MVT::f64);
506   }
507 
508   bool isVCSrcF16() const {
509     return isRegOrInlineNoMods(AMDGPU::VS_32RegClassID, MVT::f16);
510   }
511 
512   bool isVCSrcV2F16() const {
513     return isVCSrcF16();
514   }
515 
516   bool isVSrcB32() const {
517     return isVCSrcF32() || isLiteralImm(MVT::i32) || isExpr();
518   }
519 
520   bool isVSrcB64() const {
521     return isVCSrcF64() || isLiteralImm(MVT::i64);
522   }
523 
524   bool isVSrcB16() const {
525     return isVCSrcB16() || isLiteralImm(MVT::i16);
526   }
527 
528   bool isVSrcV2B16() const {
529     return isVSrcB16() || isLiteralImm(MVT::v2i16);
530   }
531 
532   bool isVSrcF32() const {
533     return isVCSrcF32() || isLiteralImm(MVT::f32) || isExpr();
534   }
535 
536   bool isVSrcF64() const {
537     return isVCSrcF64() || isLiteralImm(MVT::f64);
538   }
539 
540   bool isVSrcF16() const {
541     return isVCSrcF16() || isLiteralImm(MVT::f16);
542   }
543 
544   bool isVSrcV2F16() const {
545     return isVSrcF16() || isLiteralImm(MVT::v2f16);
546   }
547 
548   bool isVISrcB32() const {
549     return isRegOrInlineNoMods(AMDGPU::VGPR_32RegClassID, MVT::i32);
550   }
551 
552   bool isVISrcB16() const {
553     return isRegOrInlineNoMods(AMDGPU::VGPR_32RegClassID, MVT::i16);
554   }
555 
556   bool isVISrcV2B16() const {
557     return isVISrcB16();
558   }
559 
560   bool isVISrcF32() const {
561     return isRegOrInlineNoMods(AMDGPU::VGPR_32RegClassID, MVT::f32);
562   }
563 
564   bool isVISrcF16() const {
565     return isRegOrInlineNoMods(AMDGPU::VGPR_32RegClassID, MVT::f16);
566   }
567 
568   bool isVISrcV2F16() const {
569     return isVISrcF16() || isVISrcB32();
570   }
571 
572   bool isAISrcB32() const {
573     return isRegOrInlineNoMods(AMDGPU::AGPR_32RegClassID, MVT::i32);
574   }
575 
576   bool isAISrcB16() const {
577     return isRegOrInlineNoMods(AMDGPU::AGPR_32RegClassID, MVT::i16);
578   }
579 
580   bool isAISrcV2B16() const {
581     return isAISrcB16();
582   }
583 
584   bool isAISrcF32() const {
585     return isRegOrInlineNoMods(AMDGPU::AGPR_32RegClassID, MVT::f32);
586   }
587 
588   bool isAISrcF16() const {
589     return isRegOrInlineNoMods(AMDGPU::AGPR_32RegClassID, MVT::f16);
590   }
591 
592   bool isAISrcV2F16() const {
593     return isAISrcF16() || isAISrcB32();
594   }
595 
596   bool isAISrc_128B32() const {
597     return isRegOrInlineNoMods(AMDGPU::AReg_128RegClassID, MVT::i32);
598   }
599 
600   bool isAISrc_128B16() const {
601     return isRegOrInlineNoMods(AMDGPU::AReg_128RegClassID, MVT::i16);
602   }
603 
604   bool isAISrc_128V2B16() const {
605     return isAISrc_128B16();
606   }
607 
608   bool isAISrc_128F32() const {
609     return isRegOrInlineNoMods(AMDGPU::AReg_128RegClassID, MVT::f32);
610   }
611 
612   bool isAISrc_128F16() const {
613     return isRegOrInlineNoMods(AMDGPU::AReg_128RegClassID, MVT::f16);
614   }
615 
616   bool isAISrc_128V2F16() const {
617     return isAISrc_128F16() || isAISrc_128B32();
618   }
619 
620   bool isAISrc_512B32() const {
621     return isRegOrInlineNoMods(AMDGPU::AReg_512RegClassID, MVT::i32);
622   }
623 
624   bool isAISrc_512B16() const {
625     return isRegOrInlineNoMods(AMDGPU::AReg_512RegClassID, MVT::i16);
626   }
627 
628   bool isAISrc_512V2B16() const {
629     return isAISrc_512B16();
630   }
631 
632   bool isAISrc_512F32() const {
633     return isRegOrInlineNoMods(AMDGPU::AReg_512RegClassID, MVT::f32);
634   }
635 
636   bool isAISrc_512F16() const {
637     return isRegOrInlineNoMods(AMDGPU::AReg_512RegClassID, MVT::f16);
638   }
639 
640   bool isAISrc_512V2F16() const {
641     return isAISrc_512F16() || isAISrc_512B32();
642   }
643 
644   bool isAISrc_1024B32() const {
645     return isRegOrInlineNoMods(AMDGPU::AReg_1024RegClassID, MVT::i32);
646   }
647 
648   bool isAISrc_1024B16() const {
649     return isRegOrInlineNoMods(AMDGPU::AReg_1024RegClassID, MVT::i16);
650   }
651 
652   bool isAISrc_1024V2B16() const {
653     return isAISrc_1024B16();
654   }
655 
656   bool isAISrc_1024F32() const {
657     return isRegOrInlineNoMods(AMDGPU::AReg_1024RegClassID, MVT::f32);
658   }
659 
660   bool isAISrc_1024F16() const {
661     return isRegOrInlineNoMods(AMDGPU::AReg_1024RegClassID, MVT::f16);
662   }
663 
664   bool isAISrc_1024V2F16() const {
665     return isAISrc_1024F16() || isAISrc_1024B32();
666   }
667 
668   bool isKImmFP32() const {
669     return isLiteralImm(MVT::f32);
670   }
671 
672   bool isKImmFP16() const {
673     return isLiteralImm(MVT::f16);
674   }
675 
676   bool isMem() const override {
677     return false;
678   }
679 
680   bool isExpr() const {
681     return Kind == Expression;
682   }
683 
684   bool isSoppBrTarget() const {
685     return isExpr() || isImm();
686   }
687 
688   bool isSWaitCnt() const;
689   bool isHwreg() const;
690   bool isSendMsg() const;
691   bool isSwizzle() const;
692   bool isSMRDOffset8() const;
693   bool isSMEMOffset() const;
694   bool isSMRDLiteralOffset() const;
695   bool isDPP8() const;
696   bool isDPPCtrl() const;
697   bool isBLGP() const;
698   bool isCBSZ() const;
699   bool isABID() const;
700   bool isGPRIdxMode() const;
701   bool isS16Imm() const;
702   bool isU16Imm() const;
703   bool isEndpgm() const;
704 
705   StringRef getExpressionAsToken() const {
706     assert(isExpr());
707     const MCSymbolRefExpr *S = cast<MCSymbolRefExpr>(Expr);
708     return S->getSymbol().getName();
709   }
710 
711   StringRef getToken() const {
712     assert(isToken());
713 
714     if (Kind == Expression)
715       return getExpressionAsToken();
716 
717     return StringRef(Tok.Data, Tok.Length);
718   }
719 
720   int64_t getImm() const {
721     assert(isImm());
722     return Imm.Val;
723   }
724 
725   void setImm(int64_t Val) {
726     assert(isImm());
727     Imm.Val = Val;
728   }
729 
730   ImmTy getImmTy() const {
731     assert(isImm());
732     return Imm.Type;
733   }
734 
735   unsigned getReg() const override {
736     assert(isRegKind());
737     return Reg.RegNo;
738   }
739 
740   SMLoc getStartLoc() const override {
741     return StartLoc;
742   }
743 
744   SMLoc getEndLoc() const override {
745     return EndLoc;
746   }
747 
748   SMRange getLocRange() const {
749     return SMRange(StartLoc, EndLoc);
750   }
751 
752   Modifiers getModifiers() const {
753     assert(isRegKind() || isImmTy(ImmTyNone));
754     return isRegKind() ? Reg.Mods : Imm.Mods;
755   }
756 
757   void setModifiers(Modifiers Mods) {
758     assert(isRegKind() || isImmTy(ImmTyNone));
759     if (isRegKind())
760       Reg.Mods = Mods;
761     else
762       Imm.Mods = Mods;
763   }
764 
765   bool hasModifiers() const {
766     return getModifiers().hasModifiers();
767   }
768 
769   bool hasFPModifiers() const {
770     return getModifiers().hasFPModifiers();
771   }
772 
773   bool hasIntModifiers() const {
774     return getModifiers().hasIntModifiers();
775   }
776 
777   uint64_t applyInputFPModifiers(uint64_t Val, unsigned Size) const;
778 
779   void addImmOperands(MCInst &Inst, unsigned N, bool ApplyModifiers = true) const;
780 
781   void addLiteralImmOperand(MCInst &Inst, int64_t Val, bool ApplyModifiers) const;
782 
783   template <unsigned Bitwidth>
784   void addKImmFPOperands(MCInst &Inst, unsigned N) const;
785 
786   void addKImmFP16Operands(MCInst &Inst, unsigned N) const {
787     addKImmFPOperands<16>(Inst, N);
788   }
789 
790   void addKImmFP32Operands(MCInst &Inst, unsigned N) const {
791     addKImmFPOperands<32>(Inst, N);
792   }
793 
794   void addRegOperands(MCInst &Inst, unsigned N) const;
795 
796   void addBoolRegOperands(MCInst &Inst, unsigned N) const {
797     addRegOperands(Inst, N);
798   }
799 
800   void addRegOrImmOperands(MCInst &Inst, unsigned N) const {
801     if (isRegKind())
802       addRegOperands(Inst, N);
803     else if (isExpr())
804       Inst.addOperand(MCOperand::createExpr(Expr));
805     else
806       addImmOperands(Inst, N);
807   }
808 
809   void addRegOrImmWithInputModsOperands(MCInst &Inst, unsigned N) const {
810     Modifiers Mods = getModifiers();
811     Inst.addOperand(MCOperand::createImm(Mods.getModifiersOperand()));
812     if (isRegKind()) {
813       addRegOperands(Inst, N);
814     } else {
815       addImmOperands(Inst, N, false);
816     }
817   }
818 
819   void addRegOrImmWithFPInputModsOperands(MCInst &Inst, unsigned N) const {
820     assert(!hasIntModifiers());
821     addRegOrImmWithInputModsOperands(Inst, N);
822   }
823 
824   void addRegOrImmWithIntInputModsOperands(MCInst &Inst, unsigned N) const {
825     assert(!hasFPModifiers());
826     addRegOrImmWithInputModsOperands(Inst, N);
827   }
828 
829   void addRegWithInputModsOperands(MCInst &Inst, unsigned N) const {
830     Modifiers Mods = getModifiers();
831     Inst.addOperand(MCOperand::createImm(Mods.getModifiersOperand()));
832     assert(isRegKind());
833     addRegOperands(Inst, N);
834   }
835 
836   void addRegWithFPInputModsOperands(MCInst &Inst, unsigned N) const {
837     assert(!hasIntModifiers());
838     addRegWithInputModsOperands(Inst, N);
839   }
840 
841   void addRegWithIntInputModsOperands(MCInst &Inst, unsigned N) const {
842     assert(!hasFPModifiers());
843     addRegWithInputModsOperands(Inst, N);
844   }
845 
846   void addSoppBrTargetOperands(MCInst &Inst, unsigned N) const {
847     if (isImm())
848       addImmOperands(Inst, N);
849     else {
850       assert(isExpr());
851       Inst.addOperand(MCOperand::createExpr(Expr));
852     }
853   }
854 
855   static void printImmTy(raw_ostream& OS, ImmTy Type) {
856     switch (Type) {
857     case ImmTyNone: OS << "None"; break;
858     case ImmTyGDS: OS << "GDS"; break;
859     case ImmTyLDS: OS << "LDS"; break;
860     case ImmTyOffen: OS << "Offen"; break;
861     case ImmTyIdxen: OS << "Idxen"; break;
862     case ImmTyAddr64: OS << "Addr64"; break;
863     case ImmTyOffset: OS << "Offset"; break;
864     case ImmTyInstOffset: OS << "InstOffset"; break;
865     case ImmTyOffset0: OS << "Offset0"; break;
866     case ImmTyOffset1: OS << "Offset1"; break;
867     case ImmTyDLC: OS << "DLC"; break;
868     case ImmTyGLC: OS << "GLC"; break;
869     case ImmTySLC: OS << "SLC"; break;
870     case ImmTySWZ: OS << "SWZ"; break;
871     case ImmTyTFE: OS << "TFE"; break;
872     case ImmTyD16: OS << "D16"; break;
873     case ImmTyFORMAT: OS << "FORMAT"; break;
874     case ImmTyClampSI: OS << "ClampSI"; break;
875     case ImmTyOModSI: OS << "OModSI"; break;
876     case ImmTyDPP8: OS << "DPP8"; break;
877     case ImmTyDppCtrl: OS << "DppCtrl"; break;
878     case ImmTyDppRowMask: OS << "DppRowMask"; break;
879     case ImmTyDppBankMask: OS << "DppBankMask"; break;
880     case ImmTyDppBoundCtrl: OS << "DppBoundCtrl"; break;
881     case ImmTyDppFi: OS << "FI"; break;
882     case ImmTySdwaDstSel: OS << "SdwaDstSel"; break;
883     case ImmTySdwaSrc0Sel: OS << "SdwaSrc0Sel"; break;
884     case ImmTySdwaSrc1Sel: OS << "SdwaSrc1Sel"; break;
885     case ImmTySdwaDstUnused: OS << "SdwaDstUnused"; break;
886     case ImmTyDMask: OS << "DMask"; break;
887     case ImmTyDim: OS << "Dim"; break;
888     case ImmTyUNorm: OS << "UNorm"; break;
889     case ImmTyDA: OS << "DA"; break;
890     case ImmTyR128A16: OS << "R128A16"; break;
891     case ImmTyA16: OS << "A16"; break;
892     case ImmTyLWE: OS << "LWE"; break;
893     case ImmTyOff: OS << "Off"; break;
894     case ImmTyExpTgt: OS << "ExpTgt"; break;
895     case ImmTyExpCompr: OS << "ExpCompr"; break;
896     case ImmTyExpVM: OS << "ExpVM"; break;
897     case ImmTyHwreg: OS << "Hwreg"; break;
898     case ImmTySendMsg: OS << "SendMsg"; break;
899     case ImmTyInterpSlot: OS << "InterpSlot"; break;
900     case ImmTyInterpAttr: OS << "InterpAttr"; break;
901     case ImmTyAttrChan: OS << "AttrChan"; break;
902     case ImmTyOpSel: OS << "OpSel"; break;
903     case ImmTyOpSelHi: OS << "OpSelHi"; break;
904     case ImmTyNegLo: OS << "NegLo"; break;
905     case ImmTyNegHi: OS << "NegHi"; break;
906     case ImmTySwizzle: OS << "Swizzle"; break;
907     case ImmTyGprIdxMode: OS << "GprIdxMode"; break;
908     case ImmTyHigh: OS << "High"; break;
909     case ImmTyBLGP: OS << "BLGP"; break;
910     case ImmTyCBSZ: OS << "CBSZ"; break;
911     case ImmTyABID: OS << "ABID"; break;
912     case ImmTyEndpgm: OS << "Endpgm"; break;
913     }
914   }
915 
916   void print(raw_ostream &OS) const override {
917     switch (Kind) {
918     case Register:
919       OS << "<register " << getReg() << " mods: " << Reg.Mods << '>';
920       break;
921     case Immediate:
922       OS << '<' << getImm();
923       if (getImmTy() != ImmTyNone) {
924         OS << " type: "; printImmTy(OS, getImmTy());
925       }
926       OS << " mods: " << Imm.Mods << '>';
927       break;
928     case Token:
929       OS << '\'' << getToken() << '\'';
930       break;
931     case Expression:
932       OS << "<expr " << *Expr << '>';
933       break;
934     }
935   }
936 
937   static AMDGPUOperand::Ptr CreateImm(const AMDGPUAsmParser *AsmParser,
938                                       int64_t Val, SMLoc Loc,
939                                       ImmTy Type = ImmTyNone,
940                                       bool IsFPImm = false) {
941     auto Op = std::make_unique<AMDGPUOperand>(Immediate, AsmParser);
942     Op->Imm.Val = Val;
943     Op->Imm.IsFPImm = IsFPImm;
944     Op->Imm.Kind = ImmKindTyNone;
945     Op->Imm.Type = Type;
946     Op->Imm.Mods = Modifiers();
947     Op->StartLoc = Loc;
948     Op->EndLoc = Loc;
949     return Op;
950   }
951 
952   static AMDGPUOperand::Ptr CreateToken(const AMDGPUAsmParser *AsmParser,
953                                         StringRef Str, SMLoc Loc,
954                                         bool HasExplicitEncodingSize = true) {
955     auto Res = std::make_unique<AMDGPUOperand>(Token, AsmParser);
956     Res->Tok.Data = Str.data();
957     Res->Tok.Length = Str.size();
958     Res->StartLoc = Loc;
959     Res->EndLoc = Loc;
960     return Res;
961   }
962 
963   static AMDGPUOperand::Ptr CreateReg(const AMDGPUAsmParser *AsmParser,
964                                       unsigned RegNo, SMLoc S,
965                                       SMLoc E) {
966     auto Op = std::make_unique<AMDGPUOperand>(Register, AsmParser);
967     Op->Reg.RegNo = RegNo;
968     Op->Reg.Mods = Modifiers();
969     Op->StartLoc = S;
970     Op->EndLoc = E;
971     return Op;
972   }
973 
974   static AMDGPUOperand::Ptr CreateExpr(const AMDGPUAsmParser *AsmParser,
975                                        const class MCExpr *Expr, SMLoc S) {
976     auto Op = std::make_unique<AMDGPUOperand>(Expression, AsmParser);
977     Op->Expr = Expr;
978     Op->StartLoc = S;
979     Op->EndLoc = S;
980     return Op;
981   }
982 };
983 
984 raw_ostream &operator <<(raw_ostream &OS, AMDGPUOperand::Modifiers Mods) {
985   OS << "abs:" << Mods.Abs << " neg: " << Mods.Neg << " sext:" << Mods.Sext;
986   return OS;
987 }
988 
989 //===----------------------------------------------------------------------===//
990 // AsmParser
991 //===----------------------------------------------------------------------===//
992 
993 // Holds info related to the current kernel, e.g. count of SGPRs used.
994 // Kernel scope begins at .amdgpu_hsa_kernel directive, ends at next
995 // .amdgpu_hsa_kernel or at EOF.
996 class KernelScopeInfo {
997   int SgprIndexUnusedMin = -1;
998   int VgprIndexUnusedMin = -1;
999   MCContext *Ctx = nullptr;
1000 
1001   void usesSgprAt(int i) {
1002     if (i >= SgprIndexUnusedMin) {
1003       SgprIndexUnusedMin = ++i;
1004       if (Ctx) {
1005         MCSymbol * const Sym = Ctx->getOrCreateSymbol(Twine(".kernel.sgpr_count"));
1006         Sym->setVariableValue(MCConstantExpr::create(SgprIndexUnusedMin, *Ctx));
1007       }
1008     }
1009   }
1010 
1011   void usesVgprAt(int i) {
1012     if (i >= VgprIndexUnusedMin) {
1013       VgprIndexUnusedMin = ++i;
1014       if (Ctx) {
1015         MCSymbol * const Sym = Ctx->getOrCreateSymbol(Twine(".kernel.vgpr_count"));
1016         Sym->setVariableValue(MCConstantExpr::create(VgprIndexUnusedMin, *Ctx));
1017       }
1018     }
1019   }
1020 
1021 public:
1022   KernelScopeInfo() = default;
1023 
1024   void initialize(MCContext &Context) {
1025     Ctx = &Context;
1026     usesSgprAt(SgprIndexUnusedMin = -1);
1027     usesVgprAt(VgprIndexUnusedMin = -1);
1028   }
1029 
1030   void usesRegister(RegisterKind RegKind, unsigned DwordRegIndex, unsigned RegWidth) {
1031     switch (RegKind) {
1032       case IS_SGPR: usesSgprAt(DwordRegIndex + RegWidth - 1); break;
1033       case IS_AGPR: // fall through
1034       case IS_VGPR: usesVgprAt(DwordRegIndex + RegWidth - 1); break;
1035       default: break;
1036     }
1037   }
1038 };
1039 
1040 class AMDGPUAsmParser : public MCTargetAsmParser {
1041   MCAsmParser &Parser;
1042 
1043   // Number of extra operands parsed after the first optional operand.
1044   // This may be necessary to skip hardcoded mandatory operands.
1045   static const unsigned MAX_OPR_LOOKAHEAD = 8;
1046 
1047   unsigned ForcedEncodingSize = 0;
1048   bool ForcedDPP = false;
1049   bool ForcedSDWA = false;
1050   KernelScopeInfo KernelScope;
1051 
1052   /// @name Auto-generated Match Functions
1053   /// {
1054 
1055 #define GET_ASSEMBLER_HEADER
1056 #include "AMDGPUGenAsmMatcher.inc"
1057 
1058   /// }
1059 
1060 private:
1061   bool ParseAsAbsoluteExpression(uint32_t &Ret);
1062   bool OutOfRangeError(SMRange Range);
1063   /// Calculate VGPR/SGPR blocks required for given target, reserved
1064   /// registers, and user-specified NextFreeXGPR values.
1065   ///
1066   /// \param Features [in] Target features, used for bug corrections.
1067   /// \param VCCUsed [in] Whether VCC special SGPR is reserved.
1068   /// \param FlatScrUsed [in] Whether FLAT_SCRATCH special SGPR is reserved.
1069   /// \param XNACKUsed [in] Whether XNACK_MASK special SGPR is reserved.
1070   /// \param EnableWavefrontSize32 [in] Value of ENABLE_WAVEFRONT_SIZE32 kernel
1071   /// descriptor field, if valid.
1072   /// \param NextFreeVGPR [in] Max VGPR number referenced, plus one.
1073   /// \param VGPRRange [in] Token range, used for VGPR diagnostics.
1074   /// \param NextFreeSGPR [in] Max SGPR number referenced, plus one.
1075   /// \param SGPRRange [in] Token range, used for SGPR diagnostics.
1076   /// \param VGPRBlocks [out] Result VGPR block count.
1077   /// \param SGPRBlocks [out] Result SGPR block count.
1078   bool calculateGPRBlocks(const FeatureBitset &Features, bool VCCUsed,
1079                           bool FlatScrUsed, bool XNACKUsed,
1080                           Optional<bool> EnableWavefrontSize32, unsigned NextFreeVGPR,
1081                           SMRange VGPRRange, unsigned NextFreeSGPR,
1082                           SMRange SGPRRange, unsigned &VGPRBlocks,
1083                           unsigned &SGPRBlocks);
1084   bool ParseDirectiveAMDGCNTarget();
1085   bool ParseDirectiveAMDHSAKernel();
1086   bool ParseDirectiveMajorMinor(uint32_t &Major, uint32_t &Minor);
1087   bool ParseDirectiveHSACodeObjectVersion();
1088   bool ParseDirectiveHSACodeObjectISA();
1089   bool ParseAMDKernelCodeTValue(StringRef ID, amd_kernel_code_t &Header);
1090   bool ParseDirectiveAMDKernelCodeT();
1091   bool subtargetHasRegister(const MCRegisterInfo &MRI, unsigned RegNo) const;
1092   bool ParseDirectiveAMDGPUHsaKernel();
1093 
1094   bool ParseDirectiveISAVersion();
1095   bool ParseDirectiveHSAMetadata();
1096   bool ParseDirectivePALMetadataBegin();
1097   bool ParseDirectivePALMetadata();
1098   bool ParseDirectiveAMDGPULDS();
1099 
1100   /// Common code to parse out a block of text (typically YAML) between start and
1101   /// end directives.
1102   bool ParseToEndDirective(const char *AssemblerDirectiveBegin,
1103                            const char *AssemblerDirectiveEnd,
1104                            std::string &CollectString);
1105 
1106   bool AddNextRegisterToList(unsigned& Reg, unsigned& RegWidth,
1107                              RegisterKind RegKind, unsigned Reg1, SMLoc Loc);
1108   bool ParseAMDGPURegister(RegisterKind &RegKind, unsigned &Reg,
1109                            unsigned &RegNum, unsigned &RegWidth,
1110                            bool RestoreOnFailure = false);
1111   bool ParseAMDGPURegister(RegisterKind &RegKind, unsigned &Reg,
1112                            unsigned &RegNum, unsigned &RegWidth,
1113                            SmallVectorImpl<AsmToken> &Tokens);
1114   unsigned ParseRegularReg(RegisterKind &RegKind, unsigned &RegNum,
1115                            unsigned &RegWidth,
1116                            SmallVectorImpl<AsmToken> &Tokens);
1117   unsigned ParseSpecialReg(RegisterKind &RegKind, unsigned &RegNum,
1118                            unsigned &RegWidth,
1119                            SmallVectorImpl<AsmToken> &Tokens);
1120   unsigned ParseRegList(RegisterKind &RegKind, unsigned &RegNum,
1121                         unsigned &RegWidth, SmallVectorImpl<AsmToken> &Tokens);
1122   bool ParseRegRange(unsigned& Num, unsigned& Width);
1123   unsigned getRegularReg(RegisterKind RegKind,
1124                          unsigned RegNum,
1125                          unsigned RegWidth,
1126                          SMLoc Loc);
1127 
1128   bool isRegister();
1129   bool isRegister(const AsmToken &Token, const AsmToken &NextToken) const;
1130   Optional<StringRef> getGprCountSymbolName(RegisterKind RegKind);
1131   void initializeGprCountSymbol(RegisterKind RegKind);
1132   bool updateGprCountSymbols(RegisterKind RegKind, unsigned DwordRegIndex,
1133                              unsigned RegWidth);
1134   void cvtMubufImpl(MCInst &Inst, const OperandVector &Operands,
1135                     bool IsAtomic, bool IsAtomicReturn, bool IsLds = false);
1136   void cvtDSImpl(MCInst &Inst, const OperandVector &Operands,
1137                  bool IsGdsHardcoded);
1138 
1139 public:
1140   enum AMDGPUMatchResultTy {
1141     Match_PreferE32 = FIRST_TARGET_MATCH_RESULT_TY
1142   };
1143   enum OperandMode {
1144     OperandMode_Default,
1145     OperandMode_NSA,
1146   };
1147 
1148   using OptionalImmIndexMap = std::map<AMDGPUOperand::ImmTy, unsigned>;
1149 
1150   AMDGPUAsmParser(const MCSubtargetInfo &STI, MCAsmParser &_Parser,
1151                const MCInstrInfo &MII,
1152                const MCTargetOptions &Options)
1153       : MCTargetAsmParser(Options, STI, MII), Parser(_Parser) {
1154     MCAsmParserExtension::Initialize(Parser);
1155 
1156     if (getFeatureBits().none()) {
1157       // Set default features.
1158       copySTI().ToggleFeature("southern-islands");
1159     }
1160 
1161     setAvailableFeatures(ComputeAvailableFeatures(getFeatureBits()));
1162 
1163     {
1164       // TODO: make those pre-defined variables read-only.
1165       // Currently there is none suitable machinery in the core llvm-mc for this.
1166       // MCSymbol::isRedefinable is intended for another purpose, and
1167       // AsmParser::parseDirectiveSet() cannot be specialized for specific target.
1168       AMDGPU::IsaVersion ISA = AMDGPU::getIsaVersion(getSTI().getCPU());
1169       MCContext &Ctx = getContext();
1170       if (ISA.Major >= 6 && isHsaAbiVersion3(&getSTI())) {
1171         MCSymbol *Sym =
1172             Ctx.getOrCreateSymbol(Twine(".amdgcn.gfx_generation_number"));
1173         Sym->setVariableValue(MCConstantExpr::create(ISA.Major, Ctx));
1174         Sym = Ctx.getOrCreateSymbol(Twine(".amdgcn.gfx_generation_minor"));
1175         Sym->setVariableValue(MCConstantExpr::create(ISA.Minor, Ctx));
1176         Sym = Ctx.getOrCreateSymbol(Twine(".amdgcn.gfx_generation_stepping"));
1177         Sym->setVariableValue(MCConstantExpr::create(ISA.Stepping, Ctx));
1178       } else {
1179         MCSymbol *Sym =
1180             Ctx.getOrCreateSymbol(Twine(".option.machine_version_major"));
1181         Sym->setVariableValue(MCConstantExpr::create(ISA.Major, Ctx));
1182         Sym = Ctx.getOrCreateSymbol(Twine(".option.machine_version_minor"));
1183         Sym->setVariableValue(MCConstantExpr::create(ISA.Minor, Ctx));
1184         Sym = Ctx.getOrCreateSymbol(Twine(".option.machine_version_stepping"));
1185         Sym->setVariableValue(MCConstantExpr::create(ISA.Stepping, Ctx));
1186       }
1187       if (ISA.Major >= 6 && isHsaAbiVersion3(&getSTI())) {
1188         initializeGprCountSymbol(IS_VGPR);
1189         initializeGprCountSymbol(IS_SGPR);
1190       } else
1191         KernelScope.initialize(getContext());
1192     }
1193   }
1194 
1195   bool hasXNACK() const {
1196     return AMDGPU::hasXNACK(getSTI());
1197   }
1198 
1199   bool hasMIMG_R128() const {
1200     return AMDGPU::hasMIMG_R128(getSTI());
1201   }
1202 
1203   bool hasPackedD16() const {
1204     return AMDGPU::hasPackedD16(getSTI());
1205   }
1206 
1207   bool hasGFX10A16() const {
1208     return AMDGPU::hasGFX10A16(getSTI());
1209   }
1210 
1211   bool isSI() const {
1212     return AMDGPU::isSI(getSTI());
1213   }
1214 
1215   bool isCI() const {
1216     return AMDGPU::isCI(getSTI());
1217   }
1218 
1219   bool isVI() const {
1220     return AMDGPU::isVI(getSTI());
1221   }
1222 
1223   bool isGFX9() const {
1224     return AMDGPU::isGFX9(getSTI());
1225   }
1226 
1227   bool isGFX9Plus() const {
1228     return AMDGPU::isGFX9Plus(getSTI());
1229   }
1230 
1231   bool isGFX10() const {
1232     return AMDGPU::isGFX10(getSTI());
1233   }
1234 
1235   bool isGFX10Plus() const { return AMDGPU::isGFX10Plus(getSTI()); }
1236 
1237   bool isGFX10_BEncoding() const {
1238     return AMDGPU::isGFX10_BEncoding(getSTI());
1239   }
1240 
1241   bool hasInv2PiInlineImm() const {
1242     return getFeatureBits()[AMDGPU::FeatureInv2PiInlineImm];
1243   }
1244 
1245   bool hasFlatOffsets() const {
1246     return getFeatureBits()[AMDGPU::FeatureFlatInstOffsets];
1247   }
1248 
1249   bool hasSGPR102_SGPR103() const {
1250     return !isVI() && !isGFX9();
1251   }
1252 
1253   bool hasSGPR104_SGPR105() const { return isGFX10Plus(); }
1254 
1255   bool hasIntClamp() const {
1256     return getFeatureBits()[AMDGPU::FeatureIntClamp];
1257   }
1258 
1259   AMDGPUTargetStreamer &getTargetStreamer() {
1260     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
1261     return static_cast<AMDGPUTargetStreamer &>(TS);
1262   }
1263 
1264   const MCRegisterInfo *getMRI() const {
1265     // We need this const_cast because for some reason getContext() is not const
1266     // in MCAsmParser.
1267     return const_cast<AMDGPUAsmParser*>(this)->getContext().getRegisterInfo();
1268   }
1269 
1270   const MCInstrInfo *getMII() const {
1271     return &MII;
1272   }
1273 
1274   const FeatureBitset &getFeatureBits() const {
1275     return getSTI().getFeatureBits();
1276   }
1277 
1278   void setForcedEncodingSize(unsigned Size) { ForcedEncodingSize = Size; }
1279   void setForcedDPP(bool ForceDPP_) { ForcedDPP = ForceDPP_; }
1280   void setForcedSDWA(bool ForceSDWA_) { ForcedSDWA = ForceSDWA_; }
1281 
1282   unsigned getForcedEncodingSize() const { return ForcedEncodingSize; }
1283   bool isForcedVOP3() const { return ForcedEncodingSize == 64; }
1284   bool isForcedDPP() const { return ForcedDPP; }
1285   bool isForcedSDWA() const { return ForcedSDWA; }
1286   ArrayRef<unsigned> getMatchedVariants() const;
1287   StringRef getMatchedVariantName() const;
1288 
1289   std::unique_ptr<AMDGPUOperand> parseRegister(bool RestoreOnFailure = false);
1290   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
1291                      bool RestoreOnFailure);
1292   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
1293   OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1294                                         SMLoc &EndLoc) override;
1295   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
1296   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
1297                                       unsigned Kind) override;
1298   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1299                                OperandVector &Operands, MCStreamer &Out,
1300                                uint64_t &ErrorInfo,
1301                                bool MatchingInlineAsm) override;
1302   bool ParseDirective(AsmToken DirectiveID) override;
1303   OperandMatchResultTy parseOperand(OperandVector &Operands, StringRef Mnemonic,
1304                                     OperandMode Mode = OperandMode_Default);
1305   StringRef parseMnemonicSuffix(StringRef Name);
1306   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
1307                         SMLoc NameLoc, OperandVector &Operands) override;
1308   //bool ProcessInstruction(MCInst &Inst);
1309 
1310   OperandMatchResultTy parseIntWithPrefix(const char *Prefix, int64_t &Int);
1311 
1312   OperandMatchResultTy
1313   parseIntWithPrefix(const char *Prefix, OperandVector &Operands,
1314                      AMDGPUOperand::ImmTy ImmTy = AMDGPUOperand::ImmTyNone,
1315                      bool (*ConvertResult)(int64_t &) = nullptr);
1316 
1317   OperandMatchResultTy
1318   parseOperandArrayWithPrefix(const char *Prefix,
1319                               OperandVector &Operands,
1320                               AMDGPUOperand::ImmTy ImmTy = AMDGPUOperand::ImmTyNone,
1321                               bool (*ConvertResult)(int64_t&) = nullptr);
1322 
1323   OperandMatchResultTy
1324   parseNamedBit(const char *Name, OperandVector &Operands,
1325                 AMDGPUOperand::ImmTy ImmTy = AMDGPUOperand::ImmTyNone);
1326   OperandMatchResultTy parseStringWithPrefix(StringRef Prefix,
1327                                              StringRef &Value);
1328 
1329   bool isModifier();
1330   bool isOperandModifier(const AsmToken &Token, const AsmToken &NextToken) const;
1331   bool isRegOrOperandModifier(const AsmToken &Token, const AsmToken &NextToken) const;
1332   bool isNamedOperandModifier(const AsmToken &Token, const AsmToken &NextToken) const;
1333   bool isOpcodeModifierWithVal(const AsmToken &Token, const AsmToken &NextToken) const;
1334   bool parseSP3NegModifier();
1335   OperandMatchResultTy parseImm(OperandVector &Operands, bool HasSP3AbsModifier = false);
1336   OperandMatchResultTy parseReg(OperandVector &Operands);
1337   OperandMatchResultTy parseRegOrImm(OperandVector &Operands, bool HasSP3AbsMod = false);
1338   OperandMatchResultTy parseRegOrImmWithFPInputMods(OperandVector &Operands, bool AllowImm = true);
1339   OperandMatchResultTy parseRegOrImmWithIntInputMods(OperandVector &Operands, bool AllowImm = true);
1340   OperandMatchResultTy parseRegWithFPInputMods(OperandVector &Operands);
1341   OperandMatchResultTy parseRegWithIntInputMods(OperandVector &Operands);
1342   OperandMatchResultTy parseVReg32OrOff(OperandVector &Operands);
1343   OperandMatchResultTy parseDfmtNfmt(int64_t &Format);
1344   OperandMatchResultTy parseUfmt(int64_t &Format);
1345   OperandMatchResultTy parseSymbolicSplitFormat(StringRef FormatStr, SMLoc Loc, int64_t &Format);
1346   OperandMatchResultTy parseSymbolicUnifiedFormat(StringRef FormatStr, SMLoc Loc, int64_t &Format);
1347   OperandMatchResultTy parseFORMAT(OperandVector &Operands);
1348   OperandMatchResultTy parseSymbolicOrNumericFormat(int64_t &Format);
1349   OperandMatchResultTy parseNumericFormat(int64_t &Format);
1350   bool tryParseFmt(const char *Pref, int64_t MaxVal, int64_t &Val);
1351   bool matchDfmtNfmt(int64_t &Dfmt, int64_t &Nfmt, StringRef FormatStr, SMLoc Loc);
1352 
1353   void cvtDSOffset01(MCInst &Inst, const OperandVector &Operands);
1354   void cvtDS(MCInst &Inst, const OperandVector &Operands) { cvtDSImpl(Inst, Operands, false); }
1355   void cvtDSGds(MCInst &Inst, const OperandVector &Operands) { cvtDSImpl(Inst, Operands, true); }
1356   void cvtExp(MCInst &Inst, const OperandVector &Operands);
1357 
1358   bool parseCnt(int64_t &IntVal);
1359   OperandMatchResultTy parseSWaitCntOps(OperandVector &Operands);
1360   OperandMatchResultTy parseHwreg(OperandVector &Operands);
1361 
1362 private:
1363   struct OperandInfoTy {
1364     SMLoc Loc;
1365     int64_t Id;
1366     bool IsSymbolic = false;
1367     bool IsDefined = false;
1368 
1369     OperandInfoTy(int64_t Id_) : Id(Id_) {}
1370   };
1371 
1372   bool parseSendMsgBody(OperandInfoTy &Msg, OperandInfoTy &Op, OperandInfoTy &Stream);
1373   bool validateSendMsg(const OperandInfoTy &Msg,
1374                        const OperandInfoTy &Op,
1375                        const OperandInfoTy &Stream);
1376 
1377   bool parseHwregBody(OperandInfoTy &HwReg,
1378                       OperandInfoTy &Offset,
1379                       OperandInfoTy &Width);
1380   bool validateHwreg(const OperandInfoTy &HwReg,
1381                      const OperandInfoTy &Offset,
1382                      const OperandInfoTy &Width);
1383 
1384   OperandMatchResultTy parseExpTgtImpl(StringRef Str, uint8_t &Val);
1385   SMLoc getFlatOffsetLoc(const OperandVector &Operands) const;
1386   SMLoc getSMEMOffsetLoc(const OperandVector &Operands) const;
1387 
1388   SMLoc getOperandLoc(std::function<bool(const AMDGPUOperand&)> Test,
1389                       const OperandVector &Operands) const;
1390   SMLoc getImmLoc(AMDGPUOperand::ImmTy Type, const OperandVector &Operands) const;
1391   SMLoc getRegLoc(unsigned Reg, const OperandVector &Operands) const;
1392   SMLoc getLitLoc(const OperandVector &Operands) const;
1393   SMLoc getConstLoc(const OperandVector &Operands) const;
1394 
1395   bool validateInstruction(const MCInst &Inst, const SMLoc &IDLoc, const OperandVector &Operands);
1396   bool validateFlatOffset(const MCInst &Inst, const OperandVector &Operands);
1397   bool validateSMEMOffset(const MCInst &Inst, const OperandVector &Operands);
1398   bool validateSOPLiteral(const MCInst &Inst) const;
1399   bool validateConstantBusLimitations(const MCInst &Inst, const OperandVector &Operands);
1400   bool validateEarlyClobberLimitations(const MCInst &Inst, const OperandVector &Operands);
1401   bool validateIntClampSupported(const MCInst &Inst);
1402   bool validateMIMGAtomicDMask(const MCInst &Inst);
1403   bool validateMIMGGatherDMask(const MCInst &Inst);
1404   bool validateMovrels(const MCInst &Inst, const OperandVector &Operands);
1405   bool validateMIMGDataSize(const MCInst &Inst);
1406   bool validateMIMGAddrSize(const MCInst &Inst);
1407   bool validateMIMGD16(const MCInst &Inst);
1408   bool validateMIMGDim(const MCInst &Inst);
1409   bool validateLdsDirect(const MCInst &Inst);
1410   bool validateOpSel(const MCInst &Inst);
1411   bool validateVccOperand(unsigned Reg) const;
1412   bool validateVOP3Literal(const MCInst &Inst, const OperandVector &Operands);
1413   bool validateMAIAccWrite(const MCInst &Inst, const OperandVector &Operands);
1414   bool validateDivScale(const MCInst &Inst);
1415   bool validateCoherencyBits(const MCInst &Inst, const OperandVector &Operands,
1416                              const SMLoc &IDLoc);
1417   unsigned getConstantBusLimit(unsigned Opcode) const;
1418   bool usesConstantBus(const MCInst &Inst, unsigned OpIdx);
1419   bool isInlineConstant(const MCInst &Inst, unsigned OpIdx) const;
1420   unsigned findImplicitSGPRReadInVOP(const MCInst &Inst) const;
1421 
1422   bool isSupportedMnemo(StringRef Mnemo,
1423                         const FeatureBitset &FBS);
1424   bool isSupportedMnemo(StringRef Mnemo,
1425                         const FeatureBitset &FBS,
1426                         ArrayRef<unsigned> Variants);
1427   bool checkUnsupportedInstruction(StringRef Name, const SMLoc &IDLoc);
1428 
1429   bool isId(const StringRef Id) const;
1430   bool isId(const AsmToken &Token, const StringRef Id) const;
1431   bool isToken(const AsmToken::TokenKind Kind) const;
1432   bool trySkipId(const StringRef Id);
1433   bool trySkipId(const StringRef Id, const AsmToken::TokenKind Kind);
1434   bool trySkipToken(const AsmToken::TokenKind Kind);
1435   bool skipToken(const AsmToken::TokenKind Kind, const StringRef ErrMsg);
1436   bool parseString(StringRef &Val, const StringRef ErrMsg = "expected a string");
1437   bool parseId(StringRef &Val, const StringRef ErrMsg = "");
1438 
1439   void peekTokens(MutableArrayRef<AsmToken> Tokens);
1440   AsmToken::TokenKind getTokenKind() const;
1441   bool parseExpr(int64_t &Imm, StringRef Expected = "");
1442   bool parseExpr(OperandVector &Operands);
1443   StringRef getTokenStr() const;
1444   AsmToken peekToken();
1445   AsmToken getToken() const;
1446   SMLoc getLoc() const;
1447   void lex();
1448 
1449 public:
1450   OperandMatchResultTy parseOptionalOperand(OperandVector &Operands);
1451   OperandMatchResultTy parseOptionalOpr(OperandVector &Operands);
1452 
1453   OperandMatchResultTy parseExpTgt(OperandVector &Operands);
1454   OperandMatchResultTy parseSendMsgOp(OperandVector &Operands);
1455   OperandMatchResultTy parseInterpSlot(OperandVector &Operands);
1456   OperandMatchResultTy parseInterpAttr(OperandVector &Operands);
1457   OperandMatchResultTy parseSOppBrTarget(OperandVector &Operands);
1458   OperandMatchResultTy parseBoolReg(OperandVector &Operands);
1459 
1460   bool parseSwizzleOperand(int64_t &Op,
1461                            const unsigned MinVal,
1462                            const unsigned MaxVal,
1463                            const StringRef ErrMsg,
1464                            SMLoc &Loc);
1465   bool parseSwizzleOperands(const unsigned OpNum, int64_t* Op,
1466                             const unsigned MinVal,
1467                             const unsigned MaxVal,
1468                             const StringRef ErrMsg);
1469   OperandMatchResultTy parseSwizzleOp(OperandVector &Operands);
1470   bool parseSwizzleOffset(int64_t &Imm);
1471   bool parseSwizzleMacro(int64_t &Imm);
1472   bool parseSwizzleQuadPerm(int64_t &Imm);
1473   bool parseSwizzleBitmaskPerm(int64_t &Imm);
1474   bool parseSwizzleBroadcast(int64_t &Imm);
1475   bool parseSwizzleSwap(int64_t &Imm);
1476   bool parseSwizzleReverse(int64_t &Imm);
1477 
1478   OperandMatchResultTy parseGPRIdxMode(OperandVector &Operands);
1479   int64_t parseGPRIdxMacro();
1480 
1481   void cvtMubuf(MCInst &Inst, const OperandVector &Operands) { cvtMubufImpl(Inst, Operands, false, false); }
1482   void cvtMubufAtomic(MCInst &Inst, const OperandVector &Operands) { cvtMubufImpl(Inst, Operands, true, false); }
1483   void cvtMubufAtomicReturn(MCInst &Inst, const OperandVector &Operands) { cvtMubufImpl(Inst, Operands, true, true); }
1484   void cvtMubufLds(MCInst &Inst, const OperandVector &Operands) { cvtMubufImpl(Inst, Operands, false, false, true); }
1485   void cvtMtbuf(MCInst &Inst, const OperandVector &Operands);
1486 
1487   AMDGPUOperand::Ptr defaultDLC() const;
1488   AMDGPUOperand::Ptr defaultGLC() const;
1489   AMDGPUOperand::Ptr defaultGLC_1() const;
1490   AMDGPUOperand::Ptr defaultSLC() const;
1491 
1492   AMDGPUOperand::Ptr defaultSMRDOffset8() const;
1493   AMDGPUOperand::Ptr defaultSMEMOffset() const;
1494   AMDGPUOperand::Ptr defaultSMRDLiteralOffset() const;
1495   AMDGPUOperand::Ptr defaultFlatOffset() const;
1496 
1497   OperandMatchResultTy parseOModOperand(OperandVector &Operands);
1498 
1499   void cvtVOP3(MCInst &Inst, const OperandVector &Operands,
1500                OptionalImmIndexMap &OptionalIdx);
1501   void cvtVOP3OpSel(MCInst &Inst, const OperandVector &Operands);
1502   void cvtVOP3(MCInst &Inst, const OperandVector &Operands);
1503   void cvtVOP3P(MCInst &Inst, const OperandVector &Operands);
1504 
1505   void cvtVOP3Interp(MCInst &Inst, const OperandVector &Operands);
1506 
1507   void cvtMIMG(MCInst &Inst, const OperandVector &Operands,
1508                bool IsAtomic = false);
1509   void cvtMIMGAtomic(MCInst &Inst, const OperandVector &Operands);
1510   void cvtIntersectRay(MCInst &Inst, const OperandVector &Operands);
1511 
1512   OperandMatchResultTy parseDim(OperandVector &Operands);
1513   OperandMatchResultTy parseDPP8(OperandVector &Operands);
1514   OperandMatchResultTy parseDPPCtrl(OperandVector &Operands);
1515   AMDGPUOperand::Ptr defaultRowMask() const;
1516   AMDGPUOperand::Ptr defaultBankMask() const;
1517   AMDGPUOperand::Ptr defaultBoundCtrl() const;
1518   AMDGPUOperand::Ptr defaultFI() const;
1519   void cvtDPP(MCInst &Inst, const OperandVector &Operands, bool IsDPP8 = false);
1520   void cvtDPP8(MCInst &Inst, const OperandVector &Operands) { cvtDPP(Inst, Operands, true); }
1521 
1522   OperandMatchResultTy parseSDWASel(OperandVector &Operands, StringRef Prefix,
1523                                     AMDGPUOperand::ImmTy Type);
1524   OperandMatchResultTy parseSDWADstUnused(OperandVector &Operands);
1525   void cvtSdwaVOP1(MCInst &Inst, const OperandVector &Operands);
1526   void cvtSdwaVOP2(MCInst &Inst, const OperandVector &Operands);
1527   void cvtSdwaVOP2b(MCInst &Inst, const OperandVector &Operands);
1528   void cvtSdwaVOP2e(MCInst &Inst, const OperandVector &Operands);
1529   void cvtSdwaVOPC(MCInst &Inst, const OperandVector &Operands);
1530   void cvtSDWA(MCInst &Inst, const OperandVector &Operands,
1531                uint64_t BasicInstType,
1532                bool SkipDstVcc = false,
1533                bool SkipSrcVcc = false);
1534 
1535   AMDGPUOperand::Ptr defaultBLGP() const;
1536   AMDGPUOperand::Ptr defaultCBSZ() const;
1537   AMDGPUOperand::Ptr defaultABID() const;
1538 
1539   OperandMatchResultTy parseEndpgmOp(OperandVector &Operands);
1540   AMDGPUOperand::Ptr defaultEndpgmImmOperands() const;
1541 };
1542 
1543 struct OptionalOperand {
1544   const char *Name;
1545   AMDGPUOperand::ImmTy Type;
1546   bool IsBit;
1547   bool (*ConvertResult)(int64_t&);
1548 };
1549 
1550 } // end anonymous namespace
1551 
1552 // May be called with integer type with equivalent bitwidth.
1553 static const fltSemantics *getFltSemantics(unsigned Size) {
1554   switch (Size) {
1555   case 4:
1556     return &APFloat::IEEEsingle();
1557   case 8:
1558     return &APFloat::IEEEdouble();
1559   case 2:
1560     return &APFloat::IEEEhalf();
1561   default:
1562     llvm_unreachable("unsupported fp type");
1563   }
1564 }
1565 
1566 static const fltSemantics *getFltSemantics(MVT VT) {
1567   return getFltSemantics(VT.getSizeInBits() / 8);
1568 }
1569 
1570 static const fltSemantics *getOpFltSemantics(uint8_t OperandType) {
1571   switch (OperandType) {
1572   case AMDGPU::OPERAND_REG_IMM_INT32:
1573   case AMDGPU::OPERAND_REG_IMM_FP32:
1574   case AMDGPU::OPERAND_REG_INLINE_C_INT32:
1575   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1576   case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
1577   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1578     return &APFloat::IEEEsingle();
1579   case AMDGPU::OPERAND_REG_IMM_INT64:
1580   case AMDGPU::OPERAND_REG_IMM_FP64:
1581   case AMDGPU::OPERAND_REG_INLINE_C_INT64:
1582   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1583     return &APFloat::IEEEdouble();
1584   case AMDGPU::OPERAND_REG_IMM_INT16:
1585   case AMDGPU::OPERAND_REG_IMM_FP16:
1586   case AMDGPU::OPERAND_REG_INLINE_C_INT16:
1587   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1588   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1589   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1590   case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
1591   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1592   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1593   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1594   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1595   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1596     return &APFloat::IEEEhalf();
1597   default:
1598     llvm_unreachable("unsupported fp type");
1599   }
1600 }
1601 
1602 //===----------------------------------------------------------------------===//
1603 // Operand
1604 //===----------------------------------------------------------------------===//
1605 
1606 static bool canLosslesslyConvertToFPType(APFloat &FPLiteral, MVT VT) {
1607   bool Lost;
1608 
1609   // Convert literal to single precision
1610   APFloat::opStatus Status = FPLiteral.convert(*getFltSemantics(VT),
1611                                                APFloat::rmNearestTiesToEven,
1612                                                &Lost);
1613   // We allow precision lost but not overflow or underflow
1614   if (Status != APFloat::opOK &&
1615       Lost &&
1616       ((Status & APFloat::opOverflow)  != 0 ||
1617        (Status & APFloat::opUnderflow) != 0)) {
1618     return false;
1619   }
1620 
1621   return true;
1622 }
1623 
1624 static bool isSafeTruncation(int64_t Val, unsigned Size) {
1625   return isUIntN(Size, Val) || isIntN(Size, Val);
1626 }
1627 
1628 static bool isInlineableLiteralOp16(int64_t Val, MVT VT, bool HasInv2Pi) {
1629   if (VT.getScalarType() == MVT::i16) {
1630     // FP immediate values are broken.
1631     return isInlinableIntLiteral(Val);
1632   }
1633 
1634   // f16/v2f16 operands work correctly for all values.
1635   return AMDGPU::isInlinableLiteral16(Val, HasInv2Pi);
1636 }
1637 
1638 bool AMDGPUOperand::isInlinableImm(MVT type) const {
1639 
1640   // This is a hack to enable named inline values like
1641   // shared_base with both 32-bit and 64-bit operands.
1642   // Note that these values are defined as
1643   // 32-bit operands only.
1644   if (isInlineValue()) {
1645     return true;
1646   }
1647 
1648   if (!isImmTy(ImmTyNone)) {
1649     // Only plain immediates are inlinable (e.g. "clamp" attribute is not)
1650     return false;
1651   }
1652   // TODO: We should avoid using host float here. It would be better to
1653   // check the float bit values which is what a few other places do.
1654   // We've had bot failures before due to weird NaN support on mips hosts.
1655 
1656   APInt Literal(64, Imm.Val);
1657 
1658   if (Imm.IsFPImm) { // We got fp literal token
1659     if (type == MVT::f64 || type == MVT::i64) { // Expected 64-bit operand
1660       return AMDGPU::isInlinableLiteral64(Imm.Val,
1661                                           AsmParser->hasInv2PiInlineImm());
1662     }
1663 
1664     APFloat FPLiteral(APFloat::IEEEdouble(), APInt(64, Imm.Val));
1665     if (!canLosslesslyConvertToFPType(FPLiteral, type))
1666       return false;
1667 
1668     if (type.getScalarSizeInBits() == 16) {
1669       return isInlineableLiteralOp16(
1670         static_cast<int16_t>(FPLiteral.bitcastToAPInt().getZExtValue()),
1671         type, AsmParser->hasInv2PiInlineImm());
1672     }
1673 
1674     // Check if single precision literal is inlinable
1675     return AMDGPU::isInlinableLiteral32(
1676       static_cast<int32_t>(FPLiteral.bitcastToAPInt().getZExtValue()),
1677       AsmParser->hasInv2PiInlineImm());
1678   }
1679 
1680   // We got int literal token.
1681   if (type == MVT::f64 || type == MVT::i64) { // Expected 64-bit operand
1682     return AMDGPU::isInlinableLiteral64(Imm.Val,
1683                                         AsmParser->hasInv2PiInlineImm());
1684   }
1685 
1686   if (!isSafeTruncation(Imm.Val, type.getScalarSizeInBits())) {
1687     return false;
1688   }
1689 
1690   if (type.getScalarSizeInBits() == 16) {
1691     return isInlineableLiteralOp16(
1692       static_cast<int16_t>(Literal.getLoBits(16).getSExtValue()),
1693       type, AsmParser->hasInv2PiInlineImm());
1694   }
1695 
1696   return AMDGPU::isInlinableLiteral32(
1697     static_cast<int32_t>(Literal.getLoBits(32).getZExtValue()),
1698     AsmParser->hasInv2PiInlineImm());
1699 }
1700 
1701 bool AMDGPUOperand::isLiteralImm(MVT type) const {
1702   // Check that this immediate can be added as literal
1703   if (!isImmTy(ImmTyNone)) {
1704     return false;
1705   }
1706 
1707   if (!Imm.IsFPImm) {
1708     // We got int literal token.
1709 
1710     if (type == MVT::f64 && hasFPModifiers()) {
1711       // Cannot apply fp modifiers to int literals preserving the same semantics
1712       // for VOP1/2/C and VOP3 because of integer truncation. To avoid ambiguity,
1713       // disable these cases.
1714       return false;
1715     }
1716 
1717     unsigned Size = type.getSizeInBits();
1718     if (Size == 64)
1719       Size = 32;
1720 
1721     // FIXME: 64-bit operands can zero extend, sign extend, or pad zeroes for FP
1722     // types.
1723     return isSafeTruncation(Imm.Val, Size);
1724   }
1725 
1726   // We got fp literal token
1727   if (type == MVT::f64) { // Expected 64-bit fp operand
1728     // We would set low 64-bits of literal to zeroes but we accept this literals
1729     return true;
1730   }
1731 
1732   if (type == MVT::i64) { // Expected 64-bit int operand
1733     // We don't allow fp literals in 64-bit integer instructions. It is
1734     // unclear how we should encode them.
1735     return false;
1736   }
1737 
1738   // We allow fp literals with f16x2 operands assuming that the specified
1739   // literal goes into the lower half and the upper half is zero. We also
1740   // require that the literal may be losslesly converted to f16.
1741   MVT ExpectedType = (type == MVT::v2f16)? MVT::f16 :
1742                      (type == MVT::v2i16)? MVT::i16 : type;
1743 
1744   APFloat FPLiteral(APFloat::IEEEdouble(), APInt(64, Imm.Val));
1745   return canLosslesslyConvertToFPType(FPLiteral, ExpectedType);
1746 }
1747 
1748 bool AMDGPUOperand::isRegClass(unsigned RCID) const {
1749   return isRegKind() && AsmParser->getMRI()->getRegClass(RCID).contains(getReg());
1750 }
1751 
1752 bool AMDGPUOperand::isSDWAOperand(MVT type) const {
1753   if (AsmParser->isVI())
1754     return isVReg32();
1755   else if (AsmParser->isGFX9Plus())
1756     return isRegClass(AMDGPU::VS_32RegClassID) || isInlinableImm(type);
1757   else
1758     return false;
1759 }
1760 
1761 bool AMDGPUOperand::isSDWAFP16Operand() const {
1762   return isSDWAOperand(MVT::f16);
1763 }
1764 
1765 bool AMDGPUOperand::isSDWAFP32Operand() const {
1766   return isSDWAOperand(MVT::f32);
1767 }
1768 
1769 bool AMDGPUOperand::isSDWAInt16Operand() const {
1770   return isSDWAOperand(MVT::i16);
1771 }
1772 
1773 bool AMDGPUOperand::isSDWAInt32Operand() const {
1774   return isSDWAOperand(MVT::i32);
1775 }
1776 
1777 bool AMDGPUOperand::isBoolReg() const {
1778   return (AsmParser->getFeatureBits()[AMDGPU::FeatureWavefrontSize64] && isSCSrcB64()) ||
1779          (AsmParser->getFeatureBits()[AMDGPU::FeatureWavefrontSize32] && isSCSrcB32());
1780 }
1781 
1782 uint64_t AMDGPUOperand::applyInputFPModifiers(uint64_t Val, unsigned Size) const
1783 {
1784   assert(isImmTy(ImmTyNone) && Imm.Mods.hasFPModifiers());
1785   assert(Size == 2 || Size == 4 || Size == 8);
1786 
1787   const uint64_t FpSignMask = (1ULL << (Size * 8 - 1));
1788 
1789   if (Imm.Mods.Abs) {
1790     Val &= ~FpSignMask;
1791   }
1792   if (Imm.Mods.Neg) {
1793     Val ^= FpSignMask;
1794   }
1795 
1796   return Val;
1797 }
1798 
1799 void AMDGPUOperand::addImmOperands(MCInst &Inst, unsigned N, bool ApplyModifiers) const {
1800   if (AMDGPU::isSISrcOperand(AsmParser->getMII()->get(Inst.getOpcode()),
1801                              Inst.getNumOperands())) {
1802     addLiteralImmOperand(Inst, Imm.Val,
1803                          ApplyModifiers &
1804                          isImmTy(ImmTyNone) && Imm.Mods.hasFPModifiers());
1805   } else {
1806     assert(!isImmTy(ImmTyNone) || !hasModifiers());
1807     Inst.addOperand(MCOperand::createImm(Imm.Val));
1808     setImmKindNone();
1809   }
1810 }
1811 
1812 void AMDGPUOperand::addLiteralImmOperand(MCInst &Inst, int64_t Val, bool ApplyModifiers) const {
1813   const auto& InstDesc = AsmParser->getMII()->get(Inst.getOpcode());
1814   auto OpNum = Inst.getNumOperands();
1815   // Check that this operand accepts literals
1816   assert(AMDGPU::isSISrcOperand(InstDesc, OpNum));
1817 
1818   if (ApplyModifiers) {
1819     assert(AMDGPU::isSISrcFPOperand(InstDesc, OpNum));
1820     const unsigned Size = Imm.IsFPImm ? sizeof(double) : getOperandSize(InstDesc, OpNum);
1821     Val = applyInputFPModifiers(Val, Size);
1822   }
1823 
1824   APInt Literal(64, Val);
1825   uint8_t OpTy = InstDesc.OpInfo[OpNum].OperandType;
1826 
1827   if (Imm.IsFPImm) { // We got fp literal token
1828     switch (OpTy) {
1829     case AMDGPU::OPERAND_REG_IMM_INT64:
1830     case AMDGPU::OPERAND_REG_IMM_FP64:
1831     case AMDGPU::OPERAND_REG_INLINE_C_INT64:
1832     case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1833       if (AMDGPU::isInlinableLiteral64(Literal.getZExtValue(),
1834                                        AsmParser->hasInv2PiInlineImm())) {
1835         Inst.addOperand(MCOperand::createImm(Literal.getZExtValue()));
1836         setImmKindConst();
1837         return;
1838       }
1839 
1840       // Non-inlineable
1841       if (AMDGPU::isSISrcFPOperand(InstDesc, OpNum)) { // Expected 64-bit fp operand
1842         // For fp operands we check if low 32 bits are zeros
1843         if (Literal.getLoBits(32) != 0) {
1844           const_cast<AMDGPUAsmParser *>(AsmParser)->Warning(Inst.getLoc(),
1845           "Can't encode literal as exact 64-bit floating-point operand. "
1846           "Low 32-bits will be set to zero");
1847         }
1848 
1849         Inst.addOperand(MCOperand::createImm(Literal.lshr(32).getZExtValue()));
1850         setImmKindLiteral();
1851         return;
1852       }
1853 
1854       // We don't allow fp literals in 64-bit integer instructions. It is
1855       // unclear how we should encode them. This case should be checked earlier
1856       // in predicate methods (isLiteralImm())
1857       llvm_unreachable("fp literal in 64-bit integer instruction.");
1858 
1859     case AMDGPU::OPERAND_REG_IMM_INT32:
1860     case AMDGPU::OPERAND_REG_IMM_FP32:
1861     case AMDGPU::OPERAND_REG_INLINE_C_INT32:
1862     case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1863     case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
1864     case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1865     case AMDGPU::OPERAND_REG_IMM_INT16:
1866     case AMDGPU::OPERAND_REG_IMM_FP16:
1867     case AMDGPU::OPERAND_REG_INLINE_C_INT16:
1868     case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1869     case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1870     case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1871     case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
1872     case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1873     case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1874     case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1875     case AMDGPU::OPERAND_REG_IMM_V2INT16:
1876     case AMDGPU::OPERAND_REG_IMM_V2FP16: {
1877       bool lost;
1878       APFloat FPLiteral(APFloat::IEEEdouble(), Literal);
1879       // Convert literal to single precision
1880       FPLiteral.convert(*getOpFltSemantics(OpTy),
1881                         APFloat::rmNearestTiesToEven, &lost);
1882       // We allow precision lost but not overflow or underflow. This should be
1883       // checked earlier in isLiteralImm()
1884 
1885       uint64_t ImmVal = FPLiteral.bitcastToAPInt().getZExtValue();
1886       Inst.addOperand(MCOperand::createImm(ImmVal));
1887       setImmKindLiteral();
1888       return;
1889     }
1890     default:
1891       llvm_unreachable("invalid operand size");
1892     }
1893 
1894     return;
1895   }
1896 
1897   // We got int literal token.
1898   // Only sign extend inline immediates.
1899   switch (OpTy) {
1900   case AMDGPU::OPERAND_REG_IMM_INT32:
1901   case AMDGPU::OPERAND_REG_IMM_FP32:
1902   case AMDGPU::OPERAND_REG_INLINE_C_INT32:
1903   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1904   case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
1905   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1906   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1907   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1908     if (isSafeTruncation(Val, 32) &&
1909         AMDGPU::isInlinableLiteral32(static_cast<int32_t>(Val),
1910                                      AsmParser->hasInv2PiInlineImm())) {
1911       Inst.addOperand(MCOperand::createImm(Val));
1912       setImmKindConst();
1913       return;
1914     }
1915 
1916     Inst.addOperand(MCOperand::createImm(Val & 0xffffffff));
1917     setImmKindLiteral();
1918     return;
1919 
1920   case AMDGPU::OPERAND_REG_IMM_INT64:
1921   case AMDGPU::OPERAND_REG_IMM_FP64:
1922   case AMDGPU::OPERAND_REG_INLINE_C_INT64:
1923   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1924     if (AMDGPU::isInlinableLiteral64(Val, AsmParser->hasInv2PiInlineImm())) {
1925       Inst.addOperand(MCOperand::createImm(Val));
1926       setImmKindConst();
1927       return;
1928     }
1929 
1930     Inst.addOperand(MCOperand::createImm(Lo_32(Val)));
1931     setImmKindLiteral();
1932     return;
1933 
1934   case AMDGPU::OPERAND_REG_IMM_INT16:
1935   case AMDGPU::OPERAND_REG_IMM_FP16:
1936   case AMDGPU::OPERAND_REG_INLINE_C_INT16:
1937   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1938   case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
1939   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1940     if (isSafeTruncation(Val, 16) &&
1941         AMDGPU::isInlinableLiteral16(static_cast<int16_t>(Val),
1942                                      AsmParser->hasInv2PiInlineImm())) {
1943       Inst.addOperand(MCOperand::createImm(Val));
1944       setImmKindConst();
1945       return;
1946     }
1947 
1948     Inst.addOperand(MCOperand::createImm(Val & 0xffff));
1949     setImmKindLiteral();
1950     return;
1951 
1952   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1953   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1954   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1955   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: {
1956     assert(isSafeTruncation(Val, 16));
1957     assert(AMDGPU::isInlinableLiteral16(static_cast<int16_t>(Val),
1958                                         AsmParser->hasInv2PiInlineImm()));
1959 
1960     Inst.addOperand(MCOperand::createImm(Val));
1961     return;
1962   }
1963   default:
1964     llvm_unreachable("invalid operand size");
1965   }
1966 }
1967 
1968 template <unsigned Bitwidth>
1969 void AMDGPUOperand::addKImmFPOperands(MCInst &Inst, unsigned N) const {
1970   APInt Literal(64, Imm.Val);
1971   setImmKindNone();
1972 
1973   if (!Imm.IsFPImm) {
1974     // We got int literal token.
1975     Inst.addOperand(MCOperand::createImm(Literal.getLoBits(Bitwidth).getZExtValue()));
1976     return;
1977   }
1978 
1979   bool Lost;
1980   APFloat FPLiteral(APFloat::IEEEdouble(), Literal);
1981   FPLiteral.convert(*getFltSemantics(Bitwidth / 8),
1982                     APFloat::rmNearestTiesToEven, &Lost);
1983   Inst.addOperand(MCOperand::createImm(FPLiteral.bitcastToAPInt().getZExtValue()));
1984 }
1985 
1986 void AMDGPUOperand::addRegOperands(MCInst &Inst, unsigned N) const {
1987   Inst.addOperand(MCOperand::createReg(AMDGPU::getMCReg(getReg(), AsmParser->getSTI())));
1988 }
1989 
1990 static bool isInlineValue(unsigned Reg) {
1991   switch (Reg) {
1992   case AMDGPU::SRC_SHARED_BASE:
1993   case AMDGPU::SRC_SHARED_LIMIT:
1994   case AMDGPU::SRC_PRIVATE_BASE:
1995   case AMDGPU::SRC_PRIVATE_LIMIT:
1996   case AMDGPU::SRC_POPS_EXITING_WAVE_ID:
1997     return true;
1998   case AMDGPU::SRC_VCCZ:
1999   case AMDGPU::SRC_EXECZ:
2000   case AMDGPU::SRC_SCC:
2001     return true;
2002   case AMDGPU::SGPR_NULL:
2003     return true;
2004   default:
2005     return false;
2006   }
2007 }
2008 
2009 bool AMDGPUOperand::isInlineValue() const {
2010   return isRegKind() && ::isInlineValue(getReg());
2011 }
2012 
2013 //===----------------------------------------------------------------------===//
2014 // AsmParser
2015 //===----------------------------------------------------------------------===//
2016 
2017 static int getRegClass(RegisterKind Is, unsigned RegWidth) {
2018   if (Is == IS_VGPR) {
2019     switch (RegWidth) {
2020       default: return -1;
2021       case 1: return AMDGPU::VGPR_32RegClassID;
2022       case 2: return AMDGPU::VReg_64RegClassID;
2023       case 3: return AMDGPU::VReg_96RegClassID;
2024       case 4: return AMDGPU::VReg_128RegClassID;
2025       case 5: return AMDGPU::VReg_160RegClassID;
2026       case 6: return AMDGPU::VReg_192RegClassID;
2027       case 8: return AMDGPU::VReg_256RegClassID;
2028       case 16: return AMDGPU::VReg_512RegClassID;
2029       case 32: return AMDGPU::VReg_1024RegClassID;
2030     }
2031   } else if (Is == IS_TTMP) {
2032     switch (RegWidth) {
2033       default: return -1;
2034       case 1: return AMDGPU::TTMP_32RegClassID;
2035       case 2: return AMDGPU::TTMP_64RegClassID;
2036       case 4: return AMDGPU::TTMP_128RegClassID;
2037       case 8: return AMDGPU::TTMP_256RegClassID;
2038       case 16: return AMDGPU::TTMP_512RegClassID;
2039     }
2040   } else if (Is == IS_SGPR) {
2041     switch (RegWidth) {
2042       default: return -1;
2043       case 1: return AMDGPU::SGPR_32RegClassID;
2044       case 2: return AMDGPU::SGPR_64RegClassID;
2045       case 3: return AMDGPU::SGPR_96RegClassID;
2046       case 4: return AMDGPU::SGPR_128RegClassID;
2047       case 5: return AMDGPU::SGPR_160RegClassID;
2048       case 6: return AMDGPU::SGPR_192RegClassID;
2049       case 8: return AMDGPU::SGPR_256RegClassID;
2050       case 16: return AMDGPU::SGPR_512RegClassID;
2051     }
2052   } else if (Is == IS_AGPR) {
2053     switch (RegWidth) {
2054       default: return -1;
2055       case 1: return AMDGPU::AGPR_32RegClassID;
2056       case 2: return AMDGPU::AReg_64RegClassID;
2057       case 3: return AMDGPU::AReg_96RegClassID;
2058       case 4: return AMDGPU::AReg_128RegClassID;
2059       case 5: return AMDGPU::AReg_160RegClassID;
2060       case 6: return AMDGPU::AReg_192RegClassID;
2061       case 8: return AMDGPU::AReg_256RegClassID;
2062       case 16: return AMDGPU::AReg_512RegClassID;
2063       case 32: return AMDGPU::AReg_1024RegClassID;
2064     }
2065   }
2066   return -1;
2067 }
2068 
2069 static unsigned getSpecialRegForName(StringRef RegName) {
2070   return StringSwitch<unsigned>(RegName)
2071     .Case("exec", AMDGPU::EXEC)
2072     .Case("vcc", AMDGPU::VCC)
2073     .Case("flat_scratch", AMDGPU::FLAT_SCR)
2074     .Case("xnack_mask", AMDGPU::XNACK_MASK)
2075     .Case("shared_base", AMDGPU::SRC_SHARED_BASE)
2076     .Case("src_shared_base", AMDGPU::SRC_SHARED_BASE)
2077     .Case("shared_limit", AMDGPU::SRC_SHARED_LIMIT)
2078     .Case("src_shared_limit", AMDGPU::SRC_SHARED_LIMIT)
2079     .Case("private_base", AMDGPU::SRC_PRIVATE_BASE)
2080     .Case("src_private_base", AMDGPU::SRC_PRIVATE_BASE)
2081     .Case("private_limit", AMDGPU::SRC_PRIVATE_LIMIT)
2082     .Case("src_private_limit", AMDGPU::SRC_PRIVATE_LIMIT)
2083     .Case("pops_exiting_wave_id", AMDGPU::SRC_POPS_EXITING_WAVE_ID)
2084     .Case("src_pops_exiting_wave_id", AMDGPU::SRC_POPS_EXITING_WAVE_ID)
2085     .Case("lds_direct", AMDGPU::LDS_DIRECT)
2086     .Case("src_lds_direct", AMDGPU::LDS_DIRECT)
2087     .Case("m0", AMDGPU::M0)
2088     .Case("vccz", AMDGPU::SRC_VCCZ)
2089     .Case("src_vccz", AMDGPU::SRC_VCCZ)
2090     .Case("execz", AMDGPU::SRC_EXECZ)
2091     .Case("src_execz", AMDGPU::SRC_EXECZ)
2092     .Case("scc", AMDGPU::SRC_SCC)
2093     .Case("src_scc", AMDGPU::SRC_SCC)
2094     .Case("tba", AMDGPU::TBA)
2095     .Case("tma", AMDGPU::TMA)
2096     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
2097     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
2098     .Case("xnack_mask_lo", AMDGPU::XNACK_MASK_LO)
2099     .Case("xnack_mask_hi", AMDGPU::XNACK_MASK_HI)
2100     .Case("vcc_lo", AMDGPU::VCC_LO)
2101     .Case("vcc_hi", AMDGPU::VCC_HI)
2102     .Case("exec_lo", AMDGPU::EXEC_LO)
2103     .Case("exec_hi", AMDGPU::EXEC_HI)
2104     .Case("tma_lo", AMDGPU::TMA_LO)
2105     .Case("tma_hi", AMDGPU::TMA_HI)
2106     .Case("tba_lo", AMDGPU::TBA_LO)
2107     .Case("tba_hi", AMDGPU::TBA_HI)
2108     .Case("pc", AMDGPU::PC_REG)
2109     .Case("null", AMDGPU::SGPR_NULL)
2110     .Default(AMDGPU::NoRegister);
2111 }
2112 
2113 bool AMDGPUAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
2114                                     SMLoc &EndLoc, bool RestoreOnFailure) {
2115   auto R = parseRegister();
2116   if (!R) return true;
2117   assert(R->isReg());
2118   RegNo = R->getReg();
2119   StartLoc = R->getStartLoc();
2120   EndLoc = R->getEndLoc();
2121   return false;
2122 }
2123 
2124 bool AMDGPUAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
2125                                     SMLoc &EndLoc) {
2126   return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
2127 }
2128 
2129 OperandMatchResultTy AMDGPUAsmParser::tryParseRegister(unsigned &RegNo,
2130                                                        SMLoc &StartLoc,
2131                                                        SMLoc &EndLoc) {
2132   bool Result =
2133       ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
2134   bool PendingErrors = getParser().hasPendingError();
2135   getParser().clearPendingErrors();
2136   if (PendingErrors)
2137     return MatchOperand_ParseFail;
2138   if (Result)
2139     return MatchOperand_NoMatch;
2140   return MatchOperand_Success;
2141 }
2142 
2143 bool AMDGPUAsmParser::AddNextRegisterToList(unsigned &Reg, unsigned &RegWidth,
2144                                             RegisterKind RegKind, unsigned Reg1,
2145                                             SMLoc Loc) {
2146   switch (RegKind) {
2147   case IS_SPECIAL:
2148     if (Reg == AMDGPU::EXEC_LO && Reg1 == AMDGPU::EXEC_HI) {
2149       Reg = AMDGPU::EXEC;
2150       RegWidth = 2;
2151       return true;
2152     }
2153     if (Reg == AMDGPU::FLAT_SCR_LO && Reg1 == AMDGPU::FLAT_SCR_HI) {
2154       Reg = AMDGPU::FLAT_SCR;
2155       RegWidth = 2;
2156       return true;
2157     }
2158     if (Reg == AMDGPU::XNACK_MASK_LO && Reg1 == AMDGPU::XNACK_MASK_HI) {
2159       Reg = AMDGPU::XNACK_MASK;
2160       RegWidth = 2;
2161       return true;
2162     }
2163     if (Reg == AMDGPU::VCC_LO && Reg1 == AMDGPU::VCC_HI) {
2164       Reg = AMDGPU::VCC;
2165       RegWidth = 2;
2166       return true;
2167     }
2168     if (Reg == AMDGPU::TBA_LO && Reg1 == AMDGPU::TBA_HI) {
2169       Reg = AMDGPU::TBA;
2170       RegWidth = 2;
2171       return true;
2172     }
2173     if (Reg == AMDGPU::TMA_LO && Reg1 == AMDGPU::TMA_HI) {
2174       Reg = AMDGPU::TMA;
2175       RegWidth = 2;
2176       return true;
2177     }
2178     Error(Loc, "register does not fit in the list");
2179     return false;
2180   case IS_VGPR:
2181   case IS_SGPR:
2182   case IS_AGPR:
2183   case IS_TTMP:
2184     if (Reg1 != Reg + RegWidth) {
2185       Error(Loc, "registers in a list must have consecutive indices");
2186       return false;
2187     }
2188     RegWidth++;
2189     return true;
2190   default:
2191     llvm_unreachable("unexpected register kind");
2192   }
2193 }
2194 
2195 struct RegInfo {
2196   StringLiteral Name;
2197   RegisterKind Kind;
2198 };
2199 
2200 static constexpr RegInfo RegularRegisters[] = {
2201   {{"v"},    IS_VGPR},
2202   {{"s"},    IS_SGPR},
2203   {{"ttmp"}, IS_TTMP},
2204   {{"acc"},  IS_AGPR},
2205   {{"a"},    IS_AGPR},
2206 };
2207 
2208 static bool isRegularReg(RegisterKind Kind) {
2209   return Kind == IS_VGPR ||
2210          Kind == IS_SGPR ||
2211          Kind == IS_TTMP ||
2212          Kind == IS_AGPR;
2213 }
2214 
2215 static const RegInfo* getRegularRegInfo(StringRef Str) {
2216   for (const RegInfo &Reg : RegularRegisters)
2217     if (Str.startswith(Reg.Name))
2218       return &Reg;
2219   return nullptr;
2220 }
2221 
2222 static bool getRegNum(StringRef Str, unsigned& Num) {
2223   return !Str.getAsInteger(10, Num);
2224 }
2225 
2226 bool
2227 AMDGPUAsmParser::isRegister(const AsmToken &Token,
2228                             const AsmToken &NextToken) const {
2229 
2230   // A list of consecutive registers: [s0,s1,s2,s3]
2231   if (Token.is(AsmToken::LBrac))
2232     return true;
2233 
2234   if (!Token.is(AsmToken::Identifier))
2235     return false;
2236 
2237   // A single register like s0 or a range of registers like s[0:1]
2238 
2239   StringRef Str = Token.getString();
2240   const RegInfo *Reg = getRegularRegInfo(Str);
2241   if (Reg) {
2242     StringRef RegName = Reg->Name;
2243     StringRef RegSuffix = Str.substr(RegName.size());
2244     if (!RegSuffix.empty()) {
2245       unsigned Num;
2246       // A single register with an index: rXX
2247       if (getRegNum(RegSuffix, Num))
2248         return true;
2249     } else {
2250       // A range of registers: r[XX:YY].
2251       if (NextToken.is(AsmToken::LBrac))
2252         return true;
2253     }
2254   }
2255 
2256   return getSpecialRegForName(Str) != AMDGPU::NoRegister;
2257 }
2258 
2259 bool
2260 AMDGPUAsmParser::isRegister()
2261 {
2262   return isRegister(getToken(), peekToken());
2263 }
2264 
2265 unsigned
2266 AMDGPUAsmParser::getRegularReg(RegisterKind RegKind,
2267                                unsigned RegNum,
2268                                unsigned RegWidth,
2269                                SMLoc Loc) {
2270 
2271   assert(isRegularReg(RegKind));
2272 
2273   unsigned AlignSize = 1;
2274   if (RegKind == IS_SGPR || RegKind == IS_TTMP) {
2275     // SGPR and TTMP registers must be aligned.
2276     // Max required alignment is 4 dwords.
2277     AlignSize = std::min(RegWidth, 4u);
2278   }
2279 
2280   if (RegNum % AlignSize != 0) {
2281     Error(Loc, "invalid register alignment");
2282     return AMDGPU::NoRegister;
2283   }
2284 
2285   unsigned RegIdx = RegNum / AlignSize;
2286   int RCID = getRegClass(RegKind, RegWidth);
2287   if (RCID == -1) {
2288     Error(Loc, "invalid or unsupported register size");
2289     return AMDGPU::NoRegister;
2290   }
2291 
2292   const MCRegisterInfo *TRI = getContext().getRegisterInfo();
2293   const MCRegisterClass RC = TRI->getRegClass(RCID);
2294   if (RegIdx >= RC.getNumRegs()) {
2295     Error(Loc, "register index is out of range");
2296     return AMDGPU::NoRegister;
2297   }
2298 
2299   return RC.getRegister(RegIdx);
2300 }
2301 
2302 bool
2303 AMDGPUAsmParser::ParseRegRange(unsigned& Num, unsigned& Width) {
2304   int64_t RegLo, RegHi;
2305   if (!skipToken(AsmToken::LBrac, "missing register index"))
2306     return false;
2307 
2308   SMLoc FirstIdxLoc = getLoc();
2309   SMLoc SecondIdxLoc;
2310 
2311   if (!parseExpr(RegLo))
2312     return false;
2313 
2314   if (trySkipToken(AsmToken::Colon)) {
2315     SecondIdxLoc = getLoc();
2316     if (!parseExpr(RegHi))
2317       return false;
2318   } else {
2319     RegHi = RegLo;
2320   }
2321 
2322   if (!skipToken(AsmToken::RBrac, "expected a closing square bracket"))
2323     return false;
2324 
2325   if (!isUInt<32>(RegLo)) {
2326     Error(FirstIdxLoc, "invalid register index");
2327     return false;
2328   }
2329 
2330   if (!isUInt<32>(RegHi)) {
2331     Error(SecondIdxLoc, "invalid register index");
2332     return false;
2333   }
2334 
2335   if (RegLo > RegHi) {
2336     Error(FirstIdxLoc, "first register index should not exceed second index");
2337     return false;
2338   }
2339 
2340   Num = static_cast<unsigned>(RegLo);
2341   Width = (RegHi - RegLo) + 1;
2342   return true;
2343 }
2344 
2345 unsigned AMDGPUAsmParser::ParseSpecialReg(RegisterKind &RegKind,
2346                                           unsigned &RegNum, unsigned &RegWidth,
2347                                           SmallVectorImpl<AsmToken> &Tokens) {
2348   assert(isToken(AsmToken::Identifier));
2349   unsigned Reg = getSpecialRegForName(getTokenStr());
2350   if (Reg) {
2351     RegNum = 0;
2352     RegWidth = 1;
2353     RegKind = IS_SPECIAL;
2354     Tokens.push_back(getToken());
2355     lex(); // skip register name
2356   }
2357   return Reg;
2358 }
2359 
2360 unsigned AMDGPUAsmParser::ParseRegularReg(RegisterKind &RegKind,
2361                                           unsigned &RegNum, unsigned &RegWidth,
2362                                           SmallVectorImpl<AsmToken> &Tokens) {
2363   assert(isToken(AsmToken::Identifier));
2364   StringRef RegName = getTokenStr();
2365   auto Loc = getLoc();
2366 
2367   const RegInfo *RI = getRegularRegInfo(RegName);
2368   if (!RI) {
2369     Error(Loc, "invalid register name");
2370     return AMDGPU::NoRegister;
2371   }
2372 
2373   Tokens.push_back(getToken());
2374   lex(); // skip register name
2375 
2376   RegKind = RI->Kind;
2377   StringRef RegSuffix = RegName.substr(RI->Name.size());
2378   if (!RegSuffix.empty()) {
2379     // Single 32-bit register: vXX.
2380     if (!getRegNum(RegSuffix, RegNum)) {
2381       Error(Loc, "invalid register index");
2382       return AMDGPU::NoRegister;
2383     }
2384     RegWidth = 1;
2385   } else {
2386     // Range of registers: v[XX:YY]. ":YY" is optional.
2387     if (!ParseRegRange(RegNum, RegWidth))
2388       return AMDGPU::NoRegister;
2389   }
2390 
2391   return getRegularReg(RegKind, RegNum, RegWidth, Loc);
2392 }
2393 
2394 unsigned AMDGPUAsmParser::ParseRegList(RegisterKind &RegKind, unsigned &RegNum,
2395                                        unsigned &RegWidth,
2396                                        SmallVectorImpl<AsmToken> &Tokens) {
2397   unsigned Reg = AMDGPU::NoRegister;
2398   auto ListLoc = getLoc();
2399 
2400   if (!skipToken(AsmToken::LBrac,
2401                  "expected a register or a list of registers")) {
2402     return AMDGPU::NoRegister;
2403   }
2404 
2405   // List of consecutive registers, e.g.: [s0,s1,s2,s3]
2406 
2407   auto Loc = getLoc();
2408   if (!ParseAMDGPURegister(RegKind, Reg, RegNum, RegWidth))
2409     return AMDGPU::NoRegister;
2410   if (RegWidth != 1) {
2411     Error(Loc, "expected a single 32-bit register");
2412     return AMDGPU::NoRegister;
2413   }
2414 
2415   for (; trySkipToken(AsmToken::Comma); ) {
2416     RegisterKind NextRegKind;
2417     unsigned NextReg, NextRegNum, NextRegWidth;
2418     Loc = getLoc();
2419 
2420     if (!ParseAMDGPURegister(NextRegKind, NextReg,
2421                              NextRegNum, NextRegWidth,
2422                              Tokens)) {
2423       return AMDGPU::NoRegister;
2424     }
2425     if (NextRegWidth != 1) {
2426       Error(Loc, "expected a single 32-bit register");
2427       return AMDGPU::NoRegister;
2428     }
2429     if (NextRegKind != RegKind) {
2430       Error(Loc, "registers in a list must be of the same kind");
2431       return AMDGPU::NoRegister;
2432     }
2433     if (!AddNextRegisterToList(Reg, RegWidth, RegKind, NextReg, Loc))
2434       return AMDGPU::NoRegister;
2435   }
2436 
2437   if (!skipToken(AsmToken::RBrac,
2438                  "expected a comma or a closing square bracket")) {
2439     return AMDGPU::NoRegister;
2440   }
2441 
2442   if (isRegularReg(RegKind))
2443     Reg = getRegularReg(RegKind, RegNum, RegWidth, ListLoc);
2444 
2445   return Reg;
2446 }
2447 
2448 bool AMDGPUAsmParser::ParseAMDGPURegister(RegisterKind &RegKind, unsigned &Reg,
2449                                           unsigned &RegNum, unsigned &RegWidth,
2450                                           SmallVectorImpl<AsmToken> &Tokens) {
2451   auto Loc = getLoc();
2452   Reg = AMDGPU::NoRegister;
2453 
2454   if (isToken(AsmToken::Identifier)) {
2455     Reg = ParseSpecialReg(RegKind, RegNum, RegWidth, Tokens);
2456     if (Reg == AMDGPU::NoRegister)
2457       Reg = ParseRegularReg(RegKind, RegNum, RegWidth, Tokens);
2458   } else {
2459     Reg = ParseRegList(RegKind, RegNum, RegWidth, Tokens);
2460   }
2461 
2462   const MCRegisterInfo *TRI = getContext().getRegisterInfo();
2463   if (Reg == AMDGPU::NoRegister) {
2464     assert(Parser.hasPendingError());
2465     return false;
2466   }
2467 
2468   if (!subtargetHasRegister(*TRI, Reg)) {
2469     if (Reg == AMDGPU::SGPR_NULL) {
2470       Error(Loc, "'null' operand is not supported on this GPU");
2471     } else {
2472       Error(Loc, "register not available on this GPU");
2473     }
2474     return false;
2475   }
2476 
2477   return true;
2478 }
2479 
2480 bool AMDGPUAsmParser::ParseAMDGPURegister(RegisterKind &RegKind, unsigned &Reg,
2481                                           unsigned &RegNum, unsigned &RegWidth,
2482                                           bool RestoreOnFailure /*=false*/) {
2483   Reg = AMDGPU::NoRegister;
2484 
2485   SmallVector<AsmToken, 1> Tokens;
2486   if (ParseAMDGPURegister(RegKind, Reg, RegNum, RegWidth, Tokens)) {
2487     if (RestoreOnFailure) {
2488       while (!Tokens.empty()) {
2489         getLexer().UnLex(Tokens.pop_back_val());
2490       }
2491     }
2492     return true;
2493   }
2494   return false;
2495 }
2496 
2497 Optional<StringRef>
2498 AMDGPUAsmParser::getGprCountSymbolName(RegisterKind RegKind) {
2499   switch (RegKind) {
2500   case IS_VGPR:
2501     return StringRef(".amdgcn.next_free_vgpr");
2502   case IS_SGPR:
2503     return StringRef(".amdgcn.next_free_sgpr");
2504   default:
2505     return None;
2506   }
2507 }
2508 
2509 void AMDGPUAsmParser::initializeGprCountSymbol(RegisterKind RegKind) {
2510   auto SymbolName = getGprCountSymbolName(RegKind);
2511   assert(SymbolName && "initializing invalid register kind");
2512   MCSymbol *Sym = getContext().getOrCreateSymbol(*SymbolName);
2513   Sym->setVariableValue(MCConstantExpr::create(0, getContext()));
2514 }
2515 
2516 bool AMDGPUAsmParser::updateGprCountSymbols(RegisterKind RegKind,
2517                                             unsigned DwordRegIndex,
2518                                             unsigned RegWidth) {
2519   // Symbols are only defined for GCN targets
2520   if (AMDGPU::getIsaVersion(getSTI().getCPU()).Major < 6)
2521     return true;
2522 
2523   auto SymbolName = getGprCountSymbolName(RegKind);
2524   if (!SymbolName)
2525     return true;
2526   MCSymbol *Sym = getContext().getOrCreateSymbol(*SymbolName);
2527 
2528   int64_t NewMax = DwordRegIndex + RegWidth - 1;
2529   int64_t OldCount;
2530 
2531   if (!Sym->isVariable())
2532     return !Error(getLoc(),
2533                   ".amdgcn.next_free_{v,s}gpr symbols must be variable");
2534   if (!Sym->getVariableValue(false)->evaluateAsAbsolute(OldCount))
2535     return !Error(
2536         getLoc(),
2537         ".amdgcn.next_free_{v,s}gpr symbols must be absolute expressions");
2538 
2539   if (OldCount <= NewMax)
2540     Sym->setVariableValue(MCConstantExpr::create(NewMax + 1, getContext()));
2541 
2542   return true;
2543 }
2544 
2545 std::unique_ptr<AMDGPUOperand>
2546 AMDGPUAsmParser::parseRegister(bool RestoreOnFailure) {
2547   const auto &Tok = getToken();
2548   SMLoc StartLoc = Tok.getLoc();
2549   SMLoc EndLoc = Tok.getEndLoc();
2550   RegisterKind RegKind;
2551   unsigned Reg, RegNum, RegWidth;
2552 
2553   if (!ParseAMDGPURegister(RegKind, Reg, RegNum, RegWidth)) {
2554     return nullptr;
2555   }
2556   if (isHsaAbiVersion3(&getSTI())) {
2557     if (!updateGprCountSymbols(RegKind, RegNum, RegWidth))
2558       return nullptr;
2559   } else
2560     KernelScope.usesRegister(RegKind, RegNum, RegWidth);
2561   return AMDGPUOperand::CreateReg(this, Reg, StartLoc, EndLoc);
2562 }
2563 
2564 OperandMatchResultTy
2565 AMDGPUAsmParser::parseImm(OperandVector &Operands, bool HasSP3AbsModifier) {
2566   // TODO: add syntactic sugar for 1/(2*PI)
2567 
2568   assert(!isRegister());
2569   assert(!isModifier());
2570 
2571   const auto& Tok = getToken();
2572   const auto& NextTok = peekToken();
2573   bool IsReal = Tok.is(AsmToken::Real);
2574   SMLoc S = getLoc();
2575   bool Negate = false;
2576 
2577   if (!IsReal && Tok.is(AsmToken::Minus) && NextTok.is(AsmToken::Real)) {
2578     lex();
2579     IsReal = true;
2580     Negate = true;
2581   }
2582 
2583   if (IsReal) {
2584     // Floating-point expressions are not supported.
2585     // Can only allow floating-point literals with an
2586     // optional sign.
2587 
2588     StringRef Num = getTokenStr();
2589     lex();
2590 
2591     APFloat RealVal(APFloat::IEEEdouble());
2592     auto roundMode = APFloat::rmNearestTiesToEven;
2593     if (errorToBool(RealVal.convertFromString(Num, roundMode).takeError())) {
2594       return MatchOperand_ParseFail;
2595     }
2596     if (Negate)
2597       RealVal.changeSign();
2598 
2599     Operands.push_back(
2600       AMDGPUOperand::CreateImm(this, RealVal.bitcastToAPInt().getZExtValue(), S,
2601                                AMDGPUOperand::ImmTyNone, true));
2602 
2603     return MatchOperand_Success;
2604 
2605   } else {
2606     int64_t IntVal;
2607     const MCExpr *Expr;
2608     SMLoc S = getLoc();
2609 
2610     if (HasSP3AbsModifier) {
2611       // This is a workaround for handling expressions
2612       // as arguments of SP3 'abs' modifier, for example:
2613       //     |1.0|
2614       //     |-1|
2615       //     |1+x|
2616       // This syntax is not compatible with syntax of standard
2617       // MC expressions (due to the trailing '|').
2618       SMLoc EndLoc;
2619       if (getParser().parsePrimaryExpr(Expr, EndLoc, nullptr))
2620         return MatchOperand_ParseFail;
2621     } else {
2622       if (Parser.parseExpression(Expr))
2623         return MatchOperand_ParseFail;
2624     }
2625 
2626     if (Expr->evaluateAsAbsolute(IntVal)) {
2627       Operands.push_back(AMDGPUOperand::CreateImm(this, IntVal, S));
2628     } else {
2629       Operands.push_back(AMDGPUOperand::CreateExpr(this, Expr, S));
2630     }
2631 
2632     return MatchOperand_Success;
2633   }
2634 
2635   return MatchOperand_NoMatch;
2636 }
2637 
2638 OperandMatchResultTy
2639 AMDGPUAsmParser::parseReg(OperandVector &Operands) {
2640   if (!isRegister())
2641     return MatchOperand_NoMatch;
2642 
2643   if (auto R = parseRegister()) {
2644     assert(R->isReg());
2645     Operands.push_back(std::move(R));
2646     return MatchOperand_Success;
2647   }
2648   return MatchOperand_ParseFail;
2649 }
2650 
2651 OperandMatchResultTy
2652 AMDGPUAsmParser::parseRegOrImm(OperandVector &Operands, bool HasSP3AbsMod) {
2653   auto res = parseReg(Operands);
2654   if (res != MatchOperand_NoMatch) {
2655     return res;
2656   } else if (isModifier()) {
2657     return MatchOperand_NoMatch;
2658   } else {
2659     return parseImm(Operands, HasSP3AbsMod);
2660   }
2661 }
2662 
2663 bool
2664 AMDGPUAsmParser::isNamedOperandModifier(const AsmToken &Token, const AsmToken &NextToken) const {
2665   if (Token.is(AsmToken::Identifier) && NextToken.is(AsmToken::LParen)) {
2666     const auto &str = Token.getString();
2667     return str == "abs" || str == "neg" || str == "sext";
2668   }
2669   return false;
2670 }
2671 
2672 bool
2673 AMDGPUAsmParser::isOpcodeModifierWithVal(const AsmToken &Token, const AsmToken &NextToken) const {
2674   return Token.is(AsmToken::Identifier) && NextToken.is(AsmToken::Colon);
2675 }
2676 
2677 bool
2678 AMDGPUAsmParser::isOperandModifier(const AsmToken &Token, const AsmToken &NextToken) const {
2679   return isNamedOperandModifier(Token, NextToken) || Token.is(AsmToken::Pipe);
2680 }
2681 
2682 bool
2683 AMDGPUAsmParser::isRegOrOperandModifier(const AsmToken &Token, const AsmToken &NextToken) const {
2684   return isRegister(Token, NextToken) || isOperandModifier(Token, NextToken);
2685 }
2686 
2687 // Check if this is an operand modifier or an opcode modifier
2688 // which may look like an expression but it is not. We should
2689 // avoid parsing these modifiers as expressions. Currently
2690 // recognized sequences are:
2691 //   |...|
2692 //   abs(...)
2693 //   neg(...)
2694 //   sext(...)
2695 //   -reg
2696 //   -|...|
2697 //   -abs(...)
2698 //   name:...
2699 // Note that simple opcode modifiers like 'gds' may be parsed as
2700 // expressions; this is a special case. See getExpressionAsToken.
2701 //
2702 bool
2703 AMDGPUAsmParser::isModifier() {
2704 
2705   AsmToken Tok = getToken();
2706   AsmToken NextToken[2];
2707   peekTokens(NextToken);
2708 
2709   return isOperandModifier(Tok, NextToken[0]) ||
2710          (Tok.is(AsmToken::Minus) && isRegOrOperandModifier(NextToken[0], NextToken[1])) ||
2711          isOpcodeModifierWithVal(Tok, NextToken[0]);
2712 }
2713 
2714 // Check if the current token is an SP3 'neg' modifier.
2715 // Currently this modifier is allowed in the following context:
2716 //
2717 // 1. Before a register, e.g. "-v0", "-v[...]" or "-[v0,v1]".
2718 // 2. Before an 'abs' modifier: -abs(...)
2719 // 3. Before an SP3 'abs' modifier: -|...|
2720 //
2721 // In all other cases "-" is handled as a part
2722 // of an expression that follows the sign.
2723 //
2724 // Note: When "-" is followed by an integer literal,
2725 // this is interpreted as integer negation rather
2726 // than a floating-point NEG modifier applied to N.
2727 // Beside being contr-intuitive, such use of floating-point
2728 // NEG modifier would have resulted in different meaning
2729 // of integer literals used with VOP1/2/C and VOP3,
2730 // for example:
2731 //    v_exp_f32_e32 v5, -1 // VOP1: src0 = 0xFFFFFFFF
2732 //    v_exp_f32_e64 v5, -1 // VOP3: src0 = 0x80000001
2733 // Negative fp literals with preceding "-" are
2734 // handled likewise for unifomtity
2735 //
2736 bool
2737 AMDGPUAsmParser::parseSP3NegModifier() {
2738 
2739   AsmToken NextToken[2];
2740   peekTokens(NextToken);
2741 
2742   if (isToken(AsmToken::Minus) &&
2743       (isRegister(NextToken[0], NextToken[1]) ||
2744        NextToken[0].is(AsmToken::Pipe) ||
2745        isId(NextToken[0], "abs"))) {
2746     lex();
2747     return true;
2748   }
2749 
2750   return false;
2751 }
2752 
2753 OperandMatchResultTy
2754 AMDGPUAsmParser::parseRegOrImmWithFPInputMods(OperandVector &Operands,
2755                                               bool AllowImm) {
2756   bool Neg, SP3Neg;
2757   bool Abs, SP3Abs;
2758   SMLoc Loc;
2759 
2760   // Disable ambiguous constructs like '--1' etc. Should use neg(-1) instead.
2761   if (isToken(AsmToken::Minus) && peekToken().is(AsmToken::Minus)) {
2762     Error(getLoc(), "invalid syntax, expected 'neg' modifier");
2763     return MatchOperand_ParseFail;
2764   }
2765 
2766   SP3Neg = parseSP3NegModifier();
2767 
2768   Loc = getLoc();
2769   Neg = trySkipId("neg");
2770   if (Neg && SP3Neg) {
2771     Error(Loc, "expected register or immediate");
2772     return MatchOperand_ParseFail;
2773   }
2774   if (Neg && !skipToken(AsmToken::LParen, "expected left paren after neg"))
2775     return MatchOperand_ParseFail;
2776 
2777   Abs = trySkipId("abs");
2778   if (Abs && !skipToken(AsmToken::LParen, "expected left paren after abs"))
2779     return MatchOperand_ParseFail;
2780 
2781   Loc = getLoc();
2782   SP3Abs = trySkipToken(AsmToken::Pipe);
2783   if (Abs && SP3Abs) {
2784     Error(Loc, "expected register or immediate");
2785     return MatchOperand_ParseFail;
2786   }
2787 
2788   OperandMatchResultTy Res;
2789   if (AllowImm) {
2790     Res = parseRegOrImm(Operands, SP3Abs);
2791   } else {
2792     Res = parseReg(Operands);
2793   }
2794   if (Res != MatchOperand_Success) {
2795     return (SP3Neg || Neg || SP3Abs || Abs)? MatchOperand_ParseFail : Res;
2796   }
2797 
2798   if (SP3Abs && !skipToken(AsmToken::Pipe, "expected vertical bar"))
2799     return MatchOperand_ParseFail;
2800   if (Abs && !skipToken(AsmToken::RParen, "expected closing parentheses"))
2801     return MatchOperand_ParseFail;
2802   if (Neg && !skipToken(AsmToken::RParen, "expected closing parentheses"))
2803     return MatchOperand_ParseFail;
2804 
2805   AMDGPUOperand::Modifiers Mods;
2806   Mods.Abs = Abs || SP3Abs;
2807   Mods.Neg = Neg || SP3Neg;
2808 
2809   if (Mods.hasFPModifiers()) {
2810     AMDGPUOperand &Op = static_cast<AMDGPUOperand &>(*Operands.back());
2811     if (Op.isExpr()) {
2812       Error(Op.getStartLoc(), "expected an absolute expression");
2813       return MatchOperand_ParseFail;
2814     }
2815     Op.setModifiers(Mods);
2816   }
2817   return MatchOperand_Success;
2818 }
2819 
2820 OperandMatchResultTy
2821 AMDGPUAsmParser::parseRegOrImmWithIntInputMods(OperandVector &Operands,
2822                                                bool AllowImm) {
2823   bool Sext = trySkipId("sext");
2824   if (Sext && !skipToken(AsmToken::LParen, "expected left paren after sext"))
2825     return MatchOperand_ParseFail;
2826 
2827   OperandMatchResultTy Res;
2828   if (AllowImm) {
2829     Res = parseRegOrImm(Operands);
2830   } else {
2831     Res = parseReg(Operands);
2832   }
2833   if (Res != MatchOperand_Success) {
2834     return Sext? MatchOperand_ParseFail : Res;
2835   }
2836 
2837   if (Sext && !skipToken(AsmToken::RParen, "expected closing parentheses"))
2838     return MatchOperand_ParseFail;
2839 
2840   AMDGPUOperand::Modifiers Mods;
2841   Mods.Sext = Sext;
2842 
2843   if (Mods.hasIntModifiers()) {
2844     AMDGPUOperand &Op = static_cast<AMDGPUOperand &>(*Operands.back());
2845     if (Op.isExpr()) {
2846       Error(Op.getStartLoc(), "expected an absolute expression");
2847       return MatchOperand_ParseFail;
2848     }
2849     Op.setModifiers(Mods);
2850   }
2851 
2852   return MatchOperand_Success;
2853 }
2854 
2855 OperandMatchResultTy
2856 AMDGPUAsmParser::parseRegWithFPInputMods(OperandVector &Operands) {
2857   return parseRegOrImmWithFPInputMods(Operands, false);
2858 }
2859 
2860 OperandMatchResultTy
2861 AMDGPUAsmParser::parseRegWithIntInputMods(OperandVector &Operands) {
2862   return parseRegOrImmWithIntInputMods(Operands, false);
2863 }
2864 
2865 OperandMatchResultTy AMDGPUAsmParser::parseVReg32OrOff(OperandVector &Operands) {
2866   auto Loc = getLoc();
2867   if (trySkipId("off")) {
2868     Operands.push_back(AMDGPUOperand::CreateImm(this, 0, Loc,
2869                                                 AMDGPUOperand::ImmTyOff, false));
2870     return MatchOperand_Success;
2871   }
2872 
2873   if (!isRegister())
2874     return MatchOperand_NoMatch;
2875 
2876   std::unique_ptr<AMDGPUOperand> Reg = parseRegister();
2877   if (Reg) {
2878     Operands.push_back(std::move(Reg));
2879     return MatchOperand_Success;
2880   }
2881 
2882   return MatchOperand_ParseFail;
2883 
2884 }
2885 
2886 unsigned AMDGPUAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
2887   uint64_t TSFlags = MII.get(Inst.getOpcode()).TSFlags;
2888 
2889   if ((getForcedEncodingSize() == 32 && (TSFlags & SIInstrFlags::VOP3)) ||
2890       (getForcedEncodingSize() == 64 && !(TSFlags & SIInstrFlags::VOP3)) ||
2891       (isForcedDPP() && !(TSFlags & SIInstrFlags::DPP)) ||
2892       (isForcedSDWA() && !(TSFlags & SIInstrFlags::SDWA)) )
2893     return Match_InvalidOperand;
2894 
2895   if ((TSFlags & SIInstrFlags::VOP3) &&
2896       (TSFlags & SIInstrFlags::VOPAsmPrefer32Bit) &&
2897       getForcedEncodingSize() != 64)
2898     return Match_PreferE32;
2899 
2900   if (Inst.getOpcode() == AMDGPU::V_MAC_F32_sdwa_vi ||
2901       Inst.getOpcode() == AMDGPU::V_MAC_F16_sdwa_vi) {
2902     // v_mac_f32/16 allow only dst_sel == DWORD;
2903     auto OpNum =
2904         AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::dst_sel);
2905     const auto &Op = Inst.getOperand(OpNum);
2906     if (!Op.isImm() || Op.getImm() != AMDGPU::SDWA::SdwaSel::DWORD) {
2907       return Match_InvalidOperand;
2908     }
2909   }
2910 
2911   return Match_Success;
2912 }
2913 
2914 static ArrayRef<unsigned> getAllVariants() {
2915   static const unsigned Variants[] = {
2916     AMDGPUAsmVariants::DEFAULT, AMDGPUAsmVariants::VOP3,
2917     AMDGPUAsmVariants::SDWA, AMDGPUAsmVariants::SDWA9, AMDGPUAsmVariants::DPP
2918   };
2919 
2920   return makeArrayRef(Variants);
2921 }
2922 
2923 // What asm variants we should check
2924 ArrayRef<unsigned> AMDGPUAsmParser::getMatchedVariants() const {
2925   if (getForcedEncodingSize() == 32) {
2926     static const unsigned Variants[] = {AMDGPUAsmVariants::DEFAULT};
2927     return makeArrayRef(Variants);
2928   }
2929 
2930   if (isForcedVOP3()) {
2931     static const unsigned Variants[] = {AMDGPUAsmVariants::VOP3};
2932     return makeArrayRef(Variants);
2933   }
2934 
2935   if (isForcedSDWA()) {
2936     static const unsigned Variants[] = {AMDGPUAsmVariants::SDWA,
2937                                         AMDGPUAsmVariants::SDWA9};
2938     return makeArrayRef(Variants);
2939   }
2940 
2941   if (isForcedDPP()) {
2942     static const unsigned Variants[] = {AMDGPUAsmVariants::DPP};
2943     return makeArrayRef(Variants);
2944   }
2945 
2946   return getAllVariants();
2947 }
2948 
2949 StringRef AMDGPUAsmParser::getMatchedVariantName() const {
2950   if (getForcedEncodingSize() == 32)
2951     return "e32";
2952 
2953   if (isForcedVOP3())
2954     return "e64";
2955 
2956   if (isForcedSDWA())
2957     return "sdwa";
2958 
2959   if (isForcedDPP())
2960     return "dpp";
2961 
2962   return "";
2963 }
2964 
2965 unsigned AMDGPUAsmParser::findImplicitSGPRReadInVOP(const MCInst &Inst) const {
2966   const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
2967   const unsigned Num = Desc.getNumImplicitUses();
2968   for (unsigned i = 0; i < Num; ++i) {
2969     unsigned Reg = Desc.ImplicitUses[i];
2970     switch (Reg) {
2971     case AMDGPU::FLAT_SCR:
2972     case AMDGPU::VCC:
2973     case AMDGPU::VCC_LO:
2974     case AMDGPU::VCC_HI:
2975     case AMDGPU::M0:
2976       return Reg;
2977     default:
2978       break;
2979     }
2980   }
2981   return AMDGPU::NoRegister;
2982 }
2983 
2984 // NB: This code is correct only when used to check constant
2985 // bus limitations because GFX7 support no f16 inline constants.
2986 // Note that there are no cases when a GFX7 opcode violates
2987 // constant bus limitations due to the use of an f16 constant.
2988 bool AMDGPUAsmParser::isInlineConstant(const MCInst &Inst,
2989                                        unsigned OpIdx) const {
2990   const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
2991 
2992   if (!AMDGPU::isSISrcOperand(Desc, OpIdx)) {
2993     return false;
2994   }
2995 
2996   const MCOperand &MO = Inst.getOperand(OpIdx);
2997 
2998   int64_t Val = MO.getImm();
2999   auto OpSize = AMDGPU::getOperandSize(Desc, OpIdx);
3000 
3001   switch (OpSize) { // expected operand size
3002   case 8:
3003     return AMDGPU::isInlinableLiteral64(Val, hasInv2PiInlineImm());
3004   case 4:
3005     return AMDGPU::isInlinableLiteral32(Val, hasInv2PiInlineImm());
3006   case 2: {
3007     const unsigned OperandType = Desc.OpInfo[OpIdx].OperandType;
3008     if (OperandType == AMDGPU::OPERAND_REG_IMM_INT16 ||
3009         OperandType == AMDGPU::OPERAND_REG_INLINE_C_INT16 ||
3010         OperandType == AMDGPU::OPERAND_REG_INLINE_AC_INT16)
3011       return AMDGPU::isInlinableIntLiteral(Val);
3012 
3013     if (OperandType == AMDGPU::OPERAND_REG_INLINE_C_V2INT16 ||
3014         OperandType == AMDGPU::OPERAND_REG_INLINE_AC_V2INT16 ||
3015         OperandType == AMDGPU::OPERAND_REG_IMM_V2INT16)
3016       return AMDGPU::isInlinableIntLiteralV216(Val);
3017 
3018     if (OperandType == AMDGPU::OPERAND_REG_INLINE_C_V2FP16 ||
3019         OperandType == AMDGPU::OPERAND_REG_INLINE_AC_V2FP16 ||
3020         OperandType == AMDGPU::OPERAND_REG_IMM_V2FP16)
3021       return AMDGPU::isInlinableLiteralV216(Val, hasInv2PiInlineImm());
3022 
3023     return AMDGPU::isInlinableLiteral16(Val, hasInv2PiInlineImm());
3024   }
3025   default:
3026     llvm_unreachable("invalid operand size");
3027   }
3028 }
3029 
3030 unsigned AMDGPUAsmParser::getConstantBusLimit(unsigned Opcode) const {
3031   if (!isGFX10Plus())
3032     return 1;
3033 
3034   switch (Opcode) {
3035   // 64-bit shift instructions can use only one scalar value input
3036   case AMDGPU::V_LSHLREV_B64:
3037   case AMDGPU::V_LSHLREV_B64_gfx10:
3038   case AMDGPU::V_LSHL_B64:
3039   case AMDGPU::V_LSHRREV_B64:
3040   case AMDGPU::V_LSHRREV_B64_gfx10:
3041   case AMDGPU::V_LSHR_B64:
3042   case AMDGPU::V_ASHRREV_I64:
3043   case AMDGPU::V_ASHRREV_I64_gfx10:
3044   case AMDGPU::V_ASHR_I64:
3045     return 1;
3046   default:
3047     return 2;
3048   }
3049 }
3050 
3051 bool AMDGPUAsmParser::usesConstantBus(const MCInst &Inst, unsigned OpIdx) {
3052   const MCOperand &MO = Inst.getOperand(OpIdx);
3053   if (MO.isImm()) {
3054     return !isInlineConstant(Inst, OpIdx);
3055   } else if (MO.isReg()) {
3056     auto Reg = MO.getReg();
3057     const MCRegisterInfo *TRI = getContext().getRegisterInfo();
3058     auto PReg = mc2PseudoReg(Reg);
3059     return isSGPR(PReg, TRI) && PReg != SGPR_NULL;
3060   } else {
3061     return true;
3062   }
3063 }
3064 
3065 bool
3066 AMDGPUAsmParser::validateConstantBusLimitations(const MCInst &Inst,
3067                                                 const OperandVector &Operands) {
3068   const unsigned Opcode = Inst.getOpcode();
3069   const MCInstrDesc &Desc = MII.get(Opcode);
3070   unsigned LastSGPR = AMDGPU::NoRegister;
3071   unsigned ConstantBusUseCount = 0;
3072   unsigned NumLiterals = 0;
3073   unsigned LiteralSize;
3074 
3075   if (Desc.TSFlags &
3076       (SIInstrFlags::VOPC |
3077        SIInstrFlags::VOP1 | SIInstrFlags::VOP2 |
3078        SIInstrFlags::VOP3 | SIInstrFlags::VOP3P |
3079        SIInstrFlags::SDWA)) {
3080     // Check special imm operands (used by madmk, etc)
3081     if (AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm) != -1) {
3082       ++ConstantBusUseCount;
3083     }
3084 
3085     SmallDenseSet<unsigned> SGPRsUsed;
3086     unsigned SGPRUsed = findImplicitSGPRReadInVOP(Inst);
3087     if (SGPRUsed != AMDGPU::NoRegister) {
3088       SGPRsUsed.insert(SGPRUsed);
3089       ++ConstantBusUseCount;
3090     }
3091 
3092     const int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
3093     const int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
3094     const int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
3095 
3096     const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx };
3097 
3098     for (int OpIdx : OpIndices) {
3099       if (OpIdx == -1) break;
3100 
3101       const MCOperand &MO = Inst.getOperand(OpIdx);
3102       if (usesConstantBus(Inst, OpIdx)) {
3103         if (MO.isReg()) {
3104           LastSGPR = mc2PseudoReg(MO.getReg());
3105           // Pairs of registers with a partial intersections like these
3106           //   s0, s[0:1]
3107           //   flat_scratch_lo, flat_scratch
3108           //   flat_scratch_lo, flat_scratch_hi
3109           // are theoretically valid but they are disabled anyway.
3110           // Note that this code mimics SIInstrInfo::verifyInstruction
3111           if (!SGPRsUsed.count(LastSGPR)) {
3112             SGPRsUsed.insert(LastSGPR);
3113             ++ConstantBusUseCount;
3114           }
3115         } else { // Expression or a literal
3116 
3117           if (Desc.OpInfo[OpIdx].OperandType == MCOI::OPERAND_IMMEDIATE)
3118             continue; // special operand like VINTERP attr_chan
3119 
3120           // An instruction may use only one literal.
3121           // This has been validated on the previous step.
3122           // See validateVOP3Literal.
3123           // This literal may be used as more than one operand.
3124           // If all these operands are of the same size,
3125           // this literal counts as one scalar value.
3126           // Otherwise it counts as 2 scalar values.
3127           // See "GFX10 Shader Programming", section 3.6.2.3.
3128 
3129           unsigned Size = AMDGPU::getOperandSize(Desc, OpIdx);
3130           if (Size < 4) Size = 4;
3131 
3132           if (NumLiterals == 0) {
3133             NumLiterals = 1;
3134             LiteralSize = Size;
3135           } else if (LiteralSize != Size) {
3136             NumLiterals = 2;
3137           }
3138         }
3139       }
3140     }
3141   }
3142   ConstantBusUseCount += NumLiterals;
3143 
3144   if (ConstantBusUseCount <= getConstantBusLimit(Opcode))
3145     return true;
3146 
3147   SMLoc LitLoc = getLitLoc(Operands);
3148   SMLoc RegLoc = getRegLoc(LastSGPR, Operands);
3149   SMLoc Loc = (LitLoc.getPointer() < RegLoc.getPointer()) ? RegLoc : LitLoc;
3150   Error(Loc, "invalid operand (violates constant bus restrictions)");
3151   return false;
3152 }
3153 
3154 bool
3155 AMDGPUAsmParser::validateEarlyClobberLimitations(const MCInst &Inst,
3156                                                  const OperandVector &Operands) {
3157   const unsigned Opcode = Inst.getOpcode();
3158   const MCInstrDesc &Desc = MII.get(Opcode);
3159 
3160   const int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst);
3161   if (DstIdx == -1 ||
3162       Desc.getOperandConstraint(DstIdx, MCOI::EARLY_CLOBBER) == -1) {
3163     return true;
3164   }
3165 
3166   const MCRegisterInfo *TRI = getContext().getRegisterInfo();
3167 
3168   const int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
3169   const int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
3170   const int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
3171 
3172   assert(DstIdx != -1);
3173   const MCOperand &Dst = Inst.getOperand(DstIdx);
3174   assert(Dst.isReg());
3175   const unsigned DstReg = mc2PseudoReg(Dst.getReg());
3176 
3177   const int SrcIndices[] = { Src0Idx, Src1Idx, Src2Idx };
3178 
3179   for (int SrcIdx : SrcIndices) {
3180     if (SrcIdx == -1) break;
3181     const MCOperand &Src = Inst.getOperand(SrcIdx);
3182     if (Src.isReg()) {
3183       const unsigned SrcReg = mc2PseudoReg(Src.getReg());
3184       if (isRegIntersect(DstReg, SrcReg, TRI)) {
3185         Error(getRegLoc(SrcReg, Operands),
3186           "destination must be different than all sources");
3187         return false;
3188       }
3189     }
3190   }
3191 
3192   return true;
3193 }
3194 
3195 bool AMDGPUAsmParser::validateIntClampSupported(const MCInst &Inst) {
3196 
3197   const unsigned Opc = Inst.getOpcode();
3198   const MCInstrDesc &Desc = MII.get(Opc);
3199 
3200   if ((Desc.TSFlags & SIInstrFlags::IntClamp) != 0 && !hasIntClamp()) {
3201     int ClampIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp);
3202     assert(ClampIdx != -1);
3203     return Inst.getOperand(ClampIdx).getImm() == 0;
3204   }
3205 
3206   return true;
3207 }
3208 
3209 bool AMDGPUAsmParser::validateMIMGDataSize(const MCInst &Inst) {
3210 
3211   const unsigned Opc = Inst.getOpcode();
3212   const MCInstrDesc &Desc = MII.get(Opc);
3213 
3214   if ((Desc.TSFlags & SIInstrFlags::MIMG) == 0)
3215     return true;
3216 
3217   int VDataIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
3218   int DMaskIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::dmask);
3219   int TFEIdx   = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::tfe);
3220 
3221   assert(VDataIdx != -1);
3222 
3223   if (DMaskIdx == -1 || TFEIdx == -1) // intersect_ray
3224     return true;
3225 
3226   unsigned VDataSize = AMDGPU::getRegOperandSize(getMRI(), Desc, VDataIdx);
3227   unsigned TFESize = Inst.getOperand(TFEIdx).getImm()? 1 : 0;
3228   unsigned DMask = Inst.getOperand(DMaskIdx).getImm() & 0xf;
3229   if (DMask == 0)
3230     DMask = 1;
3231 
3232   unsigned DataSize =
3233     (Desc.TSFlags & SIInstrFlags::Gather4) ? 4 : countPopulation(DMask);
3234   if (hasPackedD16()) {
3235     int D16Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::d16);
3236     if (D16Idx >= 0 && Inst.getOperand(D16Idx).getImm())
3237       DataSize = (DataSize + 1) / 2;
3238   }
3239 
3240   return (VDataSize / 4) == DataSize + TFESize;
3241 }
3242 
3243 bool AMDGPUAsmParser::validateMIMGAddrSize(const MCInst &Inst) {
3244   const unsigned Opc = Inst.getOpcode();
3245   const MCInstrDesc &Desc = MII.get(Opc);
3246 
3247   if ((Desc.TSFlags & SIInstrFlags::MIMG) == 0 || !isGFX10Plus())
3248     return true;
3249 
3250   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opc);
3251 
3252   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
3253       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
3254   int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0);
3255   int SrsrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc);
3256   int DimIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::dim);
3257 
3258   assert(VAddr0Idx != -1);
3259   assert(SrsrcIdx != -1);
3260   assert(SrsrcIdx > VAddr0Idx);
3261 
3262   if (DimIdx == -1)
3263     return true; // intersect_ray
3264 
3265   unsigned Dim = Inst.getOperand(DimIdx).getImm();
3266   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfoByEncoding(Dim);
3267   bool IsNSA = SrsrcIdx - VAddr0Idx > 1;
3268   unsigned VAddrSize =
3269       IsNSA ? SrsrcIdx - VAddr0Idx
3270             : AMDGPU::getRegOperandSize(getMRI(), Desc, VAddr0Idx) / 4;
3271 
3272   unsigned AddrSize = BaseOpcode->NumExtraArgs +
3273                       (BaseOpcode->Gradients ? DimInfo->NumGradients : 0) +
3274                       (BaseOpcode->Coordinates ? DimInfo->NumCoords : 0) +
3275                       (BaseOpcode->LodOrClampOrMip ? 1 : 0);
3276   if (!IsNSA) {
3277     if (AddrSize > 8)
3278       AddrSize = 16;
3279     else if (AddrSize > 4)
3280       AddrSize = 8;
3281   }
3282 
3283   return VAddrSize == AddrSize;
3284 }
3285 
3286 bool AMDGPUAsmParser::validateMIMGAtomicDMask(const MCInst &Inst) {
3287 
3288   const unsigned Opc = Inst.getOpcode();
3289   const MCInstrDesc &Desc = MII.get(Opc);
3290 
3291   if ((Desc.TSFlags & SIInstrFlags::MIMG) == 0)
3292     return true;
3293   if (!Desc.mayLoad() || !Desc.mayStore())
3294     return true; // Not atomic
3295 
3296   int DMaskIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::dmask);
3297   unsigned DMask = Inst.getOperand(DMaskIdx).getImm() & 0xf;
3298 
3299   // This is an incomplete check because image_atomic_cmpswap
3300   // may only use 0x3 and 0xf while other atomic operations
3301   // may use 0x1 and 0x3. However these limitations are
3302   // verified when we check that dmask matches dst size.
3303   return DMask == 0x1 || DMask == 0x3 || DMask == 0xf;
3304 }
3305 
3306 bool AMDGPUAsmParser::validateMIMGGatherDMask(const MCInst &Inst) {
3307 
3308   const unsigned Opc = Inst.getOpcode();
3309   const MCInstrDesc &Desc = MII.get(Opc);
3310 
3311   if ((Desc.TSFlags & SIInstrFlags::Gather4) == 0)
3312     return true;
3313 
3314   int DMaskIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::dmask);
3315   unsigned DMask = Inst.getOperand(DMaskIdx).getImm() & 0xf;
3316 
3317   // GATHER4 instructions use dmask in a different fashion compared to
3318   // other MIMG instructions. The only useful DMASK values are
3319   // 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
3320   // (red,red,red,red) etc.) The ISA document doesn't mention
3321   // this.
3322   return DMask == 0x1 || DMask == 0x2 || DMask == 0x4 || DMask == 0x8;
3323 }
3324 
3325 static bool IsMovrelsSDWAOpcode(const unsigned Opcode)
3326 {
3327   switch (Opcode) {
3328   case AMDGPU::V_MOVRELS_B32_sdwa_gfx10:
3329   case AMDGPU::V_MOVRELSD_B32_sdwa_gfx10:
3330   case AMDGPU::V_MOVRELSD_2_B32_sdwa_gfx10:
3331     return true;
3332   default:
3333     return false;
3334   }
3335 }
3336 
3337 // movrels* opcodes should only allow VGPRS as src0.
3338 // This is specified in .td description for vop1/vop3,
3339 // but sdwa is handled differently. See isSDWAOperand.
3340 bool AMDGPUAsmParser::validateMovrels(const MCInst &Inst,
3341                                       const OperandVector &Operands) {
3342 
3343   const unsigned Opc = Inst.getOpcode();
3344   const MCInstrDesc &Desc = MII.get(Opc);
3345 
3346   if ((Desc.TSFlags & SIInstrFlags::SDWA) == 0 || !IsMovrelsSDWAOpcode(Opc))
3347     return true;
3348 
3349   const int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
3350   assert(Src0Idx != -1);
3351 
3352   SMLoc ErrLoc;
3353   const MCOperand &Src0 = Inst.getOperand(Src0Idx);
3354   if (Src0.isReg()) {
3355     auto Reg = mc2PseudoReg(Src0.getReg());
3356     const MCRegisterInfo *TRI = getContext().getRegisterInfo();
3357     if (!isSGPR(Reg, TRI))
3358       return true;
3359     ErrLoc = getRegLoc(Reg, Operands);
3360   } else {
3361     ErrLoc = getConstLoc(Operands);
3362   }
3363 
3364   Error(ErrLoc, "source operand must be a VGPR");
3365   return false;
3366 }
3367 
3368 bool AMDGPUAsmParser::validateMAIAccWrite(const MCInst &Inst,
3369                                           const OperandVector &Operands) {
3370 
3371   const unsigned Opc = Inst.getOpcode();
3372 
3373   if (Opc != AMDGPU::V_ACCVGPR_WRITE_B32_vi)
3374     return true;
3375 
3376   const int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
3377   assert(Src0Idx != -1);
3378 
3379   const MCOperand &Src0 = Inst.getOperand(Src0Idx);
3380   if (!Src0.isReg())
3381     return true;
3382 
3383   auto Reg = mc2PseudoReg(Src0.getReg());
3384   const MCRegisterInfo *TRI = getContext().getRegisterInfo();
3385   if (isSGPR(Reg, TRI)) {
3386     Error(getRegLoc(Reg, Operands),
3387           "source operand must be either a VGPR or an inline constant");
3388     return false;
3389   }
3390 
3391   return true;
3392 }
3393 
3394 bool AMDGPUAsmParser::validateDivScale(const MCInst &Inst) {
3395   switch (Inst.getOpcode()) {
3396   default:
3397     return true;
3398   case V_DIV_SCALE_F32_gfx6_gfx7:
3399   case V_DIV_SCALE_F32_vi:
3400   case V_DIV_SCALE_F32_gfx10:
3401   case V_DIV_SCALE_F64_gfx6_gfx7:
3402   case V_DIV_SCALE_F64_vi:
3403   case V_DIV_SCALE_F64_gfx10:
3404     break;
3405   }
3406 
3407   // TODO: Check that src0 = src1 or src2.
3408 
3409   for (auto Name : {AMDGPU::OpName::src0_modifiers,
3410                     AMDGPU::OpName::src2_modifiers,
3411                     AMDGPU::OpName::src2_modifiers}) {
3412     if (Inst.getOperand(AMDGPU::getNamedOperandIdx(Inst.getOpcode(), Name))
3413             .getImm() &
3414         SISrcMods::ABS) {
3415       return false;
3416     }
3417   }
3418 
3419   return true;
3420 }
3421 
3422 bool AMDGPUAsmParser::validateMIMGD16(const MCInst &Inst) {
3423 
3424   const unsigned Opc = Inst.getOpcode();
3425   const MCInstrDesc &Desc = MII.get(Opc);
3426 
3427   if ((Desc.TSFlags & SIInstrFlags::MIMG) == 0)
3428     return true;
3429 
3430   int D16Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::d16);
3431   if (D16Idx >= 0 && Inst.getOperand(D16Idx).getImm()) {
3432     if (isCI() || isSI())
3433       return false;
3434   }
3435 
3436   return true;
3437 }
3438 
3439 bool AMDGPUAsmParser::validateMIMGDim(const MCInst &Inst) {
3440   const unsigned Opc = Inst.getOpcode();
3441   const MCInstrDesc &Desc = MII.get(Opc);
3442 
3443   if ((Desc.TSFlags & SIInstrFlags::MIMG) == 0)
3444     return true;
3445 
3446   int DimIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::dim);
3447   if (DimIdx < 0)
3448     return true;
3449 
3450   long Imm = Inst.getOperand(DimIdx).getImm();
3451   if (Imm < 0 || Imm >= 8)
3452     return false;
3453 
3454   return true;
3455 }
3456 
3457 static bool IsRevOpcode(const unsigned Opcode)
3458 {
3459   switch (Opcode) {
3460   case AMDGPU::V_SUBREV_F32_e32:
3461   case AMDGPU::V_SUBREV_F32_e64:
3462   case AMDGPU::V_SUBREV_F32_e32_gfx10:
3463   case AMDGPU::V_SUBREV_F32_e32_gfx6_gfx7:
3464   case AMDGPU::V_SUBREV_F32_e32_vi:
3465   case AMDGPU::V_SUBREV_F32_e64_gfx10:
3466   case AMDGPU::V_SUBREV_F32_e64_gfx6_gfx7:
3467   case AMDGPU::V_SUBREV_F32_e64_vi:
3468 
3469   case AMDGPU::V_SUBREV_CO_U32_e32:
3470   case AMDGPU::V_SUBREV_CO_U32_e64:
3471   case AMDGPU::V_SUBREV_I32_e32_gfx6_gfx7:
3472   case AMDGPU::V_SUBREV_I32_e64_gfx6_gfx7:
3473 
3474   case AMDGPU::V_SUBBREV_U32_e32:
3475   case AMDGPU::V_SUBBREV_U32_e64:
3476   case AMDGPU::V_SUBBREV_U32_e32_gfx6_gfx7:
3477   case AMDGPU::V_SUBBREV_U32_e32_vi:
3478   case AMDGPU::V_SUBBREV_U32_e64_gfx6_gfx7:
3479   case AMDGPU::V_SUBBREV_U32_e64_vi:
3480 
3481   case AMDGPU::V_SUBREV_U32_e32:
3482   case AMDGPU::V_SUBREV_U32_e64:
3483   case AMDGPU::V_SUBREV_U32_e32_gfx9:
3484   case AMDGPU::V_SUBREV_U32_e32_vi:
3485   case AMDGPU::V_SUBREV_U32_e64_gfx9:
3486   case AMDGPU::V_SUBREV_U32_e64_vi:
3487 
3488   case AMDGPU::V_SUBREV_F16_e32:
3489   case AMDGPU::V_SUBREV_F16_e64:
3490   case AMDGPU::V_SUBREV_F16_e32_gfx10:
3491   case AMDGPU::V_SUBREV_F16_e32_vi:
3492   case AMDGPU::V_SUBREV_F16_e64_gfx10:
3493   case AMDGPU::V_SUBREV_F16_e64_vi:
3494 
3495   case AMDGPU::V_SUBREV_U16_e32:
3496   case AMDGPU::V_SUBREV_U16_e64:
3497   case AMDGPU::V_SUBREV_U16_e32_vi:
3498   case AMDGPU::V_SUBREV_U16_e64_vi:
3499 
3500   case AMDGPU::V_SUBREV_CO_U32_e32_gfx9:
3501   case AMDGPU::V_SUBREV_CO_U32_e64_gfx10:
3502   case AMDGPU::V_SUBREV_CO_U32_e64_gfx9:
3503 
3504   case AMDGPU::V_SUBBREV_CO_U32_e32_gfx9:
3505   case AMDGPU::V_SUBBREV_CO_U32_e64_gfx9:
3506 
3507   case AMDGPU::V_SUBREV_NC_U32_e32_gfx10:
3508   case AMDGPU::V_SUBREV_NC_U32_e64_gfx10:
3509 
3510   case AMDGPU::V_SUBREV_CO_CI_U32_e32_gfx10:
3511   case AMDGPU::V_SUBREV_CO_CI_U32_e64_gfx10:
3512 
3513   case AMDGPU::V_LSHRREV_B32_e32:
3514   case AMDGPU::V_LSHRREV_B32_e64:
3515   case AMDGPU::V_LSHRREV_B32_e32_gfx6_gfx7:
3516   case AMDGPU::V_LSHRREV_B32_e64_gfx6_gfx7:
3517   case AMDGPU::V_LSHRREV_B32_e32_vi:
3518   case AMDGPU::V_LSHRREV_B32_e64_vi:
3519   case AMDGPU::V_LSHRREV_B32_e32_gfx10:
3520   case AMDGPU::V_LSHRREV_B32_e64_gfx10:
3521 
3522   case AMDGPU::V_ASHRREV_I32_e32:
3523   case AMDGPU::V_ASHRREV_I32_e64:
3524   case AMDGPU::V_ASHRREV_I32_e32_gfx10:
3525   case AMDGPU::V_ASHRREV_I32_e32_gfx6_gfx7:
3526   case AMDGPU::V_ASHRREV_I32_e32_vi:
3527   case AMDGPU::V_ASHRREV_I32_e64_gfx10:
3528   case AMDGPU::V_ASHRREV_I32_e64_gfx6_gfx7:
3529   case AMDGPU::V_ASHRREV_I32_e64_vi:
3530 
3531   case AMDGPU::V_LSHLREV_B32_e32:
3532   case AMDGPU::V_LSHLREV_B32_e64:
3533   case AMDGPU::V_LSHLREV_B32_e32_gfx10:
3534   case AMDGPU::V_LSHLREV_B32_e32_gfx6_gfx7:
3535   case AMDGPU::V_LSHLREV_B32_e32_vi:
3536   case AMDGPU::V_LSHLREV_B32_e64_gfx10:
3537   case AMDGPU::V_LSHLREV_B32_e64_gfx6_gfx7:
3538   case AMDGPU::V_LSHLREV_B32_e64_vi:
3539 
3540   case AMDGPU::V_LSHLREV_B16_e32:
3541   case AMDGPU::V_LSHLREV_B16_e64:
3542   case AMDGPU::V_LSHLREV_B16_e32_vi:
3543   case AMDGPU::V_LSHLREV_B16_e64_vi:
3544   case AMDGPU::V_LSHLREV_B16_gfx10:
3545 
3546   case AMDGPU::V_LSHRREV_B16_e32:
3547   case AMDGPU::V_LSHRREV_B16_e64:
3548   case AMDGPU::V_LSHRREV_B16_e32_vi:
3549   case AMDGPU::V_LSHRREV_B16_e64_vi:
3550   case AMDGPU::V_LSHRREV_B16_gfx10:
3551 
3552   case AMDGPU::V_ASHRREV_I16_e32:
3553   case AMDGPU::V_ASHRREV_I16_e64:
3554   case AMDGPU::V_ASHRREV_I16_e32_vi:
3555   case AMDGPU::V_ASHRREV_I16_e64_vi:
3556   case AMDGPU::V_ASHRREV_I16_gfx10:
3557 
3558   case AMDGPU::V_LSHLREV_B64:
3559   case AMDGPU::V_LSHLREV_B64_gfx10:
3560   case AMDGPU::V_LSHLREV_B64_vi:
3561 
3562   case AMDGPU::V_LSHRREV_B64:
3563   case AMDGPU::V_LSHRREV_B64_gfx10:
3564   case AMDGPU::V_LSHRREV_B64_vi:
3565 
3566   case AMDGPU::V_ASHRREV_I64:
3567   case AMDGPU::V_ASHRREV_I64_gfx10:
3568   case AMDGPU::V_ASHRREV_I64_vi:
3569 
3570   case AMDGPU::V_PK_LSHLREV_B16:
3571   case AMDGPU::V_PK_LSHLREV_B16_gfx10:
3572   case AMDGPU::V_PK_LSHLREV_B16_vi:
3573 
3574   case AMDGPU::V_PK_LSHRREV_B16:
3575   case AMDGPU::V_PK_LSHRREV_B16_gfx10:
3576   case AMDGPU::V_PK_LSHRREV_B16_vi:
3577   case AMDGPU::V_PK_ASHRREV_I16:
3578   case AMDGPU::V_PK_ASHRREV_I16_gfx10:
3579   case AMDGPU::V_PK_ASHRREV_I16_vi:
3580     return true;
3581   default:
3582     return false;
3583   }
3584 }
3585 
3586 bool AMDGPUAsmParser::validateLdsDirect(const MCInst &Inst) {
3587 
3588   using namespace SIInstrFlags;
3589   const unsigned Opcode = Inst.getOpcode();
3590   const MCInstrDesc &Desc = MII.get(Opcode);
3591 
3592   // lds_direct register is defined so that it can be used
3593   // with 9-bit operands only. Ignore encodings which do not accept these.
3594   if ((Desc.TSFlags & (VOP1 | VOP2 | VOP3 | VOPC | VOP3P | SIInstrFlags::SDWA)) == 0)
3595     return true;
3596 
3597   const int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
3598   const int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
3599   const int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
3600 
3601   const int SrcIndices[] = { Src1Idx, Src2Idx };
3602 
3603   // lds_direct cannot be specified as either src1 or src2.
3604   for (int SrcIdx : SrcIndices) {
3605     if (SrcIdx == -1) break;
3606     const MCOperand &Src = Inst.getOperand(SrcIdx);
3607     if (Src.isReg() && Src.getReg() == LDS_DIRECT) {
3608       return false;
3609     }
3610   }
3611 
3612   if (Src0Idx == -1)
3613     return true;
3614 
3615   const MCOperand &Src = Inst.getOperand(Src0Idx);
3616   if (!Src.isReg() || Src.getReg() != LDS_DIRECT)
3617     return true;
3618 
3619   // lds_direct is specified as src0. Check additional limitations.
3620   return (Desc.TSFlags & SIInstrFlags::SDWA) == 0 && !IsRevOpcode(Opcode);
3621 }
3622 
3623 SMLoc AMDGPUAsmParser::getFlatOffsetLoc(const OperandVector &Operands) const {
3624   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3625     AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[i]);
3626     if (Op.isFlatOffset())
3627       return Op.getStartLoc();
3628   }
3629   return getLoc();
3630 }
3631 
3632 bool AMDGPUAsmParser::validateFlatOffset(const MCInst &Inst,
3633                                          const OperandVector &Operands) {
3634   uint64_t TSFlags = MII.get(Inst.getOpcode()).TSFlags;
3635   if ((TSFlags & SIInstrFlags::FLAT) == 0)
3636     return true;
3637 
3638   auto Opcode = Inst.getOpcode();
3639   auto OpNum = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::offset);
3640   assert(OpNum != -1);
3641 
3642   const auto &Op = Inst.getOperand(OpNum);
3643   if (!hasFlatOffsets() && Op.getImm() != 0) {
3644     Error(getFlatOffsetLoc(Operands),
3645           "flat offset modifier is not supported on this GPU");
3646     return false;
3647   }
3648 
3649   // For FLAT segment the offset must be positive;
3650   // MSB is ignored and forced to zero.
3651   if (TSFlags & (SIInstrFlags::IsFlatGlobal | SIInstrFlags::IsFlatScratch)) {
3652     unsigned OffsetSize = AMDGPU::getNumFlatOffsetBits(getSTI(), true);
3653     if (!isIntN(OffsetSize, Op.getImm())) {
3654       Error(getFlatOffsetLoc(Operands),
3655             Twine("expected a ") + Twine(OffsetSize) + "-bit signed offset");
3656       return false;
3657     }
3658   } else {
3659     unsigned OffsetSize = AMDGPU::getNumFlatOffsetBits(getSTI(), false);
3660     if (!isUIntN(OffsetSize, Op.getImm())) {
3661       Error(getFlatOffsetLoc(Operands),
3662             Twine("expected a ") + Twine(OffsetSize) + "-bit unsigned offset");
3663       return false;
3664     }
3665   }
3666 
3667   return true;
3668 }
3669 
3670 SMLoc AMDGPUAsmParser::getSMEMOffsetLoc(const OperandVector &Operands) const {
3671   // Start with second operand because SMEM Offset cannot be dst or src0.
3672   for (unsigned i = 2, e = Operands.size(); i != e; ++i) {
3673     AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[i]);
3674     if (Op.isSMEMOffset())
3675       return Op.getStartLoc();
3676   }
3677   return getLoc();
3678 }
3679 
3680 bool AMDGPUAsmParser::validateSMEMOffset(const MCInst &Inst,
3681                                          const OperandVector &Operands) {
3682   if (isCI() || isSI())
3683     return true;
3684 
3685   uint64_t TSFlags = MII.get(Inst.getOpcode()).TSFlags;
3686   if ((TSFlags & SIInstrFlags::SMRD) == 0)
3687     return true;
3688 
3689   auto Opcode = Inst.getOpcode();
3690   auto OpNum = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::offset);
3691   if (OpNum == -1)
3692     return true;
3693 
3694   const auto &Op = Inst.getOperand(OpNum);
3695   if (!Op.isImm())
3696     return true;
3697 
3698   uint64_t Offset = Op.getImm();
3699   bool IsBuffer = AMDGPU::getSMEMIsBuffer(Opcode);
3700   if (AMDGPU::isLegalSMRDEncodedUnsignedOffset(getSTI(), Offset) ||
3701       AMDGPU::isLegalSMRDEncodedSignedOffset(getSTI(), Offset, IsBuffer))
3702     return true;
3703 
3704   Error(getSMEMOffsetLoc(Operands),
3705         (isVI() || IsBuffer) ? "expected a 20-bit unsigned offset" :
3706                                "expected a 21-bit signed offset");
3707 
3708   return false;
3709 }
3710 
3711 bool AMDGPUAsmParser::validateSOPLiteral(const MCInst &Inst) const {
3712   unsigned Opcode = Inst.getOpcode();
3713   const MCInstrDesc &Desc = MII.get(Opcode);
3714   if (!(Desc.TSFlags & (SIInstrFlags::SOP2 | SIInstrFlags::SOPC)))
3715     return true;
3716 
3717   const int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
3718   const int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
3719 
3720   const int OpIndices[] = { Src0Idx, Src1Idx };
3721 
3722   unsigned NumExprs = 0;
3723   unsigned NumLiterals = 0;
3724   uint32_t LiteralValue;
3725 
3726   for (int OpIdx : OpIndices) {
3727     if (OpIdx == -1) break;
3728 
3729     const MCOperand &MO = Inst.getOperand(OpIdx);
3730     // Exclude special imm operands (like that used by s_set_gpr_idx_on)
3731     if (AMDGPU::isSISrcOperand(Desc, OpIdx)) {
3732       if (MO.isImm() && !isInlineConstant(Inst, OpIdx)) {
3733         uint32_t Value = static_cast<uint32_t>(MO.getImm());
3734         if (NumLiterals == 0 || LiteralValue != Value) {
3735           LiteralValue = Value;
3736           ++NumLiterals;
3737         }
3738       } else if (MO.isExpr()) {
3739         ++NumExprs;
3740       }
3741     }
3742   }
3743 
3744   return NumLiterals + NumExprs <= 1;
3745 }
3746 
3747 bool AMDGPUAsmParser::validateOpSel(const MCInst &Inst) {
3748   const unsigned Opc = Inst.getOpcode();
3749   if (Opc == AMDGPU::V_PERMLANE16_B32_gfx10 ||
3750       Opc == AMDGPU::V_PERMLANEX16_B32_gfx10) {
3751     int OpSelIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel);
3752     unsigned OpSel = Inst.getOperand(OpSelIdx).getImm();
3753 
3754     if (OpSel & ~3)
3755       return false;
3756   }
3757   return true;
3758 }
3759 
3760 // Check if VCC register matches wavefront size
3761 bool AMDGPUAsmParser::validateVccOperand(unsigned Reg) const {
3762   auto FB = getFeatureBits();
3763   return (FB[AMDGPU::FeatureWavefrontSize64] && Reg == AMDGPU::VCC) ||
3764     (FB[AMDGPU::FeatureWavefrontSize32] && Reg == AMDGPU::VCC_LO);
3765 }
3766 
3767 // VOP3 literal is only allowed in GFX10+ and only one can be used
3768 bool AMDGPUAsmParser::validateVOP3Literal(const MCInst &Inst,
3769                                           const OperandVector &Operands) {
3770   unsigned Opcode = Inst.getOpcode();
3771   const MCInstrDesc &Desc = MII.get(Opcode);
3772   if (!(Desc.TSFlags & (SIInstrFlags::VOP3 | SIInstrFlags::VOP3P)))
3773     return true;
3774 
3775   const int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
3776   const int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
3777   const int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
3778 
3779   const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx };
3780 
3781   unsigned NumExprs = 0;
3782   unsigned NumLiterals = 0;
3783   uint32_t LiteralValue;
3784 
3785   for (int OpIdx : OpIndices) {
3786     if (OpIdx == -1) break;
3787 
3788     const MCOperand &MO = Inst.getOperand(OpIdx);
3789     if (!MO.isImm() && !MO.isExpr())
3790       continue;
3791     if (!AMDGPU::isSISrcOperand(Desc, OpIdx))
3792       continue;
3793 
3794     if (OpIdx == Src2Idx && (Desc.TSFlags & SIInstrFlags::IsMAI) &&
3795         getFeatureBits()[AMDGPU::FeatureMFMAInlineLiteralBug]) {
3796       Error(getConstLoc(Operands),
3797             "inline constants are not allowed for this operand");
3798       return false;
3799     }
3800 
3801     if (MO.isImm() && !isInlineConstant(Inst, OpIdx)) {
3802       uint32_t Value = static_cast<uint32_t>(MO.getImm());
3803       if (NumLiterals == 0 || LiteralValue != Value) {
3804         LiteralValue = Value;
3805         ++NumLiterals;
3806       }
3807     } else if (MO.isExpr()) {
3808       ++NumExprs;
3809     }
3810   }
3811   NumLiterals += NumExprs;
3812 
3813   if (!NumLiterals)
3814     return true;
3815 
3816   if (!getFeatureBits()[AMDGPU::FeatureVOP3Literal]) {
3817     Error(getLitLoc(Operands), "literal operands are not supported");
3818     return false;
3819   }
3820 
3821   if (NumLiterals > 1) {
3822     Error(getLitLoc(Operands), "only one literal operand is allowed");
3823     return false;
3824   }
3825 
3826   return true;
3827 }
3828 
3829 bool AMDGPUAsmParser::validateCoherencyBits(const MCInst &Inst,
3830                                             const OperandVector &Operands,
3831                                             const SMLoc &IDLoc) {
3832   int GLCPos = AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
3833                                           AMDGPU::OpName::glc1);
3834   if (GLCPos != -1) {
3835     // -1 is set by GLC_1 default operand. In all cases "glc" must be present
3836     // in the asm string, and the default value means it is not present.
3837     if (Inst.getOperand(GLCPos).getImm() == -1) {
3838       Error(IDLoc, "instruction must use glc");
3839       return false;
3840     }
3841   }
3842 
3843   return true;
3844 }
3845 
3846 bool AMDGPUAsmParser::validateInstruction(const MCInst &Inst,
3847                                           const SMLoc &IDLoc,
3848                                           const OperandVector &Operands) {
3849   if (!validateLdsDirect(Inst)) {
3850     Error(getRegLoc(AMDGPU::LDS_DIRECT, Operands),
3851       "invalid use of lds_direct");
3852     return false;
3853   }
3854   if (!validateSOPLiteral(Inst)) {
3855     Error(getLitLoc(Operands),
3856       "only one literal operand is allowed");
3857     return false;
3858   }
3859   if (!validateVOP3Literal(Inst, Operands)) {
3860     return false;
3861   }
3862   if (!validateConstantBusLimitations(Inst, Operands)) {
3863     return false;
3864   }
3865   if (!validateEarlyClobberLimitations(Inst, Operands)) {
3866     return false;
3867   }
3868   if (!validateIntClampSupported(Inst)) {
3869     Error(getImmLoc(AMDGPUOperand::ImmTyClampSI, Operands),
3870       "integer clamping is not supported on this GPU");
3871     return false;
3872   }
3873   if (!validateOpSel(Inst)) {
3874     Error(getImmLoc(AMDGPUOperand::ImmTyOpSel, Operands),
3875       "invalid op_sel operand");
3876     return false;
3877   }
3878   // For MUBUF/MTBUF d16 is a part of opcode, so there is nothing to validate.
3879   if (!validateMIMGD16(Inst)) {
3880     Error(getImmLoc(AMDGPUOperand::ImmTyD16, Operands),
3881       "d16 modifier is not supported on this GPU");
3882     return false;
3883   }
3884   if (!validateMIMGDim(Inst)) {
3885     Error(IDLoc, "dim modifier is required on this GPU");
3886     return false;
3887   }
3888   if (!validateMIMGDataSize(Inst)) {
3889     Error(IDLoc,
3890       "image data size does not match dmask and tfe");
3891     return false;
3892   }
3893   if (!validateMIMGAddrSize(Inst)) {
3894     Error(IDLoc,
3895       "image address size does not match dim and a16");
3896     return false;
3897   }
3898   if (!validateMIMGAtomicDMask(Inst)) {
3899     Error(getImmLoc(AMDGPUOperand::ImmTyDMask, Operands),
3900       "invalid atomic image dmask");
3901     return false;
3902   }
3903   if (!validateMIMGGatherDMask(Inst)) {
3904     Error(getImmLoc(AMDGPUOperand::ImmTyDMask, Operands),
3905       "invalid image_gather dmask: only one bit must be set");
3906     return false;
3907   }
3908   if (!validateMovrels(Inst, Operands)) {
3909     return false;
3910   }
3911   if (!validateFlatOffset(Inst, Operands)) {
3912     return false;
3913   }
3914   if (!validateSMEMOffset(Inst, Operands)) {
3915     return false;
3916   }
3917   if (!validateMAIAccWrite(Inst, Operands)) {
3918     return false;
3919   }
3920   if (!validateDivScale(Inst)) {
3921     Error(IDLoc, "ABS not allowed in VOP3B instructions");
3922     return false;
3923   }
3924   if (!validateCoherencyBits(Inst, Operands, IDLoc)) {
3925     return false;
3926   }
3927 
3928   return true;
3929 }
3930 
3931 static std::string AMDGPUMnemonicSpellCheck(StringRef S,
3932                                             const FeatureBitset &FBS,
3933                                             unsigned VariantID = 0);
3934 
3935 static bool AMDGPUCheckMnemonic(StringRef Mnemonic,
3936                                 const FeatureBitset &AvailableFeatures,
3937                                 unsigned VariantID);
3938 
3939 bool AMDGPUAsmParser::isSupportedMnemo(StringRef Mnemo,
3940                                        const FeatureBitset &FBS) {
3941   return isSupportedMnemo(Mnemo, FBS, getAllVariants());
3942 }
3943 
3944 bool AMDGPUAsmParser::isSupportedMnemo(StringRef Mnemo,
3945                                        const FeatureBitset &FBS,
3946                                        ArrayRef<unsigned> Variants) {
3947   for (auto Variant : Variants) {
3948     if (AMDGPUCheckMnemonic(Mnemo, FBS, Variant))
3949       return true;
3950   }
3951 
3952   return false;
3953 }
3954 
3955 bool AMDGPUAsmParser::checkUnsupportedInstruction(StringRef Mnemo,
3956                                                   const SMLoc &IDLoc) {
3957   FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
3958 
3959   // Check if requested instruction variant is supported.
3960   if (isSupportedMnemo(Mnemo, FBS, getMatchedVariants()))
3961     return false;
3962 
3963   // This instruction is not supported.
3964   // Clear any other pending errors because they are no longer relevant.
3965   getParser().clearPendingErrors();
3966 
3967   // Requested instruction variant is not supported.
3968   // Check if any other variants are supported.
3969   StringRef VariantName = getMatchedVariantName();
3970   if (!VariantName.empty() && isSupportedMnemo(Mnemo, FBS)) {
3971     return Error(IDLoc,
3972                  Twine(VariantName,
3973                        " variant of this instruction is not supported"));
3974   }
3975 
3976   // Finally check if this instruction is supported on any other GPU.
3977   if (isSupportedMnemo(Mnemo, FeatureBitset().set())) {
3978     return Error(IDLoc, "instruction not supported on this GPU");
3979   }
3980 
3981   // Instruction not supported on any GPU. Probably a typo.
3982   std::string Suggestion = AMDGPUMnemonicSpellCheck(Mnemo, FBS);
3983   return Error(IDLoc, "invalid instruction" + Suggestion);
3984 }
3985 
3986 bool AMDGPUAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
3987                                               OperandVector &Operands,
3988                                               MCStreamer &Out,
3989                                               uint64_t &ErrorInfo,
3990                                               bool MatchingInlineAsm) {
3991   MCInst Inst;
3992   unsigned Result = Match_Success;
3993   for (auto Variant : getMatchedVariants()) {
3994     uint64_t EI;
3995     auto R = MatchInstructionImpl(Operands, Inst, EI, MatchingInlineAsm,
3996                                   Variant);
3997     // We order match statuses from least to most specific. We use most specific
3998     // status as resulting
3999     // Match_MnemonicFail < Match_InvalidOperand < Match_MissingFeature < Match_PreferE32
4000     if ((R == Match_Success) ||
4001         (R == Match_PreferE32) ||
4002         (R == Match_MissingFeature && Result != Match_PreferE32) ||
4003         (R == Match_InvalidOperand && Result != Match_MissingFeature
4004                                    && Result != Match_PreferE32) ||
4005         (R == Match_MnemonicFail   && Result != Match_InvalidOperand
4006                                    && Result != Match_MissingFeature
4007                                    && Result != Match_PreferE32)) {
4008       Result = R;
4009       ErrorInfo = EI;
4010     }
4011     if (R == Match_Success)
4012       break;
4013   }
4014 
4015   if (Result == Match_Success) {
4016     if (!validateInstruction(Inst, IDLoc, Operands)) {
4017       return true;
4018     }
4019     Inst.setLoc(IDLoc);
4020     Out.emitInstruction(Inst, getSTI());
4021     return false;
4022   }
4023 
4024   StringRef Mnemo = ((AMDGPUOperand &)*Operands[0]).getToken();
4025   if (checkUnsupportedInstruction(Mnemo, IDLoc)) {
4026     return true;
4027   }
4028 
4029   switch (Result) {
4030   default: break;
4031   case Match_MissingFeature:
4032     // It has been verified that the specified instruction
4033     // mnemonic is valid. A match was found but it requires
4034     // features which are not supported on this GPU.
4035     return Error(IDLoc, "operands are not valid for this GPU or mode");
4036 
4037   case Match_InvalidOperand: {
4038     SMLoc ErrorLoc = IDLoc;
4039     if (ErrorInfo != ~0ULL) {
4040       if (ErrorInfo >= Operands.size()) {
4041         return Error(IDLoc, "too few operands for instruction");
4042       }
4043       ErrorLoc = ((AMDGPUOperand &)*Operands[ErrorInfo]).getStartLoc();
4044       if (ErrorLoc == SMLoc())
4045         ErrorLoc = IDLoc;
4046     }
4047     return Error(ErrorLoc, "invalid operand for instruction");
4048   }
4049 
4050   case Match_PreferE32:
4051     return Error(IDLoc, "internal error: instruction without _e64 suffix "
4052                         "should be encoded as e32");
4053   case Match_MnemonicFail:
4054     llvm_unreachable("Invalid instructions should have been handled already");
4055   }
4056   llvm_unreachable("Implement any new match types added!");
4057 }
4058 
4059 bool AMDGPUAsmParser::ParseAsAbsoluteExpression(uint32_t &Ret) {
4060   int64_t Tmp = -1;
4061   if (!isToken(AsmToken::Integer) && !isToken(AsmToken::Identifier)) {
4062     return true;
4063   }
4064   if (getParser().parseAbsoluteExpression(Tmp)) {
4065     return true;
4066   }
4067   Ret = static_cast<uint32_t>(Tmp);
4068   return false;
4069 }
4070 
4071 bool AMDGPUAsmParser::ParseDirectiveMajorMinor(uint32_t &Major,
4072                                                uint32_t &Minor) {
4073   if (ParseAsAbsoluteExpression(Major))
4074     return TokError("invalid major version");
4075 
4076   if (!trySkipToken(AsmToken::Comma))
4077     return TokError("minor version number required, comma expected");
4078 
4079   if (ParseAsAbsoluteExpression(Minor))
4080     return TokError("invalid minor version");
4081 
4082   return false;
4083 }
4084 
4085 bool AMDGPUAsmParser::ParseDirectiveAMDGCNTarget() {
4086   if (getSTI().getTargetTriple().getArch() != Triple::amdgcn)
4087     return TokError("directive only supported for amdgcn architecture");
4088 
4089   std::string Target;
4090 
4091   SMLoc TargetStart = getLoc();
4092   if (getParser().parseEscapedString(Target))
4093     return true;
4094   SMRange TargetRange = SMRange(TargetStart, getLoc());
4095 
4096   std::string ExpectedTarget;
4097   raw_string_ostream ExpectedTargetOS(ExpectedTarget);
4098   IsaInfo::streamIsaVersion(&getSTI(), ExpectedTargetOS);
4099 
4100   if (Target != ExpectedTargetOS.str())
4101     return Error(TargetRange.Start, "target must match options", TargetRange);
4102 
4103   getTargetStreamer().EmitDirectiveAMDGCNTarget(Target);
4104   return false;
4105 }
4106 
4107 bool AMDGPUAsmParser::OutOfRangeError(SMRange Range) {
4108   return Error(Range.Start, "value out of range", Range);
4109 }
4110 
4111 bool AMDGPUAsmParser::calculateGPRBlocks(
4112     const FeatureBitset &Features, bool VCCUsed, bool FlatScrUsed,
4113     bool XNACKUsed, Optional<bool> EnableWavefrontSize32, unsigned NextFreeVGPR,
4114     SMRange VGPRRange, unsigned NextFreeSGPR, SMRange SGPRRange,
4115     unsigned &VGPRBlocks, unsigned &SGPRBlocks) {
4116   // TODO(scott.linder): These calculations are duplicated from
4117   // AMDGPUAsmPrinter::getSIProgramInfo and could be unified.
4118   IsaVersion Version = getIsaVersion(getSTI().getCPU());
4119 
4120   unsigned NumVGPRs = NextFreeVGPR;
4121   unsigned NumSGPRs = NextFreeSGPR;
4122 
4123   if (Version.Major >= 10)
4124     NumSGPRs = 0;
4125   else {
4126     unsigned MaxAddressableNumSGPRs =
4127         IsaInfo::getAddressableNumSGPRs(&getSTI());
4128 
4129     if (Version.Major >= 8 && !Features.test(FeatureSGPRInitBug) &&
4130         NumSGPRs > MaxAddressableNumSGPRs)
4131       return OutOfRangeError(SGPRRange);
4132 
4133     NumSGPRs +=
4134         IsaInfo::getNumExtraSGPRs(&getSTI(), VCCUsed, FlatScrUsed, XNACKUsed);
4135 
4136     if ((Version.Major <= 7 || Features.test(FeatureSGPRInitBug)) &&
4137         NumSGPRs > MaxAddressableNumSGPRs)
4138       return OutOfRangeError(SGPRRange);
4139 
4140     if (Features.test(FeatureSGPRInitBug))
4141       NumSGPRs = IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
4142   }
4143 
4144   VGPRBlocks =
4145       IsaInfo::getNumVGPRBlocks(&getSTI(), NumVGPRs, EnableWavefrontSize32);
4146   SGPRBlocks = IsaInfo::getNumSGPRBlocks(&getSTI(), NumSGPRs);
4147 
4148   return false;
4149 }
4150 
4151 bool AMDGPUAsmParser::ParseDirectiveAMDHSAKernel() {
4152   if (getSTI().getTargetTriple().getArch() != Triple::amdgcn)
4153     return TokError("directive only supported for amdgcn architecture");
4154 
4155   if (getSTI().getTargetTriple().getOS() != Triple::AMDHSA)
4156     return TokError("directive only supported for amdhsa OS");
4157 
4158   StringRef KernelName;
4159   if (getParser().parseIdentifier(KernelName))
4160     return true;
4161 
4162   kernel_descriptor_t KD = getDefaultAmdhsaKernelDescriptor(&getSTI());
4163 
4164   StringSet<> Seen;
4165 
4166   IsaVersion IVersion = getIsaVersion(getSTI().getCPU());
4167 
4168   SMRange VGPRRange;
4169   uint64_t NextFreeVGPR = 0;
4170   SMRange SGPRRange;
4171   uint64_t NextFreeSGPR = 0;
4172   unsigned UserSGPRCount = 0;
4173   bool ReserveVCC = true;
4174   bool ReserveFlatScr = true;
4175   bool ReserveXNACK = hasXNACK();
4176   Optional<bool> EnableWavefrontSize32;
4177 
4178   while (true) {
4179     while (trySkipToken(AsmToken::EndOfStatement));
4180 
4181     StringRef ID;
4182     SMRange IDRange = getTok().getLocRange();
4183     if (!parseId(ID, "expected .amdhsa_ directive or .end_amdhsa_kernel"))
4184       return true;
4185 
4186     if (ID == ".end_amdhsa_kernel")
4187       break;
4188 
4189     if (Seen.find(ID) != Seen.end())
4190       return TokError(".amdhsa_ directives cannot be repeated");
4191     Seen.insert(ID);
4192 
4193     SMLoc ValStart = getLoc();
4194     int64_t IVal;
4195     if (getParser().parseAbsoluteExpression(IVal))
4196       return true;
4197     SMLoc ValEnd = getLoc();
4198     SMRange ValRange = SMRange(ValStart, ValEnd);
4199 
4200     if (IVal < 0)
4201       return OutOfRangeError(ValRange);
4202 
4203     uint64_t Val = IVal;
4204 
4205 #define PARSE_BITS_ENTRY(FIELD, ENTRY, VALUE, RANGE)                           \
4206   if (!isUInt<ENTRY##_WIDTH>(VALUE))                                           \
4207     return OutOfRangeError(RANGE);                                             \
4208   AMDHSA_BITS_SET(FIELD, ENTRY, VALUE);
4209 
4210     if (ID == ".amdhsa_group_segment_fixed_size") {
4211       if (!isUInt<sizeof(KD.group_segment_fixed_size) * CHAR_BIT>(Val))
4212         return OutOfRangeError(ValRange);
4213       KD.group_segment_fixed_size = Val;
4214     } else if (ID == ".amdhsa_private_segment_fixed_size") {
4215       if (!isUInt<sizeof(KD.private_segment_fixed_size) * CHAR_BIT>(Val))
4216         return OutOfRangeError(ValRange);
4217       KD.private_segment_fixed_size = Val;
4218     } else if (ID == ".amdhsa_user_sgpr_private_segment_buffer") {
4219       PARSE_BITS_ENTRY(KD.kernel_code_properties,
4220                        KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER,
4221                        Val, ValRange);
4222       if (Val)
4223         UserSGPRCount += 4;
4224     } else if (ID == ".amdhsa_user_sgpr_dispatch_ptr") {
4225       PARSE_BITS_ENTRY(KD.kernel_code_properties,
4226                        KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR, Val,
4227                        ValRange);
4228       if (Val)
4229         UserSGPRCount += 2;
4230     } else if (ID == ".amdhsa_user_sgpr_queue_ptr") {
4231       PARSE_BITS_ENTRY(KD.kernel_code_properties,
4232                        KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR, Val,
4233                        ValRange);
4234       if (Val)
4235         UserSGPRCount += 2;
4236     } else if (ID == ".amdhsa_user_sgpr_kernarg_segment_ptr") {
4237       PARSE_BITS_ENTRY(KD.kernel_code_properties,
4238                        KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR,
4239                        Val, ValRange);
4240       if (Val)
4241         UserSGPRCount += 2;
4242     } else if (ID == ".amdhsa_user_sgpr_dispatch_id") {
4243       PARSE_BITS_ENTRY(KD.kernel_code_properties,
4244                        KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID, Val,
4245                        ValRange);
4246       if (Val)
4247         UserSGPRCount += 2;
4248     } else if (ID == ".amdhsa_user_sgpr_flat_scratch_init") {
4249       PARSE_BITS_ENTRY(KD.kernel_code_properties,
4250                        KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT, Val,
4251                        ValRange);
4252       if (Val)
4253         UserSGPRCount += 2;
4254     } else if (ID == ".amdhsa_user_sgpr_private_segment_size") {
4255       PARSE_BITS_ENTRY(KD.kernel_code_properties,
4256                        KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE,
4257                        Val, ValRange);
4258       if (Val)
4259         UserSGPRCount += 1;
4260     } else if (ID == ".amdhsa_wavefront_size32") {
4261       if (IVersion.Major < 10)
4262         return Error(IDRange.Start, "directive requires gfx10+", IDRange);
4263       EnableWavefrontSize32 = Val;
4264       PARSE_BITS_ENTRY(KD.kernel_code_properties,
4265                        KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
4266                        Val, ValRange);
4267     } else if (ID == ".amdhsa_system_sgpr_private_segment_wavefront_offset") {
4268       PARSE_BITS_ENTRY(
4269           KD.compute_pgm_rsrc2,
4270           COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT, Val,
4271           ValRange);
4272     } else if (ID == ".amdhsa_system_sgpr_workgroup_id_x") {
4273       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc2,
4274                        COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, Val,
4275                        ValRange);
4276     } else if (ID == ".amdhsa_system_sgpr_workgroup_id_y") {
4277       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc2,
4278                        COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y, Val,
4279                        ValRange);
4280     } else if (ID == ".amdhsa_system_sgpr_workgroup_id_z") {
4281       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc2,
4282                        COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z, Val,
4283                        ValRange);
4284     } else if (ID == ".amdhsa_system_sgpr_workgroup_info") {
4285       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc2,
4286                        COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO, Val,
4287                        ValRange);
4288     } else if (ID == ".amdhsa_system_vgpr_workitem_id") {
4289       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc2,
4290                        COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID, Val,
4291                        ValRange);
4292     } else if (ID == ".amdhsa_next_free_vgpr") {
4293       VGPRRange = ValRange;
4294       NextFreeVGPR = Val;
4295     } else if (ID == ".amdhsa_next_free_sgpr") {
4296       SGPRRange = ValRange;
4297       NextFreeSGPR = Val;
4298     } else if (ID == ".amdhsa_reserve_vcc") {
4299       if (!isUInt<1>(Val))
4300         return OutOfRangeError(ValRange);
4301       ReserveVCC = Val;
4302     } else if (ID == ".amdhsa_reserve_flat_scratch") {
4303       if (IVersion.Major < 7)
4304         return Error(IDRange.Start, "directive requires gfx7+", IDRange);
4305       if (!isUInt<1>(Val))
4306         return OutOfRangeError(ValRange);
4307       ReserveFlatScr = Val;
4308     } else if (ID == ".amdhsa_reserve_xnack_mask") {
4309       if (IVersion.Major < 8)
4310         return Error(IDRange.Start, "directive requires gfx8+", IDRange);
4311       if (!isUInt<1>(Val))
4312         return OutOfRangeError(ValRange);
4313       ReserveXNACK = Val;
4314     } else if (ID == ".amdhsa_float_round_mode_32") {
4315       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc1,
4316                        COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32, Val, ValRange);
4317     } else if (ID == ".amdhsa_float_round_mode_16_64") {
4318       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc1,
4319                        COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64, Val, ValRange);
4320     } else if (ID == ".amdhsa_float_denorm_mode_32") {
4321       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc1,
4322                        COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32, Val, ValRange);
4323     } else if (ID == ".amdhsa_float_denorm_mode_16_64") {
4324       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc1,
4325                        COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, Val,
4326                        ValRange);
4327     } else if (ID == ".amdhsa_dx10_clamp") {
4328       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc1,
4329                        COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, Val, ValRange);
4330     } else if (ID == ".amdhsa_ieee_mode") {
4331       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc1, COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE,
4332                        Val, ValRange);
4333     } else if (ID == ".amdhsa_fp16_overflow") {
4334       if (IVersion.Major < 9)
4335         return Error(IDRange.Start, "directive requires gfx9+", IDRange);
4336       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc1, COMPUTE_PGM_RSRC1_FP16_OVFL, Val,
4337                        ValRange);
4338     } else if (ID == ".amdhsa_workgroup_processor_mode") {
4339       if (IVersion.Major < 10)
4340         return Error(IDRange.Start, "directive requires gfx10+", IDRange);
4341       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc1, COMPUTE_PGM_RSRC1_WGP_MODE, Val,
4342                        ValRange);
4343     } else if (ID == ".amdhsa_memory_ordered") {
4344       if (IVersion.Major < 10)
4345         return Error(IDRange.Start, "directive requires gfx10+", IDRange);
4346       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc1, COMPUTE_PGM_RSRC1_MEM_ORDERED, Val,
4347                        ValRange);
4348     } else if (ID == ".amdhsa_forward_progress") {
4349       if (IVersion.Major < 10)
4350         return Error(IDRange.Start, "directive requires gfx10+", IDRange);
4351       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc1, COMPUTE_PGM_RSRC1_FWD_PROGRESS, Val,
4352                        ValRange);
4353     } else if (ID == ".amdhsa_exception_fp_ieee_invalid_op") {
4354       PARSE_BITS_ENTRY(
4355           KD.compute_pgm_rsrc2,
4356           COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION, Val,
4357           ValRange);
4358     } else if (ID == ".amdhsa_exception_fp_denorm_src") {
4359       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc2,
4360                        COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE,
4361                        Val, ValRange);
4362     } else if (ID == ".amdhsa_exception_fp_ieee_div_zero") {
4363       PARSE_BITS_ENTRY(
4364           KD.compute_pgm_rsrc2,
4365           COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO, Val,
4366           ValRange);
4367     } else if (ID == ".amdhsa_exception_fp_ieee_overflow") {
4368       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc2,
4369                        COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW,
4370                        Val, ValRange);
4371     } else if (ID == ".amdhsa_exception_fp_ieee_underflow") {
4372       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc2,
4373                        COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW,
4374                        Val, ValRange);
4375     } else if (ID == ".amdhsa_exception_fp_ieee_inexact") {
4376       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc2,
4377                        COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT,
4378                        Val, ValRange);
4379     } else if (ID == ".amdhsa_exception_int_div_zero") {
4380       PARSE_BITS_ENTRY(KD.compute_pgm_rsrc2,
4381                        COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO,
4382                        Val, ValRange);
4383     } else {
4384       return Error(IDRange.Start, "unknown .amdhsa_kernel directive", IDRange);
4385     }
4386 
4387 #undef PARSE_BITS_ENTRY
4388   }
4389 
4390   if (Seen.find(".amdhsa_next_free_vgpr") == Seen.end())
4391     return TokError(".amdhsa_next_free_vgpr directive is required");
4392 
4393   if (Seen.find(".amdhsa_next_free_sgpr") == Seen.end())
4394     return TokError(".amdhsa_next_free_sgpr directive is required");
4395 
4396   unsigned VGPRBlocks;
4397   unsigned SGPRBlocks;
4398   if (calculateGPRBlocks(getFeatureBits(), ReserveVCC, ReserveFlatScr,
4399                          ReserveXNACK, EnableWavefrontSize32, NextFreeVGPR,
4400                          VGPRRange, NextFreeSGPR, SGPRRange, VGPRBlocks,
4401                          SGPRBlocks))
4402     return true;
4403 
4404   if (!isUInt<COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_WIDTH>(
4405           VGPRBlocks))
4406     return OutOfRangeError(VGPRRange);
4407   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
4408                   COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT, VGPRBlocks);
4409 
4410   if (!isUInt<COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_WIDTH>(
4411           SGPRBlocks))
4412     return OutOfRangeError(SGPRRange);
4413   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
4414                   COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT,
4415                   SGPRBlocks);
4416 
4417   if (!isUInt<COMPUTE_PGM_RSRC2_USER_SGPR_COUNT_WIDTH>(UserSGPRCount))
4418     return TokError("too many user SGPRs enabled");
4419   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, COMPUTE_PGM_RSRC2_USER_SGPR_COUNT,
4420                   UserSGPRCount);
4421 
4422   getTargetStreamer().EmitAmdhsaKernelDescriptor(
4423       getSTI(), KernelName, KD, NextFreeVGPR, NextFreeSGPR, ReserveVCC,
4424       ReserveFlatScr, ReserveXNACK);
4425   return false;
4426 }
4427 
4428 bool AMDGPUAsmParser::ParseDirectiveHSACodeObjectVersion() {
4429   uint32_t Major;
4430   uint32_t Minor;
4431 
4432   if (ParseDirectiveMajorMinor(Major, Minor))
4433     return true;
4434 
4435   getTargetStreamer().EmitDirectiveHSACodeObjectVersion(Major, Minor);
4436   return false;
4437 }
4438 
4439 bool AMDGPUAsmParser::ParseDirectiveHSACodeObjectISA() {
4440   uint32_t Major;
4441   uint32_t Minor;
4442   uint32_t Stepping;
4443   StringRef VendorName;
4444   StringRef ArchName;
4445 
4446   // If this directive has no arguments, then use the ISA version for the
4447   // targeted GPU.
4448   if (isToken(AsmToken::EndOfStatement)) {
4449     AMDGPU::IsaVersion ISA = AMDGPU::getIsaVersion(getSTI().getCPU());
4450     getTargetStreamer().EmitDirectiveHSACodeObjectISA(ISA.Major, ISA.Minor,
4451                                                       ISA.Stepping,
4452                                                       "AMD", "AMDGPU");
4453     return false;
4454   }
4455 
4456   if (ParseDirectiveMajorMinor(Major, Minor))
4457     return true;
4458 
4459   if (!trySkipToken(AsmToken::Comma))
4460     return TokError("stepping version number required, comma expected");
4461 
4462   if (ParseAsAbsoluteExpression(Stepping))
4463     return TokError("invalid stepping version");
4464 
4465   if (!trySkipToken(AsmToken::Comma))
4466     return TokError("vendor name required, comma expected");
4467 
4468   if (!parseString(VendorName, "invalid vendor name"))
4469     return true;
4470 
4471   if (!trySkipToken(AsmToken::Comma))
4472     return TokError("arch name required, comma expected");
4473 
4474   if (!parseString(ArchName, "invalid arch name"))
4475     return true;
4476 
4477   getTargetStreamer().EmitDirectiveHSACodeObjectISA(Major, Minor, Stepping,
4478                                                     VendorName, ArchName);
4479   return false;
4480 }
4481 
4482 bool AMDGPUAsmParser::ParseAMDKernelCodeTValue(StringRef ID,
4483                                                amd_kernel_code_t &Header) {
4484   // max_scratch_backing_memory_byte_size is deprecated. Ignore it while parsing
4485   // assembly for backwards compatibility.
4486   if (ID == "max_scratch_backing_memory_byte_size") {
4487     Parser.eatToEndOfStatement();
4488     return false;
4489   }
4490 
4491   SmallString<40> ErrStr;
4492   raw_svector_ostream Err(ErrStr);
4493   if (!parseAmdKernelCodeField(ID, getParser(), Header, Err)) {
4494     return TokError(Err.str());
4495   }
4496   Lex();
4497 
4498   if (ID == "enable_wavefront_size32") {
4499     if (Header.code_properties & AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32) {
4500       if (!isGFX10Plus())
4501         return TokError("enable_wavefront_size32=1 is only allowed on GFX10+");
4502       if (!getFeatureBits()[AMDGPU::FeatureWavefrontSize32])
4503         return TokError("enable_wavefront_size32=1 requires +WavefrontSize32");
4504     } else {
4505       if (!getFeatureBits()[AMDGPU::FeatureWavefrontSize64])
4506         return TokError("enable_wavefront_size32=0 requires +WavefrontSize64");
4507     }
4508   }
4509 
4510   if (ID == "wavefront_size") {
4511     if (Header.wavefront_size == 5) {
4512       if (!isGFX10Plus())
4513         return TokError("wavefront_size=5 is only allowed on GFX10+");
4514       if (!getFeatureBits()[AMDGPU::FeatureWavefrontSize32])
4515         return TokError("wavefront_size=5 requires +WavefrontSize32");
4516     } else if (Header.wavefront_size == 6) {
4517       if (!getFeatureBits()[AMDGPU::FeatureWavefrontSize64])
4518         return TokError("wavefront_size=6 requires +WavefrontSize64");
4519     }
4520   }
4521 
4522   if (ID == "enable_wgp_mode") {
4523     if (G_00B848_WGP_MODE(Header.compute_pgm_resource_registers) &&
4524         !isGFX10Plus())
4525       return TokError("enable_wgp_mode=1 is only allowed on GFX10+");
4526   }
4527 
4528   if (ID == "enable_mem_ordered") {
4529     if (G_00B848_MEM_ORDERED(Header.compute_pgm_resource_registers) &&
4530         !isGFX10Plus())
4531       return TokError("enable_mem_ordered=1 is only allowed on GFX10+");
4532   }
4533 
4534   if (ID == "enable_fwd_progress") {
4535     if (G_00B848_FWD_PROGRESS(Header.compute_pgm_resource_registers) &&
4536         !isGFX10Plus())
4537       return TokError("enable_fwd_progress=1 is only allowed on GFX10+");
4538   }
4539 
4540   return false;
4541 }
4542 
4543 bool AMDGPUAsmParser::ParseDirectiveAMDKernelCodeT() {
4544   amd_kernel_code_t Header;
4545   AMDGPU::initDefaultAMDKernelCodeT(Header, &getSTI());
4546 
4547   while (true) {
4548     // Lex EndOfStatement.  This is in a while loop, because lexing a comment
4549     // will set the current token to EndOfStatement.
4550     while(trySkipToken(AsmToken::EndOfStatement));
4551 
4552     StringRef ID;
4553     if (!parseId(ID, "expected value identifier or .end_amd_kernel_code_t"))
4554       return true;
4555 
4556     if (ID == ".end_amd_kernel_code_t")
4557       break;
4558 
4559     if (ParseAMDKernelCodeTValue(ID, Header))
4560       return true;
4561   }
4562 
4563   getTargetStreamer().EmitAMDKernelCodeT(Header);
4564 
4565   return false;
4566 }
4567 
4568 bool AMDGPUAsmParser::ParseDirectiveAMDGPUHsaKernel() {
4569   StringRef KernelName;
4570   if (!parseId(KernelName, "expected symbol name"))
4571     return true;
4572 
4573   getTargetStreamer().EmitAMDGPUSymbolType(KernelName,
4574                                            ELF::STT_AMDGPU_HSA_KERNEL);
4575 
4576   KernelScope.initialize(getContext());
4577   return false;
4578 }
4579 
4580 bool AMDGPUAsmParser::ParseDirectiveISAVersion() {
4581   if (getSTI().getTargetTriple().getArch() != Triple::amdgcn) {
4582     return Error(getLoc(),
4583                  ".amd_amdgpu_isa directive is not available on non-amdgcn "
4584                  "architectures");
4585   }
4586 
4587   auto ISAVersionStringFromASM = getToken().getStringContents();
4588 
4589   std::string ISAVersionStringFromSTI;
4590   raw_string_ostream ISAVersionStreamFromSTI(ISAVersionStringFromSTI);
4591   IsaInfo::streamIsaVersion(&getSTI(), ISAVersionStreamFromSTI);
4592 
4593   if (ISAVersionStringFromASM != ISAVersionStreamFromSTI.str()) {
4594     return Error(getLoc(),
4595                  ".amd_amdgpu_isa directive does not match triple and/or mcpu "
4596                  "arguments specified through the command line");
4597   }
4598 
4599   getTargetStreamer().EmitISAVersion(ISAVersionStreamFromSTI.str());
4600   Lex();
4601 
4602   return false;
4603 }
4604 
4605 bool AMDGPUAsmParser::ParseDirectiveHSAMetadata() {
4606   const char *AssemblerDirectiveBegin;
4607   const char *AssemblerDirectiveEnd;
4608   std::tie(AssemblerDirectiveBegin, AssemblerDirectiveEnd) =
4609       isHsaAbiVersion3(&getSTI())
4610           ? std::make_tuple(HSAMD::V3::AssemblerDirectiveBegin,
4611                             HSAMD::V3::AssemblerDirectiveEnd)
4612           : std::make_tuple(HSAMD::AssemblerDirectiveBegin,
4613                             HSAMD::AssemblerDirectiveEnd);
4614 
4615   if (getSTI().getTargetTriple().getOS() != Triple::AMDHSA) {
4616     return Error(getLoc(),
4617                  (Twine(AssemblerDirectiveBegin) + Twine(" directive is "
4618                  "not available on non-amdhsa OSes")).str());
4619   }
4620 
4621   std::string HSAMetadataString;
4622   if (ParseToEndDirective(AssemblerDirectiveBegin, AssemblerDirectiveEnd,
4623                           HSAMetadataString))
4624     return true;
4625 
4626   if (isHsaAbiVersion3(&getSTI())) {
4627     if (!getTargetStreamer().EmitHSAMetadataV3(HSAMetadataString))
4628       return Error(getLoc(), "invalid HSA metadata");
4629   } else {
4630     if (!getTargetStreamer().EmitHSAMetadataV2(HSAMetadataString))
4631       return Error(getLoc(), "invalid HSA metadata");
4632   }
4633 
4634   return false;
4635 }
4636 
4637 /// Common code to parse out a block of text (typically YAML) between start and
4638 /// end directives.
4639 bool AMDGPUAsmParser::ParseToEndDirective(const char *AssemblerDirectiveBegin,
4640                                           const char *AssemblerDirectiveEnd,
4641                                           std::string &CollectString) {
4642 
4643   raw_string_ostream CollectStream(CollectString);
4644 
4645   getLexer().setSkipSpace(false);
4646 
4647   bool FoundEnd = false;
4648   while (!isToken(AsmToken::Eof)) {
4649     while (isToken(AsmToken::Space)) {
4650       CollectStream << getTokenStr();
4651       Lex();
4652     }
4653 
4654     if (trySkipId(AssemblerDirectiveEnd)) {
4655       FoundEnd = true;
4656       break;
4657     }
4658 
4659     CollectStream << Parser.parseStringToEndOfStatement()
4660                   << getContext().getAsmInfo()->getSeparatorString();
4661 
4662     Parser.eatToEndOfStatement();
4663   }
4664 
4665   getLexer().setSkipSpace(true);
4666 
4667   if (isToken(AsmToken::Eof) && !FoundEnd) {
4668     return TokError(Twine("expected directive ") +
4669                     Twine(AssemblerDirectiveEnd) + Twine(" not found"));
4670   }
4671 
4672   CollectStream.flush();
4673   return false;
4674 }
4675 
4676 /// Parse the assembler directive for new MsgPack-format PAL metadata.
4677 bool AMDGPUAsmParser::ParseDirectivePALMetadataBegin() {
4678   std::string String;
4679   if (ParseToEndDirective(AMDGPU::PALMD::AssemblerDirectiveBegin,
4680                           AMDGPU::PALMD::AssemblerDirectiveEnd, String))
4681     return true;
4682 
4683   auto PALMetadata = getTargetStreamer().getPALMetadata();
4684   if (!PALMetadata->setFromString(String))
4685     return Error(getLoc(), "invalid PAL metadata");
4686   return false;
4687 }
4688 
4689 /// Parse the assembler directive for old linear-format PAL metadata.
4690 bool AMDGPUAsmParser::ParseDirectivePALMetadata() {
4691   if (getSTI().getTargetTriple().getOS() != Triple::AMDPAL) {
4692     return Error(getLoc(),
4693                  (Twine(PALMD::AssemblerDirective) + Twine(" directive is "
4694                  "not available on non-amdpal OSes")).str());
4695   }
4696 
4697   auto PALMetadata = getTargetStreamer().getPALMetadata();
4698   PALMetadata->setLegacy();
4699   for (;;) {
4700     uint32_t Key, Value;
4701     if (ParseAsAbsoluteExpression(Key)) {
4702       return TokError(Twine("invalid value in ") +
4703                       Twine(PALMD::AssemblerDirective));
4704     }
4705     if (!trySkipToken(AsmToken::Comma)) {
4706       return TokError(Twine("expected an even number of values in ") +
4707                       Twine(PALMD::AssemblerDirective));
4708     }
4709     if (ParseAsAbsoluteExpression(Value)) {
4710       return TokError(Twine("invalid value in ") +
4711                       Twine(PALMD::AssemblerDirective));
4712     }
4713     PALMetadata->setRegister(Key, Value);
4714     if (!trySkipToken(AsmToken::Comma))
4715       break;
4716   }
4717   return false;
4718 }
4719 
4720 /// ParseDirectiveAMDGPULDS
4721 ///  ::= .amdgpu_lds identifier ',' size_expression [',' align_expression]
4722 bool AMDGPUAsmParser::ParseDirectiveAMDGPULDS() {
4723   if (getParser().checkForValidSection())
4724     return true;
4725 
4726   StringRef Name;
4727   SMLoc NameLoc = getLoc();
4728   if (getParser().parseIdentifier(Name))
4729     return TokError("expected identifier in directive");
4730 
4731   MCSymbol *Symbol = getContext().getOrCreateSymbol(Name);
4732   if (parseToken(AsmToken::Comma, "expected ','"))
4733     return true;
4734 
4735   unsigned LocalMemorySize = AMDGPU::IsaInfo::getLocalMemorySize(&getSTI());
4736 
4737   int64_t Size;
4738   SMLoc SizeLoc = getLoc();
4739   if (getParser().parseAbsoluteExpression(Size))
4740     return true;
4741   if (Size < 0)
4742     return Error(SizeLoc, "size must be non-negative");
4743   if (Size > LocalMemorySize)
4744     return Error(SizeLoc, "size is too large");
4745 
4746   int64_t Alignment = 4;
4747   if (trySkipToken(AsmToken::Comma)) {
4748     SMLoc AlignLoc = getLoc();
4749     if (getParser().parseAbsoluteExpression(Alignment))
4750       return true;
4751     if (Alignment < 0 || !isPowerOf2_64(Alignment))
4752       return Error(AlignLoc, "alignment must be a power of two");
4753 
4754     // Alignment larger than the size of LDS is possible in theory, as long
4755     // as the linker manages to place to symbol at address 0, but we do want
4756     // to make sure the alignment fits nicely into a 32-bit integer.
4757     if (Alignment >= 1u << 31)
4758       return Error(AlignLoc, "alignment is too large");
4759   }
4760 
4761   if (parseToken(AsmToken::EndOfStatement,
4762                  "unexpected token in '.amdgpu_lds' directive"))
4763     return true;
4764 
4765   Symbol->redefineIfPossible();
4766   if (!Symbol->isUndefined())
4767     return Error(NameLoc, "invalid symbol redefinition");
4768 
4769   getTargetStreamer().emitAMDGPULDS(Symbol, Size, Align(Alignment));
4770   return false;
4771 }
4772 
4773 bool AMDGPUAsmParser::ParseDirective(AsmToken DirectiveID) {
4774   StringRef IDVal = DirectiveID.getString();
4775 
4776   if (isHsaAbiVersion3(&getSTI())) {
4777     if (IDVal == ".amdgcn_target")
4778       return ParseDirectiveAMDGCNTarget();
4779 
4780     if (IDVal == ".amdhsa_kernel")
4781       return ParseDirectiveAMDHSAKernel();
4782 
4783     // TODO: Restructure/combine with PAL metadata directive.
4784     if (IDVal == AMDGPU::HSAMD::V3::AssemblerDirectiveBegin)
4785       return ParseDirectiveHSAMetadata();
4786   } else {
4787     if (IDVal == ".hsa_code_object_version")
4788       return ParseDirectiveHSACodeObjectVersion();
4789 
4790     if (IDVal == ".hsa_code_object_isa")
4791       return ParseDirectiveHSACodeObjectISA();
4792 
4793     if (IDVal == ".amd_kernel_code_t")
4794       return ParseDirectiveAMDKernelCodeT();
4795 
4796     if (IDVal == ".amdgpu_hsa_kernel")
4797       return ParseDirectiveAMDGPUHsaKernel();
4798 
4799     if (IDVal == ".amd_amdgpu_isa")
4800       return ParseDirectiveISAVersion();
4801 
4802     if (IDVal == AMDGPU::HSAMD::AssemblerDirectiveBegin)
4803       return ParseDirectiveHSAMetadata();
4804   }
4805 
4806   if (IDVal == ".amdgpu_lds")
4807     return ParseDirectiveAMDGPULDS();
4808 
4809   if (IDVal == PALMD::AssemblerDirectiveBegin)
4810     return ParseDirectivePALMetadataBegin();
4811 
4812   if (IDVal == PALMD::AssemblerDirective)
4813     return ParseDirectivePALMetadata();
4814 
4815   return true;
4816 }
4817 
4818 bool AMDGPUAsmParser::subtargetHasRegister(const MCRegisterInfo &MRI,
4819                                            unsigned RegNo) const {
4820 
4821   for (MCRegAliasIterator R(AMDGPU::TTMP12_TTMP13_TTMP14_TTMP15, &MRI, true);
4822        R.isValid(); ++R) {
4823     if (*R == RegNo)
4824       return isGFX9Plus();
4825   }
4826 
4827   // GFX10 has 2 more SGPRs 104 and 105.
4828   for (MCRegAliasIterator R(AMDGPU::SGPR104_SGPR105, &MRI, true);
4829        R.isValid(); ++R) {
4830     if (*R == RegNo)
4831       return hasSGPR104_SGPR105();
4832   }
4833 
4834   switch (RegNo) {
4835   case AMDGPU::SRC_SHARED_BASE:
4836   case AMDGPU::SRC_SHARED_LIMIT:
4837   case AMDGPU::SRC_PRIVATE_BASE:
4838   case AMDGPU::SRC_PRIVATE_LIMIT:
4839   case AMDGPU::SRC_POPS_EXITING_WAVE_ID:
4840     return isGFX9Plus();
4841   case AMDGPU::TBA:
4842   case AMDGPU::TBA_LO:
4843   case AMDGPU::TBA_HI:
4844   case AMDGPU::TMA:
4845   case AMDGPU::TMA_LO:
4846   case AMDGPU::TMA_HI:
4847     return !isGFX9Plus();
4848   case AMDGPU::XNACK_MASK:
4849   case AMDGPU::XNACK_MASK_LO:
4850   case AMDGPU::XNACK_MASK_HI:
4851     return (isVI() || isGFX9()) && hasXNACK();
4852   case AMDGPU::SGPR_NULL:
4853     return isGFX10Plus();
4854   default:
4855     break;
4856   }
4857 
4858   if (isCI())
4859     return true;
4860 
4861   if (isSI() || isGFX10Plus()) {
4862     // No flat_scr on SI.
4863     // On GFX10 flat scratch is not a valid register operand and can only be
4864     // accessed with s_setreg/s_getreg.
4865     switch (RegNo) {
4866     case AMDGPU::FLAT_SCR:
4867     case AMDGPU::FLAT_SCR_LO:
4868     case AMDGPU::FLAT_SCR_HI:
4869       return false;
4870     default:
4871       return true;
4872     }
4873   }
4874 
4875   // VI only has 102 SGPRs, so make sure we aren't trying to use the 2 more that
4876   // SI/CI have.
4877   for (MCRegAliasIterator R(AMDGPU::SGPR102_SGPR103, &MRI, true);
4878        R.isValid(); ++R) {
4879     if (*R == RegNo)
4880       return hasSGPR102_SGPR103();
4881   }
4882 
4883   return true;
4884 }
4885 
4886 OperandMatchResultTy
4887 AMDGPUAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic,
4888                               OperandMode Mode) {
4889   // Try to parse with a custom parser
4890   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
4891 
4892   // If we successfully parsed the operand or if there as an error parsing,
4893   // we are done.
4894   //
4895   // If we are parsing after we reach EndOfStatement then this means we
4896   // are appending default values to the Operands list.  This is only done
4897   // by custom parser, so we shouldn't continue on to the generic parsing.
4898   if (ResTy == MatchOperand_Success || ResTy == MatchOperand_ParseFail ||
4899       isToken(AsmToken::EndOfStatement))
4900     return ResTy;
4901 
4902   SMLoc RBraceLoc;
4903   SMLoc LBraceLoc = getLoc();
4904   if (Mode == OperandMode_NSA && trySkipToken(AsmToken::LBrac)) {
4905     unsigned Prefix = Operands.size();
4906 
4907     for (;;) {
4908       ResTy = parseReg(Operands);
4909       if (ResTy != MatchOperand_Success)
4910         return ResTy;
4911 
4912       RBraceLoc = getLoc();
4913       if (trySkipToken(AsmToken::RBrac))
4914         break;
4915 
4916       if (!trySkipToken(AsmToken::Comma))
4917         return MatchOperand_ParseFail;
4918     }
4919 
4920     if (Operands.size() - Prefix > 1) {
4921       Operands.insert(Operands.begin() + Prefix,
4922                       AMDGPUOperand::CreateToken(this, "[", LBraceLoc));
4923       Operands.push_back(AMDGPUOperand::CreateToken(this, "]", RBraceLoc));
4924     }
4925 
4926     return MatchOperand_Success;
4927   }
4928 
4929   return parseRegOrImm(Operands);
4930 }
4931 
4932 StringRef AMDGPUAsmParser::parseMnemonicSuffix(StringRef Name) {
4933   // Clear any forced encodings from the previous instruction.
4934   setForcedEncodingSize(0);
4935   setForcedDPP(false);
4936   setForcedSDWA(false);
4937 
4938   if (Name.endswith("_e64")) {
4939     setForcedEncodingSize(64);
4940     return Name.substr(0, Name.size() - 4);
4941   } else if (Name.endswith("_e32")) {
4942     setForcedEncodingSize(32);
4943     return Name.substr(0, Name.size() - 4);
4944   } else if (Name.endswith("_dpp")) {
4945     setForcedDPP(true);
4946     return Name.substr(0, Name.size() - 4);
4947   } else if (Name.endswith("_sdwa")) {
4948     setForcedSDWA(true);
4949     return Name.substr(0, Name.size() - 5);
4950   }
4951   return Name;
4952 }
4953 
4954 bool AMDGPUAsmParser::ParseInstruction(ParseInstructionInfo &Info,
4955                                        StringRef Name,
4956                                        SMLoc NameLoc, OperandVector &Operands) {
4957   // Add the instruction mnemonic
4958   Name = parseMnemonicSuffix(Name);
4959   Operands.push_back(AMDGPUOperand::CreateToken(this, Name, NameLoc));
4960 
4961   bool IsMIMG = Name.startswith("image_");
4962 
4963   while (!trySkipToken(AsmToken::EndOfStatement)) {
4964     OperandMode Mode = OperandMode_Default;
4965     if (IsMIMG && isGFX10Plus() && Operands.size() == 2)
4966       Mode = OperandMode_NSA;
4967     OperandMatchResultTy Res = parseOperand(Operands, Name, Mode);
4968 
4969     // Eat the comma or space if there is one.
4970     trySkipToken(AsmToken::Comma);
4971 
4972     if (Res != MatchOperand_Success) {
4973       checkUnsupportedInstruction(Name, NameLoc);
4974       if (!Parser.hasPendingError()) {
4975         // FIXME: use real operand location rather than the current location.
4976         StringRef Msg =
4977           (Res == MatchOperand_ParseFail) ? "failed parsing operand." :
4978                                             "not a valid operand.";
4979         Error(getLoc(), Msg);
4980       }
4981       while (!trySkipToken(AsmToken::EndOfStatement)) {
4982         Parser.Lex();
4983       }
4984       return true;
4985     }
4986   }
4987 
4988   return false;
4989 }
4990 
4991 //===----------------------------------------------------------------------===//
4992 // Utility functions
4993 //===----------------------------------------------------------------------===//
4994 
4995 OperandMatchResultTy
4996 AMDGPUAsmParser::parseIntWithPrefix(const char *Prefix, int64_t &IntVal) {
4997 
4998   if (!trySkipId(Prefix, AsmToken::Colon))
4999     return MatchOperand_NoMatch;
5000 
5001   return parseExpr(IntVal) ? MatchOperand_Success : MatchOperand_ParseFail;
5002 }
5003 
5004 OperandMatchResultTy
5005 AMDGPUAsmParser::parseIntWithPrefix(const char *Prefix, OperandVector &Operands,
5006                                     AMDGPUOperand::ImmTy ImmTy,
5007                                     bool (*ConvertResult)(int64_t&)) {
5008   SMLoc S = getLoc();
5009   int64_t Value = 0;
5010 
5011   OperandMatchResultTy Res = parseIntWithPrefix(Prefix, Value);
5012   if (Res != MatchOperand_Success)
5013     return Res;
5014 
5015   if (ConvertResult && !ConvertResult(Value)) {
5016     Error(S, "invalid " + StringRef(Prefix) + " value.");
5017   }
5018 
5019   Operands.push_back(AMDGPUOperand::CreateImm(this, Value, S, ImmTy));
5020   return MatchOperand_Success;
5021 }
5022 
5023 OperandMatchResultTy
5024 AMDGPUAsmParser::parseOperandArrayWithPrefix(const char *Prefix,
5025                                              OperandVector &Operands,
5026                                              AMDGPUOperand::ImmTy ImmTy,
5027                                              bool (*ConvertResult)(int64_t&)) {
5028   SMLoc S = getLoc();
5029   if (!trySkipId(Prefix, AsmToken::Colon))
5030     return MatchOperand_NoMatch;
5031 
5032   if (!skipToken(AsmToken::LBrac, "expected a left square bracket"))
5033     return MatchOperand_ParseFail;
5034 
5035   unsigned Val = 0;
5036   const unsigned MaxSize = 4;
5037 
5038   // FIXME: How to verify the number of elements matches the number of src
5039   // operands?
5040   for (int I = 0; ; ++I) {
5041     int64_t Op;
5042     SMLoc Loc = getLoc();
5043     if (!parseExpr(Op))
5044       return MatchOperand_ParseFail;
5045 
5046     if (Op != 0 && Op != 1) {
5047       Error(Loc, "invalid " + StringRef(Prefix) + " value.");
5048       return MatchOperand_ParseFail;
5049     }
5050 
5051     Val |= (Op << I);
5052 
5053     if (trySkipToken(AsmToken::RBrac))
5054       break;
5055 
5056     if (I + 1 == MaxSize) {
5057       Error(getLoc(), "expected a closing square bracket");
5058       return MatchOperand_ParseFail;
5059     }
5060 
5061     if (!skipToken(AsmToken::Comma, "expected a comma"))
5062       return MatchOperand_ParseFail;
5063   }
5064 
5065   Operands.push_back(AMDGPUOperand::CreateImm(this, Val, S, ImmTy));
5066   return MatchOperand_Success;
5067 }
5068 
5069 OperandMatchResultTy
5070 AMDGPUAsmParser::parseNamedBit(const char *Name, OperandVector &Operands,
5071                                AMDGPUOperand::ImmTy ImmTy) {
5072   int64_t Bit = 0;
5073   SMLoc S = getLoc();
5074 
5075   // We are at the end of the statement, and this is a default argument, so
5076   // use a default value.
5077   if (!isToken(AsmToken::EndOfStatement)) {
5078     switch(getTokenKind()) {
5079       case AsmToken::Identifier: {
5080         StringRef Tok = getTokenStr();
5081         if (Tok == Name) {
5082           if (Tok == "r128" && !hasMIMG_R128())
5083             Error(S, "r128 modifier is not supported on this GPU");
5084           if (Tok == "a16" && !isGFX9() && !hasGFX10A16())
5085             Error(S, "a16 modifier is not supported on this GPU");
5086           Bit = 1;
5087           Parser.Lex();
5088         } else if (Tok.startswith("no") && Tok.endswith(Name)) {
5089           Bit = 0;
5090           Parser.Lex();
5091         } else {
5092           return MatchOperand_NoMatch;
5093         }
5094         break;
5095       }
5096       default:
5097         return MatchOperand_NoMatch;
5098     }
5099   }
5100 
5101   if (!isGFX10Plus() && ImmTy == AMDGPUOperand::ImmTyDLC)
5102     return MatchOperand_ParseFail;
5103 
5104   if (isGFX9() && ImmTy == AMDGPUOperand::ImmTyA16)
5105     ImmTy = AMDGPUOperand::ImmTyR128A16;
5106 
5107   Operands.push_back(AMDGPUOperand::CreateImm(this, Bit, S, ImmTy));
5108   return MatchOperand_Success;
5109 }
5110 
5111 static void addOptionalImmOperand(
5112   MCInst& Inst, const OperandVector& Operands,
5113   AMDGPUAsmParser::OptionalImmIndexMap& OptionalIdx,
5114   AMDGPUOperand::ImmTy ImmT,
5115   int64_t Default = 0) {
5116   auto i = OptionalIdx.find(ImmT);
5117   if (i != OptionalIdx.end()) {
5118     unsigned Idx = i->second;
5119     ((AMDGPUOperand &)*Operands[Idx]).addImmOperands(Inst, 1);
5120   } else {
5121     Inst.addOperand(MCOperand::createImm(Default));
5122   }
5123 }
5124 
5125 OperandMatchResultTy
5126 AMDGPUAsmParser::parseStringWithPrefix(StringRef Prefix, StringRef &Value) {
5127   if (!trySkipId(Prefix, AsmToken::Colon))
5128     return MatchOperand_NoMatch;
5129 
5130   return parseId(Value) ? MatchOperand_Success : MatchOperand_ParseFail;
5131 }
5132 
5133 //===----------------------------------------------------------------------===//
5134 // MTBUF format
5135 //===----------------------------------------------------------------------===//
5136 
5137 bool AMDGPUAsmParser::tryParseFmt(const char *Pref,
5138                                   int64_t MaxVal,
5139                                   int64_t &Fmt) {
5140   int64_t Val;
5141   SMLoc Loc = getLoc();
5142 
5143   auto Res = parseIntWithPrefix(Pref, Val);
5144   if (Res == MatchOperand_ParseFail)
5145     return false;
5146   if (Res == MatchOperand_NoMatch)
5147     return true;
5148 
5149   if (Val < 0 || Val > MaxVal) {
5150     Error(Loc, Twine("out of range ", StringRef(Pref)));
5151     return false;
5152   }
5153 
5154   Fmt = Val;
5155   return true;
5156 }
5157 
5158 // dfmt and nfmt (in a tbuffer instruction) are parsed as one to allow their
5159 // values to live in a joint format operand in the MCInst encoding.
5160 OperandMatchResultTy
5161 AMDGPUAsmParser::parseDfmtNfmt(int64_t &Format) {
5162   using namespace llvm::AMDGPU::MTBUFFormat;
5163 
5164   int64_t Dfmt = DFMT_UNDEF;
5165   int64_t Nfmt = NFMT_UNDEF;
5166 
5167   // dfmt and nfmt can appear in either order, and each is optional.
5168   for (int I = 0; I < 2; ++I) {
5169     if (Dfmt == DFMT_UNDEF && !tryParseFmt("dfmt", DFMT_MAX, Dfmt))
5170       return MatchOperand_ParseFail;
5171 
5172     if (Nfmt == NFMT_UNDEF && !tryParseFmt("nfmt", NFMT_MAX, Nfmt)) {
5173       return MatchOperand_ParseFail;
5174     }
5175     // Skip optional comma between dfmt/nfmt
5176     // but guard against 2 commas following each other.
5177     if ((Dfmt == DFMT_UNDEF) != (Nfmt == NFMT_UNDEF) &&
5178         !peekToken().is(AsmToken::Comma)) {
5179       trySkipToken(AsmToken::Comma);
5180     }
5181   }
5182 
5183   if (Dfmt == DFMT_UNDEF && Nfmt == NFMT_UNDEF)
5184     return MatchOperand_NoMatch;
5185 
5186   Dfmt = (Dfmt == DFMT_UNDEF) ? DFMT_DEFAULT : Dfmt;
5187   Nfmt = (Nfmt == NFMT_UNDEF) ? NFMT_DEFAULT : Nfmt;
5188 
5189   Format = encodeDfmtNfmt(Dfmt, Nfmt);
5190   return MatchOperand_Success;
5191 }
5192 
5193 OperandMatchResultTy
5194 AMDGPUAsmParser::parseUfmt(int64_t &Format) {
5195   using namespace llvm::AMDGPU::MTBUFFormat;
5196 
5197   int64_t Fmt = UFMT_UNDEF;
5198 
5199   if (!tryParseFmt("format", UFMT_MAX, Fmt))
5200     return MatchOperand_ParseFail;
5201 
5202   if (Fmt == UFMT_UNDEF)
5203     return MatchOperand_NoMatch;
5204 
5205   Format = Fmt;
5206   return MatchOperand_Success;
5207 }
5208 
5209 bool AMDGPUAsmParser::matchDfmtNfmt(int64_t &Dfmt,
5210                                     int64_t &Nfmt,
5211                                     StringRef FormatStr,
5212                                     SMLoc Loc) {
5213   using namespace llvm::AMDGPU::MTBUFFormat;
5214   int64_t Format;
5215 
5216   Format = getDfmt(FormatStr);
5217   if (Format != DFMT_UNDEF) {
5218     Dfmt = Format;
5219     return true;
5220   }
5221 
5222   Format = getNfmt(FormatStr, getSTI());
5223   if (Format != NFMT_UNDEF) {
5224     Nfmt = Format;
5225     return true;
5226   }
5227 
5228   Error(Loc, "unsupported format");
5229   return false;
5230 }
5231 
5232 OperandMatchResultTy
5233 AMDGPUAsmParser::parseSymbolicSplitFormat(StringRef FormatStr,
5234                                           SMLoc FormatLoc,
5235                                           int64_t &Format) {
5236   using namespace llvm::AMDGPU::MTBUFFormat;
5237 
5238   int64_t Dfmt = DFMT_UNDEF;
5239   int64_t Nfmt = NFMT_UNDEF;
5240   if (!matchDfmtNfmt(Dfmt, Nfmt, FormatStr, FormatLoc))
5241     return MatchOperand_ParseFail;
5242 
5243   if (trySkipToken(AsmToken::Comma)) {
5244     StringRef Str;
5245     SMLoc Loc = getLoc();
5246     if (!parseId(Str, "expected a format string") ||
5247         !matchDfmtNfmt(Dfmt, Nfmt, Str, Loc)) {
5248       return MatchOperand_ParseFail;
5249     }
5250     if (Dfmt == DFMT_UNDEF) {
5251       Error(Loc, "duplicate numeric format");
5252       return MatchOperand_ParseFail;
5253     } else if (Nfmt == NFMT_UNDEF) {
5254       Error(Loc, "duplicate data format");
5255       return MatchOperand_ParseFail;
5256     }
5257   }
5258 
5259   Dfmt = (Dfmt == DFMT_UNDEF) ? DFMT_DEFAULT : Dfmt;
5260   Nfmt = (Nfmt == NFMT_UNDEF) ? NFMT_DEFAULT : Nfmt;
5261 
5262   if (isGFX10Plus()) {
5263     auto Ufmt = convertDfmtNfmt2Ufmt(Dfmt, Nfmt);
5264     if (Ufmt == UFMT_UNDEF) {
5265       Error(FormatLoc, "unsupported format");
5266       return MatchOperand_ParseFail;
5267     }
5268     Format = Ufmt;
5269   } else {
5270     Format = encodeDfmtNfmt(Dfmt, Nfmt);
5271   }
5272 
5273   return MatchOperand_Success;
5274 }
5275 
5276 OperandMatchResultTy
5277 AMDGPUAsmParser::parseSymbolicUnifiedFormat(StringRef FormatStr,
5278                                             SMLoc Loc,
5279                                             int64_t &Format) {
5280   using namespace llvm::AMDGPU::MTBUFFormat;
5281 
5282   auto Id = getUnifiedFormat(FormatStr);
5283   if (Id == UFMT_UNDEF)
5284     return MatchOperand_NoMatch;
5285 
5286   if (!isGFX10Plus()) {
5287     Error(Loc, "unified format is not supported on this GPU");
5288     return MatchOperand_ParseFail;
5289   }
5290 
5291   Format = Id;
5292   return MatchOperand_Success;
5293 }
5294 
5295 OperandMatchResultTy
5296 AMDGPUAsmParser::parseNumericFormat(int64_t &Format) {
5297   using namespace llvm::AMDGPU::MTBUFFormat;
5298   SMLoc Loc = getLoc();
5299 
5300   if (!parseExpr(Format))
5301     return MatchOperand_ParseFail;
5302   if (!isValidFormatEncoding(Format, getSTI())) {
5303     Error(Loc, "out of range format");
5304     return MatchOperand_ParseFail;
5305   }
5306 
5307   return MatchOperand_Success;
5308 }
5309 
5310 OperandMatchResultTy
5311 AMDGPUAsmParser::parseSymbolicOrNumericFormat(int64_t &Format) {
5312   using namespace llvm::AMDGPU::MTBUFFormat;
5313 
5314   if (!trySkipId("format", AsmToken::Colon))
5315     return MatchOperand_NoMatch;
5316 
5317   if (trySkipToken(AsmToken::LBrac)) {
5318     StringRef FormatStr;
5319     SMLoc Loc = getLoc();
5320     if (!parseId(FormatStr, "expected a format string"))
5321       return MatchOperand_ParseFail;
5322 
5323     auto Res = parseSymbolicUnifiedFormat(FormatStr, Loc, Format);
5324     if (Res == MatchOperand_NoMatch)
5325       Res = parseSymbolicSplitFormat(FormatStr, Loc, Format);
5326     if (Res != MatchOperand_Success)
5327       return Res;
5328 
5329     if (!skipToken(AsmToken::RBrac, "expected a closing square bracket"))
5330       return MatchOperand_ParseFail;
5331 
5332     return MatchOperand_Success;
5333   }
5334 
5335   return parseNumericFormat(Format);
5336 }
5337 
5338 OperandMatchResultTy
5339 AMDGPUAsmParser::parseFORMAT(OperandVector &Operands) {
5340   using namespace llvm::AMDGPU::MTBUFFormat;
5341 
5342   int64_t Format = getDefaultFormatEncoding(getSTI());
5343   OperandMatchResultTy Res;
5344   SMLoc Loc = getLoc();
5345 
5346   // Parse legacy format syntax.
5347   Res = isGFX10Plus() ? parseUfmt(Format) : parseDfmtNfmt(Format);
5348   if (Res == MatchOperand_ParseFail)
5349     return Res;
5350 
5351   bool FormatFound = (Res == MatchOperand_Success);
5352 
5353   Operands.push_back(
5354     AMDGPUOperand::CreateImm(this, Format, Loc, AMDGPUOperand::ImmTyFORMAT));
5355 
5356   if (FormatFound)
5357     trySkipToken(AsmToken::Comma);
5358 
5359   if (isToken(AsmToken::EndOfStatement)) {
5360     // We are expecting an soffset operand,
5361     // but let matcher handle the error.
5362     return MatchOperand_Success;
5363   }
5364 
5365   // Parse soffset.
5366   Res = parseRegOrImm(Operands);
5367   if (Res != MatchOperand_Success)
5368     return Res;
5369 
5370   trySkipToken(AsmToken::Comma);
5371 
5372   if (!FormatFound) {
5373     Res = parseSymbolicOrNumericFormat(Format);
5374     if (Res == MatchOperand_ParseFail)
5375       return Res;
5376     if (Res == MatchOperand_Success) {
5377       auto Size = Operands.size();
5378       AMDGPUOperand &Op = static_cast<AMDGPUOperand &>(*Operands[Size - 2]);
5379       assert(Op.isImm() && Op.getImmTy() == AMDGPUOperand::ImmTyFORMAT);
5380       Op.setImm(Format);
5381     }
5382     return MatchOperand_Success;
5383   }
5384 
5385   if (isId("format") && peekToken().is(AsmToken::Colon)) {
5386     Error(getLoc(), "duplicate format");
5387     return MatchOperand_ParseFail;
5388   }
5389   return MatchOperand_Success;
5390 }
5391 
5392 //===----------------------------------------------------------------------===//
5393 // ds
5394 //===----------------------------------------------------------------------===//
5395 
5396 void AMDGPUAsmParser::cvtDSOffset01(MCInst &Inst,
5397                                     const OperandVector &Operands) {
5398   OptionalImmIndexMap OptionalIdx;
5399 
5400   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
5401     AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[i]);
5402 
5403     // Add the register arguments
5404     if (Op.isReg()) {
5405       Op.addRegOperands(Inst, 1);
5406       continue;
5407     }
5408 
5409     // Handle optional arguments
5410     OptionalIdx[Op.getImmTy()] = i;
5411   }
5412 
5413   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyOffset0);
5414   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyOffset1);
5415   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyGDS);
5416 
5417   Inst.addOperand(MCOperand::createReg(AMDGPU::M0)); // m0
5418 }
5419 
5420 void AMDGPUAsmParser::cvtDSImpl(MCInst &Inst, const OperandVector &Operands,
5421                                 bool IsGdsHardcoded) {
5422   OptionalImmIndexMap OptionalIdx;
5423 
5424   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
5425     AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[i]);
5426 
5427     // Add the register arguments
5428     if (Op.isReg()) {
5429       Op.addRegOperands(Inst, 1);
5430       continue;
5431     }
5432 
5433     if (Op.isToken() && Op.getToken() == "gds") {
5434       IsGdsHardcoded = true;
5435       continue;
5436     }
5437 
5438     // Handle optional arguments
5439     OptionalIdx[Op.getImmTy()] = i;
5440   }
5441 
5442   AMDGPUOperand::ImmTy OffsetType =
5443     (Inst.getOpcode() == AMDGPU::DS_SWIZZLE_B32_gfx10 ||
5444      Inst.getOpcode() == AMDGPU::DS_SWIZZLE_B32_gfx6_gfx7 ||
5445      Inst.getOpcode() == AMDGPU::DS_SWIZZLE_B32_vi) ? AMDGPUOperand::ImmTySwizzle :
5446                                                       AMDGPUOperand::ImmTyOffset;
5447 
5448   addOptionalImmOperand(Inst, Operands, OptionalIdx, OffsetType);
5449 
5450   if (!IsGdsHardcoded) {
5451     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyGDS);
5452   }
5453   Inst.addOperand(MCOperand::createReg(AMDGPU::M0)); // m0
5454 }
5455 
5456 void AMDGPUAsmParser::cvtExp(MCInst &Inst, const OperandVector &Operands) {
5457   OptionalImmIndexMap OptionalIdx;
5458 
5459   unsigned OperandIdx[4];
5460   unsigned EnMask = 0;
5461   int SrcIdx = 0;
5462 
5463   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
5464     AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[i]);
5465 
5466     // Add the register arguments
5467     if (Op.isReg()) {
5468       assert(SrcIdx < 4);
5469       OperandIdx[SrcIdx] = Inst.size();
5470       Op.addRegOperands(Inst, 1);
5471       ++SrcIdx;
5472       continue;
5473     }
5474 
5475     if (Op.isOff()) {
5476       assert(SrcIdx < 4);
5477       OperandIdx[SrcIdx] = Inst.size();
5478       Inst.addOperand(MCOperand::createReg(AMDGPU::NoRegister));
5479       ++SrcIdx;
5480       continue;
5481     }
5482 
5483     if (Op.isImm() && Op.getImmTy() == AMDGPUOperand::ImmTyExpTgt) {
5484       Op.addImmOperands(Inst, 1);
5485       continue;
5486     }
5487 
5488     if (Op.isToken() && Op.getToken() == "done")
5489       continue;
5490 
5491     // Handle optional arguments
5492     OptionalIdx[Op.getImmTy()] = i;
5493   }
5494 
5495   assert(SrcIdx == 4);
5496 
5497   bool Compr = false;
5498   if (OptionalIdx.find(AMDGPUOperand::ImmTyExpCompr) != OptionalIdx.end()) {
5499     Compr = true;
5500     Inst.getOperand(OperandIdx[1]) = Inst.getOperand(OperandIdx[2]);
5501     Inst.getOperand(OperandIdx[2]).setReg(AMDGPU::NoRegister);
5502     Inst.getOperand(OperandIdx[3]).setReg(AMDGPU::NoRegister);
5503   }
5504 
5505   for (auto i = 0; i < SrcIdx; ++i) {
5506     if (Inst.getOperand(OperandIdx[i]).getReg() != AMDGPU::NoRegister) {
5507       EnMask |= Compr? (0x3 << i * 2) : (0x1 << i);
5508     }
5509   }
5510 
5511   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyExpVM);
5512   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyExpCompr);
5513 
5514   Inst.addOperand(MCOperand::createImm(EnMask));
5515 }
5516 
5517 //===----------------------------------------------------------------------===//
5518 // s_waitcnt
5519 //===----------------------------------------------------------------------===//
5520 
5521 static bool
5522 encodeCnt(
5523   const AMDGPU::IsaVersion ISA,
5524   int64_t &IntVal,
5525   int64_t CntVal,
5526   bool Saturate,
5527   unsigned (*encode)(const IsaVersion &Version, unsigned, unsigned),
5528   unsigned (*decode)(const IsaVersion &Version, unsigned))
5529 {
5530   bool Failed = false;
5531 
5532   IntVal = encode(ISA, IntVal, CntVal);
5533   if (CntVal != decode(ISA, IntVal)) {
5534     if (Saturate) {
5535       IntVal = encode(ISA, IntVal, -1);
5536     } else {
5537       Failed = true;
5538     }
5539   }
5540   return Failed;
5541 }
5542 
5543 bool AMDGPUAsmParser::parseCnt(int64_t &IntVal) {
5544 
5545   SMLoc CntLoc = getLoc();
5546   StringRef CntName = getTokenStr();
5547 
5548   if (!skipToken(AsmToken::Identifier, "expected a counter name") ||
5549       !skipToken(AsmToken::LParen, "expected a left parenthesis"))
5550     return false;
5551 
5552   int64_t CntVal;
5553   SMLoc ValLoc = getLoc();
5554   if (!parseExpr(CntVal))
5555     return false;
5556 
5557   AMDGPU::IsaVersion ISA = AMDGPU::getIsaVersion(getSTI().getCPU());
5558 
5559   bool Failed = true;
5560   bool Sat = CntName.endswith("_sat");
5561 
5562   if (CntName == "vmcnt" || CntName == "vmcnt_sat") {
5563     Failed = encodeCnt(ISA, IntVal, CntVal, Sat, encodeVmcnt, decodeVmcnt);
5564   } else if (CntName == "expcnt" || CntName == "expcnt_sat") {
5565     Failed = encodeCnt(ISA, IntVal, CntVal, Sat, encodeExpcnt, decodeExpcnt);
5566   } else if (CntName == "lgkmcnt" || CntName == "lgkmcnt_sat") {
5567     Failed = encodeCnt(ISA, IntVal, CntVal, Sat, encodeLgkmcnt, decodeLgkmcnt);
5568   } else {
5569     Error(CntLoc, "invalid counter name " + CntName);
5570     return false;
5571   }
5572 
5573   if (Failed) {
5574     Error(ValLoc, "too large value for " + CntName);
5575     return false;
5576   }
5577 
5578   if (!skipToken(AsmToken::RParen, "expected a closing parenthesis"))
5579     return false;
5580 
5581   if (trySkipToken(AsmToken::Amp) || trySkipToken(AsmToken::Comma)) {
5582     if (isToken(AsmToken::EndOfStatement)) {
5583       Error(getLoc(), "expected a counter name");
5584       return false;
5585     }
5586   }
5587 
5588   return true;
5589 }
5590 
5591 OperandMatchResultTy
5592 AMDGPUAsmParser::parseSWaitCntOps(OperandVector &Operands) {
5593   AMDGPU::IsaVersion ISA = AMDGPU::getIsaVersion(getSTI().getCPU());
5594   int64_t Waitcnt = getWaitcntBitMask(ISA);
5595   SMLoc S = getLoc();
5596 
5597   if (isToken(AsmToken::Identifier) && peekToken().is(AsmToken::LParen)) {
5598     while (!isToken(AsmToken::EndOfStatement)) {
5599       if (!parseCnt(Waitcnt))
5600         return MatchOperand_ParseFail;
5601     }
5602   } else {
5603     if (!parseExpr(Waitcnt))
5604       return MatchOperand_ParseFail;
5605   }
5606 
5607   Operands.push_back(AMDGPUOperand::CreateImm(this, Waitcnt, S));
5608   return MatchOperand_Success;
5609 }
5610 
5611 bool
5612 AMDGPUOperand::isSWaitCnt() const {
5613   return isImm();
5614 }
5615 
5616 //===----------------------------------------------------------------------===//
5617 // hwreg
5618 //===----------------------------------------------------------------------===//
5619 
5620 bool
5621 AMDGPUAsmParser::parseHwregBody(OperandInfoTy &HwReg,
5622                                 OperandInfoTy &Offset,
5623                                 OperandInfoTy &Width) {
5624   using namespace llvm::AMDGPU::Hwreg;
5625 
5626   // The register may be specified by name or using a numeric code
5627   HwReg.Loc = getLoc();
5628   if (isToken(AsmToken::Identifier) &&
5629       (HwReg.Id = getHwregId(getTokenStr())) >= 0) {
5630     HwReg.IsSymbolic = true;
5631     lex(); // skip register name
5632   } else if (!parseExpr(HwReg.Id, "a register name")) {
5633     return false;
5634   }
5635 
5636   if (trySkipToken(AsmToken::RParen))
5637     return true;
5638 
5639   // parse optional params
5640   if (!skipToken(AsmToken::Comma, "expected a comma or a closing parenthesis"))
5641     return false;
5642 
5643   Offset.Loc = getLoc();
5644   if (!parseExpr(Offset.Id))
5645     return false;
5646 
5647   if (!skipToken(AsmToken::Comma, "expected a comma"))
5648     return false;
5649 
5650   Width.Loc = getLoc();
5651   return parseExpr(Width.Id) &&
5652          skipToken(AsmToken::RParen, "expected a closing parenthesis");
5653 }
5654 
5655 bool
5656 AMDGPUAsmParser::validateHwreg(const OperandInfoTy &HwReg,
5657                                const OperandInfoTy &Offset,
5658                                const OperandInfoTy &Width) {
5659 
5660   using namespace llvm::AMDGPU::Hwreg;
5661 
5662   if (HwReg.IsSymbolic && !isValidHwreg(HwReg.Id, getSTI())) {
5663     Error(HwReg.Loc,
5664           "specified hardware register is not supported on this GPU");
5665     return false;
5666   }
5667   if (!isValidHwreg(HwReg.Id)) {
5668     Error(HwReg.Loc,
5669           "invalid code of hardware register: only 6-bit values are legal");
5670     return false;
5671   }
5672   if (!isValidHwregOffset(Offset.Id)) {
5673     Error(Offset.Loc, "invalid bit offset: only 5-bit values are legal");
5674     return false;
5675   }
5676   if (!isValidHwregWidth(Width.Id)) {
5677     Error(Width.Loc,
5678           "invalid bitfield width: only values from 1 to 32 are legal");
5679     return false;
5680   }
5681   return true;
5682 }
5683 
5684 OperandMatchResultTy
5685 AMDGPUAsmParser::parseHwreg(OperandVector &Operands) {
5686   using namespace llvm::AMDGPU::Hwreg;
5687 
5688   int64_t ImmVal = 0;
5689   SMLoc Loc = getLoc();
5690 
5691   if (trySkipId("hwreg", AsmToken::LParen)) {
5692     OperandInfoTy HwReg(ID_UNKNOWN_);
5693     OperandInfoTy Offset(OFFSET_DEFAULT_);
5694     OperandInfoTy Width(WIDTH_DEFAULT_);
5695     if (parseHwregBody(HwReg, Offset, Width) &&
5696         validateHwreg(HwReg, Offset, Width)) {
5697       ImmVal = encodeHwreg(HwReg.Id, Offset.Id, Width.Id);
5698     } else {
5699       return MatchOperand_ParseFail;
5700     }
5701   } else if (parseExpr(ImmVal, "a hwreg macro")) {
5702     if (ImmVal < 0 || !isUInt<16>(ImmVal)) {
5703       Error(Loc, "invalid immediate: only 16-bit values are legal");
5704       return MatchOperand_ParseFail;
5705     }
5706   } else {
5707     return MatchOperand_ParseFail;
5708   }
5709 
5710   Operands.push_back(AMDGPUOperand::CreateImm(this, ImmVal, Loc, AMDGPUOperand::ImmTyHwreg));
5711   return MatchOperand_Success;
5712 }
5713 
5714 bool AMDGPUOperand::isHwreg() const {
5715   return isImmTy(ImmTyHwreg);
5716 }
5717 
5718 //===----------------------------------------------------------------------===//
5719 // sendmsg
5720 //===----------------------------------------------------------------------===//
5721 
5722 bool
5723 AMDGPUAsmParser::parseSendMsgBody(OperandInfoTy &Msg,
5724                                   OperandInfoTy &Op,
5725                                   OperandInfoTy &Stream) {
5726   using namespace llvm::AMDGPU::SendMsg;
5727 
5728   Msg.Loc = getLoc();
5729   if (isToken(AsmToken::Identifier) && (Msg.Id = getMsgId(getTokenStr())) >= 0) {
5730     Msg.IsSymbolic = true;
5731     lex(); // skip message name
5732   } else if (!parseExpr(Msg.Id, "a message name")) {
5733     return false;
5734   }
5735 
5736   if (trySkipToken(AsmToken::Comma)) {
5737     Op.IsDefined = true;
5738     Op.Loc = getLoc();
5739     if (isToken(AsmToken::Identifier) &&
5740         (Op.Id = getMsgOpId(Msg.Id, getTokenStr())) >= 0) {
5741       lex(); // skip operation name
5742     } else if (!parseExpr(Op.Id, "an operation name")) {
5743       return false;
5744     }
5745 
5746     if (trySkipToken(AsmToken::Comma)) {
5747       Stream.IsDefined = true;
5748       Stream.Loc = getLoc();
5749       if (!parseExpr(Stream.Id))
5750         return false;
5751     }
5752   }
5753 
5754   return skipToken(AsmToken::RParen, "expected a closing parenthesis");
5755 }
5756 
5757 bool
5758 AMDGPUAsmParser::validateSendMsg(const OperandInfoTy &Msg,
5759                                  const OperandInfoTy &Op,
5760                                  const OperandInfoTy &Stream) {
5761   using namespace llvm::AMDGPU::SendMsg;
5762 
5763   // Validation strictness depends on whether message is specified
5764   // in a symbolc or in a numeric form. In the latter case
5765   // only encoding possibility is checked.
5766   bool Strict = Msg.IsSymbolic;
5767 
5768   if (!isValidMsgId(Msg.Id, getSTI(), Strict)) {
5769     Error(Msg.Loc, "invalid message id");
5770     return false;
5771   }
5772   if (Strict && (msgRequiresOp(Msg.Id) != Op.IsDefined)) {
5773     if (Op.IsDefined) {
5774       Error(Op.Loc, "message does not support operations");
5775     } else {
5776       Error(Msg.Loc, "missing message operation");
5777     }
5778     return false;
5779   }
5780   if (!isValidMsgOp(Msg.Id, Op.Id, Strict)) {
5781     Error(Op.Loc, "invalid operation id");
5782     return false;
5783   }
5784   if (Strict && !msgSupportsStream(Msg.Id, Op.Id) && Stream.IsDefined) {
5785     Error(Stream.Loc, "message operation does not support streams");
5786     return false;
5787   }
5788   if (!isValidMsgStream(Msg.Id, Op.Id, Stream.Id, Strict)) {
5789     Error(Stream.Loc, "invalid message stream id");
5790     return false;
5791   }
5792   return true;
5793 }
5794 
5795 OperandMatchResultTy
5796 AMDGPUAsmParser::parseSendMsgOp(OperandVector &Operands) {
5797   using namespace llvm::AMDGPU::SendMsg;
5798 
5799   int64_t ImmVal = 0;
5800   SMLoc Loc = getLoc();
5801 
5802   if (trySkipId("sendmsg", AsmToken::LParen)) {
5803     OperandInfoTy Msg(ID_UNKNOWN_);
5804     OperandInfoTy Op(OP_NONE_);
5805     OperandInfoTy Stream(STREAM_ID_NONE_);
5806     if (parseSendMsgBody(Msg, Op, Stream) &&
5807         validateSendMsg(Msg, Op, Stream)) {
5808       ImmVal = encodeMsg(Msg.Id, Op.Id, Stream.Id);
5809     } else {
5810       return MatchOperand_ParseFail;
5811     }
5812   } else if (parseExpr(ImmVal, "a sendmsg macro")) {
5813     if (ImmVal < 0 || !isUInt<16>(ImmVal)) {
5814       Error(Loc, "invalid immediate: only 16-bit values are legal");
5815       return MatchOperand_ParseFail;
5816     }
5817   } else {
5818     return MatchOperand_ParseFail;
5819   }
5820 
5821   Operands.push_back(AMDGPUOperand::CreateImm(this, ImmVal, Loc, AMDGPUOperand::ImmTySendMsg));
5822   return MatchOperand_Success;
5823 }
5824 
5825 bool AMDGPUOperand::isSendMsg() const {
5826   return isImmTy(ImmTySendMsg);
5827 }
5828 
5829 //===----------------------------------------------------------------------===//
5830 // v_interp
5831 //===----------------------------------------------------------------------===//
5832 
5833 OperandMatchResultTy AMDGPUAsmParser::parseInterpSlot(OperandVector &Operands) {
5834   StringRef Str;
5835   SMLoc S = getLoc();
5836 
5837   if (!parseId(Str))
5838     return MatchOperand_NoMatch;
5839 
5840   int Slot = StringSwitch<int>(Str)
5841     .Case("p10", 0)
5842     .Case("p20", 1)
5843     .Case("p0", 2)
5844     .Default(-1);
5845 
5846   if (Slot == -1) {
5847     Error(S, "invalid interpolation slot");
5848     return MatchOperand_ParseFail;
5849   }
5850 
5851   Operands.push_back(AMDGPUOperand::CreateImm(this, Slot, S,
5852                                               AMDGPUOperand::ImmTyInterpSlot));
5853   return MatchOperand_Success;
5854 }
5855 
5856 OperandMatchResultTy AMDGPUAsmParser::parseInterpAttr(OperandVector &Operands) {
5857   StringRef Str;
5858   SMLoc S = getLoc();
5859 
5860   if (!parseId(Str))
5861     return MatchOperand_NoMatch;
5862 
5863   if (!Str.startswith("attr")) {
5864     Error(S, "invalid interpolation attribute");
5865     return MatchOperand_ParseFail;
5866   }
5867 
5868   StringRef Chan = Str.take_back(2);
5869   int AttrChan = StringSwitch<int>(Chan)
5870     .Case(".x", 0)
5871     .Case(".y", 1)
5872     .Case(".z", 2)
5873     .Case(".w", 3)
5874     .Default(-1);
5875   if (AttrChan == -1) {
5876     Error(S, "invalid or missing interpolation attribute channel");
5877     return MatchOperand_ParseFail;
5878   }
5879 
5880   Str = Str.drop_back(2).drop_front(4);
5881 
5882   uint8_t Attr;
5883   if (Str.getAsInteger(10, Attr)) {
5884     Error(S, "invalid or missing interpolation attribute number");
5885     return MatchOperand_ParseFail;
5886   }
5887 
5888   if (Attr > 63) {
5889     Error(S, "out of bounds interpolation attribute number");
5890     return MatchOperand_ParseFail;
5891   }
5892 
5893   SMLoc SChan = SMLoc::getFromPointer(Chan.data());
5894 
5895   Operands.push_back(AMDGPUOperand::CreateImm(this, Attr, S,
5896                                               AMDGPUOperand::ImmTyInterpAttr));
5897   Operands.push_back(AMDGPUOperand::CreateImm(this, AttrChan, SChan,
5898                                               AMDGPUOperand::ImmTyAttrChan));
5899   return MatchOperand_Success;
5900 }
5901 
5902 //===----------------------------------------------------------------------===//
5903 // exp
5904 //===----------------------------------------------------------------------===//
5905 
5906 OperandMatchResultTy AMDGPUAsmParser::parseExpTgtImpl(StringRef Str,
5907                                                       uint8_t &Val) {
5908   if (Str == "null") {
5909     Val = Exp::ET_NULL;
5910     return MatchOperand_Success;
5911   }
5912 
5913   if (Str.startswith("mrt")) {
5914     Str = Str.drop_front(3);
5915     if (Str == "z") { // == mrtz
5916       Val = Exp::ET_MRTZ;
5917       return MatchOperand_Success;
5918     }
5919 
5920     if (Str.getAsInteger(10, Val))
5921       return MatchOperand_ParseFail;
5922 
5923     if (Val > Exp::ET_MRT7)
5924       return MatchOperand_ParseFail;
5925 
5926     return MatchOperand_Success;
5927   }
5928 
5929   if (Str.startswith("pos")) {
5930     Str = Str.drop_front(3);
5931     if (Str.getAsInteger(10, Val))
5932       return MatchOperand_ParseFail;
5933 
5934     if (Val > (isGFX10Plus() ? 4 : 3))
5935       return MatchOperand_ParseFail;
5936 
5937     Val += Exp::ET_POS0;
5938     return MatchOperand_Success;
5939   }
5940 
5941   if (isGFX10Plus() && Str == "prim") {
5942     Val = Exp::ET_PRIM;
5943     return MatchOperand_Success;
5944   }
5945 
5946   if (Str.startswith("param")) {
5947     Str = Str.drop_front(5);
5948     if (Str.getAsInteger(10, Val))
5949       return MatchOperand_ParseFail;
5950 
5951     if (Val >= 32)
5952       return MatchOperand_ParseFail;
5953 
5954     Val += Exp::ET_PARAM0;
5955     return MatchOperand_Success;
5956   }
5957 
5958   return MatchOperand_ParseFail;
5959 }
5960 
5961 OperandMatchResultTy AMDGPUAsmParser::parseExpTgt(OperandVector &Operands) {
5962   StringRef Str;
5963   SMLoc S = getLoc();
5964 
5965   if (!parseId(Str))
5966     return MatchOperand_NoMatch;
5967 
5968   uint8_t Val;
5969   auto Res = parseExpTgtImpl(Str, Val);
5970   if (Res != MatchOperand_Success) {
5971     Error(S, "invalid exp target");
5972     return Res;
5973   }
5974 
5975   Operands.push_back(AMDGPUOperand::CreateImm(this, Val, S,
5976                                               AMDGPUOperand::ImmTyExpTgt));
5977   return MatchOperand_Success;
5978 }
5979 
5980 //===----------------------------------------------------------------------===//
5981 // parser helpers
5982 //===----------------------------------------------------------------------===//
5983 
5984 bool
5985 AMDGPUAsmParser::isId(const AsmToken &Token, const StringRef Id) const {
5986   return Token.is(AsmToken::Identifier) && Token.getString() == Id;
5987 }
5988 
5989 bool
5990 AMDGPUAsmParser::isId(const StringRef Id) const {
5991   return isId(getToken(), Id);
5992 }
5993 
5994 bool
5995 AMDGPUAsmParser::isToken(const AsmToken::TokenKind Kind) const {
5996   return getTokenKind() == Kind;
5997 }
5998 
5999 bool
6000 AMDGPUAsmParser::trySkipId(const StringRef Id) {
6001   if (isId(Id)) {
6002     lex();
6003     return true;
6004   }
6005   return false;
6006 }
6007 
6008 bool
6009 AMDGPUAsmParser::trySkipId(const StringRef Id, const AsmToken::TokenKind Kind) {
6010   if (isId(Id) && peekToken().is(Kind)) {
6011     lex();
6012     lex();
6013     return true;
6014   }
6015   return false;
6016 }
6017 
6018 bool
6019 AMDGPUAsmParser::trySkipToken(const AsmToken::TokenKind Kind) {
6020   if (isToken(Kind)) {
6021     lex();
6022     return true;
6023   }
6024   return false;
6025 }
6026 
6027 bool
6028 AMDGPUAsmParser::skipToken(const AsmToken::TokenKind Kind,
6029                            const StringRef ErrMsg) {
6030   if (!trySkipToken(Kind)) {
6031     Error(getLoc(), ErrMsg);
6032     return false;
6033   }
6034   return true;
6035 }
6036 
6037 bool
6038 AMDGPUAsmParser::parseExpr(int64_t &Imm, StringRef Expected) {
6039   SMLoc S = getLoc();
6040 
6041   const MCExpr *Expr;
6042   if (Parser.parseExpression(Expr))
6043     return false;
6044 
6045   if (Expr->evaluateAsAbsolute(Imm))
6046     return true;
6047 
6048   if (Expected.empty()) {
6049     Error(S, "expected absolute expression");
6050   } else {
6051     Error(S, Twine("expected ", Expected) +
6052              Twine(" or an absolute expression"));
6053   }
6054   return false;
6055 }
6056 
6057 bool
6058 AMDGPUAsmParser::parseExpr(OperandVector &Operands) {
6059   SMLoc S = getLoc();
6060 
6061   const MCExpr *Expr;
6062   if (Parser.parseExpression(Expr))
6063     return false;
6064 
6065   int64_t IntVal;
6066   if (Expr->evaluateAsAbsolute(IntVal)) {
6067     Operands.push_back(AMDGPUOperand::CreateImm(this, IntVal, S));
6068   } else {
6069     Operands.push_back(AMDGPUOperand::CreateExpr(this, Expr, S));
6070   }
6071   return true;
6072 }
6073 
6074 bool
6075 AMDGPUAsmParser::parseString(StringRef &Val, const StringRef ErrMsg) {
6076   if (isToken(AsmToken::String)) {
6077     Val = getToken().getStringContents();
6078     lex();
6079     return true;
6080   } else {
6081     Error(getLoc(), ErrMsg);
6082     return false;
6083   }
6084 }
6085 
6086 bool
6087 AMDGPUAsmParser::parseId(StringRef &Val, const StringRef ErrMsg) {
6088   if (isToken(AsmToken::Identifier)) {
6089     Val = getTokenStr();
6090     lex();
6091     return true;
6092   } else {
6093     if (!ErrMsg.empty())
6094       Error(getLoc(), ErrMsg);
6095     return false;
6096   }
6097 }
6098 
6099 AsmToken
6100 AMDGPUAsmParser::getToken() const {
6101   return Parser.getTok();
6102 }
6103 
6104 AsmToken
6105 AMDGPUAsmParser::peekToken() {
6106   return isToken(AsmToken::EndOfStatement) ? getToken() : getLexer().peekTok();
6107 }
6108 
6109 void
6110 AMDGPUAsmParser::peekTokens(MutableArrayRef<AsmToken> Tokens) {
6111   auto TokCount = getLexer().peekTokens(Tokens);
6112 
6113   for (auto Idx = TokCount; Idx < Tokens.size(); ++Idx)
6114     Tokens[Idx] = AsmToken(AsmToken::Error, "");
6115 }
6116 
6117 AsmToken::TokenKind
6118 AMDGPUAsmParser::getTokenKind() const {
6119   return getLexer().getKind();
6120 }
6121 
6122 SMLoc
6123 AMDGPUAsmParser::getLoc() const {
6124   return getToken().getLoc();
6125 }
6126 
6127 StringRef
6128 AMDGPUAsmParser::getTokenStr() const {
6129   return getToken().getString();
6130 }
6131 
6132 void
6133 AMDGPUAsmParser::lex() {
6134   Parser.Lex();
6135 }
6136 
6137 SMLoc
6138 AMDGPUAsmParser::getOperandLoc(std::function<bool(const AMDGPUOperand&)> Test,
6139                                const OperandVector &Operands) const {
6140   for (unsigned i = Operands.size() - 1; i > 0; --i) {
6141     AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[i]);
6142     if (Test(Op))
6143       return Op.getStartLoc();
6144   }
6145   return ((AMDGPUOperand &)*Operands[0]).getStartLoc();
6146 }
6147 
6148 SMLoc
6149 AMDGPUAsmParser::getImmLoc(AMDGPUOperand::ImmTy Type,
6150                            const OperandVector &Operands) const {
6151   auto Test = [=](const AMDGPUOperand& Op) { return Op.isImmTy(Type); };
6152   return getOperandLoc(Test, Operands);
6153 }
6154 
6155 SMLoc
6156 AMDGPUAsmParser::getRegLoc(unsigned Reg,
6157                            const OperandVector &Operands) const {
6158   auto Test = [=](const AMDGPUOperand& Op) {
6159     return Op.isRegKind() && Op.getReg() == Reg;
6160   };
6161   return getOperandLoc(Test, Operands);
6162 }
6163 
6164 SMLoc
6165 AMDGPUAsmParser::getLitLoc(const OperandVector &Operands) const {
6166   auto Test = [](const AMDGPUOperand& Op) {
6167     return Op.IsImmKindLiteral() || Op.isExpr();
6168   };
6169   return getOperandLoc(Test, Operands);
6170 }
6171 
6172 SMLoc
6173 AMDGPUAsmParser::getConstLoc(const OperandVector &Operands) const {
6174   auto Test = [](const AMDGPUOperand& Op) {
6175     return Op.isImmKindConst();
6176   };
6177   return getOperandLoc(Test, Operands);
6178 }
6179 
6180 //===----------------------------------------------------------------------===//
6181 // swizzle
6182 //===----------------------------------------------------------------------===//
6183 
6184 LLVM_READNONE
6185 static unsigned
6186 encodeBitmaskPerm(const unsigned AndMask,
6187                   const unsigned OrMask,
6188                   const unsigned XorMask) {
6189   using namespace llvm::AMDGPU::Swizzle;
6190 
6191   return BITMASK_PERM_ENC |
6192          (AndMask << BITMASK_AND_SHIFT) |
6193          (OrMask  << BITMASK_OR_SHIFT)  |
6194          (XorMask << BITMASK_XOR_SHIFT);
6195 }
6196 
6197 bool
6198 AMDGPUAsmParser::parseSwizzleOperand(int64_t &Op,
6199                                      const unsigned MinVal,
6200                                      const unsigned MaxVal,
6201                                      const StringRef ErrMsg,
6202                                      SMLoc &Loc) {
6203   if (!skipToken(AsmToken::Comma, "expected a comma")) {
6204     return false;
6205   }
6206   Loc = getLoc();
6207   if (!parseExpr(Op)) {
6208     return false;
6209   }
6210   if (Op < MinVal || Op > MaxVal) {
6211     Error(Loc, ErrMsg);
6212     return false;
6213   }
6214 
6215   return true;
6216 }
6217 
6218 bool
6219 AMDGPUAsmParser::parseSwizzleOperands(const unsigned OpNum, int64_t* Op,
6220                                       const unsigned MinVal,
6221                                       const unsigned MaxVal,
6222                                       const StringRef ErrMsg) {
6223   SMLoc Loc;
6224   for (unsigned i = 0; i < OpNum; ++i) {
6225     if (!parseSwizzleOperand(Op[i], MinVal, MaxVal, ErrMsg, Loc))
6226       return false;
6227   }
6228 
6229   return true;
6230 }
6231 
6232 bool
6233 AMDGPUAsmParser::parseSwizzleQuadPerm(int64_t &Imm) {
6234   using namespace llvm::AMDGPU::Swizzle;
6235 
6236   int64_t Lane[LANE_NUM];
6237   if (parseSwizzleOperands(LANE_NUM, Lane, 0, LANE_MAX,
6238                            "expected a 2-bit lane id")) {
6239     Imm = QUAD_PERM_ENC;
6240     for (unsigned I = 0; I < LANE_NUM; ++I) {
6241       Imm |= Lane[I] << (LANE_SHIFT * I);
6242     }
6243     return true;
6244   }
6245   return false;
6246 }
6247 
6248 bool
6249 AMDGPUAsmParser::parseSwizzleBroadcast(int64_t &Imm) {
6250   using namespace llvm::AMDGPU::Swizzle;
6251 
6252   SMLoc Loc;
6253   int64_t GroupSize;
6254   int64_t LaneIdx;
6255 
6256   if (!parseSwizzleOperand(GroupSize,
6257                            2, 32,
6258                            "group size must be in the interval [2,32]",
6259                            Loc)) {
6260     return false;
6261   }
6262   if (!isPowerOf2_64(GroupSize)) {
6263     Error(Loc, "group size must be a power of two");
6264     return false;
6265   }
6266   if (parseSwizzleOperand(LaneIdx,
6267                           0, GroupSize - 1,
6268                           "lane id must be in the interval [0,group size - 1]",
6269                           Loc)) {
6270     Imm = encodeBitmaskPerm(BITMASK_MAX - GroupSize + 1, LaneIdx, 0);
6271     return true;
6272   }
6273   return false;
6274 }
6275 
6276 bool
6277 AMDGPUAsmParser::parseSwizzleReverse(int64_t &Imm) {
6278   using namespace llvm::AMDGPU::Swizzle;
6279 
6280   SMLoc Loc;
6281   int64_t GroupSize;
6282 
6283   if (!parseSwizzleOperand(GroupSize,
6284                            2, 32,
6285                            "group size must be in the interval [2,32]",
6286                            Loc)) {
6287     return false;
6288   }
6289   if (!isPowerOf2_64(GroupSize)) {
6290     Error(Loc, "group size must be a power of two");
6291     return false;
6292   }
6293 
6294   Imm = encodeBitmaskPerm(BITMASK_MAX, 0, GroupSize - 1);
6295   return true;
6296 }
6297 
6298 bool
6299 AMDGPUAsmParser::parseSwizzleSwap(int64_t &Imm) {
6300   using namespace llvm::AMDGPU::Swizzle;
6301 
6302   SMLoc Loc;
6303   int64_t GroupSize;
6304 
6305   if (!parseSwizzleOperand(GroupSize,
6306                            1, 16,
6307                            "group size must be in the interval [1,16]",
6308                            Loc)) {
6309     return false;
6310   }
6311   if (!isPowerOf2_64(GroupSize)) {
6312     Error(Loc, "group size must be a power of two");
6313     return false;
6314   }
6315 
6316   Imm = encodeBitmaskPerm(BITMASK_MAX, 0, GroupSize);
6317   return true;
6318 }
6319 
6320 bool
6321 AMDGPUAsmParser::parseSwizzleBitmaskPerm(int64_t &Imm) {
6322   using namespace llvm::AMDGPU::Swizzle;
6323 
6324   if (!skipToken(AsmToken::Comma, "expected a comma")) {
6325     return false;
6326   }
6327 
6328   StringRef Ctl;
6329   SMLoc StrLoc = getLoc();
6330   if (!parseString(Ctl)) {
6331     return false;
6332   }
6333   if (Ctl.size() != BITMASK_WIDTH) {
6334     Error(StrLoc, "expected a 5-character mask");
6335     return false;
6336   }
6337 
6338   unsigned AndMask = 0;
6339   unsigned OrMask = 0;
6340   unsigned XorMask = 0;
6341 
6342   for (size_t i = 0; i < Ctl.size(); ++i) {
6343     unsigned Mask = 1 << (BITMASK_WIDTH - 1 - i);
6344     switch(Ctl[i]) {
6345     default:
6346       Error(StrLoc, "invalid mask");
6347       return false;
6348     case '0':
6349       break;
6350     case '1':
6351       OrMask |= Mask;
6352       break;
6353     case 'p':
6354       AndMask |= Mask;
6355       break;
6356     case 'i':
6357       AndMask |= Mask;
6358       XorMask |= Mask;
6359       break;
6360     }
6361   }
6362 
6363   Imm = encodeBitmaskPerm(AndMask, OrMask, XorMask);
6364   return true;
6365 }
6366 
6367 bool
6368 AMDGPUAsmParser::parseSwizzleOffset(int64_t &Imm) {
6369 
6370   SMLoc OffsetLoc = getLoc();
6371 
6372   if (!parseExpr(Imm, "a swizzle macro")) {
6373     return false;
6374   }
6375   if (!isUInt<16>(Imm)) {
6376     Error(OffsetLoc, "expected a 16-bit offset");
6377     return false;
6378   }
6379   return true;
6380 }
6381 
6382 bool
6383 AMDGPUAsmParser::parseSwizzleMacro(int64_t &Imm) {
6384   using namespace llvm::AMDGPU::Swizzle;
6385 
6386   if (skipToken(AsmToken::LParen, "expected a left parentheses")) {
6387 
6388     SMLoc ModeLoc = getLoc();
6389     bool Ok = false;
6390 
6391     if (trySkipId(IdSymbolic[ID_QUAD_PERM])) {
6392       Ok = parseSwizzleQuadPerm(Imm);
6393     } else if (trySkipId(IdSymbolic[ID_BITMASK_PERM])) {
6394       Ok = parseSwizzleBitmaskPerm(Imm);
6395     } else if (trySkipId(IdSymbolic[ID_BROADCAST])) {
6396       Ok = parseSwizzleBroadcast(Imm);
6397     } else if (trySkipId(IdSymbolic[ID_SWAP])) {
6398       Ok = parseSwizzleSwap(Imm);
6399     } else if (trySkipId(IdSymbolic[ID_REVERSE])) {
6400       Ok = parseSwizzleReverse(Imm);
6401     } else {
6402       Error(ModeLoc, "expected a swizzle mode");
6403     }
6404 
6405     return Ok && skipToken(AsmToken::RParen, "expected a closing parentheses");
6406   }
6407 
6408   return false;
6409 }
6410 
6411 OperandMatchResultTy
6412 AMDGPUAsmParser::parseSwizzleOp(OperandVector &Operands) {
6413   SMLoc S = getLoc();
6414   int64_t Imm = 0;
6415 
6416   if (trySkipId("offset")) {
6417 
6418     bool Ok = false;
6419     if (skipToken(AsmToken::Colon, "expected a colon")) {
6420       if (trySkipId("swizzle")) {
6421         Ok = parseSwizzleMacro(Imm);
6422       } else {
6423         Ok = parseSwizzleOffset(Imm);
6424       }
6425     }
6426 
6427     Operands.push_back(AMDGPUOperand::CreateImm(this, Imm, S, AMDGPUOperand::ImmTySwizzle));
6428 
6429     return Ok? MatchOperand_Success : MatchOperand_ParseFail;
6430   } else {
6431     // Swizzle "offset" operand is optional.
6432     // If it is omitted, try parsing other optional operands.
6433     return parseOptionalOpr(Operands);
6434   }
6435 }
6436 
6437 bool
6438 AMDGPUOperand::isSwizzle() const {
6439   return isImmTy(ImmTySwizzle);
6440 }
6441 
6442 //===----------------------------------------------------------------------===//
6443 // VGPR Index Mode
6444 //===----------------------------------------------------------------------===//
6445 
6446 int64_t AMDGPUAsmParser::parseGPRIdxMacro() {
6447 
6448   using namespace llvm::AMDGPU::VGPRIndexMode;
6449 
6450   if (trySkipToken(AsmToken::RParen)) {
6451     return OFF;
6452   }
6453 
6454   int64_t Imm = 0;
6455 
6456   while (true) {
6457     unsigned Mode = 0;
6458     SMLoc S = getLoc();
6459 
6460     for (unsigned ModeId = ID_MIN; ModeId <= ID_MAX; ++ModeId) {
6461       if (trySkipId(IdSymbolic[ModeId])) {
6462         Mode = 1 << ModeId;
6463         break;
6464       }
6465     }
6466 
6467     if (Mode == 0) {
6468       Error(S, (Imm == 0)?
6469                "expected a VGPR index mode or a closing parenthesis" :
6470                "expected a VGPR index mode");
6471       return UNDEF;
6472     }
6473 
6474     if (Imm & Mode) {
6475       Error(S, "duplicate VGPR index mode");
6476       return UNDEF;
6477     }
6478     Imm |= Mode;
6479 
6480     if (trySkipToken(AsmToken::RParen))
6481       break;
6482     if (!skipToken(AsmToken::Comma,
6483                    "expected a comma or a closing parenthesis"))
6484       return UNDEF;
6485   }
6486 
6487   return Imm;
6488 }
6489 
6490 OperandMatchResultTy
6491 AMDGPUAsmParser::parseGPRIdxMode(OperandVector &Operands) {
6492 
6493   using namespace llvm::AMDGPU::VGPRIndexMode;
6494 
6495   int64_t Imm = 0;
6496   SMLoc S = getLoc();
6497 
6498   if (trySkipId("gpr_idx", AsmToken::LParen)) {
6499     Imm = parseGPRIdxMacro();
6500     if (Imm == UNDEF)
6501       return MatchOperand_ParseFail;
6502   } else {
6503     if (getParser().parseAbsoluteExpression(Imm))
6504       return MatchOperand_ParseFail;
6505     if (Imm < 0 || !isUInt<4>(Imm)) {
6506       Error(S, "invalid immediate: only 4-bit values are legal");
6507       return MatchOperand_ParseFail;
6508     }
6509   }
6510 
6511   Operands.push_back(
6512       AMDGPUOperand::CreateImm(this, Imm, S, AMDGPUOperand::ImmTyGprIdxMode));
6513   return MatchOperand_Success;
6514 }
6515 
6516 bool AMDGPUOperand::isGPRIdxMode() const {
6517   return isImmTy(ImmTyGprIdxMode);
6518 }
6519 
6520 //===----------------------------------------------------------------------===//
6521 // sopp branch targets
6522 //===----------------------------------------------------------------------===//
6523 
6524 OperandMatchResultTy
6525 AMDGPUAsmParser::parseSOppBrTarget(OperandVector &Operands) {
6526 
6527   // Make sure we are not parsing something
6528   // that looks like a label or an expression but is not.
6529   // This will improve error messages.
6530   if (isRegister() || isModifier())
6531     return MatchOperand_NoMatch;
6532 
6533   if (!parseExpr(Operands))
6534     return MatchOperand_ParseFail;
6535 
6536   AMDGPUOperand &Opr = ((AMDGPUOperand &)*Operands[Operands.size() - 1]);
6537   assert(Opr.isImm() || Opr.isExpr());
6538   SMLoc Loc = Opr.getStartLoc();
6539 
6540   // Currently we do not support arbitrary expressions as branch targets.
6541   // Only labels and absolute expressions are accepted.
6542   if (Opr.isExpr() && !Opr.isSymbolRefExpr()) {
6543     Error(Loc, "expected an absolute expression or a label");
6544   } else if (Opr.isImm() && !Opr.isS16Imm()) {
6545     Error(Loc, "expected a 16-bit signed jump offset");
6546   }
6547 
6548   return MatchOperand_Success;
6549 }
6550 
6551 //===----------------------------------------------------------------------===//
6552 // Boolean holding registers
6553 //===----------------------------------------------------------------------===//
6554 
6555 OperandMatchResultTy
6556 AMDGPUAsmParser::parseBoolReg(OperandVector &Operands) {
6557   return parseReg(Operands);
6558 }
6559 
6560 //===----------------------------------------------------------------------===//
6561 // mubuf
6562 //===----------------------------------------------------------------------===//
6563 
6564 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultDLC() const {
6565   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTyDLC);
6566 }
6567 
6568 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultGLC() const {
6569   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTyGLC);
6570 }
6571 
6572 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultGLC_1() const {
6573   return AMDGPUOperand::CreateImm(this, -1, SMLoc(), AMDGPUOperand::ImmTyGLC);
6574 }
6575 
6576 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultSLC() const {
6577   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTySLC);
6578 }
6579 
6580 void AMDGPUAsmParser::cvtMubufImpl(MCInst &Inst,
6581                                const OperandVector &Operands,
6582                                bool IsAtomic,
6583                                bool IsAtomicReturn,
6584                                bool IsLds) {
6585   bool IsLdsOpcode = IsLds;
6586   bool HasLdsModifier = false;
6587   OptionalImmIndexMap OptionalIdx;
6588   assert(IsAtomicReturn ? IsAtomic : true);
6589   unsigned FirstOperandIdx = 1;
6590 
6591   for (unsigned i = FirstOperandIdx, e = Operands.size(); i != e; ++i) {
6592     AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[i]);
6593 
6594     // Add the register arguments
6595     if (Op.isReg()) {
6596       Op.addRegOperands(Inst, 1);
6597       // Insert a tied src for atomic return dst.
6598       // This cannot be postponed as subsequent calls to
6599       // addImmOperands rely on correct number of MC operands.
6600       if (IsAtomicReturn && i == FirstOperandIdx)
6601         Op.addRegOperands(Inst, 1);
6602       continue;
6603     }
6604 
6605     // Handle the case where soffset is an immediate
6606     if (Op.isImm() && Op.getImmTy() == AMDGPUOperand::ImmTyNone) {
6607       Op.addImmOperands(Inst, 1);
6608       continue;
6609     }
6610 
6611     HasLdsModifier |= Op.isLDS();
6612 
6613     // Handle tokens like 'offen' which are sometimes hard-coded into the
6614     // asm string.  There are no MCInst operands for these.
6615     if (Op.isToken()) {
6616       continue;
6617     }
6618     assert(Op.isImm());
6619 
6620     // Handle optional arguments
6621     OptionalIdx[Op.getImmTy()] = i;
6622   }
6623 
6624   // This is a workaround for an llvm quirk which may result in an
6625   // incorrect instruction selection. Lds and non-lds versions of
6626   // MUBUF instructions are identical except that lds versions
6627   // have mandatory 'lds' modifier. However this modifier follows
6628   // optional modifiers and llvm asm matcher regards this 'lds'
6629   // modifier as an optional one. As a result, an lds version
6630   // of opcode may be selected even if it has no 'lds' modifier.
6631   if (IsLdsOpcode && !HasLdsModifier) {
6632     int NoLdsOpcode = AMDGPU::getMUBUFNoLdsInst(Inst.getOpcode());
6633     if (NoLdsOpcode != -1) { // Got lds version - correct it.
6634       Inst.setOpcode(NoLdsOpcode);
6635       IsLdsOpcode = false;
6636     }
6637   }
6638 
6639   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyOffset);
6640   if (!IsAtomic || IsAtomicReturn) {
6641     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyGLC,
6642                           IsAtomicReturn ? -1 : 0);
6643   }
6644   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySLC);
6645 
6646   if (!IsLdsOpcode) { // tfe is not legal with lds opcodes
6647     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyTFE);
6648   }
6649 
6650   if (isGFX10Plus())
6651     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDLC);
6652 }
6653 
6654 void AMDGPUAsmParser::cvtMtbuf(MCInst &Inst, const OperandVector &Operands) {
6655   OptionalImmIndexMap OptionalIdx;
6656 
6657   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
6658     AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[i]);
6659 
6660     // Add the register arguments
6661     if (Op.isReg()) {
6662       Op.addRegOperands(Inst, 1);
6663       continue;
6664     }
6665 
6666     // Handle the case where soffset is an immediate
6667     if (Op.isImm() && Op.getImmTy() == AMDGPUOperand::ImmTyNone) {
6668       Op.addImmOperands(Inst, 1);
6669       continue;
6670     }
6671 
6672     // Handle tokens like 'offen' which are sometimes hard-coded into the
6673     // asm string.  There are no MCInst operands for these.
6674     if (Op.isToken()) {
6675       continue;
6676     }
6677     assert(Op.isImm());
6678 
6679     // Handle optional arguments
6680     OptionalIdx[Op.getImmTy()] = i;
6681   }
6682 
6683   addOptionalImmOperand(Inst, Operands, OptionalIdx,
6684                         AMDGPUOperand::ImmTyOffset);
6685   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyFORMAT);
6686   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyGLC);
6687   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySLC);
6688   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyTFE);
6689 
6690   if (isGFX10Plus())
6691     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDLC);
6692 }
6693 
6694 //===----------------------------------------------------------------------===//
6695 // mimg
6696 //===----------------------------------------------------------------------===//
6697 
6698 void AMDGPUAsmParser::cvtMIMG(MCInst &Inst, const OperandVector &Operands,
6699                               bool IsAtomic) {
6700   unsigned I = 1;
6701   const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
6702   for (unsigned J = 0; J < Desc.getNumDefs(); ++J) {
6703     ((AMDGPUOperand &)*Operands[I++]).addRegOperands(Inst, 1);
6704   }
6705 
6706   if (IsAtomic) {
6707     // Add src, same as dst
6708     assert(Desc.getNumDefs() == 1);
6709     ((AMDGPUOperand &)*Operands[I - 1]).addRegOperands(Inst, 1);
6710   }
6711 
6712   OptionalImmIndexMap OptionalIdx;
6713 
6714   for (unsigned E = Operands.size(); I != E; ++I) {
6715     AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[I]);
6716 
6717     // Add the register arguments
6718     if (Op.isReg()) {
6719       Op.addRegOperands(Inst, 1);
6720     } else if (Op.isImmModifier()) {
6721       OptionalIdx[Op.getImmTy()] = I;
6722     } else if (!Op.isToken()) {
6723       llvm_unreachable("unexpected operand type");
6724     }
6725   }
6726 
6727   bool IsGFX10Plus = isGFX10Plus();
6728 
6729   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDMask);
6730   if (IsGFX10Plus)
6731     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDim, -1);
6732   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyUNorm);
6733   if (IsGFX10Plus)
6734     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDLC);
6735   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyGLC);
6736   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySLC);
6737   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyR128A16);
6738   if (IsGFX10Plus)
6739     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyA16);
6740   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyTFE);
6741   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyLWE);
6742   if (!IsGFX10Plus)
6743     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDA);
6744   addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyD16);
6745 }
6746 
6747 void AMDGPUAsmParser::cvtMIMGAtomic(MCInst &Inst, const OperandVector &Operands) {
6748   cvtMIMG(Inst, Operands, true);
6749 }
6750 
6751 void AMDGPUAsmParser::cvtIntersectRay(MCInst &Inst,
6752                                       const OperandVector &Operands) {
6753   for (unsigned I = 1; I < Operands.size(); ++I) {
6754     auto &Operand = (AMDGPUOperand &)*Operands[I];
6755     if (Operand.isReg())
6756       Operand.addRegOperands(Inst, 1);
6757   }
6758 
6759   Inst.addOperand(MCOperand::createImm(1)); // a16
6760 }
6761 
6762 //===----------------------------------------------------------------------===//
6763 // smrd
6764 //===----------------------------------------------------------------------===//
6765 
6766 bool AMDGPUOperand::isSMRDOffset8() const {
6767   return isImm() && isUInt<8>(getImm());
6768 }
6769 
6770 bool AMDGPUOperand::isSMEMOffset() const {
6771   return isImm(); // Offset range is checked later by validator.
6772 }
6773 
6774 bool AMDGPUOperand::isSMRDLiteralOffset() const {
6775   // 32-bit literals are only supported on CI and we only want to use them
6776   // when the offset is > 8-bits.
6777   return isImm() && !isUInt<8>(getImm()) && isUInt<32>(getImm());
6778 }
6779 
6780 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultSMRDOffset8() const {
6781   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTyOffset);
6782 }
6783 
6784 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultSMEMOffset() const {
6785   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTyOffset);
6786 }
6787 
6788 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultSMRDLiteralOffset() const {
6789   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTyOffset);
6790 }
6791 
6792 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultFlatOffset() const {
6793   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTyOffset);
6794 }
6795 
6796 //===----------------------------------------------------------------------===//
6797 // vop3
6798 //===----------------------------------------------------------------------===//
6799 
6800 static bool ConvertOmodMul(int64_t &Mul) {
6801   if (Mul != 1 && Mul != 2 && Mul != 4)
6802     return false;
6803 
6804   Mul >>= 1;
6805   return true;
6806 }
6807 
6808 static bool ConvertOmodDiv(int64_t &Div) {
6809   if (Div == 1) {
6810     Div = 0;
6811     return true;
6812   }
6813 
6814   if (Div == 2) {
6815     Div = 3;
6816     return true;
6817   }
6818 
6819   return false;
6820 }
6821 
6822 static bool ConvertBoundCtrl(int64_t &BoundCtrl) {
6823   if (BoundCtrl == 0) {
6824     BoundCtrl = 1;
6825     return true;
6826   }
6827 
6828   if (BoundCtrl == -1) {
6829     BoundCtrl = 0;
6830     return true;
6831   }
6832 
6833   return false;
6834 }
6835 
6836 // Note: the order in this table matches the order of operands in AsmString.
6837 static const OptionalOperand AMDGPUOptionalOperandTable[] = {
6838   {"offen",   AMDGPUOperand::ImmTyOffen, true, nullptr},
6839   {"idxen",   AMDGPUOperand::ImmTyIdxen, true, nullptr},
6840   {"addr64",  AMDGPUOperand::ImmTyAddr64, true, nullptr},
6841   {"offset0", AMDGPUOperand::ImmTyOffset0, false, nullptr},
6842   {"offset1", AMDGPUOperand::ImmTyOffset1, false, nullptr},
6843   {"gds",     AMDGPUOperand::ImmTyGDS, true, nullptr},
6844   {"lds",     AMDGPUOperand::ImmTyLDS, true, nullptr},
6845   {"offset",  AMDGPUOperand::ImmTyOffset, false, nullptr},
6846   {"inst_offset", AMDGPUOperand::ImmTyInstOffset, false, nullptr},
6847   {"dlc",     AMDGPUOperand::ImmTyDLC, true, nullptr},
6848   {"glc",     AMDGPUOperand::ImmTyGLC, true, nullptr},
6849   {"slc",     AMDGPUOperand::ImmTySLC, true, nullptr},
6850   {"swz",     AMDGPUOperand::ImmTySWZ, true, nullptr},
6851   {"tfe",     AMDGPUOperand::ImmTyTFE, true, nullptr},
6852   {"d16",     AMDGPUOperand::ImmTyD16, true, nullptr},
6853   {"high",    AMDGPUOperand::ImmTyHigh, true, nullptr},
6854   {"clamp",   AMDGPUOperand::ImmTyClampSI, true, nullptr},
6855   {"omod",    AMDGPUOperand::ImmTyOModSI, false, ConvertOmodMul},
6856   {"unorm",   AMDGPUOperand::ImmTyUNorm, true, nullptr},
6857   {"da",      AMDGPUOperand::ImmTyDA,    true, nullptr},
6858   {"r128",    AMDGPUOperand::ImmTyR128A16,  true, nullptr},
6859   {"a16",     AMDGPUOperand::ImmTyA16,  true, nullptr},
6860   {"lwe",     AMDGPUOperand::ImmTyLWE,   true, nullptr},
6861   {"d16",     AMDGPUOperand::ImmTyD16,   true, nullptr},
6862   {"dmask",   AMDGPUOperand::ImmTyDMask, false, nullptr},
6863   {"dim",     AMDGPUOperand::ImmTyDim,   false, nullptr},
6864   {"row_mask",   AMDGPUOperand::ImmTyDppRowMask, false, nullptr},
6865   {"bank_mask",  AMDGPUOperand::ImmTyDppBankMask, false, nullptr},
6866   {"bound_ctrl", AMDGPUOperand::ImmTyDppBoundCtrl, false, ConvertBoundCtrl},
6867   {"fi",         AMDGPUOperand::ImmTyDppFi, false, nullptr},
6868   {"dst_sel",    AMDGPUOperand::ImmTySdwaDstSel, false, nullptr},
6869   {"src0_sel",   AMDGPUOperand::ImmTySdwaSrc0Sel, false, nullptr},
6870   {"src1_sel",   AMDGPUOperand::ImmTySdwaSrc1Sel, false, nullptr},
6871   {"dst_unused", AMDGPUOperand::ImmTySdwaDstUnused, false, nullptr},
6872   {"compr", AMDGPUOperand::ImmTyExpCompr, true, nullptr },
6873   {"vm", AMDGPUOperand::ImmTyExpVM, true, nullptr},
6874   {"op_sel", AMDGPUOperand::ImmTyOpSel, false, nullptr},
6875   {"op_sel_hi", AMDGPUOperand::ImmTyOpSelHi, false, nullptr},
6876   {"neg_lo", AMDGPUOperand::ImmTyNegLo, false, nullptr},
6877   {"neg_hi", AMDGPUOperand::ImmTyNegHi, false, nullptr},
6878   {"blgp", AMDGPUOperand::ImmTyBLGP, false, nullptr},
6879   {"cbsz", AMDGPUOperand::ImmTyCBSZ, false, nullptr},
6880   {"abid", AMDGPUOperand::ImmTyABID, false, nullptr}
6881 };
6882 
6883 OperandMatchResultTy AMDGPUAsmParser::parseOptionalOperand(OperandVector &Operands) {
6884 
6885   OperandMatchResultTy res = parseOptionalOpr(Operands);
6886 
6887   // This is a hack to enable hardcoded mandatory operands which follow
6888   // optional operands.
6889   //
6890   // Current design assumes that all operands after the first optional operand
6891   // are also optional. However implementation of some instructions violates
6892   // this rule (see e.g. flat/global atomic which have hardcoded 'glc' operands).
6893   //
6894   // To alleviate this problem, we have to (implicitly) parse extra operands
6895   // to make sure autogenerated parser of custom operands never hit hardcoded
6896   // mandatory operands.
6897 
6898   for (unsigned i = 0; i < MAX_OPR_LOOKAHEAD; ++i) {
6899     if (res != MatchOperand_Success ||
6900         isToken(AsmToken::EndOfStatement))
6901       break;
6902 
6903     trySkipToken(AsmToken::Comma);
6904     res = parseOptionalOpr(Operands);
6905   }
6906 
6907   return res;
6908 }
6909 
6910 OperandMatchResultTy AMDGPUAsmParser::parseOptionalOpr(OperandVector &Operands) {
6911   OperandMatchResultTy res;
6912   for (const OptionalOperand &Op : AMDGPUOptionalOperandTable) {
6913     // try to parse any optional operand here
6914     if (Op.IsBit) {
6915       res = parseNamedBit(Op.Name, Operands, Op.Type);
6916     } else if (Op.Type == AMDGPUOperand::ImmTyOModSI) {
6917       res = parseOModOperand(Operands);
6918     } else if (Op.Type == AMDGPUOperand::ImmTySdwaDstSel ||
6919                Op.Type == AMDGPUOperand::ImmTySdwaSrc0Sel ||
6920                Op.Type == AMDGPUOperand::ImmTySdwaSrc1Sel) {
6921       res = parseSDWASel(Operands, Op.Name, Op.Type);
6922     } else if (Op.Type == AMDGPUOperand::ImmTySdwaDstUnused) {
6923       res = parseSDWADstUnused(Operands);
6924     } else if (Op.Type == AMDGPUOperand::ImmTyOpSel ||
6925                Op.Type == AMDGPUOperand::ImmTyOpSelHi ||
6926                Op.Type == AMDGPUOperand::ImmTyNegLo ||
6927                Op.Type == AMDGPUOperand::ImmTyNegHi) {
6928       res = parseOperandArrayWithPrefix(Op.Name, Operands, Op.Type,
6929                                         Op.ConvertResult);
6930     } else if (Op.Type == AMDGPUOperand::ImmTyDim) {
6931       res = parseDim(Operands);
6932     } else {
6933       res = parseIntWithPrefix(Op.Name, Operands, Op.Type, Op.ConvertResult);
6934     }
6935     if (res != MatchOperand_NoMatch) {
6936       return res;
6937     }
6938   }
6939   return MatchOperand_NoMatch;
6940 }
6941 
6942 OperandMatchResultTy AMDGPUAsmParser::parseOModOperand(OperandVector &Operands) {
6943   StringRef Name = getTokenStr();
6944   if (Name == "mul") {
6945     return parseIntWithPrefix("mul", Operands,
6946                               AMDGPUOperand::ImmTyOModSI, ConvertOmodMul);
6947   }
6948 
6949   if (Name == "div") {
6950     return parseIntWithPrefix("div", Operands,
6951                               AMDGPUOperand::ImmTyOModSI, ConvertOmodDiv);
6952   }
6953 
6954   return MatchOperand_NoMatch;
6955 }
6956 
6957 void AMDGPUAsmParser::cvtVOP3OpSel(MCInst &Inst, const OperandVector &Operands) {
6958   cvtVOP3P(Inst, Operands);
6959 
6960   int Opc = Inst.getOpcode();
6961 
6962   int SrcNum;
6963   const int Ops[] = { AMDGPU::OpName::src0,
6964                       AMDGPU::OpName::src1,
6965                       AMDGPU::OpName::src2 };
6966   for (SrcNum = 0;
6967        SrcNum < 3 && AMDGPU::getNamedOperandIdx(Opc, Ops[SrcNum]) != -1;
6968        ++SrcNum);
6969   assert(SrcNum > 0);
6970 
6971   int OpSelIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel);
6972   unsigned OpSel = Inst.getOperand(OpSelIdx).getImm();
6973 
6974   if ((OpSel & (1 << SrcNum)) != 0) {
6975     int ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
6976     uint32_t ModVal = Inst.getOperand(ModIdx).getImm();
6977     Inst.getOperand(ModIdx).setImm(ModVal | SISrcMods::DST_OP_SEL);
6978   }
6979 }
6980 
6981 static bool isRegOrImmWithInputMods(const MCInstrDesc &Desc, unsigned OpNum) {
6982       // 1. This operand is input modifiers
6983   return Desc.OpInfo[OpNum].OperandType == AMDGPU::OPERAND_INPUT_MODS
6984       // 2. This is not last operand
6985       && Desc.NumOperands > (OpNum + 1)
6986       // 3. Next operand is register class
6987       && Desc.OpInfo[OpNum + 1].RegClass != -1
6988       // 4. Next register is not tied to any other operand
6989       && Desc.getOperandConstraint(OpNum + 1, MCOI::OperandConstraint::TIED_TO) == -1;
6990 }
6991 
6992 void AMDGPUAsmParser::cvtVOP3Interp(MCInst &Inst, const OperandVector &Operands)
6993 {
6994   OptionalImmIndexMap OptionalIdx;
6995   unsigned Opc = Inst.getOpcode();
6996 
6997   unsigned I = 1;
6998   const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
6999   for (unsigned J = 0; J < Desc.getNumDefs(); ++J) {
7000     ((AMDGPUOperand &)*Operands[I++]).addRegOperands(Inst, 1);
7001   }
7002 
7003   for (unsigned E = Operands.size(); I != E; ++I) {
7004     AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[I]);
7005     if (isRegOrImmWithInputMods(Desc, Inst.getNumOperands())) {
7006       Op.addRegOrImmWithFPInputModsOperands(Inst, 2);
7007     } else if (Op.isInterpSlot() ||
7008                Op.isInterpAttr() ||
7009                Op.isAttrChan()) {
7010       Inst.addOperand(MCOperand::createImm(Op.getImm()));
7011     } else if (Op.isImmModifier()) {
7012       OptionalIdx[Op.getImmTy()] = I;
7013     } else {
7014       llvm_unreachable("unhandled operand type");
7015     }
7016   }
7017 
7018   if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::high) != -1) {
7019     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyHigh);
7020   }
7021 
7022   if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp) != -1) {
7023     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyClampSI);
7024   }
7025 
7026   if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod) != -1) {
7027     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyOModSI);
7028   }
7029 }
7030 
7031 void AMDGPUAsmParser::cvtVOP3(MCInst &Inst, const OperandVector &Operands,
7032                               OptionalImmIndexMap &OptionalIdx) {
7033   unsigned Opc = Inst.getOpcode();
7034 
7035   unsigned I = 1;
7036   const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
7037   for (unsigned J = 0; J < Desc.getNumDefs(); ++J) {
7038     ((AMDGPUOperand &)*Operands[I++]).addRegOperands(Inst, 1);
7039   }
7040 
7041   if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1) {
7042     // This instruction has src modifiers
7043     for (unsigned E = Operands.size(); I != E; ++I) {
7044       AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[I]);
7045       if (isRegOrImmWithInputMods(Desc, Inst.getNumOperands())) {
7046         Op.addRegOrImmWithFPInputModsOperands(Inst, 2);
7047       } else if (Op.isImmModifier()) {
7048         OptionalIdx[Op.getImmTy()] = I;
7049       } else if (Op.isRegOrImm()) {
7050         Op.addRegOrImmOperands(Inst, 1);
7051       } else {
7052         llvm_unreachable("unhandled operand type");
7053       }
7054     }
7055   } else {
7056     // No src modifiers
7057     for (unsigned E = Operands.size(); I != E; ++I) {
7058       AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[I]);
7059       if (Op.isMod()) {
7060         OptionalIdx[Op.getImmTy()] = I;
7061       } else {
7062         Op.addRegOrImmOperands(Inst, 1);
7063       }
7064     }
7065   }
7066 
7067   if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp) != -1) {
7068     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyClampSI);
7069   }
7070 
7071   if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod) != -1) {
7072     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyOModSI);
7073   }
7074 
7075   // Special case v_mac_{f16, f32} and v_fmac_{f16, f32} (gfx906/gfx10+):
7076   // it has src2 register operand that is tied to dst operand
7077   // we don't allow modifiers for this operand in assembler so src2_modifiers
7078   // should be 0.
7079   if (Opc == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
7080       Opc == AMDGPU::V_MAC_F32_e64_gfx10 ||
7081       Opc == AMDGPU::V_MAC_F32_e64_vi ||
7082       Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
7083       Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
7084       Opc == AMDGPU::V_MAC_F16_e64_vi ||
7085       Opc == AMDGPU::V_FMAC_F32_e64_gfx10 ||
7086       Opc == AMDGPU::V_FMAC_F32_e64_vi ||
7087       Opc == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
7088       Opc == AMDGPU::V_FMAC_F16_e64_gfx10) {
7089     auto it = Inst.begin();
7090     std::advance(it, AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2_modifiers));
7091     it = Inst.insert(it, MCOperand::createImm(0)); // no modifiers for src2
7092     ++it;
7093     // Copy the operand to ensure it's not invalidated when Inst grows.
7094     Inst.insert(it, MCOperand(Inst.getOperand(0))); // src2 = dst
7095   }
7096 }
7097 
7098 void AMDGPUAsmParser::cvtVOP3(MCInst &Inst, const OperandVector &Operands) {
7099   OptionalImmIndexMap OptionalIdx;
7100   cvtVOP3(Inst, Operands, OptionalIdx);
7101 }
7102 
7103 void AMDGPUAsmParser::cvtVOP3P(MCInst &Inst,
7104                                const OperandVector &Operands) {
7105   OptionalImmIndexMap OptIdx;
7106   const int Opc = Inst.getOpcode();
7107   const MCInstrDesc &Desc = MII.get(Opc);
7108 
7109   const bool IsPacked = (Desc.TSFlags & SIInstrFlags::IsPacked) != 0;
7110 
7111   cvtVOP3(Inst, Operands, OptIdx);
7112 
7113   if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1) {
7114     assert(!IsPacked);
7115     Inst.addOperand(Inst.getOperand(0));
7116   }
7117 
7118   // FIXME: This is messy. Parse the modifiers as if it was a normal VOP3
7119   // instruction, and then figure out where to actually put the modifiers
7120 
7121   addOptionalImmOperand(Inst, Operands, OptIdx, AMDGPUOperand::ImmTyOpSel);
7122 
7123   int OpSelHiIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi);
7124   if (OpSelHiIdx != -1) {
7125     int DefaultVal = IsPacked ? -1 : 0;
7126     addOptionalImmOperand(Inst, Operands, OptIdx, AMDGPUOperand::ImmTyOpSelHi,
7127                           DefaultVal);
7128   }
7129 
7130   int NegLoIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo);
7131   if (NegLoIdx != -1) {
7132     assert(IsPacked);
7133     addOptionalImmOperand(Inst, Operands, OptIdx, AMDGPUOperand::ImmTyNegLo);
7134     addOptionalImmOperand(Inst, Operands, OptIdx, AMDGPUOperand::ImmTyNegHi);
7135   }
7136 
7137   const int Ops[] = { AMDGPU::OpName::src0,
7138                       AMDGPU::OpName::src1,
7139                       AMDGPU::OpName::src2 };
7140   const int ModOps[] = { AMDGPU::OpName::src0_modifiers,
7141                          AMDGPU::OpName::src1_modifiers,
7142                          AMDGPU::OpName::src2_modifiers };
7143 
7144   int OpSelIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel);
7145 
7146   unsigned OpSel = Inst.getOperand(OpSelIdx).getImm();
7147   unsigned OpSelHi = 0;
7148   unsigned NegLo = 0;
7149   unsigned NegHi = 0;
7150 
7151   if (OpSelHiIdx != -1) {
7152     OpSelHi = Inst.getOperand(OpSelHiIdx).getImm();
7153   }
7154 
7155   if (NegLoIdx != -1) {
7156     int NegHiIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi);
7157     NegLo = Inst.getOperand(NegLoIdx).getImm();
7158     NegHi = Inst.getOperand(NegHiIdx).getImm();
7159   }
7160 
7161   for (int J = 0; J < 3; ++J) {
7162     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, Ops[J]);
7163     if (OpIdx == -1)
7164       break;
7165 
7166     uint32_t ModVal = 0;
7167 
7168     if ((OpSel & (1 << J)) != 0)
7169       ModVal |= SISrcMods::OP_SEL_0;
7170 
7171     if ((OpSelHi & (1 << J)) != 0)
7172       ModVal |= SISrcMods::OP_SEL_1;
7173 
7174     if ((NegLo & (1 << J)) != 0)
7175       ModVal |= SISrcMods::NEG;
7176 
7177     if ((NegHi & (1 << J)) != 0)
7178       ModVal |= SISrcMods::NEG_HI;
7179 
7180     int ModIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
7181 
7182     Inst.getOperand(ModIdx).setImm(Inst.getOperand(ModIdx).getImm() | ModVal);
7183   }
7184 }
7185 
7186 //===----------------------------------------------------------------------===//
7187 // dpp
7188 //===----------------------------------------------------------------------===//
7189 
7190 bool AMDGPUOperand::isDPP8() const {
7191   return isImmTy(ImmTyDPP8);
7192 }
7193 
7194 bool AMDGPUOperand::isDPPCtrl() const {
7195   using namespace AMDGPU::DPP;
7196 
7197   bool result = isImm() && getImmTy() == ImmTyDppCtrl && isUInt<9>(getImm());
7198   if (result) {
7199     int64_t Imm = getImm();
7200     return (Imm >= DppCtrl::QUAD_PERM_FIRST && Imm <= DppCtrl::QUAD_PERM_LAST) ||
7201            (Imm >= DppCtrl::ROW_SHL_FIRST && Imm <= DppCtrl::ROW_SHL_LAST) ||
7202            (Imm >= DppCtrl::ROW_SHR_FIRST && Imm <= DppCtrl::ROW_SHR_LAST) ||
7203            (Imm >= DppCtrl::ROW_ROR_FIRST && Imm <= DppCtrl::ROW_ROR_LAST) ||
7204            (Imm == DppCtrl::WAVE_SHL1) ||
7205            (Imm == DppCtrl::WAVE_ROL1) ||
7206            (Imm == DppCtrl::WAVE_SHR1) ||
7207            (Imm == DppCtrl::WAVE_ROR1) ||
7208            (Imm == DppCtrl::ROW_MIRROR) ||
7209            (Imm == DppCtrl::ROW_HALF_MIRROR) ||
7210            (Imm == DppCtrl::BCAST15) ||
7211            (Imm == DppCtrl::BCAST31) ||
7212            (Imm >= DppCtrl::ROW_SHARE_FIRST && Imm <= DppCtrl::ROW_SHARE_LAST) ||
7213            (Imm >= DppCtrl::ROW_XMASK_FIRST && Imm <= DppCtrl::ROW_XMASK_LAST);
7214   }
7215   return false;
7216 }
7217 
7218 //===----------------------------------------------------------------------===//
7219 // mAI
7220 //===----------------------------------------------------------------------===//
7221 
7222 bool AMDGPUOperand::isBLGP() const {
7223   return isImm() && getImmTy() == ImmTyBLGP && isUInt<3>(getImm());
7224 }
7225 
7226 bool AMDGPUOperand::isCBSZ() const {
7227   return isImm() && getImmTy() == ImmTyCBSZ && isUInt<3>(getImm());
7228 }
7229 
7230 bool AMDGPUOperand::isABID() const {
7231   return isImm() && getImmTy() == ImmTyABID && isUInt<4>(getImm());
7232 }
7233 
7234 bool AMDGPUOperand::isS16Imm() const {
7235   return isImm() && (isInt<16>(getImm()) || isUInt<16>(getImm()));
7236 }
7237 
7238 bool AMDGPUOperand::isU16Imm() const {
7239   return isImm() && isUInt<16>(getImm());
7240 }
7241 
7242 OperandMatchResultTy AMDGPUAsmParser::parseDim(OperandVector &Operands) {
7243   if (!isGFX10Plus())
7244     return MatchOperand_NoMatch;
7245 
7246   SMLoc S = getLoc();
7247 
7248   if (!trySkipId("dim", AsmToken::Colon))
7249     return MatchOperand_NoMatch;
7250 
7251   // We want to allow "dim:1D" etc., but the initial 1 is tokenized as an
7252   // integer.
7253   std::string Token;
7254   if (isToken(AsmToken::Integer)) {
7255     SMLoc Loc = getToken().getEndLoc();
7256     Token = std::string(getTokenStr());
7257     Parser.Lex();
7258     if (getLoc() != Loc)
7259       return MatchOperand_ParseFail;
7260   }
7261   if (!isToken(AsmToken::Identifier))
7262     return MatchOperand_ParseFail;
7263   Token += getTokenStr();
7264 
7265   StringRef DimId = Token;
7266   if (DimId.startswith("SQ_RSRC_IMG_"))
7267     DimId = DimId.substr(12);
7268 
7269   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfoByAsmSuffix(DimId);
7270   if (!DimInfo)
7271     return MatchOperand_ParseFail;
7272 
7273   Parser.Lex();
7274 
7275   Operands.push_back(AMDGPUOperand::CreateImm(this, DimInfo->Encoding, S,
7276                                               AMDGPUOperand::ImmTyDim));
7277   return MatchOperand_Success;
7278 }
7279 
7280 OperandMatchResultTy AMDGPUAsmParser::parseDPP8(OperandVector &Operands) {
7281   SMLoc S = getLoc();
7282 
7283   if (!isGFX10Plus() || !trySkipId("dpp8", AsmToken::Colon))
7284     return MatchOperand_NoMatch;
7285 
7286   // dpp8:[%d,%d,%d,%d,%d,%d,%d,%d]
7287 
7288   int64_t Sels[8];
7289 
7290   if (!trySkipToken(AsmToken::LBrac))
7291     return MatchOperand_ParseFail;
7292 
7293   if (getParser().parseAbsoluteExpression(Sels[0]))
7294     return MatchOperand_ParseFail;
7295   if (0 > Sels[0] || 7 < Sels[0])
7296     return MatchOperand_ParseFail;
7297 
7298   for (size_t i = 1; i < 8; ++i) {
7299     if (!trySkipToken(AsmToken::Comma))
7300       return MatchOperand_ParseFail;
7301 
7302     if (getParser().parseAbsoluteExpression(Sels[i]))
7303       return MatchOperand_ParseFail;
7304     if (0 > Sels[i] || 7 < Sels[i])
7305       return MatchOperand_ParseFail;
7306   }
7307 
7308   if (!trySkipToken(AsmToken::RBrac))
7309     return MatchOperand_ParseFail;
7310 
7311   unsigned DPP8 = 0;
7312   for (size_t i = 0; i < 8; ++i)
7313     DPP8 |= (Sels[i] << (i * 3));
7314 
7315   Operands.push_back(AMDGPUOperand::CreateImm(this, DPP8, S, AMDGPUOperand::ImmTyDPP8));
7316   return MatchOperand_Success;
7317 }
7318 
7319 OperandMatchResultTy
7320 AMDGPUAsmParser::parseDPPCtrl(OperandVector &Operands) {
7321   using namespace AMDGPU::DPP;
7322 
7323   SMLoc S = getLoc();
7324   StringRef Prefix;
7325   int64_t Int;
7326 
7327   if (isToken(AsmToken::Identifier)) {
7328     Prefix = getTokenStr();
7329   } else {
7330     return MatchOperand_NoMatch;
7331   }
7332 
7333   if (Prefix == "row_mirror") {
7334     Int = DppCtrl::ROW_MIRROR;
7335     Parser.Lex();
7336   } else if (Prefix == "row_half_mirror") {
7337     Int = DppCtrl::ROW_HALF_MIRROR;
7338     Parser.Lex();
7339   } else {
7340     // Check to prevent parseDPPCtrlOps from eating invalid tokens
7341     if (Prefix != "quad_perm"
7342         && Prefix != "row_shl"
7343         && Prefix != "row_shr"
7344         && Prefix != "row_ror"
7345         && Prefix != "wave_shl"
7346         && Prefix != "wave_rol"
7347         && Prefix != "wave_shr"
7348         && Prefix != "wave_ror"
7349         && Prefix != "row_bcast"
7350         && Prefix != "row_share"
7351         && Prefix != "row_xmask") {
7352       return MatchOperand_NoMatch;
7353     }
7354 
7355     if (!isGFX10Plus() && (Prefix == "row_share" || Prefix == "row_xmask"))
7356       return MatchOperand_NoMatch;
7357 
7358     if (!isVI() && !isGFX9() &&
7359         (Prefix == "wave_shl" || Prefix == "wave_shr" ||
7360          Prefix == "wave_rol" || Prefix == "wave_ror" ||
7361          Prefix == "row_bcast"))
7362       return MatchOperand_NoMatch;
7363 
7364     Parser.Lex();
7365     if (!isToken(AsmToken::Colon))
7366       return MatchOperand_ParseFail;
7367 
7368     if (Prefix == "quad_perm") {
7369       // quad_perm:[%d,%d,%d,%d]
7370       Parser.Lex();
7371       if (!trySkipToken(AsmToken::LBrac))
7372         return MatchOperand_ParseFail;
7373 
7374       if (getParser().parseAbsoluteExpression(Int) || !(0 <= Int && Int <=3))
7375         return MatchOperand_ParseFail;
7376 
7377       for (int i = 0; i < 3; ++i) {
7378         if (!trySkipToken(AsmToken::Comma))
7379           return MatchOperand_ParseFail;
7380 
7381         int64_t Temp;
7382         if (getParser().parseAbsoluteExpression(Temp) || !(0 <= Temp && Temp <=3))
7383           return MatchOperand_ParseFail;
7384         const int shift = i*2 + 2;
7385         Int += (Temp << shift);
7386       }
7387 
7388       if (!trySkipToken(AsmToken::RBrac))
7389         return MatchOperand_ParseFail;
7390     } else {
7391       // sel:%d
7392       Parser.Lex();
7393       if (getParser().parseAbsoluteExpression(Int))
7394         return MatchOperand_ParseFail;
7395 
7396       if (Prefix == "row_shl" && 1 <= Int && Int <= 15) {
7397         Int |= DppCtrl::ROW_SHL0;
7398       } else if (Prefix == "row_shr" && 1 <= Int && Int <= 15) {
7399         Int |= DppCtrl::ROW_SHR0;
7400       } else if (Prefix == "row_ror" && 1 <= Int && Int <= 15) {
7401         Int |= DppCtrl::ROW_ROR0;
7402       } else if (Prefix == "wave_shl" && 1 == Int) {
7403         Int = DppCtrl::WAVE_SHL1;
7404       } else if (Prefix == "wave_rol" && 1 == Int) {
7405         Int = DppCtrl::WAVE_ROL1;
7406       } else if (Prefix == "wave_shr" && 1 == Int) {
7407         Int = DppCtrl::WAVE_SHR1;
7408       } else if (Prefix == "wave_ror" && 1 == Int) {
7409         Int = DppCtrl::WAVE_ROR1;
7410       } else if (Prefix == "row_bcast") {
7411         if (Int == 15) {
7412           Int = DppCtrl::BCAST15;
7413         } else if (Int == 31) {
7414           Int = DppCtrl::BCAST31;
7415         } else {
7416           return MatchOperand_ParseFail;
7417         }
7418       } else if (Prefix == "row_share" && 0 <= Int && Int <= 15) {
7419         Int |= DppCtrl::ROW_SHARE_FIRST;
7420       } else if (Prefix == "row_xmask" && 0 <= Int && Int <= 15) {
7421         Int |= DppCtrl::ROW_XMASK_FIRST;
7422       } else {
7423         return MatchOperand_ParseFail;
7424       }
7425     }
7426   }
7427 
7428   Operands.push_back(AMDGPUOperand::CreateImm(this, Int, S, AMDGPUOperand::ImmTyDppCtrl));
7429   return MatchOperand_Success;
7430 }
7431 
7432 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultRowMask() const {
7433   return AMDGPUOperand::CreateImm(this, 0xf, SMLoc(), AMDGPUOperand::ImmTyDppRowMask);
7434 }
7435 
7436 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultEndpgmImmOperands() const {
7437   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTyEndpgm);
7438 }
7439 
7440 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultBankMask() const {
7441   return AMDGPUOperand::CreateImm(this, 0xf, SMLoc(), AMDGPUOperand::ImmTyDppBankMask);
7442 }
7443 
7444 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultBoundCtrl() const {
7445   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTyDppBoundCtrl);
7446 }
7447 
7448 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultFI() const {
7449   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTyDppFi);
7450 }
7451 
7452 void AMDGPUAsmParser::cvtDPP(MCInst &Inst, const OperandVector &Operands, bool IsDPP8) {
7453   OptionalImmIndexMap OptionalIdx;
7454 
7455   unsigned I = 1;
7456   const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
7457   for (unsigned J = 0; J < Desc.getNumDefs(); ++J) {
7458     ((AMDGPUOperand &)*Operands[I++]).addRegOperands(Inst, 1);
7459   }
7460 
7461   int Fi = 0;
7462   for (unsigned E = Operands.size(); I != E; ++I) {
7463     auto TiedTo = Desc.getOperandConstraint(Inst.getNumOperands(),
7464                                             MCOI::TIED_TO);
7465     if (TiedTo != -1) {
7466       assert((unsigned)TiedTo < Inst.getNumOperands());
7467       // handle tied old or src2 for MAC instructions
7468       Inst.addOperand(Inst.getOperand(TiedTo));
7469     }
7470     AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[I]);
7471     // Add the register arguments
7472     if (Op.isReg() && validateVccOperand(Op.getReg())) {
7473       // VOP2b (v_add_u32, v_sub_u32 ...) dpp use "vcc" token.
7474       // Skip it.
7475       continue;
7476     }
7477 
7478     if (IsDPP8) {
7479       if (Op.isDPP8()) {
7480         Op.addImmOperands(Inst, 1);
7481       } else if (isRegOrImmWithInputMods(Desc, Inst.getNumOperands())) {
7482         Op.addRegWithFPInputModsOperands(Inst, 2);
7483       } else if (Op.isFI()) {
7484         Fi = Op.getImm();
7485       } else if (Op.isReg()) {
7486         Op.addRegOperands(Inst, 1);
7487       } else {
7488         llvm_unreachable("Invalid operand type");
7489       }
7490     } else {
7491       if (isRegOrImmWithInputMods(Desc, Inst.getNumOperands())) {
7492         Op.addRegWithFPInputModsOperands(Inst, 2);
7493       } else if (Op.isDPPCtrl()) {
7494         Op.addImmOperands(Inst, 1);
7495       } else if (Op.isImm()) {
7496         // Handle optional arguments
7497         OptionalIdx[Op.getImmTy()] = I;
7498       } else {
7499         llvm_unreachable("Invalid operand type");
7500       }
7501     }
7502   }
7503 
7504   if (IsDPP8) {
7505     using namespace llvm::AMDGPU::DPP;
7506     Inst.addOperand(MCOperand::createImm(Fi? DPP8_FI_1 : DPP8_FI_0));
7507   } else {
7508     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDppRowMask, 0xf);
7509     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDppBankMask, 0xf);
7510     addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDppBoundCtrl);
7511     if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::fi) != -1) {
7512       addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDppFi);
7513     }
7514   }
7515 }
7516 
7517 //===----------------------------------------------------------------------===//
7518 // sdwa
7519 //===----------------------------------------------------------------------===//
7520 
7521 OperandMatchResultTy
7522 AMDGPUAsmParser::parseSDWASel(OperandVector &Operands, StringRef Prefix,
7523                               AMDGPUOperand::ImmTy Type) {
7524   using namespace llvm::AMDGPU::SDWA;
7525 
7526   SMLoc S = getLoc();
7527   StringRef Value;
7528   OperandMatchResultTy res;
7529 
7530   res = parseStringWithPrefix(Prefix, Value);
7531   if (res != MatchOperand_Success) {
7532     return res;
7533   }
7534 
7535   int64_t Int;
7536   Int = StringSwitch<int64_t>(Value)
7537         .Case("BYTE_0", SdwaSel::BYTE_0)
7538         .Case("BYTE_1", SdwaSel::BYTE_1)
7539         .Case("BYTE_2", SdwaSel::BYTE_2)
7540         .Case("BYTE_3", SdwaSel::BYTE_3)
7541         .Case("WORD_0", SdwaSel::WORD_0)
7542         .Case("WORD_1", SdwaSel::WORD_1)
7543         .Case("DWORD", SdwaSel::DWORD)
7544         .Default(0xffffffff);
7545 
7546   if (Int == 0xffffffff) {
7547     return MatchOperand_ParseFail;
7548   }
7549 
7550   Operands.push_back(AMDGPUOperand::CreateImm(this, Int, S, Type));
7551   return MatchOperand_Success;
7552 }
7553 
7554 OperandMatchResultTy
7555 AMDGPUAsmParser::parseSDWADstUnused(OperandVector &Operands) {
7556   using namespace llvm::AMDGPU::SDWA;
7557 
7558   SMLoc S = getLoc();
7559   StringRef Value;
7560   OperandMatchResultTy res;
7561 
7562   res = parseStringWithPrefix("dst_unused", Value);
7563   if (res != MatchOperand_Success) {
7564     return res;
7565   }
7566 
7567   int64_t Int;
7568   Int = StringSwitch<int64_t>(Value)
7569         .Case("UNUSED_PAD", DstUnused::UNUSED_PAD)
7570         .Case("UNUSED_SEXT", DstUnused::UNUSED_SEXT)
7571         .Case("UNUSED_PRESERVE", DstUnused::UNUSED_PRESERVE)
7572         .Default(0xffffffff);
7573 
7574   if (Int == 0xffffffff) {
7575     return MatchOperand_ParseFail;
7576   }
7577 
7578   Operands.push_back(AMDGPUOperand::CreateImm(this, Int, S, AMDGPUOperand::ImmTySdwaDstUnused));
7579   return MatchOperand_Success;
7580 }
7581 
7582 void AMDGPUAsmParser::cvtSdwaVOP1(MCInst &Inst, const OperandVector &Operands) {
7583   cvtSDWA(Inst, Operands, SIInstrFlags::VOP1);
7584 }
7585 
7586 void AMDGPUAsmParser::cvtSdwaVOP2(MCInst &Inst, const OperandVector &Operands) {
7587   cvtSDWA(Inst, Operands, SIInstrFlags::VOP2);
7588 }
7589 
7590 void AMDGPUAsmParser::cvtSdwaVOP2b(MCInst &Inst, const OperandVector &Operands) {
7591   cvtSDWA(Inst, Operands, SIInstrFlags::VOP2, true, true);
7592 }
7593 
7594 void AMDGPUAsmParser::cvtSdwaVOP2e(MCInst &Inst, const OperandVector &Operands) {
7595   cvtSDWA(Inst, Operands, SIInstrFlags::VOP2, false, true);
7596 }
7597 
7598 void AMDGPUAsmParser::cvtSdwaVOPC(MCInst &Inst, const OperandVector &Operands) {
7599   cvtSDWA(Inst, Operands, SIInstrFlags::VOPC, isVI());
7600 }
7601 
7602 void AMDGPUAsmParser::cvtSDWA(MCInst &Inst, const OperandVector &Operands,
7603                               uint64_t BasicInstType,
7604                               bool SkipDstVcc,
7605                               bool SkipSrcVcc) {
7606   using namespace llvm::AMDGPU::SDWA;
7607 
7608   OptionalImmIndexMap OptionalIdx;
7609   bool SkipVcc = SkipDstVcc || SkipSrcVcc;
7610   bool SkippedVcc = false;
7611 
7612   unsigned I = 1;
7613   const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
7614   for (unsigned J = 0; J < Desc.getNumDefs(); ++J) {
7615     ((AMDGPUOperand &)*Operands[I++]).addRegOperands(Inst, 1);
7616   }
7617 
7618   for (unsigned E = Operands.size(); I != E; ++I) {
7619     AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[I]);
7620     if (SkipVcc && !SkippedVcc && Op.isReg() &&
7621         (Op.getReg() == AMDGPU::VCC || Op.getReg() == AMDGPU::VCC_LO)) {
7622       // VOP2b (v_add_u32, v_sub_u32 ...) sdwa use "vcc" token as dst.
7623       // Skip it if it's 2nd (e.g. v_add_i32_sdwa v1, vcc, v2, v3)
7624       // or 4th (v_addc_u32_sdwa v1, vcc, v2, v3, vcc) operand.
7625       // Skip VCC only if we didn't skip it on previous iteration.
7626       // Note that src0 and src1 occupy 2 slots each because of modifiers.
7627       if (BasicInstType == SIInstrFlags::VOP2 &&
7628           ((SkipDstVcc && Inst.getNumOperands() == 1) ||
7629            (SkipSrcVcc && Inst.getNumOperands() == 5))) {
7630         SkippedVcc = true;
7631         continue;
7632       } else if (BasicInstType == SIInstrFlags::VOPC &&
7633                  Inst.getNumOperands() == 0) {
7634         SkippedVcc = true;
7635         continue;
7636       }
7637     }
7638     if (isRegOrImmWithInputMods(Desc, Inst.getNumOperands())) {
7639       Op.addRegOrImmWithInputModsOperands(Inst, 2);
7640     } else if (Op.isImm()) {
7641       // Handle optional arguments
7642       OptionalIdx[Op.getImmTy()] = I;
7643     } else {
7644       llvm_unreachable("Invalid operand type");
7645     }
7646     SkippedVcc = false;
7647   }
7648 
7649   if (Inst.getOpcode() != AMDGPU::V_NOP_sdwa_gfx10 &&
7650       Inst.getOpcode() != AMDGPU::V_NOP_sdwa_gfx9 &&
7651       Inst.getOpcode() != AMDGPU::V_NOP_sdwa_vi) {
7652     // v_nop_sdwa_sdwa_vi/gfx9 has no optional sdwa arguments
7653     switch (BasicInstType) {
7654     case SIInstrFlags::VOP1:
7655       addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyClampSI, 0);
7656       if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::omod) != -1) {
7657         addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyOModSI, 0);
7658       }
7659       addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaDstSel, SdwaSel::DWORD);
7660       addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaDstUnused, DstUnused::UNUSED_PRESERVE);
7661       addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaSrc0Sel, SdwaSel::DWORD);
7662       break;
7663 
7664     case SIInstrFlags::VOP2:
7665       addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyClampSI, 0);
7666       if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::omod) != -1) {
7667         addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyOModSI, 0);
7668       }
7669       addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaDstSel, SdwaSel::DWORD);
7670       addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaDstUnused, DstUnused::UNUSED_PRESERVE);
7671       addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaSrc0Sel, SdwaSel::DWORD);
7672       addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaSrc1Sel, SdwaSel::DWORD);
7673       break;
7674 
7675     case SIInstrFlags::VOPC:
7676       if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::clamp) != -1)
7677         addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyClampSI, 0);
7678       addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaSrc0Sel, SdwaSel::DWORD);
7679       addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaSrc1Sel, SdwaSel::DWORD);
7680       break;
7681 
7682     default:
7683       llvm_unreachable("Invalid instruction type. Only VOP1, VOP2 and VOPC allowed");
7684     }
7685   }
7686 
7687   // special case v_mac_{f16, f32}:
7688   // it has src2 register operand that is tied to dst operand
7689   if (Inst.getOpcode() == AMDGPU::V_MAC_F32_sdwa_vi ||
7690       Inst.getOpcode() == AMDGPU::V_MAC_F16_sdwa_vi)  {
7691     auto it = Inst.begin();
7692     std::advance(
7693       it, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::src2));
7694     Inst.insert(it, Inst.getOperand(0)); // src2 = dst
7695   }
7696 }
7697 
7698 //===----------------------------------------------------------------------===//
7699 // mAI
7700 //===----------------------------------------------------------------------===//
7701 
7702 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultBLGP() const {
7703   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTyBLGP);
7704 }
7705 
7706 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultCBSZ() const {
7707   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTyCBSZ);
7708 }
7709 
7710 AMDGPUOperand::Ptr AMDGPUAsmParser::defaultABID() const {
7711   return AMDGPUOperand::CreateImm(this, 0, SMLoc(), AMDGPUOperand::ImmTyABID);
7712 }
7713 
7714 /// Force static initialization.
7715 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUAsmParser() {
7716   RegisterMCAsmParser<AMDGPUAsmParser> A(getTheAMDGPUTarget());
7717   RegisterMCAsmParser<AMDGPUAsmParser> B(getTheGCNTarget());
7718 }
7719 
7720 #define GET_REGISTER_MATCHER
7721 #define GET_MATCHER_IMPLEMENTATION
7722 #define GET_MNEMONIC_SPELL_CHECKER
7723 #define GET_MNEMONIC_CHECKER
7724 #include "AMDGPUGenAsmMatcher.inc"
7725 
7726 // This fuction should be defined after auto-generated include so that we have
7727 // MatchClassKind enum defined
7728 unsigned AMDGPUAsmParser::validateTargetOperandClass(MCParsedAsmOperand &Op,
7729                                                      unsigned Kind) {
7730   // Tokens like "glc" would be parsed as immediate operands in ParseOperand().
7731   // But MatchInstructionImpl() expects to meet token and fails to validate
7732   // operand. This method checks if we are given immediate operand but expect to
7733   // get corresponding token.
7734   AMDGPUOperand &Operand = (AMDGPUOperand&)Op;
7735   switch (Kind) {
7736   case MCK_addr64:
7737     return Operand.isAddr64() ? Match_Success : Match_InvalidOperand;
7738   case MCK_gds:
7739     return Operand.isGDS() ? Match_Success : Match_InvalidOperand;
7740   case MCK_lds:
7741     return Operand.isLDS() ? Match_Success : Match_InvalidOperand;
7742   case MCK_glc:
7743     return Operand.isGLC() ? Match_Success : Match_InvalidOperand;
7744   case MCK_idxen:
7745     return Operand.isIdxen() ? Match_Success : Match_InvalidOperand;
7746   case MCK_offen:
7747     return Operand.isOffen() ? Match_Success : Match_InvalidOperand;
7748   case MCK_SSrcB32:
7749     // When operands have expression values, they will return true for isToken,
7750     // because it is not possible to distinguish between a token and an
7751     // expression at parse time. MatchInstructionImpl() will always try to
7752     // match an operand as a token, when isToken returns true, and when the
7753     // name of the expression is not a valid token, the match will fail,
7754     // so we need to handle it here.
7755     return Operand.isSSrcB32() ? Match_Success : Match_InvalidOperand;
7756   case MCK_SSrcF32:
7757     return Operand.isSSrcF32() ? Match_Success : Match_InvalidOperand;
7758   case MCK_SoppBrTarget:
7759     return Operand.isSoppBrTarget() ? Match_Success : Match_InvalidOperand;
7760   case MCK_VReg32OrOff:
7761     return Operand.isVReg32OrOff() ? Match_Success : Match_InvalidOperand;
7762   case MCK_InterpSlot:
7763     return Operand.isInterpSlot() ? Match_Success : Match_InvalidOperand;
7764   case MCK_Attr:
7765     return Operand.isInterpAttr() ? Match_Success : Match_InvalidOperand;
7766   case MCK_AttrChan:
7767     return Operand.isAttrChan() ? Match_Success : Match_InvalidOperand;
7768   case MCK_ImmSMEMOffset:
7769     return Operand.isSMEMOffset() ? Match_Success : Match_InvalidOperand;
7770   case MCK_SReg_64:
7771   case MCK_SReg_64_XEXEC:
7772     // Null is defined as a 32-bit register but
7773     // it should also be enabled with 64-bit operands.
7774     // The following code enables it for SReg_64 operands
7775     // used as source and destination. Remaining source
7776     // operands are handled in isInlinableImm.
7777     return Operand.isNull() ? Match_Success : Match_InvalidOperand;
7778   default:
7779     return Match_InvalidOperand;
7780   }
7781 }
7782 
7783 //===----------------------------------------------------------------------===//
7784 // endpgm
7785 //===----------------------------------------------------------------------===//
7786 
7787 OperandMatchResultTy AMDGPUAsmParser::parseEndpgmOp(OperandVector &Operands) {
7788   SMLoc S = getLoc();
7789   int64_t Imm = 0;
7790 
7791   if (!parseExpr(Imm)) {
7792     // The operand is optional, if not present default to 0
7793     Imm = 0;
7794   }
7795 
7796   if (!isUInt<16>(Imm)) {
7797     Error(S, "expected a 16-bit value");
7798     return MatchOperand_ParseFail;
7799   }
7800 
7801   Operands.push_back(
7802       AMDGPUOperand::CreateImm(this, Imm, S, AMDGPUOperand::ImmTyEndpgm));
7803   return MatchOperand_Success;
7804 }
7805 
7806 bool AMDGPUOperand::isEndpgm() const { return isImmTy(ImmTyEndpgm); }
7807