1 //===-- AMDGPUKernelCodeT.h - Print AMDGPU assembly code ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file AMDKernelCodeT.h
10 //===----------------------------------------------------------------------===//
11 
12 #ifndef AMDKERNELCODET_H
13 #define AMDKERNELCODET_H
14 
15 #include "llvm/MC/SubtargetFeature.h"
16 
17 #include <cstddef>
18 #include <cstdint>
19 
20 #include "llvm/Support/Debug.h"
21 //---------------------------------------------------------------------------//
22 // AMD Kernel Code, and its dependencies                                     //
23 //---------------------------------------------------------------------------//
24 
25 typedef uint8_t hsa_powertwo8_t;
26 typedef uint32_t hsa_ext_code_kind_t;
27 typedef uint8_t hsa_ext_brig_profile8_t;
28 typedef uint8_t hsa_ext_brig_machine_model8_t;
29 typedef uint64_t hsa_ext_control_directive_present64_t;
30 typedef uint16_t hsa_ext_exception_kind16_t;
31 typedef uint32_t hsa_ext_code_kind32_t;
32 
33 typedef struct hsa_dim3_s {
34   uint32_t x;
35   uint32_t y;
36   uint32_t z;
37 } hsa_dim3_t;
38 
39 /// The version of the amd_*_code_t struct. Minor versions must be
40 /// backward compatible.
41 typedef uint32_t amd_code_version32_t;
42 enum amd_code_version_t {
43   AMD_CODE_VERSION_MAJOR = 0,
44   AMD_CODE_VERSION_MINOR = 1
45 };
46 
47 // Sets val bits for specified mask in specified dst packed instance.
48 #define AMD_HSA_BITS_SET(dst, mask, val)                                       \
49   dst &= (~(1 << mask ## _SHIFT) & ~mask);                                     \
50   dst |= (((val) << mask ## _SHIFT) & mask)
51 
52 // Gets bits for specified mask from specified src packed instance.
53 #define AMD_HSA_BITS_GET(src, mask)                                            \
54   ((src & mask) >> mask ## _SHIFT)                                             \
55 
56 /// The values used to define the number of bytes to use for the
57 /// swizzle element size.
58 enum amd_element_byte_size_t {
59   AMD_ELEMENT_2_BYTES = 0,
60   AMD_ELEMENT_4_BYTES = 1,
61   AMD_ELEMENT_8_BYTES = 2,
62   AMD_ELEMENT_16_BYTES = 3
63 };
64 
65 /// Shader program settings for CS. Contains COMPUTE_PGM_RSRC1 and
66 /// COMPUTE_PGM_RSRC2 registers.
67 typedef uint64_t amd_compute_pgm_resource_register64_t;
68 
69 /// Every amd_*_code_t has the following properties, which are composed of
70 /// a number of bit fields. Every bit field has a mask (AMD_CODE_PROPERTY_*),
71 /// bit width (AMD_CODE_PROPERTY_*_WIDTH, and bit shift amount
72 /// (AMD_CODE_PROPERTY_*_SHIFT) for convenient access. Unused bits must be 0.
73 ///
74 /// (Note that bit fields cannot be used as their layout is
75 /// implementation defined in the C standard and so cannot be used to
76 /// specify an ABI)
77 typedef uint32_t amd_code_property32_t;
78 enum amd_code_property_mask_t {
79 
80   /// Enable the setup of the SGPR user data registers
81   /// (AMD_CODE_PROPERTY_ENABLE_SGPR_*), see documentation of amd_kernel_code_t
82   /// for initial register state.
83   ///
84   /// The total number of SGPRuser data registers requested must not
85   /// exceed 16. Any requests beyond 16 will be ignored.
86   ///
87   /// Used to set COMPUTE_PGM_RSRC2.USER_SGPR (set to total count of
88   /// SGPR user data registers enabled up to 16).
89 
90   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_SHIFT = 0,
91   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_WIDTH = 1,
92   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_SHIFT,
93 
94   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_SHIFT = 1,
95   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_WIDTH = 1,
96   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_SHIFT,
97 
98   AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_SHIFT = 2,
99   AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_WIDTH = 1,
100   AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_SHIFT,
101 
102   AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_SHIFT = 3,
103   AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_WIDTH = 1,
104   AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_SHIFT,
105 
106   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_SHIFT = 4,
107   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_WIDTH = 1,
108   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_SHIFT,
109 
110   AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_SHIFT = 5,
111   AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_WIDTH = 1,
112   AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_SHIFT,
113 
114   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_SHIFT = 6,
115   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_WIDTH = 1,
116   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_SHIFT,
117 
118   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_SHIFT = 7,
119   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_WIDTH = 1,
120   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_SHIFT,
121 
122   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_SHIFT = 8,
123   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_WIDTH = 1,
124   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_SHIFT,
125 
126   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_SHIFT = 9,
127   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_WIDTH = 1,
128   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_SHIFT,
129 
130   /// Control wave ID base counter for GDS ordered-append. Used to set
131   /// COMPUTE_DISPATCH_INITIATOR.ORDERED_APPEND_ENBL. (Not sure if
132   /// ORDERED_APPEND_MODE also needs to be settable)
133   AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_SHIFT = 10,
134   AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_WIDTH = 1,
135   AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS = ((1 << AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_SHIFT,
136 
137   /// The interleave (swizzle) element size in bytes required by the
138   /// code for private memory. This must be 2, 4, 8 or 16. This value
139   /// is provided to the finalizer when it is invoked and is recorded
140   /// here. The hardware will interleave the memory requests of each
141   /// lane of a wavefront by this element size to ensure each
142   /// work-item gets a distinct memory memory location. Therefore, the
143   /// finalizer ensures that all load and store operations done to
144   /// private memory do not exceed this size. For example, if the
145   /// element size is 4 (32-bits or dword) and a 64-bit value must be
146   /// loaded, the finalizer will generate two 32-bit loads. This
147   /// ensures that the interleaving will get the work-item
148   /// specific dword for both halves of the 64-bit value. If it just
149   /// did a 64-bit load then it would get one dword which belonged to
150   /// its own work-item, but the second dword would belong to the
151   /// adjacent lane work-item since the interleaving is in dwords.
152   ///
153   /// The value used must match the value that the runtime configures
154   /// the GPU flat scratch (SH_STATIC_MEM_CONFIG.ELEMENT_SIZE). This
155   /// is generally DWORD.
156   ///
157   /// uSE VALUES FROM THE AMD_ELEMENT_BYTE_SIZE_T ENUM.
158   AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_SHIFT = 11,
159   AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_WIDTH = 2,
160   AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE = ((1 << AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_WIDTH) - 1) << AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_SHIFT,
161 
162   /// Are global memory addresses 64 bits. Must match
163   /// amd_kernel_code_t.hsail_machine_model ==
164   /// HSA_MACHINE_LARGE. Must also match
165   /// SH_MEM_CONFIG.PTR32 (GFX6 (SI)/GFX7 (CI)),
166   /// SH_MEM_CONFIG.ADDRESS_MODE (GFX8 (VI)+).
167   AMD_CODE_PROPERTY_IS_PTR64_SHIFT = 13,
168   AMD_CODE_PROPERTY_IS_PTR64_WIDTH = 1,
169   AMD_CODE_PROPERTY_IS_PTR64 = ((1 << AMD_CODE_PROPERTY_IS_PTR64_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_PTR64_SHIFT,
170 
171   /// Indicate if the generated ISA is using a dynamically sized call
172   /// stack. This can happen if calls are implemented using a call
173   /// stack and recursion, alloca or calls to indirect functions are
174   /// present. In these cases the Finalizer cannot compute the total
175   /// private segment size at compile time. In this case the
176   /// workitem_private_segment_byte_size only specifies the statically
177   /// know private segment size, and additional space must be added
178   /// for the call stack.
179   AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT = 14,
180   AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH = 1,
181   AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK = ((1 << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT,
182 
183   /// Indicate if code generated has support for debugging.
184   AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_SHIFT = 15,
185   AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_WIDTH = 1,
186   AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED = ((1 << AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_SHIFT,
187 
188   AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED_SHIFT = 15,
189   AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED_WIDTH = 1,
190   AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED = ((1 << AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED_SHIFT
191 };
192 
193 /// @brief The hsa_ext_control_directives_t specifies the values for the HSAIL
194 /// control directives. These control how the finalizer generates code. This
195 /// struct is used both as an argument to hsaFinalizeKernel to specify values for
196 /// the control directives, and is used in HsaKernelCode to record the values of
197 /// the control directives that the finalize used when generating the code which
198 /// either came from the finalizer argument or explicit HSAIL control
199 /// directives. See the definition of the control directives in HSA Programmer's
200 /// Reference Manual which also defines how the values specified as finalizer
201 /// arguments have to agree with the control directives in the HSAIL code.
202 typedef struct hsa_ext_control_directives_s {
203   /// This is a bit set indicating which control directives have been
204   /// specified. If the value is 0 then there are no control directives specified
205   /// and the rest of the fields can be ignored. The bits are accessed using the
206   /// hsa_ext_control_directives_present_mask_t. Any control directive that is not
207   /// enabled in this bit set must have the value of all 0s.
208   hsa_ext_control_directive_present64_t enabled_control_directives;
209 
210   /// If enableBreakExceptions is not enabled then must be 0, otherwise must be
211   /// non-0 and specifies the set of HSAIL exceptions that must have the BREAK
212   /// policy enabled. If this set is not empty then the generated code may have
213   /// lower performance than if the set is empty. If the kernel being finalized
214   /// has any enablebreakexceptions control directives, then the values specified
215   /// by this argument are unioned with the values in these control
216   /// directives. If any of the functions the kernel calls have an
217   /// enablebreakexceptions control directive, then they must be equal or a
218   /// subset of, this union.
219   hsa_ext_exception_kind16_t enable_break_exceptions;
220 
221   /// If enableDetectExceptions is not enabled then must be 0, otherwise must be
222   /// non-0 and specifies the set of HSAIL exceptions that must have the DETECT
223   /// policy enabled. If this set is not empty then the generated code may have
224   /// lower performance than if the set is empty. However, an implementation
225   /// should endeavour to make the performance impact small. If the kernel being
226   /// finalized has any enabledetectexceptions control directives, then the
227   /// values specified by this argument are unioned with the values in these
228   /// control directives. If any of the functions the kernel calls have an
229   /// enabledetectexceptions control directive, then they must be equal or a
230   /// subset of, this union.
231   hsa_ext_exception_kind16_t enable_detect_exceptions;
232 
233   /// If maxDynamicGroupSize is not enabled then must be 0, and any amount of
234   /// dynamic group segment can be allocated for a dispatch, otherwise the value
235   /// specifies the maximum number of bytes of dynamic group segment that can be
236   /// allocated for a dispatch. If the kernel being finalized has any
237   /// maxdynamicsize control directives, then the values must be the same, and
238   /// must be the same as this argument if it is enabled. This value can be used
239   /// by the finalizer to determine the maximum number of bytes of group memory
240   /// used by each work-group by adding this value to the group memory required
241   /// for all group segment variables used by the kernel and all functions it
242   /// calls, and group memory used to implement other HSAIL features such as
243   /// fbarriers and the detect exception operations. This can allow the finalizer
244   /// to determine the expected number of work-groups that can be executed by a
245   /// compute unit and allow more resources to be allocated to the work-items if
246   /// it is known that fewer work-groups can be executed due to group memory
247   /// limitations.
248   uint32_t max_dynamic_group_size;
249 
250   /// If maxFlatGridSize is not enabled then must be 0, otherwise must be greater
251   /// than 0. See HSA Programmer's Reference Manual description of
252   /// maxflatgridsize control directive.
253   uint32_t max_flat_grid_size;
254 
255   /// If maxFlatWorkgroupSize is not enabled then must be 0, otherwise must be
256   /// greater than 0. See HSA Programmer's Reference Manual description of
257   /// maxflatworkgroupsize control directive.
258   uint32_t max_flat_workgroup_size;
259 
260   /// If requestedWorkgroupsPerCu is not enabled then must be 0, and the
261   /// finalizer is free to generate ISA that may result in any number of
262   /// work-groups executing on a single compute unit. Otherwise, the finalizer
263   /// should attempt to generate ISA that will allow the specified number of
264   /// work-groups to execute on a single compute unit. This is only a hint and
265   /// can be ignored by the finalizer. If the kernel being finalized, or any of
266   /// the functions it calls, has a requested control directive, then the values
267   /// must be the same. This can be used to determine the number of resources
268   /// that should be allocated to a single work-group and work-item. For example,
269   /// a low value may allow more resources to be allocated, resulting in higher
270   /// per work-item performance, as it is known there will never be more than the
271   /// specified number of work-groups actually executing on the compute
272   /// unit. Conversely, a high value may allocate fewer resources, resulting in
273   /// lower per work-item performance, which is offset by the fact it allows more
274   /// work-groups to actually execute on the compute unit.
275   uint32_t requested_workgroups_per_cu;
276 
277   /// If not enabled then all elements for Dim3 must be 0, otherwise every
278   /// element must be greater than 0. See HSA Programmer's Reference Manual
279   /// description of requiredgridsize control directive.
280   hsa_dim3_t required_grid_size;
281 
282   /// If requiredWorkgroupSize is not enabled then all elements for Dim3 must be
283   /// 0, and the produced code can be dispatched with any legal work-group range
284   /// consistent with the dispatch dimensions. Otherwise, the code produced must
285   /// always be dispatched with the specified work-group range. No element of the
286   /// specified range must be 0. It must be consistent with required_dimensions
287   /// and max_flat_workgroup_size. If the kernel being finalized, or any of the
288   /// functions it calls, has a requiredworkgroupsize control directive, then the
289   /// values must be the same. Specifying a value can allow the finalizer to
290   /// optimize work-group id operations, and if the number of work-items in the
291   /// work-group is less than the WAVESIZE then barrier operations can be
292   /// optimized to just a memory fence.
293   hsa_dim3_t required_workgroup_size;
294 
295   /// If requiredDim is not enabled then must be 0 and the produced kernel code
296   /// can be dispatched with 1, 2 or 3 dimensions. If enabled then the value is
297   /// 1..3 and the code produced must only be dispatched with a dimension that
298   /// matches. Other values are illegal. If the kernel being finalized, or any of
299   /// the functions it calls, has a requireddimsize control directive, then the
300   /// values must be the same. This can be used to optimize the code generated to
301   /// compute the absolute and flat work-group and work-item id, and the dim
302   /// HSAIL operations.
303   uint8_t required_dim;
304 
305   /// Reserved. Must be 0.
306   uint8_t reserved[75];
307 } hsa_ext_control_directives_t;
308 
309 /// AMD Kernel Code Object (amd_kernel_code_t). GPU CP uses the AMD Kernel
310 /// Code Object to set up the hardware to execute the kernel dispatch.
311 ///
312 /// Initial Kernel Register State.
313 ///
314 /// Initial kernel register state will be set up by CP/SPI prior to the start
315 /// of execution of every wavefront. This is limited by the constraints of the
316 /// current hardware.
317 ///
318 /// The order of the SGPR registers is defined, but the Finalizer can specify
319 /// which ones are actually setup in the amd_kernel_code_t object using the
320 /// enable_sgpr_* bit fields. The register numbers used for enabled registers
321 /// are dense starting at SGPR0: the first enabled register is SGPR0, the next
322 /// enabled register is SGPR1 etc.; disabled registers do not have an SGPR
323 /// number.
324 ///
325 /// The initial SGPRs comprise up to 16 User SRGPs that are set up by CP and
326 /// apply to all waves of the grid. It is possible to specify more than 16 User
327 /// SGPRs using the enable_sgpr_* bit fields, in which case only the first 16
328 /// are actually initialized. These are then immediately followed by the System
329 /// SGPRs that are set up by ADC/SPI and can have different values for each wave
330 /// of the grid dispatch.
331 ///
332 /// SGPR register initial state is defined as follows:
333 ///
334 /// Private Segment Buffer (enable_sgpr_private_segment_buffer):
335 ///   Number of User SGPR registers: 4. V# that can be used, together with
336 ///   Scratch Wave Offset as an offset, to access the Private/Spill/Arg
337 ///   segments using a segment address. It must be set as follows:
338 ///     - Base address: of the scratch memory area used by the dispatch. It
339 ///       does not include the scratch wave offset. It will be the per process
340 ///       SH_HIDDEN_PRIVATE_BASE_VMID plus any offset from this dispatch (for
341 ///       example there may be a per pipe offset, or per AQL Queue offset).
342 ///     - Stride + data_format: Element Size * Index Stride (???)
343 ///     - Cache swizzle: ???
344 ///     - Swizzle enable: SH_STATIC_MEM_CONFIG.SWIZZLE_ENABLE (must be 1 for
345 ///       scratch)
346 ///     - Num records: Flat Scratch Work Item Size / Element Size (???)
347 ///     - Dst_sel_*: ???
348 ///     - Num_format: ???
349 ///     - Element_size: SH_STATIC_MEM_CONFIG.ELEMENT_SIZE (will be DWORD, must
350 ///       agree with amd_kernel_code_t.privateElementSize)
351 ///     - Index_stride: SH_STATIC_MEM_CONFIG.INDEX_STRIDE (will be 64 as must
352 ///       be number of wavefront lanes for scratch, must agree with
353 ///       amd_kernel_code_t.wavefrontSize)
354 ///     - Add tid enable: 1
355 ///     - ATC: from SH_MEM_CONFIG.PRIVATE_ATC,
356 ///     - Hash_enable: ???
357 ///     - Heap: ???
358 ///     - Mtype: from SH_STATIC_MEM_CONFIG.PRIVATE_MTYPE
359 ///     - Type: 0 (a buffer) (???)
360 ///
361 /// Dispatch Ptr (enable_sgpr_dispatch_ptr):
362 ///   Number of User SGPR registers: 2. 64 bit address of AQL dispatch packet
363 ///   for kernel actually executing.
364 ///
365 /// Queue Ptr (enable_sgpr_queue_ptr):
366 ///   Number of User SGPR registers: 2. 64 bit address of AmdQueue object for
367 ///   AQL queue on which the dispatch packet was queued.
368 ///
369 /// Kernarg Segment Ptr (enable_sgpr_kernarg_segment_ptr):
370 ///   Number of User SGPR registers: 2. 64 bit address of Kernarg segment. This
371 ///   is directly copied from the kernargPtr in the dispatch packet. Having CP
372 ///   load it once avoids loading it at the beginning of every wavefront.
373 ///
374 /// Dispatch Id (enable_sgpr_dispatch_id):
375 ///   Number of User SGPR registers: 2. 64 bit Dispatch ID of the dispatch
376 ///   packet being executed.
377 ///
378 /// Flat Scratch Init (enable_sgpr_flat_scratch_init):
379 ///   Number of User SGPR registers: 2. This is 2 SGPRs.
380 ///
381 ///   For CI/VI:
382 ///     The first SGPR is a 32 bit byte offset from SH_MEM_HIDDEN_PRIVATE_BASE
383 ///     to base of memory for scratch for this dispatch. This is the same offset
384 ///     used in computing the Scratch Segment Buffer base address. The value of
385 ///     Scratch Wave Offset must be added by the kernel code and moved to
386 ///     SGPRn-4 for use as the FLAT SCRATCH BASE in flat memory instructions.
387 ///
388 ///     The second SGPR is 32 bit byte size of a single work-item's scratch
389 ///     memory usage. This is directly loaded from the dispatch packet Private
390 ///     Segment Byte Size and rounded up to a multiple of DWORD.
391 ///
392 ///     \todo [Does CP need to round this to >4 byte alignment?]
393 ///
394 ///     The kernel code must move to SGPRn-3 for use as the FLAT SCRATCH SIZE in
395 ///     flat memory instructions. Having CP load it once avoids loading it at
396 ///     the beginning of every wavefront.
397 ///
398 ///   For PI:
399 ///     This is the 64 bit base address of the scratch backing memory for
400 ///     allocated by CP for this dispatch.
401 ///
402 /// Private Segment Size (enable_sgpr_private_segment_size):
403 ///   Number of User SGPR registers: 1. The 32 bit byte size of a single
404 ///   work-item's scratch memory allocation. This is the value from the dispatch
405 ///   packet. Private Segment Byte Size rounded up by CP to a multiple of DWORD.
406 ///
407 ///   \todo [Does CP need to round this to >4 byte alignment?]
408 ///
409 ///   Having CP load it once avoids loading it at the beginning of every
410 ///   wavefront.
411 ///
412 ///   \todo [This will not be used for CI/VI since it is the same value as
413 ///   the second SGPR of Flat Scratch Init. However, it is need for PI which
414 ///   changes meaning of Flat Scratchg Init..]
415 ///
416 /// Grid Work-Group Count X (enable_sgpr_grid_workgroup_count_x):
417 ///   Number of User SGPR registers: 1. 32 bit count of the number of
418 ///   work-groups in the X dimension for the grid being executed. Computed from
419 ///   the fields in the HsaDispatchPacket as
420 ///   ((gridSize.x+workgroupSize.x-1)/workgroupSize.x).
421 ///
422 /// Grid Work-Group Count Y (enable_sgpr_grid_workgroup_count_y):
423 ///   Number of User SGPR registers: 1. 32 bit count of the number of
424 ///   work-groups in the Y dimension for the grid being executed. Computed from
425 ///   the fields in the HsaDispatchPacket as
426 ///   ((gridSize.y+workgroupSize.y-1)/workgroupSize.y).
427 ///
428 ///   Only initialized if <16 previous SGPRs initialized.
429 ///
430 /// Grid Work-Group Count Z (enable_sgpr_grid_workgroup_count_z):
431 ///   Number of User SGPR registers: 1. 32 bit count of the number of
432 ///   work-groups in the Z dimension for the grid being executed. Computed
433 ///   from the fields in the HsaDispatchPacket as
434 ///   ((gridSize.z+workgroupSize.z-1)/workgroupSize.z).
435 ///
436 ///   Only initialized if <16 previous SGPRs initialized.
437 ///
438 /// Work-Group Id X (enable_sgpr_workgroup_id_x):
439 ///   Number of System SGPR registers: 1. 32 bit work group id in X dimension
440 ///   of grid for wavefront. Always present.
441 ///
442 /// Work-Group Id Y (enable_sgpr_workgroup_id_y):
443 ///   Number of System SGPR registers: 1. 32 bit work group id in Y dimension
444 ///   of grid for wavefront.
445 ///
446 /// Work-Group Id Z (enable_sgpr_workgroup_id_z):
447 ///   Number of System SGPR registers: 1. 32 bit work group id in Z dimension
448 ///   of grid for wavefront. If present then Work-group Id Y will also be
449 ///   present
450 ///
451 /// Work-Group Info (enable_sgpr_workgroup_info):
452 ///   Number of System SGPR registers: 1. {first_wave, 14'b0000,
453 ///   ordered_append_term[10:0], threadgroup_size_in_waves[5:0]}
454 ///
455 /// Private Segment Wave Byte Offset
456 /// (enable_sgpr_private_segment_wave_byte_offset):
457 ///   Number of System SGPR registers: 1. 32 bit byte offset from base of
458 ///   dispatch scratch base. Must be used as an offset with Private/Spill/Arg
459 ///   segment address when using Scratch Segment Buffer. It must be added to
460 ///   Flat Scratch Offset if setting up FLAT SCRATCH for flat addressing.
461 ///
462 ///
463 /// The order of the VGPR registers is defined, but the Finalizer can specify
464 /// which ones are actually setup in the amd_kernel_code_t object using the
465 /// enableVgpr*  bit fields. The register numbers used for enabled registers
466 /// are dense starting at VGPR0: the first enabled register is VGPR0, the next
467 /// enabled register is VGPR1 etc.; disabled registers do not have an VGPR
468 /// number.
469 ///
470 /// VGPR register initial state is defined as follows:
471 ///
472 /// Work-Item Id X (always initialized):
473 ///   Number of registers: 1. 32 bit work item id in X dimension of work-group
474 ///   for wavefront lane.
475 ///
476 /// Work-Item Id X (enable_vgpr_workitem_id > 0):
477 ///   Number of registers: 1. 32 bit work item id in Y dimension of work-group
478 ///   for wavefront lane.
479 ///
480 /// Work-Item Id X (enable_vgpr_workitem_id > 0):
481 ///   Number of registers: 1. 32 bit work item id in Z dimension of work-group
482 ///   for wavefront lane.
483 ///
484 ///
485 /// The setting of registers is being done by existing GPU hardware as follows:
486 ///   1) SGPRs before the Work-Group Ids are set by CP using the 16 User Data
487 ///      registers.
488 ///   2) Work-group Id registers X, Y, Z are set by SPI which supports any
489 ///      combination including none.
490 ///   3) Scratch Wave Offset is also set by SPI which is why its value cannot
491 ///      be added into the value Flat Scratch Offset which would avoid the
492 ///      Finalizer generated prolog having to do the add.
493 ///   4) The VGPRs are set by SPI which only supports specifying either (X),
494 ///      (X, Y) or (X, Y, Z).
495 ///
496 /// Flat Scratch Dispatch Offset and Flat Scratch Size are adjacent SGRRs so
497 /// they can be moved as a 64 bit value to the hardware required SGPRn-3 and
498 /// SGPRn-4 respectively using the Finalizer ?FLAT_SCRATCH? Register.
499 ///
500 /// The global segment can be accessed either using flat operations or buffer
501 /// operations. If buffer operations are used then the Global Buffer used to
502 /// access HSAIL Global/Readonly/Kernarg (which are combine) segments using a
503 /// segment address is not passed into the kernel code by CP since its base
504 /// address is always 0. Instead the Finalizer generates prolog code to
505 /// initialize 4 SGPRs with a V# that has the following properties, and then
506 /// uses that in the buffer instructions:
507 ///   - base address of 0
508 ///   - no swizzle
509 ///   - ATC=1
510 ///   - MTYPE set to support memory coherence specified in
511 ///     amd_kernel_code_t.globalMemoryCoherence
512 ///
513 /// When the Global Buffer is used to access the Kernarg segment, must add the
514 /// dispatch packet kernArgPtr to a kernarg segment address before using this V#.
515 /// Alternatively scalar loads can be used if the kernarg offset is uniform, as
516 /// the kernarg segment is constant for the duration of the kernel execution.
517 ///
518 
519 typedef struct amd_kernel_code_s {
520   uint32_t amd_kernel_code_version_major;
521   uint32_t amd_kernel_code_version_minor;
522   uint16_t amd_machine_kind;
523   uint16_t amd_machine_version_major;
524   uint16_t amd_machine_version_minor;
525   uint16_t amd_machine_version_stepping;
526 
527   /// Byte offset (possibly negative) from start of amd_kernel_code_t
528   /// object to kernel's entry point instruction. The actual code for
529   /// the kernel is required to be 256 byte aligned to match hardware
530   /// requirements (SQ cache line is 16). The code must be position
531   /// independent code (PIC) for AMD devices to give runtime the
532   /// option of copying code to discrete GPU memory or APU L2
533   /// cache. The Finalizer should endeavour to allocate all kernel
534   /// machine code in contiguous memory pages so that a device
535   /// pre-fetcher will tend to only pre-fetch Kernel Code objects,
536   /// improving cache performance.
537   int64_t kernel_code_entry_byte_offset;
538 
539   /// Range of bytes to consider prefetching expressed as an offset
540   /// and size. The offset is from the start (possibly negative) of
541   /// amd_kernel_code_t object. Set both to 0 if no prefetch
542   /// information is available.
543   int64_t kernel_code_prefetch_byte_offset;
544   uint64_t kernel_code_prefetch_byte_size;
545 
546   /// Number of bytes of scratch backing memory required for full
547   /// occupancy of target chip. This takes into account the number of
548   /// bytes of scratch per work-item, the wavefront size, the maximum
549   /// number of wavefronts per CU, and the number of CUs. This is an
550   /// upper limit on scratch. If the grid being dispatched is small it
551   /// may only need less than this. If the kernel uses no scratch, or
552   /// the Finalizer has not computed this value, it must be 0.
553   uint64_t max_scratch_backing_memory_byte_size;
554 
555   /// Shader program settings for CS. Contains COMPUTE_PGM_RSRC1 and
556   /// COMPUTE_PGM_RSRC2 registers.
557   uint64_t compute_pgm_resource_registers;
558 
559   /// Code properties. See amd_code_property_mask_t for a full list of
560   /// properties.
561   uint32_t code_properties;
562 
563   /// The amount of memory required for the combined private, spill
564   /// and arg segments for a work-item in bytes. If
565   /// is_dynamic_callstack is 1 then additional space must be added to
566   /// this value for the call stack.
567   uint32_t workitem_private_segment_byte_size;
568 
569   /// The amount of group segment memory required by a work-group in
570   /// bytes. This does not include any dynamically allocated group
571   /// segment memory that may be added when the kernel is
572   /// dispatched.
573   uint32_t workgroup_group_segment_byte_size;
574 
575   /// Number of byte of GDS required by kernel dispatch. Must be 0 if
576   /// not using GDS.
577   uint32_t gds_segment_byte_size;
578 
579   /// The size in bytes of the kernarg segment that holds the values
580   /// of the arguments to the kernel. This could be used by CP to
581   /// prefetch the kernarg segment pointed to by the dispatch packet.
582   uint64_t kernarg_segment_byte_size;
583 
584   /// Number of fbarrier's used in the kernel and all functions it
585   /// calls. If the implementation uses group memory to allocate the
586   /// fbarriers then that amount must already be included in the
587   /// workgroup_group_segment_byte_size total.
588   uint32_t workgroup_fbarrier_count;
589 
590   /// Number of scalar registers used by a wavefront. This includes
591   /// the special SGPRs for VCC, Flat Scratch Base, Flat Scratch Size
592   /// and XNACK (for GFX8 (VI)). It does not include the 16 SGPR added if a
593   /// trap handler is enabled. Used to set COMPUTE_PGM_RSRC1.SGPRS.
594   uint16_t wavefront_sgpr_count;
595 
596   /// Number of vector registers used by each work-item. Used to set
597   /// COMPUTE_PGM_RSRC1.VGPRS.
598   uint16_t workitem_vgpr_count;
599 
600   /// If reserved_vgpr_count is 0 then must be 0. Otherwise, this is the
601   /// first fixed VGPR number reserved.
602   uint16_t reserved_vgpr_first;
603 
604   /// The number of consecutive VGPRs reserved by the client. If
605   /// is_debug_supported then this count includes VGPRs reserved
606   /// for debugger use.
607   uint16_t reserved_vgpr_count;
608 
609   /// If reserved_sgpr_count is 0 then must be 0. Otherwise, this is the
610   /// first fixed SGPR number reserved.
611   uint16_t reserved_sgpr_first;
612 
613   /// The number of consecutive SGPRs reserved by the client. If
614   /// is_debug_supported then this count includes SGPRs reserved
615   /// for debugger use.
616   uint16_t reserved_sgpr_count;
617 
618   /// If is_debug_supported is 0 then must be 0. Otherwise, this is the
619   /// fixed SGPR number used to hold the wave scratch offset for the
620   /// entire kernel execution, or uint16_t(-1) if the register is not
621   /// used or not known.
622   uint16_t debug_wavefront_private_segment_offset_sgpr;
623 
624   /// If is_debug_supported is 0 then must be 0. Otherwise, this is the
625   /// fixed SGPR number of the first of 4 SGPRs used to hold the
626   /// scratch V# used for the entire kernel execution, or uint16_t(-1)
627   /// if the registers are not used or not known.
628   uint16_t debug_private_segment_buffer_sgpr;
629 
630   /// The maximum byte alignment of variables used by the kernel in
631   /// the specified memory segment. Expressed as a power of two. Must
632   /// be at least HSA_POWERTWO_16.
633   uint8_t kernarg_segment_alignment;
634   uint8_t group_segment_alignment;
635   uint8_t private_segment_alignment;
636 
637   /// Wavefront size expressed as a power of two. Must be a power of 2
638   /// in range 1..64 inclusive. Used to support runtime query that
639   /// obtains wavefront size, which may be used by application to
640   /// allocated dynamic group memory and set the dispatch work-group
641   /// size.
642   uint8_t wavefront_size;
643 
644   int32_t call_convention;
645   uint8_t reserved3[12];
646   uint64_t runtime_loader_kernel_symbol;
647   uint64_t control_directives[16];
648 } amd_kernel_code_t;
649 
650 #endif // AMDKERNELCODET_H
651