1 //===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is a variant of the UnifyFunctionExitNodes pass. Rather than ensuring 10 // there is at most one ret and one unreachable instruction, it ensures there is 11 // at most one divergent exiting block. 12 // 13 // StructurizeCFG can't deal with multi-exit regions formed by branches to 14 // multiple return nodes. It is not desirable to structurize regions with 15 // uniform branches, so unifying those to the same return block as divergent 16 // branches inhibits use of scalar branching. It still can't deal with the case 17 // where one branch goes to return, and one unreachable. Replace unreachable in 18 // this case with a return. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "AMDGPU.h" 23 #include "SIDefines.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/IntrinsicsAMDGPU.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes" 53 54 namespace { 55 56 class AMDGPUUnifyDivergentExitNodes : public FunctionPass { 57 private: 58 const TargetTransformInfo *TTI = nullptr; 59 60 public: 61 static char ID; // Pass identification, replacement for typeid 62 63 AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) { 64 initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry()); 65 } 66 67 // We can preserve non-critical-edgeness when we unify function exit nodes 68 void getAnalysisUsage(AnalysisUsage &AU) const override; 69 BasicBlock *unifyReturnBlockSet(Function &F, DomTreeUpdater &DTU, 70 ArrayRef<BasicBlock *> ReturningBlocks, 71 bool InsertExport, StringRef Name); 72 bool runOnFunction(Function &F) override; 73 }; 74 75 } // end anonymous namespace 76 77 char AMDGPUUnifyDivergentExitNodes::ID = 0; 78 79 char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID; 80 81 INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 82 "Unify divergent function exit nodes", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 85 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 86 INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 87 "Unify divergent function exit nodes", false, false) 88 89 void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{ 90 if (RequireAndPreserveDomTree) 91 AU.addRequired<DominatorTreeWrapperPass>(); 92 93 AU.addRequired<PostDominatorTreeWrapperPass>(); 94 95 AU.addRequired<LegacyDivergenceAnalysis>(); 96 97 if (RequireAndPreserveDomTree) { 98 AU.addPreserved<DominatorTreeWrapperPass>(); 99 // FIXME: preserve PostDominatorTreeWrapperPass 100 } 101 102 // No divergent values are changed, only blocks and branch edges. 103 AU.addPreserved<LegacyDivergenceAnalysis>(); 104 105 // We preserve the non-critical-edgeness property 106 AU.addPreservedID(BreakCriticalEdgesID); 107 108 // This is a cluster of orthogonal Transforms 109 AU.addPreservedID(LowerSwitchID); 110 FunctionPass::getAnalysisUsage(AU); 111 112 AU.addRequired<TargetTransformInfoWrapperPass>(); 113 } 114 115 /// \returns true if \p BB is reachable through only uniform branches. 116 /// XXX - Is there a more efficient way to find this? 117 static bool isUniformlyReached(const LegacyDivergenceAnalysis &DA, 118 BasicBlock &BB) { 119 SmallVector<BasicBlock *, 8> Stack(predecessors(&BB)); 120 SmallPtrSet<BasicBlock *, 8> Visited; 121 122 while (!Stack.empty()) { 123 BasicBlock *Top = Stack.pop_back_val(); 124 if (!DA.isUniform(Top->getTerminator())) 125 return false; 126 127 for (BasicBlock *Pred : predecessors(Top)) { 128 if (Visited.insert(Pred).second) 129 Stack.push_back(Pred); 130 } 131 } 132 133 return true; 134 } 135 136 static void removeDoneExport(Function &F) { 137 ConstantInt *BoolFalse = ConstantInt::getFalse(F.getContext()); 138 for (BasicBlock &BB : F) { 139 for (Instruction &I : BB) { 140 if (IntrinsicInst *Intrin = llvm::dyn_cast<IntrinsicInst>(&I)) { 141 if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp) { 142 Intrin->setArgOperand(6, BoolFalse); // done 143 } else if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp_compr) { 144 Intrin->setArgOperand(4, BoolFalse); // done 145 } 146 } 147 } 148 } 149 } 150 151 BasicBlock *AMDGPUUnifyDivergentExitNodes::unifyReturnBlockSet( 152 Function &F, DomTreeUpdater &DTU, ArrayRef<BasicBlock *> ReturningBlocks, 153 bool InsertExport, StringRef Name) { 154 // Otherwise, we need to insert a new basic block into the function, add a PHI 155 // nodes (if the function returns values), and convert all of the return 156 // instructions into unconditional branches. 157 BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F); 158 IRBuilder<> B(NewRetBlock); 159 160 if (InsertExport) { 161 // Ensure that there's only one "done" export in the shader by removing the 162 // "done" bit set on the original final export. More than one "done" export 163 // can lead to undefined behavior. 164 removeDoneExport(F); 165 166 Value *Undef = UndefValue::get(B.getFloatTy()); 167 B.CreateIntrinsic(Intrinsic::amdgcn_exp, { B.getFloatTy() }, 168 { 169 B.getInt32(AMDGPU::Exp::ET_NULL), 170 B.getInt32(0), // enabled channels 171 Undef, Undef, Undef, Undef, // values 172 B.getTrue(), // done 173 B.getTrue(), // valid mask 174 }); 175 } 176 177 PHINode *PN = nullptr; 178 if (F.getReturnType()->isVoidTy()) { 179 B.CreateRetVoid(); 180 } else { 181 // If the function doesn't return void... add a PHI node to the block... 182 PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(), 183 "UnifiedRetVal"); 184 assert(!InsertExport); 185 B.CreateRet(PN); 186 } 187 188 // Loop over all of the blocks, replacing the return instruction with an 189 // unconditional branch. 190 std::vector<DominatorTree::UpdateType> Updates; 191 Updates.reserve(ReturningBlocks.size()); 192 for (BasicBlock *BB : ReturningBlocks) { 193 // Add an incoming element to the PHI node for every return instruction that 194 // is merging into this new block... 195 if (PN) 196 PN->addIncoming(BB->getTerminator()->getOperand(0), BB); 197 198 // Remove and delete the return inst. 199 BB->getTerminator()->eraseFromParent(); 200 BranchInst::Create(NewRetBlock, BB); 201 Updates.push_back({DominatorTree::Insert, BB, NewRetBlock}); 202 } 203 204 if (RequireAndPreserveDomTree) 205 DTU.applyUpdates(Updates); 206 Updates.clear(); 207 208 for (BasicBlock *BB : ReturningBlocks) { 209 // Cleanup possible branch to unconditional branch to the return. 210 simplifyCFG(BB, *TTI, RequireAndPreserveDomTree ? &DTU : nullptr, 211 SimplifyCFGOptions().bonusInstThreshold(2)); 212 } 213 214 return NewRetBlock; 215 } 216 217 bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) { 218 DominatorTree *DT = nullptr; 219 if (RequireAndPreserveDomTree) 220 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 221 222 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 223 224 // If there's only one exit, we don't need to do anything, unless this is a 225 // pixel shader and that exit is an infinite loop, since we still have to 226 // insert an export in that case. 227 if (PDT.root_size() <= 1 && F.getCallingConv() != CallingConv::AMDGPU_PS) 228 return false; 229 230 LegacyDivergenceAnalysis &DA = getAnalysis<LegacyDivergenceAnalysis>(); 231 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 232 233 // Loop over all of the blocks in a function, tracking all of the blocks that 234 // return. 235 SmallVector<BasicBlock *, 4> ReturningBlocks; 236 SmallVector<BasicBlock *, 4> UniformlyReachedRetBlocks; 237 SmallVector<BasicBlock *, 4> UnreachableBlocks; 238 239 // Dummy return block for infinite loop. 240 BasicBlock *DummyReturnBB = nullptr; 241 242 bool InsertExport = false; 243 244 bool Changed = false; 245 std::vector<DominatorTree::UpdateType> Updates; 246 247 for (BasicBlock *BB : PDT.roots()) { 248 if (isa<ReturnInst>(BB->getTerminator())) { 249 if (!isUniformlyReached(DA, *BB)) 250 ReturningBlocks.push_back(BB); 251 else 252 UniformlyReachedRetBlocks.push_back(BB); 253 } else if (isa<UnreachableInst>(BB->getTerminator())) { 254 if (!isUniformlyReached(DA, *BB)) 255 UnreachableBlocks.push_back(BB); 256 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 257 258 ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext()); 259 if (DummyReturnBB == nullptr) { 260 DummyReturnBB = BasicBlock::Create(F.getContext(), 261 "DummyReturnBlock", &F); 262 Type *RetTy = F.getReturnType(); 263 Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy); 264 265 // For pixel shaders, the producer guarantees that an export is 266 // executed before each return instruction. However, if there is an 267 // infinite loop and we insert a return ourselves, we need to uphold 268 // that guarantee by inserting a null export. This can happen e.g. in 269 // an infinite loop with kill instructions, which is supposed to 270 // terminate. However, we don't need to do this if there is a non-void 271 // return value, since then there is an epilog afterwards which will 272 // still export. 273 // 274 // Note: In the case where only some threads enter the infinite loop, 275 // this can result in the null export happening redundantly after the 276 // original exports. However, The last "real" export happens after all 277 // the threads that didn't enter an infinite loop converged, which 278 // means that the only extra threads to execute the null export are 279 // threads that entered the infinite loop, and they only could've 280 // exited through being killed which sets their exec bit to 0. 281 // Therefore, unless there's an actual infinite loop, which can have 282 // invalid results, or there's a kill after the last export, which we 283 // assume the frontend won't do, this export will have the same exec 284 // mask as the last "real" export, and therefore the valid mask will be 285 // overwritten with the same value and will still be correct. Also, 286 // even though this forces an extra unnecessary export wait, we assume 287 // that this happens rare enough in practice to that we don't have to 288 // worry about performance. 289 if (F.getCallingConv() == CallingConv::AMDGPU_PS && 290 RetTy->isVoidTy()) { 291 InsertExport = true; 292 } 293 294 ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB); 295 ReturningBlocks.push_back(DummyReturnBB); 296 } 297 298 if (BI->isUnconditional()) { 299 BasicBlock *LoopHeaderBB = BI->getSuccessor(0); 300 BI->eraseFromParent(); // Delete the unconditional branch. 301 // Add a new conditional branch with a dummy edge to the return block. 302 BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB); 303 Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB}); 304 } else { // Conditional branch. 305 SmallVector<BasicBlock *, 2> Successors(succ_begin(BB), succ_end(BB)); 306 307 // Create a new transition block to hold the conditional branch. 308 BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock"); 309 310 Updates.reserve(Updates.size() + 2 * Successors.size() + 2); 311 312 // 'Successors' become successors of TransitionBB instead of BB, 313 // and TransitionBB becomes a single successor of BB. 314 Updates.push_back({DominatorTree::Insert, BB, TransitionBB}); 315 for (BasicBlock *Successor : Successors) { 316 Updates.push_back({DominatorTree::Insert, TransitionBB, Successor}); 317 Updates.push_back({DominatorTree::Delete, BB, Successor}); 318 } 319 320 // Create a branch that will always branch to the transition block and 321 // references DummyReturnBB. 322 BB->getTerminator()->eraseFromParent(); 323 BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB); 324 Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB}); 325 } 326 Changed = true; 327 } 328 } 329 330 if (!UnreachableBlocks.empty()) { 331 BasicBlock *UnreachableBlock = nullptr; 332 333 if (UnreachableBlocks.size() == 1) { 334 UnreachableBlock = UnreachableBlocks.front(); 335 } else { 336 UnreachableBlock = BasicBlock::Create(F.getContext(), 337 "UnifiedUnreachableBlock", &F); 338 new UnreachableInst(F.getContext(), UnreachableBlock); 339 340 Updates.reserve(Updates.size() + UnreachableBlocks.size()); 341 for (BasicBlock *BB : UnreachableBlocks) { 342 // Remove and delete the unreachable inst. 343 BB->getTerminator()->eraseFromParent(); 344 BranchInst::Create(UnreachableBlock, BB); 345 Updates.push_back({DominatorTree::Insert, BB, UnreachableBlock}); 346 } 347 Changed = true; 348 } 349 350 if (!ReturningBlocks.empty()) { 351 // Don't create a new unreachable inst if we have a return. The 352 // structurizer/annotator can't handle the multiple exits 353 354 Type *RetTy = F.getReturnType(); 355 Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy); 356 // Remove and delete the unreachable inst. 357 UnreachableBlock->getTerminator()->eraseFromParent(); 358 359 Function *UnreachableIntrin = 360 Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable); 361 362 // Insert a call to an intrinsic tracking that this is an unreachable 363 // point, in case we want to kill the active lanes or something later. 364 CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock); 365 366 // Don't create a scalar trap. We would only want to trap if this code was 367 // really reached, but a scalar trap would happen even if no lanes 368 // actually reached here. 369 ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock); 370 ReturningBlocks.push_back(UnreachableBlock); 371 Changed = true; 372 } 373 } 374 375 // FIXME: add PDT here once simplifycfg is ready. 376 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 377 if (RequireAndPreserveDomTree) 378 DTU.applyUpdates(Updates); 379 Updates.clear(); 380 381 // Now handle return blocks. 382 if (ReturningBlocks.empty()) 383 return Changed; // No blocks return 384 385 if (ReturningBlocks.size() == 1 && !InsertExport) 386 return Changed; // Already has a single return block 387 388 // Unify returning blocks. If we are going to insert the export it is also 389 // necessary to include blocks that are uniformly reached, because in addition 390 // to inserting the export the "done" bits on existing exports will be cleared 391 // and we do not want to end up with the normal export in a non-unified, 392 // uniformly reached block with the "done" bit cleared. 393 auto BlocksToUnify = std::move(ReturningBlocks); 394 if (InsertExport) { 395 llvm::append_range(BlocksToUnify, UniformlyReachedRetBlocks); 396 } 397 398 unifyReturnBlockSet(F, DTU, BlocksToUnify, InsertExport, 399 "UnifiedReturnBlock"); 400 return true; 401 } 402