1 //===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring 10 // there is at most one ret and one unreachable instruction, it ensures there is 11 // at most one divergent exiting block. 12 // 13 // StructurizeCFG can't deal with multi-exit regions formed by branches to 14 // multiple return nodes. It is not desirable to structurize regions with 15 // uniform branches, so unifying those to the same return block as divergent 16 // branches inhibits use of scalar branching. It still can't deal with the case 17 // where one branch goes to return, and one unreachable. Replace unreachable in 18 // this case with a return. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "AMDGPU.h" 23 #include "SIDefines.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 29 #include "llvm/Analysis/PostDominators.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/InstrTypes.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Transforms/Scalar.h" 44 #include "llvm/Transforms/Utils.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes" 50 51 namespace { 52 53 class AMDGPUUnifyDivergentExitNodes : public FunctionPass { 54 public: 55 static char ID; // Pass identification, replacement for typeid 56 57 AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) { 58 initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry()); 59 } 60 61 // We can preserve non-critical-edgeness when we unify function exit nodes 62 void getAnalysisUsage(AnalysisUsage &AU) const override; 63 bool runOnFunction(Function &F) override; 64 }; 65 66 } // end anonymous namespace 67 68 char AMDGPUUnifyDivergentExitNodes::ID = 0; 69 70 char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID; 71 72 INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 73 "Unify divergent function exit nodes", false, false) 74 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 75 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 76 INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 77 "Unify divergent function exit nodes", false, false) 78 79 void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{ 80 // TODO: Preserve dominator tree. 81 AU.addRequired<PostDominatorTreeWrapperPass>(); 82 83 AU.addRequired<LegacyDivergenceAnalysis>(); 84 85 // No divergent values are changed, only blocks and branch edges. 86 AU.addPreserved<LegacyDivergenceAnalysis>(); 87 88 // We preserve the non-critical-edgeness property 89 AU.addPreservedID(BreakCriticalEdgesID); 90 91 // This is a cluster of orthogonal Transforms 92 AU.addPreservedID(LowerSwitchID); 93 FunctionPass::getAnalysisUsage(AU); 94 95 AU.addRequired<TargetTransformInfoWrapperPass>(); 96 } 97 98 /// \returns true if \p BB is reachable through only uniform branches. 99 /// XXX - Is there a more efficient way to find this? 100 static bool isUniformlyReached(const LegacyDivergenceAnalysis &DA, 101 BasicBlock &BB) { 102 SmallVector<BasicBlock *, 8> Stack; 103 SmallPtrSet<BasicBlock *, 8> Visited; 104 105 for (BasicBlock *Pred : predecessors(&BB)) 106 Stack.push_back(Pred); 107 108 while (!Stack.empty()) { 109 BasicBlock *Top = Stack.pop_back_val(); 110 if (!DA.isUniform(Top->getTerminator())) 111 return false; 112 113 for (BasicBlock *Pred : predecessors(Top)) { 114 if (Visited.insert(Pred).second) 115 Stack.push_back(Pred); 116 } 117 } 118 119 return true; 120 } 121 122 static void removeDoneExport(Function &F) { 123 ConstantInt *BoolFalse = ConstantInt::getFalse(F.getContext()); 124 for (BasicBlock &BB : F) { 125 for (Instruction &I : BB) { 126 if (IntrinsicInst *Intrin = llvm::dyn_cast<IntrinsicInst>(&I)) { 127 if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp) { 128 Intrin->setArgOperand(6, BoolFalse); // done 129 } else if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp_compr) { 130 Intrin->setArgOperand(4, BoolFalse); // done 131 } 132 } 133 } 134 } 135 } 136 137 static BasicBlock *unifyReturnBlockSet(Function &F, 138 ArrayRef<BasicBlock *> ReturningBlocks, 139 bool InsertExport, 140 const TargetTransformInfo &TTI, 141 StringRef Name) { 142 // Otherwise, we need to insert a new basic block into the function, add a PHI 143 // nodes (if the function returns values), and convert all of the return 144 // instructions into unconditional branches. 145 BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F); 146 IRBuilder<> B(NewRetBlock); 147 148 if (InsertExport) { 149 // Ensure that there's only one "done" export in the shader by removing the 150 // "done" bit set on the original final export. More than one "done" export 151 // can lead to undefined behavior. 152 removeDoneExport(F); 153 154 Value *Undef = UndefValue::get(B.getFloatTy()); 155 B.CreateIntrinsic(Intrinsic::amdgcn_exp, { B.getFloatTy() }, 156 { 157 B.getInt32(AMDGPU::Exp::ET_NULL), 158 B.getInt32(0), // enabled channels 159 Undef, Undef, Undef, Undef, // values 160 B.getTrue(), // done 161 B.getTrue(), // valid mask 162 }); 163 } 164 165 PHINode *PN = nullptr; 166 if (F.getReturnType()->isVoidTy()) { 167 B.CreateRetVoid(); 168 } else { 169 // If the function doesn't return void... add a PHI node to the block... 170 PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(), 171 "UnifiedRetVal"); 172 assert(!InsertExport); 173 B.CreateRet(PN); 174 } 175 176 // Loop over all of the blocks, replacing the return instruction with an 177 // unconditional branch. 178 for (BasicBlock *BB : ReturningBlocks) { 179 // Add an incoming element to the PHI node for every return instruction that 180 // is merging into this new block... 181 if (PN) 182 PN->addIncoming(BB->getTerminator()->getOperand(0), BB); 183 184 // Remove and delete the return inst. 185 BB->getTerminator()->eraseFromParent(); 186 BranchInst::Create(NewRetBlock, BB); 187 } 188 189 for (BasicBlock *BB : ReturningBlocks) { 190 // Cleanup possible branch to unconditional branch to the return. 191 simplifyCFG(BB, TTI, /*DTU=*/nullptr, 192 SimplifyCFGOptions().bonusInstThreshold(2)); 193 } 194 195 return NewRetBlock; 196 } 197 198 bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) { 199 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 200 201 // If there's only one exit, we don't need to do anything, unless this is a 202 // pixel shader and that exit is an infinite loop, since we still have to 203 // insert an export in that case. 204 if (PDT.root_size() <= 1 && F.getCallingConv() != CallingConv::AMDGPU_PS) 205 return false; 206 207 LegacyDivergenceAnalysis &DA = getAnalysis<LegacyDivergenceAnalysis>(); 208 209 // Loop over all of the blocks in a function, tracking all of the blocks that 210 // return. 211 SmallVector<BasicBlock *, 4> ReturningBlocks; 212 SmallVector<BasicBlock *, 4> UniformlyReachedRetBlocks; 213 SmallVector<BasicBlock *, 4> UnreachableBlocks; 214 215 // Dummy return block for infinite loop. 216 BasicBlock *DummyReturnBB = nullptr; 217 218 bool InsertExport = false; 219 220 bool Changed = false; 221 for (BasicBlock *BB : PDT.roots()) { 222 if (isa<ReturnInst>(BB->getTerminator())) { 223 if (!isUniformlyReached(DA, *BB)) 224 ReturningBlocks.push_back(BB); 225 else 226 UniformlyReachedRetBlocks.push_back(BB); 227 } else if (isa<UnreachableInst>(BB->getTerminator())) { 228 if (!isUniformlyReached(DA, *BB)) 229 UnreachableBlocks.push_back(BB); 230 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 231 232 ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext()); 233 if (DummyReturnBB == nullptr) { 234 DummyReturnBB = BasicBlock::Create(F.getContext(), 235 "DummyReturnBlock", &F); 236 Type *RetTy = F.getReturnType(); 237 Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy); 238 239 // For pixel shaders, the producer guarantees that an export is 240 // executed before each return instruction. However, if there is an 241 // infinite loop and we insert a return ourselves, we need to uphold 242 // that guarantee by inserting a null export. This can happen e.g. in 243 // an infinite loop with kill instructions, which is supposed to 244 // terminate. However, we don't need to do this if there is a non-void 245 // return value, since then there is an epilog afterwards which will 246 // still export. 247 // 248 // Note: In the case where only some threads enter the infinite loop, 249 // this can result in the null export happening redundantly after the 250 // original exports. However, The last "real" export happens after all 251 // the threads that didn't enter an infinite loop converged, which 252 // means that the only extra threads to execute the null export are 253 // threads that entered the infinite loop, and they only could've 254 // exited through being killed which sets their exec bit to 0. 255 // Therefore, unless there's an actual infinite loop, which can have 256 // invalid results, or there's a kill after the last export, which we 257 // assume the frontend won't do, this export will have the same exec 258 // mask as the last "real" export, and therefore the valid mask will be 259 // overwritten with the same value and will still be correct. Also, 260 // even though this forces an extra unnecessary export wait, we assume 261 // that this happens rare enough in practice to that we don't have to 262 // worry about performance. 263 if (F.getCallingConv() == CallingConv::AMDGPU_PS && 264 RetTy->isVoidTy()) { 265 InsertExport = true; 266 } 267 268 ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB); 269 ReturningBlocks.push_back(DummyReturnBB); 270 } 271 272 if (BI->isUnconditional()) { 273 BasicBlock *LoopHeaderBB = BI->getSuccessor(0); 274 BI->eraseFromParent(); // Delete the unconditional branch. 275 // Add a new conditional branch with a dummy edge to the return block. 276 BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB); 277 } else { // Conditional branch. 278 // Create a new transition block to hold the conditional branch. 279 BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock"); 280 281 // Create a branch that will always branch to the transition block and 282 // references DummyReturnBB. 283 BB->getTerminator()->eraseFromParent(); 284 BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB); 285 } 286 Changed = true; 287 } 288 } 289 290 if (!UnreachableBlocks.empty()) { 291 BasicBlock *UnreachableBlock = nullptr; 292 293 if (UnreachableBlocks.size() == 1) { 294 UnreachableBlock = UnreachableBlocks.front(); 295 } else { 296 UnreachableBlock = BasicBlock::Create(F.getContext(), 297 "UnifiedUnreachableBlock", &F); 298 new UnreachableInst(F.getContext(), UnreachableBlock); 299 300 for (BasicBlock *BB : UnreachableBlocks) { 301 // Remove and delete the unreachable inst. 302 BB->getTerminator()->eraseFromParent(); 303 BranchInst::Create(UnreachableBlock, BB); 304 } 305 Changed = true; 306 } 307 308 if (!ReturningBlocks.empty()) { 309 // Don't create a new unreachable inst if we have a return. The 310 // structurizer/annotator can't handle the multiple exits 311 312 Type *RetTy = F.getReturnType(); 313 Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy); 314 // Remove and delete the unreachable inst. 315 UnreachableBlock->getTerminator()->eraseFromParent(); 316 317 Function *UnreachableIntrin = 318 Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable); 319 320 // Insert a call to an intrinsic tracking that this is an unreachable 321 // point, in case we want to kill the active lanes or something later. 322 CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock); 323 324 // Don't create a scalar trap. We would only want to trap if this code was 325 // really reached, but a scalar trap would happen even if no lanes 326 // actually reached here. 327 ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock); 328 ReturningBlocks.push_back(UnreachableBlock); 329 Changed = true; 330 } 331 } 332 333 // Now handle return blocks. 334 if (ReturningBlocks.empty()) 335 return Changed; // No blocks return 336 337 if (ReturningBlocks.size() == 1 && !InsertExport) 338 return Changed; // Already has a single return block 339 340 const TargetTransformInfo &TTI 341 = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 342 343 // Unify returning blocks. If we are going to insert the export it is also 344 // necessary to include blocks that are uniformly reached, because in addition 345 // to inserting the export the "done" bits on existing exports will be cleared 346 // and we do not want to end up with the normal export in a non-unified, 347 // uniformly reached block with the "done" bit cleared. 348 auto BlocksToUnify = std::move(ReturningBlocks); 349 if (InsertExport) { 350 BlocksToUnify.insert(BlocksToUnify.end(), UniformlyReachedRetBlocks.begin(), 351 UniformlyReachedRetBlocks.end()); 352 } 353 354 unifyReturnBlockSet(F, BlocksToUnify, InsertExport, TTI, 355 "UnifiedReturnBlock"); 356 return true; 357 } 358