1 //===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring 10 // there is at most one ret and one unreachable instruction, it ensures there is 11 // at most one divergent exiting block. 12 // 13 // StructurizeCFG can't deal with multi-exit regions formed by branches to 14 // multiple return nodes. It is not desirable to structurize regions with 15 // uniform branches, so unifying those to the same return block as divergent 16 // branches inhibits use of scalar branching. It still can't deal with the case 17 // where one branch goes to return, and one unreachable. Replace unreachable in 18 // this case with a return. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "AMDGPU.h" 23 #include "SIDefines.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes" 52 53 namespace { 54 55 class AMDGPUUnifyDivergentExitNodes : public FunctionPass { 56 public: 57 static char ID; // Pass identification, replacement for typeid 58 59 AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) { 60 initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry()); 61 } 62 63 // We can preserve non-critical-edgeness when we unify function exit nodes 64 void getAnalysisUsage(AnalysisUsage &AU) const override; 65 bool runOnFunction(Function &F) override; 66 }; 67 68 } // end anonymous namespace 69 70 char AMDGPUUnifyDivergentExitNodes::ID = 0; 71 72 char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID; 73 74 INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 75 "Unify divergent function exit nodes", false, false) 76 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 77 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 78 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 79 INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 80 "Unify divergent function exit nodes", false, false) 81 82 void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{ 83 if (RequireAndPreserveDomTree) 84 AU.addRequired<DominatorTreeWrapperPass>(); 85 86 AU.addRequired<PostDominatorTreeWrapperPass>(); 87 88 AU.addRequired<LegacyDivergenceAnalysis>(); 89 90 if (RequireAndPreserveDomTree) { 91 AU.addPreserved<DominatorTreeWrapperPass>(); 92 // FIXME: preserve PostDominatorTreeWrapperPass 93 } 94 95 // No divergent values are changed, only blocks and branch edges. 96 AU.addPreserved<LegacyDivergenceAnalysis>(); 97 98 // We preserve the non-critical-edgeness property 99 AU.addPreservedID(BreakCriticalEdgesID); 100 101 // This is a cluster of orthogonal Transforms 102 AU.addPreservedID(LowerSwitchID); 103 FunctionPass::getAnalysisUsage(AU); 104 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// \returns true if \p BB is reachable through only uniform branches. 109 /// XXX - Is there a more efficient way to find this? 110 static bool isUniformlyReached(const LegacyDivergenceAnalysis &DA, 111 BasicBlock &BB) { 112 SmallVector<BasicBlock *, 8> Stack; 113 SmallPtrSet<BasicBlock *, 8> Visited; 114 115 for (BasicBlock *Pred : predecessors(&BB)) 116 Stack.push_back(Pred); 117 118 while (!Stack.empty()) { 119 BasicBlock *Top = Stack.pop_back_val(); 120 if (!DA.isUniform(Top->getTerminator())) 121 return false; 122 123 for (BasicBlock *Pred : predecessors(Top)) { 124 if (Visited.insert(Pred).second) 125 Stack.push_back(Pred); 126 } 127 } 128 129 return true; 130 } 131 132 static void removeDoneExport(Function &F) { 133 ConstantInt *BoolFalse = ConstantInt::getFalse(F.getContext()); 134 for (BasicBlock &BB : F) { 135 for (Instruction &I : BB) { 136 if (IntrinsicInst *Intrin = llvm::dyn_cast<IntrinsicInst>(&I)) { 137 if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp) { 138 Intrin->setArgOperand(6, BoolFalse); // done 139 } else if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp_compr) { 140 Intrin->setArgOperand(4, BoolFalse); // done 141 } 142 } 143 } 144 } 145 } 146 147 static BasicBlock *unifyReturnBlockSet(Function &F, DomTreeUpdater &DTU, 148 ArrayRef<BasicBlock *> ReturningBlocks, 149 bool InsertExport, 150 const TargetTransformInfo &TTI, 151 StringRef Name) { 152 // Otherwise, we need to insert a new basic block into the function, add a PHI 153 // nodes (if the function returns values), and convert all of the return 154 // instructions into unconditional branches. 155 BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F); 156 IRBuilder<> B(NewRetBlock); 157 158 if (InsertExport) { 159 // Ensure that there's only one "done" export in the shader by removing the 160 // "done" bit set on the original final export. More than one "done" export 161 // can lead to undefined behavior. 162 removeDoneExport(F); 163 164 Value *Undef = UndefValue::get(B.getFloatTy()); 165 B.CreateIntrinsic(Intrinsic::amdgcn_exp, { B.getFloatTy() }, 166 { 167 B.getInt32(AMDGPU::Exp::ET_NULL), 168 B.getInt32(0), // enabled channels 169 Undef, Undef, Undef, Undef, // values 170 B.getTrue(), // done 171 B.getTrue(), // valid mask 172 }); 173 } 174 175 PHINode *PN = nullptr; 176 if (F.getReturnType()->isVoidTy()) { 177 B.CreateRetVoid(); 178 } else { 179 // If the function doesn't return void... add a PHI node to the block... 180 PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(), 181 "UnifiedRetVal"); 182 assert(!InsertExport); 183 B.CreateRet(PN); 184 } 185 186 // Loop over all of the blocks, replacing the return instruction with an 187 // unconditional branch. 188 std::vector<DominatorTree::UpdateType> Updates; 189 Updates.reserve(ReturningBlocks.size()); 190 for (BasicBlock *BB : ReturningBlocks) { 191 // Add an incoming element to the PHI node for every return instruction that 192 // is merging into this new block... 193 if (PN) 194 PN->addIncoming(BB->getTerminator()->getOperand(0), BB); 195 196 // Remove and delete the return inst. 197 BB->getTerminator()->eraseFromParent(); 198 BranchInst::Create(NewRetBlock, BB); 199 Updates.push_back({DominatorTree::Insert, BB, NewRetBlock}); 200 } 201 202 if (RequireAndPreserveDomTree) 203 DTU.applyUpdates(Updates); 204 Updates.clear(); 205 206 for (BasicBlock *BB : ReturningBlocks) { 207 // Cleanup possible branch to unconditional branch to the return. 208 simplifyCFG(BB, TTI, RequireAndPreserveDomTree ? &DTU : nullptr, 209 SimplifyCFGOptions().bonusInstThreshold(2)); 210 } 211 212 return NewRetBlock; 213 } 214 215 bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) { 216 DominatorTree *DT = nullptr; 217 if (RequireAndPreserveDomTree) 218 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 219 220 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 221 222 // If there's only one exit, we don't need to do anything, unless this is a 223 // pixel shader and that exit is an infinite loop, since we still have to 224 // insert an export in that case. 225 if (PDT.root_size() <= 1 && F.getCallingConv() != CallingConv::AMDGPU_PS) 226 return false; 227 228 LegacyDivergenceAnalysis &DA = getAnalysis<LegacyDivergenceAnalysis>(); 229 230 // Loop over all of the blocks in a function, tracking all of the blocks that 231 // return. 232 SmallVector<BasicBlock *, 4> ReturningBlocks; 233 SmallVector<BasicBlock *, 4> UniformlyReachedRetBlocks; 234 SmallVector<BasicBlock *, 4> UnreachableBlocks; 235 236 // Dummy return block for infinite loop. 237 BasicBlock *DummyReturnBB = nullptr; 238 239 bool InsertExport = false; 240 241 bool Changed = false; 242 std::vector<DominatorTree::UpdateType> Updates; 243 244 for (BasicBlock *BB : PDT.roots()) { 245 if (isa<ReturnInst>(BB->getTerminator())) { 246 if (!isUniformlyReached(DA, *BB)) 247 ReturningBlocks.push_back(BB); 248 else 249 UniformlyReachedRetBlocks.push_back(BB); 250 } else if (isa<UnreachableInst>(BB->getTerminator())) { 251 if (!isUniformlyReached(DA, *BB)) 252 UnreachableBlocks.push_back(BB); 253 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 254 255 ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext()); 256 if (DummyReturnBB == nullptr) { 257 DummyReturnBB = BasicBlock::Create(F.getContext(), 258 "DummyReturnBlock", &F); 259 Type *RetTy = F.getReturnType(); 260 Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy); 261 262 // For pixel shaders, the producer guarantees that an export is 263 // executed before each return instruction. However, if there is an 264 // infinite loop and we insert a return ourselves, we need to uphold 265 // that guarantee by inserting a null export. This can happen e.g. in 266 // an infinite loop with kill instructions, which is supposed to 267 // terminate. However, we don't need to do this if there is a non-void 268 // return value, since then there is an epilog afterwards which will 269 // still export. 270 // 271 // Note: In the case where only some threads enter the infinite loop, 272 // this can result in the null export happening redundantly after the 273 // original exports. However, The last "real" export happens after all 274 // the threads that didn't enter an infinite loop converged, which 275 // means that the only extra threads to execute the null export are 276 // threads that entered the infinite loop, and they only could've 277 // exited through being killed which sets their exec bit to 0. 278 // Therefore, unless there's an actual infinite loop, which can have 279 // invalid results, or there's a kill after the last export, which we 280 // assume the frontend won't do, this export will have the same exec 281 // mask as the last "real" export, and therefore the valid mask will be 282 // overwritten with the same value and will still be correct. Also, 283 // even though this forces an extra unnecessary export wait, we assume 284 // that this happens rare enough in practice to that we don't have to 285 // worry about performance. 286 if (F.getCallingConv() == CallingConv::AMDGPU_PS && 287 RetTy->isVoidTy()) { 288 InsertExport = true; 289 } 290 291 ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB); 292 ReturningBlocks.push_back(DummyReturnBB); 293 } 294 295 if (BI->isUnconditional()) { 296 BasicBlock *LoopHeaderBB = BI->getSuccessor(0); 297 BI->eraseFromParent(); // Delete the unconditional branch. 298 // Add a new conditional branch with a dummy edge to the return block. 299 BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB); 300 Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB}); 301 } else { // Conditional branch. 302 SmallVector<BasicBlock *, 2> Successors(succ_begin(BB), succ_end(BB)); 303 304 // Create a new transition block to hold the conditional branch. 305 BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock"); 306 307 Updates.reserve(Updates.size() + 2 * Successors.size() + 2); 308 309 // 'Successors' become successors of TransitionBB instead of BB, 310 // and TransitionBB becomes a single successor of BB. 311 Updates.push_back({DominatorTree::Insert, BB, TransitionBB}); 312 for (BasicBlock *Successor : Successors) { 313 Updates.push_back({DominatorTree::Insert, TransitionBB, Successor}); 314 Updates.push_back({DominatorTree::Delete, BB, Successor}); 315 } 316 317 // Create a branch that will always branch to the transition block and 318 // references DummyReturnBB. 319 BB->getTerminator()->eraseFromParent(); 320 BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB); 321 Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB}); 322 } 323 Changed = true; 324 } 325 } 326 327 if (!UnreachableBlocks.empty()) { 328 BasicBlock *UnreachableBlock = nullptr; 329 330 if (UnreachableBlocks.size() == 1) { 331 UnreachableBlock = UnreachableBlocks.front(); 332 } else { 333 UnreachableBlock = BasicBlock::Create(F.getContext(), 334 "UnifiedUnreachableBlock", &F); 335 new UnreachableInst(F.getContext(), UnreachableBlock); 336 337 Updates.reserve(Updates.size() + UnreachableBlocks.size()); 338 for (BasicBlock *BB : UnreachableBlocks) { 339 // Remove and delete the unreachable inst. 340 BB->getTerminator()->eraseFromParent(); 341 BranchInst::Create(UnreachableBlock, BB); 342 Updates.push_back({DominatorTree::Insert, BB, UnreachableBlock}); 343 } 344 Changed = true; 345 } 346 347 if (!ReturningBlocks.empty()) { 348 // Don't create a new unreachable inst if we have a return. The 349 // structurizer/annotator can't handle the multiple exits 350 351 Type *RetTy = F.getReturnType(); 352 Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy); 353 // Remove and delete the unreachable inst. 354 UnreachableBlock->getTerminator()->eraseFromParent(); 355 356 Function *UnreachableIntrin = 357 Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable); 358 359 // Insert a call to an intrinsic tracking that this is an unreachable 360 // point, in case we want to kill the active lanes or something later. 361 CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock); 362 363 // Don't create a scalar trap. We would only want to trap if this code was 364 // really reached, but a scalar trap would happen even if no lanes 365 // actually reached here. 366 ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock); 367 ReturningBlocks.push_back(UnreachableBlock); 368 Changed = true; 369 } 370 } 371 372 // FIXME: add PDT here once simplifycfg is ready. 373 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 374 if (RequireAndPreserveDomTree) 375 DTU.applyUpdates(Updates); 376 Updates.clear(); 377 378 // Now handle return blocks. 379 if (ReturningBlocks.empty()) 380 return Changed; // No blocks return 381 382 if (ReturningBlocks.size() == 1 && !InsertExport) 383 return Changed; // Already has a single return block 384 385 const TargetTransformInfo &TTI 386 = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 387 388 // Unify returning blocks. If we are going to insert the export it is also 389 // necessary to include blocks that are uniformly reached, because in addition 390 // to inserting the export the "done" bits on existing exports will be cleared 391 // and we do not want to end up with the normal export in a non-unified, 392 // uniformly reached block with the "done" bit cleared. 393 auto BlocksToUnify = std::move(ReturningBlocks); 394 if (InsertExport) { 395 llvm::append_range(BlocksToUnify, UniformlyReachedRetBlocks); 396 } 397 398 unifyReturnBlockSet(F, DTU, BlocksToUnify, InsertExport, TTI, 399 "UnifiedReturnBlock"); 400 return true; 401 } 402