1 //===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring 10 // there is at most one ret and one unreachable instruction, it ensures there is 11 // at most one divergent exiting block. 12 // 13 // StructurizeCFG can't deal with multi-exit regions formed by branches to 14 // multiple return nodes. It is not desirable to structurize regions with 15 // uniform branches, so unifying those to the same return block as divergent 16 // branches inhibits use of scalar branching. It still can't deal with the case 17 // where one branch goes to return, and one unreachable. Replace unreachable in 18 // this case with a return. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "AMDGPU.h" 23 #include "SIDefines.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/IntrinsicsAMDGPU.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes" 53 54 namespace { 55 56 class AMDGPUUnifyDivergentExitNodes : public FunctionPass { 57 public: 58 static char ID; // Pass identification, replacement for typeid 59 60 AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) { 61 initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry()); 62 } 63 64 // We can preserve non-critical-edgeness when we unify function exit nodes 65 void getAnalysisUsage(AnalysisUsage &AU) const override; 66 bool runOnFunction(Function &F) override; 67 }; 68 69 } // end anonymous namespace 70 71 char AMDGPUUnifyDivergentExitNodes::ID = 0; 72 73 char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID; 74 75 INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 76 "Unify divergent function exit nodes", false, false) 77 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 78 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 79 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 80 INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 81 "Unify divergent function exit nodes", false, false) 82 83 void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{ 84 if (RequireAndPreserveDomTree) 85 AU.addRequired<DominatorTreeWrapperPass>(); 86 87 AU.addRequired<PostDominatorTreeWrapperPass>(); 88 89 AU.addRequired<LegacyDivergenceAnalysis>(); 90 91 if (RequireAndPreserveDomTree) { 92 AU.addPreserved<DominatorTreeWrapperPass>(); 93 // FIXME: preserve PostDominatorTreeWrapperPass 94 } 95 96 // No divergent values are changed, only blocks and branch edges. 97 AU.addPreserved<LegacyDivergenceAnalysis>(); 98 99 // We preserve the non-critical-edgeness property 100 AU.addPreservedID(BreakCriticalEdgesID); 101 102 // This is a cluster of orthogonal Transforms 103 AU.addPreservedID(LowerSwitchID); 104 FunctionPass::getAnalysisUsage(AU); 105 106 AU.addRequired<TargetTransformInfoWrapperPass>(); 107 } 108 109 /// \returns true if \p BB is reachable through only uniform branches. 110 /// XXX - Is there a more efficient way to find this? 111 static bool isUniformlyReached(const LegacyDivergenceAnalysis &DA, 112 BasicBlock &BB) { 113 SmallVector<BasicBlock *, 8> Stack(predecessors(&BB)); 114 SmallPtrSet<BasicBlock *, 8> Visited; 115 116 while (!Stack.empty()) { 117 BasicBlock *Top = Stack.pop_back_val(); 118 if (!DA.isUniform(Top->getTerminator())) 119 return false; 120 121 for (BasicBlock *Pred : predecessors(Top)) { 122 if (Visited.insert(Pred).second) 123 Stack.push_back(Pred); 124 } 125 } 126 127 return true; 128 } 129 130 static void removeDoneExport(Function &F) { 131 ConstantInt *BoolFalse = ConstantInt::getFalse(F.getContext()); 132 for (BasicBlock &BB : F) { 133 for (Instruction &I : BB) { 134 if (IntrinsicInst *Intrin = llvm::dyn_cast<IntrinsicInst>(&I)) { 135 if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp) { 136 Intrin->setArgOperand(6, BoolFalse); // done 137 } else if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp_compr) { 138 Intrin->setArgOperand(4, BoolFalse); // done 139 } 140 } 141 } 142 } 143 } 144 145 static BasicBlock *unifyReturnBlockSet(Function &F, DomTreeUpdater &DTU, 146 ArrayRef<BasicBlock *> ReturningBlocks, 147 bool InsertExport, 148 const TargetTransformInfo &TTI, 149 StringRef Name) { 150 // Otherwise, we need to insert a new basic block into the function, add a PHI 151 // nodes (if the function returns values), and convert all of the return 152 // instructions into unconditional branches. 153 BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F); 154 IRBuilder<> B(NewRetBlock); 155 156 if (InsertExport) { 157 // Ensure that there's only one "done" export in the shader by removing the 158 // "done" bit set on the original final export. More than one "done" export 159 // can lead to undefined behavior. 160 removeDoneExport(F); 161 162 Value *Undef = UndefValue::get(B.getFloatTy()); 163 B.CreateIntrinsic(Intrinsic::amdgcn_exp, { B.getFloatTy() }, 164 { 165 B.getInt32(AMDGPU::Exp::ET_NULL), 166 B.getInt32(0), // enabled channels 167 Undef, Undef, Undef, Undef, // values 168 B.getTrue(), // done 169 B.getTrue(), // valid mask 170 }); 171 } 172 173 PHINode *PN = nullptr; 174 if (F.getReturnType()->isVoidTy()) { 175 B.CreateRetVoid(); 176 } else { 177 // If the function doesn't return void... add a PHI node to the block... 178 PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(), 179 "UnifiedRetVal"); 180 assert(!InsertExport); 181 B.CreateRet(PN); 182 } 183 184 // Loop over all of the blocks, replacing the return instruction with an 185 // unconditional branch. 186 std::vector<DominatorTree::UpdateType> Updates; 187 Updates.reserve(ReturningBlocks.size()); 188 for (BasicBlock *BB : ReturningBlocks) { 189 // Add an incoming element to the PHI node for every return instruction that 190 // is merging into this new block... 191 if (PN) 192 PN->addIncoming(BB->getTerminator()->getOperand(0), BB); 193 194 // Remove and delete the return inst. 195 BB->getTerminator()->eraseFromParent(); 196 BranchInst::Create(NewRetBlock, BB); 197 Updates.push_back({DominatorTree::Insert, BB, NewRetBlock}); 198 } 199 200 if (RequireAndPreserveDomTree) 201 DTU.applyUpdates(Updates); 202 Updates.clear(); 203 204 for (BasicBlock *BB : ReturningBlocks) { 205 // Cleanup possible branch to unconditional branch to the return. 206 simplifyCFG(BB, TTI, RequireAndPreserveDomTree ? &DTU : nullptr, 207 SimplifyCFGOptions().bonusInstThreshold(2)); 208 } 209 210 return NewRetBlock; 211 } 212 213 bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) { 214 DominatorTree *DT = nullptr; 215 if (RequireAndPreserveDomTree) 216 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 217 218 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 219 220 // If there's only one exit, we don't need to do anything, unless this is a 221 // pixel shader and that exit is an infinite loop, since we still have to 222 // insert an export in that case. 223 if (PDT.root_size() <= 1 && F.getCallingConv() != CallingConv::AMDGPU_PS) 224 return false; 225 226 LegacyDivergenceAnalysis &DA = getAnalysis<LegacyDivergenceAnalysis>(); 227 228 // Loop over all of the blocks in a function, tracking all of the blocks that 229 // return. 230 SmallVector<BasicBlock *, 4> ReturningBlocks; 231 SmallVector<BasicBlock *, 4> UniformlyReachedRetBlocks; 232 SmallVector<BasicBlock *, 4> UnreachableBlocks; 233 234 // Dummy return block for infinite loop. 235 BasicBlock *DummyReturnBB = nullptr; 236 237 bool InsertExport = false; 238 239 bool Changed = false; 240 std::vector<DominatorTree::UpdateType> Updates; 241 242 for (BasicBlock *BB : PDT.roots()) { 243 if (isa<ReturnInst>(BB->getTerminator())) { 244 if (!isUniformlyReached(DA, *BB)) 245 ReturningBlocks.push_back(BB); 246 else 247 UniformlyReachedRetBlocks.push_back(BB); 248 } else if (isa<UnreachableInst>(BB->getTerminator())) { 249 if (!isUniformlyReached(DA, *BB)) 250 UnreachableBlocks.push_back(BB); 251 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 252 253 ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext()); 254 if (DummyReturnBB == nullptr) { 255 DummyReturnBB = BasicBlock::Create(F.getContext(), 256 "DummyReturnBlock", &F); 257 Type *RetTy = F.getReturnType(); 258 Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy); 259 260 // For pixel shaders, the producer guarantees that an export is 261 // executed before each return instruction. However, if there is an 262 // infinite loop and we insert a return ourselves, we need to uphold 263 // that guarantee by inserting a null export. This can happen e.g. in 264 // an infinite loop with kill instructions, which is supposed to 265 // terminate. However, we don't need to do this if there is a non-void 266 // return value, since then there is an epilog afterwards which will 267 // still export. 268 // 269 // Note: In the case where only some threads enter the infinite loop, 270 // this can result in the null export happening redundantly after the 271 // original exports. However, The last "real" export happens after all 272 // the threads that didn't enter an infinite loop converged, which 273 // means that the only extra threads to execute the null export are 274 // threads that entered the infinite loop, and they only could've 275 // exited through being killed which sets their exec bit to 0. 276 // Therefore, unless there's an actual infinite loop, which can have 277 // invalid results, or there's a kill after the last export, which we 278 // assume the frontend won't do, this export will have the same exec 279 // mask as the last "real" export, and therefore the valid mask will be 280 // overwritten with the same value and will still be correct. Also, 281 // even though this forces an extra unnecessary export wait, we assume 282 // that this happens rare enough in practice to that we don't have to 283 // worry about performance. 284 if (F.getCallingConv() == CallingConv::AMDGPU_PS && 285 RetTy->isVoidTy()) { 286 InsertExport = true; 287 } 288 289 ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB); 290 ReturningBlocks.push_back(DummyReturnBB); 291 } 292 293 if (BI->isUnconditional()) { 294 BasicBlock *LoopHeaderBB = BI->getSuccessor(0); 295 BI->eraseFromParent(); // Delete the unconditional branch. 296 // Add a new conditional branch with a dummy edge to the return block. 297 BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB); 298 Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB}); 299 } else { // Conditional branch. 300 SmallVector<BasicBlock *, 2> Successors(succ_begin(BB), succ_end(BB)); 301 302 // Create a new transition block to hold the conditional branch. 303 BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock"); 304 305 Updates.reserve(Updates.size() + 2 * Successors.size() + 2); 306 307 // 'Successors' become successors of TransitionBB instead of BB, 308 // and TransitionBB becomes a single successor of BB. 309 Updates.push_back({DominatorTree::Insert, BB, TransitionBB}); 310 for (BasicBlock *Successor : Successors) { 311 Updates.push_back({DominatorTree::Insert, TransitionBB, Successor}); 312 Updates.push_back({DominatorTree::Delete, BB, Successor}); 313 } 314 315 // Create a branch that will always branch to the transition block and 316 // references DummyReturnBB. 317 BB->getTerminator()->eraseFromParent(); 318 BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB); 319 Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB}); 320 } 321 Changed = true; 322 } 323 } 324 325 if (!UnreachableBlocks.empty()) { 326 BasicBlock *UnreachableBlock = nullptr; 327 328 if (UnreachableBlocks.size() == 1) { 329 UnreachableBlock = UnreachableBlocks.front(); 330 } else { 331 UnreachableBlock = BasicBlock::Create(F.getContext(), 332 "UnifiedUnreachableBlock", &F); 333 new UnreachableInst(F.getContext(), UnreachableBlock); 334 335 Updates.reserve(Updates.size() + UnreachableBlocks.size()); 336 for (BasicBlock *BB : UnreachableBlocks) { 337 // Remove and delete the unreachable inst. 338 BB->getTerminator()->eraseFromParent(); 339 BranchInst::Create(UnreachableBlock, BB); 340 Updates.push_back({DominatorTree::Insert, BB, UnreachableBlock}); 341 } 342 Changed = true; 343 } 344 345 if (!ReturningBlocks.empty()) { 346 // Don't create a new unreachable inst if we have a return. The 347 // structurizer/annotator can't handle the multiple exits 348 349 Type *RetTy = F.getReturnType(); 350 Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy); 351 // Remove and delete the unreachable inst. 352 UnreachableBlock->getTerminator()->eraseFromParent(); 353 354 Function *UnreachableIntrin = 355 Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable); 356 357 // Insert a call to an intrinsic tracking that this is an unreachable 358 // point, in case we want to kill the active lanes or something later. 359 CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock); 360 361 // Don't create a scalar trap. We would only want to trap if this code was 362 // really reached, but a scalar trap would happen even if no lanes 363 // actually reached here. 364 ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock); 365 ReturningBlocks.push_back(UnreachableBlock); 366 Changed = true; 367 } 368 } 369 370 // FIXME: add PDT here once simplifycfg is ready. 371 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 372 if (RequireAndPreserveDomTree) 373 DTU.applyUpdates(Updates); 374 Updates.clear(); 375 376 // Now handle return blocks. 377 if (ReturningBlocks.empty()) 378 return Changed; // No blocks return 379 380 if (ReturningBlocks.size() == 1 && !InsertExport) 381 return Changed; // Already has a single return block 382 383 const TargetTransformInfo &TTI 384 = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 385 386 // Unify returning blocks. If we are going to insert the export it is also 387 // necessary to include blocks that are uniformly reached, because in addition 388 // to inserting the export the "done" bits on existing exports will be cleared 389 // and we do not want to end up with the normal export in a non-unified, 390 // uniformly reached block with the "done" bit cleared. 391 auto BlocksToUnify = std::move(ReturningBlocks); 392 if (InsertExport) { 393 llvm::append_range(BlocksToUnify, UniformlyReachedRetBlocks); 394 } 395 396 unifyReturnBlockSet(F, DTU, BlocksToUnify, InsertExport, TTI, 397 "UnifiedReturnBlock"); 398 return true; 399 } 400