1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUSubtarget.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2700), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static cl::opt<bool> UseLegacyDA( 73 "amdgpu-use-legacy-divergence-analysis", 74 cl::desc("Enable legacy divergence analysis for AMDGPU"), 75 cl::init(false), cl::Hidden); 76 77 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 78 unsigned Depth = 0) { 79 const Instruction *I = dyn_cast<Instruction>(Cond); 80 if (!I) 81 return false; 82 83 for (const Value *V : I->operand_values()) { 84 if (!L->contains(I)) 85 continue; 86 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 87 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 88 return SubLoop->contains(PHI); })) 89 return true; 90 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 91 return true; 92 } 93 return false; 94 } 95 96 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 97 TTI::UnrollingPreferences &UP) { 98 const Function &F = *L->getHeader()->getParent(); 99 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 100 UP.MaxCount = std::numeric_limits<unsigned>::max(); 101 UP.Partial = true; 102 103 // TODO: Do we want runtime unrolling? 104 105 // Maximum alloca size than can fit registers. Reserve 16 registers. 106 const unsigned MaxAlloca = (256 - 16) * 4; 107 unsigned ThresholdPrivate = UnrollThresholdPrivate; 108 unsigned ThresholdLocal = UnrollThresholdLocal; 109 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 110 for (const BasicBlock *BB : L->getBlocks()) { 111 const DataLayout &DL = BB->getModule()->getDataLayout(); 112 unsigned LocalGEPsSeen = 0; 113 114 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 115 return SubLoop->contains(BB); })) 116 continue; // Block belongs to an inner loop. 117 118 for (const Instruction &I : *BB) { 119 // Unroll a loop which contains an "if" statement whose condition 120 // defined by a PHI belonging to the loop. This may help to eliminate 121 // if region and potentially even PHI itself, saving on both divergence 122 // and registers used for the PHI. 123 // Add a small bonus for each of such "if" statements. 124 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 125 if (UP.Threshold < MaxBoost && Br->isConditional()) { 126 BasicBlock *Succ0 = Br->getSuccessor(0); 127 BasicBlock *Succ1 = Br->getSuccessor(1); 128 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 129 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 130 continue; 131 if (dependsOnLocalPhi(L, Br->getCondition())) { 132 UP.Threshold += UnrollThresholdIf; 133 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 134 << " for loop:\n" 135 << *L << " due to " << *Br << '\n'); 136 if (UP.Threshold >= MaxBoost) 137 return; 138 } 139 } 140 continue; 141 } 142 143 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 144 if (!GEP) 145 continue; 146 147 unsigned AS = GEP->getAddressSpace(); 148 unsigned Threshold = 0; 149 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 150 Threshold = ThresholdPrivate; 151 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 152 Threshold = ThresholdLocal; 153 else 154 continue; 155 156 if (UP.Threshold >= Threshold) 157 continue; 158 159 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 160 const Value *Ptr = GEP->getPointerOperand(); 161 const AllocaInst *Alloca = 162 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 163 if (!Alloca || !Alloca->isStaticAlloca()) 164 continue; 165 Type *Ty = Alloca->getAllocatedType(); 166 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 167 if (AllocaSize > MaxAlloca) 168 continue; 169 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 170 AS == AMDGPUAS::REGION_ADDRESS) { 171 LocalGEPsSeen++; 172 // Inhibit unroll for local memory if we have seen addressing not to 173 // a variable, most likely we will be unable to combine it. 174 // Do not unroll too deep inner loops for local memory to give a chance 175 // to unroll an outer loop for a more important reason. 176 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 177 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 178 !isa<Argument>(GEP->getPointerOperand()))) 179 continue; 180 } 181 182 // Check if GEP depends on a value defined by this loop itself. 183 bool HasLoopDef = false; 184 for (const Value *Op : GEP->operands()) { 185 const Instruction *Inst = dyn_cast<Instruction>(Op); 186 if (!Inst || L->isLoopInvariant(Op)) 187 continue; 188 189 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 190 return SubLoop->contains(Inst); })) 191 continue; 192 HasLoopDef = true; 193 break; 194 } 195 if (!HasLoopDef) 196 continue; 197 198 // We want to do whatever we can to limit the number of alloca 199 // instructions that make it through to the code generator. allocas 200 // require us to use indirect addressing, which is slow and prone to 201 // compiler bugs. If this loop does an address calculation on an 202 // alloca ptr, then we want to use a higher than normal loop unroll 203 // threshold. This will give SROA a better chance to eliminate these 204 // allocas. 205 // 206 // We also want to have more unrolling for local memory to let ds 207 // instructions with different offsets combine. 208 // 209 // Don't use the maximum allowed value here as it will make some 210 // programs way too big. 211 UP.Threshold = Threshold; 212 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 213 << " for loop:\n" 214 << *L << " due to " << *GEP << '\n'); 215 if (UP.Threshold >= MaxBoost) 216 return; 217 } 218 } 219 } 220 221 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 222 // The concept of vector registers doesn't really exist. Some packed vector 223 // operations operate on the normal 32-bit registers. 224 return 256; 225 } 226 227 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 228 // This is really the number of registers to fill when vectorizing / 229 // interleaving loops, so we lie to avoid trying to use all registers. 230 return getHardwareNumberOfRegisters(Vec) >> 3; 231 } 232 233 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 234 return 32; 235 } 236 237 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 238 return 32; 239 } 240 241 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 242 unsigned ChainSizeInBytes, 243 VectorType *VecTy) const { 244 unsigned VecRegBitWidth = VF * LoadSize; 245 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 246 // TODO: Support element-size less than 32bit? 247 return 128 / LoadSize; 248 249 return VF; 250 } 251 252 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 253 unsigned ChainSizeInBytes, 254 VectorType *VecTy) const { 255 unsigned VecRegBitWidth = VF * StoreSize; 256 if (VecRegBitWidth > 128) 257 return 128 / StoreSize; 258 259 return VF; 260 } 261 262 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 263 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 264 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 265 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 266 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 267 return 512; 268 } 269 270 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS || 271 AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 272 AddrSpace == AMDGPUAS::REGION_ADDRESS) 273 return 128; 274 275 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 276 return 8 * ST->getMaxPrivateElementSize(); 277 278 llvm_unreachable("unhandled address space"); 279 } 280 281 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 282 unsigned Alignment, 283 unsigned AddrSpace) const { 284 // We allow vectorization of flat stores, even though we may need to decompose 285 // them later if they may access private memory. We don't have enough context 286 // here, and legalization can handle it. 287 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 288 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 289 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 290 } 291 return true; 292 } 293 294 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 295 unsigned Alignment, 296 unsigned AddrSpace) const { 297 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 298 } 299 300 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 301 unsigned Alignment, 302 unsigned AddrSpace) const { 303 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 304 } 305 306 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 307 // Disable unrolling if the loop is not vectorized. 308 // TODO: Enable this again. 309 if (VF == 1) 310 return 1; 311 312 return 8; 313 } 314 315 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 316 MemIntrinsicInfo &Info) const { 317 switch (Inst->getIntrinsicID()) { 318 case Intrinsic::amdgcn_atomic_inc: 319 case Intrinsic::amdgcn_atomic_dec: 320 case Intrinsic::amdgcn_ds_ordered_add: 321 case Intrinsic::amdgcn_ds_ordered_swap: 322 case Intrinsic::amdgcn_ds_fadd: 323 case Intrinsic::amdgcn_ds_fmin: 324 case Intrinsic::amdgcn_ds_fmax: { 325 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 326 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 327 if (!Ordering || !Volatile) 328 return false; // Invalid. 329 330 unsigned OrderingVal = Ordering->getZExtValue(); 331 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 332 return false; 333 334 Info.PtrVal = Inst->getArgOperand(0); 335 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 336 Info.ReadMem = true; 337 Info.WriteMem = true; 338 Info.IsVolatile = !Volatile->isNullValue(); 339 return true; 340 } 341 default: 342 return false; 343 } 344 } 345 346 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 347 TTI::OperandValueKind Opd1Info, 348 TTI::OperandValueKind Opd2Info, 349 TTI::OperandValueProperties Opd1PropInfo, 350 TTI::OperandValueProperties Opd2PropInfo, 351 ArrayRef<const Value *> Args, 352 const Instruction *CxtI) { 353 EVT OrigTy = TLI->getValueType(DL, Ty); 354 if (!OrigTy.isSimple()) { 355 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 356 Opd1PropInfo, Opd2PropInfo); 357 } 358 359 // Legalize the type. 360 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 361 int ISD = TLI->InstructionOpcodeToISD(Opcode); 362 363 // Because we don't have any legal vector operations, but the legal types, we 364 // need to account for split vectors. 365 unsigned NElts = LT.second.isVector() ? 366 LT.second.getVectorNumElements() : 1; 367 368 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 369 370 switch (ISD) { 371 case ISD::SHL: 372 case ISD::SRL: 373 case ISD::SRA: 374 if (SLT == MVT::i64) 375 return get64BitInstrCost() * LT.first * NElts; 376 377 if (ST->has16BitInsts() && SLT == MVT::i16) 378 NElts = (NElts + 1) / 2; 379 380 // i32 381 return getFullRateInstrCost() * LT.first * NElts; 382 case ISD::ADD: 383 case ISD::SUB: 384 case ISD::AND: 385 case ISD::OR: 386 case ISD::XOR: 387 if (SLT == MVT::i64) { 388 // and, or and xor are typically split into 2 VALU instructions. 389 return 2 * getFullRateInstrCost() * LT.first * NElts; 390 } 391 392 if (ST->has16BitInsts() && SLT == MVT::i16) 393 NElts = (NElts + 1) / 2; 394 395 return LT.first * NElts * getFullRateInstrCost(); 396 case ISD::MUL: { 397 const int QuarterRateCost = getQuarterRateInstrCost(); 398 if (SLT == MVT::i64) { 399 const int FullRateCost = getFullRateInstrCost(); 400 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 401 } 402 403 if (ST->has16BitInsts() && SLT == MVT::i16) 404 NElts = (NElts + 1) / 2; 405 406 // i32 407 return QuarterRateCost * NElts * LT.first; 408 } 409 case ISD::FADD: 410 case ISD::FSUB: 411 case ISD::FMUL: 412 if (SLT == MVT::f64) 413 return LT.first * NElts * get64BitInstrCost(); 414 415 if (ST->has16BitInsts() && SLT == MVT::f16) 416 NElts = (NElts + 1) / 2; 417 418 if (SLT == MVT::f32 || SLT == MVT::f16) 419 return LT.first * NElts * getFullRateInstrCost(); 420 break; 421 case ISD::FDIV: 422 case ISD::FREM: 423 // FIXME: frem should be handled separately. The fdiv in it is most of it, 424 // but the current lowering is also not entirely correct. 425 if (SLT == MVT::f64) { 426 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 427 // Add cost of workaround. 428 if (!ST->hasUsableDivScaleConditionOutput()) 429 Cost += 3 * getFullRateInstrCost(); 430 431 return LT.first * Cost * NElts; 432 } 433 434 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 435 // TODO: This is more complicated, unsafe flags etc. 436 if ((SLT == MVT::f32 && !HasFP32Denormals) || 437 (SLT == MVT::f16 && ST->has16BitInsts())) { 438 return LT.first * getQuarterRateInstrCost() * NElts; 439 } 440 } 441 442 if (SLT == MVT::f16 && ST->has16BitInsts()) { 443 // 2 x v_cvt_f32_f16 444 // f32 rcp 445 // f32 fmul 446 // v_cvt_f16_f32 447 // f16 div_fixup 448 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 449 return LT.first * Cost * NElts; 450 } 451 452 if (SLT == MVT::f32 || SLT == MVT::f16) { 453 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 454 455 if (!HasFP32Denormals) { 456 // FP mode switches. 457 Cost += 2 * getFullRateInstrCost(); 458 } 459 460 return LT.first * NElts * Cost; 461 } 462 break; 463 default: 464 break; 465 } 466 467 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 468 Opd1PropInfo, Opd2PropInfo); 469 } 470 471 template <typename T> 472 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 473 ArrayRef<T *> Args, 474 FastMathFlags FMF, unsigned VF) { 475 if (ID != Intrinsic::fma) 476 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 477 478 EVT OrigTy = TLI->getValueType(DL, RetTy); 479 if (!OrigTy.isSimple()) { 480 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 481 } 482 483 // Legalize the type. 484 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 485 486 unsigned NElts = LT.second.isVector() ? 487 LT.second.getVectorNumElements() : 1; 488 489 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 490 491 if (SLT == MVT::f64) 492 return LT.first * NElts * get64BitInstrCost(); 493 494 if (ST->has16BitInsts() && SLT == MVT::f16) 495 NElts = (NElts + 1) / 2; 496 497 return LT.first * NElts * (ST->hasFastFMAF32() ? getHalfRateInstrCost() 498 : getQuarterRateInstrCost()); 499 } 500 501 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 502 ArrayRef<Value*> Args, FastMathFlags FMF, 503 unsigned VF) { 504 return getIntrinsicInstrCost<Value>(ID, RetTy, Args, FMF, VF); 505 } 506 507 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 508 ArrayRef<Type *> Tys, FastMathFlags FMF, 509 unsigned ScalarizationCostPassed) { 510 return getIntrinsicInstrCost<Type>(ID, RetTy, Tys, FMF, 511 ScalarizationCostPassed); 512 } 513 514 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) { 515 // XXX - For some reason this isn't called for switch. 516 switch (Opcode) { 517 case Instruction::Br: 518 case Instruction::Ret: 519 return 10; 520 default: 521 return BaseT::getCFInstrCost(Opcode); 522 } 523 } 524 525 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 526 bool IsPairwise) { 527 EVT OrigTy = TLI->getValueType(DL, Ty); 528 529 // Computes cost on targets that have packed math instructions(which support 530 // 16-bit types only). 531 if (IsPairwise || 532 !ST->hasVOP3PInsts() || 533 OrigTy.getScalarSizeInBits() != 16) 534 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise); 535 536 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 537 return LT.first * getFullRateInstrCost(); 538 } 539 540 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy, 541 bool IsPairwise, 542 bool IsUnsigned) { 543 EVT OrigTy = TLI->getValueType(DL, Ty); 544 545 // Computes cost on targets that have packed math instructions(which support 546 // 16-bit types only). 547 if (IsPairwise || 548 !ST->hasVOP3PInsts() || 549 OrigTy.getScalarSizeInBits() != 16) 550 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned); 551 552 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 553 return LT.first * getHalfRateInstrCost(); 554 } 555 556 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 557 unsigned Index) { 558 switch (Opcode) { 559 case Instruction::ExtractElement: 560 case Instruction::InsertElement: { 561 unsigned EltSize 562 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 563 if (EltSize < 32) { 564 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 565 return 0; 566 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 567 } 568 569 // Extracts are just reads of a subregister, so are free. Inserts are 570 // considered free because we don't want to have any cost for scalarizing 571 // operations, and we don't have to copy into a different register class. 572 573 // Dynamic indexing isn't free and is best avoided. 574 return Index == ~0u ? 2 : 0; 575 } 576 default: 577 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 578 } 579 } 580 581 static bool isArgPassedInSGPR(const Argument *A) { 582 const Function *F = A->getParent(); 583 584 // Arguments to compute shaders are never a source of divergence. 585 CallingConv::ID CC = F->getCallingConv(); 586 switch (CC) { 587 case CallingConv::AMDGPU_KERNEL: 588 case CallingConv::SPIR_KERNEL: 589 return true; 590 case CallingConv::AMDGPU_VS: 591 case CallingConv::AMDGPU_LS: 592 case CallingConv::AMDGPU_HS: 593 case CallingConv::AMDGPU_ES: 594 case CallingConv::AMDGPU_GS: 595 case CallingConv::AMDGPU_PS: 596 case CallingConv::AMDGPU_CS: 597 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 598 // Everything else is in VGPRs. 599 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 600 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 601 default: 602 // TODO: Should calls support inreg for SGPR inputs? 603 return false; 604 } 605 } 606 607 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 608 /// this is analyzing the collective result of all output registers. Otherwise, 609 /// this is only querying a specific result index if this returns multiple 610 /// registers in a struct. 611 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 612 const CallInst *CI, ArrayRef<unsigned> Indices) const { 613 // TODO: Handle complex extract indices 614 if (Indices.size() > 1) 615 return true; 616 617 const DataLayout &DL = CI->getModule()->getDataLayout(); 618 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 619 ImmutableCallSite CS(CI); 620 TargetLowering::AsmOperandInfoVector TargetConstraints 621 = TLI->ParseConstraints(DL, ST->getRegisterInfo(), CS); 622 623 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 624 625 int OutputIdx = 0; 626 for (auto &TC : TargetConstraints) { 627 if (TC.Type != InlineAsm::isOutput) 628 continue; 629 630 // Skip outputs we don't care about. 631 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 632 continue; 633 634 TLI->ComputeConstraintToUse(TC, SDValue()); 635 636 Register AssignedReg; 637 const TargetRegisterClass *RC; 638 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 639 TRI, TC.ConstraintCode, TC.ConstraintVT); 640 if (AssignedReg) { 641 // FIXME: This is a workaround for getRegForInlineAsmConstraint 642 // returning VS_32 643 RC = TRI->getPhysRegClass(AssignedReg); 644 } 645 646 // For AGPR constraints null is returned on subtargets without AGPRs, so 647 // assume divergent for null. 648 if (!RC || !TRI->isSGPRClass(RC)) 649 return true; 650 } 651 652 return false; 653 } 654 655 /// \returns true if the new GPU divergence analysis is enabled. 656 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 657 return !UseLegacyDA; 658 } 659 660 /// \returns true if the result of the value could potentially be 661 /// different across workitems in a wavefront. 662 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 663 if (const Argument *A = dyn_cast<Argument>(V)) 664 return !isArgPassedInSGPR(A); 665 666 // Loads from the private and flat address spaces are divergent, because 667 // threads can execute the load instruction with the same inputs and get 668 // different results. 669 // 670 // All other loads are not divergent, because if threads issue loads with the 671 // same arguments, they will always get the same result. 672 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 673 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 674 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 675 676 // Atomics are divergent because they are executed sequentially: when an 677 // atomic operation refers to the same address in each thread, then each 678 // thread after the first sees the value written by the previous thread as 679 // original value. 680 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 681 return true; 682 683 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 684 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 685 686 // Assume all function calls are a source of divergence. 687 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 688 if (isa<InlineAsm>(CI->getCalledValue())) 689 return isInlineAsmSourceOfDivergence(CI); 690 return true; 691 } 692 693 // Assume all function calls are a source of divergence. 694 if (isa<InvokeInst>(V)) 695 return true; 696 697 return false; 698 } 699 700 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 701 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 702 switch (Intrinsic->getIntrinsicID()) { 703 default: 704 return false; 705 case Intrinsic::amdgcn_readfirstlane: 706 case Intrinsic::amdgcn_readlane: 707 case Intrinsic::amdgcn_icmp: 708 case Intrinsic::amdgcn_fcmp: 709 case Intrinsic::amdgcn_if_break: 710 return true; 711 } 712 } 713 714 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 715 if (isa<InlineAsm>(CI->getCalledValue())) 716 return !isInlineAsmSourceOfDivergence(CI); 717 return false; 718 } 719 720 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 721 if (!ExtValue) 722 return false; 723 724 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 725 if (!CI) 726 return false; 727 728 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 729 switch (Intrinsic->getIntrinsicID()) { 730 default: 731 return false; 732 case Intrinsic::amdgcn_if: 733 case Intrinsic::amdgcn_else: { 734 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 735 return Indices.size() == 1 && Indices[0] == 1; 736 } 737 } 738 } 739 740 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 741 // divergent for the overall struct return. We need to override it in the 742 // case we're extracting an SGPR component here. 743 if (isa<InlineAsm>(CI->getCalledValue())) 744 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 745 746 return false; 747 } 748 749 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 750 Intrinsic::ID IID) const { 751 switch (IID) { 752 case Intrinsic::amdgcn_atomic_inc: 753 case Intrinsic::amdgcn_atomic_dec: 754 case Intrinsic::amdgcn_ds_fadd: 755 case Intrinsic::amdgcn_ds_fmin: 756 case Intrinsic::amdgcn_ds_fmax: 757 case Intrinsic::amdgcn_is_shared: 758 case Intrinsic::amdgcn_is_private: 759 OpIndexes.push_back(0); 760 return true; 761 default: 762 return false; 763 } 764 } 765 766 bool GCNTTIImpl::rewriteIntrinsicWithAddressSpace( 767 IntrinsicInst *II, Value *OldV, Value *NewV) const { 768 auto IntrID = II->getIntrinsicID(); 769 switch (IntrID) { 770 case Intrinsic::amdgcn_atomic_inc: 771 case Intrinsic::amdgcn_atomic_dec: 772 case Intrinsic::amdgcn_ds_fadd: 773 case Intrinsic::amdgcn_ds_fmin: 774 case Intrinsic::amdgcn_ds_fmax: { 775 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 776 if (!IsVolatile->isZero()) 777 return false; 778 Module *M = II->getParent()->getParent()->getParent(); 779 Type *DestTy = II->getType(); 780 Type *SrcTy = NewV->getType(); 781 Function *NewDecl = 782 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 783 II->setArgOperand(0, NewV); 784 II->setCalledFunction(NewDecl); 785 return true; 786 } 787 case Intrinsic::amdgcn_is_shared: 788 case Intrinsic::amdgcn_is_private: { 789 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 790 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 791 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 792 LLVMContext &Ctx = NewV->getType()->getContext(); 793 ConstantInt *NewVal = (TrueAS == NewAS) ? 794 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 795 II->replaceAllUsesWith(NewVal); 796 II->eraseFromParent(); 797 return true; 798 } 799 default: 800 return false; 801 } 802 } 803 804 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 805 Type *SubTp) { 806 if (ST->hasVOP3PInsts()) { 807 VectorType *VT = cast<VectorType>(Tp); 808 if (VT->getNumElements() == 2 && 809 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 810 // With op_sel VOP3P instructions freely can access the low half or high 811 // half of a register, so any swizzle is free. 812 813 switch (Kind) { 814 case TTI::SK_Broadcast: 815 case TTI::SK_Reverse: 816 case TTI::SK_PermuteSingleSrc: 817 return 0; 818 default: 819 break; 820 } 821 } 822 } 823 824 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 825 } 826 827 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 828 const Function *Callee) const { 829 const TargetMachine &TM = getTLI()->getTargetMachine(); 830 const GCNSubtarget *CallerST 831 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 832 const GCNSubtarget *CalleeST 833 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 834 835 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 836 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 837 838 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 839 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 840 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 841 return false; 842 843 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 844 // no way to support merge for backend defined attributes. 845 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller, *CallerST); 846 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST); 847 return CallerMode.isInlineCompatible(CalleeMode); 848 } 849 850 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 851 TTI::UnrollingPreferences &UP) { 852 CommonTTI.getUnrollingPreferences(L, SE, UP); 853 } 854 855 unsigned GCNTTIImpl::getUserCost(const User *U, 856 ArrayRef<const Value *> Operands) { 857 const Instruction *I = dyn_cast<Instruction>(U); 858 if (!I) 859 return BaseT::getUserCost(U, Operands); 860 861 // Estimate different operations to be optimized out 862 switch (I->getOpcode()) { 863 case Instruction::ExtractElement: { 864 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 865 unsigned Idx = -1; 866 if (CI) 867 Idx = CI->getZExtValue(); 868 return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx); 869 } 870 case Instruction::InsertElement: { 871 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 872 unsigned Idx = -1; 873 if (CI) 874 Idx = CI->getZExtValue(); 875 return getVectorInstrCost(I->getOpcode(), I->getType(), Idx); 876 } 877 case Instruction::Call: { 878 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 879 SmallVector<Value *, 4> Args(II->arg_operands()); 880 FastMathFlags FMF; 881 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 882 FMF = FPMO->getFastMathFlags(); 883 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args, 884 FMF); 885 } else { 886 return BaseT::getUserCost(U, Operands); 887 } 888 } 889 case Instruction::ShuffleVector: { 890 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 891 Type *Ty = Shuffle->getType(); 892 Type *SrcTy = Shuffle->getOperand(0)->getType(); 893 894 // TODO: Identify and add costs for insert subvector, etc. 895 int SubIndex; 896 if (Shuffle->isExtractSubvectorMask(SubIndex)) 897 return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty); 898 899 if (Shuffle->changesLength()) 900 return BaseT::getUserCost(U, Operands); 901 902 if (Shuffle->isIdentity()) 903 return 0; 904 905 if (Shuffle->isReverse()) 906 return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr); 907 908 if (Shuffle->isSelect()) 909 return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr); 910 911 if (Shuffle->isTranspose()) 912 return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr); 913 914 if (Shuffle->isZeroEltSplat()) 915 return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr); 916 917 if (Shuffle->isSingleSource()) 918 return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr); 919 920 return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr); 921 } 922 case Instruction::ZExt: 923 case Instruction::SExt: 924 case Instruction::FPToUI: 925 case Instruction::FPToSI: 926 case Instruction::FPExt: 927 case Instruction::PtrToInt: 928 case Instruction::IntToPtr: 929 case Instruction::SIToFP: 930 case Instruction::UIToFP: 931 case Instruction::Trunc: 932 case Instruction::FPTrunc: 933 case Instruction::BitCast: 934 case Instruction::AddrSpaceCast: { 935 return getCastInstrCost(I->getOpcode(), I->getType(), 936 I->getOperand(0)->getType(), I); 937 } 938 case Instruction::Add: 939 case Instruction::FAdd: 940 case Instruction::Sub: 941 case Instruction::FSub: 942 case Instruction::Mul: 943 case Instruction::FMul: 944 case Instruction::UDiv: 945 case Instruction::SDiv: 946 case Instruction::FDiv: 947 case Instruction::URem: 948 case Instruction::SRem: 949 case Instruction::FRem: 950 case Instruction::Shl: 951 case Instruction::LShr: 952 case Instruction::AShr: 953 case Instruction::And: 954 case Instruction::Or: 955 case Instruction::Xor: 956 case Instruction::FNeg: { 957 return getArithmeticInstrCost(I->getOpcode(), I->getType(), 958 TTI::OK_AnyValue, TTI::OK_AnyValue, 959 TTI::OP_None, TTI::OP_None, Operands, I); 960 } 961 default: 962 break; 963 } 964 965 return BaseT::getUserCost(U, Operands); 966 } 967 968 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 969 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 970 } 971 972 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 973 return getHardwareNumberOfRegisters(Vec); 974 } 975 976 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 977 return 32; 978 } 979 980 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 981 return 32; 982 } 983 984 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 985 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 986 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 987 return 128; 988 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 989 AddrSpace == AMDGPUAS::REGION_ADDRESS) 990 return 64; 991 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 992 return 32; 993 994 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 995 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 996 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 997 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 998 return 128; 999 llvm_unreachable("unhandled address space"); 1000 } 1001 1002 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1003 unsigned Alignment, 1004 unsigned AddrSpace) const { 1005 // We allow vectorization of flat stores, even though we may need to decompose 1006 // them later if they may access private memory. We don't have enough context 1007 // here, and legalization can handle it. 1008 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1009 } 1010 1011 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1012 unsigned Alignment, 1013 unsigned AddrSpace) const { 1014 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1015 } 1016 1017 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1018 unsigned Alignment, 1019 unsigned AddrSpace) const { 1020 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1021 } 1022 1023 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1024 // Disable unrolling if the loop is not vectorized. 1025 // TODO: Enable this again. 1026 if (VF == 1) 1027 return 1; 1028 1029 return 8; 1030 } 1031 1032 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) { 1033 // XXX - For some reason this isn't called for switch. 1034 switch (Opcode) { 1035 case Instruction::Br: 1036 case Instruction::Ret: 1037 return 10; 1038 default: 1039 return BaseT::getCFInstrCost(Opcode); 1040 } 1041 } 1042 1043 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1044 unsigned Index) { 1045 switch (Opcode) { 1046 case Instruction::ExtractElement: 1047 case Instruction::InsertElement: { 1048 unsigned EltSize 1049 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1050 if (EltSize < 32) { 1051 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1052 } 1053 1054 // Extracts are just reads of a subregister, so are free. Inserts are 1055 // considered free because we don't want to have any cost for scalarizing 1056 // operations, and we don't have to copy into a different register class. 1057 1058 // Dynamic indexing isn't free and is best avoided. 1059 return Index == ~0u ? 2 : 0; 1060 } 1061 default: 1062 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1063 } 1064 } 1065 1066 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1067 TTI::UnrollingPreferences &UP) { 1068 CommonTTI.getUnrollingPreferences(L, SE, UP); 1069 } 1070