1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUSubtarget.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2700), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static cl::opt<bool> UnrollRuntimeLocal( 73 "amdgpu-unroll-runtime-local", 74 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> UseLegacyDA( 78 "amdgpu-use-legacy-divergence-analysis", 79 cl::desc("Enable legacy divergence analysis for AMDGPU"), 80 cl::init(false), cl::Hidden); 81 82 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 83 unsigned Depth = 0) { 84 const Instruction *I = dyn_cast<Instruction>(Cond); 85 if (!I) 86 return false; 87 88 for (const Value *V : I->operand_values()) { 89 if (!L->contains(I)) 90 continue; 91 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 92 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 93 return SubLoop->contains(PHI); })) 94 return true; 95 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 96 return true; 97 } 98 return false; 99 } 100 101 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 102 TTI::UnrollingPreferences &UP) { 103 const Function &F = *L->getHeader()->getParent(); 104 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 105 UP.MaxCount = std::numeric_limits<unsigned>::max(); 106 UP.Partial = true; 107 108 // TODO: Do we want runtime unrolling? 109 110 // Maximum alloca size than can fit registers. Reserve 16 registers. 111 const unsigned MaxAlloca = (256 - 16) * 4; 112 unsigned ThresholdPrivate = UnrollThresholdPrivate; 113 unsigned ThresholdLocal = UnrollThresholdLocal; 114 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 115 for (const BasicBlock *BB : L->getBlocks()) { 116 const DataLayout &DL = BB->getModule()->getDataLayout(); 117 unsigned LocalGEPsSeen = 0; 118 119 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 120 return SubLoop->contains(BB); })) 121 continue; // Block belongs to an inner loop. 122 123 for (const Instruction &I : *BB) { 124 // Unroll a loop which contains an "if" statement whose condition 125 // defined by a PHI belonging to the loop. This may help to eliminate 126 // if region and potentially even PHI itself, saving on both divergence 127 // and registers used for the PHI. 128 // Add a small bonus for each of such "if" statements. 129 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 130 if (UP.Threshold < MaxBoost && Br->isConditional()) { 131 BasicBlock *Succ0 = Br->getSuccessor(0); 132 BasicBlock *Succ1 = Br->getSuccessor(1); 133 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 134 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 135 continue; 136 if (dependsOnLocalPhi(L, Br->getCondition())) { 137 UP.Threshold += UnrollThresholdIf; 138 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 139 << " for loop:\n" 140 << *L << " due to " << *Br << '\n'); 141 if (UP.Threshold >= MaxBoost) 142 return; 143 } 144 } 145 continue; 146 } 147 148 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 149 if (!GEP) 150 continue; 151 152 unsigned AS = GEP->getAddressSpace(); 153 unsigned Threshold = 0; 154 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 155 Threshold = ThresholdPrivate; 156 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 157 Threshold = ThresholdLocal; 158 else 159 continue; 160 161 if (UP.Threshold >= Threshold) 162 continue; 163 164 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 165 const Value *Ptr = GEP->getPointerOperand(); 166 const AllocaInst *Alloca = 167 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 168 if (!Alloca || !Alloca->isStaticAlloca()) 169 continue; 170 Type *Ty = Alloca->getAllocatedType(); 171 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 172 if (AllocaSize > MaxAlloca) 173 continue; 174 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 175 AS == AMDGPUAS::REGION_ADDRESS) { 176 LocalGEPsSeen++; 177 // Inhibit unroll for local memory if we have seen addressing not to 178 // a variable, most likely we will be unable to combine it. 179 // Do not unroll too deep inner loops for local memory to give a chance 180 // to unroll an outer loop for a more important reason. 181 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 182 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 183 !isa<Argument>(GEP->getPointerOperand()))) 184 continue; 185 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 186 << *L << " due to LDS use.\n"); 187 UP.Runtime = UnrollRuntimeLocal; 188 } 189 190 // Check if GEP depends on a value defined by this loop itself. 191 bool HasLoopDef = false; 192 for (const Value *Op : GEP->operands()) { 193 const Instruction *Inst = dyn_cast<Instruction>(Op); 194 if (!Inst || L->isLoopInvariant(Op)) 195 continue; 196 197 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 198 return SubLoop->contains(Inst); })) 199 continue; 200 HasLoopDef = true; 201 break; 202 } 203 if (!HasLoopDef) 204 continue; 205 206 // We want to do whatever we can to limit the number of alloca 207 // instructions that make it through to the code generator. allocas 208 // require us to use indirect addressing, which is slow and prone to 209 // compiler bugs. If this loop does an address calculation on an 210 // alloca ptr, then we want to use a higher than normal loop unroll 211 // threshold. This will give SROA a better chance to eliminate these 212 // allocas. 213 // 214 // We also want to have more unrolling for local memory to let ds 215 // instructions with different offsets combine. 216 // 217 // Don't use the maximum allowed value here as it will make some 218 // programs way too big. 219 UP.Threshold = Threshold; 220 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 221 << " for loop:\n" 222 << *L << " due to " << *GEP << '\n'); 223 if (UP.Threshold >= MaxBoost) 224 return; 225 } 226 } 227 } 228 229 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 230 // The concept of vector registers doesn't really exist. Some packed vector 231 // operations operate on the normal 32-bit registers. 232 return 256; 233 } 234 235 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 236 // This is really the number of registers to fill when vectorizing / 237 // interleaving loops, so we lie to avoid trying to use all registers. 238 return getHardwareNumberOfRegisters(Vec) >> 3; 239 } 240 241 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 242 return 32; 243 } 244 245 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 246 return 32; 247 } 248 249 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 250 unsigned ChainSizeInBytes, 251 VectorType *VecTy) const { 252 unsigned VecRegBitWidth = VF * LoadSize; 253 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 254 // TODO: Support element-size less than 32bit? 255 return 128 / LoadSize; 256 257 return VF; 258 } 259 260 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 261 unsigned ChainSizeInBytes, 262 VectorType *VecTy) const { 263 unsigned VecRegBitWidth = VF * StoreSize; 264 if (VecRegBitWidth > 128) 265 return 128 / StoreSize; 266 267 return VF; 268 } 269 270 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 271 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 272 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 273 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 274 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 275 return 512; 276 } 277 278 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS || 279 AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 280 AddrSpace == AMDGPUAS::REGION_ADDRESS) 281 return 128; 282 283 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 284 return 8 * ST->getMaxPrivateElementSize(); 285 286 llvm_unreachable("unhandled address space"); 287 } 288 289 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 290 unsigned Alignment, 291 unsigned AddrSpace) const { 292 // We allow vectorization of flat stores, even though we may need to decompose 293 // them later if they may access private memory. We don't have enough context 294 // here, and legalization can handle it. 295 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 296 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 297 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 298 } 299 return true; 300 } 301 302 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 303 unsigned Alignment, 304 unsigned AddrSpace) const { 305 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 306 } 307 308 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 309 unsigned Alignment, 310 unsigned AddrSpace) const { 311 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 312 } 313 314 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 315 // iteration. Should we report a larger size and let it legalize? 316 // 317 // FIXME: Should we use narrower types for local/region, or account for when 318 // unaligned access is legal? 319 // 320 // FIXME: This could use fine tuning and microbenchmarks. 321 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, 322 unsigned SrcAddrSpace, 323 unsigned DestAddrSpace, 324 unsigned SrcAlign, 325 unsigned DestAlign) const { 326 unsigned MinAlign = std::min(SrcAlign, DestAlign); 327 328 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 329 // hardware into byte accesses. If you assume all alignments are equally 330 // probable, it's more efficient on average to use short accesses for this 331 // case. 332 if (MinAlign == 2) 333 return Type::getInt16Ty(Context); 334 335 // Not all subtargets have 128-bit DS instructions, and we currently don't 336 // form them by default. 337 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 338 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 339 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 340 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 341 return VectorType::get(Type::getInt32Ty(Context), 2); 342 } 343 344 // Global memory works best with 16-byte accesses. Private memory will also 345 // hit this, although they'll be decomposed. 346 return VectorType::get(Type::getInt32Ty(Context), 4); 347 } 348 349 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 350 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 351 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 352 unsigned SrcAlign, unsigned DestAlign) const { 353 assert(RemainingBytes < 16); 354 355 unsigned MinAlign = std::min(SrcAlign, DestAlign); 356 357 if (MinAlign != 2) { 358 Type *I64Ty = Type::getInt64Ty(Context); 359 while (RemainingBytes >= 8) { 360 OpsOut.push_back(I64Ty); 361 RemainingBytes -= 8; 362 } 363 364 Type *I32Ty = Type::getInt32Ty(Context); 365 while (RemainingBytes >= 4) { 366 OpsOut.push_back(I32Ty); 367 RemainingBytes -= 4; 368 } 369 } 370 371 Type *I16Ty = Type::getInt16Ty(Context); 372 while (RemainingBytes >= 2) { 373 OpsOut.push_back(I16Ty); 374 RemainingBytes -= 2; 375 } 376 377 Type *I8Ty = Type::getInt8Ty(Context); 378 while (RemainingBytes) { 379 OpsOut.push_back(I8Ty); 380 --RemainingBytes; 381 } 382 } 383 384 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 385 // Disable unrolling if the loop is not vectorized. 386 // TODO: Enable this again. 387 if (VF == 1) 388 return 1; 389 390 return 8; 391 } 392 393 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 394 MemIntrinsicInfo &Info) const { 395 switch (Inst->getIntrinsicID()) { 396 case Intrinsic::amdgcn_atomic_inc: 397 case Intrinsic::amdgcn_atomic_dec: 398 case Intrinsic::amdgcn_ds_ordered_add: 399 case Intrinsic::amdgcn_ds_ordered_swap: 400 case Intrinsic::amdgcn_ds_fadd: 401 case Intrinsic::amdgcn_ds_fmin: 402 case Intrinsic::amdgcn_ds_fmax: { 403 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 404 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 405 if (!Ordering || !Volatile) 406 return false; // Invalid. 407 408 unsigned OrderingVal = Ordering->getZExtValue(); 409 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 410 return false; 411 412 Info.PtrVal = Inst->getArgOperand(0); 413 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 414 Info.ReadMem = true; 415 Info.WriteMem = true; 416 Info.IsVolatile = !Volatile->isNullValue(); 417 return true; 418 } 419 default: 420 return false; 421 } 422 } 423 424 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 425 TTI::OperandValueKind Opd1Info, 426 TTI::OperandValueKind Opd2Info, 427 TTI::OperandValueProperties Opd1PropInfo, 428 TTI::OperandValueProperties Opd2PropInfo, 429 ArrayRef<const Value *> Args, 430 const Instruction *CxtI) { 431 EVT OrigTy = TLI->getValueType(DL, Ty); 432 if (!OrigTy.isSimple()) { 433 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 434 Opd1PropInfo, Opd2PropInfo); 435 } 436 437 // Legalize the type. 438 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 439 int ISD = TLI->InstructionOpcodeToISD(Opcode); 440 441 // Because we don't have any legal vector operations, but the legal types, we 442 // need to account for split vectors. 443 unsigned NElts = LT.second.isVector() ? 444 LT.second.getVectorNumElements() : 1; 445 446 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 447 448 switch (ISD) { 449 case ISD::SHL: 450 case ISD::SRL: 451 case ISD::SRA: 452 if (SLT == MVT::i64) 453 return get64BitInstrCost() * LT.first * NElts; 454 455 if (ST->has16BitInsts() && SLT == MVT::i16) 456 NElts = (NElts + 1) / 2; 457 458 // i32 459 return getFullRateInstrCost() * LT.first * NElts; 460 case ISD::ADD: 461 case ISD::SUB: 462 case ISD::AND: 463 case ISD::OR: 464 case ISD::XOR: 465 if (SLT == MVT::i64) { 466 // and, or and xor are typically split into 2 VALU instructions. 467 return 2 * getFullRateInstrCost() * LT.first * NElts; 468 } 469 470 if (ST->has16BitInsts() && SLT == MVT::i16) 471 NElts = (NElts + 1) / 2; 472 473 return LT.first * NElts * getFullRateInstrCost(); 474 case ISD::MUL: { 475 const int QuarterRateCost = getQuarterRateInstrCost(); 476 if (SLT == MVT::i64) { 477 const int FullRateCost = getFullRateInstrCost(); 478 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 479 } 480 481 if (ST->has16BitInsts() && SLT == MVT::i16) 482 NElts = (NElts + 1) / 2; 483 484 // i32 485 return QuarterRateCost * NElts * LT.first; 486 } 487 case ISD::FADD: 488 case ISD::FSUB: 489 case ISD::FMUL: 490 if (SLT == MVT::f64) 491 return LT.first * NElts * get64BitInstrCost(); 492 493 if (ST->has16BitInsts() && SLT == MVT::f16) 494 NElts = (NElts + 1) / 2; 495 496 if (SLT == MVT::f32 || SLT == MVT::f16) 497 return LT.first * NElts * getFullRateInstrCost(); 498 break; 499 case ISD::FDIV: 500 case ISD::FREM: 501 // FIXME: frem should be handled separately. The fdiv in it is most of it, 502 // but the current lowering is also not entirely correct. 503 if (SLT == MVT::f64) { 504 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 505 // Add cost of workaround. 506 if (!ST->hasUsableDivScaleConditionOutput()) 507 Cost += 3 * getFullRateInstrCost(); 508 509 return LT.first * Cost * NElts; 510 } 511 512 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 513 // TODO: This is more complicated, unsafe flags etc. 514 if ((SLT == MVT::f32 && !HasFP32Denormals) || 515 (SLT == MVT::f16 && ST->has16BitInsts())) { 516 return LT.first * getQuarterRateInstrCost() * NElts; 517 } 518 } 519 520 if (SLT == MVT::f16 && ST->has16BitInsts()) { 521 // 2 x v_cvt_f32_f16 522 // f32 rcp 523 // f32 fmul 524 // v_cvt_f16_f32 525 // f16 div_fixup 526 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 527 return LT.first * Cost * NElts; 528 } 529 530 if (SLT == MVT::f32 || SLT == MVT::f16) { 531 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 532 533 if (!HasFP32Denormals) { 534 // FP mode switches. 535 Cost += 2 * getFullRateInstrCost(); 536 } 537 538 return LT.first * NElts * Cost; 539 } 540 break; 541 default: 542 break; 543 } 544 545 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 546 Opd1PropInfo, Opd2PropInfo); 547 } 548 549 // Return true if there's a potential benefit from using v2f16 instructions for 550 // an intrinsic, even if it requires nontrivial legalization. 551 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 552 switch (ID) { 553 case Intrinsic::fma: // TODO: fmuladd 554 // There's a small benefit to using vector ops in the legalized code. 555 case Intrinsic::round: 556 return true; 557 default: 558 return false; 559 } 560 } 561 562 template <typename T> 563 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 564 ArrayRef<T *> Args, FastMathFlags FMF, 565 unsigned VF, const Instruction *I) { 566 if (!intrinsicHasPackedVectorBenefit(ID)) 567 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, I); 568 569 EVT OrigTy = TLI->getValueType(DL, RetTy); 570 if (!OrigTy.isSimple()) { 571 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, I); 572 } 573 574 // Legalize the type. 575 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 576 577 unsigned NElts = LT.second.isVector() ? 578 LT.second.getVectorNumElements() : 1; 579 580 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 581 582 if (SLT == MVT::f64) 583 return LT.first * NElts * get64BitInstrCost(); 584 585 if (ST->has16BitInsts() && SLT == MVT::f16) 586 NElts = (NElts + 1) / 2; 587 588 // TODO: Get more refined intrinsic costs? 589 unsigned InstRate = getQuarterRateInstrCost(); 590 if (ID == Intrinsic::fma) { 591 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost() 592 : getQuarterRateInstrCost(); 593 } 594 595 return LT.first * NElts * InstRate; 596 } 597 598 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 599 ArrayRef<Value *> Args, FastMathFlags FMF, 600 unsigned VF, const Instruction *I) { 601 return getIntrinsicInstrCost<Value>(ID, RetTy, Args, FMF, VF, I); 602 } 603 604 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 605 ArrayRef<Type *> Tys, FastMathFlags FMF, 606 unsigned ScalarizationCostPassed, 607 const Instruction *I) { 608 return getIntrinsicInstrCost<Type>(ID, RetTy, Tys, FMF, 609 ScalarizationCostPassed, I); 610 } 611 612 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) { 613 // XXX - For some reason this isn't called for switch. 614 switch (Opcode) { 615 case Instruction::Br: 616 case Instruction::Ret: 617 return 10; 618 default: 619 return BaseT::getCFInstrCost(Opcode); 620 } 621 } 622 623 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 624 bool IsPairwise) { 625 EVT OrigTy = TLI->getValueType(DL, Ty); 626 627 // Computes cost on targets that have packed math instructions(which support 628 // 16-bit types only). 629 if (IsPairwise || 630 !ST->hasVOP3PInsts() || 631 OrigTy.getScalarSizeInBits() != 16) 632 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise); 633 634 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 635 return LT.first * getFullRateInstrCost(); 636 } 637 638 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy, 639 bool IsPairwise, 640 bool IsUnsigned) { 641 EVT OrigTy = TLI->getValueType(DL, Ty); 642 643 // Computes cost on targets that have packed math instructions(which support 644 // 16-bit types only). 645 if (IsPairwise || 646 !ST->hasVOP3PInsts() || 647 OrigTy.getScalarSizeInBits() != 16) 648 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned); 649 650 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 651 return LT.first * getHalfRateInstrCost(); 652 } 653 654 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 655 unsigned Index) { 656 switch (Opcode) { 657 case Instruction::ExtractElement: 658 case Instruction::InsertElement: { 659 unsigned EltSize 660 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 661 if (EltSize < 32) { 662 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 663 return 0; 664 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 665 } 666 667 // Extracts are just reads of a subregister, so are free. Inserts are 668 // considered free because we don't want to have any cost for scalarizing 669 // operations, and we don't have to copy into a different register class. 670 671 // Dynamic indexing isn't free and is best avoided. 672 return Index == ~0u ? 2 : 0; 673 } 674 default: 675 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 676 } 677 } 678 679 static bool isArgPassedInSGPR(const Argument *A) { 680 const Function *F = A->getParent(); 681 682 // Arguments to compute shaders are never a source of divergence. 683 CallingConv::ID CC = F->getCallingConv(); 684 switch (CC) { 685 case CallingConv::AMDGPU_KERNEL: 686 case CallingConv::SPIR_KERNEL: 687 return true; 688 case CallingConv::AMDGPU_VS: 689 case CallingConv::AMDGPU_LS: 690 case CallingConv::AMDGPU_HS: 691 case CallingConv::AMDGPU_ES: 692 case CallingConv::AMDGPU_GS: 693 case CallingConv::AMDGPU_PS: 694 case CallingConv::AMDGPU_CS: 695 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 696 // Everything else is in VGPRs. 697 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 698 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 699 default: 700 // TODO: Should calls support inreg for SGPR inputs? 701 return false; 702 } 703 } 704 705 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 706 /// this is analyzing the collective result of all output registers. Otherwise, 707 /// this is only querying a specific result index if this returns multiple 708 /// registers in a struct. 709 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 710 const CallInst *CI, ArrayRef<unsigned> Indices) const { 711 // TODO: Handle complex extract indices 712 if (Indices.size() > 1) 713 return true; 714 715 const DataLayout &DL = CI->getModule()->getDataLayout(); 716 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 717 TargetLowering::AsmOperandInfoVector TargetConstraints = 718 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 719 720 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 721 722 int OutputIdx = 0; 723 for (auto &TC : TargetConstraints) { 724 if (TC.Type != InlineAsm::isOutput) 725 continue; 726 727 // Skip outputs we don't care about. 728 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 729 continue; 730 731 TLI->ComputeConstraintToUse(TC, SDValue()); 732 733 Register AssignedReg; 734 const TargetRegisterClass *RC; 735 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 736 TRI, TC.ConstraintCode, TC.ConstraintVT); 737 if (AssignedReg) { 738 // FIXME: This is a workaround for getRegForInlineAsmConstraint 739 // returning VS_32 740 RC = TRI->getPhysRegClass(AssignedReg); 741 } 742 743 // For AGPR constraints null is returned on subtargets without AGPRs, so 744 // assume divergent for null. 745 if (!RC || !TRI->isSGPRClass(RC)) 746 return true; 747 } 748 749 return false; 750 } 751 752 /// \returns true if the new GPU divergence analysis is enabled. 753 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 754 return !UseLegacyDA; 755 } 756 757 /// \returns true if the result of the value could potentially be 758 /// different across workitems in a wavefront. 759 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 760 if (const Argument *A = dyn_cast<Argument>(V)) 761 return !isArgPassedInSGPR(A); 762 763 // Loads from the private and flat address spaces are divergent, because 764 // threads can execute the load instruction with the same inputs and get 765 // different results. 766 // 767 // All other loads are not divergent, because if threads issue loads with the 768 // same arguments, they will always get the same result. 769 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 770 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 771 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 772 773 // Atomics are divergent because they are executed sequentially: when an 774 // atomic operation refers to the same address in each thread, then each 775 // thread after the first sees the value written by the previous thread as 776 // original value. 777 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 778 return true; 779 780 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 781 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 782 783 // Assume all function calls are a source of divergence. 784 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 785 if (isa<InlineAsm>(CI->getCalledValue())) 786 return isInlineAsmSourceOfDivergence(CI); 787 return true; 788 } 789 790 // Assume all function calls are a source of divergence. 791 if (isa<InvokeInst>(V)) 792 return true; 793 794 return false; 795 } 796 797 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 798 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 799 switch (Intrinsic->getIntrinsicID()) { 800 default: 801 return false; 802 case Intrinsic::amdgcn_readfirstlane: 803 case Intrinsic::amdgcn_readlane: 804 case Intrinsic::amdgcn_icmp: 805 case Intrinsic::amdgcn_fcmp: 806 case Intrinsic::amdgcn_ballot: 807 case Intrinsic::amdgcn_if_break: 808 return true; 809 } 810 } 811 812 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 813 if (isa<InlineAsm>(CI->getCalledValue())) 814 return !isInlineAsmSourceOfDivergence(CI); 815 return false; 816 } 817 818 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 819 if (!ExtValue) 820 return false; 821 822 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 823 if (!CI) 824 return false; 825 826 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 827 switch (Intrinsic->getIntrinsicID()) { 828 default: 829 return false; 830 case Intrinsic::amdgcn_if: 831 case Intrinsic::amdgcn_else: { 832 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 833 return Indices.size() == 1 && Indices[0] == 1; 834 } 835 } 836 } 837 838 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 839 // divergent for the overall struct return. We need to override it in the 840 // case we're extracting an SGPR component here. 841 if (isa<InlineAsm>(CI->getCalledValue())) 842 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 843 844 return false; 845 } 846 847 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 848 Intrinsic::ID IID) const { 849 switch (IID) { 850 case Intrinsic::amdgcn_atomic_inc: 851 case Intrinsic::amdgcn_atomic_dec: 852 case Intrinsic::amdgcn_ds_fadd: 853 case Intrinsic::amdgcn_ds_fmin: 854 case Intrinsic::amdgcn_ds_fmax: 855 case Intrinsic::amdgcn_is_shared: 856 case Intrinsic::amdgcn_is_private: 857 OpIndexes.push_back(0); 858 return true; 859 default: 860 return false; 861 } 862 } 863 864 bool GCNTTIImpl::rewriteIntrinsicWithAddressSpace( 865 IntrinsicInst *II, Value *OldV, Value *NewV) const { 866 auto IntrID = II->getIntrinsicID(); 867 switch (IntrID) { 868 case Intrinsic::amdgcn_atomic_inc: 869 case Intrinsic::amdgcn_atomic_dec: 870 case Intrinsic::amdgcn_ds_fadd: 871 case Intrinsic::amdgcn_ds_fmin: 872 case Intrinsic::amdgcn_ds_fmax: { 873 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 874 if (!IsVolatile->isZero()) 875 return false; 876 Module *M = II->getParent()->getParent()->getParent(); 877 Type *DestTy = II->getType(); 878 Type *SrcTy = NewV->getType(); 879 Function *NewDecl = 880 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 881 II->setArgOperand(0, NewV); 882 II->setCalledFunction(NewDecl); 883 return true; 884 } 885 case Intrinsic::amdgcn_is_shared: 886 case Intrinsic::amdgcn_is_private: { 887 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 888 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 889 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 890 LLVMContext &Ctx = NewV->getType()->getContext(); 891 ConstantInt *NewVal = (TrueAS == NewAS) ? 892 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 893 II->replaceAllUsesWith(NewVal); 894 II->eraseFromParent(); 895 return true; 896 } 897 default: 898 return false; 899 } 900 } 901 902 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 903 Type *SubTp) { 904 if (ST->hasVOP3PInsts()) { 905 VectorType *VT = cast<VectorType>(Tp); 906 if (VT->getNumElements() == 2 && 907 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 908 // With op_sel VOP3P instructions freely can access the low half or high 909 // half of a register, so any swizzle is free. 910 911 switch (Kind) { 912 case TTI::SK_Broadcast: 913 case TTI::SK_Reverse: 914 case TTI::SK_PermuteSingleSrc: 915 return 0; 916 default: 917 break; 918 } 919 } 920 } 921 922 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 923 } 924 925 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 926 const Function *Callee) const { 927 const TargetMachine &TM = getTLI()->getTargetMachine(); 928 const GCNSubtarget *CallerST 929 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 930 const GCNSubtarget *CalleeST 931 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 932 933 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 934 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 935 936 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 937 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 938 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 939 return false; 940 941 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 942 // no way to support merge for backend defined attributes. 943 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 944 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 945 return CallerMode.isInlineCompatible(CalleeMode); 946 } 947 948 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 949 TTI::UnrollingPreferences &UP) { 950 CommonTTI.getUnrollingPreferences(L, SE, UP); 951 } 952 953 unsigned GCNTTIImpl::getUserCost(const User *U, 954 ArrayRef<const Value *> Operands) { 955 const Instruction *I = dyn_cast<Instruction>(U); 956 if (!I) 957 return BaseT::getUserCost(U, Operands); 958 959 // Estimate different operations to be optimized out 960 switch (I->getOpcode()) { 961 case Instruction::ExtractElement: { 962 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 963 unsigned Idx = -1; 964 if (CI) 965 Idx = CI->getZExtValue(); 966 return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx); 967 } 968 case Instruction::InsertElement: { 969 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 970 unsigned Idx = -1; 971 if (CI) 972 Idx = CI->getZExtValue(); 973 return getVectorInstrCost(I->getOpcode(), I->getType(), Idx); 974 } 975 case Instruction::Call: { 976 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 977 SmallVector<Value *, 4> Args(II->arg_operands()); 978 FastMathFlags FMF; 979 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 980 FMF = FPMO->getFastMathFlags(); 981 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args, 982 FMF, 1, II); 983 } else { 984 return BaseT::getUserCost(U, Operands); 985 } 986 } 987 case Instruction::ShuffleVector: { 988 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 989 Type *Ty = Shuffle->getType(); 990 Type *SrcTy = Shuffle->getOperand(0)->getType(); 991 992 // TODO: Identify and add costs for insert subvector, etc. 993 int SubIndex; 994 if (Shuffle->isExtractSubvectorMask(SubIndex)) 995 return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty); 996 997 if (Shuffle->changesLength()) 998 return BaseT::getUserCost(U, Operands); 999 1000 if (Shuffle->isIdentity()) 1001 return 0; 1002 1003 if (Shuffle->isReverse()) 1004 return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr); 1005 1006 if (Shuffle->isSelect()) 1007 return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr); 1008 1009 if (Shuffle->isTranspose()) 1010 return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr); 1011 1012 if (Shuffle->isZeroEltSplat()) 1013 return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr); 1014 1015 if (Shuffle->isSingleSource()) 1016 return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr); 1017 1018 return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr); 1019 } 1020 case Instruction::ZExt: 1021 case Instruction::SExt: 1022 case Instruction::FPToUI: 1023 case Instruction::FPToSI: 1024 case Instruction::FPExt: 1025 case Instruction::PtrToInt: 1026 case Instruction::IntToPtr: 1027 case Instruction::SIToFP: 1028 case Instruction::UIToFP: 1029 case Instruction::Trunc: 1030 case Instruction::FPTrunc: 1031 case Instruction::BitCast: 1032 case Instruction::AddrSpaceCast: { 1033 return getCastInstrCost(I->getOpcode(), I->getType(), 1034 I->getOperand(0)->getType(), I); 1035 } 1036 case Instruction::Add: 1037 case Instruction::FAdd: 1038 case Instruction::Sub: 1039 case Instruction::FSub: 1040 case Instruction::Mul: 1041 case Instruction::FMul: 1042 case Instruction::UDiv: 1043 case Instruction::SDiv: 1044 case Instruction::FDiv: 1045 case Instruction::URem: 1046 case Instruction::SRem: 1047 case Instruction::FRem: 1048 case Instruction::Shl: 1049 case Instruction::LShr: 1050 case Instruction::AShr: 1051 case Instruction::And: 1052 case Instruction::Or: 1053 case Instruction::Xor: 1054 case Instruction::FNeg: { 1055 return getArithmeticInstrCost(I->getOpcode(), I->getType(), 1056 TTI::OK_AnyValue, TTI::OK_AnyValue, 1057 TTI::OP_None, TTI::OP_None, Operands, I); 1058 } 1059 default: 1060 break; 1061 } 1062 1063 return BaseT::getUserCost(U, Operands); 1064 } 1065 1066 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 1067 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 1068 } 1069 1070 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 1071 return getHardwareNumberOfRegisters(Vec); 1072 } 1073 1074 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 1075 return 32; 1076 } 1077 1078 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 1079 return 32; 1080 } 1081 1082 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 1083 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 1084 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 1085 return 128; 1086 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1087 AddrSpace == AMDGPUAS::REGION_ADDRESS) 1088 return 64; 1089 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 1090 return 32; 1091 1092 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 1093 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 1094 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 1095 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 1096 return 128; 1097 llvm_unreachable("unhandled address space"); 1098 } 1099 1100 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1101 unsigned Alignment, 1102 unsigned AddrSpace) const { 1103 // We allow vectorization of flat stores, even though we may need to decompose 1104 // them later if they may access private memory. We don't have enough context 1105 // here, and legalization can handle it. 1106 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1107 } 1108 1109 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1110 unsigned Alignment, 1111 unsigned AddrSpace) const { 1112 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1113 } 1114 1115 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1116 unsigned Alignment, 1117 unsigned AddrSpace) const { 1118 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1119 } 1120 1121 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1122 // Disable unrolling if the loop is not vectorized. 1123 // TODO: Enable this again. 1124 if (VF == 1) 1125 return 1; 1126 1127 return 8; 1128 } 1129 1130 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) { 1131 // XXX - For some reason this isn't called for switch. 1132 switch (Opcode) { 1133 case Instruction::Br: 1134 case Instruction::Ret: 1135 return 10; 1136 default: 1137 return BaseT::getCFInstrCost(Opcode); 1138 } 1139 } 1140 1141 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1142 unsigned Index) { 1143 switch (Opcode) { 1144 case Instruction::ExtractElement: 1145 case Instruction::InsertElement: { 1146 unsigned EltSize 1147 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1148 if (EltSize < 32) { 1149 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1150 } 1151 1152 // Extracts are just reads of a subregister, so are free. Inserts are 1153 // considered free because we don't want to have any cost for scalarizing 1154 // operations, and we don't have to copy into a different register class. 1155 1156 // Dynamic indexing isn't free and is best avoided. 1157 return Index == ~0u ? 2 : 0; 1158 } 1159 default: 1160 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1161 } 1162 } 1163 1164 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1165 TTI::UnrollingPreferences &UP) { 1166 CommonTTI.getUnrollingPreferences(L, SE, UP); 1167 } 1168