1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // \file
11 // This file implements a TargetTransformInfo analysis pass specific to the
12 // AMDGPU target machine. It uses the target's detailed information to provide
13 // more precise answers to certain TTI queries, while letting the target
14 // independent and default TTI implementations handle the rest.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "AMDGPUTargetTransformInfo.h"
19 #include "AMDGPUSubtarget.h"
20 #include "Utils/AMDGPUBaseInfo.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/ISDOpcodes.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/MC/SubtargetFeature.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MachineValueType.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <limits>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "AMDGPUtti"
57 
58 static cl::opt<unsigned> UnrollThresholdPrivate(
59   "amdgpu-unroll-threshold-private",
60   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
61   cl::init(2500), cl::Hidden);
62 
63 static cl::opt<unsigned> UnrollThresholdLocal(
64   "amdgpu-unroll-threshold-local",
65   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
66   cl::init(1000), cl::Hidden);
67 
68 static cl::opt<unsigned> UnrollThresholdIf(
69   "amdgpu-unroll-threshold-if",
70   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
71   cl::init(150), cl::Hidden);
72 
73 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
74                               unsigned Depth = 0) {
75   const Instruction *I = dyn_cast<Instruction>(Cond);
76   if (!I)
77     return false;
78 
79   for (const Value *V : I->operand_values()) {
80     if (!L->contains(I))
81       continue;
82     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
83       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
84                   return SubLoop->contains(PHI); }))
85         return true;
86     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
87       return true;
88   }
89   return false;
90 }
91 
92 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
93                                             TTI::UnrollingPreferences &UP) {
94   UP.Threshold = 300; // Twice the default.
95   UP.MaxCount = std::numeric_limits<unsigned>::max();
96   UP.Partial = true;
97 
98   // TODO: Do we want runtime unrolling?
99 
100   // Maximum alloca size than can fit registers. Reserve 16 registers.
101   const unsigned MaxAlloca = (256 - 16) * 4;
102   unsigned ThresholdPrivate = UnrollThresholdPrivate;
103   unsigned ThresholdLocal = UnrollThresholdLocal;
104   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
105   for (const BasicBlock *BB : L->getBlocks()) {
106     const DataLayout &DL = BB->getModule()->getDataLayout();
107     unsigned LocalGEPsSeen = 0;
108 
109     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
110                return SubLoop->contains(BB); }))
111         continue; // Block belongs to an inner loop.
112 
113     for (const Instruction &I : *BB) {
114       // Unroll a loop which contains an "if" statement whose condition
115       // defined by a PHI belonging to the loop. This may help to eliminate
116       // if region and potentially even PHI itself, saving on both divergence
117       // and registers used for the PHI.
118       // Add a small bonus for each of such "if" statements.
119       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
120         if (UP.Threshold < MaxBoost && Br->isConditional()) {
121           if (L->isLoopExiting(Br->getSuccessor(0)) ||
122               L->isLoopExiting(Br->getSuccessor(1)))
123             continue;
124           if (dependsOnLocalPhi(L, Br->getCondition())) {
125             UP.Threshold += UnrollThresholdIf;
126             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
127                               << " for loop:\n"
128                               << *L << " due to " << *Br << '\n');
129             if (UP.Threshold >= MaxBoost)
130               return;
131           }
132         }
133         continue;
134       }
135 
136       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
137       if (!GEP)
138         continue;
139 
140       unsigned AS = GEP->getAddressSpace();
141       unsigned Threshold = 0;
142       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
143         Threshold = ThresholdPrivate;
144       else if (AS == AMDGPUAS::LOCAL_ADDRESS)
145         Threshold = ThresholdLocal;
146       else
147         continue;
148 
149       if (UP.Threshold >= Threshold)
150         continue;
151 
152       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
153         const Value *Ptr = GEP->getPointerOperand();
154         const AllocaInst *Alloca =
155             dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
156         if (!Alloca || !Alloca->isStaticAlloca())
157           continue;
158         Type *Ty = Alloca->getAllocatedType();
159         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
160         if (AllocaSize > MaxAlloca)
161           continue;
162       } else if (AS == AMDGPUAS::LOCAL_ADDRESS) {
163         LocalGEPsSeen++;
164         // Inhibit unroll for local memory if we have seen addressing not to
165         // a variable, most likely we will be unable to combine it.
166         // Do not unroll too deep inner loops for local memory to give a chance
167         // to unroll an outer loop for a more important reason.
168         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
169             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
170              !isa<Argument>(GEP->getPointerOperand())))
171           continue;
172       }
173 
174       // Check if GEP depends on a value defined by this loop itself.
175       bool HasLoopDef = false;
176       for (const Value *Op : GEP->operands()) {
177         const Instruction *Inst = dyn_cast<Instruction>(Op);
178         if (!Inst || L->isLoopInvariant(Op))
179           continue;
180 
181         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
182              return SubLoop->contains(Inst); }))
183           continue;
184         HasLoopDef = true;
185         break;
186       }
187       if (!HasLoopDef)
188         continue;
189 
190       // We want to do whatever we can to limit the number of alloca
191       // instructions that make it through to the code generator.  allocas
192       // require us to use indirect addressing, which is slow and prone to
193       // compiler bugs.  If this loop does an address calculation on an
194       // alloca ptr, then we want to use a higher than normal loop unroll
195       // threshold. This will give SROA a better chance to eliminate these
196       // allocas.
197       //
198       // We also want to have more unrolling for local memory to let ds
199       // instructions with different offsets combine.
200       //
201       // Don't use the maximum allowed value here as it will make some
202       // programs way too big.
203       UP.Threshold = Threshold;
204       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
205                         << " for loop:\n"
206                         << *L << " due to " << *GEP << '\n');
207       if (UP.Threshold >= MaxBoost)
208         return;
209     }
210   }
211 }
212 
213 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
214   // The concept of vector registers doesn't really exist. Some packed vector
215   // operations operate on the normal 32-bit registers.
216   return 256;
217 }
218 
219 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
220   // This is really the number of registers to fill when vectorizing /
221   // interleaving loops, so we lie to avoid trying to use all registers.
222   return getHardwareNumberOfRegisters(Vec) >> 3;
223 }
224 
225 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
226   return 32;
227 }
228 
229 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
230   return 32;
231 }
232 
233 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
234                                             unsigned ChainSizeInBytes,
235                                             VectorType *VecTy) const {
236   unsigned VecRegBitWidth = VF * LoadSize;
237   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
238     // TODO: Support element-size less than 32bit?
239     return 128 / LoadSize;
240 
241   return VF;
242 }
243 
244 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
245                                              unsigned ChainSizeInBytes,
246                                              VectorType *VecTy) const {
247   unsigned VecRegBitWidth = VF * StoreSize;
248   if (VecRegBitWidth > 128)
249     return 128 / StoreSize;
250 
251   return VF;
252 }
253 
254 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
255   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
256       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
257       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
258     return 512;
259   }
260 
261   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
262       AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
263       AddrSpace == AMDGPUAS::REGION_ADDRESS)
264     return 128;
265 
266   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
267     return 8 * ST->getMaxPrivateElementSize();
268 
269   llvm_unreachable("unhandled address space");
270 }
271 
272 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
273                                                unsigned Alignment,
274                                                unsigned AddrSpace) const {
275   // We allow vectorization of flat stores, even though we may need to decompose
276   // them later if they may access private memory. We don't have enough context
277   // here, and legalization can handle it.
278   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
279     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
280       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
281   }
282   return true;
283 }
284 
285 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
286                                                 unsigned Alignment,
287                                                 unsigned AddrSpace) const {
288   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
289 }
290 
291 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
292                                                  unsigned Alignment,
293                                                  unsigned AddrSpace) const {
294   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
295 }
296 
297 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
298   // Disable unrolling if the loop is not vectorized.
299   // TODO: Enable this again.
300   if (VF == 1)
301     return 1;
302 
303   return 8;
304 }
305 
306 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
307                                        MemIntrinsicInfo &Info) const {
308   switch (Inst->getIntrinsicID()) {
309   case Intrinsic::amdgcn_atomic_inc:
310   case Intrinsic::amdgcn_atomic_dec:
311   case Intrinsic::amdgcn_ds_fadd:
312   case Intrinsic::amdgcn_ds_fmin:
313   case Intrinsic::amdgcn_ds_fmax: {
314     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
315     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
316     if (!Ordering || !Volatile)
317       return false; // Invalid.
318 
319     unsigned OrderingVal = Ordering->getZExtValue();
320     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
321       return false;
322 
323     Info.PtrVal = Inst->getArgOperand(0);
324     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
325     Info.ReadMem = true;
326     Info.WriteMem = true;
327     Info.IsVolatile = !Volatile->isNullValue();
328     return true;
329   }
330   default:
331     return false;
332   }
333 }
334 
335 int GCNTTIImpl::getArithmeticInstrCost(
336     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
337     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
338     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) {
339   EVT OrigTy = TLI->getValueType(DL, Ty);
340   if (!OrigTy.isSimple()) {
341     return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
342                                          Opd1PropInfo, Opd2PropInfo);
343   }
344 
345   // Legalize the type.
346   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
347   int ISD = TLI->InstructionOpcodeToISD(Opcode);
348 
349   // Because we don't have any legal vector operations, but the legal types, we
350   // need to account for split vectors.
351   unsigned NElts = LT.second.isVector() ?
352     LT.second.getVectorNumElements() : 1;
353 
354   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
355 
356   switch (ISD) {
357   case ISD::SHL:
358   case ISD::SRL:
359   case ISD::SRA:
360     if (SLT == MVT::i64)
361       return get64BitInstrCost() * LT.first * NElts;
362 
363     // i32
364     return getFullRateInstrCost() * LT.first * NElts;
365   case ISD::ADD:
366   case ISD::SUB:
367   case ISD::AND:
368   case ISD::OR:
369   case ISD::XOR:
370     if (SLT == MVT::i64){
371       // and, or and xor are typically split into 2 VALU instructions.
372       return 2 * getFullRateInstrCost() * LT.first * NElts;
373     }
374 
375     return LT.first * NElts * getFullRateInstrCost();
376   case ISD::MUL: {
377     const int QuarterRateCost = getQuarterRateInstrCost();
378     if (SLT == MVT::i64) {
379       const int FullRateCost = getFullRateInstrCost();
380       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
381     }
382 
383     // i32
384     return QuarterRateCost * NElts * LT.first;
385   }
386   case ISD::FADD:
387   case ISD::FSUB:
388   case ISD::FMUL:
389     if (SLT == MVT::f64)
390       return LT.first * NElts * get64BitInstrCost();
391 
392     if (SLT == MVT::f32 || SLT == MVT::f16)
393       return LT.first * NElts * getFullRateInstrCost();
394     break;
395   case ISD::FDIV:
396   case ISD::FREM:
397     // FIXME: frem should be handled separately. The fdiv in it is most of it,
398     // but the current lowering is also not entirely correct.
399     if (SLT == MVT::f64) {
400       int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
401       // Add cost of workaround.
402       if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS)
403         Cost += 3 * getFullRateInstrCost();
404 
405       return LT.first * Cost * NElts;
406     }
407 
408     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
409       // TODO: This is more complicated, unsafe flags etc.
410       if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) ||
411           (SLT == MVT::f16 && ST->has16BitInsts())) {
412         return LT.first * getQuarterRateInstrCost() * NElts;
413       }
414     }
415 
416     if (SLT == MVT::f16 && ST->has16BitInsts()) {
417       // 2 x v_cvt_f32_f16
418       // f32 rcp
419       // f32 fmul
420       // v_cvt_f16_f32
421       // f16 div_fixup
422       int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
423       return LT.first * Cost * NElts;
424     }
425 
426     if (SLT == MVT::f32 || SLT == MVT::f16) {
427       int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
428 
429       if (!ST->hasFP32Denormals()) {
430         // FP mode switches.
431         Cost += 2 * getFullRateInstrCost();
432       }
433 
434       return LT.first * NElts * Cost;
435     }
436     break;
437   default:
438     break;
439   }
440 
441   return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
442                                        Opd1PropInfo, Opd2PropInfo);
443 }
444 
445 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) {
446   // XXX - For some reason this isn't called for switch.
447   switch (Opcode) {
448   case Instruction::Br:
449   case Instruction::Ret:
450     return 10;
451   default:
452     return BaseT::getCFInstrCost(Opcode);
453   }
454 }
455 
456 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
457                                               bool IsPairwise) {
458   EVT OrigTy = TLI->getValueType(DL, Ty);
459 
460   // Computes cost on targets that have packed math instructions(which support
461   // 16-bit types only).
462   if (IsPairwise ||
463       !ST->hasVOP3PInsts() ||
464       OrigTy.getScalarSizeInBits() != 16)
465     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise);
466 
467   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
468   return LT.first * getFullRateInstrCost();
469 }
470 
471 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy,
472                                           bool IsPairwise,
473                                           bool IsUnsigned) {
474   EVT OrigTy = TLI->getValueType(DL, Ty);
475 
476   // Computes cost on targets that have packed math instructions(which support
477   // 16-bit types only).
478   if (IsPairwise ||
479       !ST->hasVOP3PInsts() ||
480       OrigTy.getScalarSizeInBits() != 16)
481     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned);
482 
483   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
484   return LT.first * getHalfRateInstrCost();
485 }
486 
487 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
488                                       unsigned Index) {
489   switch (Opcode) {
490   case Instruction::ExtractElement:
491   case Instruction::InsertElement: {
492     unsigned EltSize
493       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
494     if (EltSize < 32) {
495       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
496         return 0;
497       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
498     }
499 
500     // Extracts are just reads of a subregister, so are free. Inserts are
501     // considered free because we don't want to have any cost for scalarizing
502     // operations, and we don't have to copy into a different register class.
503 
504     // Dynamic indexing isn't free and is best avoided.
505     return Index == ~0u ? 2 : 0;
506   }
507   default:
508     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
509   }
510 }
511 
512 
513 
514 static bool isArgPassedInSGPR(const Argument *A) {
515   const Function *F = A->getParent();
516 
517   // Arguments to compute shaders are never a source of divergence.
518   CallingConv::ID CC = F->getCallingConv();
519   switch (CC) {
520   case CallingConv::AMDGPU_KERNEL:
521   case CallingConv::SPIR_KERNEL:
522     return true;
523   case CallingConv::AMDGPU_VS:
524   case CallingConv::AMDGPU_LS:
525   case CallingConv::AMDGPU_HS:
526   case CallingConv::AMDGPU_ES:
527   case CallingConv::AMDGPU_GS:
528   case CallingConv::AMDGPU_PS:
529   case CallingConv::AMDGPU_CS:
530     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
531     // Everything else is in VGPRs.
532     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
533            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
534   default:
535     // TODO: Should calls support inreg for SGPR inputs?
536     return false;
537   }
538 }
539 
540 /// \returns true if the result of the value could potentially be
541 /// different across workitems in a wavefront.
542 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
543   if (const Argument *A = dyn_cast<Argument>(V))
544     return !isArgPassedInSGPR(A);
545 
546   // Loads from the private and flat address spaces are divergent, because
547   // threads can execute the load instruction with the same inputs and get
548   // different results.
549   //
550   // All other loads are not divergent, because if threads issue loads with the
551   // same arguments, they will always get the same result.
552   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
553     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
554            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
555 
556   // Atomics are divergent because they are executed sequentially: when an
557   // atomic operation refers to the same address in each thread, then each
558   // thread after the first sees the value written by the previous thread as
559   // original value.
560   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
561     return true;
562 
563   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
564     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
565 
566   // Assume all function calls are a source of divergence.
567   if (isa<CallInst>(V) || isa<InvokeInst>(V))
568     return true;
569 
570   return false;
571 }
572 
573 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
574   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
575     switch (Intrinsic->getIntrinsicID()) {
576     default:
577       return false;
578     case Intrinsic::amdgcn_readfirstlane:
579     case Intrinsic::amdgcn_readlane:
580       return true;
581     }
582   }
583   return false;
584 }
585 
586 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
587                                        Type *SubTp) {
588   if (ST->hasVOP3PInsts()) {
589     VectorType *VT = cast<VectorType>(Tp);
590     if (VT->getNumElements() == 2 &&
591         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
592       // With op_sel VOP3P instructions freely can access the low half or high
593       // half of a register, so any swizzle is free.
594 
595       switch (Kind) {
596       case TTI::SK_Broadcast:
597       case TTI::SK_Reverse:
598       case TTI::SK_PermuteSingleSrc:
599         return 0;
600       default:
601         break;
602       }
603     }
604   }
605 
606   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
607 }
608 
609 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
610                                         const Function *Callee) const {
611   const TargetMachine &TM = getTLI()->getTargetMachine();
612   const FeatureBitset &CallerBits =
613     TM.getSubtargetImpl(*Caller)->getFeatureBits();
614   const FeatureBitset &CalleeBits =
615     TM.getSubtargetImpl(*Callee)->getFeatureBits();
616 
617   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
618   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
619   return ((RealCallerBits & RealCalleeBits) == RealCalleeBits);
620 }
621 
622 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
623                                          TTI::UnrollingPreferences &UP) {
624   CommonTTI.getUnrollingPreferences(L, SE, UP);
625 }
626 
627 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
628   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
629 }
630 
631 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
632   return getHardwareNumberOfRegisters(Vec);
633 }
634 
635 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
636   return 32;
637 }
638 
639 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
640   return 32;
641 }
642 
643 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
644   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
645       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
646     return 128;
647   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
648       AddrSpace == AMDGPUAS::REGION_ADDRESS)
649     return 64;
650   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
651     return 32;
652 
653   if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
654       AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
655       (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
656       AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
657     return 128;
658   llvm_unreachable("unhandled address space");
659 }
660 
661 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
662                                              unsigned Alignment,
663                                              unsigned AddrSpace) const {
664   // We allow vectorization of flat stores, even though we may need to decompose
665   // them later if they may access private memory. We don't have enough context
666   // here, and legalization can handle it.
667   return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
668 }
669 
670 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
671                                               unsigned Alignment,
672                                               unsigned AddrSpace) const {
673   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
674 }
675 
676 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
677                                                unsigned Alignment,
678                                                unsigned AddrSpace) const {
679   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
680 }
681 
682 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
683   // Disable unrolling if the loop is not vectorized.
684   // TODO: Enable this again.
685   if (VF == 1)
686     return 1;
687 
688   return 8;
689 }
690 
691 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) {
692   // XXX - For some reason this isn't called for switch.
693   switch (Opcode) {
694   case Instruction::Br:
695   case Instruction::Ret:
696     return 10;
697   default:
698     return BaseT::getCFInstrCost(Opcode);
699   }
700 }
701 
702 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
703                                     unsigned Index) {
704   switch (Opcode) {
705   case Instruction::ExtractElement:
706   case Instruction::InsertElement: {
707     unsigned EltSize
708       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
709     if (EltSize < 32) {
710       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
711     }
712 
713     // Extracts are just reads of a subregister, so are free. Inserts are
714     // considered free because we don't want to have any cost for scalarizing
715     // operations, and we don't have to copy into a different register class.
716 
717     // Dynamic indexing isn't free and is best avoided.
718     return Index == ~0u ? 2 : 0;
719   }
720   default:
721     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
722   }
723 }
724 
725 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
726                                           TTI::UnrollingPreferences &UP) {
727   CommonTTI.getUnrollingPreferences(L, SE, UP);
728 }
729