1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUSubtarget.h"
19 #include "Utils/AMDGPUBaseInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/MC/SubtargetFeature.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <limits>
51 #include <utility>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "AMDGPUtti"
56 
57 static cl::opt<unsigned> UnrollThresholdPrivate(
58   "amdgpu-unroll-threshold-private",
59   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
60   cl::init(2500), cl::Hidden);
61 
62 static cl::opt<unsigned> UnrollThresholdLocal(
63   "amdgpu-unroll-threshold-local",
64   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
65   cl::init(1000), cl::Hidden);
66 
67 static cl::opt<unsigned> UnrollThresholdIf(
68   "amdgpu-unroll-threshold-if",
69   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
70   cl::init(150), cl::Hidden);
71 
72 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
73                               unsigned Depth = 0) {
74   const Instruction *I = dyn_cast<Instruction>(Cond);
75   if (!I)
76     return false;
77 
78   for (const Value *V : I->operand_values()) {
79     if (!L->contains(I))
80       continue;
81     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
82       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
83                   return SubLoop->contains(PHI); }))
84         return true;
85     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
86       return true;
87   }
88   return false;
89 }
90 
91 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
92                                             TTI::UnrollingPreferences &UP) {
93   UP.Threshold = 300; // Twice the default.
94   UP.MaxCount = std::numeric_limits<unsigned>::max();
95   UP.Partial = true;
96 
97   // TODO: Do we want runtime unrolling?
98 
99   // Maximum alloca size than can fit registers. Reserve 16 registers.
100   const unsigned MaxAlloca = (256 - 16) * 4;
101   unsigned ThresholdPrivate = UnrollThresholdPrivate;
102   unsigned ThresholdLocal = UnrollThresholdLocal;
103   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
104   for (const BasicBlock *BB : L->getBlocks()) {
105     const DataLayout &DL = BB->getModule()->getDataLayout();
106     unsigned LocalGEPsSeen = 0;
107 
108     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
109                return SubLoop->contains(BB); }))
110         continue; // Block belongs to an inner loop.
111 
112     for (const Instruction &I : *BB) {
113       // Unroll a loop which contains an "if" statement whose condition
114       // defined by a PHI belonging to the loop. This may help to eliminate
115       // if region and potentially even PHI itself, saving on both divergence
116       // and registers used for the PHI.
117       // Add a small bonus for each of such "if" statements.
118       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
119         if (UP.Threshold < MaxBoost && Br->isConditional()) {
120           if (L->isLoopExiting(Br->getSuccessor(0)) ||
121               L->isLoopExiting(Br->getSuccessor(1)))
122             continue;
123           if (dependsOnLocalPhi(L, Br->getCondition())) {
124             UP.Threshold += UnrollThresholdIf;
125             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
126                               << " for loop:\n"
127                               << *L << " due to " << *Br << '\n');
128             if (UP.Threshold >= MaxBoost)
129               return;
130           }
131         }
132         continue;
133       }
134 
135       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
136       if (!GEP)
137         continue;
138 
139       unsigned AS = GEP->getAddressSpace();
140       unsigned Threshold = 0;
141       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
142         Threshold = ThresholdPrivate;
143       else if (AS == AMDGPUAS::LOCAL_ADDRESS)
144         Threshold = ThresholdLocal;
145       else
146         continue;
147 
148       if (UP.Threshold >= Threshold)
149         continue;
150 
151       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
152         const Value *Ptr = GEP->getPointerOperand();
153         const AllocaInst *Alloca =
154             dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
155         if (!Alloca || !Alloca->isStaticAlloca())
156           continue;
157         Type *Ty = Alloca->getAllocatedType();
158         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
159         if (AllocaSize > MaxAlloca)
160           continue;
161       } else if (AS == AMDGPUAS::LOCAL_ADDRESS) {
162         LocalGEPsSeen++;
163         // Inhibit unroll for local memory if we have seen addressing not to
164         // a variable, most likely we will be unable to combine it.
165         // Do not unroll too deep inner loops for local memory to give a chance
166         // to unroll an outer loop for a more important reason.
167         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
168             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
169              !isa<Argument>(GEP->getPointerOperand())))
170           continue;
171       }
172 
173       // Check if GEP depends on a value defined by this loop itself.
174       bool HasLoopDef = false;
175       for (const Value *Op : GEP->operands()) {
176         const Instruction *Inst = dyn_cast<Instruction>(Op);
177         if (!Inst || L->isLoopInvariant(Op))
178           continue;
179 
180         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
181              return SubLoop->contains(Inst); }))
182           continue;
183         HasLoopDef = true;
184         break;
185       }
186       if (!HasLoopDef)
187         continue;
188 
189       // We want to do whatever we can to limit the number of alloca
190       // instructions that make it through to the code generator.  allocas
191       // require us to use indirect addressing, which is slow and prone to
192       // compiler bugs.  If this loop does an address calculation on an
193       // alloca ptr, then we want to use a higher than normal loop unroll
194       // threshold. This will give SROA a better chance to eliminate these
195       // allocas.
196       //
197       // We also want to have more unrolling for local memory to let ds
198       // instructions with different offsets combine.
199       //
200       // Don't use the maximum allowed value here as it will make some
201       // programs way too big.
202       UP.Threshold = Threshold;
203       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
204                         << " for loop:\n"
205                         << *L << " due to " << *GEP << '\n');
206       if (UP.Threshold >= MaxBoost)
207         return;
208     }
209   }
210 }
211 
212 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
213   // The concept of vector registers doesn't really exist. Some packed vector
214   // operations operate on the normal 32-bit registers.
215   return 256;
216 }
217 
218 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
219   // This is really the number of registers to fill when vectorizing /
220   // interleaving loops, so we lie to avoid trying to use all registers.
221   return getHardwareNumberOfRegisters(Vec) >> 3;
222 }
223 
224 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
225   return 32;
226 }
227 
228 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
229   return 32;
230 }
231 
232 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
233                                             unsigned ChainSizeInBytes,
234                                             VectorType *VecTy) const {
235   unsigned VecRegBitWidth = VF * LoadSize;
236   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
237     // TODO: Support element-size less than 32bit?
238     return 128 / LoadSize;
239 
240   return VF;
241 }
242 
243 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
244                                              unsigned ChainSizeInBytes,
245                                              VectorType *VecTy) const {
246   unsigned VecRegBitWidth = VF * StoreSize;
247   if (VecRegBitWidth > 128)
248     return 128 / StoreSize;
249 
250   return VF;
251 }
252 
253 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
254   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
255       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
256       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
257       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
258     return 512;
259   }
260 
261   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
262       AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
263       AddrSpace == AMDGPUAS::REGION_ADDRESS)
264     return 128;
265 
266   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
267     return 8 * ST->getMaxPrivateElementSize();
268 
269   llvm_unreachable("unhandled address space");
270 }
271 
272 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
273                                                unsigned Alignment,
274                                                unsigned AddrSpace) const {
275   // We allow vectorization of flat stores, even though we may need to decompose
276   // them later if they may access private memory. We don't have enough context
277   // here, and legalization can handle it.
278   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
279     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
280       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
281   }
282   return true;
283 }
284 
285 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
286                                                 unsigned Alignment,
287                                                 unsigned AddrSpace) const {
288   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
289 }
290 
291 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
292                                                  unsigned Alignment,
293                                                  unsigned AddrSpace) const {
294   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
295 }
296 
297 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
298   // Disable unrolling if the loop is not vectorized.
299   // TODO: Enable this again.
300   if (VF == 1)
301     return 1;
302 
303   return 8;
304 }
305 
306 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
307                                        MemIntrinsicInfo &Info) const {
308   switch (Inst->getIntrinsicID()) {
309   case Intrinsic::amdgcn_atomic_inc:
310   case Intrinsic::amdgcn_atomic_dec:
311   case Intrinsic::amdgcn_ds_ordered_add:
312   case Intrinsic::amdgcn_ds_ordered_swap:
313   case Intrinsic::amdgcn_ds_fadd:
314   case Intrinsic::amdgcn_ds_fmin:
315   case Intrinsic::amdgcn_ds_fmax: {
316     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
317     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
318     if (!Ordering || !Volatile)
319       return false; // Invalid.
320 
321     unsigned OrderingVal = Ordering->getZExtValue();
322     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
323       return false;
324 
325     Info.PtrVal = Inst->getArgOperand(0);
326     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
327     Info.ReadMem = true;
328     Info.WriteMem = true;
329     Info.IsVolatile = !Volatile->isNullValue();
330     return true;
331   }
332   default:
333     return false;
334   }
335 }
336 
337 int GCNTTIImpl::getArithmeticInstrCost(
338     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
339     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
340     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) {
341   EVT OrigTy = TLI->getValueType(DL, Ty);
342   if (!OrigTy.isSimple()) {
343     return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
344                                          Opd1PropInfo, Opd2PropInfo);
345   }
346 
347   // Legalize the type.
348   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
349   int ISD = TLI->InstructionOpcodeToISD(Opcode);
350 
351   // Because we don't have any legal vector operations, but the legal types, we
352   // need to account for split vectors.
353   unsigned NElts = LT.second.isVector() ?
354     LT.second.getVectorNumElements() : 1;
355 
356   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
357 
358   switch (ISD) {
359   case ISD::SHL:
360   case ISD::SRL:
361   case ISD::SRA:
362     if (SLT == MVT::i64)
363       return get64BitInstrCost() * LT.first * NElts;
364 
365     // i32
366     return getFullRateInstrCost() * LT.first * NElts;
367   case ISD::ADD:
368   case ISD::SUB:
369   case ISD::AND:
370   case ISD::OR:
371   case ISD::XOR:
372     if (SLT == MVT::i64){
373       // and, or and xor are typically split into 2 VALU instructions.
374       return 2 * getFullRateInstrCost() * LT.first * NElts;
375     }
376 
377     return LT.first * NElts * getFullRateInstrCost();
378   case ISD::MUL: {
379     const int QuarterRateCost = getQuarterRateInstrCost();
380     if (SLT == MVT::i64) {
381       const int FullRateCost = getFullRateInstrCost();
382       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
383     }
384 
385     // i32
386     return QuarterRateCost * NElts * LT.first;
387   }
388   case ISD::FADD:
389   case ISD::FSUB:
390   case ISD::FMUL:
391     if (SLT == MVT::f64)
392       return LT.first * NElts * get64BitInstrCost();
393 
394     if (SLT == MVT::f32 || SLT == MVT::f16)
395       return LT.first * NElts * getFullRateInstrCost();
396     break;
397   case ISD::FDIV:
398   case ISD::FREM:
399     // FIXME: frem should be handled separately. The fdiv in it is most of it,
400     // but the current lowering is also not entirely correct.
401     if (SLT == MVT::f64) {
402       int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
403       // Add cost of workaround.
404       if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS)
405         Cost += 3 * getFullRateInstrCost();
406 
407       return LT.first * Cost * NElts;
408     }
409 
410     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
411       // TODO: This is more complicated, unsafe flags etc.
412       if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) ||
413           (SLT == MVT::f16 && ST->has16BitInsts())) {
414         return LT.first * getQuarterRateInstrCost() * NElts;
415       }
416     }
417 
418     if (SLT == MVT::f16 && ST->has16BitInsts()) {
419       // 2 x v_cvt_f32_f16
420       // f32 rcp
421       // f32 fmul
422       // v_cvt_f16_f32
423       // f16 div_fixup
424       int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
425       return LT.first * Cost * NElts;
426     }
427 
428     if (SLT == MVT::f32 || SLT == MVT::f16) {
429       int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
430 
431       if (!ST->hasFP32Denormals()) {
432         // FP mode switches.
433         Cost += 2 * getFullRateInstrCost();
434       }
435 
436       return LT.first * NElts * Cost;
437     }
438     break;
439   default:
440     break;
441   }
442 
443   return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
444                                        Opd1PropInfo, Opd2PropInfo);
445 }
446 
447 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) {
448   // XXX - For some reason this isn't called for switch.
449   switch (Opcode) {
450   case Instruction::Br:
451   case Instruction::Ret:
452     return 10;
453   default:
454     return BaseT::getCFInstrCost(Opcode);
455   }
456 }
457 
458 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
459                                               bool IsPairwise) {
460   EVT OrigTy = TLI->getValueType(DL, Ty);
461 
462   // Computes cost on targets that have packed math instructions(which support
463   // 16-bit types only).
464   if (IsPairwise ||
465       !ST->hasVOP3PInsts() ||
466       OrigTy.getScalarSizeInBits() != 16)
467     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise);
468 
469   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
470   return LT.first * getFullRateInstrCost();
471 }
472 
473 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy,
474                                           bool IsPairwise,
475                                           bool IsUnsigned) {
476   EVT OrigTy = TLI->getValueType(DL, Ty);
477 
478   // Computes cost on targets that have packed math instructions(which support
479   // 16-bit types only).
480   if (IsPairwise ||
481       !ST->hasVOP3PInsts() ||
482       OrigTy.getScalarSizeInBits() != 16)
483     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned);
484 
485   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
486   return LT.first * getHalfRateInstrCost();
487 }
488 
489 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
490                                       unsigned Index) {
491   switch (Opcode) {
492   case Instruction::ExtractElement:
493   case Instruction::InsertElement: {
494     unsigned EltSize
495       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
496     if (EltSize < 32) {
497       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
498         return 0;
499       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
500     }
501 
502     // Extracts are just reads of a subregister, so are free. Inserts are
503     // considered free because we don't want to have any cost for scalarizing
504     // operations, and we don't have to copy into a different register class.
505 
506     // Dynamic indexing isn't free and is best avoided.
507     return Index == ~0u ? 2 : 0;
508   }
509   default:
510     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
511   }
512 }
513 
514 
515 
516 static bool isArgPassedInSGPR(const Argument *A) {
517   const Function *F = A->getParent();
518 
519   // Arguments to compute shaders are never a source of divergence.
520   CallingConv::ID CC = F->getCallingConv();
521   switch (CC) {
522   case CallingConv::AMDGPU_KERNEL:
523   case CallingConv::SPIR_KERNEL:
524     return true;
525   case CallingConv::AMDGPU_VS:
526   case CallingConv::AMDGPU_LS:
527   case CallingConv::AMDGPU_HS:
528   case CallingConv::AMDGPU_ES:
529   case CallingConv::AMDGPU_GS:
530   case CallingConv::AMDGPU_PS:
531   case CallingConv::AMDGPU_CS:
532     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
533     // Everything else is in VGPRs.
534     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
535            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
536   default:
537     // TODO: Should calls support inreg for SGPR inputs?
538     return false;
539   }
540 }
541 
542 /// \returns true if the result of the value could potentially be
543 /// different across workitems in a wavefront.
544 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
545   if (const Argument *A = dyn_cast<Argument>(V))
546     return !isArgPassedInSGPR(A);
547 
548   // Loads from the private and flat address spaces are divergent, because
549   // threads can execute the load instruction with the same inputs and get
550   // different results.
551   //
552   // All other loads are not divergent, because if threads issue loads with the
553   // same arguments, they will always get the same result.
554   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
555     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
556            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
557 
558   // Atomics are divergent because they are executed sequentially: when an
559   // atomic operation refers to the same address in each thread, then each
560   // thread after the first sees the value written by the previous thread as
561   // original value.
562   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
563     return true;
564 
565   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
566     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
567 
568   // Assume all function calls are a source of divergence.
569   if (isa<CallInst>(V) || isa<InvokeInst>(V))
570     return true;
571 
572   return false;
573 }
574 
575 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
576   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
577     switch (Intrinsic->getIntrinsicID()) {
578     default:
579       return false;
580     case Intrinsic::amdgcn_readfirstlane:
581     case Intrinsic::amdgcn_readlane:
582     case Intrinsic::amdgcn_icmp:
583     case Intrinsic::amdgcn_fcmp:
584       return true;
585     }
586   }
587   return false;
588 }
589 
590 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
591                                        Type *SubTp) {
592   if (ST->hasVOP3PInsts()) {
593     VectorType *VT = cast<VectorType>(Tp);
594     if (VT->getNumElements() == 2 &&
595         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
596       // With op_sel VOP3P instructions freely can access the low half or high
597       // half of a register, so any swizzle is free.
598 
599       switch (Kind) {
600       case TTI::SK_Broadcast:
601       case TTI::SK_Reverse:
602       case TTI::SK_PermuteSingleSrc:
603         return 0;
604       default:
605         break;
606       }
607     }
608   }
609 
610   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
611 }
612 
613 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
614                                      const Function *Callee) const {
615   const TargetMachine &TM = getTLI()->getTargetMachine();
616   const FeatureBitset &CallerBits =
617     TM.getSubtargetImpl(*Caller)->getFeatureBits();
618   const FeatureBitset &CalleeBits =
619     TM.getSubtargetImpl(*Callee)->getFeatureBits();
620 
621   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
622   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
623   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
624     return false;
625 
626   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
627   // no way to support merge for backend defined attributes.
628   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
629   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
630   return CallerMode.isInlineCompatible(CalleeMode);
631 }
632 
633 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
634                                          TTI::UnrollingPreferences &UP) {
635   CommonTTI.getUnrollingPreferences(L, SE, UP);
636 }
637 
638 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
639   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
640 }
641 
642 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
643   return getHardwareNumberOfRegisters(Vec);
644 }
645 
646 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
647   return 32;
648 }
649 
650 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
651   return 32;
652 }
653 
654 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
655   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
656       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
657     return 128;
658   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
659       AddrSpace == AMDGPUAS::REGION_ADDRESS)
660     return 64;
661   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
662     return 32;
663 
664   if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
665       AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
666       (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
667       AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
668     return 128;
669   llvm_unreachable("unhandled address space");
670 }
671 
672 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
673                                              unsigned Alignment,
674                                              unsigned AddrSpace) const {
675   // We allow vectorization of flat stores, even though we may need to decompose
676   // them later if they may access private memory. We don't have enough context
677   // here, and legalization can handle it.
678   return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
679 }
680 
681 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
682                                               unsigned Alignment,
683                                               unsigned AddrSpace) const {
684   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
685 }
686 
687 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
688                                                unsigned Alignment,
689                                                unsigned AddrSpace) const {
690   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
691 }
692 
693 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
694   // Disable unrolling if the loop is not vectorized.
695   // TODO: Enable this again.
696   if (VF == 1)
697     return 1;
698 
699   return 8;
700 }
701 
702 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) {
703   // XXX - For some reason this isn't called for switch.
704   switch (Opcode) {
705   case Instruction::Br:
706   case Instruction::Ret:
707     return 10;
708   default:
709     return BaseT::getCFInstrCost(Opcode);
710   }
711 }
712 
713 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
714                                     unsigned Index) {
715   switch (Opcode) {
716   case Instruction::ExtractElement:
717   case Instruction::InsertElement: {
718     unsigned EltSize
719       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
720     if (EltSize < 32) {
721       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
722     }
723 
724     // Extracts are just reads of a subregister, so are free. Inserts are
725     // considered free because we don't want to have any cost for scalarizing
726     // operations, and we don't have to copy into a different register class.
727 
728     // Dynamic indexing isn't free and is best avoided.
729     return Index == ~0u ? 2 : 0;
730   }
731   default:
732     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
733   }
734 }
735 
736 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
737                                           TTI::UnrollingPreferences &UP) {
738   CommonTTI.getUnrollingPreferences(L, SE, UP);
739 }
740