1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/KnownBits.h" 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "AMDGPUtti" 30 31 static cl::opt<unsigned> UnrollThresholdPrivate( 32 "amdgpu-unroll-threshold-private", 33 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 34 cl::init(2700), cl::Hidden); 35 36 static cl::opt<unsigned> UnrollThresholdLocal( 37 "amdgpu-unroll-threshold-local", 38 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 39 cl::init(1000), cl::Hidden); 40 41 static cl::opt<unsigned> UnrollThresholdIf( 42 "amdgpu-unroll-threshold-if", 43 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 44 cl::init(200), cl::Hidden); 45 46 static cl::opt<bool> UnrollRuntimeLocal( 47 "amdgpu-unroll-runtime-local", 48 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 49 cl::init(true), cl::Hidden); 50 51 static cl::opt<bool> UseLegacyDA( 52 "amdgpu-use-legacy-divergence-analysis", 53 cl::desc("Enable legacy divergence analysis for AMDGPU"), 54 cl::init(false), cl::Hidden); 55 56 static cl::opt<unsigned> UnrollMaxBlockToAnalyze( 57 "amdgpu-unroll-max-block-to-analyze", 58 cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), 59 cl::init(32), cl::Hidden); 60 61 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost", 62 cl::Hidden, cl::init(4000), 63 cl::desc("Cost of alloca argument")); 64 65 // If the amount of scratch memory to eliminate exceeds our ability to allocate 66 // it into registers we gain nothing by aggressively inlining functions for that 67 // heuristic. 68 static cl::opt<unsigned> 69 ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden, 70 cl::init(256), 71 cl::desc("Maximum alloca size to use for inline cost")); 72 73 // Inliner constraint to achieve reasonable compilation time. 74 static cl::opt<size_t> InlineMaxBB( 75 "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100), 76 cl::desc("Maximum number of BBs allowed in a function after inlining" 77 " (compile time constraint)")); 78 79 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 80 unsigned Depth = 0) { 81 const Instruction *I = dyn_cast<Instruction>(Cond); 82 if (!I) 83 return false; 84 85 for (const Value *V : I->operand_values()) { 86 if (!L->contains(I)) 87 continue; 88 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 89 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 90 return SubLoop->contains(PHI); })) 91 return true; 92 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 93 return true; 94 } 95 return false; 96 } 97 98 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 99 : BaseT(TM, F.getParent()->getDataLayout()), 100 TargetTriple(TM->getTargetTriple()), 101 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 102 TLI(ST->getTargetLowering()) {} 103 104 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 105 TTI::UnrollingPreferences &UP, 106 OptimizationRemarkEmitter *ORE) { 107 const Function &F = *L->getHeader()->getParent(); 108 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 109 UP.MaxCount = std::numeric_limits<unsigned>::max(); 110 UP.Partial = true; 111 112 // Conditional branch in a loop back edge needs 3 additional exec 113 // manipulations in average. 114 UP.BEInsns += 3; 115 116 // TODO: Do we want runtime unrolling? 117 118 // Maximum alloca size than can fit registers. Reserve 16 registers. 119 const unsigned MaxAlloca = (256 - 16) * 4; 120 unsigned ThresholdPrivate = UnrollThresholdPrivate; 121 unsigned ThresholdLocal = UnrollThresholdLocal; 122 123 // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the 124 // provided threshold value as the default for Threshold 125 if (MDNode *LoopUnrollThreshold = 126 findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) { 127 if (LoopUnrollThreshold->getNumOperands() == 2) { 128 ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>( 129 LoopUnrollThreshold->getOperand(1)); 130 if (MetaThresholdValue) { 131 // We will also use the supplied value for PartialThreshold for now. 132 // We may introduce additional metadata if it becomes necessary in the 133 // future. 134 UP.Threshold = MetaThresholdValue->getSExtValue(); 135 UP.PartialThreshold = UP.Threshold; 136 ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold); 137 ThresholdLocal = std::min(ThresholdLocal, UP.Threshold); 138 } 139 } 140 } 141 142 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 143 for (const BasicBlock *BB : L->getBlocks()) { 144 const DataLayout &DL = BB->getModule()->getDataLayout(); 145 unsigned LocalGEPsSeen = 0; 146 147 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 148 return SubLoop->contains(BB); })) 149 continue; // Block belongs to an inner loop. 150 151 for (const Instruction &I : *BB) { 152 // Unroll a loop which contains an "if" statement whose condition 153 // defined by a PHI belonging to the loop. This may help to eliminate 154 // if region and potentially even PHI itself, saving on both divergence 155 // and registers used for the PHI. 156 // Add a small bonus for each of such "if" statements. 157 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 158 if (UP.Threshold < MaxBoost && Br->isConditional()) { 159 BasicBlock *Succ0 = Br->getSuccessor(0); 160 BasicBlock *Succ1 = Br->getSuccessor(1); 161 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 162 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 163 continue; 164 if (dependsOnLocalPhi(L, Br->getCondition())) { 165 UP.Threshold += UnrollThresholdIf; 166 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 167 << " for loop:\n" 168 << *L << " due to " << *Br << '\n'); 169 if (UP.Threshold >= MaxBoost) 170 return; 171 } 172 } 173 continue; 174 } 175 176 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 177 if (!GEP) 178 continue; 179 180 unsigned AS = GEP->getAddressSpace(); 181 unsigned Threshold = 0; 182 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 183 Threshold = ThresholdPrivate; 184 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 185 Threshold = ThresholdLocal; 186 else 187 continue; 188 189 if (UP.Threshold >= Threshold) 190 continue; 191 192 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 193 const Value *Ptr = GEP->getPointerOperand(); 194 const AllocaInst *Alloca = 195 dyn_cast<AllocaInst>(getUnderlyingObject(Ptr)); 196 if (!Alloca || !Alloca->isStaticAlloca()) 197 continue; 198 Type *Ty = Alloca->getAllocatedType(); 199 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 200 if (AllocaSize > MaxAlloca) 201 continue; 202 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 203 AS == AMDGPUAS::REGION_ADDRESS) { 204 LocalGEPsSeen++; 205 // Inhibit unroll for local memory if we have seen addressing not to 206 // a variable, most likely we will be unable to combine it. 207 // Do not unroll too deep inner loops for local memory to give a chance 208 // to unroll an outer loop for a more important reason. 209 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 210 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 211 !isa<Argument>(GEP->getPointerOperand()))) 212 continue; 213 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 214 << *L << " due to LDS use.\n"); 215 UP.Runtime = UnrollRuntimeLocal; 216 } 217 218 // Check if GEP depends on a value defined by this loop itself. 219 bool HasLoopDef = false; 220 for (const Value *Op : GEP->operands()) { 221 const Instruction *Inst = dyn_cast<Instruction>(Op); 222 if (!Inst || L->isLoopInvariant(Op)) 223 continue; 224 225 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 226 return SubLoop->contains(Inst); })) 227 continue; 228 HasLoopDef = true; 229 break; 230 } 231 if (!HasLoopDef) 232 continue; 233 234 // We want to do whatever we can to limit the number of alloca 235 // instructions that make it through to the code generator. allocas 236 // require us to use indirect addressing, which is slow and prone to 237 // compiler bugs. If this loop does an address calculation on an 238 // alloca ptr, then we want to use a higher than normal loop unroll 239 // threshold. This will give SROA a better chance to eliminate these 240 // allocas. 241 // 242 // We also want to have more unrolling for local memory to let ds 243 // instructions with different offsets combine. 244 // 245 // Don't use the maximum allowed value here as it will make some 246 // programs way too big. 247 UP.Threshold = Threshold; 248 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 249 << " for loop:\n" 250 << *L << " due to " << *GEP << '\n'); 251 if (UP.Threshold >= MaxBoost) 252 return; 253 } 254 255 // If we got a GEP in a small BB from inner loop then increase max trip 256 // count to analyze for better estimation cost in unroll 257 if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze) 258 UP.MaxIterationsCountToAnalyze = 32; 259 } 260 } 261 262 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 263 TTI::PeelingPreferences &PP) { 264 BaseT::getPeelingPreferences(L, SE, PP); 265 } 266 267 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = { 268 // Codegen control options which don't matter. 269 AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler, 270 AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal, 271 AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess, 272 AMDGPU::FeatureUnalignedAccessMode, 273 274 AMDGPU::FeatureAutoWaitcntBeforeBarrier, 275 276 // Property of the kernel/environment which can't actually differ. 277 AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK, 278 AMDGPU::FeatureTrapHandler, 279 280 // The default assumption needs to be ecc is enabled, but no directly 281 // exposed operations depend on it, so it can be safely inlined. 282 AMDGPU::FeatureSRAMECC, 283 284 // Perf-tuning features 285 AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops}; 286 287 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 288 : BaseT(TM, F.getParent()->getDataLayout()), 289 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 290 TLI(ST->getTargetLowering()), CommonTTI(TM, F), 291 IsGraphics(AMDGPU::isGraphics(F.getCallingConv())), 292 MaxVGPRs(ST->getMaxNumVGPRs( 293 std::max(ST->getWavesPerEU(F).first, 294 ST->getWavesPerEUForWorkGroup( 295 ST->getFlatWorkGroupSizes(F).second)))) { 296 AMDGPU::SIModeRegisterDefaults Mode(F); 297 HasFP32Denormals = Mode.allFP32Denormals(); 298 HasFP64FP16Denormals = Mode.allFP64FP16Denormals(); 299 } 300 301 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 302 // The concept of vector registers doesn't really exist. Some packed vector 303 // operations operate on the normal 32-bit registers. 304 return MaxVGPRs; 305 } 306 307 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 308 // This is really the number of registers to fill when vectorizing / 309 // interleaving loops, so we lie to avoid trying to use all registers. 310 return getHardwareNumberOfRegisters(Vec) >> 3; 311 } 312 313 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const { 314 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 315 const TargetRegisterClass *RC = TRI->getRegClass(RCID); 316 unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32; 317 return getHardwareNumberOfRegisters(false) / NumVGPRs; 318 } 319 320 TypeSize 321 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 322 switch (K) { 323 case TargetTransformInfo::RGK_Scalar: 324 return TypeSize::getFixed(32); 325 case TargetTransformInfo::RGK_FixedWidthVector: 326 return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32); 327 case TargetTransformInfo::RGK_ScalableVector: 328 return TypeSize::getScalable(0); 329 } 330 llvm_unreachable("Unsupported register kind"); 331 } 332 333 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 334 return 32; 335 } 336 337 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 338 if (Opcode == Instruction::Load || Opcode == Instruction::Store) 339 return 32 * 4 / ElemWidth; 340 return (ElemWidth == 16 && ST->has16BitInsts()) ? 2 341 : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2 342 : 1; 343 } 344 345 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 346 unsigned ChainSizeInBytes, 347 VectorType *VecTy) const { 348 unsigned VecRegBitWidth = VF * LoadSize; 349 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 350 // TODO: Support element-size less than 32bit? 351 return 128 / LoadSize; 352 353 return VF; 354 } 355 356 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 357 unsigned ChainSizeInBytes, 358 VectorType *VecTy) const { 359 unsigned VecRegBitWidth = VF * StoreSize; 360 if (VecRegBitWidth > 128) 361 return 128 / StoreSize; 362 363 return VF; 364 } 365 366 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 367 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 368 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 369 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 370 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 371 return 512; 372 } 373 374 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 375 return 8 * ST->getMaxPrivateElementSize(); 376 377 // Common to flat, global, local and region. Assume for unknown addrspace. 378 return 128; 379 } 380 381 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 382 Align Alignment, 383 unsigned AddrSpace) const { 384 // We allow vectorization of flat stores, even though we may need to decompose 385 // them later if they may access private memory. We don't have enough context 386 // here, and legalization can handle it. 387 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 388 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 389 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 390 } 391 return true; 392 } 393 394 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 395 Align Alignment, 396 unsigned AddrSpace) const { 397 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 398 } 399 400 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 401 Align Alignment, 402 unsigned AddrSpace) const { 403 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 404 } 405 406 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 407 // iteration. Should we report a larger size and let it legalize? 408 // 409 // FIXME: Should we use narrower types for local/region, or account for when 410 // unaligned access is legal? 411 // 412 // FIXME: This could use fine tuning and microbenchmarks. 413 Type *GCNTTIImpl::getMemcpyLoopLoweringType( 414 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 415 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, 416 Optional<uint32_t> AtomicElementSize) const { 417 418 if (AtomicElementSize) 419 return Type::getIntNTy(Context, *AtomicElementSize * 8); 420 421 unsigned MinAlign = std::min(SrcAlign, DestAlign); 422 423 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 424 // hardware into byte accesses. If you assume all alignments are equally 425 // probable, it's more efficient on average to use short accesses for this 426 // case. 427 if (MinAlign == 2) 428 return Type::getInt16Ty(Context); 429 430 // Not all subtargets have 128-bit DS instructions, and we currently don't 431 // form them by default. 432 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 433 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 434 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 435 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 436 return FixedVectorType::get(Type::getInt32Ty(Context), 2); 437 } 438 439 // Global memory works best with 16-byte accesses. Private memory will also 440 // hit this, although they'll be decomposed. 441 return FixedVectorType::get(Type::getInt32Ty(Context), 4); 442 } 443 444 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 445 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 446 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 447 unsigned SrcAlign, unsigned DestAlign, 448 Optional<uint32_t> AtomicCpySize) const { 449 assert(RemainingBytes < 16); 450 451 if (AtomicCpySize) 452 BaseT::getMemcpyLoopResidualLoweringType( 453 OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign, 454 DestAlign, AtomicCpySize); 455 456 unsigned MinAlign = std::min(SrcAlign, DestAlign); 457 458 if (MinAlign != 2) { 459 Type *I64Ty = Type::getInt64Ty(Context); 460 while (RemainingBytes >= 8) { 461 OpsOut.push_back(I64Ty); 462 RemainingBytes -= 8; 463 } 464 465 Type *I32Ty = Type::getInt32Ty(Context); 466 while (RemainingBytes >= 4) { 467 OpsOut.push_back(I32Ty); 468 RemainingBytes -= 4; 469 } 470 } 471 472 Type *I16Ty = Type::getInt16Ty(Context); 473 while (RemainingBytes >= 2) { 474 OpsOut.push_back(I16Ty); 475 RemainingBytes -= 2; 476 } 477 478 Type *I8Ty = Type::getInt8Ty(Context); 479 while (RemainingBytes) { 480 OpsOut.push_back(I8Ty); 481 --RemainingBytes; 482 } 483 } 484 485 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 486 // Disable unrolling if the loop is not vectorized. 487 // TODO: Enable this again. 488 if (VF == 1) 489 return 1; 490 491 return 8; 492 } 493 494 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 495 MemIntrinsicInfo &Info) const { 496 switch (Inst->getIntrinsicID()) { 497 case Intrinsic::amdgcn_atomic_inc: 498 case Intrinsic::amdgcn_atomic_dec: 499 case Intrinsic::amdgcn_ds_ordered_add: 500 case Intrinsic::amdgcn_ds_ordered_swap: 501 case Intrinsic::amdgcn_ds_fadd: 502 case Intrinsic::amdgcn_ds_fmin: 503 case Intrinsic::amdgcn_ds_fmax: { 504 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 505 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 506 if (!Ordering || !Volatile) 507 return false; // Invalid. 508 509 unsigned OrderingVal = Ordering->getZExtValue(); 510 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 511 return false; 512 513 Info.PtrVal = Inst->getArgOperand(0); 514 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 515 Info.ReadMem = true; 516 Info.WriteMem = true; 517 Info.IsVolatile = !Volatile->isZero(); 518 return true; 519 } 520 default: 521 return false; 522 } 523 } 524 525 InstructionCost GCNTTIImpl::getArithmeticInstrCost( 526 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 527 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, 528 TTI::OperandValueProperties Opd1PropInfo, 529 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 530 const Instruction *CxtI) { 531 532 // Legalize the type. 533 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 534 int ISD = TLI->InstructionOpcodeToISD(Opcode); 535 536 // Because we don't have any legal vector operations, but the legal types, we 537 // need to account for split vectors. 538 unsigned NElts = LT.second.isVector() ? 539 LT.second.getVectorNumElements() : 1; 540 541 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 542 543 switch (ISD) { 544 case ISD::SHL: 545 case ISD::SRL: 546 case ISD::SRA: 547 if (SLT == MVT::i64) 548 return get64BitInstrCost(CostKind) * LT.first * NElts; 549 550 if (ST->has16BitInsts() && SLT == MVT::i16) 551 NElts = (NElts + 1) / 2; 552 553 // i32 554 return getFullRateInstrCost() * LT.first * NElts; 555 case ISD::ADD: 556 case ISD::SUB: 557 case ISD::AND: 558 case ISD::OR: 559 case ISD::XOR: 560 if (SLT == MVT::i64) { 561 // and, or and xor are typically split into 2 VALU instructions. 562 return 2 * getFullRateInstrCost() * LT.first * NElts; 563 } 564 565 if (ST->has16BitInsts() && SLT == MVT::i16) 566 NElts = (NElts + 1) / 2; 567 568 return LT.first * NElts * getFullRateInstrCost(); 569 case ISD::MUL: { 570 const int QuarterRateCost = getQuarterRateInstrCost(CostKind); 571 if (SLT == MVT::i64) { 572 const int FullRateCost = getFullRateInstrCost(); 573 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 574 } 575 576 if (ST->has16BitInsts() && SLT == MVT::i16) 577 NElts = (NElts + 1) / 2; 578 579 // i32 580 return QuarterRateCost * NElts * LT.first; 581 } 582 case ISD::FMUL: 583 // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for 584 // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole 585 // fused operation. 586 if (CxtI && CxtI->hasOneUse()) 587 if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) { 588 const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode()); 589 if (OPC == ISD::FADD || OPC == ISD::FSUB) { 590 if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals) 591 return TargetTransformInfo::TCC_Free; 592 if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals) 593 return TargetTransformInfo::TCC_Free; 594 595 // Estimate all types may be fused with contract/unsafe flags 596 const TargetOptions &Options = TLI->getTargetMachine().Options; 597 if (Options.AllowFPOpFusion == FPOpFusion::Fast || 598 Options.UnsafeFPMath || 599 (FAdd->hasAllowContract() && CxtI->hasAllowContract())) 600 return TargetTransformInfo::TCC_Free; 601 } 602 } 603 LLVM_FALLTHROUGH; 604 case ISD::FADD: 605 case ISD::FSUB: 606 if (ST->hasPackedFP32Ops() && SLT == MVT::f32) 607 NElts = (NElts + 1) / 2; 608 if (SLT == MVT::f64) 609 return LT.first * NElts * get64BitInstrCost(CostKind); 610 611 if (ST->has16BitInsts() && SLT == MVT::f16) 612 NElts = (NElts + 1) / 2; 613 614 if (SLT == MVT::f32 || SLT == MVT::f16) 615 return LT.first * NElts * getFullRateInstrCost(); 616 break; 617 case ISD::FDIV: 618 case ISD::FREM: 619 // FIXME: frem should be handled separately. The fdiv in it is most of it, 620 // but the current lowering is also not entirely correct. 621 if (SLT == MVT::f64) { 622 int Cost = 7 * get64BitInstrCost(CostKind) + 623 getQuarterRateInstrCost(CostKind) + 624 3 * getHalfRateInstrCost(CostKind); 625 // Add cost of workaround. 626 if (!ST->hasUsableDivScaleConditionOutput()) 627 Cost += 3 * getFullRateInstrCost(); 628 629 return LT.first * Cost * NElts; 630 } 631 632 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 633 // TODO: This is more complicated, unsafe flags etc. 634 if ((SLT == MVT::f32 && !HasFP32Denormals) || 635 (SLT == MVT::f16 && ST->has16BitInsts())) { 636 return LT.first * getQuarterRateInstrCost(CostKind) * NElts; 637 } 638 } 639 640 if (SLT == MVT::f16 && ST->has16BitInsts()) { 641 // 2 x v_cvt_f32_f16 642 // f32 rcp 643 // f32 fmul 644 // v_cvt_f16_f32 645 // f16 div_fixup 646 int Cost = 647 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind); 648 return LT.first * Cost * NElts; 649 } 650 651 if (SLT == MVT::f32 || SLT == MVT::f16) { 652 // 4 more v_cvt_* insts without f16 insts support 653 int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() + 654 1 * getQuarterRateInstrCost(CostKind); 655 656 if (!HasFP32Denormals) { 657 // FP mode switches. 658 Cost += 2 * getFullRateInstrCost(); 659 } 660 661 return LT.first * NElts * Cost; 662 } 663 break; 664 case ISD::FNEG: 665 // Use the backend' estimation. If fneg is not free each element will cost 666 // one additional instruction. 667 return TLI->isFNegFree(SLT) ? 0 : NElts; 668 default: 669 break; 670 } 671 672 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, 673 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 674 } 675 676 // Return true if there's a potential benefit from using v2f16/v2i16 677 // instructions for an intrinsic, even if it requires nontrivial legalization. 678 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 679 switch (ID) { 680 case Intrinsic::fma: // TODO: fmuladd 681 // There's a small benefit to using vector ops in the legalized code. 682 case Intrinsic::round: 683 case Intrinsic::uadd_sat: 684 case Intrinsic::usub_sat: 685 case Intrinsic::sadd_sat: 686 case Intrinsic::ssub_sat: 687 return true; 688 default: 689 return false; 690 } 691 } 692 693 InstructionCost 694 GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 695 TTI::TargetCostKind CostKind) { 696 if (ICA.getID() == Intrinsic::fabs) 697 return 0; 698 699 if (!intrinsicHasPackedVectorBenefit(ICA.getID())) 700 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 701 702 Type *RetTy = ICA.getReturnType(); 703 704 // Legalize the type. 705 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 706 707 unsigned NElts = LT.second.isVector() ? 708 LT.second.getVectorNumElements() : 1; 709 710 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 711 712 if (SLT == MVT::f64) 713 return LT.first * NElts * get64BitInstrCost(CostKind); 714 715 if ((ST->has16BitInsts() && SLT == MVT::f16) || 716 (ST->hasPackedFP32Ops() && SLT == MVT::f32)) 717 NElts = (NElts + 1) / 2; 718 719 // TODO: Get more refined intrinsic costs? 720 unsigned InstRate = getQuarterRateInstrCost(CostKind); 721 722 switch (ICA.getID()) { 723 case Intrinsic::fma: 724 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind) 725 : getQuarterRateInstrCost(CostKind); 726 break; 727 case Intrinsic::uadd_sat: 728 case Intrinsic::usub_sat: 729 case Intrinsic::sadd_sat: 730 case Intrinsic::ssub_sat: 731 static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16}; 732 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 733 NElts = 1; 734 break; 735 } 736 737 return LT.first * NElts * InstRate; 738 } 739 740 InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode, 741 TTI::TargetCostKind CostKind, 742 const Instruction *I) { 743 assert((I == nullptr || I->getOpcode() == Opcode) && 744 "Opcode should reflect passed instruction."); 745 const bool SCost = 746 (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency); 747 const int CBrCost = SCost ? 5 : 7; 748 switch (Opcode) { 749 case Instruction::Br: { 750 // Branch instruction takes about 4 slots on gfx900. 751 auto BI = dyn_cast_or_null<BranchInst>(I); 752 if (BI && BI->isUnconditional()) 753 return SCost ? 1 : 4; 754 // Suppose conditional branch takes additional 3 exec manipulations 755 // instructions in average. 756 return CBrCost; 757 } 758 case Instruction::Switch: { 759 auto SI = dyn_cast_or_null<SwitchInst>(I); 760 // Each case (including default) takes 1 cmp + 1 cbr instructions in 761 // average. 762 return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1); 763 } 764 case Instruction::Ret: 765 return SCost ? 1 : 10; 766 } 767 return BaseT::getCFInstrCost(Opcode, CostKind, I); 768 } 769 770 InstructionCost 771 GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 772 Optional<FastMathFlags> FMF, 773 TTI::TargetCostKind CostKind) { 774 if (TTI::requiresOrderedReduction(FMF)) 775 return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); 776 777 EVT OrigTy = TLI->getValueType(DL, Ty); 778 779 // Computes cost on targets that have packed math instructions(which support 780 // 16-bit types only). 781 if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16) 782 return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); 783 784 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 785 return LT.first * getFullRateInstrCost(); 786 } 787 788 InstructionCost 789 GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 790 bool IsUnsigned, 791 TTI::TargetCostKind CostKind) { 792 EVT OrigTy = TLI->getValueType(DL, Ty); 793 794 // Computes cost on targets that have packed math instructions(which support 795 // 16-bit types only). 796 if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16) 797 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); 798 799 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 800 return LT.first * getHalfRateInstrCost(CostKind); 801 } 802 803 InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 804 unsigned Index) { 805 switch (Opcode) { 806 case Instruction::ExtractElement: 807 case Instruction::InsertElement: { 808 unsigned EltSize 809 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 810 if (EltSize < 32) { 811 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 812 return 0; 813 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 814 } 815 816 // Extracts are just reads of a subregister, so are free. Inserts are 817 // considered free because we don't want to have any cost for scalarizing 818 // operations, and we don't have to copy into a different register class. 819 820 // Dynamic indexing isn't free and is best avoided. 821 return Index == ~0u ? 2 : 0; 822 } 823 default: 824 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 825 } 826 } 827 828 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 829 /// this is analyzing the collective result of all output registers. Otherwise, 830 /// this is only querying a specific result index if this returns multiple 831 /// registers in a struct. 832 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 833 const CallInst *CI, ArrayRef<unsigned> Indices) const { 834 // TODO: Handle complex extract indices 835 if (Indices.size() > 1) 836 return true; 837 838 const DataLayout &DL = CI->getModule()->getDataLayout(); 839 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 840 TargetLowering::AsmOperandInfoVector TargetConstraints = 841 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 842 843 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 844 845 int OutputIdx = 0; 846 for (auto &TC : TargetConstraints) { 847 if (TC.Type != InlineAsm::isOutput) 848 continue; 849 850 // Skip outputs we don't care about. 851 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 852 continue; 853 854 TLI->ComputeConstraintToUse(TC, SDValue()); 855 856 const TargetRegisterClass *RC = TLI->getRegForInlineAsmConstraint( 857 TRI, TC.ConstraintCode, TC.ConstraintVT).second; 858 859 // For AGPR constraints null is returned on subtargets without AGPRs, so 860 // assume divergent for null. 861 if (!RC || !TRI->isSGPRClass(RC)) 862 return true; 863 } 864 865 return false; 866 } 867 868 /// \returns true if the new GPU divergence analysis is enabled. 869 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 870 return !UseLegacyDA; 871 } 872 873 /// \returns true if the result of the value could potentially be 874 /// different across workitems in a wavefront. 875 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 876 if (const Argument *A = dyn_cast<Argument>(V)) 877 return !AMDGPU::isArgPassedInSGPR(A); 878 879 // Loads from the private and flat address spaces are divergent, because 880 // threads can execute the load instruction with the same inputs and get 881 // different results. 882 // 883 // All other loads are not divergent, because if threads issue loads with the 884 // same arguments, they will always get the same result. 885 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 886 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 887 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 888 889 // Atomics are divergent because they are executed sequentially: when an 890 // atomic operation refers to the same address in each thread, then each 891 // thread after the first sees the value written by the previous thread as 892 // original value. 893 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 894 return true; 895 896 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 897 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 898 899 // Assume all function calls are a source of divergence. 900 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 901 if (CI->isInlineAsm()) 902 return isInlineAsmSourceOfDivergence(CI); 903 return true; 904 } 905 906 // Assume all function calls are a source of divergence. 907 if (isa<InvokeInst>(V)) 908 return true; 909 910 return false; 911 } 912 913 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 914 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 915 switch (Intrinsic->getIntrinsicID()) { 916 default: 917 return false; 918 case Intrinsic::amdgcn_readfirstlane: 919 case Intrinsic::amdgcn_readlane: 920 case Intrinsic::amdgcn_icmp: 921 case Intrinsic::amdgcn_fcmp: 922 case Intrinsic::amdgcn_ballot: 923 case Intrinsic::amdgcn_if_break: 924 return true; 925 } 926 } 927 928 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 929 if (CI->isInlineAsm()) 930 return !isInlineAsmSourceOfDivergence(CI); 931 return false; 932 } 933 934 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 935 if (!ExtValue) 936 return false; 937 938 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 939 if (!CI) 940 return false; 941 942 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 943 switch (Intrinsic->getIntrinsicID()) { 944 default: 945 return false; 946 case Intrinsic::amdgcn_if: 947 case Intrinsic::amdgcn_else: { 948 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 949 return Indices.size() == 1 && Indices[0] == 1; 950 } 951 } 952 } 953 954 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 955 // divergent for the overall struct return. We need to override it in the 956 // case we're extracting an SGPR component here. 957 if (CI->isInlineAsm()) 958 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 959 960 return false; 961 } 962 963 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 964 Intrinsic::ID IID) const { 965 switch (IID) { 966 case Intrinsic::amdgcn_atomic_inc: 967 case Intrinsic::amdgcn_atomic_dec: 968 case Intrinsic::amdgcn_ds_fadd: 969 case Intrinsic::amdgcn_ds_fmin: 970 case Intrinsic::amdgcn_ds_fmax: 971 case Intrinsic::amdgcn_is_shared: 972 case Intrinsic::amdgcn_is_private: 973 OpIndexes.push_back(0); 974 return true; 975 default: 976 return false; 977 } 978 } 979 980 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 981 Value *OldV, 982 Value *NewV) const { 983 auto IntrID = II->getIntrinsicID(); 984 switch (IntrID) { 985 case Intrinsic::amdgcn_atomic_inc: 986 case Intrinsic::amdgcn_atomic_dec: 987 case Intrinsic::amdgcn_ds_fadd: 988 case Intrinsic::amdgcn_ds_fmin: 989 case Intrinsic::amdgcn_ds_fmax: { 990 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 991 if (!IsVolatile->isZero()) 992 return nullptr; 993 Module *M = II->getParent()->getParent()->getParent(); 994 Type *DestTy = II->getType(); 995 Type *SrcTy = NewV->getType(); 996 Function *NewDecl = 997 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 998 II->setArgOperand(0, NewV); 999 II->setCalledFunction(NewDecl); 1000 return II; 1001 } 1002 case Intrinsic::amdgcn_is_shared: 1003 case Intrinsic::amdgcn_is_private: { 1004 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 1005 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 1006 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1007 LLVMContext &Ctx = NewV->getType()->getContext(); 1008 ConstantInt *NewVal = (TrueAS == NewAS) ? 1009 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 1010 return NewVal; 1011 } 1012 case Intrinsic::ptrmask: { 1013 unsigned OldAS = OldV->getType()->getPointerAddressSpace(); 1014 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1015 Value *MaskOp = II->getArgOperand(1); 1016 Type *MaskTy = MaskOp->getType(); 1017 1018 bool DoTruncate = false; 1019 1020 const GCNTargetMachine &TM = 1021 static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine()); 1022 if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) { 1023 // All valid 64-bit to 32-bit casts work by chopping off the high 1024 // bits. Any masking only clearing the low bits will also apply in the new 1025 // address space. 1026 if (DL.getPointerSizeInBits(OldAS) != 64 || 1027 DL.getPointerSizeInBits(NewAS) != 32) 1028 return nullptr; 1029 1030 // TODO: Do we need to thread more context in here? 1031 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); 1032 if (Known.countMinLeadingOnes() < 32) 1033 return nullptr; 1034 1035 DoTruncate = true; 1036 } 1037 1038 IRBuilder<> B(II); 1039 if (DoTruncate) { 1040 MaskTy = B.getInt32Ty(); 1041 MaskOp = B.CreateTrunc(MaskOp, MaskTy); 1042 } 1043 1044 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, 1045 {NewV, MaskOp}); 1046 } 1047 default: 1048 return nullptr; 1049 } 1050 } 1051 1052 InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1053 VectorType *VT, ArrayRef<int> Mask, 1054 int Index, VectorType *SubTp, 1055 ArrayRef<Value *> Args) { 1056 Kind = improveShuffleKindFromMask(Kind, Mask); 1057 if (ST->hasVOP3PInsts()) { 1058 if (cast<FixedVectorType>(VT)->getNumElements() == 2 && 1059 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 1060 // With op_sel VOP3P instructions freely can access the low half or high 1061 // half of a register, so any swizzle is free. 1062 1063 switch (Kind) { 1064 case TTI::SK_Broadcast: 1065 case TTI::SK_Reverse: 1066 case TTI::SK_PermuteSingleSrc: 1067 return 0; 1068 default: 1069 break; 1070 } 1071 } 1072 } 1073 1074 return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp); 1075 } 1076 1077 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 1078 const Function *Callee) const { 1079 const TargetMachine &TM = getTLI()->getTargetMachine(); 1080 const GCNSubtarget *CallerST 1081 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 1082 const GCNSubtarget *CalleeST 1083 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 1084 1085 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 1086 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 1087 1088 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 1089 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 1090 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 1091 return false; 1092 1093 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 1094 // no way to support merge for backend defined attributes. 1095 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 1096 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 1097 if (!CallerMode.isInlineCompatible(CalleeMode)) 1098 return false; 1099 1100 if (Callee->hasFnAttribute(Attribute::AlwaysInline) || 1101 Callee->hasFnAttribute(Attribute::InlineHint)) 1102 return true; 1103 1104 // Hack to make compile times reasonable. 1105 if (InlineMaxBB) { 1106 // Single BB does not increase total BB amount. 1107 if (Callee->size() == 1) 1108 return true; 1109 size_t BBSize = Caller->size() + Callee->size() - 1; 1110 return BBSize <= InlineMaxBB; 1111 } 1112 1113 return true; 1114 } 1115 1116 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const { 1117 // If we have a pointer to private array passed into a function 1118 // it will not be optimized out, leaving scratch usage. 1119 // Increase the inline threshold to allow inlining in this case. 1120 uint64_t AllocaSize = 0; 1121 SmallPtrSet<const AllocaInst *, 8> AIVisited; 1122 for (Value *PtrArg : CB->args()) { 1123 PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType()); 1124 if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS && 1125 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS)) 1126 continue; 1127 1128 PtrArg = getUnderlyingObject(PtrArg); 1129 if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) { 1130 if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second) 1131 continue; 1132 AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType()); 1133 // If the amount of stack memory is excessive we will not be able 1134 // to get rid of the scratch anyway, bail out. 1135 if (AllocaSize > ArgAllocaCutoff) { 1136 AllocaSize = 0; 1137 break; 1138 } 1139 } 1140 } 1141 if (AllocaSize) 1142 return ArgAllocaCost; 1143 return 0; 1144 } 1145 1146 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1147 TTI::UnrollingPreferences &UP, 1148 OptimizationRemarkEmitter *ORE) { 1149 CommonTTI.getUnrollingPreferences(L, SE, UP, ORE); 1150 } 1151 1152 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1153 TTI::PeelingPreferences &PP) { 1154 CommonTTI.getPeelingPreferences(L, SE, PP); 1155 } 1156 1157 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const { 1158 return ST->hasFullRate64Ops() 1159 ? getFullRateInstrCost() 1160 : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind) 1161 : getQuarterRateInstrCost(CostKind); 1162 } 1163