1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUSubtarget.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2700), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static cl::opt<bool> UnrollRuntimeLocal( 73 "amdgpu-unroll-runtime-local", 74 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> UseLegacyDA( 78 "amdgpu-use-legacy-divergence-analysis", 79 cl::desc("Enable legacy divergence analysis for AMDGPU"), 80 cl::init(false), cl::Hidden); 81 82 static cl::opt<unsigned> UnrollMaxBlockToAnalyze( 83 "amdgpu-unroll-max-block-to-analyze", 84 cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), 85 cl::init(20), cl::Hidden); 86 87 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 88 unsigned Depth = 0) { 89 const Instruction *I = dyn_cast<Instruction>(Cond); 90 if (!I) 91 return false; 92 93 for (const Value *V : I->operand_values()) { 94 if (!L->contains(I)) 95 continue; 96 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 97 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 98 return SubLoop->contains(PHI); })) 99 return true; 100 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 101 return true; 102 } 103 return false; 104 } 105 106 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 107 TTI::UnrollingPreferences &UP) { 108 const Function &F = *L->getHeader()->getParent(); 109 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 110 UP.MaxCount = std::numeric_limits<unsigned>::max(); 111 UP.Partial = true; 112 113 // TODO: Do we want runtime unrolling? 114 115 // Maximum alloca size than can fit registers. Reserve 16 registers. 116 const unsigned MaxAlloca = (256 - 16) * 4; 117 unsigned ThresholdPrivate = UnrollThresholdPrivate; 118 unsigned ThresholdLocal = UnrollThresholdLocal; 119 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 120 for (const BasicBlock *BB : L->getBlocks()) { 121 const DataLayout &DL = BB->getModule()->getDataLayout(); 122 unsigned LocalGEPsSeen = 0; 123 124 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 125 return SubLoop->contains(BB); })) 126 continue; // Block belongs to an inner loop. 127 128 for (const Instruction &I : *BB) { 129 // Unroll a loop which contains an "if" statement whose condition 130 // defined by a PHI belonging to the loop. This may help to eliminate 131 // if region and potentially even PHI itself, saving on both divergence 132 // and registers used for the PHI. 133 // Add a small bonus for each of such "if" statements. 134 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 135 if (UP.Threshold < MaxBoost && Br->isConditional()) { 136 BasicBlock *Succ0 = Br->getSuccessor(0); 137 BasicBlock *Succ1 = Br->getSuccessor(1); 138 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 139 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 140 continue; 141 if (dependsOnLocalPhi(L, Br->getCondition())) { 142 UP.Threshold += UnrollThresholdIf; 143 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 144 << " for loop:\n" 145 << *L << " due to " << *Br << '\n'); 146 if (UP.Threshold >= MaxBoost) 147 return; 148 } 149 } 150 continue; 151 } 152 153 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 154 if (!GEP) 155 continue; 156 157 unsigned AS = GEP->getAddressSpace(); 158 unsigned Threshold = 0; 159 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 160 Threshold = ThresholdPrivate; 161 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 162 Threshold = ThresholdLocal; 163 else 164 continue; 165 166 if (UP.Threshold >= Threshold) 167 continue; 168 169 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 170 const Value *Ptr = GEP->getPointerOperand(); 171 const AllocaInst *Alloca = 172 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 173 if (!Alloca || !Alloca->isStaticAlloca()) 174 continue; 175 Type *Ty = Alloca->getAllocatedType(); 176 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 177 if (AllocaSize > MaxAlloca) 178 continue; 179 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 180 AS == AMDGPUAS::REGION_ADDRESS) { 181 LocalGEPsSeen++; 182 // Inhibit unroll for local memory if we have seen addressing not to 183 // a variable, most likely we will be unable to combine it. 184 // Do not unroll too deep inner loops for local memory to give a chance 185 // to unroll an outer loop for a more important reason. 186 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 187 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 188 !isa<Argument>(GEP->getPointerOperand()))) 189 continue; 190 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 191 << *L << " due to LDS use.\n"); 192 UP.Runtime = UnrollRuntimeLocal; 193 } 194 195 // Check if GEP depends on a value defined by this loop itself. 196 bool HasLoopDef = false; 197 for (const Value *Op : GEP->operands()) { 198 const Instruction *Inst = dyn_cast<Instruction>(Op); 199 if (!Inst || L->isLoopInvariant(Op)) 200 continue; 201 202 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 203 return SubLoop->contains(Inst); })) 204 continue; 205 HasLoopDef = true; 206 break; 207 } 208 if (!HasLoopDef) 209 continue; 210 211 // We want to do whatever we can to limit the number of alloca 212 // instructions that make it through to the code generator. allocas 213 // require us to use indirect addressing, which is slow and prone to 214 // compiler bugs. If this loop does an address calculation on an 215 // alloca ptr, then we want to use a higher than normal loop unroll 216 // threshold. This will give SROA a better chance to eliminate these 217 // allocas. 218 // 219 // We also want to have more unrolling for local memory to let ds 220 // instructions with different offsets combine. 221 // 222 // Don't use the maximum allowed value here as it will make some 223 // programs way too big. 224 UP.Threshold = Threshold; 225 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 226 << " for loop:\n" 227 << *L << " due to " << *GEP << '\n'); 228 if (UP.Threshold >= MaxBoost) 229 return; 230 } 231 232 // If we got a GEP in a small BB from inner loop then increase max trip 233 // count to analyze for better estimation cost in unroll 234 if (L->empty() && BB->size() < UnrollMaxBlockToAnalyze) 235 UP.MaxIterationsCountToAnalyze = 32; 236 } 237 } 238 239 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 240 // The concept of vector registers doesn't really exist. Some packed vector 241 // operations operate on the normal 32-bit registers. 242 return 256; 243 } 244 245 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 246 // This is really the number of registers to fill when vectorizing / 247 // interleaving loops, so we lie to avoid trying to use all registers. 248 return getHardwareNumberOfRegisters(Vec) >> 3; 249 } 250 251 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 252 return 32; 253 } 254 255 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 256 return 32; 257 } 258 259 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 260 unsigned ChainSizeInBytes, 261 VectorType *VecTy) const { 262 unsigned VecRegBitWidth = VF * LoadSize; 263 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 264 // TODO: Support element-size less than 32bit? 265 return 128 / LoadSize; 266 267 return VF; 268 } 269 270 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 271 unsigned ChainSizeInBytes, 272 VectorType *VecTy) const { 273 unsigned VecRegBitWidth = VF * StoreSize; 274 if (VecRegBitWidth > 128) 275 return 128 / StoreSize; 276 277 return VF; 278 } 279 280 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 281 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 282 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 283 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 284 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 285 return 512; 286 } 287 288 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 289 return 8 * ST->getMaxPrivateElementSize(); 290 291 // Common to flat, global, local and region. Assume for unknown addrspace. 292 return 128; 293 } 294 295 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 296 unsigned Alignment, 297 unsigned AddrSpace) const { 298 // We allow vectorization of flat stores, even though we may need to decompose 299 // them later if they may access private memory. We don't have enough context 300 // here, and legalization can handle it. 301 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 302 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 303 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 304 } 305 return true; 306 } 307 308 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 309 unsigned Alignment, 310 unsigned AddrSpace) const { 311 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 312 } 313 314 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 315 unsigned Alignment, 316 unsigned AddrSpace) const { 317 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 318 } 319 320 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 321 // iteration. Should we report a larger size and let it legalize? 322 // 323 // FIXME: Should we use narrower types for local/region, or account for when 324 // unaligned access is legal? 325 // 326 // FIXME: This could use fine tuning and microbenchmarks. 327 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, 328 unsigned SrcAddrSpace, 329 unsigned DestAddrSpace, 330 unsigned SrcAlign, 331 unsigned DestAlign) const { 332 unsigned MinAlign = std::min(SrcAlign, DestAlign); 333 334 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 335 // hardware into byte accesses. If you assume all alignments are equally 336 // probable, it's more efficient on average to use short accesses for this 337 // case. 338 if (MinAlign == 2) 339 return Type::getInt16Ty(Context); 340 341 // Not all subtargets have 128-bit DS instructions, and we currently don't 342 // form them by default. 343 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 344 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 345 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 346 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 347 return FixedVectorType::get(Type::getInt32Ty(Context), 2); 348 } 349 350 // Global memory works best with 16-byte accesses. Private memory will also 351 // hit this, although they'll be decomposed. 352 return FixedVectorType::get(Type::getInt32Ty(Context), 4); 353 } 354 355 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 356 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 357 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 358 unsigned SrcAlign, unsigned DestAlign) const { 359 assert(RemainingBytes < 16); 360 361 unsigned MinAlign = std::min(SrcAlign, DestAlign); 362 363 if (MinAlign != 2) { 364 Type *I64Ty = Type::getInt64Ty(Context); 365 while (RemainingBytes >= 8) { 366 OpsOut.push_back(I64Ty); 367 RemainingBytes -= 8; 368 } 369 370 Type *I32Ty = Type::getInt32Ty(Context); 371 while (RemainingBytes >= 4) { 372 OpsOut.push_back(I32Ty); 373 RemainingBytes -= 4; 374 } 375 } 376 377 Type *I16Ty = Type::getInt16Ty(Context); 378 while (RemainingBytes >= 2) { 379 OpsOut.push_back(I16Ty); 380 RemainingBytes -= 2; 381 } 382 383 Type *I8Ty = Type::getInt8Ty(Context); 384 while (RemainingBytes) { 385 OpsOut.push_back(I8Ty); 386 --RemainingBytes; 387 } 388 } 389 390 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 391 // Disable unrolling if the loop is not vectorized. 392 // TODO: Enable this again. 393 if (VF == 1) 394 return 1; 395 396 return 8; 397 } 398 399 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 400 MemIntrinsicInfo &Info) const { 401 switch (Inst->getIntrinsicID()) { 402 case Intrinsic::amdgcn_atomic_inc: 403 case Intrinsic::amdgcn_atomic_dec: 404 case Intrinsic::amdgcn_ds_ordered_add: 405 case Intrinsic::amdgcn_ds_ordered_swap: 406 case Intrinsic::amdgcn_ds_fadd: 407 case Intrinsic::amdgcn_ds_fmin: 408 case Intrinsic::amdgcn_ds_fmax: { 409 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 410 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 411 if (!Ordering || !Volatile) 412 return false; // Invalid. 413 414 unsigned OrderingVal = Ordering->getZExtValue(); 415 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 416 return false; 417 418 Info.PtrVal = Inst->getArgOperand(0); 419 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 420 Info.ReadMem = true; 421 Info.WriteMem = true; 422 Info.IsVolatile = !Volatile->isNullValue(); 423 return true; 424 } 425 default: 426 return false; 427 } 428 } 429 430 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 431 TTI::TargetCostKind CostKind, 432 TTI::OperandValueKind Opd1Info, 433 TTI::OperandValueKind Opd2Info, 434 TTI::OperandValueProperties Opd1PropInfo, 435 TTI::OperandValueProperties Opd2PropInfo, 436 ArrayRef<const Value *> Args, 437 const Instruction *CxtI) { 438 EVT OrigTy = TLI->getValueType(DL, Ty); 439 if (!OrigTy.isSimple()) { 440 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 441 Opd2Info, 442 Opd1PropInfo, Opd2PropInfo); 443 } 444 445 // Legalize the type. 446 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 447 int ISD = TLI->InstructionOpcodeToISD(Opcode); 448 449 // Because we don't have any legal vector operations, but the legal types, we 450 // need to account for split vectors. 451 unsigned NElts = LT.second.isVector() ? 452 LT.second.getVectorNumElements() : 1; 453 454 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 455 456 switch (ISD) { 457 case ISD::SHL: 458 case ISD::SRL: 459 case ISD::SRA: 460 if (SLT == MVT::i64) 461 return get64BitInstrCost() * LT.first * NElts; 462 463 if (ST->has16BitInsts() && SLT == MVT::i16) 464 NElts = (NElts + 1) / 2; 465 466 // i32 467 return getFullRateInstrCost() * LT.first * NElts; 468 case ISD::ADD: 469 case ISD::SUB: 470 case ISD::AND: 471 case ISD::OR: 472 case ISD::XOR: 473 if (SLT == MVT::i64) { 474 // and, or and xor are typically split into 2 VALU instructions. 475 return 2 * getFullRateInstrCost() * LT.first * NElts; 476 } 477 478 if (ST->has16BitInsts() && SLT == MVT::i16) 479 NElts = (NElts + 1) / 2; 480 481 return LT.first * NElts * getFullRateInstrCost(); 482 case ISD::MUL: { 483 const int QuarterRateCost = getQuarterRateInstrCost(); 484 if (SLT == MVT::i64) { 485 const int FullRateCost = getFullRateInstrCost(); 486 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 487 } 488 489 if (ST->has16BitInsts() && SLT == MVT::i16) 490 NElts = (NElts + 1) / 2; 491 492 // i32 493 return QuarterRateCost * NElts * LT.first; 494 } 495 case ISD::FADD: 496 case ISD::FSUB: 497 case ISD::FMUL: 498 if (SLT == MVT::f64) 499 return LT.first * NElts * get64BitInstrCost(); 500 501 if (ST->has16BitInsts() && SLT == MVT::f16) 502 NElts = (NElts + 1) / 2; 503 504 if (SLT == MVT::f32 || SLT == MVT::f16) 505 return LT.first * NElts * getFullRateInstrCost(); 506 break; 507 case ISD::FDIV: 508 case ISD::FREM: 509 // FIXME: frem should be handled separately. The fdiv in it is most of it, 510 // but the current lowering is also not entirely correct. 511 if (SLT == MVT::f64) { 512 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 513 // Add cost of workaround. 514 if (!ST->hasUsableDivScaleConditionOutput()) 515 Cost += 3 * getFullRateInstrCost(); 516 517 return LT.first * Cost * NElts; 518 } 519 520 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 521 // TODO: This is more complicated, unsafe flags etc. 522 if ((SLT == MVT::f32 && !HasFP32Denormals) || 523 (SLT == MVT::f16 && ST->has16BitInsts())) { 524 return LT.first * getQuarterRateInstrCost() * NElts; 525 } 526 } 527 528 if (SLT == MVT::f16 && ST->has16BitInsts()) { 529 // 2 x v_cvt_f32_f16 530 // f32 rcp 531 // f32 fmul 532 // v_cvt_f16_f32 533 // f16 div_fixup 534 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 535 return LT.first * Cost * NElts; 536 } 537 538 if (SLT == MVT::f32 || SLT == MVT::f16) { 539 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 540 541 if (!HasFP32Denormals) { 542 // FP mode switches. 543 Cost += 2 * getFullRateInstrCost(); 544 } 545 546 return LT.first * NElts * Cost; 547 } 548 break; 549 default: 550 break; 551 } 552 553 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 554 Opd2Info, 555 Opd1PropInfo, Opd2PropInfo); 556 } 557 558 // Return true if there's a potential benefit from using v2f16 instructions for 559 // an intrinsic, even if it requires nontrivial legalization. 560 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 561 switch (ID) { 562 case Intrinsic::fma: // TODO: fmuladd 563 // There's a small benefit to using vector ops in the legalized code. 564 case Intrinsic::round: 565 return true; 566 default: 567 return false; 568 } 569 } 570 571 int GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 572 TTI::TargetCostKind CostKind) { 573 if (ICA.getID() == Intrinsic::fabs) 574 return 0; 575 576 if (!intrinsicHasPackedVectorBenefit(ICA.getID())) 577 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 578 579 Type *RetTy = ICA.getReturnType(); 580 EVT OrigTy = TLI->getValueType(DL, RetTy); 581 if (!OrigTy.isSimple()) { 582 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 583 } 584 585 // Legalize the type. 586 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 587 588 unsigned NElts = LT.second.isVector() ? 589 LT.second.getVectorNumElements() : 1; 590 591 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 592 593 if (SLT == MVT::f64) 594 return LT.first * NElts * get64BitInstrCost(); 595 596 if (ST->has16BitInsts() && SLT == MVT::f16) 597 NElts = (NElts + 1) / 2; 598 599 // TODO: Get more refined intrinsic costs? 600 unsigned InstRate = getQuarterRateInstrCost(); 601 if (ICA.getID() == Intrinsic::fma) { 602 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost() 603 : getQuarterRateInstrCost(); 604 } 605 606 return LT.first * NElts * InstRate; 607 } 608 609 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode, 610 TTI::TargetCostKind CostKind) { 611 // XXX - For some reason this isn't called for switch. 612 switch (Opcode) { 613 case Instruction::Br: 614 case Instruction::Ret: 615 return 10; 616 default: 617 return BaseT::getCFInstrCost(Opcode, CostKind); 618 } 619 } 620 621 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 622 bool IsPairwise, 623 TTI::TargetCostKind CostKind) { 624 EVT OrigTy = TLI->getValueType(DL, Ty); 625 626 // Computes cost on targets that have packed math instructions(which support 627 // 16-bit types only). 628 if (IsPairwise || 629 !ST->hasVOP3PInsts() || 630 OrigTy.getScalarSizeInBits() != 16) 631 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind); 632 633 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 634 return LT.first * getFullRateInstrCost(); 635 } 636 637 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 638 bool IsPairwise, bool IsUnsigned, 639 TTI::TargetCostKind CostKind) { 640 EVT OrigTy = TLI->getValueType(DL, Ty); 641 642 // Computes cost on targets that have packed math instructions(which support 643 // 16-bit types only). 644 if (IsPairwise || 645 !ST->hasVOP3PInsts() || 646 OrigTy.getScalarSizeInBits() != 16) 647 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned, 648 CostKind); 649 650 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 651 return LT.first * getHalfRateInstrCost(); 652 } 653 654 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 655 unsigned Index) { 656 switch (Opcode) { 657 case Instruction::ExtractElement: 658 case Instruction::InsertElement: { 659 unsigned EltSize 660 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 661 if (EltSize < 32) { 662 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 663 return 0; 664 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 665 } 666 667 // Extracts are just reads of a subregister, so are free. Inserts are 668 // considered free because we don't want to have any cost for scalarizing 669 // operations, and we don't have to copy into a different register class. 670 671 // Dynamic indexing isn't free and is best avoided. 672 return Index == ~0u ? 2 : 0; 673 } 674 default: 675 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 676 } 677 } 678 679 static bool isArgPassedInSGPR(const Argument *A) { 680 const Function *F = A->getParent(); 681 682 // Arguments to compute shaders are never a source of divergence. 683 CallingConv::ID CC = F->getCallingConv(); 684 switch (CC) { 685 case CallingConv::AMDGPU_KERNEL: 686 case CallingConv::SPIR_KERNEL: 687 return true; 688 case CallingConv::AMDGPU_VS: 689 case CallingConv::AMDGPU_LS: 690 case CallingConv::AMDGPU_HS: 691 case CallingConv::AMDGPU_ES: 692 case CallingConv::AMDGPU_GS: 693 case CallingConv::AMDGPU_PS: 694 case CallingConv::AMDGPU_CS: 695 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 696 // Everything else is in VGPRs. 697 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 698 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 699 default: 700 // TODO: Should calls support inreg for SGPR inputs? 701 return false; 702 } 703 } 704 705 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 706 /// this is analyzing the collective result of all output registers. Otherwise, 707 /// this is only querying a specific result index if this returns multiple 708 /// registers in a struct. 709 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 710 const CallInst *CI, ArrayRef<unsigned> Indices) const { 711 // TODO: Handle complex extract indices 712 if (Indices.size() > 1) 713 return true; 714 715 const DataLayout &DL = CI->getModule()->getDataLayout(); 716 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 717 TargetLowering::AsmOperandInfoVector TargetConstraints = 718 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 719 720 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 721 722 int OutputIdx = 0; 723 for (auto &TC : TargetConstraints) { 724 if (TC.Type != InlineAsm::isOutput) 725 continue; 726 727 // Skip outputs we don't care about. 728 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 729 continue; 730 731 TLI->ComputeConstraintToUse(TC, SDValue()); 732 733 Register AssignedReg; 734 const TargetRegisterClass *RC; 735 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 736 TRI, TC.ConstraintCode, TC.ConstraintVT); 737 if (AssignedReg) { 738 // FIXME: This is a workaround for getRegForInlineAsmConstraint 739 // returning VS_32 740 RC = TRI->getPhysRegClass(AssignedReg); 741 } 742 743 // For AGPR constraints null is returned on subtargets without AGPRs, so 744 // assume divergent for null. 745 if (!RC || !TRI->isSGPRClass(RC)) 746 return true; 747 } 748 749 return false; 750 } 751 752 /// \returns true if the new GPU divergence analysis is enabled. 753 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 754 return !UseLegacyDA; 755 } 756 757 /// \returns true if the result of the value could potentially be 758 /// different across workitems in a wavefront. 759 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 760 if (const Argument *A = dyn_cast<Argument>(V)) 761 return !isArgPassedInSGPR(A); 762 763 // Loads from the private and flat address spaces are divergent, because 764 // threads can execute the load instruction with the same inputs and get 765 // different results. 766 // 767 // All other loads are not divergent, because if threads issue loads with the 768 // same arguments, they will always get the same result. 769 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 770 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 771 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 772 773 // Atomics are divergent because they are executed sequentially: when an 774 // atomic operation refers to the same address in each thread, then each 775 // thread after the first sees the value written by the previous thread as 776 // original value. 777 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 778 return true; 779 780 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 781 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 782 783 // Assume all function calls are a source of divergence. 784 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 785 if (CI->isInlineAsm()) 786 return isInlineAsmSourceOfDivergence(CI); 787 return true; 788 } 789 790 // Assume all function calls are a source of divergence. 791 if (isa<InvokeInst>(V)) 792 return true; 793 794 return false; 795 } 796 797 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 798 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 799 switch (Intrinsic->getIntrinsicID()) { 800 default: 801 return false; 802 case Intrinsic::amdgcn_readfirstlane: 803 case Intrinsic::amdgcn_readlane: 804 case Intrinsic::amdgcn_icmp: 805 case Intrinsic::amdgcn_fcmp: 806 case Intrinsic::amdgcn_ballot: 807 case Intrinsic::amdgcn_if_break: 808 return true; 809 } 810 } 811 812 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 813 if (CI->isInlineAsm()) 814 return !isInlineAsmSourceOfDivergence(CI); 815 return false; 816 } 817 818 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 819 if (!ExtValue) 820 return false; 821 822 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 823 if (!CI) 824 return false; 825 826 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 827 switch (Intrinsic->getIntrinsicID()) { 828 default: 829 return false; 830 case Intrinsic::amdgcn_if: 831 case Intrinsic::amdgcn_else: { 832 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 833 return Indices.size() == 1 && Indices[0] == 1; 834 } 835 } 836 } 837 838 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 839 // divergent for the overall struct return. We need to override it in the 840 // case we're extracting an SGPR component here. 841 if (CI->isInlineAsm()) 842 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 843 844 return false; 845 } 846 847 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 848 Intrinsic::ID IID) const { 849 switch (IID) { 850 case Intrinsic::amdgcn_atomic_inc: 851 case Intrinsic::amdgcn_atomic_dec: 852 case Intrinsic::amdgcn_ds_fadd: 853 case Intrinsic::amdgcn_ds_fmin: 854 case Intrinsic::amdgcn_ds_fmax: 855 case Intrinsic::amdgcn_is_shared: 856 case Intrinsic::amdgcn_is_private: 857 OpIndexes.push_back(0); 858 return true; 859 default: 860 return false; 861 } 862 } 863 864 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 865 Value *OldV, 866 Value *NewV) const { 867 auto IntrID = II->getIntrinsicID(); 868 switch (IntrID) { 869 case Intrinsic::amdgcn_atomic_inc: 870 case Intrinsic::amdgcn_atomic_dec: 871 case Intrinsic::amdgcn_ds_fadd: 872 case Intrinsic::amdgcn_ds_fmin: 873 case Intrinsic::amdgcn_ds_fmax: { 874 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 875 if (!IsVolatile->isZero()) 876 return nullptr; 877 Module *M = II->getParent()->getParent()->getParent(); 878 Type *DestTy = II->getType(); 879 Type *SrcTy = NewV->getType(); 880 Function *NewDecl = 881 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 882 II->setArgOperand(0, NewV); 883 II->setCalledFunction(NewDecl); 884 return II; 885 } 886 case Intrinsic::amdgcn_is_shared: 887 case Intrinsic::amdgcn_is_private: { 888 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 889 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 890 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 891 LLVMContext &Ctx = NewV->getType()->getContext(); 892 ConstantInt *NewVal = (TrueAS == NewAS) ? 893 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 894 return NewVal; 895 } 896 case Intrinsic::ptrmask: { 897 unsigned OldAS = OldV->getType()->getPointerAddressSpace(); 898 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 899 Value *MaskOp = II->getArgOperand(1); 900 Type *MaskTy = MaskOp->getType(); 901 902 bool DoTruncate = false; 903 if (!getTLI()->isNoopAddrSpaceCast(OldAS, NewAS)) { 904 // All valid 64-bit to 32-bit casts work by chopping off the high 905 // bits. Any masking only clearing the low bits will also apply in the new 906 // address space. 907 if (DL.getPointerSizeInBits(OldAS) != 64 || 908 DL.getPointerSizeInBits(NewAS) != 32) 909 return nullptr; 910 911 // TODO: Do we need to thread more context in here? 912 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); 913 if (Known.countMinLeadingOnes() < 32) 914 return nullptr; 915 916 DoTruncate = true; 917 } 918 919 IRBuilder<> B(II); 920 if (DoTruncate) { 921 MaskTy = B.getInt32Ty(); 922 MaskOp = B.CreateTrunc(MaskOp, MaskTy); 923 } 924 925 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, 926 {NewV, MaskOp}); 927 } 928 default: 929 return nullptr; 930 } 931 } 932 933 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT, 934 int Index, VectorType *SubTp) { 935 if (ST->hasVOP3PInsts()) { 936 if (cast<FixedVectorType>(VT)->getNumElements() == 2 && 937 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 938 // With op_sel VOP3P instructions freely can access the low half or high 939 // half of a register, so any swizzle is free. 940 941 switch (Kind) { 942 case TTI::SK_Broadcast: 943 case TTI::SK_Reverse: 944 case TTI::SK_PermuteSingleSrc: 945 return 0; 946 default: 947 break; 948 } 949 } 950 } 951 952 return BaseT::getShuffleCost(Kind, VT, Index, SubTp); 953 } 954 955 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 956 const Function *Callee) const { 957 const TargetMachine &TM = getTLI()->getTargetMachine(); 958 const GCNSubtarget *CallerST 959 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 960 const GCNSubtarget *CalleeST 961 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 962 963 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 964 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 965 966 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 967 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 968 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 969 return false; 970 971 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 972 // no way to support merge for backend defined attributes. 973 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 974 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 975 return CallerMode.isInlineCompatible(CalleeMode); 976 } 977 978 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 979 TTI::UnrollingPreferences &UP) { 980 CommonTTI.getUnrollingPreferences(L, SE, UP); 981 } 982 983 unsigned 984 GCNTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands, 985 TTI::TargetCostKind CostKind) { 986 const Instruction *I = dyn_cast<Instruction>(U); 987 if (!I) 988 return BaseT::getUserCost(U, Operands, CostKind); 989 990 // Estimate different operations to be optimized out 991 switch (I->getOpcode()) { 992 case Instruction::ExtractElement: { 993 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 994 unsigned Idx = -1; 995 if (CI) 996 Idx = CI->getZExtValue(); 997 return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx); 998 } 999 case Instruction::InsertElement: { 1000 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1001 unsigned Idx = -1; 1002 if (CI) 1003 Idx = CI->getZExtValue(); 1004 return getVectorInstrCost(I->getOpcode(), I->getType(), Idx); 1005 } 1006 case Instruction::ShuffleVector: { 1007 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1008 auto *Ty = cast<VectorType>(Shuffle->getType()); 1009 auto *SrcTy = cast<VectorType>(Shuffle->getOperand(0)->getType()); 1010 1011 // TODO: Identify and add costs for insert subvector, etc. 1012 int SubIndex; 1013 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1014 return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1015 1016 if (Shuffle->changesLength()) 1017 return BaseT::getUserCost(U, Operands, CostKind); 1018 1019 if (Shuffle->isIdentity()) 1020 return 0; 1021 1022 if (Shuffle->isReverse()) 1023 return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr); 1024 1025 if (Shuffle->isSelect()) 1026 return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr); 1027 1028 if (Shuffle->isTranspose()) 1029 return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr); 1030 1031 if (Shuffle->isZeroEltSplat()) 1032 return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr); 1033 1034 if (Shuffle->isSingleSource()) 1035 return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr); 1036 1037 return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr); 1038 } 1039 case Instruction::Add: 1040 case Instruction::FAdd: 1041 case Instruction::Sub: 1042 case Instruction::FSub: 1043 case Instruction::Mul: 1044 case Instruction::FMul: 1045 case Instruction::UDiv: 1046 case Instruction::SDiv: 1047 case Instruction::FDiv: 1048 case Instruction::URem: 1049 case Instruction::SRem: 1050 case Instruction::FRem: 1051 case Instruction::Shl: 1052 case Instruction::LShr: 1053 case Instruction::AShr: 1054 case Instruction::And: 1055 case Instruction::Or: 1056 case Instruction::Xor: 1057 case Instruction::FNeg: { 1058 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1059 TTI::OK_AnyValue, TTI::OK_AnyValue, 1060 TTI::OP_None, TTI::OP_None, Operands, I); 1061 } 1062 default: 1063 break; 1064 } 1065 1066 return BaseT::getUserCost(U, Operands, CostKind); 1067 } 1068 1069 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 1070 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 1071 } 1072 1073 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 1074 return getHardwareNumberOfRegisters(Vec); 1075 } 1076 1077 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 1078 return 32; 1079 } 1080 1081 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 1082 return 32; 1083 } 1084 1085 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 1086 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 1087 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 1088 return 128; 1089 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1090 AddrSpace == AMDGPUAS::REGION_ADDRESS) 1091 return 64; 1092 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 1093 return 32; 1094 1095 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 1096 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 1097 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 1098 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 1099 return 128; 1100 llvm_unreachable("unhandled address space"); 1101 } 1102 1103 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1104 unsigned Alignment, 1105 unsigned AddrSpace) const { 1106 // We allow vectorization of flat stores, even though we may need to decompose 1107 // them later if they may access private memory. We don't have enough context 1108 // here, and legalization can handle it. 1109 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1110 } 1111 1112 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1113 unsigned Alignment, 1114 unsigned AddrSpace) const { 1115 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1116 } 1117 1118 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1119 unsigned Alignment, 1120 unsigned AddrSpace) const { 1121 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1122 } 1123 1124 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1125 // Disable unrolling if the loop is not vectorized. 1126 // TODO: Enable this again. 1127 if (VF == 1) 1128 return 1; 1129 1130 return 8; 1131 } 1132 1133 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode, 1134 TTI::TargetCostKind CostKind) { 1135 // XXX - For some reason this isn't called for switch. 1136 switch (Opcode) { 1137 case Instruction::Br: 1138 case Instruction::Ret: 1139 return 10; 1140 default: 1141 return BaseT::getCFInstrCost(Opcode, CostKind); 1142 } 1143 } 1144 1145 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1146 unsigned Index) { 1147 switch (Opcode) { 1148 case Instruction::ExtractElement: 1149 case Instruction::InsertElement: { 1150 unsigned EltSize 1151 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1152 if (EltSize < 32) { 1153 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1154 } 1155 1156 // Extracts are just reads of a subregister, so are free. Inserts are 1157 // considered free because we don't want to have any cost for scalarizing 1158 // operations, and we don't have to copy into a different register class. 1159 1160 // Dynamic indexing isn't free and is best avoided. 1161 return Index == ~0u ? 2 : 0; 1162 } 1163 default: 1164 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1165 } 1166 } 1167 1168 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1169 TTI::UnrollingPreferences &UP) { 1170 CommonTTI.getUnrollingPreferences(L, SE, UP); 1171 } 1172