1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUSubtarget.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/KnownBits.h" 46 #include "llvm/Support/MachineValueType.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <limits> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "AMDGPUtti" 57 58 static cl::opt<unsigned> UnrollThresholdPrivate( 59 "amdgpu-unroll-threshold-private", 60 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 61 cl::init(2700), cl::Hidden); 62 63 static cl::opt<unsigned> UnrollThresholdLocal( 64 "amdgpu-unroll-threshold-local", 65 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 66 cl::init(1000), cl::Hidden); 67 68 static cl::opt<unsigned> UnrollThresholdIf( 69 "amdgpu-unroll-threshold-if", 70 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 71 cl::init(150), cl::Hidden); 72 73 static cl::opt<bool> UnrollRuntimeLocal( 74 "amdgpu-unroll-runtime-local", 75 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 76 cl::init(true), cl::Hidden); 77 78 static cl::opt<bool> UseLegacyDA( 79 "amdgpu-use-legacy-divergence-analysis", 80 cl::desc("Enable legacy divergence analysis for AMDGPU"), 81 cl::init(false), cl::Hidden); 82 83 static cl::opt<unsigned> UnrollMaxBlockToAnalyze( 84 "amdgpu-unroll-max-block-to-analyze", 85 cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), 86 cl::init(32), cl::Hidden); 87 88 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 89 unsigned Depth = 0) { 90 const Instruction *I = dyn_cast<Instruction>(Cond); 91 if (!I) 92 return false; 93 94 for (const Value *V : I->operand_values()) { 95 if (!L->contains(I)) 96 continue; 97 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 98 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 99 return SubLoop->contains(PHI); })) 100 return true; 101 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 102 return true; 103 } 104 return false; 105 } 106 107 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 108 TTI::UnrollingPreferences &UP) { 109 const Function &F = *L->getHeader()->getParent(); 110 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 111 UP.MaxCount = std::numeric_limits<unsigned>::max(); 112 UP.Partial = true; 113 114 // TODO: Do we want runtime unrolling? 115 116 // Maximum alloca size than can fit registers. Reserve 16 registers. 117 const unsigned MaxAlloca = (256 - 16) * 4; 118 unsigned ThresholdPrivate = UnrollThresholdPrivate; 119 unsigned ThresholdLocal = UnrollThresholdLocal; 120 121 // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the 122 // provided threshold value as the default for Threshold 123 if (MDNode *LoopUnrollThreshold = 124 findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) { 125 if (LoopUnrollThreshold->getNumOperands() == 2) { 126 ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>( 127 LoopUnrollThreshold->getOperand(1)); 128 if (MetaThresholdValue) { 129 // We will also use the supplied value for PartialThreshold for now. 130 // We may introduce additional metadata if it becomes necessary in the 131 // future. 132 UP.Threshold = MetaThresholdValue->getSExtValue(); 133 UP.PartialThreshold = UP.Threshold; 134 ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold); 135 ThresholdLocal = std::min(ThresholdLocal, UP.Threshold); 136 } 137 } 138 } 139 140 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 141 for (const BasicBlock *BB : L->getBlocks()) { 142 const DataLayout &DL = BB->getModule()->getDataLayout(); 143 unsigned LocalGEPsSeen = 0; 144 145 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 146 return SubLoop->contains(BB); })) 147 continue; // Block belongs to an inner loop. 148 149 for (const Instruction &I : *BB) { 150 // Unroll a loop which contains an "if" statement whose condition 151 // defined by a PHI belonging to the loop. This may help to eliminate 152 // if region and potentially even PHI itself, saving on both divergence 153 // and registers used for the PHI. 154 // Add a small bonus for each of such "if" statements. 155 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 156 if (UP.Threshold < MaxBoost && Br->isConditional()) { 157 BasicBlock *Succ0 = Br->getSuccessor(0); 158 BasicBlock *Succ1 = Br->getSuccessor(1); 159 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 160 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 161 continue; 162 if (dependsOnLocalPhi(L, Br->getCondition())) { 163 UP.Threshold += UnrollThresholdIf; 164 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 165 << " for loop:\n" 166 << *L << " due to " << *Br << '\n'); 167 if (UP.Threshold >= MaxBoost) 168 return; 169 } 170 } 171 continue; 172 } 173 174 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 175 if (!GEP) 176 continue; 177 178 unsigned AS = GEP->getAddressSpace(); 179 unsigned Threshold = 0; 180 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 181 Threshold = ThresholdPrivate; 182 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 183 Threshold = ThresholdLocal; 184 else 185 continue; 186 187 if (UP.Threshold >= Threshold) 188 continue; 189 190 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 191 const Value *Ptr = GEP->getPointerOperand(); 192 const AllocaInst *Alloca = 193 dyn_cast<AllocaInst>(getUnderlyingObject(Ptr)); 194 if (!Alloca || !Alloca->isStaticAlloca()) 195 continue; 196 Type *Ty = Alloca->getAllocatedType(); 197 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 198 if (AllocaSize > MaxAlloca) 199 continue; 200 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 201 AS == AMDGPUAS::REGION_ADDRESS) { 202 LocalGEPsSeen++; 203 // Inhibit unroll for local memory if we have seen addressing not to 204 // a variable, most likely we will be unable to combine it. 205 // Do not unroll too deep inner loops for local memory to give a chance 206 // to unroll an outer loop for a more important reason. 207 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 208 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 209 !isa<Argument>(GEP->getPointerOperand()))) 210 continue; 211 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 212 << *L << " due to LDS use.\n"); 213 UP.Runtime = UnrollRuntimeLocal; 214 } 215 216 // Check if GEP depends on a value defined by this loop itself. 217 bool HasLoopDef = false; 218 for (const Value *Op : GEP->operands()) { 219 const Instruction *Inst = dyn_cast<Instruction>(Op); 220 if (!Inst || L->isLoopInvariant(Op)) 221 continue; 222 223 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 224 return SubLoop->contains(Inst); })) 225 continue; 226 HasLoopDef = true; 227 break; 228 } 229 if (!HasLoopDef) 230 continue; 231 232 // We want to do whatever we can to limit the number of alloca 233 // instructions that make it through to the code generator. allocas 234 // require us to use indirect addressing, which is slow and prone to 235 // compiler bugs. If this loop does an address calculation on an 236 // alloca ptr, then we want to use a higher than normal loop unroll 237 // threshold. This will give SROA a better chance to eliminate these 238 // allocas. 239 // 240 // We also want to have more unrolling for local memory to let ds 241 // instructions with different offsets combine. 242 // 243 // Don't use the maximum allowed value here as it will make some 244 // programs way too big. 245 UP.Threshold = Threshold; 246 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 247 << " for loop:\n" 248 << *L << " due to " << *GEP << '\n'); 249 if (UP.Threshold >= MaxBoost) 250 return; 251 } 252 253 // If we got a GEP in a small BB from inner loop then increase max trip 254 // count to analyze for better estimation cost in unroll 255 if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze) 256 UP.MaxIterationsCountToAnalyze = 32; 257 } 258 } 259 260 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 261 TTI::PeelingPreferences &PP) { 262 BaseT::getPeelingPreferences(L, SE, PP); 263 } 264 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 265 // The concept of vector registers doesn't really exist. Some packed vector 266 // operations operate on the normal 32-bit registers. 267 return MaxVGPRs; 268 } 269 270 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 271 // This is really the number of registers to fill when vectorizing / 272 // interleaving loops, so we lie to avoid trying to use all registers. 273 return getHardwareNumberOfRegisters(Vec) >> 3; 274 } 275 276 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const { 277 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 278 const TargetRegisterClass *RC = TRI->getRegClass(RCID); 279 unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32; 280 return getHardwareNumberOfRegisters(false) / NumVGPRs; 281 } 282 283 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 284 return 32; 285 } 286 287 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 288 return 32; 289 } 290 291 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 292 if (Opcode == Instruction::Load || Opcode == Instruction::Store) 293 return 32 * 4 / ElemWidth; 294 return (ElemWidth == 16 && ST->has16BitInsts()) ? 2 : 1; 295 } 296 297 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 298 unsigned ChainSizeInBytes, 299 VectorType *VecTy) const { 300 unsigned VecRegBitWidth = VF * LoadSize; 301 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 302 // TODO: Support element-size less than 32bit? 303 return 128 / LoadSize; 304 305 return VF; 306 } 307 308 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 309 unsigned ChainSizeInBytes, 310 VectorType *VecTy) const { 311 unsigned VecRegBitWidth = VF * StoreSize; 312 if (VecRegBitWidth > 128) 313 return 128 / StoreSize; 314 315 return VF; 316 } 317 318 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 319 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 320 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 321 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 322 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 323 return 512; 324 } 325 326 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 327 return 8 * ST->getMaxPrivateElementSize(); 328 329 // Common to flat, global, local and region. Assume for unknown addrspace. 330 return 128; 331 } 332 333 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 334 Align Alignment, 335 unsigned AddrSpace) const { 336 // We allow vectorization of flat stores, even though we may need to decompose 337 // them later if they may access private memory. We don't have enough context 338 // here, and legalization can handle it. 339 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 340 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 341 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 342 } 343 return true; 344 } 345 346 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 347 Align Alignment, 348 unsigned AddrSpace) const { 349 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 350 } 351 352 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 353 Align Alignment, 354 unsigned AddrSpace) const { 355 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 356 } 357 358 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 359 // iteration. Should we report a larger size and let it legalize? 360 // 361 // FIXME: Should we use narrower types for local/region, or account for when 362 // unaligned access is legal? 363 // 364 // FIXME: This could use fine tuning and microbenchmarks. 365 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, 366 unsigned SrcAddrSpace, 367 unsigned DestAddrSpace, 368 unsigned SrcAlign, 369 unsigned DestAlign) const { 370 unsigned MinAlign = std::min(SrcAlign, DestAlign); 371 372 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 373 // hardware into byte accesses. If you assume all alignments are equally 374 // probable, it's more efficient on average to use short accesses for this 375 // case. 376 if (MinAlign == 2) 377 return Type::getInt16Ty(Context); 378 379 // Not all subtargets have 128-bit DS instructions, and we currently don't 380 // form them by default. 381 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 382 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 383 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 384 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 385 return FixedVectorType::get(Type::getInt32Ty(Context), 2); 386 } 387 388 // Global memory works best with 16-byte accesses. Private memory will also 389 // hit this, although they'll be decomposed. 390 return FixedVectorType::get(Type::getInt32Ty(Context), 4); 391 } 392 393 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 394 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 395 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 396 unsigned SrcAlign, unsigned DestAlign) const { 397 assert(RemainingBytes < 16); 398 399 unsigned MinAlign = std::min(SrcAlign, DestAlign); 400 401 if (MinAlign != 2) { 402 Type *I64Ty = Type::getInt64Ty(Context); 403 while (RemainingBytes >= 8) { 404 OpsOut.push_back(I64Ty); 405 RemainingBytes -= 8; 406 } 407 408 Type *I32Ty = Type::getInt32Ty(Context); 409 while (RemainingBytes >= 4) { 410 OpsOut.push_back(I32Ty); 411 RemainingBytes -= 4; 412 } 413 } 414 415 Type *I16Ty = Type::getInt16Ty(Context); 416 while (RemainingBytes >= 2) { 417 OpsOut.push_back(I16Ty); 418 RemainingBytes -= 2; 419 } 420 421 Type *I8Ty = Type::getInt8Ty(Context); 422 while (RemainingBytes) { 423 OpsOut.push_back(I8Ty); 424 --RemainingBytes; 425 } 426 } 427 428 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 429 // Disable unrolling if the loop is not vectorized. 430 // TODO: Enable this again. 431 if (VF == 1) 432 return 1; 433 434 return 8; 435 } 436 437 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 438 MemIntrinsicInfo &Info) const { 439 switch (Inst->getIntrinsicID()) { 440 case Intrinsic::amdgcn_atomic_inc: 441 case Intrinsic::amdgcn_atomic_dec: 442 case Intrinsic::amdgcn_ds_ordered_add: 443 case Intrinsic::amdgcn_ds_ordered_swap: 444 case Intrinsic::amdgcn_ds_fadd: 445 case Intrinsic::amdgcn_ds_fmin: 446 case Intrinsic::amdgcn_ds_fmax: { 447 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 448 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 449 if (!Ordering || !Volatile) 450 return false; // Invalid. 451 452 unsigned OrderingVal = Ordering->getZExtValue(); 453 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 454 return false; 455 456 Info.PtrVal = Inst->getArgOperand(0); 457 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 458 Info.ReadMem = true; 459 Info.WriteMem = true; 460 Info.IsVolatile = !Volatile->isNullValue(); 461 return true; 462 } 463 default: 464 return false; 465 } 466 } 467 468 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 469 TTI::TargetCostKind CostKind, 470 TTI::OperandValueKind Opd1Info, 471 TTI::OperandValueKind Opd2Info, 472 TTI::OperandValueProperties Opd1PropInfo, 473 TTI::OperandValueProperties Opd2PropInfo, 474 ArrayRef<const Value *> Args, 475 const Instruction *CxtI) { 476 EVT OrigTy = TLI->getValueType(DL, Ty); 477 if (!OrigTy.isSimple()) { 478 // FIXME: We're having to query the throughput cost so that the basic 479 // implementation tries to generate legalize and scalarization costs. Maybe 480 // we could hoist the scalarization code here? 481 if (CostKind != TTI::TCK_CodeSize) 482 return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput, 483 Opd1Info, Opd2Info, Opd1PropInfo, 484 Opd2PropInfo, Args, CxtI); 485 // Scalarization 486 487 // Check if any of the operands are vector operands. 488 int ISD = TLI->InstructionOpcodeToISD(Opcode); 489 assert(ISD && "Invalid opcode"); 490 491 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 492 493 bool IsFloat = Ty->isFPOrFPVectorTy(); 494 // Assume that floating point arithmetic operations cost twice as much as 495 // integer operations. 496 unsigned OpCost = (IsFloat ? 2 : 1); 497 498 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 499 // The operation is legal. Assume it costs 1. 500 // TODO: Once we have extract/insert subvector cost we need to use them. 501 return LT.first * OpCost; 502 } 503 504 if (!TLI->isOperationExpand(ISD, LT.second)) { 505 // If the operation is custom lowered, then assume that the code is twice 506 // as expensive. 507 return LT.first * 2 * OpCost; 508 } 509 510 // Else, assume that we need to scalarize this op. 511 // TODO: If one of the types get legalized by splitting, handle this 512 // similarly to what getCastInstrCost() does. 513 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 514 unsigned Num = cast<FixedVectorType>(VTy)->getNumElements(); 515 unsigned Cost = getArithmeticInstrCost( 516 Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info, 517 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 518 // Return the cost of multiple scalar invocation plus the cost of 519 // inserting and extracting the values. 520 return getScalarizationOverhead(VTy, Args) + Num * Cost; 521 } 522 523 // We don't know anything about this scalar instruction. 524 return OpCost; 525 } 526 527 // Legalize the type. 528 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 529 int ISD = TLI->InstructionOpcodeToISD(Opcode); 530 531 // Because we don't have any legal vector operations, but the legal types, we 532 // need to account for split vectors. 533 unsigned NElts = LT.second.isVector() ? 534 LT.second.getVectorNumElements() : 1; 535 536 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 537 538 switch (ISD) { 539 case ISD::SHL: 540 case ISD::SRL: 541 case ISD::SRA: 542 if (SLT == MVT::i64) 543 return get64BitInstrCost(CostKind) * LT.first * NElts; 544 545 if (ST->has16BitInsts() && SLT == MVT::i16) 546 NElts = (NElts + 1) / 2; 547 548 // i32 549 return getFullRateInstrCost() * LT.first * NElts; 550 case ISD::ADD: 551 case ISD::SUB: 552 case ISD::AND: 553 case ISD::OR: 554 case ISD::XOR: 555 if (SLT == MVT::i64) { 556 // and, or and xor are typically split into 2 VALU instructions. 557 return 2 * getFullRateInstrCost() * LT.first * NElts; 558 } 559 560 if (ST->has16BitInsts() && SLT == MVT::i16) 561 NElts = (NElts + 1) / 2; 562 563 return LT.first * NElts * getFullRateInstrCost(); 564 case ISD::MUL: { 565 const int QuarterRateCost = getQuarterRateInstrCost(CostKind); 566 if (SLT == MVT::i64) { 567 const int FullRateCost = getFullRateInstrCost(); 568 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 569 } 570 571 if (ST->has16BitInsts() && SLT == MVT::i16) 572 NElts = (NElts + 1) / 2; 573 574 // i32 575 return QuarterRateCost * NElts * LT.first; 576 } 577 case ISD::FMUL: 578 // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for 579 // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole 580 // fused operation. 581 if (CxtI && CxtI->hasOneUse()) 582 if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) { 583 const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode()); 584 if (OPC == ISD::FADD || OPC == ISD::FSUB) { 585 if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals) 586 return TargetTransformInfo::TCC_Free; 587 if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals) 588 return TargetTransformInfo::TCC_Free; 589 590 // Estimate all types may be fused with contract/unsafe flags 591 const TargetOptions &Options = TLI->getTargetMachine().Options; 592 if (Options.AllowFPOpFusion == FPOpFusion::Fast || 593 Options.UnsafeFPMath || 594 (FAdd->hasAllowContract() && CxtI->hasAllowContract())) 595 return TargetTransformInfo::TCC_Free; 596 } 597 } 598 LLVM_FALLTHROUGH; 599 case ISD::FADD: 600 case ISD::FSUB: 601 if (SLT == MVT::f64) 602 return LT.first * NElts * get64BitInstrCost(CostKind); 603 604 if (ST->has16BitInsts() && SLT == MVT::f16) 605 NElts = (NElts + 1) / 2; 606 607 if (SLT == MVT::f32 || SLT == MVT::f16) 608 return LT.first * NElts * getFullRateInstrCost(); 609 break; 610 case ISD::FDIV: 611 case ISD::FREM: 612 // FIXME: frem should be handled separately. The fdiv in it is most of it, 613 // but the current lowering is also not entirely correct. 614 if (SLT == MVT::f64) { 615 int Cost = 7 * get64BitInstrCost(CostKind) + 616 getQuarterRateInstrCost(CostKind) + 617 3 * getHalfRateInstrCost(CostKind); 618 // Add cost of workaround. 619 if (!ST->hasUsableDivScaleConditionOutput()) 620 Cost += 3 * getFullRateInstrCost(); 621 622 return LT.first * Cost * NElts; 623 } 624 625 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 626 // TODO: This is more complicated, unsafe flags etc. 627 if ((SLT == MVT::f32 && !HasFP32Denormals) || 628 (SLT == MVT::f16 && ST->has16BitInsts())) { 629 return LT.first * getQuarterRateInstrCost(CostKind) * NElts; 630 } 631 } 632 633 if (SLT == MVT::f16 && ST->has16BitInsts()) { 634 // 2 x v_cvt_f32_f16 635 // f32 rcp 636 // f32 fmul 637 // v_cvt_f16_f32 638 // f16 div_fixup 639 int Cost = 640 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind); 641 return LT.first * Cost * NElts; 642 } 643 644 if (SLT == MVT::f32 || SLT == MVT::f16) { 645 // 4 more v_cvt_* insts without f16 insts support 646 int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() + 647 1 * getQuarterRateInstrCost(CostKind); 648 649 if (!HasFP32Denormals) { 650 // FP mode switches. 651 Cost += 2 * getFullRateInstrCost(); 652 } 653 654 return LT.first * NElts * Cost; 655 } 656 break; 657 case ISD::FNEG: 658 // Use the backend' estimation. If fneg is not free each element will cost 659 // one additional instruction. 660 return TLI->isFNegFree(SLT) ? 0 : NElts; 661 default: 662 break; 663 } 664 665 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, 666 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 667 } 668 669 // Return true if there's a potential benefit from using v2f16/v2i16 670 // instructions for an intrinsic, even if it requires nontrivial legalization. 671 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 672 switch (ID) { 673 case Intrinsic::fma: // TODO: fmuladd 674 // There's a small benefit to using vector ops in the legalized code. 675 case Intrinsic::round: 676 case Intrinsic::uadd_sat: 677 case Intrinsic::usub_sat: 678 case Intrinsic::sadd_sat: 679 case Intrinsic::ssub_sat: 680 return true; 681 default: 682 return false; 683 } 684 } 685 686 int GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 687 TTI::TargetCostKind CostKind) { 688 if (ICA.getID() == Intrinsic::fabs) 689 return 0; 690 691 if (!intrinsicHasPackedVectorBenefit(ICA.getID())) 692 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 693 694 Type *RetTy = ICA.getReturnType(); 695 EVT OrigTy = TLI->getValueType(DL, RetTy); 696 if (!OrigTy.isSimple()) { 697 if (CostKind != TTI::TCK_CodeSize) 698 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 699 700 // TODO: Combine these two logic paths. 701 if (ICA.isTypeBasedOnly()) 702 return getTypeBasedIntrinsicInstrCost(ICA, CostKind); 703 704 Type *RetTy = ICA.getReturnType(); 705 unsigned VF = ICA.getVectorFactor().getFixedValue(); 706 unsigned RetVF = 707 (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements() 708 : 1); 709 assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type"); 710 const IntrinsicInst *I = ICA.getInst(); 711 const SmallVectorImpl<const Value *> &Args = ICA.getArgs(); 712 FastMathFlags FMF = ICA.getFlags(); 713 // Assume that we need to scalarize this intrinsic. 714 SmallVector<Type *, 4> Types; 715 for (const Value *Op : Args) { 716 Type *OpTy = Op->getType(); 717 assert(VF == 1 || !OpTy->isVectorTy()); 718 Types.push_back(VF == 1 ? OpTy : FixedVectorType::get(OpTy, VF)); 719 } 720 721 if (VF > 1 && !RetTy->isVoidTy()) 722 RetTy = FixedVectorType::get(RetTy, VF); 723 724 // Compute the scalarization overhead based on Args for a vector 725 // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while 726 // CostModel will pass a vector RetTy and VF is 1. 727 unsigned ScalarizationCost = std::numeric_limits<unsigned>::max(); 728 if (RetVF > 1 || VF > 1) { 729 ScalarizationCost = 0; 730 if (!RetTy->isVoidTy()) 731 ScalarizationCost += 732 getScalarizationOverhead(cast<VectorType>(RetTy), true, false); 733 ScalarizationCost += getOperandsScalarizationOverhead(Args, VF); 734 } 735 736 IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, Types, FMF, 737 ScalarizationCost, I); 738 return getIntrinsicInstrCost(Attrs, CostKind); 739 } 740 741 // Legalize the type. 742 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 743 744 unsigned NElts = LT.second.isVector() ? 745 LT.second.getVectorNumElements() : 1; 746 747 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 748 749 if (SLT == MVT::f64) 750 return LT.first * NElts * get64BitInstrCost(CostKind); 751 752 if (ST->has16BitInsts() && SLT == MVT::f16) 753 NElts = (NElts + 1) / 2; 754 755 // TODO: Get more refined intrinsic costs? 756 unsigned InstRate = getQuarterRateInstrCost(CostKind); 757 if (ICA.getID() == Intrinsic::fma) { 758 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind) 759 : getQuarterRateInstrCost(CostKind); 760 } 761 762 return LT.first * NElts * InstRate; 763 } 764 765 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode, 766 TTI::TargetCostKind CostKind) { 767 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 768 return Opcode == Instruction::PHI ? 0 : 1; 769 770 // XXX - For some reason this isn't called for switch. 771 switch (Opcode) { 772 case Instruction::Br: 773 case Instruction::Ret: 774 return 10; 775 default: 776 return BaseT::getCFInstrCost(Opcode, CostKind); 777 } 778 } 779 780 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 781 bool IsPairwise, 782 TTI::TargetCostKind CostKind) { 783 EVT OrigTy = TLI->getValueType(DL, Ty); 784 785 // Computes cost on targets that have packed math instructions(which support 786 // 16-bit types only). 787 if (IsPairwise || 788 !ST->hasVOP3PInsts() || 789 OrigTy.getScalarSizeInBits() != 16) 790 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind); 791 792 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 793 return LT.first * getFullRateInstrCost(); 794 } 795 796 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 797 bool IsPairwise, bool IsUnsigned, 798 TTI::TargetCostKind CostKind) { 799 EVT OrigTy = TLI->getValueType(DL, Ty); 800 801 // Computes cost on targets that have packed math instructions(which support 802 // 16-bit types only). 803 if (IsPairwise || 804 !ST->hasVOP3PInsts() || 805 OrigTy.getScalarSizeInBits() != 16) 806 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned, 807 CostKind); 808 809 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 810 return LT.first * getHalfRateInstrCost(CostKind); 811 } 812 813 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 814 unsigned Index) { 815 switch (Opcode) { 816 case Instruction::ExtractElement: 817 case Instruction::InsertElement: { 818 unsigned EltSize 819 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 820 if (EltSize < 32) { 821 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 822 return 0; 823 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 824 } 825 826 // Extracts are just reads of a subregister, so are free. Inserts are 827 // considered free because we don't want to have any cost for scalarizing 828 // operations, and we don't have to copy into a different register class. 829 830 // Dynamic indexing isn't free and is best avoided. 831 return Index == ~0u ? 2 : 0; 832 } 833 default: 834 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 835 } 836 } 837 838 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 839 /// this is analyzing the collective result of all output registers. Otherwise, 840 /// this is only querying a specific result index if this returns multiple 841 /// registers in a struct. 842 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 843 const CallInst *CI, ArrayRef<unsigned> Indices) const { 844 // TODO: Handle complex extract indices 845 if (Indices.size() > 1) 846 return true; 847 848 const DataLayout &DL = CI->getModule()->getDataLayout(); 849 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 850 TargetLowering::AsmOperandInfoVector TargetConstraints = 851 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 852 853 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 854 855 int OutputIdx = 0; 856 for (auto &TC : TargetConstraints) { 857 if (TC.Type != InlineAsm::isOutput) 858 continue; 859 860 // Skip outputs we don't care about. 861 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 862 continue; 863 864 TLI->ComputeConstraintToUse(TC, SDValue()); 865 866 Register AssignedReg; 867 const TargetRegisterClass *RC; 868 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 869 TRI, TC.ConstraintCode, TC.ConstraintVT); 870 if (AssignedReg) { 871 // FIXME: This is a workaround for getRegForInlineAsmConstraint 872 // returning VS_32 873 RC = TRI->getPhysRegClass(AssignedReg); 874 } 875 876 // For AGPR constraints null is returned on subtargets without AGPRs, so 877 // assume divergent for null. 878 if (!RC || !TRI->isSGPRClass(RC)) 879 return true; 880 } 881 882 return false; 883 } 884 885 /// \returns true if the new GPU divergence analysis is enabled. 886 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 887 return !UseLegacyDA; 888 } 889 890 /// \returns true if the result of the value could potentially be 891 /// different across workitems in a wavefront. 892 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 893 if (const Argument *A = dyn_cast<Argument>(V)) 894 return !AMDGPU::isArgPassedInSGPR(A); 895 896 // Loads from the private and flat address spaces are divergent, because 897 // threads can execute the load instruction with the same inputs and get 898 // different results. 899 // 900 // All other loads are not divergent, because if threads issue loads with the 901 // same arguments, they will always get the same result. 902 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 903 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 904 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 905 906 // Atomics are divergent because they are executed sequentially: when an 907 // atomic operation refers to the same address in each thread, then each 908 // thread after the first sees the value written by the previous thread as 909 // original value. 910 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 911 return true; 912 913 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 914 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 915 916 // Assume all function calls are a source of divergence. 917 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 918 if (CI->isInlineAsm()) 919 return isInlineAsmSourceOfDivergence(CI); 920 return true; 921 } 922 923 // Assume all function calls are a source of divergence. 924 if (isa<InvokeInst>(V)) 925 return true; 926 927 return false; 928 } 929 930 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 931 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 932 switch (Intrinsic->getIntrinsicID()) { 933 default: 934 return false; 935 case Intrinsic::amdgcn_readfirstlane: 936 case Intrinsic::amdgcn_readlane: 937 case Intrinsic::amdgcn_icmp: 938 case Intrinsic::amdgcn_fcmp: 939 case Intrinsic::amdgcn_ballot: 940 case Intrinsic::amdgcn_if_break: 941 return true; 942 } 943 } 944 945 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 946 if (CI->isInlineAsm()) 947 return !isInlineAsmSourceOfDivergence(CI); 948 return false; 949 } 950 951 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 952 if (!ExtValue) 953 return false; 954 955 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 956 if (!CI) 957 return false; 958 959 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 960 switch (Intrinsic->getIntrinsicID()) { 961 default: 962 return false; 963 case Intrinsic::amdgcn_if: 964 case Intrinsic::amdgcn_else: { 965 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 966 return Indices.size() == 1 && Indices[0] == 1; 967 } 968 } 969 } 970 971 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 972 // divergent for the overall struct return. We need to override it in the 973 // case we're extracting an SGPR component here. 974 if (CI->isInlineAsm()) 975 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 976 977 return false; 978 } 979 980 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 981 Intrinsic::ID IID) const { 982 switch (IID) { 983 case Intrinsic::amdgcn_atomic_inc: 984 case Intrinsic::amdgcn_atomic_dec: 985 case Intrinsic::amdgcn_ds_fadd: 986 case Intrinsic::amdgcn_ds_fmin: 987 case Intrinsic::amdgcn_ds_fmax: 988 case Intrinsic::amdgcn_is_shared: 989 case Intrinsic::amdgcn_is_private: 990 OpIndexes.push_back(0); 991 return true; 992 default: 993 return false; 994 } 995 } 996 997 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 998 Value *OldV, 999 Value *NewV) const { 1000 auto IntrID = II->getIntrinsicID(); 1001 switch (IntrID) { 1002 case Intrinsic::amdgcn_atomic_inc: 1003 case Intrinsic::amdgcn_atomic_dec: 1004 case Intrinsic::amdgcn_ds_fadd: 1005 case Intrinsic::amdgcn_ds_fmin: 1006 case Intrinsic::amdgcn_ds_fmax: { 1007 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 1008 if (!IsVolatile->isZero()) 1009 return nullptr; 1010 Module *M = II->getParent()->getParent()->getParent(); 1011 Type *DestTy = II->getType(); 1012 Type *SrcTy = NewV->getType(); 1013 Function *NewDecl = 1014 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 1015 II->setArgOperand(0, NewV); 1016 II->setCalledFunction(NewDecl); 1017 return II; 1018 } 1019 case Intrinsic::amdgcn_is_shared: 1020 case Intrinsic::amdgcn_is_private: { 1021 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 1022 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 1023 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1024 LLVMContext &Ctx = NewV->getType()->getContext(); 1025 ConstantInt *NewVal = (TrueAS == NewAS) ? 1026 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 1027 return NewVal; 1028 } 1029 case Intrinsic::ptrmask: { 1030 unsigned OldAS = OldV->getType()->getPointerAddressSpace(); 1031 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1032 Value *MaskOp = II->getArgOperand(1); 1033 Type *MaskTy = MaskOp->getType(); 1034 1035 bool DoTruncate = false; 1036 1037 const GCNTargetMachine &TM = 1038 static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine()); 1039 if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) { 1040 // All valid 64-bit to 32-bit casts work by chopping off the high 1041 // bits. Any masking only clearing the low bits will also apply in the new 1042 // address space. 1043 if (DL.getPointerSizeInBits(OldAS) != 64 || 1044 DL.getPointerSizeInBits(NewAS) != 32) 1045 return nullptr; 1046 1047 // TODO: Do we need to thread more context in here? 1048 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); 1049 if (Known.countMinLeadingOnes() < 32) 1050 return nullptr; 1051 1052 DoTruncate = true; 1053 } 1054 1055 IRBuilder<> B(II); 1056 if (DoTruncate) { 1057 MaskTy = B.getInt32Ty(); 1058 MaskOp = B.CreateTrunc(MaskOp, MaskTy); 1059 } 1060 1061 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, 1062 {NewV, MaskOp}); 1063 } 1064 default: 1065 return nullptr; 1066 } 1067 } 1068 1069 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT, 1070 int Index, VectorType *SubTp) { 1071 if (ST->hasVOP3PInsts()) { 1072 if (cast<FixedVectorType>(VT)->getNumElements() == 2 && 1073 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 1074 // With op_sel VOP3P instructions freely can access the low half or high 1075 // half of a register, so any swizzle is free. 1076 1077 switch (Kind) { 1078 case TTI::SK_Broadcast: 1079 case TTI::SK_Reverse: 1080 case TTI::SK_PermuteSingleSrc: 1081 return 0; 1082 default: 1083 break; 1084 } 1085 } 1086 } 1087 1088 return BaseT::getShuffleCost(Kind, VT, Index, SubTp); 1089 } 1090 1091 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 1092 const Function *Callee) const { 1093 const TargetMachine &TM = getTLI()->getTargetMachine(); 1094 const GCNSubtarget *CallerST 1095 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 1096 const GCNSubtarget *CalleeST 1097 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 1098 1099 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 1100 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 1101 1102 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 1103 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 1104 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 1105 return false; 1106 1107 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 1108 // no way to support merge for backend defined attributes. 1109 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 1110 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 1111 return CallerMode.isInlineCompatible(CalleeMode); 1112 } 1113 1114 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1115 TTI::UnrollingPreferences &UP) { 1116 CommonTTI.getUnrollingPreferences(L, SE, UP); 1117 } 1118 1119 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1120 TTI::PeelingPreferences &PP) { 1121 CommonTTI.getPeelingPreferences(L, SE, PP); 1122 } 1123 1124 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 1125 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 1126 } 1127 1128 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 1129 return getHardwareNumberOfRegisters(Vec); 1130 } 1131 1132 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 1133 return 32; 1134 } 1135 1136 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 1137 return 32; 1138 } 1139 1140 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 1141 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 1142 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 1143 return 128; 1144 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1145 AddrSpace == AMDGPUAS::REGION_ADDRESS) 1146 return 64; 1147 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 1148 return 32; 1149 1150 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 1151 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 1152 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 1153 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 1154 return 128; 1155 llvm_unreachable("unhandled address space"); 1156 } 1157 1158 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1159 Align Alignment, 1160 unsigned AddrSpace) const { 1161 // We allow vectorization of flat stores, even though we may need to decompose 1162 // them later if they may access private memory. We don't have enough context 1163 // here, and legalization can handle it. 1164 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1165 } 1166 1167 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1168 Align Alignment, 1169 unsigned AddrSpace) const { 1170 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1171 } 1172 1173 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1174 Align Alignment, 1175 unsigned AddrSpace) const { 1176 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1177 } 1178 1179 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1180 // Disable unrolling if the loop is not vectorized. 1181 // TODO: Enable this again. 1182 if (VF == 1) 1183 return 1; 1184 1185 return 8; 1186 } 1187 1188 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode, 1189 TTI::TargetCostKind CostKind) { 1190 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 1191 return Opcode == Instruction::PHI ? 0 : 1; 1192 1193 // XXX - For some reason this isn't called for switch. 1194 switch (Opcode) { 1195 case Instruction::Br: 1196 case Instruction::Ret: 1197 return 10; 1198 default: 1199 return BaseT::getCFInstrCost(Opcode, CostKind); 1200 } 1201 } 1202 1203 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1204 unsigned Index) { 1205 switch (Opcode) { 1206 case Instruction::ExtractElement: 1207 case Instruction::InsertElement: { 1208 unsigned EltSize 1209 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1210 if (EltSize < 32) { 1211 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1212 } 1213 1214 // Extracts are just reads of a subregister, so are free. Inserts are 1215 // considered free because we don't want to have any cost for scalarizing 1216 // operations, and we don't have to copy into a different register class. 1217 1218 // Dynamic indexing isn't free and is best avoided. 1219 return Index == ~0u ? 2 : 0; 1220 } 1221 default: 1222 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1223 } 1224 } 1225 1226 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1227 TTI::UnrollingPreferences &UP) { 1228 CommonTTI.getUnrollingPreferences(L, SE, UP); 1229 } 1230 1231 void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1232 TTI::PeelingPreferences &PP) { 1233 CommonTTI.getPeelingPreferences(L, SE, PP); 1234 } 1235